hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
1abdb665b3f26fc44f71b7a52adc1fcb9d19d765
20,030
py
Python
src/ask/sent_2_q.py
ercgn/11411-proj
10c7f68e3d800af5e86fd3f3b63e2a298fd21a8c
[ "MIT" ]
null
null
null
src/ask/sent_2_q.py
ercgn/11411-proj
10c7f68e3d800af5e86fd3f3b63e2a298fd21a8c
[ "MIT" ]
null
null
null
src/ask/sent_2_q.py
ercgn/11411-proj
10c7f68e3d800af5e86fd3f3b63e2a298fd21a8c
[ "MIT" ]
null
null
null
# # sent_2_q.py # # Given a sentence, this class can be used to turn the sentence into a question # tries a variety of methods and returns after one has been successful # # Rachel Kobayashi # with # Aaron Anderson # Eric Gan # # import util.rdrpos as rdrpos import nltk, string from util.combinations import Combine from util.qutil import * # cases to replace: # dates -> when # if -> why question with the if section as the clause # noun / proper noun / pronoun replacement # names / proper nouns class ConstructQuestion(object): def __init__(self, sentence): self.c = Combine(); self.tokens = nltk.word_tokenize(sentence.strip()); self.tags = rdrpos.pos_tag(sentence.strip()); # check if capitaliaztion is necessary and otherwise remove. self.nltkTags = nltk.pos_tag(self.tokens); if (self.nltkTags[0] != self.tags[0]) and \ self.c.ID.isReplacablePronoun(self.tokens[0]): self.tokens[0] = self.tokens[0].lower(); # remove end puncuation self.tokens, self.tags = self.rmEndPunc(self.tokens, self.tags); # returned question / question word self.out = ""; self.qWord = None; self.N = len(self.tokens); self.make(sentence); def reportionCommaLists(self, tokList, tagList, idxList=None): rmList = []; for i,item in enumerate(tagList[:-1]): nextItem = tagList[i+1]; firstWord = nextItem[0]; lastTag = item[-1]; lastWord = None; if self.c.ID.isEndPhrasePunc(lastTag) and len(item) >= 2: lastWord = item[-2]; elif len(item) >= 2: lastWord = item[-1]; if lastWord != None and\ (is_adj(lastWord) and is_adj(firstWord)): tagList[i+1] = item + nextItem; tokList[i+1] = tokList[i] + tokList[i+1]; rmList.append(i); elif lastWord != None and\ (is_propN(lastWord) and is_propN(firstWord)): second = (tokList[i+1][0],firstWord); first = (tokList[i][-2],lastWord); if self.c.ID.isPlace(first,second): tagList[i+1] = item + nextItem; tokList[i+1] = tokList[i] + tokList[i+1]; rmList.append(i); offset = 0; if rmList != []: for idx in rmList: adjI = idx-offset; # tokList[adjI]; tokList.pop(adjI); tagList.pop(adjI); if idxList != None: idxList.pop(adjI+1); offset += 1; if idxList != None: return tokList, tagList,idxList; else: return tokList, tagList; # Split the tokens and tags into phrases based on commas # or other ending punc such as ;.? # cannot just join and use split because the question word that has # been replaced might be more than one word # might be irrelevant depending on the sentence handed in # hence the early check for , def splitComma(self): tok = self.tokens; pos = self.tags; # not necessary to split indicated by -1 ouput if ',' not in set(tok): return tok,pos, (-1,0); tokCommaList, tagCommaList, idxs = self.splitCommaBare(tok, pos, True); # list of indicdes that indicate splitted phrase in the original idxs.append(len(tok)); (qIdx, qWord) = self.qWord; # find the index of the comma phrase that contains the question word for idx in range(len(idxs)-1): if idxs[idx] <= qIdx and qIdx < idxs[idx+1]: return (tokCommaList, tagCommaList, (idx, idxs[idx])); return tokCommaList, tagCommaList, (0,0); # splitCommaBare - split the input into list of components # based on comma / end punctuation placement # takes in the tok, associated pos tags, and # idxFlag which indicates whether or not the output should include # a list of where the original lists were split def splitCommaBare(self, tok, pos, idxFlag): if ',' not in set(tok) or (len(tok) != len(pos)): if idxFlag: return tok, pos, False; else: return tok,pos; saveTag = []; saveTok = []; newTok = []; newTag = []; idxs = []; incpEnd = False; idxs.append(0); for i,word in enumerate(tok): # not comma, part of same phrase if not self.c.ID.isEndPhrasePunc(word): saveTok.append(word); saveTag.append(pos[i]); incpEnd = True; # comma / end punction, add section to ouput list # reset temp save else: idxs.append(i+1); saveTok.append(word); saveTag.append(pos[i]); newTok.append(saveTok); newTag.append(saveTag); saveTok = []; saveTag = []; incpEnd = False; # if the original input did not have final end punction # ensures we get the last of the input included if incpEnd: newTok.append(saveTok); newTag.append(saveTag); # redo comma lists based on countries, adjective lists. outTok, outTag, outIdxs = self.reportionCommaLists(newTok,newTag,idxs); if idxFlag: return outTok,outTag, idxs; else: return outTok,outTag; # Arranges a question when the question word is preceeded by a verb def verbPreArr(self, tok, qIdx): qTok = []; beginning = tok[qIdx:]; qTok += makeList(beginning); # qTok += [tok[qIdx-1]]; if qIdx-1 > 0: tok[0] = wordToLower(tok[0]); qTok += tok[0:qIdx-1]; return qTok; # Arranges a question when the question word is followed by a verb def verbPostArr(self, tok, qIdx, pos): qTok = []; qPart = tok[qIdx:]; beginning = tok[:qIdx]; beginTag = pos[:qIdx]; # check if the beginning of the sentence has a verb # (indicates a somewhat complete thought, # probably not necessary in question) hasVerb = reduce(lambda x,y: x or y, map(is_verb, beginTag)); if isinstance(qPart,list): qTok += [qPart[0]]; if not hasVerb and beginTag[-1] != "IN": if beginTag[0] == "DT" and isinstance(beginning,list): qTok += beginning[1:]; else: qTok += beginning; end = qPart[1:]; qTok += makeList(end); else: qTok += [qPart]; # does not copy the first word if what is the second word # my socks are black today > my what are black today > # what are black today if qIdx == 1: tok[0] = wordToLower(tok[0]); qTok += tok[0:qIdx]; return qTok; # checks the comma delineated sections for a given pos tag # uses the key "NOUN" to indicate any noun and # "VERB" to indicate any verb (avoids function pointers) # returns the index into the comma list of the first find # as well as the found item (a list); def findTag(self,newTokList,newTagList, tagCode): saveIdx = []; found = False; if newTokList == None or newTagList == None: return None; for i, phrase in enumerate(newTagList): for tag in phrase: # found condition, save phrase if (tagCode == "NOUN" and is_noun(tag)) or\ (tagCode == "VERB" and is_verb(tag)) or\ (tag == tagCode): found = True; if found: saveIdx.append(i); found = False; # no find, return None if saveIdx == []: return None; # something found, return last find (closest to verb); else: return saveIdx[-1],makeList(newTokList[saveIdx[-1]]); # rearrangeBV - rearrange a sentence when a being verb is present # so that the question reads [verb] [beinning] [end] ? # (Forms yes questions without adding / changing word tokens) def rearrangeBV(self,vbIdx): if vbIdx < 0: return False; pos = self.tags; tok = self.tokens; verb = tok[vbIdx]; preVerb = []; postVerb = []; qTok = []; saveIdx = None; newTok = None; # start of sentence if vbIdx > 0: preVerb = makeList(tok[:vbIdx]); preVerb[0] = wordToLower(preVerb[0]); # break at commas if necessary newTok, newTag= self.splitCommaBare(preVerb,pos[:vbIdx], False); if newTok != preVerb and newTok != None and newTag != None: out = self.findTag(newTok,newTag,"NOUN"); if out != None: saveIdx, preVerb = out; # end of sentence if vbIdx < len(tok)-1: postVerb = makeList(tok[vbIdx+1:]); # put phrases w/o subject first if newTok != None and saveIdx != None: for phrase in newTok: if phrase != newTok[saveIdx]: qTok += phrase; # "meat" of the setence qTok += [verb] + preVerb + postVerb; # formatting output self.joinQ(qTok); return True; # If the question is a "who" question, # remove a trailing article before "who" in the output, # checked for more general cases in formatQ def removeLeadingArticle(self): toks = self.tokens; tags = self.tags; if self.qWord != None: (idx, word) = self.qWord; if word == "who" and idx > 0: if tags[idx-1] == "DT": toks.pop(idx-1); tags.pop(idx-1); self.qWord = (idx-1,word); return; return; # rmEndPunc - remove end punction from the given token string # DOES NOT REMOVE from the associated pos, unless run on that separately def rmEndPunc(self,tok, tag): if isinstance(tok, list): punc = tok[-1]; if self.c.ID.isEndPhrasePunc(punc): x = tok.pop(-1); y = tag.pop(-1); return tok, tag; # rearranges sentences to flow more naturally def formatQuestion(self): # split sentences by commas, keeping only the phrase # with the question word # PROS: simplifies question, easier to make grammatical # CONS: ambiguity, possible erradication of important points #### currently everything is reattached later if self.qWord == None: self.out = ""; return; else: self.removeLeadingArticle(); (phraseTok, phraseTag, (pSel,idxOffset)) = self.splitComma(); if pSel != -1: tok = phraseTok[pSel]; pos = phraseTag[pSel]; else: tok = phraseTok; pos = phraseTag; (qIdx, wrd) = self.qWord; qIdx = qIdx - idxOffset; if qIdx != 0: # question word follow a verb if qIdx > 1 and qIdx-1 < len(pos) and is_verb(pos[qIdx-1]): qTok = self.verbPreArr(tok,qIdx); # question word preceeds a verb elif qIdx < len(tok)-1 and \ (is_verb(pos[qIdx+1]) or pos[qIdx+1] == "MD"): qTok = self.verbPostArr(tok,qIdx,pos); # question word in preposition etc else: qTok = tok; # case: question word already in front, # only need to change punctuation else: qTok = tok; # add other details back into the question for i, phrase in enumerate(phraseTok): if pSel != -1 and i != pSel: qTok += ","; addPhrase = phrase[0:-1]; if addPhrase != []: tokTags = rdrpos.pos_tag("".join(addPhrase[0])); if tokTags[0] != "NNP": addPhrase[0] = addPhrase[0].lower(); if len(addPhrase) > 1: qTok += addPhrase; self.joinQ(qTok); return; # Turn the question from a list into a string question # Set output and capitalization def joinQ(self, qTok): qTok += ['?']; # special join function to remove extra spaces question = self.c.sentJoin(qTok); # capitalize first letter self.out = question[0].upper() + question[1:]; return; # creates question by replacing the first date # replaces with "what" or "what date" instead of "when" # because that seems to work better grammatically most of the time # returns True on success, False on failure def qFromDate(self): tok = self.tokens; pos = self.tags; origN = self.N if "#DATE" in set(pos): idx = pos.index("#DATE"); # only year specified if len(tok[idx]) == 4: tok[idx] = "what year"; # preposition case elif idx < len(tok)-1 and pos[idx+1] == "IN": tok[idx] = "when"; # follows a verb elif idx > 0 and is_verb(pos[idx-1]): tok[idx] = "what"; else: tok[idx] = "what date"; self.qWord = (idx, tok[idx]); return True; else: return False; # create a quation from a quantity value # error prone """ def qFromQuant(self): tok = self.tokens; pos = self.tags; if "CD" in set(pos): idx = pos.index("CD"); phrase = []; phrasetok = []; i = idx; token = None; tag = None; while(i < len(pos) and tag not in set(string.punctuation)): if token not in set(string.punctuation) and token != None: phrase.append(token); phrasetok.append(tag); if tag == "NNS": break; i += 1; token = tok[i]; tag = pos[i]; if phrase != []: print phrase, phrasetok; """ # replaces the noun at the given index, idx with the # appropriate question word # returns True on success, False on failure def replaceNounWithQ(self, idx): tok = self.tokens; pos = self.tags; nounTag = pos[idx]; word = tok[idx]; # error with input, no noun to replace, erroneous index if (idx < 0 or idx > len(pos)) or \ (not is_noun(nounTag) and nounTag != "PRP"): return False; # proper noun replacement if (len(nounTag) > 2 and nounTag[0:3] == "NNP"): tok[idx] = "who or what"; # pronoun replacement elif nounTag == "PRP": pFlag = self.c.ID.isReplacablePronoun(word); if pFlag == 1: #subject tok[idx] = "who"; elif pFlag == -1: # object tok[idx] = "whom"; elif pFlag == -2: # posessive tok[idx] = "whose"; elif pFlag == 2: # cannot specify (it, there) tok[idx] = "what"; else: return False; # common noun replacement else: tok[idx] = "what"; # remove leading determiner if present if idx > 0 and pos[idx-1] == "DT": pos.pop(idx-1); tok.pop(idx-1); idx = idx -1; # save the index of the question word (used in rearranging qurestion) self.qWord = (idx, tok[idx]); return True; # replace the first noun / propernoun / pronoun that proceeds # a verb with an appropriate question word # returns True on successful replacement, False on failure def qFromNoun(self): pos = self.tags; lastCandidate = None; for i,tag in enumerate(pos): # last noun / proper noun if is_noun(tag): lastCandidate = i; elif tag == "PRP" and \ (self.c.ID.isReplacablePronoun(self.tokens[i]) != 0): lastCandidate = i; # found verb, take most recent candidate word elif is_verb(tag): if lastCandidate != None: return self.replaceNounWithQ(lastCandidate); return False; # replace the first pronoun in the sentence with who # not used because the version included in the noun replacement # works more grammatically """ def qFromPronoun(self): pos = self.tags; tok = self.tokens; for i,tag in enumerate(pos): if tag == "PRP" and self.c.ID.isReplacablePronoun(tok[i]): self.replaceNounWithQ(i); return True; return False;""" # create simple questions by rearranging a sentence starting with if # if "clause", [subset] -> why will [subset] def ifQ(self): pos = self.tags; tok = self.tokens; # fail on lack of realization with construct if "," not in set(pos): return False; # split on first comma (associated with "if") idx = pos.index(","); if idx < (len(pos)-1): subTok = tok[idx+1:]; subPos = pos[idx+1:]; # find the first verb modifier to be used in question if "MD" in set(subPos): modVerbIdx = subPos.index("MD"); modVerb = subTok[modVerbIdx]; subset = subTok[:modVerbIdx]; if modVerbIdx < len(pos) - 1: subset += subTok[modVerbIdx+1:]; # if modifer cannot be found in question, # use general word "will" else: modVerb = "will"; subset = subTok; subset = ["Why"] + [modVerb] + subset; # combine tokens self.joinQ(subset); return True; return False; # create simple yes / no questions from a sentence # by siwtching the placement of the subject and the being verb def qYesNo(self): tok = self.tokens; pos = self.tags; seenVerb = False; for i,tag in enumerate(pos): if is_verb(tag): if self.c.ID.isBeingVerb(tok[i]) and seenVerb == False: self.rearrangeBV(i); return True; seenVerb = True; return False; # overall algorithm for creating questions # includes combing portions of the input together # heirarchy of sentence constructions: # if, yes/no, date, noun def make(self,sentence): combi = self.c; toks = self.tokens; pos = self.tags; if toks == [] or pos == []: return; # find date locations and replace them in the given, toks, pos # gives dates the tag "#DATE" combi.dates(toks, pos); # combine names into a single token, # sort of an NER combi.names(toks, pos); # check for context based on timing (might require change of verb) #timeFlag = combi.ID.isTimeDep(toks,0); if toks[0].lower() == "if" and self.ifQ(): return; if self.qYesNo(): return; if self.N < 15 and self.qFromDate(): self.formatQuestion(); return; if self.qFromNoun(): self.formatQuestion(); return; return;
37.439252
79
0.521618
dbafcf10f68f91f2332890f439e9e5aeef38d178
1,449
py
Python
setup.py
ubernostrum/django-flashpolicies
f24fb80907a82c6894d08c58e25d085a18b11155
[ "BSD-3-Clause" ]
7
2015-04-07T22:18:02.000Z
2022-01-26T16:02:14.000Z
setup.py
ubernostrum/django-flashpolicies
f24fb80907a82c6894d08c58e25d085a18b11155
[ "BSD-3-Clause" ]
1
2017-06-05T01:41:10.000Z
2017-10-23T10:14:23.000Z
setup.py
ubernostrum/django-flashpolicies
f24fb80907a82c6894d08c58e25d085a18b11155
[ "BSD-3-Clause" ]
2
2016-09-24T18:36:17.000Z
2017-08-07T14:26:49.000Z
import os from setuptools import find_packages, setup setup( name="django-flashpolicies", zip_safe=False, # eggs are the devil. version="1.13", description="Flash cross-domain policies for Django sites", long_description=open(os.path.join(os.path.dirname(__file__), "README.rst")).read(), author="James Bennett", author_email="james@b-list.org", url="https://github.com/ubernostrum/django-flashpolicies/", include_package_data=True, package_dir={"": "src"}, packages=find_packages("src"), classifiers=[ "Development Status :: 5 - Production/Stable", "Environment :: Web Environment", "Framework :: Django", "Framework :: Django :: 2.2", "Framework :: Django :: 3.1", "Framework :: Django :: 3.2", "Intended Audience :: Developers", "License :: OSI Approved :: BSD License", "Operating System :: OS Independent", "Programming Language :: Python", "Topic :: Software Development :: Libraries :: Python Modules", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Topic :: Utilities", ], python_requires=">=3.6", install_requires=["Django>=2.2,!=3.0.*"], )
35.341463
88
0.608696
2b7c00929417369437da32838fd327c99fe638a1
3,458
py
Python
google/cloud/apigeeconnect_v1/types/connection.py
LaudateCorpus1/python-apigee-connect
ae944c10b2f63a682cf2f196d2122ccbed2dac48
[ "Apache-2.0" ]
null
null
null
google/cloud/apigeeconnect_v1/types/connection.py
LaudateCorpus1/python-apigee-connect
ae944c10b2f63a682cf2f196d2122ccbed2dac48
[ "Apache-2.0" ]
30
2021-06-14T17:02:41.000Z
2022-03-08T02:01:47.000Z
google/cloud/apigeeconnect_v1/types/connection.py
LaudateCorpus1/python-apigee-connect
ae944c10b2f63a682cf2f196d2122ccbed2dac48
[ "Apache-2.0" ]
3
2021-07-14T19:32:28.000Z
2022-03-01T19:48:20.000Z
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore __protobuf__ = proto.module( package="google.cloud.apigeeconnect.v1", manifest={ "ListConnectionsRequest", "ListConnectionsResponse", "Connection", "Cluster", }, ) class ListConnectionsRequest(proto.Message): r"""The request for [ListConnections][Management.ListConnections]. Attributes: parent (str): Required. Parent name of the form: ``projects/{project_number or project_id}/endpoints/{endpoint}``. page_size (int): The maximum number of connections to return. The service may return fewer than this value. If unspecified, at most 100 connections will be returned. The maximum value is 1000; values above 1000 will be coerced to 1000. page_token (str): A page token, received from a previous ``ListConnections`` call. Provide this to retrieve the subsequent page. When paginating, all other parameters provided to ``ListConnections`` must match the call that provided the page token. """ parent = proto.Field(proto.STRING, number=1,) page_size = proto.Field(proto.INT32, number=2,) page_token = proto.Field(proto.STRING, number=3,) class ListConnectionsResponse(proto.Message): r"""The response for [ListConnections][Management.ListConnections]. Attributes: connections (Sequence[google.cloud.apigeeconnect_v1.types.Connection]): A list of clients. next_page_token (str): A token that can be sent as ``page_token`` to retrieve the next page. If this field is omitted, there are no subsequent pages. """ @property def raw_page(self): return self connections = proto.RepeatedField(proto.MESSAGE, number=1, message="Connection",) next_page_token = proto.Field(proto.STRING, number=2,) class Connection(proto.Message): r""" Attributes: endpoint (str): The endpoint that the connection is made against. Format: ``projects/{project_number}/endpoints/{endpoint}`` cluster (google.cloud.apigeeconnect_v1.types.Cluster): Cluster information. stream_count (int): The count of streams. """ endpoint = proto.Field(proto.STRING, number=1,) cluster = proto.Field(proto.MESSAGE, number=2, message="Cluster",) stream_count = proto.Field(proto.INT32, number=3,) class Cluster(proto.Message): r""" Attributes: name (str): The name of the cluster. region (str): The region of the cluster. """ name = proto.Field(proto.STRING, number=1,) region = proto.Field(proto.STRING, number=2,) __all__ = tuple(sorted(__protobuf__.manifest))
31.436364
85
0.655292
a04324b0cfab7ef0d9c49d32d2ebe8e6ecd38cbe
317
py
Python
conduct/__main__.py
lamartine-sl/mlops_project
4391d9639129bcd4d1cbc9cc6a64f696a4c7b88e
[ "MIT" ]
null
null
null
conduct/__main__.py
lamartine-sl/mlops_project
4391d9639129bcd4d1cbc9cc6a64f696a4c7b88e
[ "MIT" ]
5
2022-02-21T04:36:06.000Z
2022-03-31T04:36:53.000Z
conduct/__main__.py
lamartine-sl/mlops_project
4391d9639129bcd4d1cbc9cc6a64f696a4c7b88e
[ "MIT" ]
null
null
null
import sys import conduct.versioning.dvc_handler as dvc def main(): """The CLI entry point.""" args = sys.argv[1:] print(f"{__name__} count of args {len(args)}") for i, arg in enumerate(args): print(f"{__name__} arg {i}: {arg}") dvc.test(args) if __name__ == "__main__": main()
16.684211
50
0.602524
62279865add6af67810178e6121ba399a08896c1
619
py
Python
src/python_wiki_api/console.py
Zazhka/python_wiki_api
e8fb15c2b6597c62f333ec1df98b7f3592d34e07
[ "MIT" ]
null
null
null
src/python_wiki_api/console.py
Zazhka/python_wiki_api
e8fb15c2b6597c62f333ec1df98b7f3592d34e07
[ "MIT" ]
null
null
null
src/python_wiki_api/console.py
Zazhka/python_wiki_api
e8fb15c2b6597c62f333ec1df98b7f3592d34e07
[ "MIT" ]
null
null
null
"""Command-line interface.""" import textwrap import click from . import __version__, wikipedia API_URL: str = "https://en.wikipedia.org/api/rest_v1/page/random/summary" @click.command() @click.option( "--language", "-l", default="en", help="Language edition of Wikipedia", metavar="LANG", show_default=True, ) @click.version_option(version=__version__) def main(language: str) -> None: """The wikipedia API based on hypermodern Python project.""" page = wikipedia.random_page(language=language) click.secho(page.title, fg="green") click.echo(textwrap.fill(page.extract))
22.107143
73
0.6979
0821318cf0d1b768a448097277705b7c1ef6897b
6,705
py
Python
6_q-learning/Board.py
scottfabini/machine-learning-perceptron
2bc4b7b415871bc73ac8c033983df73719df9422
[ "Unlicense" ]
null
null
null
6_q-learning/Board.py
scottfabini/machine-learning-perceptron
2bc4b7b415871bc73ac8c033983df73719df9422
[ "Unlicense" ]
null
null
null
6_q-learning/Board.py
scottfabini/machine-learning-perceptron
2bc4b7b415871bc73ac8c033983df73719df9422
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python3 import pandas as pd import numpy as np import random from enum import Enum import os # Enumeration of available actions class Action(Enum): P = 0 N = 1 S = 2 E = 3 W = 4 # Enumeration of available states class State(Enum): Empty = 0 Wall = 1 Can = 2 class Board: # Constructor initialization def __init__(self, steps_M, reward_can, reward_crash, reward_pick_up_empty, nu, gamma): self.board = pd.DataFrame([[State.Empty for x in range(12)] for y in range(12)]) self.board[0] = State.Wall self.board[11] = State.Wall self.board.iloc[0] = State.Wall self.board.iloc[11] = State.Wall self.robot = (1,1) self.qMatrix = np.zeros((5 ** 5, 5)) self.steps_M = steps_M self.reward_can = reward_can self.reward_crash = reward_crash self.reward_pick_up_empty = reward_pick_up_empty self.nu = nu self.gamma = gamma self.move_penalty = 0 self.move_score = np.zeros(len(Action)) self.qMatrixValues = [None] * len(Action) self.sensed_state = np.zeros(len(Action)) # Randomize the board state. def shuffleBoard(self): for (i,j), element in np.ndenumerate(self.board): if i != 0 and i != 11 and j != 0 and j != 11: if random.random() > 0.5: val = State.Can else: val = State.Empty self.board.set_value(i, j, val) i = random.randint(1,10) j = random.randint(1,10) self.robot = (i, j) # Run the episode. Choose an action to take, perform the action, # and update the QMatrix (if updateQ == True). def runEpisode(self, episode, epsilon, updateQ): reward = np.zeros(self.steps_M) for i in range(self.steps_M): currentState = self.senseCurrentState(self.robot) # choose current action if 1 - epsilon < random.random(): currentAction = random.choice(list(Action)) else: currentAction = self.maximizeAction() # perform the action if currentAction == Action.P and self.board.get_value(self.robot[0], self.robot[1]) == State.Can: self.board.set_value(self.robot[0], self.robot[1], State.Empty) reward[i] = self.reward_can nextState = self.senseCurrentState(self.robot) elif currentAction == Action.P and self.board.get_value(self.robot[0], self.robot[1]) == State.Empty: reward[i] = self.reward_pick_up_empty nextState = self.senseCurrentState(self.robot) elif self.isWall(self.robot, currentAction): reward[i] = self.reward_crash nextState = self.senseCurrentState(self.robot) else: self.robot = self.moveTo(self.robot, currentAction) reward[i] = self.move_penalty nextState = self.senseCurrentState(self.robot) # update the qMatrix (if this is training data) if updateQ: self.updateQMatrix(reward[i], currentState, currentAction, nextState) return np.sum(reward) # Update the qMatrix according to the Q-learning algorithm. def updateQMatrix(self, reward, currentState, currentAction, nextState): for i, action in enumerate(Action): self.qMatrixValues[i] = self.qMatrix[nextState, action.value] if np.argmax(self.qMatrixValues) == 0 and self.qMatrixValues[0] == 0: nextAction = random.randint(0, 4) else: nextAction = np.argmax(self.qMatrixValues) self.qMatrix[currentState, currentAction.value] = self.qMatrix[currentState, currentAction.value] + self.nu * (reward + self.gamma * self.qMatrix[nextState, nextAction] - self.qMatrix[currentState, currentAction.value]) # Query the QMatrix to determine the best action to take. def maximizeAction(self): for i, action in enumerate(Action): current_state = self.senseCurrentState(self.robot) self.move_score[i] = self.qMatrix[current_state, i] if np.argmax(self.move_score) == 0 and self.move_score[0] == 0: return self.reverseIndex(random.randint(0, 4)) return self.reverseIndex(np.argmax(self.move_score)) # Query the board for the current state of the robot at the given location. def senseCurrentState(self, location): for i, action in enumerate(Action): self.sensed_state[i] = 3 ** i * self.detect(location, action) return int(np.sum(self.sensed_state)) ''' Begin Helper Functions ''' # Display the board def displayBoard(self): for (i,j), element in np.ndenumerate(self.board): if i == self.robot[0] and j == self.robot[1]: print("*", end = ' ') else: print(element.value, end=' ') if j == self.board.shape[1] - 1: print() print("\n\n") # Detect the state of the adjacent sqare def detect(self, robot, action): move = self.moveTo(robot, action) sensed_value = self.board.get_value(move[0], move[1]).value return sensed_value # Helper function to convert the move Enum into an index in the qMatrix def reverseIndex(self, moveIndex): if moveIndex == 0: return Action.P elif moveIndex == 1: return Action.N elif moveIndex == 2: return Action.S elif moveIndex == 3: return Action.E elif moveIndex == 4: return Action.W # Move the robot to a new location based on the action def moveTo(self, robot, action): if action == Action.P: move = (0, 0) elif action == Action.N: move = (-1, 0) elif action == Action.S: move = (1, 0) elif action == Action.E: move = (0, 1) elif action == Action.W: move = (0, -1) return tuple(map(sum, zip(robot, move))) # Detect if the robot will run into a wall on the nextMove def isWall(self, robot, nextMove): i, j = self.moveTo(self.robot, nextMove) if self.board.get_value(i, j) == State.Wall: return True else: return False # Sum the state of the board for debug def sum(self): sum = 0 for (i,j), element in np.ndenumerate(self.board): sum += element.value return sum
36.243243
227
0.579717
c0cde4c5478f3fdd2fd38ddaf4faad279432d9a6
614
py
Python
portfolio/migrations/0005_auto_20200928_1604.py
ElmanTr/simple-django-web
07f9b938e42ade4b515cbb8b41364089a5f9f2b1
[ "MIT" ]
1
2020-10-07T14:03:13.000Z
2020-10-07T14:03:13.000Z
portfolio/migrations/0005_auto_20200928_1604.py
ElmanTr/simple-django-web
07f9b938e42ade4b515cbb8b41364089a5f9f2b1
[ "MIT" ]
null
null
null
portfolio/migrations/0005_auto_20200928_1604.py
ElmanTr/simple-django-web
07f9b938e42ade4b515cbb8b41364089a5f9f2b1
[ "MIT" ]
null
null
null
# Generated by Django 3.1.1 on 2020-09-28 12:34 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('portfolio', '0004_data_category'), ] operations = [ migrations.AlterModelOptions( name='data', options={'ordering': ['-date'], 'verbose_name': 'مقاله', 'verbose_name_plural': 'مقالات'}, ), migrations.AlterField( model_name='data', name='category', field=models.ManyToManyField(blank=True, to='portfolio.Category', verbose_name='دسته بندی'), ), ]
26.695652
104
0.596091
71751b2c92a5024137858ae7af0a15c9e7417718
752
py
Python
setup.py
weaponhsu/youliPyLib
ffb8a6f066df3aa4f8d1055f50f2520feb73dcef
[ "MIT" ]
null
null
null
setup.py
weaponhsu/youliPyLib
ffb8a6f066df3aa4f8d1055f50f2520feb73dcef
[ "MIT" ]
null
null
null
setup.py
weaponhsu/youliPyLib
ffb8a6f066df3aa4f8d1055f50f2520feb73dcef
[ "MIT" ]
null
null
null
#! /usr/bin/python # -*- coding:utf-8 -*- # @author: weaponhsu # @File: setup # @Time: 2019/11/27 6:24 PM import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="youliPyLib-hsu0203", version="0.0.1", author="hsu0203", author_email="huangxu4328@gmail.com", description="py3 common package", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/weaponhsu/youliPyLib", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', )
25.931034
50
0.650266
02eaf93b910920970778a6770f0cb25c4e26d66c
486
py
Python
exercises/fr/test_04_04.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
null
null
null
exercises/fr/test_04_04.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
null
null
null
exercises/fr/test_04_04.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
null
null
null
def test(): assert ( 'spacy.blank("fr")' in __solution__ ), "As-tu créé le modèle français vierge ?" assert ( "DocBin(docs=docs)" in __solution__ ), "As-tu créé correctement l'objet DocBin ?" assert "doc_bin.to_disk(" in __solution__, "As-tu utilisé la méthode to_disk?" assert "train.spacy" in __solution__, "As-tu bien nommé le fichier correctement ?" __msg__.good( "Bien joué ! Maintenant nous pouvons entraîner le modèle." )
34.714286
86
0.652263
e37b78ec7c5b651e763eeb64acbb646137772ec0
1,439
py
Python
oelint_adv/rule_base/rule_var_src_uri_file.py
Rahix/oelint-adv
b9dc381b181a8bdc7300bb5070f80bf90950efbd
[ "BSD-2-Clause" ]
22
2019-06-10T00:40:07.000Z
2022-01-18T19:59:47.000Z
oelint_adv/rule_base/rule_var_src_uri_file.py
Rahix/oelint-adv
b9dc381b181a8bdc7300bb5070f80bf90950efbd
[ "BSD-2-Clause" ]
274
2019-03-07T06:00:27.000Z
2022-03-27T10:22:10.000Z
oelint_adv/rule_base/rule_var_src_uri_file.py
Rahix/oelint-adv
b9dc381b181a8bdc7300bb5070f80bf90950efbd
[ "BSD-2-Clause" ]
17
2019-08-24T23:04:39.000Z
2021-11-02T19:18:19.000Z
from oelint_parser.cls_item import Variable from oelint_adv.cls_rule import Rule from oelint_parser.helper_files import get_scr_components from oelint_parser.parser import INLINE_BLOCK class VarSRCUriGitTag(Rule): def __init__(self): super().__init__(id="oelint.vars.srcurifile", severity="warning", message="First item of SRC_URI should not be a file:// fetcher, if multiple fetcher are used") def check(self, _file, stash): res = [] items = stash.GetItemsFor(filename=_file, classifier=Variable.CLASSIFIER, attribute=Variable.ATTR_VAR, attributeValue="SRC_URI") _fetcher = [] for i in items: if any([i.Flag.endswith(x) for x in ["md5sum", "sha256sum"]]): # These are just the hashes continue lines = [y.strip('"') for y in i.get_items() if y] for x in lines: if x == INLINE_BLOCK: _fetcher.append(("inline", i.InFileLine)) continue _url = get_scr_components(x) if _url["scheme"]: _fetcher.append((_url["scheme"], i.InFileLine)) if _fetcher: if any(x[0] != "file" for x in _fetcher) and _fetcher[0][0] == "file": res += self.finding(i.Origin, _fetcher[0][1]) return res
41.114286
119
0.558721
232feea67e9e6ce0afd3c439e4e1ca671e399489
11,473
py
Python
tests/test_api_v1.py
userid/acoustid-server
7c15ea1d4639f04a6b420e70be181b725055605b
[ "MIT" ]
null
null
null
tests/test_api_v1.py
userid/acoustid-server
7c15ea1d4639f04a6b420e70be181b725055605b
[ "MIT" ]
null
null
null
tests/test_api_v1.py
userid/acoustid-server
7c15ea1d4639f04a6b420e70be181b725055605b
[ "MIT" ]
null
null
null
# Copyright (C) 2011 Lukas Lalinsky # Distributed under the MIT license, see the LICENSE file for details. from nose.tools import * from tests import (prepare_database, with_database, assert_json_equals, TEST_1_LENGTH, TEST_1_FP, TEST_1_FP_RAW, TEST_2_LENGTH, TEST_2_FP, TEST_2_FP_RAW, ) from werkzeug.wrappers import Request from werkzeug.test import EnvironBuilder from werkzeug.datastructures import MultiDict from acoustid import tables from acoustid.api import errors from acoustid.api.v1 import ( LookupHandler, LookupHandlerParams, SubmitHandler, SubmitHandlerParams, APIHandler, ) from acoustid.utils import provider def test_ok(): handler = APIHandler() resp = handler._ok({'tracks': [{'id': 1, 'name': 'Track 1'}]}) assert_equals('text/xml; charset=UTF-8', resp.content_type) expected = '<?xml version=\'1.0\' encoding=\'UTF-8\'?>\n<response status="ok"><tracks><track><id>1</id><name>Track 1</name></track></tracks></response>' assert_equals(expected, resp.data) assert_equals('200 OK', resp.status) def test_error(): handler = APIHandler() resp = handler._error(123, 'something is wrong') assert_equals('text/xml; charset=UTF-8', resp.content_type) expected = '<?xml version=\'1.0\' encoding=\'UTF-8\'?>\n<response status="error"><error>something is wrong</error></response>' assert_equals(expected, resp.data) assert_equals('400 BAD REQUEST', resp.status) resp = handler._error(234, 'oops', status=500) assert_equals('text/xml; charset=UTF-8', resp.content_type) expected = '<?xml version=\'1.0\' encoding=\'UTF-8\'?>\n<response status="error"><error>oops</error></response>' assert_equals(expected, resp.data) assert_equals('500 INTERNAL SERVER ERROR', resp.status) @with_database def test_lookup_handler_params(conn): # missing client values = MultiDict({}) params = LookupHandlerParams() assert_raises(errors.MissingParameterError, params.parse, values, conn) # invalid client values = MultiDict({'client': 'N/A'}) params = LookupHandlerParams() assert_raises(errors.InvalidAPIKeyError, params.parse, values, conn) # missing length values = MultiDict({'client': 'app1key'}) params = LookupHandlerParams() assert_raises(errors.MissingParameterError, params.parse, values, conn) # missing fingerprint values = MultiDict({'client': 'app1key', 'length': str(TEST_1_LENGTH)}) params = LookupHandlerParams() assert_raises(errors.MissingParameterError, params.parse, values, conn) # invalid fingerprint values = MultiDict({'client': 'app1key', 'length': str(TEST_1_LENGTH), 'fingerprint': '...'}) params = LookupHandlerParams() assert_raises(errors.InvalidFingerprintError, params.parse, values, conn) # all ok values = MultiDict({'client': 'app1key', 'length': str(TEST_1_LENGTH), 'fingerprint': TEST_1_FP}) params = LookupHandlerParams() params.parse(values, conn) assert_equals(1, params.application_id) assert_equals(TEST_1_LENGTH, params.fingerprints[0]['duration']) assert_equals(TEST_1_FP_RAW, params.fingerprints[0]['fingerprint']) @with_database def test_lookup_handler(conn): values = {'client': 'app1key', 'length': str(TEST_1_LENGTH), 'fingerprint': TEST_1_FP} builder = EnvironBuilder(method='POST', data=values) handler = LookupHandler(connect=provider(conn)) # no matches handler = LookupHandler(connect=provider(conn)) resp = handler.handle(Request(builder.get_environ())) assert_equals('text/xml; charset=UTF-8', resp.content_type) expected = "<?xml version='1.0' encoding='UTF-8'?>\n<response><status>ok</status><results /></response>" assert_equals(expected, resp.data) assert_equals('200 OK', resp.status) # one exact match prepare_database(conn, """ INSERT INTO fingerprint (length, fingerprint, track_id, submission_count) VALUES (%s, %s, 1, 1); """, (TEST_1_LENGTH, TEST_1_FP_RAW)) handler = LookupHandler(connect=provider(conn)) resp = handler.handle(Request(builder.get_environ())) assert_equals('text/xml; charset=UTF-8', resp.content_type) expected = "<?xml version='1.0' encoding='UTF-8'?>\n<response><status>ok</status><results><result><score>1.0</score><id>eb31d1c3-950e-468b-9e36-e46fa75b1291</id></result></results></response>" assert_equals(expected, resp.data) assert_equals('200 OK', resp.status) # one exact match with MBIDs values = {'client': 'app1key', 'length': str(TEST_1_LENGTH), 'fingerprint': TEST_1_FP, 'meta': '1'} builder = EnvironBuilder(method='POST', data=values) handler = LookupHandler(connect=provider(conn)) resp = handler.handle(Request(builder.get_environ())) assert_equals('text/xml; charset=UTF-8', resp.content_type) expected = "<?xml version='1.0' encoding='UTF-8'?>\n<response><status>ok</status><results><result><tracks><track><id>b81f83ee-4da4-11e0-9ed8-0025225356f3</id></track></tracks><score>1.0</score><id>eb31d1c3-950e-468b-9e36-e46fa75b1291</id></result></results></response>" assert_equals(expected, resp.data) assert_equals('200 OK', resp.status) # one exact match with MBIDs (no exta metadata in v1) values = {'client': 'app1key', 'length': str(TEST_1_LENGTH), 'fingerprint': TEST_1_FP, 'meta': '2'} builder = EnvironBuilder(method='POST', data=values) handler = LookupHandler(connect=provider(conn)) resp = handler.handle(Request(builder.get_environ())) assert_equals('text/xml; charset=UTF-8', resp.content_type) expected = "<?xml version='1.0' encoding='UTF-8'?>\n<response><status>ok</status><results><result><tracks><track><id>b81f83ee-4da4-11e0-9ed8-0025225356f3</id></track></tracks><score>1.0</score><id>eb31d1c3-950e-468b-9e36-e46fa75b1291</id></result></results></response>" #expected = "<?xml version='1.0' encoding='UTF-8'?>\n<response><status>ok</status><results><result><tracks><track><length>123</length><artist><id>a64796c0-4da4-11e0-bf81-0025225356f3</id><name>Artist A</name></artist><id>b81f83ee-4da4-11e0-9ed8-0025225356f3</id><releases><release><track_num>1</track_num><id>dd6c2cca-a0e9-4cc4-9a5f-7170bd098e23</id><track_count>2</track_count><name>Album A</name></release></releases><name>Track A</name></track></tracks><score>1.0</score><id>1</id></result></results></response>" assert_equals(expected, resp.data) assert_equals('200 OK', resp.status) @with_database def test_submit_handler_params(conn): # missing client values = MultiDict({}) params = SubmitHandlerParams() assert_raises(errors.MissingParameterError, params.parse, values, conn) # invalid client values = MultiDict({'client': 'N/A'}) params = SubmitHandlerParams() assert_raises(errors.InvalidAPIKeyError, params.parse, values, conn) # missing user values = MultiDict({'client': 'app1key'}) params = SubmitHandlerParams() assert_raises(errors.MissingParameterError, params.parse, values, conn) # invalid user values = MultiDict({'client': 'app1key', 'user': 'N/A'}) params = SubmitHandlerParams() assert_raises(errors.InvalidUserAPIKeyError, params.parse, values, conn) # missing fingerprint values = MultiDict({'client': 'app1key', 'user': 'user1key'}) params = SubmitHandlerParams() assert_raises(errors.MissingParameterError, params.parse, values, conn) # missing duration values = MultiDict({'client': 'app1key', 'user': 'user1key', 'mbid': ['4d814cb1-20ec-494f-996f-f31ca8a49784', '66c0f5cc-67b6-4f51-80cd-ab26b5aaa6ea'], 'puid': '4e823498-c77d-4bfb-b6cc-85b05c2783cf', 'fingerprint': TEST_1_FP, 'bitrate': '192', 'format': 'MP3' }) params = SubmitHandlerParams() assert_raises(errors.MissingParameterError, params.parse, values, conn) # all ok (single submission) values = MultiDict({'client': 'app1key', 'user': 'user1key', 'mbid': ['4d814cb1-20ec-494f-996f-f31ca8a49784', '66c0f5cc-67b6-4f51-80cd-ab26b5aaa6ea'], 'puid': '4e823498-c77d-4bfb-b6cc-85b05c2783cf', 'length': str(TEST_1_LENGTH), 'fingerprint': TEST_1_FP, 'bitrate': '192', 'format': 'MP3' }) params = SubmitHandlerParams() params.parse(values, conn) assert_equals(1, len(params.submissions)) assert_equals(['4d814cb1-20ec-494f-996f-f31ca8a49784', '66c0f5cc-67b6-4f51-80cd-ab26b5aaa6ea'], params.submissions[0]['mbids']) assert_equals('4e823498-c77d-4bfb-b6cc-85b05c2783cf', params.submissions[0]['puid']) assert_equals(TEST_1_LENGTH, params.submissions[0]['duration']) assert_equals(TEST_1_FP_RAW, params.submissions[0]['fingerprint']) assert_equals(192, params.submissions[0]['bitrate']) assert_equals('MP3', params.submissions[0]['format']) # all ok (single submission) values = MultiDict({'client': 'app1key', 'user': 'user1key', 'mbid.0': '4d814cb1-20ec-494f-996f-f31ca8a49784', 'puid.0': '4e823498-c77d-4bfb-b6cc-85b05c2783cf', 'length.0': str(TEST_1_LENGTH), 'fingerprint.0': TEST_1_FP, 'bitrate.0': '192', 'format.0': 'MP3', 'mbid.1': '66c0f5cc-67b6-4f51-80cd-ab26b5aaa6ea', 'puid.1': '57b202a3-242b-4896-a79c-cac34bbca0b6', 'length.1': str(TEST_2_LENGTH), 'fingerprint.1': TEST_2_FP, 'bitrate.1': '500', 'format.1': 'FLAC', }) params = SubmitHandlerParams() params.parse(values, conn) assert_equals(2, len(params.submissions)) assert_equals(['4d814cb1-20ec-494f-996f-f31ca8a49784'], params.submissions[0]['mbids']) assert_equals('4e823498-c77d-4bfb-b6cc-85b05c2783cf', params.submissions[0]['puid']) assert_equals(TEST_1_LENGTH, params.submissions[0]['duration']) assert_equals(TEST_1_FP_RAW, params.submissions[0]['fingerprint']) assert_equals(192, params.submissions[0]['bitrate']) assert_equals('MP3', params.submissions[0]['format']) assert_equals(['66c0f5cc-67b6-4f51-80cd-ab26b5aaa6ea'], params.submissions[1]['mbids']) assert_equals('57b202a3-242b-4896-a79c-cac34bbca0b6', params.submissions[1]['puid']) assert_equals(TEST_2_LENGTH, params.submissions[1]['duration']) assert_equals(TEST_2_FP_RAW, params.submissions[1]['fingerprint']) assert_equals(500, params.submissions[1]['bitrate']) assert_equals('FLAC', params.submissions[1]['format']) @with_database def test_submit_handler(conn): values = {'client': 'app1key', 'user': 'user1key', 'length': str(TEST_1_LENGTH), 'fingerprint': TEST_1_FP, 'bitrate': 192, 'mbid': 'b9c05616-1874-4d5d-b30e-6b959c922d28', 'format': 'FLAC'} builder = EnvironBuilder(method='POST', data=values) handler = SubmitHandler(connect=provider(conn)) resp = handler.handle(Request(builder.get_environ())) assert_equals('text/xml; charset=UTF-8', resp.content_type) expected = "<?xml version='1.0' encoding='UTF-8'?>\n<response><status>ok</status></response>" assert_equals(expected, resp.data) assert_equals('200 OK', resp.status) query = tables.submission.select().order_by(tables.submission.c.id.desc()).limit(1) submission = conn.execute(query).fetchone() assert_equals('b9c05616-1874-4d5d-b30e-6b959c922d28', submission['mbid']) assert_equals(1, submission['format_id']) assert_equals(192, submission['bitrate']) assert_equals(TEST_1_FP_RAW, submission['fingerprint']) assert_equals(TEST_1_LENGTH, submission['length'])
50.54185
519
0.700776
c3112011f0499470bae5c814ef0cd4da75056cb7
492
py
Python
context/app/test_routes_notebooks.py
mccalluc/flask-data-portal
2ad5c7085c59d0e53c7704b1d3ad95d20ab3680d
[ "MIT" ]
null
null
null
context/app/test_routes_notebooks.py
mccalluc/flask-data-portal
2ad5c7085c59d0e53c7704b1d3ad95d20ab3680d
[ "MIT" ]
22
2019-10-10T23:45:05.000Z
2019-10-17T15:33:19.000Z
context/app/test_routes_notebooks.py
mccalluc/flask-data-portal
2ad5c7085c59d0e53c7704b1d3ad95d20ab3680d
[ "MIT" ]
null
null
null
import pytest from .main import create_app @pytest.fixture def client(): app = create_app(testing=True) with app.test_client() as client: yield client @pytest.mark.parametrize( 'entity_type', ['donors', 'samples', 'datasets'] ) def test_notebook(client, entity_type, mocker): mocker.patch('app.api.client.ApiClient.get_files') response = client.post(f'/notebooks/{entity_type}.ipynb', json={'uuids': ['fake-uuid']}) assert response.status == '200 OK'
23.428571
92
0.686992
10322562e72b453dc7c132ed2303da3615f1fe54
7,936
py
Python
mysite/ct/urls.py
rimikt/socraticqs2
21f964cdc00c33e0b2482b463ca1795fcde9180c
[ "Apache-2.0" ]
null
null
null
mysite/ct/urls.py
rimikt/socraticqs2
21f964cdc00c33e0b2482b463ca1795fcde9180c
[ "Apache-2.0" ]
null
null
null
mysite/ct/urls.py
rimikt/socraticqs2
21f964cdc00c33e0b2482b463ca1795fcde9180c
[ "Apache-2.0" ]
null
null
null
from django.conf.urls import patterns, include, url from ct.views import * urlpatterns = patterns('', url(r'^$', main_page, name='home'), url(r'^about/$', about, name='about'), url(r'^people/(?P<user_id>\d+)/$', person_profile, name='person_profile'), # instructor UI # course tabs url(r'^teach/courses/(?P<course_id>\d+)/$', course_view, name='course'), url(r'^teach/courses/(?P<course_id>\d+)/edit/$', edit_course, name='edit_course'), # courselet tabs url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/$', unit_tasks, name='unit_tasks'), url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/concepts/$', unit_concepts, name='unit_concepts'), url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/lessons/$', unit_lessons, name='unit_lessons'), url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/resources/$', unit_resources, name='unit_resources'), url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/edit/$', edit_unit, name='edit_unit'), # lesson tabs url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/lessons/(?P<ul_id>\d+)/$', ul_teach, name='ul_teach'), url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/lessons/(?P<ul_id>\d+)/tasks/$', ul_tasks, name='ul_tasks'), url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/lessons/(?P<ul_id>\d+)/concepts/$', ul_concepts, name='ul_concepts'), url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/lessons/(?P<ul_id>\d+)/errors/$', ul_errors, name='ul_errors'), url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/lessons/(?P<ul_id>\d+)/faq/$', ul_faq_student, name='ul_faq'), url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/lessons/(?P<ul_id>\d+)/faq/(?P<resp_id>\d+)/$', ul_thread_student, name='ul_thread'), url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/lessons/(?P<ul_id>\d+)/edit/$', edit_lesson, name='edit_lesson'), url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/lessons/(?P<ul_id>\d+)/live/$', live_question, name='live_question'), # concept tabs url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/concepts/(?P<ul_id>\d+)/$', study_concept, name='concept_teach'), url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/concepts/(?P<ul_id>\d+)/tasks/$', ul_tasks, name='concept_tasks'), url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/concepts/(?P<ul_id>\d+)/concepts/$', concept_concepts, name='concept_concepts'), url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/concepts/(?P<ul_id>\d+)/lessons/$', concept_lessons, name='concept_lessons'), url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/concepts/(?P<ul_id>\d+)/errors/$', concept_errors, name='concept_errors'), url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/concepts/(?P<ul_id>\d+)/faq/$', ul_faq_student, name='concept_faq'), url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/concepts/(?P<ul_id>\d+)/faq/(?P<resp_id>\d+)/$', ul_thread_student, name='concept_thread'), url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/concepts/(?P<ul_id>\d+)/edit/$', edit_lesson, name='edit_concept'), # error tabs url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/errors/(?P<ul_id>\d+)/$', resolutions, name='resolutions'), url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/errors/(?P<ul_id>\d+)/resources/$', error_resources, name='error_resources'), url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/errors/(?P<ul_id>\d+)/faq/$', ul_faq_student, name='error_faq'), url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/errors/(?P<ul_id>\d+)/faq/(?P<resp_id>\d+)/$', ul_thread_student, name='error_thread'), url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/errors/(?P<ul_id>\d+)/edit/$', edit_lesson, name='edit_error'), # responses url(r'^teach/courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/lessons/(?P<ul_id>\d+)/responses/(?P<resp_id>\d+)/assess/$', assess, name='assess_teach'), # student UI # course tabs url(r'^courses/(?P<course_id>\d+)/$', course_view, name='course_student'), # unit tabs url(r'^courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/$', study_unit, name='study_unit'), url(r'^courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/tasks/$', unit_tasks_student, name='unit_tasks_student'), url(r'^courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/lessons/$', unit_lessons_student, name='unit_lessons_student'), url(r'^courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/concepts/$', unit_concepts_student, name='unit_concepts_student'), # lesson tabs url(r'^courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/lessons/(?P<ul_id>\d+)/tasks/$', ul_tasks_student, name='ul_tasks_student'), url(r'^courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/lessons/(?P<ul_id>\d+)/concepts/$', ul_concepts, name='ul_concepts_student'), url(r'^courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/lessons/(?P<ul_id>\d+)/errors/$', ul_errors_student, name='ul_errors_student'), url(r'^courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/lessons/(?P<ul_id>\d+)/faq/$', ul_faq_student, name='ul_faq_student'), url(r'^courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/lessons/(?P<ul_id>\d+)/faq/(?P<resp_id>\d+)/$', ul_thread_student, name='ul_thread_student'), # concept tabs url(r'^courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/concepts/(?P<ul_id>\d+)/$', study_concept, name='study_concept'), url(r'^courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/concepts/(?P<ul_id>\d+)/tasks/$', ul_tasks_student, name='concept_tasks_student'), url(r'^courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/concepts/(?P<ul_id>\d+)/lessons/$', concept_lessons_student, name='concept_lessons_student'), url(r'^courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/concepts/(?P<ul_id>\d+)/faq/$', ul_faq_student, name='concept_faq_student'), url(r'^courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/concepts/(?P<ul_id>\d+)/faq/(?P<resp_id>\d+)/$', ul_thread_student, name='concept_thread_student'), # error tabs url(r'^courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/errors/(?P<ul_id>\d+)/$', resolutions_student, name='resolutions_student'), url(r'^courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/errors/(?P<ul_id>\d+)/resources/$', error_resources, name='error_resources_student'), url(r'^courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/errors/(?P<ul_id>\d+)/faq/$', ul_faq_student, name='error_faq_student'), url(r'^courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/errors/(?P<ul_id>\d+)/faq/(?P<resp_id>\d+)/$', ul_thread_student, name='error_thread_student'), # study pages url(r'^courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/lessons/(?P<ul_id>\d+)/$', lesson, name='lesson'), url(r'^courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/lessons/(?P<ul_id>\d+)/ask/$', ul_respond, name='ul_respond'), url(r'^courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/lessons/(?P<ul_id>\d+)/responses/(?P<resp_id>\d+)/assess/$', assess, name='assess'), url(r'^courses/(?P<course_id>\d+)/units/(?P<unit_id>\d+)/lessons/(?P<ul_id>\d+)/responses/(?P<resp_id>\d+)/errors/$', assess_errors, name='assess_errors'), # FSM node pages url(r'^nodes/(?P<node_id>\d+)/$', fsm_node, name='fsm_node'), url(r'^nodes/$', fsm_status, name='fsm_status'), )
60.121212
127
0.613281
bc65a488eda8f026bc764aa57b6eb3b4a75890c3
2,660
py
Python
src/baxter_dataflow/signals.py
GII/baxter_interface
9979c30d3451fb9dbdd1e5e9d39c37bf834c8a90
[ "BSD-3-Clause" ]
null
null
null
src/baxter_dataflow/signals.py
GII/baxter_interface
9979c30d3451fb9dbdd1e5e9d39c37bf834c8a90
[ "BSD-3-Clause" ]
null
null
null
src/baxter_dataflow/signals.py
GII/baxter_interface
9979c30d3451fb9dbdd1e5e9d39c37bf834c8a90
[ "BSD-3-Clause" ]
2
2022-03-03T20:46:45.000Z
2022-03-09T22:31:07.000Z
from __future__ import absolute_import # Copyright (c) 2013-2015, Rethink Robotics # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the Rethink Robotics nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import inspect from weakref import WeakKeyDictionary try: from weakref import WeakSet except ImportError: from .weakrefset import WeakSet class Signal(object): def __init__(self): self._functions = WeakSet() self._methods = WeakKeyDictionary() def __call__(self, *args, **kargs): for f in self._functions: f(*args, **kargs) for obj, functions in self._methods.items(): for f in functions: f(obj, *args, **kargs) def connect(self, slot): if inspect.ismethod(slot): if not slot.__self__ in self._methods: self._methods[slot.__self__] = set() self._methods[slot.__self__].add(slot.__func__) else: self._functions.add(slot) def disconnect(self, slot): if inspect.ismethod(slot): if slot.__self__ in self._methods: self._methods[slot.__self__].remove(slot.__func__) else: if slot in self._functions: self._functions.remove(slot)
40.30303
77
0.711654
c0a6107c800a66a04c60aac44d02c1c6c6e0baef
1,876
py
Python
Day_25/part1.py
Uklusi/AdventOfCode2021
3d22ace832bfd6c9855b2ebad3bf7f10c4751982
[ "MIT" ]
null
null
null
Day_25/part1.py
Uklusi/AdventOfCode2021
3d22ace832bfd6c9855b2ebad3bf7f10c4751982
[ "MIT" ]
null
null
null
Day_25/part1.py
Uklusi/AdventOfCode2021
3d22ace832bfd6c9855b2ebad3bf7f10c4751982
[ "MIT" ]
null
null
null
from AoCUtils import * writeToLog = False # writeToLog = True useExample = False # useExample = True result = 0 partNumber = "1" if writeToLog: logFile = open("log" + partNumber + ".txt", "w") else: logFile = "stdout" printLog = printLogFactory(logFile) timer_start(partNumber) rightMoving = set() downMoving = set() inputFileName = ("example.txt" if useExample else "input.txt") with open(inputFileName, "r") as inputFile: lines = inputFile.read().strip().split("\n") for (y, line) in enumerate(lines): line = line.strip() for (x, char) in enumerate(line): if char == ">": rightMoving.add((x, y)) elif char == "v": downMoving.add((x, y)) xLimit = len(lines[0]) yLimit = len(lines) def step(rightMoving, downMoving): newRightMoving = set() newDownMoving = set() hasMoved = False for (x, y) in rightMoving: newX = x + 1 if newX == xLimit: newX = 0 newPos = (newX, y) if newPos in rightMoving or newPos in downMoving: newRightMoving.add((x, y)) else: newRightMoving.add(newPos) hasMoved = True for (x, y) in downMoving: newY = y + 1 if newY == yLimit: newY = 0 newPos = (x, newY) if newPos in newRightMoving or newPos in downMoving: newDownMoving.add((x, y)) else: newDownMoving.add(newPos) hasMoved = True return (newRightMoving, newDownMoving, hasMoved) flag = True n = 0 while flag: n += 1 (rightMoving, downMoving, flag) = step(rightMoving, downMoving) result = n timer_stop(partNumber) with open("output" + partNumber + ".txt", "w") as outputFile: outputFile.write(str(result)) print(str(result)) if writeToLog: cast(TextIOWrapper, logFile).close()
23.160494
67
0.590085
d00cd4a6c9eb0410ed12180bd091df6d89ce25c2
552
py
Python
example/zoo_gsom.py
CDAC-lab/pygsom
d81aff2d9163b05a30b74d90ba35a37c42e9274a
[ "MIT" ]
3
2020-05-08T01:54:04.000Z
2020-08-26T22:54:22.000Z
example/zoo_gsom.py
CDAC-lab/pygsom
d81aff2d9163b05a30b74d90ba35a37c42e9274a
[ "MIT" ]
null
null
null
example/zoo_gsom.py
CDAC-lab/pygsom
d81aff2d9163b05a30b74d90ba35a37c42e9274a
[ "MIT" ]
2
2020-12-16T01:51:25.000Z
2021-12-07T17:33:11.000Z
import numpy as np import pandas as pd import gsom data_filename = "data/zoo.txt".replace('\\', '/') if __name__ == '__main__': np.random.seed(1) df = pd.read_csv(data_filename) print(df.shape) data_training = df.iloc[:, 1:17] gsom_map = gsom.GSOM(.83, 16, max_radius=4) gsom_map.fit(data_training.to_numpy(), 100, 50) df = df.drop(columns=["label"]) map_points = gsom_map.predict(df,"Name") gsom.plot(map_points, "Name", gsom_map=gsom_map) map_points.to_csv("gsom.csv", index=False) print("complete")
24
52
0.65942
55c8875257b1ce5df31c2b6fc2f43320a040db50
14,757
py
Python
contrib/gitian-build.py
funexcoin/funexcoin
149c9328f420e3cd711ee63b91f2d51308445da2
[ "MIT" ]
null
null
null
contrib/gitian-build.py
funexcoin/funexcoin
149c9328f420e3cd711ee63b91f2d51308445da2
[ "MIT" ]
null
null
null
contrib/gitian-build.py
funexcoin/funexcoin
149c9328f420e3cd711ee63b91f2d51308445da2
[ "MIT" ]
1
2020-09-15T08:52:14.000Z
2020-09-15T08:52:14.000Z
#!/usr/bin/env python3 # Copyright (c) 2018-2019 The Bitcoin Core Developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. import argparse import os import subprocess import sys def setup(): global args, workdir programs = ['ruby', 'git', 'make', 'wget', 'curl'] if args.kvm: programs += ['apt-cacher-ng', 'python-vm-builder', 'qemu-kvm', 'qemu-utils'] elif args.docker and not os.path.isfile('/lib/systemd/system/docker.service'): dockers = ['docker.io', 'docker-ce'] for i in dockers: return_code = subprocess.call(['sudo', 'apt-get', 'install', '-qq', i]) if return_code == 0: break if return_code != 0: print('Cannot find any way to install Docker.', file=sys.stderr) sys.exit(1) else: programs += ['apt-cacher-ng', 'lxc', 'debootstrap'] subprocess.check_call(['sudo', 'apt-get', 'install', '-qq'] + programs) if not os.path.isdir('gitian.sigs'): subprocess.check_call(['git', 'clone', 'https://github.com/funexcoin-core/gitian.sigs.git']) if not os.path.isdir('funexcoin-detached-sigs'): subprocess.check_call(['git', 'clone', 'https://github.com/funexcoin-core/funexcoin-detached-sigs.git']) if not os.path.isdir('gitian-builder'): subprocess.check_call(['git', 'clone', 'https://github.com/devrandom/gitian-builder.git']) if not os.path.isdir('funexcoin'): subprocess.check_call(['git', 'clone', 'https://github.com/funexcoin/funexcoin.git']) os.chdir('gitian-builder') make_image_prog = ['bin/make-base-vm', '--suite', 'bionic', '--arch', 'amd64'] if args.docker: make_image_prog += ['--docker'] elif not args.kvm: make_image_prog += ['--lxc'] subprocess.check_call(make_image_prog) os.chdir(workdir) if args.is_bionic and not args.kvm and not args.docker: subprocess.check_call(['sudo', 'sed', '-i', 's/lxcbr0/br0/', '/etc/default/lxc-net']) print('Reboot is required') sys.exit(0) def build(): global args, workdir os.makedirs('funexcoin-binaries/' + args.version, exist_ok=True) print('\nBuilding Dependencies\n') os.chdir('gitian-builder') os.makedirs('inputs', exist_ok=True) subprocess.check_call(['wget', '-O', 'inputs/osslsigncode-2.0.tar.gz', 'https://github.com/mtrojnar/osslsigncode/archive/2.0.tar.gz']) subprocess.check_call(["echo '5a60e0a4b3e0b4d655317b2f12a810211c50242138322b16e7e01c6fbb89d92f inputs/osslsigncode-2.0.tar.gz' | sha256sum -c"], shell=True) subprocess.check_call(['make', '-C', '../funexcoin/depends', 'download', 'SOURCES_PATH=' + os.getcwd() + '/cache/common']) if args.linux: print('\nCompiling ' + args.version + ' Linux') subprocess.check_call(['bin/gbuild', '-j', args.jobs, '-m', args.memory, '--commit', 'funexcoin='+args.commit, '--url', 'funexcoin='+args.url, '../funexcoin/contrib/gitian-descriptors/gitian-linux.yml']) subprocess.check_call(['bin/gsign', '-p', args.sign_prog, '--signer', args.signer, '--release', args.version+'-linux', '--destination', '../gitian.sigs/', '../funexcoin/contrib/gitian-descriptors/gitian-linux.yml']) subprocess.check_call('mv build/out/funexcoin-*.tar.gz build/out/src/funexcoin-*.tar.gz ../funexcoin-binaries/'+args.version, shell=True) if args.windows: print('\nCompiling ' + args.version + ' Windows') subprocess.check_call(['bin/gbuild', '-j', args.jobs, '-m', args.memory, '--commit', 'funexcoin='+args.commit, '--url', 'funexcoin='+args.url, '../funexcoin/contrib/gitian-descriptors/gitian-win.yml']) subprocess.check_call(['bin/gsign', '-p', args.sign_prog, '--signer', args.signer, '--release', args.version+'-win-unsigned', '--destination', '../gitian.sigs/', '../funexcoin/contrib/gitian-descriptors/gitian-win.yml']) subprocess.check_call('mv build/out/funexcoin-*-win-unsigned.tar.gz inputs/', shell=True) subprocess.check_call('mv build/out/funexcoin-*.zip build/out/funexcoin-*.exe build/out/src/funexcoin-*.tar.gz ../funexcoin-binaries/'+args.version, shell=True) if args.macos: print('\nCompiling ' + args.version + ' MacOS') subprocess.check_call(['bin/gbuild', '-j', args.jobs, '-m', args.memory, '--commit', 'funexcoin='+args.commit, '--url', 'funexcoin='+args.url, '../funexcoin/contrib/gitian-descriptors/gitian-osx.yml']) subprocess.check_call(['bin/gsign', '-p', args.sign_prog, '--signer', args.signer, '--release', args.version+'-osx-unsigned', '--destination', '../gitian.sigs/', '../funexcoin/contrib/gitian-descriptors/gitian-osx.yml']) subprocess.check_call('mv build/out/funexcoin-*-osx-unsigned.tar.gz inputs/', shell=True) subprocess.check_call('mv build/out/funexcoin-*.tar.gz build/out/funexcoin-*.dmg build/out/src/funexcoin-*.tar.gz ../funexcoin-binaries/'+args.version, shell=True) os.chdir(workdir) if args.commit_files: print('\nCommitting '+args.version+' Unsigned Sigs\n') os.chdir('gitian.sigs') subprocess.check_call(['git', 'add', args.version+'-linux/'+args.signer]) subprocess.check_call(['git', 'add', args.version+'-win-unsigned/'+args.signer]) subprocess.check_call(['git', 'add', args.version+'-osx-unsigned/'+args.signer]) subprocess.check_call(['git', 'commit', '-m', 'Add '+args.version+' unsigned sigs for '+args.signer]) os.chdir(workdir) def sign(): global args, workdir os.chdir('gitian-builder') if args.windows: print('\nSigning ' + args.version + ' Windows') subprocess.check_call('cp inputs/funexcoin-' + args.version + '-win-unsigned.tar.gz inputs/funexcoin-win-unsigned.tar.gz', shell=True) subprocess.check_call(['bin/gbuild', '--skip-image', '--upgrade', '--commit', 'signature='+args.commit, '../funexcoin/contrib/gitian-descriptors/gitian-win-signer.yml']) subprocess.check_call(['bin/gsign', '-p', args.sign_prog, '--signer', args.signer, '--release', args.version+'-win-signed', '--destination', '../gitian.sigs/', '../funexcoin/contrib/gitian-descriptors/gitian-win-signer.yml']) subprocess.check_call('mv build/out/funexcoin-*win64-setup.exe ../funexcoin-binaries/'+args.version, shell=True) if args.macos: print('\nSigning ' + args.version + ' MacOS') subprocess.check_call('cp inputs/funexcoin-' + args.version + '-osx-unsigned.tar.gz inputs/funexcoin-osx-unsigned.tar.gz', shell=True) subprocess.check_call(['bin/gbuild', '--skip-image', '--upgrade', '--commit', 'signature='+args.commit, '../funexcoin/contrib/gitian-descriptors/gitian-osx-signer.yml']) subprocess.check_call(['bin/gsign', '-p', args.sign_prog, '--signer', args.signer, '--release', args.version+'-osx-signed', '--destination', '../gitian.sigs/', '../funexcoin/contrib/gitian-descriptors/gitian-osx-signer.yml']) subprocess.check_call('mv build/out/funexcoin-osx-signed.dmg ../funexcoin-binaries/'+args.version+'/funexcoin-'+args.version+'-osx.dmg', shell=True) os.chdir(workdir) if args.commit_files: print('\nCommitting '+args.version+' Signed Sigs\n') os.chdir('gitian.sigs') subprocess.check_call(['git', 'add', args.version+'-win-signed/'+args.signer]) subprocess.check_call(['git', 'add', args.version+'-osx-signed/'+args.signer]) subprocess.check_call(['git', 'commit', '-a', '-m', 'Add '+args.version+' signed binary sigs for '+args.signer]) os.chdir(workdir) def verify(): global args, workdir rc = 0 os.chdir('gitian-builder') print('\nVerifying v'+args.version+' Linux\n') if subprocess.call(['bin/gverify', '-v', '-d', '../gitian.sigs/', '-r', args.version+'-linux', '../funexcoin/contrib/gitian-descriptors/gitian-linux.yml']): print('Verifying v'+args.version+' Linux FAILED\n') rc = 1 print('\nVerifying v'+args.version+' Windows\n') if subprocess.call(['bin/gverify', '-v', '-d', '../gitian.sigs/', '-r', args.version+'-win-unsigned', '../funexcoin/contrib/gitian-descriptors/gitian-win.yml']): print('Verifying v'+args.version+' Windows FAILED\n') rc = 1 print('\nVerifying v'+args.version+' MacOS\n') if subprocess.call(['bin/gverify', '-v', '-d', '../gitian.sigs/', '-r', args.version+'-osx-unsigned', '../funexcoin/contrib/gitian-descriptors/gitian-osx.yml']): print('Verifying v'+args.version+' MacOS FAILED\n') rc = 1 print('\nVerifying v'+args.version+' Signed Windows\n') if subprocess.call(['bin/gverify', '-v', '-d', '../gitian.sigs/', '-r', args.version+'-win-signed', '../funexcoin/contrib/gitian-descriptors/gitian-win-signer.yml']): print('Verifying v'+args.version+' Signed Windows FAILED\n') rc = 1 print('\nVerifying v'+args.version+' Signed MacOS\n') if subprocess.call(['bin/gverify', '-v', '-d', '../gitian.sigs/', '-r', args.version+'-osx-signed', '../funexcoin/contrib/gitian-descriptors/gitian-osx-signer.yml']): print('Verifying v'+args.version+' Signed MacOS FAILED\n') rc = 1 os.chdir(workdir) return rc def main(): global args, workdir parser = argparse.ArgumentParser(description='Script for running full Gitian builds.') parser.add_argument('-c', '--commit', action='store_true', dest='commit', help='Indicate that the version argument is for a commit or branch') parser.add_argument('-p', '--pull', action='store_true', dest='pull', help='Indicate that the version argument is the number of a github repository pull request') parser.add_argument('-u', '--url', dest='url', default='https://github.com/funexcoin/funexcoin', help='Specify the URL of the repository. Default is %(default)s') parser.add_argument('-v', '--verify', action='store_true', dest='verify', help='Verify the Gitian build') parser.add_argument('-b', '--build', action='store_true', dest='build', help='Do a Gitian build') parser.add_argument('-s', '--sign', action='store_true', dest='sign', help='Make signed binaries for Windows and MacOS') parser.add_argument('-B', '--buildsign', action='store_true', dest='buildsign', help='Build both signed and unsigned binaries') parser.add_argument('-o', '--os', dest='os', default='lwm', help='Specify which Operating Systems the build is for. Default is %(default)s. l for Linux, w for Windows, m for MacOS') parser.add_argument('-j', '--jobs', dest='jobs', default='2', help='Number of processes to use. Default %(default)s') parser.add_argument('-m', '--memory', dest='memory', default='2000', help='Memory to allocate in MiB. Default %(default)s') parser.add_argument('-k', '--kvm', action='store_true', dest='kvm', help='Use KVM instead of LXC') parser.add_argument('-d', '--docker', action='store_true', dest='docker', help='Use Docker instead of LXC') parser.add_argument('-S', '--setup', action='store_true', dest='setup', help='Set up the Gitian building environment. Only works on Debian-based systems (Ubuntu, Debian)') parser.add_argument('-D', '--detach-sign', action='store_true', dest='detach_sign', help='Create the assert file for detached signing. Will not commit anything.') parser.add_argument('-n', '--no-commit', action='store_false', dest='commit_files', help='Do not commit anything to git') parser.add_argument('signer', nargs='?', help='GPG signer to sign each build assert file') parser.add_argument('version', nargs='?', help='Version number, commit, or branch to build. If building a commit or branch, the -c option must be specified') args = parser.parse_args() workdir = os.getcwd() args.is_bionic = b'bionic' in subprocess.check_output(['lsb_release', '-cs']) if args.kvm and args.docker: raise Exception('Error: cannot have both kvm and docker') # Ensure no more than one environment variable for gitian-builder (USE_LXC, USE_VBOX, USE_DOCKER) is set as they # can interfere (e.g., USE_LXC being set shadows USE_DOCKER; for details see gitian-builder/libexec/make-clean-vm). os.environ['USE_LXC'] = '' os.environ['USE_VBOX'] = '' os.environ['USE_DOCKER'] = '' if args.docker: os.environ['USE_DOCKER'] = '1' elif not args.kvm: os.environ['USE_LXC'] = '1' if 'GITIAN_HOST_IP' not in os.environ.keys(): os.environ['GITIAN_HOST_IP'] = '10.0.3.1' if 'LXC_GUEST_IP' not in os.environ.keys(): os.environ['LXC_GUEST_IP'] = '10.0.3.5' if args.setup: setup() if args.buildsign: args.build = True args.sign = True if not args.build and not args.sign and not args.verify: sys.exit(0) args.linux = 'l' in args.os args.windows = 'w' in args.os args.macos = 'm' in args.os # Disable for MacOS if no SDK found if args.macos and not os.path.isfile('gitian-builder/inputs/MacOSX10.14.sdk.tar.gz'): print('Cannot build for MacOS, SDK does not exist. Will build for other OSes') args.macos = False args.sign_prog = 'true' if args.detach_sign else 'gpg --detach-sign' script_name = os.path.basename(sys.argv[0]) if not args.signer: print(script_name+': Missing signer') print('Try '+script_name+' --help for more information') sys.exit(1) if not args.version: print(script_name+': Missing version') print('Try '+script_name+' --help for more information') sys.exit(1) # Add leading 'v' for tags if args.commit and args.pull: raise Exception('Cannot have both commit and pull') args.commit = ('' if args.commit else 'v') + args.version os.chdir('funexcoin') if args.pull: subprocess.check_call(['git', 'fetch', args.url, 'refs/pull/'+args.version+'/merge']) os.chdir('../gitian-builder/inputs/funexcoin') subprocess.check_call(['git', 'fetch', args.url, 'refs/pull/'+args.version+'/merge']) args.commit = subprocess.check_output(['git', 'show', '-s', '--format=%H', 'FETCH_HEAD'], universal_newlines=True, encoding='utf8').strip() args.version = 'pull-' + args.version print(args.commit) subprocess.check_call(['git', 'fetch']) subprocess.check_call(['git', 'checkout', args.commit]) os.chdir(workdir) os.chdir('gitian-builder') subprocess.check_call(['git', 'pull']) os.chdir(workdir) if args.build: build() if args.sign: sign() if args.verify: os.chdir('gitian.sigs') subprocess.check_call(['git', 'pull']) os.chdir(workdir) sys.exit(verify()) if __name__ == '__main__': main()
56.110266
233
0.65352
befc2ee8ce0b1d7d16a8f38132fc07539b72b66a
1,152
py
Python
test/gtest-1.10.0/googlemock/scripts/generator/cpp/utils.py
EliSchleifer/yaml-cpp
c83fa7ce38fb94a7cb5b85f38d9aef05cbe9ebde
[ "MIT" ]
null
null
null
test/gtest-1.10.0/googlemock/scripts/generator/cpp/utils.py
EliSchleifer/yaml-cpp
c83fa7ce38fb94a7cb5b85f38d9aef05cbe9ebde
[ "MIT" ]
null
null
null
test/gtest-1.10.0/googlemock/scripts/generator/cpp/utils.py
EliSchleifer/yaml-cpp
c83fa7ce38fb94a7cb5b85f38d9aef05cbe9ebde
[ "MIT" ]
null
null
null
#!/usr/bin/env python # # Copyright 2007 Neal Norwitz # Portions Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Generic utilities for C++ parsing.""" __author__ = "nnorwitz@google.com (Neal Norwitz)" import sys # Set to True to see the start/end token indices. DEBUG = True def ReadFile(filename, print_error=True): """Returns the contents of a file.""" try: fp = open(filename) try: return fp.read() finally: fp.close() except IOError: if print_error: print("Error reading %s: %s" % (filename, sys.exc_info()[1])) return None
28.097561
74
0.681424
060e073de7cf30a9218cc4dcaf7f2388f2ebc947
1,025
py
Python
var/spack/repos/builtin/packages/r-crayon/package.py
player1537-forks/spack
822b7632222ec5a91dc7b7cda5fc0e08715bd47c
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
11
2015-10-04T02:17:46.000Z
2018-02-07T18:23:00.000Z
var/spack/repos/builtin/packages/r-crayon/package.py
player1537-forks/spack
822b7632222ec5a91dc7b7cda5fc0e08715bd47c
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
22
2017-08-01T22:45:10.000Z
2022-03-10T07:46:31.000Z
var/spack/repos/builtin/packages/r-crayon/package.py
player1537-forks/spack
822b7632222ec5a91dc7b7cda5fc0e08715bd47c
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
4
2016-06-10T17:57:39.000Z
2018-09-11T04:59:38.000Z
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RCrayon(RPackage): """Colored Terminal Output. Colored terminal output on terminals that support 'ANSI' color and highlight codes. It also works in 'Emacs' 'ESS'. 'ANSI' color support is automatically detected. Colors and highlighting can be combined and nested. New styles can also be created easily. This package was inspired by the 'chalk' 'JavaScript' project.""" cran = "crayon" version('1.4.2', sha256='ee34397f643e76e30588068d4c93bd3c9afd2193deacccacb3bffcadf141b857') version('1.4.1', sha256='08b6e42e748d096960b2f32b7ffe690c25742e29fe14c19d1834cd6ff43029c7') version('1.3.4', sha256='fc6e9bf990e9532c4fcf1a3d2ce22d8cf12d25a95e4779adfa17713ed836fa68') version('1.3.2', sha256='9a6b75d63c05fe64baf222f1921330ceb727924bcc5fc2753ff0528d42555e68')
42.708333
95
0.772683
a5d1ff8f5003e484f1335a68ed4a4d2be9789fe0
2,046
py
Python
maml_rl/envs/navigation.py
dragen1860/MAML-Pytorch-RL
22c5072b3c58ff8fa97d37380f3493b7be885397
[ "MIT" ]
9
2019-10-18T01:30:07.000Z
2021-11-29T07:04:51.000Z
maml_rl/envs/navigation.py
dragen1860/MAML-Pytorch-RL
22c5072b3c58ff8fa97d37380f3493b7be885397
[ "MIT" ]
1
2019-12-09T13:49:30.000Z
2019-12-09T13:49:30.000Z
maml_rl/envs/navigation.py
dragen1860/MAML-Pytorch-RL
22c5072b3c58ff8fa97d37380f3493b7be885397
[ "MIT" ]
8
2019-03-21T15:23:31.000Z
2021-11-08T13:30:28.000Z
import numpy as np import gym from gym import spaces from gym.utils import seeding class Navigation2DEnv(gym.Env): """2D navigation problems, as described in [1]. The code is adapted from https://github.com/cbfinn/maml_rl/blob/9c8e2ebd741cb0c7b8bf2d040c4caeeb8e06cc95/maml_examples/point_env_randgoal.py At each time step, the 2D agent takes an action (its velocity, clipped in [-0.1, 0.1]), and receives a penalty equal to its L2 distance to the goal position (ie. the reward is `-distance`). The 2D navigation tasks are generated by sampling goal positions from the uniform distribution on [-0.5, 0.5]^2. [1] Chelsea Finn, Pieter Abbeel, Sergey Levine, "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks", 2017 (https://arxiv.org/abs/1703.03400) """ def __init__(self, task={}): super(Navigation2DEnv, self).__init__() self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=(2,), dtype=np.float32) self.action_space = spaces.Box(low=-0.1, high=0.1, shape=(2,), dtype=np.float32) self._task = task self._goal = task.get('goal', np.zeros(2, dtype=np.float32)) self._state = np.zeros(2, dtype=np.float32) self.seed() def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def sample_tasks(self, num_tasks): goals = self.np_random.uniform(-0.5, 0.5, size=(num_tasks, 2)) tasks = [{'goal': goal} for goal in goals] return tasks def reset_task(self, task): self._task = task self._goal = task['goal'] def reset(self, env=True): self._state = np.zeros(2, dtype=np.float32) return self._state def step(self, action): action = np.clip(action, -0.1, 0.1) assert self.action_space.contains(action) self._state = self._state + action x = self._state[0] - self._goal[0] y = self._state[1] - self._goal[1] reward = -np.sqrt(x ** 2 + y ** 2) done = ((np.abs(x) < 0.01) and (np.abs(y) < 0.01)) return self._state, reward, done, self._task
31.96875
116
0.675464
16e34c3e5a541843393f3d223ee19106a2ef5ce8
4,527
py
Python
modules/opnfv/utils/SSHUtils.py
kkltcjk/reporting
460731b8b2da037159649b02ffed798656dad8a9
[ "Apache-2.0" ]
null
null
null
modules/opnfv/utils/SSHUtils.py
kkltcjk/reporting
460731b8b2da037159649b02ffed798656dad8a9
[ "Apache-2.0" ]
null
null
null
modules/opnfv/utils/SSHUtils.py
kkltcjk/reporting
460731b8b2da037159649b02ffed798656dad8a9
[ "Apache-2.0" ]
null
null
null
############################################################################## # Copyright (c) 2015 Ericsson AB and others. # Authors: George Paraskevopoulos (geopar@intracom-telecom.com) # Jose Lausuch (jose.lausuch@ericsson.com) # All rights reserved. This program and the accompanying materials # are made available under the terms of the Apache License, Version 2.0 # which accompanies this distribution, and is available at # http://www.apache.org/licenses/LICENSE-2.0 ############################################################################## import paramiko import opnfv.utils.OPNFVLogger as OPNFVLogger import os logger = OPNFVLogger.Logger('SSHUtils').getLogger() def get_ssh_client(hostname, username, password=None, proxy=None): client = None try: if proxy is None: client = paramiko.SSHClient() else: client = ProxyHopClient() client.configure_jump_host(proxy['ip'], proxy['username'], proxy['password']) if client is None: raise Exception('Could not connect to client') client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) client.connect(hostname, username=username, password=password) return client except Exception, e: logger.error(e) return None def get_file(ssh_conn, src, dest): try: sftp = ssh_conn.open_sftp() sftp.get(src, dest) return True except Exception, e: logger.error("Error [get_file(ssh_conn, '%s', '%s']: %s" % (src, dest, e)) return None def put_file(ssh_conn, src, dest): try: sftp = ssh_conn.open_sftp() sftp.put(src, dest) return True except Exception, e: logger.error("Error [put_file(ssh_conn, '%s', '%s']: %s" % (src, dest, e)) return None class ProxyHopClient(paramiko.SSHClient): ''' Connect to a remote server using a proxy hop ''' def __init__(self, *args, **kwargs): self.logger = OPNFVLogger.Logger("ProxyHopClient").getLogger() self.proxy_ssh = None self.proxy_transport = None self.proxy_channel = None self.proxy_ip = None self.proxy_ssh_key = None self.local_ssh_key = os.path.join(os.getcwd(), 'id_rsa') super(ProxyHopClient, self).__init__(*args, **kwargs) def configure_jump_host(self, jh_ip, jh_user, jh_pass, jh_ssh_key='/root/.ssh/id_rsa'): self.proxy_ip = jh_ip self.proxy_ssh_key = jh_ssh_key self.proxy_ssh = paramiko.SSHClient() self.proxy_ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) self.proxy_ssh.connect(jh_ip, username=jh_user, password=jh_pass) self.proxy_transport = self.proxy_ssh.get_transport() def connect(self, hostname, port=22, username='root', password=None, pkey=None, key_filename=None, timeout=None, allow_agent=True, look_for_keys=True, compress=False, sock=None, gss_auth=False, gss_kex=False, gss_deleg_creds=True, gss_host=None, banner_timeout=None): try: if self.proxy_ssh is None: raise Exception('You must configure the jump ' 'host before calling connect') get_file_res = get_file(self.proxy_ssh, self.proxy_ssh_key, self.local_ssh_key) if get_file_res is None: raise Exception('Could\'t fetch SSH key from jump host') proxy_key = (paramiko.RSAKey .from_private_key_file(self.local_ssh_key)) self.proxy_channel = self.proxy_transport.open_channel( "direct-tcpip", (hostname, 22), (self.proxy_ip, 22)) self.set_missing_host_key_policy(paramiko.AutoAddPolicy()) super(ProxyHopClient, self).connect(hostname, username=username, pkey=proxy_key, sock=self.proxy_channel) os.remove(self.local_ssh_key) except Exception, e: self.logger.error(e)
37.413223
78
0.550254
771a0179b84c04caa8d6e45f8796178e92ebd3fc
2,755
py
Python
freq_matched_noise.py
sunjerry019/RandomCodes
4402604aaeee63bb1ce6fa962c496b438bb17e50
[ "MIT" ]
null
null
null
freq_matched_noise.py
sunjerry019/RandomCodes
4402604aaeee63bb1ce6fa962c496b438bb17e50
[ "MIT" ]
null
null
null
freq_matched_noise.py
sunjerry019/RandomCodes
4402604aaeee63bb1ce6fa962c496b438bb17e50
[ "MIT" ]
null
null
null
""" Measure the frequencies coming in through the microphone Mashup of wire_full.py from pyaudio tests and spectrum.py from Chaco examples http://healthyalgorithms.com/2013/08/22/dsp-in-python-active-noise-reduction-with-pyaudio/ """ import pyaudio import numpy as np import scipy.signal CHUNK = 1024*2 WIDTH = 2 DTYPE = np.int16 MAX_INT = 32768.0 CHANNELS = 1 RATE = 11025*1 RECORD_SECONDS = 20 j = np.complex(0,1) p = pyaudio.PyAudio() stream = p.open(format=p.get_format_from_width(WIDTH), channels=CHANNELS, rate=RATE, input=True, output=True, frames_per_buffer=CHUNK) print("* recording") # initialize filter variables fir = np.zeros(CHUNK * 2) fir[:(2*CHUNK)] = 1. fir /= fir.sum() fir_last = fir avg_freq_buffer = np.zeros(CHUNK) obj = -np.inf t = 10 # initialize sample buffer buffer = np.zeros(CHUNK * 2) #for i in np.arange(RATE / CHUNK * RECORD_SECONDS): try: while True: # read audio string_audio_data = stream.read(CHUNK) audio_data = np.fromstring(string_audio_data, dtype=DTYPE) normalized_data = audio_data / MAX_INT freq_data = np.fft.fft(normalized_data) # synthesize audio buffer[CHUNK:] = np.random.randn(CHUNK) freq_buffer = np.fft.fft(buffer) freq_fir = np.fft.fft(fir) freq_synth = freq_fir * freq_buffer synth = np.real(np.fft.ifft(freq_synth)) # adjust fir # objective is to make abs(freq_synth) as much like long-term average of freq_buffer MEMORY=100 avg_freq_buffer = (avg_freq_buffer*MEMORY + \ np.abs(freq_data)) / (MEMORY+1) obj_last = obj obj = np.real(np.dot(avg_freq_buffer[1:51], np.abs(freq_synth[1:100:2])) / np.dot(freq_synth[1:100:2], np.conj(freq_synth[1:100:2]))) if obj > obj_last: fir_last = fir fir = fir_last.copy() # adjust filter in frequency space freq_fir = np.fft.fft(fir) #t += np.clip(np.random.randint(3)-1, 0, 64) t = np.random.randint(100) freq_fir[t] += np.random.randn()*.05 # transform frequency space filter to time space, click-free fir = np.real(np.fft.ifft(freq_fir)) fir[:CHUNK] *= np.linspace(1., 0., CHUNK)**.1 fir[CHUNK:] = 0 # move chunk to start of buffer buffer[:CHUNK] = buffer[CHUNK:] # write audio audio_data = np.array(np.round_(synth[CHUNK:] * MAX_INT), dtype=DTYPE) string_audio_data = audio_data.tostring() stream.write(string_audio_data, CHUNK) except KeyboardInterrupt: print("\n* done") stream.stop_stream() stream.close() p.terminate()
26.747573
141
0.623956
e310209035272a71ae4ef099b05063936c4b31f5
2,453
py
Python
test/functional/wallet-encryption.py
xagau/placeh
bd10a67a39dca5b7d1619c29267b291a410b30ac
[ "MIT" ]
2
2018-11-16T18:21:38.000Z
2020-12-06T15:23:42.000Z
test/functional/wallet-encryption.py
xagau/placeh
bd10a67a39dca5b7d1619c29267b291a410b30ac
[ "MIT" ]
null
null
null
test/functional/wallet-encryption.py
xagau/placeh
bd10a67a39dca5b7d1619c29267b291a410b30ac
[ "MIT" ]
1
2018-12-10T18:41:56.000Z
2018-12-10T18:41:56.000Z
#!/usr/bin/env python3 # Copyright (c) 2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test Wallet encryption""" import time from test_framework.test_framework import placehTestFramework from test_framework.util import ( assert_equal, assert_raises_jsonrpc, ) class WalletEncryptionTest(placehTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 def run_test(self): passphrase = "WalletPassphrase" passphrase2 = "SecondWalletPassphrase" # Make sure the wallet isn't encrypted first address = self.nodes[0].getnewaddress() privkey = self.nodes[0].dumpprivkey(address) assert_equal(privkey[:1], "c") assert_equal(len(privkey), 52) # Encrypt the wallet self.nodes[0].node_encrypt_wallet(passphrase) self.start_node(0) # Test that the wallet is encrypted assert_raises_jsonrpc(-13, "Please enter the wallet passphrase with walletpassphrase first", self.nodes[0].dumpprivkey, address) # Check that walletpassphrase works self.nodes[0].walletpassphrase(passphrase, 2) assert_equal(privkey, self.nodes[0].dumpprivkey(address)) # Check that the timeout is right time.sleep(2) assert_raises_jsonrpc(-13, "Please enter the wallet passphrase with walletpassphrase first", self.nodes[0].dumpprivkey, address) # Test wrong passphrase assert_raises_jsonrpc(-14, "wallet passphrase entered was incorrect", self.nodes[0].walletpassphrase, passphrase + "wrong", 10) # Test walletlock self.nodes[0].walletpassphrase(passphrase, 84600) assert_equal(privkey, self.nodes[0].dumpprivkey(address)) self.nodes[0].walletlock() assert_raises_jsonrpc(-13, "Please enter the wallet passphrase with walletpassphrase first", self.nodes[0].dumpprivkey, address) # Test passphrase changes self.nodes[0].walletpassphrasechange(passphrase, passphrase2) assert_raises_jsonrpc(-14, "wallet passphrase entered was incorrect", self.nodes[0].walletpassphrase, passphrase, 10) self.nodes[0].walletpassphrase(passphrase2, 10) assert_equal(privkey, self.nodes[0].dumpprivkey(address)) if __name__ == '__main__': WalletEncryptionTest().main()
39.564516
136
0.709743
7a1eaaaae95ca2423447d60e7a8f6a4a17f037d2
6,398
py
Python
examples/hardware/plotting.py
StanfordASL/soft-robot-control
29ade9b7b952e25e639b42767a4f09c87a0e824a
[ "MIT" ]
5
2021-03-07T11:42:11.000Z
2022-02-28T09:46:05.000Z
examples/hardware/plotting.py
StanfordASL/soft-robot-control
29ade9b7b952e25e639b42767a4f09c87a0e824a
[ "MIT" ]
null
null
null
examples/hardware/plotting.py
StanfordASL/soft-robot-control
29ade9b7b952e25e639b42767a4f09c87a0e824a
[ "MIT" ]
3
2021-01-23T11:09:40.000Z
2022-03-02T11:54:57.000Z
from os.path import dirname, abspath, join import numpy as np from matplotlib import patches from matplotlib import pyplot as plt from scipy.interpolate import interp1d import pdb from sofacontrol.utils import load_data path = dirname(abspath(__file__)) ############################################# # Problem 1, Figure 8 with constraints ############################################# # M = 3 # T = 10 # N = 500 # t_target = np.linspace(0, M*T, M*N) # th = np.linspace(0, M * 2 * np.pi, M*N) # zf_target = np.zeros((M*N, 6)) # zf_target[:, 3] = -15. * np.sin(th) # zf_target[:, 4] = 15. * np.sin(2 * th) # y_ub = 5 # name = 'figure8' ############################################## # Problem 2, Circle on side ############################################## M = 3 T = 5 N = 1000 r = 10 t_target = np.linspace(0, M*T, M*N) th = np.linspace(0, M*2*np.pi, M*N) x_target = np.zeros(M*N) y_target = r * np.sin(th) z_target = r - r * np.cos(th) + 107 zf_target = np.zeros((M*N, 6)) zf_target[:, 3] = x_target zf_target[:, 4] = y_target zf_target[:, 5] = z_target name = 'circle' # Load SCP data scp_simdata_file = join(path, name + '_scp.pkl') scp_data = load_data(scp_simdata_file) idx = np.argwhere(scp_data['t'] >= 3)[0][0] t_scp = scp_data['t'][idx:] - scp_data['t'][idx] z_scp = scp_data['z'][idx:, :] zhat = scp_data['z_hat'][idx:, :] u_scp = scp_data['u'][idx:, :] solve_times_scp = scp_data['info']['solve_times'] real_time_limit_scp = scp_data['info']['rollout_time'] # Load ROMPC data rompc_simdata_file = join(path, name + '_rompc.pkl') rompc_data = load_data(rompc_simdata_file) idx = np.argwhere(rompc_data['t'] >= 3)[0][0] t_rompc = rompc_data['t'][idx:] - rompc_data['t'][idx] z_rompc = rompc_data['z'][idx:, :] u_rompc = rompc_data['u'][idx:, :] solve_times_rompc = rompc_data['info']['solve_times'] real_time_limit_rompc = rompc_data['info']['rollout_time'] # Load Koopman data koop_simdata_file = join(path, name + '_koopman.pkl') koop_data = load_data(koop_simdata_file) idx = np.argwhere(koop_data['t'] >= 3)[0][0] t_koop = koop_data['t'][idx:] - koop_data['t'][idx] z_koop = koop_data['z'][idx:, :] solve_times_koop = koop_data['info']['solve_times'] real_time_limit_koop = koop_data['info']['rollout_time'] m_w = 30 ################################################## # Plot trajectory as function of time ################################################## fig2 = plt.figure(figsize=(14, 12), facecolor='w', edgecolor='k') ax2 = fig2.add_subplot(211) if name == 'figure8': ax2.plot(t_rompc, z_rompc[:, 3], 'tab:green', marker='x', markevery=m_w, label='Linear ROMPC', linewidth=1) ax2.plot(t_koop, z_koop[:, 3], 'tab:orange', marker='^', markevery=m_w, label='Koopman MPC', linewidth=1) ax2.plot(t_scp, z_scp[:, 3], 'tab:blue', label='Nonlinear ROMPC', linewidth=3) ax2.plot(t_target, zf_target[:, 3], '--k', alpha=1, linewidth=1, label='Target') plt.ylabel(r'$x_{ee}$ [mm]', fontsize=14) else: ax2.plot(t_rompc, z_rompc[:, 4], 'tab:green', marker='x', markevery=m_w, label='Linear ROMPC', linewidth=1) ax2.plot(t_koop, z_koop[:, 4], 'tab:orange', marker='^', markevery=m_w, label='Koopman MPC', linewidth=1) ax2.plot(t_scp, z_scp[:, 4], 'tab:blue', label='Nonlinear ROMPC', linewidth=3) ax2.plot(t_target, zf_target[:, 4], '--k', alpha=1, linewidth=1, label='Target') plt.ylabel(r'$y_{ee}$ [mm]', fontsize=14) ax2.set_xlim([0, 10]) plt.xlabel(r'$t$ [s]', fontsize=14) plt.legend(loc='best', prop={'size': 14}) ax3 = fig2.add_subplot(212) if name == 'figure8': ax3.plot(t_target, y_ub * np.ones_like(t_target), 'r', label='Constraint') ax3.plot(t_rompc, z_rompc[:, 4], 'tab:green', marker='x', markevery=m_w, label='Linear ROMPC', linewidth=1) ax3.plot(t_koop, z_koop[:, 4], 'tab:orange', marker='^', markevery=m_w, label='Koopman MPC', linewidth=1) ax3.plot(t_scp, z_scp[:, 4], 'tab:blue', label='Nonlinear ROMPC', linewidth=3) ax3.plot(t_target, zf_target[:, 4], '--k', alpha=1, linewidth=1, label='Target') plt.ylabel(r'$y_{ee}$ [mm]', fontsize=14) else: ax3.plot(t_rompc, z_rompc[:, 5], 'tab:green', marker='x', markevery=m_w, label='Linear ROMPC', linewidth=1) ax3.plot(t_koop, z_koop[:, 5], 'tab:orange', marker='^', markevery=m_w, label='Koopman MPC', linewidth=1) ax3.plot(t_scp, z_scp[:, 5], 'tab:blue', label='Nonlinear ROMPC', linewidth=3) ax3.plot(t_target, zf_target[:, 5], '--k', alpha=1, linewidth=1, label='Target') plt.ylabel(r'$z_{ee}$ [mm]', fontsize=14) ax3.set_xlim([0, 10]) plt.xlabel(r'$t$ [s]', fontsize=14) plt.legend(loc='best', prop={'size': 14}) figure_file = join(path, name + '.png') plt.savefig(figure_file, dpi=300, bbox_inches='tight') # MSE calculations # Calculation of desired trajectory if name == 'figure8': zf_desired = zf_target.copy() zf_desired[:, 4] = np.minimum(y_ub, zf_target[:,4]) else: zf_desired = zf_target.copy() f = interp1d(t_target, zf_desired, axis=0) zd_koop = f(t_koop) zd_scp = f(t_scp) zd_rompc = f(t_rompc) if name == 'figure8': err_koop = (z_koop - zd_koop)[:,3:5] err_scp = (z_scp - zd_scp)[:,3:5] err_rompc = (z_rompc - zd_rompc)[:,3:5] else: err_koop = (z_koop - zd_koop)[:,4:6] err_scp = (z_scp - zd_scp)[:,4:6] err_rompc = (z_rompc - zd_rompc)[:,4:6] # inner norm gives euclidean distance, outer norm squared / nbr_samples gives MSE mse_koop = np.linalg.norm(np.linalg.norm(err_koop, axis=1))**2 / err_koop.shape[0] mse_rompc = np.linalg.norm(np.linalg.norm(err_rompc, axis=1))**2 / err_rompc.shape[0] mse_scp = np.linalg.norm(np.linalg.norm(err_scp, axis=1))**2 / err_scp.shape[0] print('------ Mean Squared Errors (MSEs)----------') print('Ours (SCP): {}'.format(mse_scp)) print('Koopman: {}'.format(mse_koop)) print('ROMPC: {}'.format(mse_rompc)) print('-------------Solve times ---------------') print('Ours: Min: {}, Mean: {} ms, Max: {} s'.format(np.min(solve_times_scp), np.mean(solve_times_scp), np.max(solve_times_scp))) print('ROMPC: Min: {}, Mean: {} ms, Max: {} s'.format(np.min(solve_times_rompc), np.mean(solve_times_rompc), np.max(solve_times_rompc))) print('Koopman: Min: {}, Mean: {} ms, Max: {} s'.format(np.min(solve_times_koop), np.mean(solve_times_koop), np.max(solve_times_koop))) plt.show()
39.493827
111
0.613473
84ef9039c5b07a3e7b33deee37ea54b7b4639eca
7,779
py
Python
docs/conf.py
coagulant/django-waffle
4311becf83486cd006797fe4e3edbcfdfc1c75c4
[ "BSD-3-Clause" ]
null
null
null
docs/conf.py
coagulant/django-waffle
4311becf83486cd006797fe4e3edbcfdfc1c75c4
[ "BSD-3-Clause" ]
null
null
null
docs/conf.py
coagulant/django-waffle
4311becf83486cd006797fe4e3edbcfdfc1c75c4
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # # django-waffle documentation build configuration file, created by # sphinx-quickstart on Wed Aug 1 17:45:05 2012. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'django-waffle' copyright = u'2012, James Socol' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.9' # The full version, including alpha/beta/rc tags. release = '0.9.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'nature' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'django-waffledoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'django-waffle.tex', u'django-waffle Documentation', u'James Socol', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'django-waffle', u'django-waffle Documentation', [u'James Socol'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'django-waffle', u'django-waffle Documentation', u'James Socol', 'django-waffle', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote'
32.012346
80
0.714359
9adf1032999ed2a2138a49fa9371aba21e618847
10,795
py
Python
tests/test_segment.py
MarkHoo/rich
51889e2e663bbda8d59b2a68f23322f578681cea
[ "MIT" ]
4,407
2022-01-05T11:54:59.000Z
2022-03-31T23:59:07.000Z
tests/test_segment.py
MarkHoo/rich
51889e2e663bbda8d59b2a68f23322f578681cea
[ "MIT" ]
244
2022-01-05T11:50:13.000Z
2022-03-31T18:57:55.000Z
tests/test_segment.py
MarkHoo/rich
51889e2e663bbda8d59b2a68f23322f578681cea
[ "MIT" ]
177
2022-01-05T12:54:46.000Z
2022-03-30T19:57:51.000Z
from io import StringIO import pytest from rich.segment import ControlType, Segment, SegmentLines, Segments from rich.style import Style def test_repr(): assert repr(Segment("foo")) == "Segment('foo')" home = (ControlType.HOME, 0) assert ( repr(Segment("foo", None, [home])) == "Segment('foo', None, [(<ControlType.HOME: 3>, 0)])" ) def test_line(): assert Segment.line() == Segment("\n") def test_apply_style(): segments = [Segment("foo"), Segment("bar", Style(bold=True))] assert Segment.apply_style(segments, None) is segments assert list(Segment.apply_style(segments, Style(italic=True))) == [ Segment("foo", Style(italic=True)), Segment("bar", Style(italic=True, bold=True)), ] def test_split_lines(): lines = [Segment("Hello\nWorld")] assert list(Segment.split_lines(lines)) == [[Segment("Hello")], [Segment("World")]] def test_split_and_crop_lines(): assert list( Segment.split_and_crop_lines([Segment("Hello\nWorld!\n"), Segment("foo")], 4) ) == [ [Segment("Hell"), Segment("\n", None)], [Segment("Worl"), Segment("\n", None)], [Segment("foo"), Segment(" ")], ] def test_adjust_line_length(): line = [Segment("Hello", "foo")] assert Segment.adjust_line_length(line, 10, style="bar") == [ Segment("Hello", "foo"), Segment(" ", "bar"), ] line = [Segment("H"), Segment("ello, World!")] assert Segment.adjust_line_length(line, 5) == [Segment("H"), Segment("ello")] line = [Segment("Hello")] assert Segment.adjust_line_length(line, 5) == line def test_get_line_length(): assert Segment.get_line_length([Segment("foo"), Segment("bar")]) == 6 def test_get_shape(): assert Segment.get_shape([[Segment("Hello")]]) == (5, 1) assert Segment.get_shape([[Segment("Hello")], [Segment("World!")]]) == (6, 2) def test_set_shape(): assert Segment.set_shape([[Segment("Hello")]], 10) == [ [Segment("Hello"), Segment(" ")] ] assert Segment.set_shape([[Segment("Hello")]], 10, 2) == [ [Segment("Hello"), Segment(" ")], [Segment(" " * 10)], ] def test_simplify(): assert list( Segment.simplify([Segment("Hello"), Segment(" "), Segment("World!")]) ) == [Segment("Hello World!")] assert list( Segment.simplify( [Segment("Hello", "red"), Segment(" ", "red"), Segment("World!", "blue")] ) ) == [Segment("Hello ", "red"), Segment("World!", "blue")] assert list(Segment.simplify([])) == [] def test_filter_control(): control_code = (ControlType.HOME, 0) segments = [Segment("foo"), Segment("bar", None, (control_code,))] assert list(Segment.filter_control(segments)) == [Segment("foo")] assert list(Segment.filter_control(segments, is_control=True)) == [ Segment("bar", None, (control_code,)) ] def test_strip_styles(): segments = [Segment("foo", Style(bold=True))] assert list(Segment.strip_styles(segments)) == [Segment("foo", None)] def test_strip_links(): segments = [Segment("foo", Style(bold=True, link="https://www.example.org"))] assert list(Segment.strip_links(segments)) == [Segment("foo", Style(bold=True))] def test_remove_color(): segments = [ Segment("foo", Style(bold=True, color="red")), Segment("bar", None), ] assert list(Segment.remove_color(segments)) == [ Segment("foo", Style(bold=True)), Segment("bar", None), ] def test_is_control(): assert Segment("foo", Style(bold=True)).is_control == False assert Segment("foo", Style(bold=True), []).is_control == True assert Segment("foo", Style(bold=True), [(ControlType.HOME, 0)]).is_control == True def test_segments_renderable(): segments = Segments([Segment("foo")]) assert list(segments.__rich_console__(None, None)) == [Segment("foo")] segments = Segments([Segment("foo")], new_lines=True) assert list(segments.__rich_console__(None, None)) == [ Segment("foo"), Segment.line(), ] def test_divide(): bold = Style(bold=True) italic = Style(italic=True) segments = [ Segment("Hello", bold), Segment(" World!", italic), ] assert list(Segment.divide(segments, [])) == [] assert list(Segment.divide([], [1])) == [[]] assert list(Segment.divide(segments, [1])) == [[Segment("H", bold)]] assert list(Segment.divide(segments, [1, 2])) == [ [Segment("H", bold)], [Segment("e", bold)], ] assert list(Segment.divide(segments, [1, 2, 12])) == [ [Segment("H", bold)], [Segment("e", bold)], [Segment("llo", bold), Segment(" World!", italic)], ] assert list(Segment.divide(segments, [4, 20])) == [ [Segment("Hell", bold)], [Segment("o", bold), Segment(" World!", italic)], ] # https://github.com/willmcgugan/rich/issues/1755 def test_divide_complex(): MAP = ( "[on orange4] [on green]XX[on orange4] \n" " \n" " \n" " \n" " [bright_red on black]Y[on orange4] \n" "[on green]X[on orange4] [on green]X[on orange4] \n" " [on green]X[on orange4] [on green]X\n" "[on orange4] \n" " [on green]XX[on orange4] \n" ) from rich.console import Console from rich.text import Text text = Text.from_markup(MAP) console = Console( color_system="truecolor", width=30, force_terminal=True, file=StringIO() ) console.print(text) result = console.file.getvalue() print(repr(result)) expected = "\x1b[48;5;94m \x1b[0m\x1b[42mXX\x1b[0m\x1b[48;5;94m \x1b[0m\n\x1b[48;5;94m \x1b[0m\n\x1b[48;5;94m \x1b[0m\n\x1b[48;5;94m \x1b[0m\n\x1b[48;5;94m \x1b[0m\x1b[91;40mY\x1b[0m\x1b[91;48;5;94m \x1b[0m\n\x1b[91;42mX\x1b[0m\x1b[91;48;5;94m \x1b[0m\x1b[91;42mX\x1b[0m\x1b[91;48;5;94m \x1b[0m\n\x1b[91;48;5;94m \x1b[0m\x1b[91;42mX\x1b[0m\x1b[91;48;5;94m \x1b[0m\x1b[91;42mX\x1b[0m\n\x1b[91;48;5;94m \x1b[0m\n\x1b[91;48;5;94m \x1b[0m\x1b[91;42mXX\x1b[0m\x1b[91;48;5;94m \x1b[0m\n\n" assert result == expected def test_divide_emoji(): bold = Style(bold=True) italic = Style(italic=True) segments = [ Segment("Hello", bold), Segment("💩💩💩", italic), ] assert list(Segment.divide(segments, [7])) == [ [Segment("Hello", bold), Segment("💩", italic)], ] assert list(Segment.divide(segments, [8])) == [ [Segment("Hello", bold), Segment("💩 ", italic)], ] assert list(Segment.divide(segments, [9])) == [ [Segment("Hello", bold), Segment("💩💩", italic)], ] assert list(Segment.divide(segments, [8, 11])) == [ [Segment("Hello", bold), Segment("💩 ", italic)], [Segment(" 💩", italic)], ] assert list(Segment.divide(segments, [9, 11])) == [ [Segment("Hello", bold), Segment("💩💩", italic)], [Segment("💩", italic)], ] def test_divide_edge(): segments = [Segment("foo"), Segment("bar"), Segment("baz")] result = list(Segment.divide(segments, [1, 3, 9])) print(result) assert result == [ [Segment("f")], [Segment("oo")], [Segment("bar"), Segment("baz")], ] def test_divide_edge_2(): segments = [ Segment("╭─"), Segment( "────── Placeholder ───────", ), Segment( "─╮", ), ] result = list(Segment.divide(segments, [30, 60])) expected = [segments, []] print(repr(result)) assert result == expected @pytest.mark.parametrize( "text,split,result", [ ("XX", 4, (Segment("XX"), Segment(""))), ("X", 1, (Segment("X"), Segment(""))), ("💩", 1, (Segment(" "), Segment(" "))), ("XY", 1, (Segment("X"), Segment("Y"))), ("💩X", 1, (Segment(" "), Segment(" X"))), ("💩💩", 1, (Segment(" "), Segment(" 💩"))), ("X💩Y", 2, (Segment("X "), Segment(" Y"))), ("X💩YZ", 2, (Segment("X "), Segment(" YZ"))), ("X💩💩Z", 2, (Segment("X "), Segment(" 💩Z"))), ("X💩💩Z", 3, (Segment("X💩"), Segment("💩Z"))), ("X💩💩Z", 4, (Segment("X💩 "), Segment(" Z"))), ("X💩💩Z", 5, (Segment("X💩💩"), Segment("Z"))), ("X💩💩Z", 6, (Segment("X💩💩Z"), Segment(""))), ("XYZABC💩💩", 6, (Segment("XYZABC"), Segment("💩💩"))), ("XYZABC💩💩", 7, (Segment("XYZABC "), Segment(" 💩"))), ("XYZABC💩💩", 8, (Segment("XYZABC💩"), Segment("💩"))), ("XYZABC💩💩", 9, (Segment("XYZABC💩 "), Segment(" "))), ("XYZABC💩💩", 10, (Segment("XYZABC💩💩"), Segment(""))), ("💩💩💩💩💩", 3, (Segment("💩 "), Segment(" 💩💩💩"))), ("💩💩💩💩💩", 4, (Segment("💩💩"), Segment("💩💩💩"))), ("💩X💩Y💩Z💩A💩", 4, (Segment("💩X "), Segment(" Y💩Z💩A💩"))), ("XYZABC", 4, (Segment("XYZA"), Segment("BC"))), ("XYZABC", 5, (Segment("XYZAB"), Segment("C"))), ], ) def test_split_cells_emoji(text, split, result): assert Segment(text).split_cells(split) == result def test_segment_lines_renderable(): lines = [[Segment("hello"), Segment(" "), Segment("world")], [Segment("foo")]] segment_lines = SegmentLines(lines) assert list(segment_lines.__rich_console__(None, None)) == [ Segment("hello"), Segment(" "), Segment("world"), Segment("foo"), ] segment_lines = SegmentLines(lines, new_lines=True) assert list(segment_lines.__rich_console__(None, None)) == [ Segment("hello"), Segment(" "), Segment("world"), Segment("\n"), Segment("foo"), Segment("\n"), ] def test_align_top(): lines = [[Segment("X")]] assert Segment.align_top(lines, 3, 1, Style()) == lines assert Segment.align_top(lines, 3, 3, Style()) == [ [Segment("X")], [Segment(" ", Style())], [Segment(" ", Style())], ] def test_align_middle(): lines = [[Segment("X")]] assert Segment.align_middle(lines, 3, 1, Style()) == lines assert Segment.align_middle(lines, 3, 3, Style()) == [ [Segment(" ", Style())], [Segment("X")], [Segment(" ", Style())], ] def test_align_bottom(): lines = [[Segment("X")]] assert Segment.align_bottom(lines, 3, 1, Style()) == lines assert Segment.align_bottom(lines, 3, 3, Style()) == [ [Segment(" ", Style())], [Segment(" ", Style())], [Segment("X")], ]
32.613293
671
0.533858
65efa9649bc7e74ae1b32cfc366dd78155eefab1
439
py
Python
python/py_refresh/errors.py
star-junk/references
5bf8f4eb710ebf953131722efea55d998ea98ed2
[ "MIT" ]
null
null
null
python/py_refresh/errors.py
star-junk/references
5bf8f4eb710ebf953131722efea55d998ea98ed2
[ "MIT" ]
null
null
null
python/py_refresh/errors.py
star-junk/references
5bf8f4eb710ebf953131722efea55d998ea98ed2
[ "MIT" ]
null
null
null
def divide(dividend, divisor): if (divisor == 0): raise ZeroDivisionError("Divisor cannot be zero ! Ha Ha Ha") return dividend/divisor print("welcome to the grade average program") grades = [] try: average = divide(sum(grades), len(grades)) except ZeroDivisionError as e: print("There are no grades yet !", e) else: print(f"The average grade is {average}") finally: print("See you later !")
16.259259
68
0.651481
c9e228b760f3a05d1a2aad4ddc100c66ad2ea340
6,456
py
Python
src/pypirun/cli.py
yahoo/pypirun
77e0cd4d7b7350b6d33879f37fa5c2b04156fa6d
[ "BSD-3-Clause" ]
2
2019-08-01T14:27:47.000Z
2020-03-15T09:05:34.000Z
src/pypirun/cli.py
yahoo/pypirun
77e0cd4d7b7350b6d33879f37fa5c2b04156fa6d
[ "BSD-3-Clause" ]
14
2019-06-06T02:44:38.000Z
2019-11-13T18:29:00.000Z
src/pypirun/cli.py
yahoo/pypirun
77e0cd4d7b7350b6d33879f37fa5c2b04156fa6d
[ "BSD-3-Clause" ]
4
2020-07-31T17:32:01.000Z
2021-09-25T14:23:05.000Z
# Copyright 2019, Oath Inc. # Licensed under the terms of the BSD 3 Clause license. See LICENSE file in project root for terms. """ pypirun command line utility """ import os import shutil import subprocess # nosec import sys import tempfile from .arguments import parse_arguments, ParseError from .utility import which def interpreter_version(interpreter): """ Get the version from the python interpreter """ version = subprocess.check_output([interpreter, '--version'], stderr=subprocess.STDOUT).decode(errors='ignore').strip().split()[-1] # nosec return version def interpreter_parent(interpreter): """ Get the parent python interpreter for interpreter (I.E the interpreter that created the virtualenv if it is an interpreter in a virtualenv. Returns ======= str: parent interpreter """ try: real_prefix = subprocess.check_output([interpreter, '-c', 'import sys;print(sys.real_prefix)'], stderr=subprocess.DEVNULL).decode(errors='ignore').strip() # nosec except subprocess.CalledProcessError: # pragma: no cover return interpreter try: # pragma: no cover major_minor = subprocess.check_output([interpreter, '-c', 'import sys;print(f"{sys.version_info.major}.{sys.version_info.minor}")'], stderr=subprocess.DEVNULL).decode(errors='ignore').strip() # nosec basename = f'python{major_minor}' except subprocess.CalledProcessError: # pragma: no cover basename = 'python3' bin_dir = os.path.join(real_prefix, 'bin') interpreter = os.path.join(bin_dir, basename) return interpreter def install_and_run(package, command, interpreter, debug=False, no_cache_dir=False, upgrade_setuptools=False, upgrade_pip=False): """ Install a package and run a command in a temporary Python virtualenv Parameters ========== package: str A string containing a comma seperated list of packages to install. command: str The command to run in the shell once the package is installed interpreter: str The python interpreter executable to use to create the virtualenv debug: bool, optional Print more useful debug output. Default: False no_cache_dir: bool, optional If True, pass the no-cache-dir flag to the pip command to disable pip package caching. Default: False upgrade_setuptools: bool, optional Upgrade setuptools after creating the virtualenv but before installing packages. Default: False upgrade_pip: bool, optional Upgrade pip after creating the virtualenv but before installing packages. Default: False """ packages = package.split(',') with tempfile.TemporaryDirectory() as tempdir: venv_dir = os.path.join(tempdir, '.venv') venv_bin = os.path.join(venv_dir, 'bin') venv_python = os.path.join(venv_bin, 'python') venv_pip = os.path.join(venv_bin, 'pip') pip_args = [] if no_cache_dir: # pragma: no cover pip_args = ['--no-cache-dir'] # Create venv try: output = subprocess.check_output([interpreter, '-m', 'venv', venv_dir]) # nosec except subprocess.CalledProcessError: # pragma: no cover print('Failed to create temporary virtualenv using the', interpreter, 'python interpreter') return 1 if debug: if output.decode().strip(): # pragma: no cover print(output.decode().strip()) if not os.path.exists(venv_pip): # pragma: no cover output = subprocess.check_output([venv_python, '-m', 'pip', 'install', '--force-reinstall'] + pip_args + ['pip'], stderr=subprocess.STDOUT) # nosec if debug: # pragma: no cover print(output.decode()) if upgrade_pip: # pragma: no cover output = subprocess.check_output([venv_pip, 'install', '--upgrade'] + pip_args + ['pip'], stderr=subprocess.STDOUT) # nosec if debug: # pragma: no cover print(output.decode()) if upgrade_setuptools: # pragma: no cover output = subprocess.check_output([venv_pip, 'install', '--upgrade'] + pip_args + ['setuptools'], stderr=subprocess.STDOUT) # nosec if debug: # pragma: no cover print(output.decode()) venv_bin_before = set(os.listdir(venv_bin)) # Install the package try: output = subprocess.check_output([venv_pip, 'install'] + pip_args + packages, stderr=subprocess.STDOUT) # nosec except subprocess.CalledProcessError as error: # pragma: no cover print(error.output.decode(), file=sys.stdout) return error.returncode venv_bin_after = set(os.listdir(venv_bin)) if debug: # pragma: no cover print(output.decode()) print(f'Installed files: {list(venv_bin_after-venv_bin_before)}') # Run the command try: subprocess.check_call(f'{venv_dir}/bin/{command}', shell=True) # nosec except subprocess.CalledProcessError as error: # pragma: no cover return error.returncode return exit_ok() # pragma: no cover def exit_ok(): """A python implementation of /bin/true that can be used for testing""" return 0 def main(): """ Command line interface entrypoint Returns ======= int: return code from running the command """ try: args = parse_arguments() except ParseError: return 1 interpreter = args.interpreter command_file = args.command[0] command = ' '.join(args.command) if not interpreter: # pragma: no cover interpreter = interpreter_parent(sys.executable) if not interpreter: # pragma: no cover interpreter = which('python3') if not interpreter: # pragma: no cover print('Unable to find python3 interpreter') return 1 if args.always_install or not shutil.which(command_file): return install_and_run(package=args.package, command=command, interpreter=interpreter, debug=args.debug, no_cache_dir=args.no_cache_dir, upgrade_setuptools=args.upgrade_setuptools, upgrade_pip=args.upgrade_pip) try: subprocess.check_call(command, shell=True) # nosec except subprocess.CalledProcessError as error: return error.returncode return 0 # pragma: no cover
37.534884
218
0.655204
15e536b1b3eea1eebce7a628e2270200018ef6ba
4,452
py
Python
ex/parser/scanner.py
trishume/VintageousPlus
1dd62435138234979fe5bb413e1731119b017daf
[ "MIT" ]
6
2017-04-01T05:30:08.000Z
2017-04-05T14:17:40.000Z
ex/parser/scanner.py
trishume/VintageousPlus
1dd62435138234979fe5bb413e1731119b017daf
[ "MIT" ]
1
2017-04-04T06:47:13.000Z
2017-04-04T14:26:32.000Z
ex/parser/scanner.py
trishume/VintageousPlus
1dd62435138234979fe5bb413e1731119b017daf
[ "MIT" ]
null
null
null
''' Tokenization for the Vim command line. ''' from VintageousPlus.ex.ex_error import ERR_UNKNOWN_COMMAND from VintageousPlus.ex.ex_error import VimError from . import subscanners from .state import EOF from .state import ScannerState from .tokens import TokenComma from .tokens import TokenDigits from .tokens import TokenDollar from .tokens import TokenDot from .tokens import TokenEof from .tokens import TokenMark from .tokens import TokenOffset from .tokens import TokenPercent from .tokens import TokenSearchBackward from .tokens import TokenSearchForward from .tokens import TokenSemicolon # TODO: make this a function. We don't need state. class Scanner(object): ''' Produces ex command-line tokens from a string. ''' def __init__(self, source): self.state = ScannerState(source) def scan(self): ''' Generates ex command-line tokens for `source`. The scanner works its way through the source string by passing the current state to the next scanning function. ''' next_func = scan_range while True: # We return multiple tokens so that we can work around cyclic imports: # functions that need to, return TokenEof without having to call # a function in this module from a separate module. # # Keep scanning while we get a scanning function. (next_func, items) = next_func(self.state) yield from items if not next_func: break def scan_range(state): ''' Produces tokens found in a command line range. http://vimdoc.sourceforge.net/htmldoc/cmdline.html#cmdline-ranges ''' c = state.consume() if c == EOF: return None, [TokenEof()] if c == '.': state.emit() return scan_range, [TokenDot()] if c == '$': state.emit() return scan_range, [TokenDollar()] if c in ',;': token = TokenComma if c == ',' else TokenSemicolon state.emit() return scan_range, [token()] if c == "'": return scan_mark(state) if c in '/?': return scan_search(state) if c in '+-': return scan_offset(state) if c == '%': state.emit() return scan_range, [TokenPercent()] if c in '\t ': state.skip_run(' \t') state.ignore() if c.isdigit(): return scan_digits(state) state.backup() return scan_command, [] def scan_mark(state): c = state.expect_match(r'[a-zA-Z\[\]()<>]') return scan_range, [TokenMark(c.group(0))] def scan_digits(state): while True: c = state.consume() if not c.isdigit(): if c == EOF: return None, [TokenDigits(state.emit()), TokenEof()] state.backup() break return scan_range, [TokenDigits(state.emit())] def scan_search(state): delim = state.source[state.position - 1] while True: c = state.consume() if c == delim: state.start += 1 state.backup() content = state.emit() state.consume() token = TokenSearchForward if c == '/' else TokenSearchBackward return scan_range , [token(content)] elif c == EOF: raise ValueError('unclosed search pattern: {0}'.format(state.source)) def scan_offset(state): offsets = [] to_int = lambda x: int(x, 10) sign = '-' if state.source[state.position - 1] == '-' else '' digits = state.expect_match(r'\s*(\d+)') offsets.append(sign + digits.group(1)) while True: c = state.consume() if c == EOF: state.ignore() return None, [TokenOffset(list(map(to_int, offsets))), TokenEof()] if c == '+' or c == '-': digits = state.expect_match(r'\s*(\d+)') sign = '-' if state.source[state.position - 1] == '-' else '' offsets.append(sign + digits.group(1)) continue if not c.isdigit(): state.backup() state.ignore() return scan_range, [TokenOffset(list(map(to_int, offsets)))] def scan_command(state): for (pattern, subscanner) in subscanners.patterns.items(): if state.match(pattern): state.ignore() return subscanner(state) state.expect(EOF, lambda: VimError(ERR_UNKNOWN_COMMAND)) return None, [TokenEof()]
26.5
82
0.59389
227b465fa7e6b6e412115b3805d1fcc5357f55b2
16,748
py
Python
models/rank/bert4rec/net.py
LinJayan/DCN_V2_Paddle
7dbf99eecf33ee0280908ec25ffe069f33c4e284
[ "Apache-2.0" ]
null
null
null
models/rank/bert4rec/net.py
LinJayan/DCN_V2_Paddle
7dbf99eecf33ee0280908ec25ffe069f33c4e284
[ "Apache-2.0" ]
null
null
null
models/rank/bert4rec/net.py
LinJayan/DCN_V2_Paddle
7dbf99eecf33ee0280908ec25ffe069f33c4e284
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BERT4Rec model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import six import json import math import paddle import paddle.nn as nn class BertModel(nn.Layer): def __init__(self, _emb_size, _n_layer, _n_head, _voc_size, _max_position_seq_len, _sent_types, hidden_act, _dropout, _attention_dropout, initializer_range): super(BertModel, self).__init__() self._emb_size = _emb_size self._n_layer = _n_layer self._n_head = _n_head self._voc_size = _voc_size self._max_position_seq_len = _max_position_seq_len self._sent_types = _sent_types hidden_act = hidden_act if hidden_act == "gelu": self._hidden_act = nn.GELU() else: self._hidden_act = nn.ReLU() self._dropout = _dropout self._attention_dropout = _attention_dropout self._word_emb_name = "word_embedding" self._pos_emb_name = "pos_embedding" self._sent_emb_name = "sent_embedding" self._dtype = "float32" self._param_initializer = nn.initializer.TruncatedNormal( std=initializer_range) self.word_emb = nn.Embedding( num_embeddings=self._voc_size, embedding_dim=self._emb_size, name=self._word_emb_name, weight_attr=paddle.ParamAttr(initializer=self._param_initializer), sparse=False) self.position_emb = nn.Embedding( num_embeddings=self._max_position_seq_len, embedding_dim=self._emb_size, weight_attr=paddle.ParamAttr( name=self._pos_emb_name, initializer=self._param_initializer), sparse=False) self.sent_emb = nn.Embedding( num_embeddings=self._sent_types, embedding_dim=self._emb_size, weight_attr=paddle.ParamAttr( name=self._sent_emb_name, initializer=self._param_initializer), sparse=False) self.enc_pre_process_layer = NormalizeDropLayer( self._dropout, self._emb_size, name='pre_encoder') self._enc_out_layer = Encoder( n_layer=self._n_layer, n_head=self._n_head, d_key=self._emb_size // self._n_head, d_value=self._emb_size // self._n_head, d_model=self._emb_size, d_inner_hid=self._emb_size * 4, attention_dropout=self._attention_dropout, hidden_act=self._hidden_act, param_initializer=self._param_initializer, name='encoder') self.mask_trans_feat = nn.Linear( in_features=self._emb_size, out_features=self._emb_size, weight_attr=paddle.ParamAttr( name="mask_lm_trans_fc.w_0", initializer=self._param_initializer), bias_attr=paddle.ParamAttr(name='mask_lm_trans_fc.b_0')) self.mask_trans_act = self._hidden_act self.mask_post_process_layer = NormalizeLayer( self._emb_size, name='mask_lm_trans') self.mask_lm_out_bias = self.create_parameter( shape=[self._voc_size], dtype=self._dtype, attr=paddle.ParamAttr( name="mask_lm_out_fc.b_0", initializer=paddle.nn.initializer.Constant(value=0.0)), is_bias=True) def forward(self, src_ids, position_ids, sent_ids, input_mask, mask_pos): emb_out = self.word_emb(src_ids) position_embs_out = self.position_emb(position_ids) emb_out = emb_out + position_embs_out sent_emb_out = self.sent_emb(sent_ids) emb_out = emb_out + sent_emb_out emb_out = self.enc_pre_process_layer(emb_out) if self._dtype == "float16": input_mask = paddle.cast(x=input_mask, dtype=self._dtype) else: input_mask = paddle.cast(x=input_mask, dtype='float32') self_attn_mask = paddle.matmul( x=input_mask, y=input_mask, transpose_y=True) self_attn_mask = paddle.scale( x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False) n_head_self_attn_mask = paddle.stack( x=[self_attn_mask] * self._n_head, axis=1) n_head_self_attn_mask.stop_gradient = True self._enc_out = self._enc_out_layer( enc_input=emb_out, attn_bias=n_head_self_attn_mask) mask_pos = paddle.cast(x=mask_pos, dtype='int32') reshaped_emb_out = paddle.reshape( x=self._enc_out, shape=[-1, self._emb_size]) mask_feat = paddle.gather(x=reshaped_emb_out, index=mask_pos, axis=0) mask_trans_feat_out = self.mask_trans_feat(mask_feat) mask_trans_feat_out = self.mask_trans_act(mask_trans_feat_out) mask_trans_feat_out = self.mask_post_process_layer( out=mask_trans_feat_out) for name, param in self.named_parameters(): if name == "word_emb.weight": y_tensor = param break fc_out = paddle.matmul( x=mask_trans_feat_out, y=y_tensor, transpose_y=True) fc_out += self.mask_lm_out_bias return fc_out class MultiHeadAttention(nn.Layer): def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0., param_initializer=None, name='multi_head_att'): super(MultiHeadAttention, self).__init__() self.q_linear = nn.Linear( in_features=d_model, out_features=d_key * n_head, weight_attr=paddle.ParamAttr( name=name + '_query_fc.w_0', initializer=param_initializer), bias_attr=name + '_query_fc.b_0') self.k_linear = nn.Linear( in_features=d_model, out_features=d_key * n_head, weight_attr=paddle.ParamAttr( name=name + '_key_fc.w_0', initializer=param_initializer), bias_attr=name + '_key_fc.b_0') self.v_linear = nn.Linear( in_features=d_model, out_features=d_value * n_head, weight_attr=paddle.ParamAttr( name=name + '_value_fc.w_0', initializer=param_initializer), bias_attr=name + '_value_fc.b_0') self.out_linear = nn.Linear( in_features=d_key * n_head, out_features=d_model, weight_attr=paddle.ParamAttr( name=name + '_output_fc.w_0', initializer=param_initializer), bias_attr=name + '_output_fc.b_0') self.n_head = n_head self.d_key = d_key self.d_value = d_value self.d_model = d_model self.dropout_rate = dropout_rate def forward(self, queries, keys, values, attn_bias): keys = queries if keys is None else keys values = keys if values is None else values q = self.q_linear(queries) k = self.k_linear(keys) v = self.v_linear(values) hidden_size = q.shape[-1] q = paddle.reshape( x=q, shape=[0, 0, self.n_head, hidden_size // self.n_head]) q = paddle.transpose( x=q, perm=[0, 2, 1, 3] ) # [batch_size, n_head, max_sequence_len, hidden_size_per_head] k = paddle.reshape( x=k, shape=[0, 0, self.n_head, hidden_size // self.n_head]) k = paddle.transpose( x=k, perm=[0, 2, 1, 3] ) # [batch_size, n_head, max_sequence_len, hidden_size_per_head] v = paddle.reshape( x=v, shape=[0, 0, self.n_head, hidden_size // self.n_head]) v = paddle.transpose( x=v, perm=[0, 2, 1, 3] ) # [batch_size, n_head, max_sequence_len, hidden_size_per_head] # scale dot product attention attention_scores = paddle.matmul(x=q, y=k, transpose_y=True) product = paddle.multiply( attention_scores, paddle.to_tensor( 1.0 / math.sqrt(float(self.d_key)), dtype='float32')) if attn_bias is not None: product += attn_bias weights = nn.functional.softmax(product) if self.dropout_rate: weights = nn.functional.dropout( weights, p=self.dropout_rate, mode="upscale_in_train", training=self.training) out = paddle.matmul(weights, v) out = paddle.transpose(out, perm=[0, 2, 1, 3]) out = paddle.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]]) out = self.out_linear(out) return out class NormalizeLayer(nn.Layer): def __init__(self, norm_shape=768, name=''): super(NormalizeLayer, self).__init__() self.name = name self.LayerNormal = nn.LayerNorm( norm_shape, epsilon=1e-05, weight_attr=paddle.ParamAttr( name=self.name + '_layer_norm_scale', initializer=nn.initializer.Constant(1.)), bias_attr=paddle.ParamAttr( name=self.name + '_layer_norm_bias', initializer=nn.initializer.Constant(0.))) def forward(self, out): out_dtype = out.dtype if out_dtype == paddle.fluid.core.VarDesc.VarType.FP16: out = paddle.cast(x=out, dtype="float32") out = self.LayerNormal(out) if out_dtype == paddle.fluid.core.VarDesc.VarType.FP16: out = paddle.cast(x=out, dtype="float16") return out class NormalizeDropLayer(nn.Layer): def __init__(self, dropout_rate=0., norm_shape=768, name=''): super(NormalizeDropLayer, self).__init__() self.name = name self.dropout_rate = dropout_rate self.dropout = nn.Dropout(p=dropout_rate, mode="upscale_in_train") self.LayerNormal = nn.LayerNorm( norm_shape, epsilon=1e-05, weight_attr=paddle.ParamAttr( name=self.name + '_layer_norm_scale', initializer=nn.initializer.Constant(1.)), bias_attr=paddle.ParamAttr( name=self.name + '_layer_norm_bias', initializer=nn.initializer.Constant(0.))) def forward(self, out): out_dtype = out.dtype if out_dtype == paddle.fluid.core.VarDesc.VarType.FP16: out = paddle.cast(x=out, dtype="float32") out = self.LayerNormal(out) if out_dtype == paddle.fluid.core.VarDesc.VarType.FP16: out = paddle.cast(x=out, dtype="float16") if self.dropout_rate: out = self.dropout(out) return out class DropResidualNormalizeLayer(nn.Layer): def __init__(self, dropout_rate=0., norm_shape=768, name=''): super(DropResidualNormalizeLayer, self).__init__() self.name = name self.dropout_rate = dropout_rate self.dropout = nn.Dropout(p=dropout_rate, mode="upscale_in_train") self.LayerNormal = nn.LayerNorm( norm_shape, epsilon=1e-05, weight_attr=paddle.ParamAttr( name=self.name + '_layer_norm_scale', initializer=nn.initializer.Constant(1.)), bias_attr=paddle.ParamAttr( name=self.name + '_layer_norm_bias', initializer=nn.initializer.Constant(0.))) def forward(self, out, prev_out=None): if self.dropout_rate: out = self.dropout(out) if prev_out is not None: out = out + prev_out out_dtype = out.dtype if out_dtype == paddle.fluid.core.VarDesc.VarType.FP16: out = paddle.cast(x=out, dtype="float32") out = self.LayerNormal(out) if out_dtype == paddle.fluid.core.VarDesc.VarType.FP16: out = paddle.cast(x=out, dtype="float16") return out class FFN(nn.Layer): def __init__(self, d_inner_hid, d_hid, hidden_act, param_initializer=None, name='ffn'): super(FFN, self).__init__() self.fc1 = nn.Linear( in_features=d_hid, out_features=d_inner_hid, weight_attr=paddle.ParamAttr( name=name + '_fc_0.w_0', initializer=param_initializer), bias_attr=name + '_fc_0.b_0') self.hidden_act = hidden_act self.fc2 = nn.Linear( in_features=d_inner_hid, out_features=d_hid, weight_attr=paddle.ParamAttr( name=name + '_fc_1.w_0', initializer=param_initializer), bias_attr=name + '_fc_1.b_0') def forward(self, x): hidden = self.fc1(x) hidden = self.hidden_act(hidden) out = self.fc2(hidden) return out class EncoderLayer(nn.Layer): def __init__(self, n_head, d_key, d_value, d_model, d_inner_hid, attention_dropout, hidden_act, param_initializer=None, name=''): super(EncoderLayer, self).__init__() self.multi_head_attn = MultiHeadAttention( d_key, d_value, d_model, n_head, attention_dropout, param_initializer=param_initializer, name=name + '_multi_head_att') self.drop_residual_normalize_layer_1 = DropResidualNormalizeLayer( attention_dropout, norm_shape=d_model, name=name + '_post_att') self.positionwise_feed_layer = FFN(d_inner_hid, d_model, hidden_act, param_initializer, name=name + '_ffn') self.drop_residual_normalize_layer_2 = DropResidualNormalizeLayer( attention_dropout, norm_shape=d_model, name=name + '_post_ffn') def forward(self, enc_input, attn_bias): multi_output = self.multi_head_attn( queries=enc_input, keys=None, values=None, attn_bias=attn_bias) attn_output = self.drop_residual_normalize_layer_1( prev_out=enc_input, out=multi_output) ffd_output = self.positionwise_feed_layer(attn_output) out = self.drop_residual_normalize_layer_2( prev_out=attn_output, out=ffd_output) return out class Encoder(nn.Layer): def __init__(self, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, attention_dropout, hidden_act, param_initializer=None, name=''): super(Encoder, self).__init__() self.encoder_layer = nn.LayerList([ EncoderLayer(n_head, d_key, d_value, d_model, d_inner_hid, attention_dropout, hidden_act, param_initializer, name + '_layer_' + str(i)) for i in range(n_layer) ]) def forward(self, enc_input, attn_bias): enc_output = None for enc in self.encoder_layer: enc_output = enc(enc_input, attn_bias) enc_input = enc_output return enc_output class BertConfig(object): """ 根据config_path来读取网络的配置 """ def __init__(self, config_path): self._config_dict = self._parse(config_path) def _parse(self, config_path): try: with open(config_path) as json_file: config_dict = json.load(json_file) except Exception: raise IOError("Error in parsing bert model config file '%s'" % config_path) else: return config_dict def __getitem__(self, key): return self._config_dict[key] def print_config(self): for arg, value in sorted(six.iteritems(self._config_dict)): print('%s: %s' % (arg, value)) print('------------------------------------------------')
38.412844
79
0.595713
3db374fa9bae374aee6b7291c7d6712ffc3457e7
8,923
bzl
Python
repositories.bzl
jiangtaoli2016/grpc-java
512e55444e4176602f27fa39c41223e5b6074d59
[ "Apache-2.0" ]
null
null
null
repositories.bzl
jiangtaoli2016/grpc-java
512e55444e4176602f27fa39c41223e5b6074d59
[ "Apache-2.0" ]
null
null
null
repositories.bzl
jiangtaoli2016/grpc-java
512e55444e4176602f27fa39c41223e5b6074d59
[ "Apache-2.0" ]
null
null
null
"""External dependencies for grpc-java.""" def grpc_java_repositories( omit_com_google_api_grpc_google_common_protos=False, omit_com_google_auth_google_auth_library_credentials=False, omit_com_google_code_findbugs_jsr305=False, omit_com_google_code_gson=False, omit_com_google_errorprone_error_prone_annotations=False, omit_com_google_guava=False, omit_com_google_protobuf=False, omit_com_google_protobuf_java=False, omit_com_google_protobuf_nano_protobuf_javanano=False, omit_com_google_truth_truth=False, omit_com_squareup_okhttp=False, omit_com_squareup_okio=False, omit_io_netty_buffer=False, omit_io_netty_common=False, omit_io_netty_transport=False, omit_io_netty_codec=False, omit_io_netty_codec_socks=False, omit_io_netty_codec_http=False, omit_io_netty_codec_http2=False, omit_io_netty_handler=False, omit_io_netty_handler_proxy=False, omit_io_netty_resolver=False, omit_io_netty_tcnative_boringssl_static=False, omit_io_opencensus_api=False, omit_io_opencensus_grpc_metrics=False, omit_junit_junit=False): """Imports dependencies for grpc-java.""" if not omit_com_google_api_grpc_google_common_protos: com_google_api_grpc_google_common_protos() if not omit_com_google_auth_google_auth_library_credentials: com_google_auth_google_auth_library_credentials() if not omit_com_google_code_findbugs_jsr305: com_google_code_findbugs_jsr305() if not omit_com_google_code_gson: com_google_code_gson() if not omit_com_google_errorprone_error_prone_annotations: com_google_errorprone_error_prone_annotations() if not omit_com_google_guava: com_google_guava() if not omit_com_google_protobuf: com_google_protobuf() if omit_com_google_protobuf_java: fail("omit_com_google_protobuf_java is no longer supported and must be not be passed to grpc_java_repositories()") if not omit_com_google_protobuf_nano_protobuf_javanano: com_google_protobuf_nano_protobuf_javanano() if not omit_com_google_truth_truth: com_google_truth_truth() if not omit_com_squareup_okhttp: com_squareup_okhttp() if not omit_com_squareup_okio: com_squareup_okio() if not omit_io_netty_buffer: io_netty_buffer() if not omit_io_netty_common: io_netty_common() if not omit_io_netty_transport: io_netty_transport() if not omit_io_netty_codec: io_netty_codec() if not omit_io_netty_codec_socks: io_netty_codec_socks() if not omit_io_netty_codec_http: io_netty_codec_http() if not omit_io_netty_codec_http2: io_netty_codec_http2() if not omit_io_netty_handler: io_netty_handler() if not omit_io_netty_handler_proxy: io_netty_handler_proxy() if not omit_io_netty_resolver: io_netty_resolver() if not omit_io_netty_tcnative_boringssl_static: io_netty_tcnative_boringssl_static() if not omit_io_opencensus_api: io_opencensus_api() if not omit_io_opencensus_grpc_metrics: io_opencensus_grpc_metrics() if not omit_junit_junit: junit_junit() native.bind( name = "guava", actual = "@com_google_guava_guava//jar", ) native.bind( name = "gson", actual = "@com_google_code_gson_gson//jar", ) def com_google_api_grpc_google_common_protos(): native.maven_jar( name = "com_google_api_grpc_proto_google_common_protos", artifact = "com.google.api.grpc:proto-google-common-protos:1.0.0", sha1 = "86f070507e28b930e50d218ee5b6788ef0dd05e6", ) def com_google_auth_google_auth_library_credentials(): native.maven_jar( name = "com_google_auth_google_auth_library_credentials", artifact = "com.google.auth:google-auth-library-credentials:0.9.0", sha1 = "8e2b181feff6005c9cbc6f5c1c1e2d3ec9138d46", ) def com_google_code_findbugs_jsr305(): native.maven_jar( name = "com_google_code_findbugs_jsr305", artifact = "com.google.code.findbugs:jsr305:3.0.0", sha1 = "5871fb60dc68d67da54a663c3fd636a10a532948", ) def com_google_code_gson(): native.maven_jar( name = "com_google_code_gson_gson", artifact = "com.google.code.gson:gson:jar:2.7", sha1 = "751f548c85fa49f330cecbb1875893f971b33c4e", ) def com_google_errorprone_error_prone_annotations(): native.maven_jar( name = "com_google_errorprone_error_prone_annotations", artifact = "com.google.errorprone:error_prone_annotations:2.1.2", sha1 = "6dcc08f90f678ac33e5ef78c3c752b6f59e63e0c", ) def com_google_guava(): native.maven_jar( name = "com_google_guava_guava", artifact = "com.google.guava:guava:19.0", sha1 = "6ce200f6b23222af3d8abb6b6459e6c44f4bb0e9", ) def com_google_protobuf(): # proto_library rules implicitly depend on @com_google_protobuf//:protoc, # which is the proto-compiler. # This statement defines the @com_google_protobuf repo. native.http_archive( name = "com_google_protobuf", sha256 = "1f8b9b202e9a4e467ff0b0f25facb1642727cdf5e69092038f15b37c75b99e45", strip_prefix = "protobuf-3.5.1", urls = ["https://github.com/google/protobuf/archive/v3.5.1.zip"], ) def com_google_protobuf_nano_protobuf_javanano(): native.maven_jar( name = "com_google_protobuf_nano_protobuf_javanano", artifact = "com.google.protobuf.nano:protobuf-javanano:3.0.0-alpha-5", sha1 = "357e60f95cebb87c72151e49ba1f570d899734f8", ) def com_google_truth_truth(): native.maven_jar( name = "com_google_truth_truth", artifact = "com.google.truth:truth:0.36", sha1 = "7485219d2c1d341097a19382c02bde07e69ff5d2", ) def com_squareup_okhttp(): native.maven_jar( name = "com_squareup_okhttp_okhttp", artifact = "com.squareup.okhttp:okhttp:2.5.0", sha1 = "4de2b4ed3445c37ec1720a7d214712e845a24636", ) def com_squareup_okio(): native.maven_jar( name = "com_squareup_okio_okio", artifact = "com.squareup.okio:okio:1.13.0", sha1 = "a9283170b7305c8d92d25aff02a6ab7e45d06cbe", ) def io_netty_codec_http2(): native.maven_jar( name = "io_netty_netty_codec_http2", artifact = "io.netty:netty-codec-http2:4.1.17.Final", sha1 = "f9844005869c6d9049f4b677228a89fee4c6eab3", ) def io_netty_buffer(): native.maven_jar( name = "io_netty_netty_buffer", artifact = "io.netty:netty-buffer:4.1.17.Final", sha1 = "fdd68fb3defd7059a7392b9395ee941ef9bacc25", ) def io_netty_common(): native.maven_jar( name = "io_netty_netty_common", artifact = "io.netty:netty-common:4.1.17.Final", sha1 = "581c8ee239e4dc0976c2405d155f475538325098", ) def io_netty_transport(): native.maven_jar( name = "io_netty_netty_transport", artifact = "io.netty:netty-transport:4.1.17.Final", sha1 = "9585776b0a8153182412b5d5366061ff486914c1", ) def io_netty_codec(): native.maven_jar( name = "io_netty_netty_codec", artifact = "io.netty:netty-codec:4.1.17.Final", sha1 = "1d00f56dc9e55203a4bde5aae3d0828fdeb818e7", ) def io_netty_codec_socks(): native.maven_jar( name = "io_netty_netty_codec_socks", artifact = "io.netty:netty-codec-socks:4.1.17.Final", sha1 = "a159bf1f3d5019e0d561c92fbbec8400967471fa", ) def io_netty_codec_http(): native.maven_jar( name = "io_netty_netty_codec_http", artifact = "io.netty:netty-codec-http:4.1.17.Final", sha1 = "251d7edcb897122b9b23f24ff793cd0739056b9e", ) def io_netty_handler(): native.maven_jar( name = "io_netty_netty_handler", artifact = "io.netty:netty-handler:4.1.17.Final", sha1 = "18c40ffb61a1d1979eca024087070762fdc4664a", ) def io_netty_handler_proxy(): native.maven_jar( name = "io_netty_netty_handler_proxy", artifact = "io.netty:netty-handler-proxy:4.1.17.Final", sha1 = "9330ee60c4e48ca60aac89b7bc5ec2567e84f28e", ) def io_netty_resolver(): native.maven_jar( name = "io_netty_netty_resolver", artifact = "io.netty:netty-resolver:4.1.17.Final", sha1 = "8f386c80821e200f542da282ae1d3cde5cad8368", ) def io_netty_tcnative_boringssl_static(): native.maven_jar( name = "io_netty_netty_tcnative_boringssl_static", artifact = "io.netty:netty-tcnative-boringssl-static:2.0.5.Final", sha1 = "321c1239ceb3faec04531ffcdeb1bc8e85408b12", ) def io_opencensus_api(): native.maven_jar( name = "io_opencensus_opencensus_api", artifact = "io.opencensus:opencensus-api:0.11.0", sha1 = "c1ff1f0d737a689d900a3e2113ddc29847188c64", ) def io_opencensus_grpc_metrics(): native.maven_jar( name = "io_opencensus_opencensus_contrib_grpc_metrics", artifact = "io.opencensus:opencensus-contrib-grpc-metrics:0.11.0", sha1 = "d57b877f1a28a613452d45e35c7faae5af585258", ) def junit_junit(): native.maven_jar( name = "junit_junit", artifact = "junit:junit:4.12", sha1 = "2973d150c0dc1fefe998f834810d68f278ea58ec", )
32.926199
118
0.750981
e582863d4c0dea4eb0c033514bd736878628baec
4,559
py
Python
tests/py3/unit/test_type_hint.py
cesartalves/python-cdi
a5a13b5e0ad6a5255e686ecd934d4606a9c2a1f2
[ "BSD-3-Clause" ]
10
2017-02-02T19:23:12.000Z
2020-11-18T05:37:10.000Z
tests/py3/unit/test_type_hint.py
cesartalves/python-cdi
a5a13b5e0ad6a5255e686ecd934d4606a9c2a1f2
[ "BSD-3-Clause" ]
34
2017-07-29T21:03:20.000Z
2021-07-01T13:35:31.000Z
tests/py3/unit/test_type_hint.py
cesartalves/python-cdi
a5a13b5e0ad6a5255e686ecd934d4606a9c2a1f2
[ "BSD-3-Clause" ]
1
2019-06-05T14:45:36.000Z
2019-06-05T14:45:36.000Z
# -*- encoding: utf-8 -*- import unittest from pycdi.core import CDIContainer, DEFAULT_CONTAINER from pycdi import Producer, Inject from pycdi.shortcuts import new, call SOME_STRING = 'some_string' ANOTHER_STRING = 'another_string' @Producer() def get_some_string() -> str: return SOME_STRING @Producer(_context='another') def get_another() -> str: return ANOTHER_STRING @Inject() def function_with_injection(some_string: str) -> str: return some_string @Inject(some_string='another') def another_function_with_injection(some_string: str) -> str: return some_string class SimpleCDITest(unittest.TestCase): def test_default_str_producer(self): expected = SOME_STRING result = new(str) self.assertEqual(expected, result) def test_another_str_producer(self): expected = ANOTHER_STRING result = new(str, context='another') self.assertEqual(expected, result) def test_injected_string(self): expected = SOME_STRING result = call(function_with_injection) self.assertEqual(expected, result) def test_another_injected_string(self): expected = ANOTHER_STRING result = call(another_function_with_injection) self.assertEqual(expected, result) class BaseClass(object): def do_something(self): raise NotImplementedError() class SubclassA(BaseClass): def do_something(self): pass class SubclassB(BaseClass): def do_something(self): pass @Producer(BaseClass) def get_subclass_a() -> SubclassA: return SubclassA() @Producer(_context='another') def get_subclass_b() -> SubclassB: return SubclassB() class CDITest(unittest.TestCase): def test_base_class(self): with self.assertRaises(NotImplementedError): base = BaseClass() base.do_something() def test_default_subclass(self): expected = SubclassA result = type(new(BaseClass)) self.assertEqual(expected, result) def test_another_subclass(self): expected = SubclassB result = type(new(BaseClass, context='another')) self.assertEqual(expected, result) @Inject(another_string='another', b='another') class ComplexClass(object): def __init__(self, some_string: str, another_string: str, a: BaseClass, b: BaseClass): self.a = a self.b = b self.some_string = some_string self.another_string = another_string @Inject() def method_with_injection(self, test: unittest.TestCase): test.assertEqual(self.some_string, SOME_STRING) test.assertEqual(self.another_string, ANOTHER_STRING) class ClassInjectTest(unittest.TestCase): def test_init_complex_class(self): complex_class = new(ComplexClass) self.assertIsInstance(complex_class, ComplexClass) self.assertIsNotNone(complex_class) self.assertEqual(type(complex_class.a), SubclassA) self.assertEqual(type(complex_class.b), SubclassB) self.assertEqual(complex_class.some_string, SOME_STRING) self.assertEqual(complex_class.another_string, ANOTHER_STRING) complex_class.a.do_something() complex_class.b.do_something() def test_method_with_injection(self): DEFAULT_CONTAINER.register_instance(self) complex_class = new(ComplexClass) call(complex_class.method_with_injection) class SelfInjectTest(unittest.TestCase): def test_simple_function(self): @Inject() def function(container: CDIContainer): self.assertIsNotNone(container) self.assertIsInstance(container, CDIContainer) DEFAULT_CONTAINER.call(function) def test_simple_class(self): @Inject() class Class(object): def __init__(self, container: CDIContainer): self.container = container obj = DEFAULT_CONTAINER.produce(Class) self.assertIsNotNone(obj.container) self.assertIsInstance(obj.container, CDIContainer) self.assertEqual(DEFAULT_CONTAINER, obj.container) def test_subclass(self): @Inject() class WithContainer(object): def __init__(self, container: CDIContainer): self.cdi = container class Subclass(WithContainer): def __init__(self, *args, **kwargs): super(Subclass, self).__init__(*args, **kwargs) obj = DEFAULT_CONTAINER.produce(Subclass) self.assertIsNotNone(obj.cdi) self.assertIsInstance(obj.cdi, CDIContainer)
28.49375
90
0.689625
48c9e222654d89a8db03854738cd428ed78c21e6
9,630
py
Python
bdd100k/eval/mot.py
Celeven1996/bdd100k
3b49d1b25f903ea9f2465590b3b7be115b6f0cb5
[ "BSD-3-Clause" ]
null
null
null
bdd100k/eval/mot.py
Celeven1996/bdd100k
3b49d1b25f903ea9f2465590b3b7be115b6f0cb5
[ "BSD-3-Clause" ]
null
null
null
bdd100k/eval/mot.py
Celeven1996/bdd100k
3b49d1b25f903ea9f2465590b3b7be115b6f0cb5
[ "BSD-3-Clause" ]
null
null
null
"""BDD100K tracking evaluation with CLEAR MOT metrics.""" import time from multiprocessing import Pool from typing import List, Tuple, Union import motmetrics as mm import numpy as np import pandas as pd from ..common.logger import logger from ..common.typing import DictAny METRIC_MAPS = { "idf1": "IDF1", "mota": "MOTA", "motp": "MOTP", "num_false_positives": "FP", "num_misses": "FN", "num_switches": "IDSw", "mostly_tracked": "MT", "partially_tracked": "PT", "mostly_lost": "ML", "num_fragmentations": "FM", } SUPER_CLASSES = { "HUMAN": ["pedestrian", "rider"], "VEHICLE": ["car", "truck", "bus", "train"], "BIKE": ["motorcycle", "bicycle"], } CLASSES = [c for cs in SUPER_CLASSES.values() for c in cs] IGNORE_CLASSES = ["trailer", "other person", "other vehicle"] def parse_objects(objects: List[DictAny]) -> List[np.ndarray]: """Parse objects under Scalable formats.""" bboxes, labels, ids, ignore_bboxes = [], [], [], [] for obj in objects: bbox = [ obj["box2d"]["x1"], obj["box2d"]["y1"], obj["box2d"]["x2"] - obj["box2d"]["x1"], obj["box2d"]["y2"] - obj["box2d"]["y1"], ] if obj["category"] in CLASSES: if "attributes" in obj and obj["attributes"].get("Crowd", False): ignore_bboxes.append(bbox) else: bboxes.append(bbox) labels.append(CLASSES.index(obj["category"])) ids.append(obj["id"]) elif obj["category"] in IGNORE_CLASSES: ignore_bboxes.append(bbox) else: raise KeyError("Unknown category.") return list(map(np.array, [bboxes, labels, ids, ignore_bboxes])) def intersection_over_area(preds: np.ndarray, gts: np.ndarray) -> np.ndarray: """Returns the intersection over the area of the predicted box.""" out = np.zeros((len(preds), len(gts))) for i, p in enumerate(preds): for j, g in enumerate(gts): x1, x2 = max(p[0], g[0]), min(p[0] + p[2], g[0] + g[2]) y1, y2 = max(p[1], g[1]), min(p[1] + p[3], g[1] + g[3]) out[i][j] = max(x2 - x1, 0) * max(y2 - y1, 0) / float(p[2] * p[3]) return out def acc_single_video( gts: List[DictAny], results: List[DictAny], iou_thr: float = 0.5, ignore_iof_thr: float = 0.5, ) -> List[mm.MOTAccumulator]: """Accumulate results for one video.""" num_classes = len(CLASSES) assert len(gts) == len(results) gts = sorted(gts, key=lambda x: int(x["index"])) results = sorted(results, key=lambda x: int(x["index"])) accs = [mm.MOTAccumulator(auto_id=True) for i in range(num_classes)] for gt, result in zip(gts, results): assert gt["index"] == result["index"] gt_bboxes, gt_labels, gt_ids, gt_ignores = parse_objects(gt["labels"]) pred_bboxes, pred_labels, pred_ids, _ = parse_objects(result["labels"]) for i in range(num_classes): gt_inds, pred_inds = gt_labels == i, pred_labels == i gt_bboxes_c, gt_ids_c = gt_bboxes[gt_inds], gt_ids[gt_inds] pred_bboxes_c, pred_ids_c = ( pred_bboxes[pred_inds], pred_ids[pred_inds], ) if gt_bboxes_c.shape[0] == 0 and pred_bboxes_c.shape[0] != 0: distances = np.full((0, pred_bboxes_c.shape[0]), np.nan) elif gt_bboxes_c.shape[0] != 0 and pred_bboxes_c.shape[0] == 0: distances = np.full((gt_bboxes_c.shape[0], 0), np.nan) else: distances = mm.distances.iou_matrix( gt_bboxes_c, pred_bboxes_c, max_iou=1 - iou_thr ) if gt_ignores.shape[0] > 0: # 1. assign gt and preds fps = np.ones(pred_bboxes_c.shape[0]).astype(np.bool) le, ri = mm.lap.linear_sum_assignment(distances) for m, n in zip(le, ri): if not np.isfinite(distances[m, n]): continue fps[n] = False # 2. ignore by iof iofs = intersection_over_area(pred_bboxes_c, gt_ignores) ignores = (iofs > ignore_iof_thr).any(axis=1) # 3. filter preds valid_inds = ~(fps & ignores) pred_ids_c = pred_ids_c[valid_inds] distances = distances[:, valid_inds] if distances.shape != (0, 0): accs[i].update(gt_ids_c, pred_ids_c, distances) return accs def aggregate_accs( accumulators: List[List[mm.MOTAccumulator]], ) -> Tuple[List[List[str]], List[List[mm.MOTAccumulator]], List[str]]: """Aggregate the results of the entire dataset.""" # accs for each class items = CLASSES.copy() names: List[List[str]] = [[] for c in CLASSES] accs: List[List[str]] = [[] for c in CLASSES] for video_ind, _accs in enumerate(accumulators): for cls_ind, acc in enumerate(_accs): if ( len(acc._events["Type"]) # pylint: disable=protected-access == 0 ): continue name = f"{CLASSES[cls_ind]}_{video_ind}" names[cls_ind].append(name) accs[cls_ind].append(acc) # super categories for super_cls, classes in SUPER_CLASSES.items(): items.append(super_cls) names.append([n for c in classes for n in names[CLASSES.index(c)]]) accs.append([a for c in classes for a in accs[CLASSES.index(c)]]) # overall items.append("OVERALL") names.append([n for name in names[: len(CLASSES)] for n in name]) accs.append([a for acc in accs[: len(CLASSES)] for a in acc]) return names, accs, items def evaluate_single_class( names: List[str], accs: List[mm.MOTAccumulator] ) -> List[Union[float, int]]: """Evaluate results for one class.""" mh = mm.metrics.create() summary = mh.compute_many( accs, names=names, metrics=METRIC_MAPS.keys(), generate_overall=True ) results = [v["OVERALL"] for k, v in summary.to_dict().items()] motp_ind = list(METRIC_MAPS).index("motp") if np.isnan(results[motp_ind]): num_dets = mh.compute_many( accs, names=names, metrics=["num_detections"], generate_overall=True, ) sum_motp = (summary["motp"] * num_dets["num_detections"]).sum() motp = mm.math_util.quiet_divide( sum_motp, num_dets["num_detections"]["OVERALL"] ) results[motp_ind] = float(1 - motp) return results def render_results( summaries: List[List[Union[float, int]]], items: List[str], metrics: List[str], ) -> DictAny: """Render the evaluation results.""" eval_results = pd.DataFrame(columns=metrics) # category, super-category and overall results for i, item in enumerate(items): eval_results.loc[item] = summaries[i] dtypes = {m: type(d) for m, d in zip(metrics, summaries[0])} # average results avg_results: List[Union[int, float]] = [] for i, m in enumerate(metrics): v = np.array([s[i] for s in summaries[: len(CLASSES)]]) v = np.nan_to_num(v, nan=0) if dtypes[m] == int: avg_results.append(int(v.sum())) elif dtypes[m] == float: avg_results.append(float(v.mean())) else: raise TypeError() eval_results.loc["AVERAGE"] = avg_results eval_results = eval_results.astype(dtypes) strsummary = mm.io.render_summary( eval_results, formatters=mm.metrics.create().formatters, namemap=METRIC_MAPS, ) strsummary = strsummary.split("\n") assert len(strsummary) == len(CLASSES) + len(SUPER_CLASSES) + 3 split_line = "-" * len(strsummary[0]) strsummary.insert(1, split_line) strsummary.insert(2 + len(CLASSES), split_line) strsummary.insert(3 + len(CLASSES) + len(SUPER_CLASSES), split_line) strsummary = "".join([f"{s}\n" for s in strsummary]) strsummary = "\n" + strsummary logger.info(strsummary) outputs: DictAny = dict() for i, item in enumerate(items[len(CLASSES) :], len(CLASSES)): outputs[item] = dict() for j, metric in enumerate(METRIC_MAPS.values()): outputs[item][metric] = summaries[i][j] outputs["OVERALL"]["mIDF1"] = eval_results.loc["AVERAGE"]["idf1"] outputs["OVERALL"]["mMOTA"] = eval_results.loc["AVERAGE"]["mota"] outputs["OVERALL"]["mMOTP"] = eval_results.loc["AVERAGE"]["motp"] return outputs def evaluate_mot( gts: List[List[DictAny]], results: List[List[DictAny]], iou_thr: float = 0.5, ignore_iof_thr: float = 0.5, nproc: int = 4, ) -> DictAny: """Evaluate CLEAR MOT metrics for BDD100K.""" logger.info("BDD100K tracking evaluation with CLEAR MOT metrics.") t = time.time() assert len(gts) == len(results) metrics = list(METRIC_MAPS.keys()) logger.info("accumulating...") pool = Pool(nproc) accs = pool.starmap( acc_single_video, zip( gts, results, [iou_thr for _ in range(len(gts))], [ignore_iof_thr for _ in range(len(gts))], ), ) names, accs, items = aggregate_accs(accs) logger.info("evaluating...") summaries = pool.starmap(evaluate_single_class, zip(names, accs)) pool.close() logger.info("rendering...") eval_results = render_results(summaries, items, metrics) t = time.time() - t logger.info("evaluation finishes with %.1f s.", t) return eval_results
36.203008
79
0.58785
df6b339b53bd915863d54449fc91d62f17b8892d
3,797
py
Python
py/server/tests/test_wrapper.py
lbooker42/deephaven-core
2d04563f18ae914754b28041475c02770e57af15
[ "MIT" ]
null
null
null
py/server/tests/test_wrapper.py
lbooker42/deephaven-core
2d04563f18ae914754b28041475c02770e57af15
[ "MIT" ]
null
null
null
py/server/tests/test_wrapper.py
lbooker42/deephaven-core
2d04563f18ae914754b28041475c02770e57af15
[ "MIT" ]
null
null
null
# # Copyright (c) 2016-2022 Deephaven Data Labs and Patent Pending # import unittest import jpy from deephaven._wrapper import JObjectWrapper from tests.testbase import BaseTestCase def alpha(): return MyObject(0, "ALPHA") def beta(): return MyObject(1, "BETA") def charlie(): return MyObject(2, "CHARLIE") def delta(): return MyObject(3, "DELTA") def other(): return Other(0, "ALPHA") class MyObject(JObjectWrapper): j_object_type = jpy.get_type("io.deephaven.integrations.pyserver.wrapper.MyObject") def __init__(self, hash : int, s : str): self._j_my_object = MyObject.j_object_type(hash, s) @property def j_object(self) -> jpy.JType: return self._j_my_object class Other(JObjectWrapper): j_object_type = jpy.get_type("io.deephaven.integrations.pyserver.wrapper.MyObject") def __init__(self, hash : int, s : str): self._j_my_object = Other.j_object_type(hash, s) @property def j_object(self) -> jpy.JType: return self._j_my_object class WrapperTestCase(BaseTestCase): def test_repr(self): regex = r"^tests.test_wrapper.MyObject\(io.deephaven.integrations.pyserver.wrapper.MyObject\(objectRef=0x.+\)\)$" self.assertRegex(repr(alpha()), regex) self.assertRegex(repr(beta()), regex) self.assertRegex(repr(charlie()), regex) self.assertRegex(repr(delta()), regex) def test_str(self): self.assertEqual(str(alpha()), "ALPHA") self.assertEqual(str(beta()), "BETA") self.assertEqual(str(charlie()), "CHARLIE") self.assertEqual(str(delta()), "DELTA") def test_hash(self): self.assertEqual(hash(alpha()), 0) self.assertEqual(hash(beta()), 1) self.assertEqual(hash(charlie()), 2) self.assertEqual(hash(delta()), 3) def test_eq(self): self.assertTrue(alpha() == alpha()) self.assertTrue(beta() == beta()) self.assertTrue(charlie() == charlie()) self.assertTrue(delta() == delta()) def test_ne(self): self.assertFalse(alpha() != alpha()) self.assertTrue(alpha() != beta()) self.assertTrue(alpha() != charlie()) self.assertTrue(alpha() != delta()) def test_lt(self): self.assertFalse(alpha() < alpha()) self.assertTrue(alpha() < beta()) self.assertTrue(beta() < charlie()) self.assertTrue(charlie() < delta()) def test_le(self): self.assertTrue(alpha() <= alpha()) self.assertTrue(beta() <= beta()) self.assertTrue(charlie() <= charlie()) self.assertTrue(delta() <= delta()) self.assertTrue(alpha() <= beta()) self.assertTrue(beta() <= charlie()) self.assertTrue(charlie() <= delta()) def test_gt(self): self.assertFalse(alpha() > alpha()) self.assertFalse(alpha() > beta()) self.assertFalse(beta() > charlie()) self.assertFalse(charlie() > delta()) def test_ge(self): self.assertTrue(alpha() >= alpha()) self.assertTrue(beta() >= beta()) self.assertTrue(charlie() >= charlie()) self.assertTrue(delta() >= delta()) self.assertFalse(alpha() >= beta()) self.assertFalse(beta() >= charlie()) self.assertFalse(charlie() >= delta()) def test_incompatible_types(self): self.assertFalse(alpha() == other()) self.assertTrue(alpha() != other()) with self.assertRaises(TypeError): _ = alpha() < other() with self.assertRaises(TypeError): _ = alpha() <= other() with self.assertRaises(TypeError): _ = alpha() > other() with self.assertRaises(TypeError): _ = alpha() >= other() if __name__ == "__main__": unittest.main()
29.434109
121
0.609692
9ad7d35224902d6de1c71d12280f9898461eb700
385
py
Python
tamu/asgi.py
BlessedAssurance/RecipeBe
cd61ce2f6336e817ead77f16e7660f9ec70a71ca
[ "MIT" ]
null
null
null
tamu/asgi.py
BlessedAssurance/RecipeBe
cd61ce2f6336e817ead77f16e7660f9ec70a71ca
[ "MIT" ]
6
2021-03-30T13:56:55.000Z
2021-09-22T19:21:32.000Z
tamu/asgi.py
Mantongash/tamu_backend
542affccfe0f53e729acbf7ce5931c22e2b6892f
[ "MIT" ]
1
2020-06-17T18:51:47.000Z
2020-06-17T18:51:47.000Z
""" ASGI config for tamu project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'tamu.settings') application = get_asgi_application()
22.647059
78
0.781818
fe5412d2dbd5e49bd7565e72a7ba88a428dc6333
499
py
Python
yandex-contest/backend-school-2022/a.py
kirilllapushinskiy/code
8deea136de8d4559f7f2dad26005611b0e51790b
[ "MIT" ]
null
null
null
yandex-contest/backend-school-2022/a.py
kirilllapushinskiy/code
8deea136de8d4559f7f2dad26005611b0e51790b
[ "MIT" ]
null
null
null
yandex-contest/backend-school-2022/a.py
kirilllapushinskiy/code
8deea136de8d4559f7f2dad26005611b0e51790b
[ "MIT" ]
null
null
null
S = input() Q = input() rate = {} answers = {} for i in range(len(S)): if S[i] not in rate: rate[S[i]] = 0 if S[i] == Q[i]: answers[i] = 'correct' else: rate[S[i]] += 1 answers[i] = '' for i in range(len(Q)): if answers[i]: continue else: if Q[i] in rate and rate[Q[i]]: answers[i] = 'present' rate[Q[i]] -= 1 else: answers[i] = 'absent' for j in range(len(S)): print(answers[j])
18.481481
39
0.44489
3d395b009903566caffa6fd8bc41ffb49ad06e80
2,208
py
Python
nadine/management/commands/billing_batch_run.py
czue/nadine
61fbfcac4d0c3159aa73500e47f4fa23c0aa9ef0
[ "Apache-2.0" ]
1
2019-08-15T00:10:38.000Z
2019-08-15T00:10:38.000Z
nadine/management/commands/billing_batch_run.py
czue/nadine
61fbfcac4d0c3159aa73500e47f4fa23c0aa9ef0
[ "Apache-2.0" ]
null
null
null
nadine/management/commands/billing_batch_run.py
czue/nadine
61fbfcac4d0c3159aa73500e47f4fa23c0aa9ef0
[ "Apache-2.0" ]
null
null
null
from datetime import datetime from django.core.management.base import BaseCommand from nadine.models.billing import BillingBatch, UserBill class Command(BaseCommand): requires_system_checks = True help = "Runs the billing batch." def add_arguments(self, parser): # Named (optional) arguments parser.add_argument( '--delete-open', action='store_true', dest='delete-open', default=False, help='Delete all open bills', ) parser.add_argument( '--start', default=None, help='Start date for batch run', ) parser.add_argument( '--end', default=None, help='End date for batch run', ) def handle(self, *args, **options): start_date = end_date = None if options['delete-open']: open_bills = UserBill.objects.open().order_by('period_start') if open_bills: print("Deleting Open Bills...") start_date = open_bills.first().period_start for bill in open_bills: print("Deleting %s" % bill) bill.delete() if options['start']: start_date = datetime.strptime(options['start'], "%Y-%m-%d").date() if options['end']: end_date = datetime.strptime(options['end'], "%Y-%m-%d").date() print("Running Batch: start=%s end=%s" % (start_date, end_date)) batch = BillingBatch.objects.run(start_date, end_date) print("%d Bills" % batch.bills.count()) # Copyright 2018 Office Nomads LLC (http://officenomads.com/) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
39.428571
579
0.619112
8eb49a05b6b3036dfe231ecd0bb42c25fb744e82
553
py
Python
kNN.py
zxhaijm/-
2448b05d95e188ed35812e2a0030454f6190f212
[ "Unlicense" ]
null
null
null
kNN.py
zxhaijm/-
2448b05d95e188ed35812e2a0030454f6190f212
[ "Unlicense" ]
null
null
null
kNN.py
zxhaijm/-
2448b05d95e188ed35812e2a0030454f6190f212
[ "Unlicense" ]
null
null
null
def kNN(inX, dataSet, labels, k): dataSetSize = dataSet.shape[0] diffMat = np.tile(inX, (dataSetSize,1)) - dataSet sqDiffMat = diffMat**2 sqDistance = sqDiffMat.sum(axis=1) distances = sqDistance**0.5 sortedDistIndicies = distances.argsort() classCount = {} for i in range(k): voteIlabel = labels[sortedDistIndicies[i]] classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0]
39.5
91
0.681736
01f46813c24eb72d17e7473237ce843aed94ffa2
13,244
py
Python
main.py
fab-jul/ppfin
f3e51583d42590eceb6d3920a351f8f2639792c1
[ "MIT" ]
null
null
null
main.py
fab-jul/ppfin
f3e51583d42590eceb6d3920a351f8f2639792c1
[ "MIT" ]
null
null
null
main.py
fab-jul/ppfin
f3e51583d42590eceb6d3920a351f8f2639792c1
[ "MIT" ]
null
null
null
import logging logger = logging.getLogger() logger.setLevel(logging.DEBUG) fh = logging.FileHandler('otp.log') fh.setLevel(logging.DEBUG) logger.addHandler(fh) import argparse import urwid import data_controller import symbol_values _BACKGROUND = urwid.SolidFill(u'\N{MEDIUM SHADE}') _BASE_CURRENCY = 'CHF' _main_event_loop = urwid.AsyncioEventLoop() _PALETTE = [ ('brand', 'bold,underline,dark blue', ''), ('underline', 'underline', ''), ('bold', 'bold', ''), ('err', 'dark red,bold', ''), ('reversed', 'standout', ''), ('up', 'dark green', ''), ('upbold', 'dark green,bold', ''), ('neutral', '', ''), ('neutralbold', 'bold', ''), ('down', 'dark red', ''), ('downbold', 'dark red,bold', ''), ] _STYLES = {palette_entry[0] for palette_entry in _PALETTE} _BOLD_MAP = {key: key + 'bold' for key in _STYLES if key in _STYLES and key + 'bold' in _STYLES} class Controller: def __init__(self): self.stack = [_BACKGROUND] self.view = urwid.Padding(self.stack[-1], left=1, right=1) def unhandled_input(self, key): try: self.stack[-1].unhandled_input(key) except AttributeError: pass def _update(self): self.view.original_widget = self.stack[-1] def push(self, w): self.stack.append(w) self._update() def pop(self): self.stack.pop() try: self.stack[-1].refresh() except AttributeError: pass self._update() def make_button(title, callback_fn): button = urwid.Button(title) urwid.connect_signal(button, 'click', callback_fn) return urwid.AttrMap(button, None, focus_map='reversed') def boldify(w): return urwid.AttrMap(w, attr_map=_BOLD_MAP) def on_main(fn): def callback(): _main_event_loop.alarm(0, lambda: fn()) return callback class Header(urwid.WidgetWrap): _ALIGNS = {'l': 'left', 'r': 'right'} def __init__(self, *titles, aligns=None): titles = [('underline', title) if not isinstance(title, tuple) else title for title in titles] if not aligns: aligns = ''.join('l' for _ in titles) aligns = [Header._ALIGNS[align] for align in aligns] if len(aligns) != len(titles): raise ValueError super().__init__( urwid.Columns([urwid.Text(title, align=align) for title, align in zip(titles, aligns)])) class SummaryView(urwid.WidgetWrap): def __init__(self, dc: data_controller.DataController, controller: Controller): self.dc = dc self.controller = controller self.focus_walker = None self._last_focus = None symbol_values.Ticker.register_callback( 'SummaryView', on_main(self.refresh)) # lambda: controller.main_loop.event_loop.alarm(0, lambda *_: self.refresh())) with self.dc.connect(): super(SummaryView, self).__init__(self._get_menu()) def unhandled_input(self, key): if key == 'r': self.refresh() def refresh(self): logger.info('***\nREFRESH\n***') with self.dc.connect(): self._set_w(self._get_menu()) def __del__(self): symbol_values.Ticker.remove_callback('SummaryView') def _get_menu(self): body = [urwid.Text(('brand', 'ppfin')), urwid.Divider()] # Normal (category-0) Accounts accs = self.dc.get_all_accounts(category=0) body += [Header('Account', 'Diff', 'Balance', aligns='lrr')] for acc in accs: body.append(urwid.Columns([ make_button(acc.name, lambda btn: self._show_account(btn.get_label())), urwid.Text(acc.get_diff_to_last().attr_str(), align='right'), urwid.Text(str(acc.get_balance()), align='right')])) total_diff = sum(acc.get_diff_to_last() for acc in accs).attr_str() total = sum(acc.get_balance() for acc in accs) # Special (category-1) Accounts accs = self.dc.get_all_accounts(category=1) if accs: for acc in accs: body.append(urwid.Columns([ make_button(acc.name, lambda btn: self._show_account(btn.get_label())), urwid.Text(''), urwid.Text(str(acc.get_balance()), align='right')])) total += acc.get_balance() body += [urwid.Columns([ urwid.Text(('bold', 'Total')), boldify(urwid.Text(total_diff, align='right')), urwid.Text(('bold', str(total)), align='right')])] body += [urwid.Divider(), make_button('Update Balances', self._update_balances), make_button('Add Account', self._add_account), urwid.Divider()] # Shares symbol_overviews = self.dc.get_all_symbol_overviews() if not symbol_overviews: body += [urwid.Text('No Shares!')] else: body += [Header('Symbol', 'Shares', 'Gain', 'Possession', aligns='lrrr')] for so in symbol_overviews: body.append(urwid.Columns([ make_button(so.symbol, self._update_share), urwid.Text(str(so.quantity), align='right'), urwid.Text(so.get_current_total_gain().attr_str(), align='right'), urwid.Text(str(so.get_current_total_value()), align='right')])) total_gain = sum( so.get_current_total_gain(currency=_BASE_CURRENCY) for so in symbol_overviews) total_share_value = sum( so.get_current_total_value(currency=_BASE_CURRENCY) for so in symbol_overviews) body += [ urwid.Columns([ urwid.Text(('bold', 'Total')), urwid.Text(''), urwid.Text(('bold', str(total_gain)), align='right'), urwid.Text(('bold', str(total_share_value)), align='right'), ]) ] body += [urwid.Divider(), make_button('Update Shares', self._update_shares), make_button('Add Share', self._add_share), urwid.Divider()] self.focus_walker = urwid.SimpleFocusListWalker(body) urwid.connect_signal(self.focus_walker, 'modified', lambda: self._cache_focus_value()) if self._last_focus is not None: self.focus_walker.set_focus(self._last_focus) return urwid.ListBox(self.focus_walker) def _show_account(self, account_name): self.controller.push(AccountDetailView( self.dc, self.controller, account_name)) def _cache_focus_value(self): self._last_focus = self.focus_walker.focus def _update_share(self, k): raise ValueError(k.get_label()) def _update_shares(self, _): pass def _add_share(self, _): def done(_): name = name_edit.get_edit_text() currency = cur_edit.get_edit_text() try: self.dc.add_stock_symbol(name, currency) except data_controller.SymbolExistsException: pass # TODO: maybe handle self.controller.pop() header = urwid.Text('Add Share') name_edit = urwid.Edit("Symbol: ") cur_edit = urwid.Edit("Currency: ") widget = urwid.Pile([ header, name_edit, cur_edit, make_button('Done', done), make_button('Cancel', lambda _: self.controller.pop()), ]) self.controller.push(urwid.Filler(widget, 'top')) def _update_balances(self, _): self.controller.push(UpdateView(self.dc, self.controller)) def _add_account(self, _): def done(_): name, _ = name_edit.get_text() name = name.replace('Name: ', '') self.dc.create_account(name, _BASE_CURRENCY) # TODO self.controller.pop() name_edit = urwid.Edit("Name: ") header = urwid.Text('Add Account') widget = urwid.Pile([ header, name_edit, make_button('Done', done), make_button('Cancel', lambda _: self.controller.pop()), ]) self.controller.push(urwid.Filler(widget, 'top')) class AccountDetailView(urwid.WidgetWrap): def __init__(self, dc: data_controller.DataController, controller: Controller, account_name: str): self.dc = dc self.controller = controller self.account_name = account_name super().__init__(self._get()) def _get(self): transactions = self.dc.get_account_transactions(self.account_name) body = [Header('Date', 'Info', 'Amount', aligns='llr')] for t in transactions: body.append(urwid.Columns([ urwid.Text(t.date), urwid.Text(t.info), urwid.Text(t.value.attr_str(), align='right'), ])) body += [ urwid.Divider(), make_button('Done', lambda _: self.controller.pop())] return urwid.ListBox(urwid.SimpleFocusListWalker(body)) class UpdateView(urwid.WidgetWrap): def __init__(self, dc: data_controller.DataController, controller: Controller): self.dc = dc self.controller = controller self.done_button: urwid.AttrMap = None self.focus_walker: urwid.SimpleFocusListWalker = None self.accs = None super(UpdateView, self).__init__(self._get_menu()) def refresh(self): self._set_w(self._get_menu()) def unhandled_input(self, key): if key == 'enter': # is_ok = self._validate() current_idx = self.focus_walker.focus # current_widget = self.focus_walker[current_idx] next_position = self.focus_walker.next_position(current_idx) if isinstance(self.focus_walker[next_position], urwid.Divider): next_position += 1 # if not isinstance(current_widget, urwid.Edit): # return self.focus_walker.set_focus(next_position) def _get_menu(self): body = [urwid.Text('Update'), urwid.Divider()] self.accs = self.dc.get_all_accounts(category=0) if not self.accs: raise NotImplemented indent = max(len(acc.name) for acc in self.accs) + 5 for acc in self.accs: label = acc.name + ':' indent_acc = (indent - len(label)) * ' ' body.append(urwid.Edit(f"{label}{indent_acc}")) # make_button(acc.name, lambda _:...), # urwid.Text(acc.get_formatted_balance(), align='right')])) def done(_): all_ok = self._validate() if all_ok: self._commit() self.controller.pop() self.done_button = make_button('Done', done) body += [urwid.Divider(), self.done_button, make_button('Cancel', lambda _: self.controller.pop()), ] self.focus_walker = urwid.SimpleFocusListWalker(body) urwid.connect_signal(self.focus_walker, 'modified', lambda: self._validate()) return urwid.ListBox(self.focus_walker) def _commit(self): edit_fields = [e for e in self.focus_walker if isinstance(e, urwid.Edit)] assert len(edit_fields) == len(self.accs) with self.dc.connect(): for e, acc in zip(edit_fields, self.accs): assert acc.name in e.caption value = e.get_edit_text() if not value: continue value = float(value) diff = value - acc.get_balance() self.dc.add_transaction(acc.name, diff) def _validate(self): all_ok = True for i, e in enumerate(self.focus_walker): if not isinstance(e, urwid.Edit): continue value = e.get_edit_text() if not value: continue try: float(value) is_ok = True except ValueError: is_ok = False caption = e.caption if is_ok and '!' in caption: caption = caption.replace('!', ':') e.set_caption(caption) if not is_ok and '!' not in caption: caption = caption.replace(':', '!') e.set_caption(('err', caption)) all_ok = all_ok and is_ok if not all_ok: self.done_button.set_attr_map({None: 'err'}) self.done_button.original_widget.set_label( 'Errors: All values must be floats!') else: self.done_button.set_attr_map({None: None}) self.done_button.original_widget.set_label( 'Done') return all_ok class MainWindow: def __init__(self, dc: data_controller.DataController): self.dc = dc self.controller = Controller() self.controller.push(SummaryView(dc, self.controller)) self.main_loop = None def make_main_loop(self): self.main_loop = urwid.MainLoop(self.draw(), palette=_PALETTE, unhandled_input=self.controller.unhandled_input, event_loop=_main_event_loop) return self.main_loop def draw(self): top = urwid.Overlay(self.controller.view, _BACKGROUND, align='center', width=('relative', 80), valign='middle', height=('relative', 80), min_width=20, min_height=9) return top def item_chosen(button, choice): raise urwid.ExitMainLoop() response = urwid.Text([u'You chose ', choice, u'\n']) done = urwid.Button(u'Ok') urwid.connect_signal(done, 'click', exit_program) main.original_widget = urwid.Filler(urwid.Pile([response, urwid.AttrMap(done, None, focus_map='reversed')])) def exit_program(button): raise urwid.ExitMainLoop() def main(): p = argparse.ArgumentParser() p.add_argument('--database', '-db', required=True) flags = p.parse_args() dc = data_controller.DataController(flags.database) mw = MainWindow(dc) loop = mw.make_main_loop() loop.run() if __name__ == '__main__': main()
30.168565
100
0.627001
c1924d3beeb90136baff1d41c8c4b08473a73264
2,656
py
Python
qoc/standard/costs/forbidstates.py
sriharikrishna/qoc
823d48966892fe71c828c31de8737582f36bdd5e
[ "MIT" ]
null
null
null
qoc/standard/costs/forbidstates.py
sriharikrishna/qoc
823d48966892fe71c828c31de8737582f36bdd5e
[ "MIT" ]
null
null
null
qoc/standard/costs/forbidstates.py
sriharikrishna/qoc
823d48966892fe71c828c31de8737582f36bdd5e
[ "MIT" ]
null
null
null
""" forbidstates.py - This module defines a cost function that penalizes the occupation of a set of forbidden states. """ import jax import jax.numpy as jnp from qoc.models import Cost from qoc.standard.functions.convenience import conjugate_transpose class ForbidStates(Cost): """ This cost penalizes the occupation of a set of forbidden states. Fields: cost_multiplier cost_normalization_constant forbidden_states_count forbidden_states_dagger name requires_step_evalution """ name = "forbid_states" requires_step_evaluation = True def __init__(self, forbidden_states, system_eval_count, cost_eval_step=1, cost_multiplier=1.,): """ See class fields for arguments not listed here. Arguments: cost_eval_step forbidden_states system_eval_count """ super().__init__(cost_multiplier=cost_multiplier) state_count = forbidden_states.shape[0] cost_evaluation_count, _ = jnp.divmod(system_eval_count - 1, cost_eval_step) self.cost_normalization_constant = cost_evaluation_count * state_count self.forbidden_states_count = jnp.array([forbidden_states_.shape[0] for forbidden_states_ in forbidden_states]) self.forbidden_states_dagger = conjugate_transpose(forbidden_states) def cost(self, controls, states, system_eval_step): """ Compute the penalty. Arguments: controls states system_eval_step Returns: cost """ # The cost is the overlap (fidelity) of the evolved state and each # forbidden state. cost = 0 for i, forbidden_states_dagger_ in enumerate(self.forbidden_states_dagger): state = states[i] state_cost = 0 for forbidden_state_dagger in forbidden_states_dagger_: inner_product = jnp.matmul(forbidden_state_dagger, state)[0, 0] fidelity = jnp.real(inner_product * jnp.conjugate(inner_product)) state_cost = state_cost + fidelity #ENDFOR state_cost_normalized = state_cost / self.forbidden_states_count[i] cost = cost + state_cost_normalized #ENDFOR # Normalize the cost for the number of evolving states # and the number of times the cost is computed. cost_normalized = cost / self.cost_normalization_constant return cost_normalized * self.cost_multiplier
32.790123
84
0.638178
d6c74f3eadbc12e3b78bc73d2ba5f1965bd8dd97
6,097
py
Python
games/algorithms.py
RamboWu/counterfactual-regret-minimization
f6883e1ffae13e133a71655b67a1ce4fa7f3753d
[ "MIT" ]
141
2018-09-23T15:30:43.000Z
2022-02-12T01:23:39.000Z
games/algorithms.py
bimingda100/counterfactual-regret-minimization
4a223131e652c3541058f7b39b2338cde1f0dc00
[ "MIT" ]
2
2018-10-24T06:28:58.000Z
2021-12-27T05:17:06.000Z
games/algorithms.py
bimingda100/counterfactual-regret-minimization
4a223131e652c3541058f7b39b2338cde1f0dc00
[ "MIT" ]
41
2018-09-24T04:34:35.000Z
2021-12-19T09:20:41.000Z
from common.constants import A from common.utils import init_sigma, init_empty_node_maps class CounterfactualRegretMinimizationBase: def __init__(self, root, chance_sampling = False): self.root = root self.sigma = init_sigma(root) self.cumulative_regrets = init_empty_node_maps(root) self.cumulative_sigma = init_empty_node_maps(root) self.nash_equilibrium = init_empty_node_maps(root) self.chance_sampling = chance_sampling def _update_sigma(self, i): rgrt_sum = sum(filter(lambda x : x > 0, self.cumulative_regrets[i].values())) for a in self.cumulative_regrets[i]: self.sigma[i][a] = max(self.cumulative_regrets[i][a], 0.) / rgrt_sum if rgrt_sum > 0 else 1. / len(self.cumulative_regrets[i].keys()) def compute_nash_equilibrium(self): self.__compute_ne_rec(self.root) def __compute_ne_rec(self, node): if node.is_terminal(): return i = node.inf_set() if node.is_chance(): self.nash_equilibrium[i] = {a:node.chance_prob() for a in node.actions} else: sigma_sum = sum(self.cumulative_sigma[i].values()) self.nash_equilibrium[i] = {a: self.cumulative_sigma[i][a] / sigma_sum for a in node.actions} # go to subtrees for k in node.children: self.__compute_ne_rec(node.children[k]) def _cumulate_cfr_regret(self, information_set, action, regret): self.cumulative_regrets[information_set][action] += regret def _cumulate_sigma(self, information_set, action, prob): self.cumulative_sigma[information_set][action] += prob def run(self, iterations): raise NotImplementedError("Please implement run method") def value_of_the_game(self): return self.__value_of_the_game_state_recursive(self.root) def _cfr_utility_recursive(self, state, reach_a, reach_b): children_states_utilities = {} if state.is_terminal(): # evaluate terminal node according to the game result return state.evaluation() if state.is_chance(): if self.chance_sampling: # if node is a chance node, lets sample one child node and proceed normally return self._cfr_utility_recursive(state.sample_one(), reach_a, reach_b) else: chance_outcomes = {state.play(action) for action in state.actions} return state.chance_prob() * sum([self._cfr_utility_recursive(outcome, reach_a, reach_b) for outcome in chance_outcomes]) # sum up all utilities for playing actions in our game state value = 0. for action in state.actions: child_reach_a = reach_a * (self.sigma[state.inf_set()][action] if state.to_move == A else 1) child_reach_b = reach_b * (self.sigma[state.inf_set()][action] if state.to_move == -A else 1) # value as if child state implied by chosen action was a game tree root child_state_utility = self._cfr_utility_recursive(state.play(action), child_reach_a, child_reach_b) # value computation for current node value += self.sigma[state.inf_set()][action] * child_state_utility # values for chosen actions (child nodes) are kept here children_states_utilities[action] = child_state_utility # we are computing regrets for both players simultaneously, therefore we need to relate reach,reach_opponent to the player acting # in current node, for player A, it is different than for player B (cfr_reach, reach) = (reach_b, reach_a) if state.to_move == A else (reach_a, reach_b) for action in state.actions: # we multiply regret by -1 for player B, this is because value is computed from player A perspective # again we need that perspective switch action_cfr_regret = state.to_move * cfr_reach * (children_states_utilities[action] - value) self._cumulate_cfr_regret(state.inf_set(), action, action_cfr_regret) self._cumulate_sigma(state.inf_set(), action, reach * self.sigma[state.inf_set()][action]) if self.chance_sampling: # update sigma according to cumulative regrets - we can do it here because we are using chance sampling # and so we only visit single game_state from an information set (chance is sampled once) self._update_sigma(state.inf_set()) return value def __value_of_the_game_state_recursive(self, node): value = 0. if node.is_terminal(): return node.evaluation() for action in node.actions: value += self.nash_equilibrium[node.inf_set()][action] * self.__value_of_the_game_state_recursive(node.play(action)) return value class VanillaCFR(CounterfactualRegretMinimizationBase): def __init__(self, root): super().__init__(root = root, chance_sampling = False) def run(self, iterations = 1): for _ in range(0, iterations): self._cfr_utility_recursive(self.root, 1, 1) # since we do not update sigmas in each information set while traversing, we need to # traverse the tree to perform to update it now self.__update_sigma_recursively(self.root) def __update_sigma_recursively(self, node): # stop traversal at terminal node if node.is_terminal(): return # omit chance if not node.is_chance(): self._update_sigma(node.inf_set()) # go to subtrees for k in node.children: self.__update_sigma_recursively(node.children[k]) class ChanceSamplingCFR(CounterfactualRegretMinimizationBase): def __init__(self, root): super().__init__(root = root, chance_sampling = True) def run(self, iterations = 1): for _ in range(0, iterations): self._cfr_utility_recursive(self.root, 1, 1)
48.776
146
0.654584
0f9205f2ded1d1e5435f8ccf767c648c912cfdd3
36,676
py
Python
erfa_generator.py
Stefan-Heimersheim/pyerfa
16a0ab2e66aed29c4b7eb67876fef5ca680d7b8b
[ "BSD-3-Clause" ]
20
2020-05-06T07:43:31.000Z
2022-01-05T03:49:37.000Z
erfa_generator.py
Stefan-Heimersheim/pyerfa
16a0ab2e66aed29c4b7eb67876fef5ca680d7b8b
[ "BSD-3-Clause" ]
62
2020-05-05T01:26:45.000Z
2021-11-05T16:38:25.000Z
erfa_generator.py
avalentino/pyerfa
efc2ba6300e4edac21c51cd891694bee8f91eb3b
[ "BSD-3-Clause" ]
15
2020-05-05T19:26:42.000Z
2022-03-10T07:45:41.000Z
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This module's main purpose is to act as a script to create new versions of ufunc.c when ERFA is updated (or this generator is enhanced). `Jinja2 <http://jinja.pocoo.org/>`_ must be installed for this module/script to function. Note that this does *not* currently automate the process of creating structs or dtypes for those structs. They should be added manually in the template file. """ import re import os.path from collections import OrderedDict DEFAULT_ERFA_LOC = os.path.join(os.path.split(__file__)[0], 'liberfa/erfa/src') DEFAULT_TEMPLATE_LOC = os.path.join(os.path.split(__file__)[0], 'erfa') NDIMS_REX = re.compile(re.escape("numpy.dtype([('fi0', '.*', <(.*)>)])") .replace(r'\.\*', '.*') .replace(r'\<', '(') .replace(r'\>', ')')) class FunctionDoc: def __init__(self, doc): self.doc = doc.replace("**", " ").replace("/*\n", "").replace("*/", "") self.doc = self.doc.replace("/*+\n", "") # accommodate eraLdn self.doc = self.doc.replace("* ", " " * 2) # accommodate eraAticqn self.doc = self.doc.replace("*\n", "\n") # accommodate eraAticqn self.__input = None self.__output = None self.__ret_info = None def _get_arg_doc_list(self, doc_lines): """Parse input/output doc section lines, getting arguments from them. Ensure all elements of eraASTROM and eraLDBODY are left out, as those are not input or output arguments themselves. Also remove the nb argument in from of eraLDBODY, as we infer nb from the python array. """ doc_list = [] skip = [] for d in doc_lines: arg_doc = ArgumentDoc(d) if arg_doc.name is not None: if skip: if skip[0] == arg_doc.name: skip.pop(0) continue else: raise RuntimeError("We whould be skipping {} " "but {} encountered." .format(skip[0], arg_doc.name)) if arg_doc.type.startswith('eraLDBODY'): # Special-case LDBODY: for those, the previous argument # is always the number of bodies, but we don't need it # as an input argument for the ufunc since we're going # to determine this from the array itself. Also skip # the description of its contents; those are not arguments. doc_list.pop() skip = ['bm', 'dl', 'pv'] elif arg_doc.type.startswith('eraASTROM'): # Special-case ASTROM: need to skip the description # of its contents; those are not arguments. skip = ['pmt', 'eb', 'eh', 'em', 'v', 'bm1', 'bpn', 'along', 'xpl', 'ypl', 'sphi', 'cphi', 'diurab', 'eral', 'refa', 'refb'] doc_list.append(arg_doc) return doc_list @property def input(self): if self.__input is None: self.__input = [] for regex in ("Given([^\n]*):.*?\n(.+?) \n", "Given and returned([^\n]*):\n(.+?) \n"): result = re.search(regex, self.doc, re.DOTALL) if result is not None: doc_lines = result.group(2).split("\n") self.__input += self._get_arg_doc_list(doc_lines) return self.__input @property def output(self): if self.__output is None: self.__output = [] for regex in ("Given and returned([^\n]*):\n(.+?) \n", "Returned([^\n]*):.*?\n(.+?) \n"): result = re.search(regex, self.doc, re.DOTALL) if result is not None: doc_lines = result.group(2).split("\n") self.__output += self._get_arg_doc_list(doc_lines) return self.__output @property def ret_info(self): if self.__ret_info is None: ret_info = [] result = re.search("Returned \\(function value\\)([^\n]*):\n(.+?) \n", self.doc, re.DOTALL) if result is not None: ret_info.append(ReturnDoc(result.group(2))) if len(ret_info) == 0: self.__ret_info = '' elif len(ret_info) == 1: self.__ret_info = ret_info[0] else: raise ValueError("Multiple C return sections found in this doc:\n" + self.doc) return self.__ret_info @property def title(self): # Used for the docstring title. lines = [line.strip() for line in self.doc.split('\n')[4:10]] # Always include the first line, then stop at either an empty # line or at the end of a sentence. description = lines[:1] for line in lines[1:]: if line == '': break if '. ' in line: line = line[:line.index('. ')+1] description.append(line) if line.endswith('.'): break return '\n '.join(description) def __repr__(self): return '\n'.join([(ln.rstrip() if ln.strip() else '') for ln in self.doc.split('\n')]) class ArgumentDoc: def __init__(self, doc): match = re.search("^ +([^ ]+)[ ]+([^ ]+)[ ]+(.+)", doc) if match is not None: self.name = match.group(1) if self.name.startswith('*'): # Easier than getting the regex to behave... self.name = self.name.replace('*', '') self.type = match.group(2) self.doc = match.group(3) else: self.name = None self.type = None self.doc = None def __repr__(self): return f" {self.name:15} {self.type:15} {self.doc}" class Variable: """Properties shared by Argument and Return.""" @property def npy_type(self): """Predefined type used by numpy ufuncs to indicate a given ctype. Eg., NPY_DOUBLE for double. """ return "NPY_" + self.ctype.upper() @property def dtype(self): """Name of dtype corresponding to the ctype. Specifically, double : dt_double int : dt_int double[3]: dt_vector double[2][3] : dt_pv double[2] : dt_pvdpv double[3][3] : dt_matrix int[4] : dt_ymdf | dt_hmsf | dt_dmsf, depding on name eraASTROM: dt_eraASTROM eraLDBODY: dt_eraLDBODY char : dt_sign char[] : dt_type The corresponding dtypes are defined in ufunc.c, where they are used for the loop definitions. In core.py, they are also used to view-cast regular arrays to these structured dtypes. """ if self.ctype == 'const char': return 'dt_type' elif self.ctype == 'char': return 'dt_sign' elif self.ctype == 'int' and self.shape == (4,): return 'dt_' + self.name[1:] elif self.ctype == 'double' and self.shape == (3,): return 'dt_double' elif self.ctype == 'double' and self.shape == (2, 3): return 'dt_pv' elif self.ctype == 'double' and self.shape == (2,): return 'dt_pvdpv' elif self.ctype == 'double' and self.shape == (3, 3): return 'dt_double' elif not self.shape: return 'dt_' + self.ctype else: raise ValueError("ctype {} with shape {} not recognized." .format(self.ctype, self.shape)) @property def view_dtype(self): """Name of dtype corresponding to the ctype for viewing back as array. E.g., dt_double for double, dt_double33 for double[3][3]. The types are defined in core.py, where they are used for view-casts of structured results as regular arrays. """ if self.ctype == 'const char': return 'dt_bytes12' elif self.ctype == 'char': return 'dt_bytes1' else: raise ValueError('Only char ctype should need view back!') @property def ndim(self): return len(self.shape) @property def size(self): size = 1 for s in self.shape: size *= s return size @property def cshape(self): return ''.join([f'[{s}]' for s in self.shape]) @property def signature_shape(self): if self.ctype == 'eraLDBODY': return '(n)' elif self.ctype == 'double' and self.shape == (3,): return '(3)' elif self.ctype == 'double' and self.shape == (3, 3): return '(3, 3)' else: return '()' class Argument(Variable): def __init__(self, definition, doc): self.definition = definition self.doc = doc self.__inout_state = None self.ctype, ptr_name_arr = definition.strip().rsplit(" ", 1) if "*" == ptr_name_arr[0]: self.is_ptr = True name_arr = ptr_name_arr[1:] else: self.is_ptr = False name_arr = ptr_name_arr if "[]" in ptr_name_arr: self.is_ptr = True name_arr = name_arr[:-2] if "[" in name_arr: self.name, arr = name_arr.split("[", 1) self.shape = tuple([int(size) for size in arr[:-1].split("][")]) else: self.name = name_arr self.shape = () @property def inout_state(self): if self.__inout_state is None: self.__inout_state = '' for i in self.doc.input: if self.name in i.name.split(','): self.__inout_state = 'in' for o in self.doc.output: if self.name in o.name.split(','): if self.__inout_state == 'in': self.__inout_state = 'inout' else: self.__inout_state = 'out' return self.__inout_state @property def name_for_call(self): """How the argument should be used in the call to the ERFA function. This takes care of ensuring that inputs are passed by value, as well as adding back the number of bodies for any LDBODY argument. The latter presumes that in the ufunc inner loops, that number is called 'nb'. """ if self.ctype == 'eraLDBODY': assert self.name == 'b' return 'nb, _' + self.name elif self.is_ptr: return '_'+self.name else: return '*_'+self.name def __repr__(self): return (f"Argument('{self.definition}', name='{self.name}', " f"ctype='{self.ctype}', inout_state='{self.inout_state}')") class ReturnDoc: def __init__(self, doc): self.doc = doc self.infoline = doc.split('\n')[0].strip() self.type = self.infoline.split()[0] self.descr = self.infoline.split()[1] if self.descr.startswith('status'): self.statuscodes = statuscodes = {} code = None for line in doc[doc.index(':')+1:].split('\n'): ls = line.strip() if ls != '': if ' = ' in ls: code, msg = ls.split(' = ') if code != 'else': code = int(code) statuscodes[code] = msg elif code is not None: statuscodes[code] += ls else: self.statuscodes = None def __repr__(self): return f"Return value, type={self.type:15}, {self.descr}, {self.doc}" class Return(Variable): def __init__(self, ctype, doc): self.name = 'c_retval' self.inout_state = 'stat' if ctype == 'int' else 'ret' self.ctype = ctype self.shape = () self.doc = doc def __repr__(self): return f"Return(name='{self.name}', ctype='{self.ctype}', inout_state='{self.inout_state}')" @property def doc_info(self): return self.doc.ret_info class Function: """ A class representing a C function. Parameters ---------- name : str The name of the function source_path : str Either a directory, which means look for the function in a stand-alone file (like for the standard ERFA distribution), or a file, which means look for the function in that file. match_line : str, optional If given, searching of the source file will skip until it finds a line matching this string, and start from there. """ def __init__(self, name, source_path, match_line=None): self.name = name self.pyname = name.split('era')[-1].lower() self.filename = self.pyname+".c" if os.path.isdir(source_path): self.filepath = os.path.join(os.path.normpath(source_path), self.filename) else: self.filepath = source_path with open(self.filepath) as f: if match_line: line = f.readline() while line != '': if line.startswith(match_line): filecontents = '\n' + line + f.read() break line = f.readline() else: msg = ('Could not find the match_line "{0}" in ' 'the source file "{1}"') raise ValueError(msg.format(match_line, self.filepath)) else: filecontents = f.read() pattern = fr"\n([^\n]+{name} ?\([^)]+\)).+?(/\*.+?\*/)" p = re.compile(pattern, flags=re.DOTALL | re.MULTILINE) search = p.search(filecontents) self.cfunc = " ".join(search.group(1).split()) self.doc = FunctionDoc(search.group(2)) self.args = [] for arg in re.search(r"\(([^)]+)\)", self.cfunc).group(1).split(', '): self.args.append(Argument(arg, self.doc)) self.ret = re.search(f"^(.*){name}", self.cfunc).group(1).strip() if self.ret != 'void': self.args.append(Return(self.ret, self.doc)) def args_by_inout(self, inout_filter, prop=None, join=None): """ Gives all of the arguments and/or returned values, depending on whether they are inputs, outputs, etc. The value for `inout_filter` should be a string containing anything that arguments' `inout_state` attribute produces. Currently, that can be: * "in" : input * "out" : output * "inout" : something that's could be input or output (e.g. a struct) * "ret" : the return value of the C function * "stat" : the return value of the C function if it is a status code It can also be a "|"-separated string giving inout states to OR together. """ result = [] for arg in self.args: if arg.inout_state in inout_filter.split('|'): if prop is None: result.append(arg) else: result.append(getattr(arg, prop)) if join is not None: return join.join(result) else: return result @property def user_dtype(self): """The non-standard dtype, if any, needed by this function's ufunc. This would be any structured array for any input or output, but we give preference to LDBODY, since that also decides that the ufunc should be a generalized ufunc. """ user_dtype = None for arg in self.args_by_inout('in|inout|out'): if arg.ctype == 'eraLDBODY': return arg.dtype elif user_dtype is None and arg.dtype not in ('dt_double', 'dt_int'): user_dtype = arg.dtype return user_dtype @property def signature(self): """Possible signature, if this function should be a gufunc.""" if all(arg.signature_shape == '()' for arg in self.args_by_inout('in|inout|out')): return None return '->'.join( [','.join([arg.signature_shape for arg in args]) for args in (self.args_by_inout('in|inout'), self.args_by_inout('inout|out|ret|stat'))]) @property def python_call(self): out = ', '.join([arg.name for arg in self.args_by_inout('inout|out|stat|ret')]) args = ', '.join([arg.name for arg in self.args_by_inout('in|inout')]) result = '{out} = {func}({args})'.format(out=out, func='ufunc.' + self.pyname, args=args) if len(result) < 75: return result if result.index('(') < 75: return result.replace('(', '(\n ') split_point = result[:75].rfind(',') + 1 return ('(' + result[:split_point] + '\n ' + result[split_point:].replace(' =', ') =')) def __repr__(self): return (f"Function(name='{self.name}', pyname='{self.pyname}', " f"filename='{self.filename}', filepath='{self.filepath}')") class Constant: def __init__(self, name, value, doc): self.name = name.replace("ERFA_", "") self.value = value.replace("ERFA_", "") self.doc = doc class ExtraFunction(Function): """ An "extra" function - e.g. one not following the SOFA/ERFA standard format. Parameters ---------- cname : str The name of the function in C prototype : str The prototype for the function (usually derived from the header) pathfordoc : str The path to a file that contains the prototype, with the documentation as a multiline string *before* it. """ def __init__(self, cname, prototype, pathfordoc): self.name = cname self.pyname = cname.split('era')[-1].lower() self.filepath, self.filename = os.path.split(pathfordoc) self.prototype = prototype.strip() if prototype.endswith('{') or prototype.endswith(';'): self.prototype = prototype[:-1].strip() incomment = False lastcomment = None with open(pathfordoc, 'r') as f: for ln in f: if incomment: if ln.lstrip().startswith('*/'): incomment = False lastcomment = ''.join(lastcomment) else: if ln.startswith('**'): ln = ln[2:] lastcomment.append(ln) else: if ln.lstrip().startswith('/*'): incomment = True lastcomment = [] if ln.startswith(self.prototype): self.doc = lastcomment break else: raise ValueError('Did not find prototype {} in file ' '{}'.format(self.prototype, pathfordoc)) self.args = [] argset = re.search(fr"{self.name}\(([^)]+)?\)", self.prototype).group(1) if argset is not None: for arg in argset.split(', '): self.args.append(Argument(arg, self.doc)) self.ret = re.match(f"^(.*){self.name}", self.prototype).group(1).strip() if self.ret != 'void': self.args.append(Return(self.ret, self.doc)) def __repr__(self): r = super().__repr__() if r.startswith('Function'): r = 'Extra' + r return r class TestFunction: """Function holding information about a test in t_erfa_c.c""" def __init__(self, name, t_erfa_c, nin, ninout, nout): self.name = name # Get lines that test the given erfa function: capture everything # between a line starting with '{' after the test function definition # and the first line starting with '}' or ' }'. pattern = fr"\nstatic void t_{name}\(" + r".+?(^\{.+?^\s?\})" search = re.search(pattern, t_erfa_c, flags=re.DOTALL | re.MULTILINE) self.lines = search.group(1).split('\n') # Number of input, inplace, and output arguments. self.nin = nin self.ninout = ninout self.nout = nout # Dict of dtypes for variables, filled by define_arrays(). self.var_dtypes = {} @classmethod def from_function(cls, func, t_erfa_c): """Initialize from a function definition.""" return cls(name=func.pyname, t_erfa_c=t_erfa_c, nin=len(func.args_by_inout('in')), ninout=len(func.args_by_inout('inout')), nout=len(func.args_by_inout('out'))) def xfail(self): """Whether the python test produced for this function will fail. Right now this will be true for functions without inputs such as eraIr. """ if self.nin + self.ninout == 0: if self.name == 'zpv': # Works on newer numpy return "np.__version__ < '1.21', reason='needs numpy >= 1.21'" else: return "reason='do not yet support no-input ufuncs'" else: return None def pre_process_lines(self): """Basic pre-processing. Combine multi-part lines, strip braces, semi-colons, empty lines. """ lines = [] line = '' for part in self.lines: part = part.strip() if part in ('', '{', '}'): continue line += part + ' ' if part.endswith(';'): lines.append(line.strip()[:-1]) line = '' return lines def define_arrays(self, line): """Check variable definition line for items also needed in python. E.g., creating an empty astrom structured array. """ defines = [] # Split line in type and variables. # E.g., "double x, y, z" will give ctype='double; variables='x, y, z' ctype, _, variables = line.partition(' ') for var in variables.split(','): var = var.strip() # Is variable an array? name, _, rest = var.partition('[') # If not, or one of iymdf or ihmsf, ignore (latter are outputs only). if not rest or rest[:2] == '4]': continue if ctype == 'eraLDBODY': # Special case, since this should be recarray for access similar # to C struct. v_dtype = 'dt_eraLDBODY' v_shape = rest[:rest.index(']')] extra = ".view(np.recarray)" else: # Temporarily create an Argument, so we can use its attributes. # This translates, e.g., double pv[2][3] to dtype dt_pv. v = Argument(ctype + ' ' + var.strip(), '') v_dtype = v.dtype v_shape = v.shape if v.signature_shape != '()' else '()' extra = "" self.var_dtypes[name] = v_dtype if v_dtype == 'dt_double': v_dtype = 'float' else: v_dtype = 'erfa_ufunc.' + v_dtype defines.append(f"{name} = np.empty({v_shape}, {v_dtype}){extra}") return defines def to_python(self): """Lines defining the body of a python version of the test function.""" # TODO: this is quite hacky right now! Would be good to let function # calls be understood by the Function class. # Name of the erfa C function, so that we can recognize it. era_name = 'era' + self.name.capitalize() # Collect actual code lines, without ";", braces, etc. lines = self.pre_process_lines() out = [] for line in lines: # In ldn ufunc, the number of bodies is inferred from the array size, # so no need to keep the definition. if line == 'n = 3' and self.name == 'ldn': continue # Are we dealing with a variable definition that also sets it? # (hack: only happens for double). if line.startswith('double') and '=' in line: # Complete hack for single occurrence. if line.startswith('double xyz[] = {'): out.append(f"xyz = np.array([{line[16:-1]}])") else: # Put each definition on a separate line. out.extend([part.strip() for part in line[7:].split(',')]) continue # Variable definitions: add empty array definition as needed. if line.startswith(('double', 'int', 'char', 'eraASTROM', 'eraLDBODY')): out.extend(self.define_arrays(line)) continue # Actual function. Start with basic replacements. line = (line .replace('ERFA_', 'erfa.') .replace('(void)', '') .replace('(int)', '') .replace("pv[0]", "pv['p']") .replace("pv[1]", "pv['v']") .replace("s, '-'", "s[0], b'-'") # Rather hacky... .replace("s, '+'", "s[0], b'+'") # Rather hacky... .strip()) # Call of test function vvi or vvd. if line.startswith('v'): line = line.replace(era_name, self.name) # Can call simple functions directly. Those need little modification. if self.name + '(' in line: line = line.replace(self.name + '(', f"erfa_ufunc.{self.name}(") # Call of function that is being tested. elif era_name in line: line = line.replace(era_name, f"erfa_ufunc.{self.name}") # correct for LDBODY (complete hack!) line = line.replace('3, b', 'b').replace('n, b', 'b') # Split into function name and call arguments. start, _, arguments = line.partition('(') # Get arguments, stripping excess spaces and, for numbers, remove # leading zeros since python cannot deal with items like '01', etc. args = [] for arg in arguments[:-1].split(','): arg = arg.strip() while arg[0] == '0' and len(arg) > 1 and arg[1] in '0123456789': arg = arg[1:] args.append(arg) # Get input and output arguments. in_args = [arg.replace('&', '') for arg in args[:self.nin+self.ninout]] out_args = ([arg.replace('&', '') for arg in args[-self.nout-self.ninout:]] if len(args) > self.nin else []) # If the call assigned something, that will have been the status. # Prepend any arguments assigned in the call. if '=' in start: line = ', '.join(out_args+[start]) else: line = ', '.join(out_args) + ' = ' + start line = line + '(' + ', '.join(in_args) + ')' if 'astrom' in out_args: out.append(line) line = 'astrom = astrom.view(np.recarray)' # In some test functions, there are calls to other ERFA functions. # Deal with those in a super hacky way for now. elif line.startswith('eraA'): line = line.replace('eraA', 'erfa_ufunc.a') start, _, arguments = line.partition('(') args = [arg.strip() for arg in arguments[:-1].split(',')] in_args = [arg for arg in args if '&' not in arg] out_args = [arg.replace('&', '') for arg in args if '&' in arg] line = (', '.join(out_args) + ' = ' + start + '(' + ', '.join(in_args) + ')') if 'atioq' in line or 'atio13' in line or 'apio13' in line: line = line.replace(' =', ', j =') # And the same for some other functions, which always have a # 2-element time as inputs. elif line.startswith('eraS'): line = line.replace('eraS', 'erfa_ufunc.s') start, _, arguments = line.partition('(') args = [arg.strip() for arg in arguments[:-1].split(',')] in_args = args[:2] out_args = args[2:] line = (', '.join(out_args) + ' = ' + start + '(' + ', '.join(in_args) + ')') # Input number setting. elif '=' in line: # Small clean-up. line = line.replace('= ', '= ') # Hack to make astrom element assignment work. if line.startswith('astrom'): out.append('astrom = np.zeros((), erfa_ufunc.dt_eraASTROM).view(np.recarray)') # Change access to p and v elements for double[2][3] pv arrays # that were not caught by the general replacement above (e.g., # with names not equal to 'pv') name, _, rest = line.partition('[') if (rest and rest[0] in '01' and name in self.var_dtypes and self.var_dtypes[name] == 'dt_pv'): line = name + "[" + ("'p'" if rest[0] == "0" else "'v'") + rest[1:] out.append(line) return out def main(srcdir=DEFAULT_ERFA_LOC, templateloc=DEFAULT_TEMPLATE_LOC, verbose=True): from jinja2 import Environment, FileSystemLoader outfn = 'core.py' ufuncfn = 'ufunc.c' testdir = 'tests' testfn = 'test_ufunc.py' if verbose: print_ = print else: def print_(*args, **kwargs): return None # Prepare the jinja2 templating environment env = Environment(loader=FileSystemLoader(templateloc)) def prefix(a_list, pre): return [pre+f'{an_element}' for an_element in a_list] def postfix(a_list, post): return [f'{an_element}'+post for an_element in a_list] def surround(a_list, pre, post): return [pre+f'{an_element}'+post for an_element in a_list] env.filters['prefix'] = prefix env.filters['postfix'] = postfix env.filters['surround'] = surround erfa_c_in = env.get_template(ufuncfn + '.templ') erfa_py_in = env.get_template(outfn + '.templ') # Prepare the jinja2 test templating environment env2 = Environment(loader=FileSystemLoader(os.path.join(templateloc, testdir))) test_py_in = env2.get_template(testfn + '.templ') # Extract all the ERFA function names from erfa.h if os.path.isdir(srcdir): erfahfn = os.path.join(srcdir, 'erfa.h') t_erfa_c_fn = os.path.join(srcdir, 't_erfa_c.c') multifilserc = True else: erfahfn = os.path.join(os.path.split(srcdir)[0], 'erfa.h') t_erfa_c_fn = os.path.join(os.path.split(srcdir)[0], 't_erfa_c.c') multifilserc = False with open(erfahfn, "r") as f: erfa_h = f.read() print_("read erfa header") with open(t_erfa_c_fn, "r") as f: t_erfa_c = f.read() print_("read C tests") funcs = OrderedDict() section_subsection_functions = re.findall( r'/\* (\w*)/(\w*) \*/\n(.*?)\n\n', erfa_h, flags=re.DOTALL | re.MULTILINE) for section, subsection, functions in section_subsection_functions: print_(f"{section}.{subsection}") if True: func_names = re.findall(r' (\w+)\(.*?\);', functions, flags=re.DOTALL) for name in func_names: print_(f"{section}.{subsection}.{name}...") if multifilserc: # easy because it just looks in the file itself cdir = (srcdir if section != 'Extra' else templateloc or '.') funcs[name] = Function(name, cdir) else: # Have to tell it to look for a declaration matching # the start of the header declaration, otherwise it # might find a *call* of the function instead of the # definition for line in functions.split(r'\n'): if name in line: # [:-1] is to remove trailing semicolon, and # splitting on '(' is because the header and # C files don't necessarily have to match # argument names and line-breaking or # whitespace match_line = line[:-1].split('(')[0] funcs[name] = Function(name, cdir, match_line) break else: raise ValueError("A name for a C file wasn't " "found in the string that " "spawned it. This should be " "impossible!") test_funcs = [TestFunction.from_function(funcs[name], t_erfa_c) for name in sorted(funcs.keys())] funcs = funcs.values() # Extract all the ERFA constants from erfam.h erfamhfn = os.path.join(srcdir, 'erfam.h') with open(erfamhfn, 'r') as f: erfa_m_h = f.read() constants = [] for chunk in erfa_m_h.split("\n\n"): result = re.findall(r"#define (ERFA_\w+?) (.+?)$", chunk, flags=re.DOTALL | re.MULTILINE) if result: doc = re.findall(r"/\* (.+?) \*/\n", chunk, flags=re.DOTALL) for (name, value) in result: constants.append(Constant(name, value, doc)) # TODO: re-enable this when const char* return values and # non-status code integer rets are possible # #Add in any "extra" functions from erfaextra.h # erfaextrahfn = os.path.join(srcdir, 'erfaextra.h') # with open(erfaextrahfn, 'r') as f: # for l in f: # ls = l.strip() # match = re.match('.* (era.*)\(', ls) # if match: # print_("Extra: {0} ...".format(match.group(1))) # funcs.append(ExtraFunction(match.group(1), ls, erfaextrahfn)) print_("Rendering template") erfa_c = erfa_c_in.render(funcs=funcs) erfa_py = erfa_py_in.render(funcs=funcs, constants=constants) test_py = test_py_in.render(test_funcs=test_funcs) if outfn is not None: print_(f"Saving to {outfn}, {ufuncfn} and {testfn}") with open(os.path.join(templateloc, outfn), "w") as f: f.write(erfa_py) with open(os.path.join(templateloc, ufuncfn), "w") as f: f.write(erfa_c) with open(os.path.join(templateloc, testdir, testfn), "w") as f: f.write(test_py) print_("Done!") return erfa_c, erfa_py, funcs, test_py, test_funcs if __name__ == '__main__': from argparse import ArgumentParser ap = ArgumentParser() ap.add_argument('srcdir', default=DEFAULT_ERFA_LOC, nargs='?', help='Directory where the ERFA c and header files ' 'can be found or to a single erfa.c file ' '(which must be in the same directory as ' 'erfa.h). Default: "{}"'.format(DEFAULT_ERFA_LOC)) ap.add_argument('-t', '--template-loc', default=DEFAULT_TEMPLATE_LOC, help='the location where the "core.py.templ" and ' '"ufunc.c.templ templates can be found.') ap.add_argument('-q', '--quiet', action='store_false', dest='verbose', help='Suppress output normally printed to stdout.') args = ap.parse_args() main(args.srcdir, args.template_loc, args.verbose)
38.444444
100
0.516441
0bbb40f94295f53f0dfa15ea38cc629e924e0dc6
25,172
py
Python
Apps/phpolyswarm/polyswarm_connector.py
phantom-dkhorasani/phantom-apps
6d7e6edcfef3cb97f6cbf1fa5e13a0b2a9f63ab1
[ "Apache-2.0" ]
null
null
null
Apps/phpolyswarm/polyswarm_connector.py
phantom-dkhorasani/phantom-apps
6d7e6edcfef3cb97f6cbf1fa5e13a0b2a9f63ab1
[ "Apache-2.0" ]
null
null
null
Apps/phpolyswarm/polyswarm_connector.py
phantom-dkhorasani/phantom-apps
6d7e6edcfef3cb97f6cbf1fa5e13a0b2a9f63ab1
[ "Apache-2.0" ]
null
null
null
# File: polyswarm_connector.py # Copyright (c) PolySwarm, 2019. # # Licensed under Apache 2.0 (https://www.apache.org/licenses/LICENSE-2.0.txt) # Phantom App imports import phantom.app as phantom from phantom.base_connector import BaseConnector from phantom.action_result import ActionResult from phantom.vault import Vault from polyswarm_consts import * import os import time import requests import json import logging import uuid # Set Debug level # logging.basicConfig(level=logging.DEBUG) class Polyswarm_API: def __init__(self, config): """ __init__ :param config: config with api key for connection :return: """ self.config = config self.headers = {'Authorization': self.config['polyswarm_api_key']} def _http_request(self, method, path_url, data=None, files=None): """ Send HTTP Request :param method: [get|post] :param path_url: URL for request :param data: data for 'post' or 'get' request :param files: for uploading files with 'post' :return: tuple (status_code, content) """ r = None # set full URL for request try: full_url = '{base_url}{path_url}'.format(base_url=self.config['base_url'], path_url=path_url) except: self.debug_print('Error occurred while making HTTP Request. {0}'.format(POLYSWARM_CONFIG_PARAMS_ERR_MSG)) return phantom.APP_ERROR, None logging.info('[{method}] URL: {full_url} - params/data: {data} - files: {files} - headers: {headers}'. format(method=method.upper(), full_url=full_url, data=data, files=files, headers=self.headers)) if method.lower() == "get": r = requests.get(full_url, params=data, headers=self.headers) elif method.lower() == "post": r = requests.post(full_url, data=data, files=files, headers=self.headers) r.raise_for_status() logging.info('[Response] Status code: {status_code} - Content: {response}'. format(status_code=r.status_code, response=r.content)) return (r.status_code, r.content) def _get_hash_type(self, hash): """ Return Hash Type :param hash: hash string :return: hash type string; empty if failed """ if len(hash) == 40: return 'sha1' elif len(hash) == 64: return 'sha256' elif len(hash) == 32: return 'md5' return '' def search_hash(self, hash): """ Search Hash :param hash: hash :return: tuple (status_code, response) """ hash_type = self._get_hash_type(hash) params = {'type': hash_type, 'with_instances': 'true', 'hash': hash} return self._http_request('get', '/search', params) def scan_url(self, url): """ Upload URL for scan :param url: string :return: tuple (status_code, response) """ path_url = '/consumer/{polyswarm_community}'.format(polyswarm_community=self.config['polyswarm_community']) params = {'url': url, 'artifact-type': 'url'} return self._http_request('post', path_url, params) def lookup(self, uuid): """ UUID Lookup :param uuid: string :return: tuple (status_code, response) """ path_url = '/consumer/{polyswarm_community}/uuid/{uuid}'.format(polyswarm_community=self.config['polyswarm_community'], uuid=uuid) status_code, response = self._http_request('get', path_url) window_closed = json.loads(response)['result']['files'][0]['window_closed'] # we got the results at first shot if window_closed: return (status_code, response) # we dont have any results already - wait for the bounty to complete # and try again time.sleep(30) while not window_closed: status_code, response = self._http_request('get', path_url) window_closed = json.loads(response)['result']['files'][0]['window_closed'] time.sleep(1) return (status_code, response) def search_url(self, url): """ Scan URL and return scan results :param url: string :return: (status_code, response, uuid) """ status_code, response = self.scan_url(url) uuid = json.loads(response)['result'] status_code, response = self.lookup(uuid) return (status_code, response, uuid) def get_file(self, hash): """ Download file by hash :param hash: File Hash for Download :return: tuple (status_code, response) """ hash_type = self._get_hash_type(hash) logging.info('[get_file] Hash type: {hash_type}'. format(hash_type=hash_type)) return self._http_request('get', '/download/{hash_type}/{hash}'. format(hash_type=hash_type, hash=hash)) def detonate_file(self, file_name, file_path): """ Upload File to Polyswarm and get the scan results :param file_name: file name :param file_path: complete path from the file to upload :return: (status_code, response, uuid) """ path_url = '/consumer/{polyswarm_community}'.format(polyswarm_community=self.config['polyswarm_community']) files = { 'file': (file_name, open(file_path, 'rb')) } # Force re-scans if file was already submitted # params = { 'force': 'true' } params = {} status_code, response = self._http_request('post', path_url, params, files) uuid = json.loads(response)['result'] status_code, response = self.lookup(uuid) return (status_code, response, uuid) class PolyswarmConnector(BaseConnector): def __init__(self, cli=False): # Call the BaseConnectors init first super(PolyswarmConnector, self).__init__() self.polyswarm_api = None self._state = None self._base_url = None # variable to get aware we are called from cmd self.cli = cli def initialize(self): # Load the state in initialize, use it to store data # that needs to be accessed across actions self._state = self.load_state() # get the asset config config = self.get_config() # setup polyswarm_api object self.polyswarm_api = Polyswarm_API(config) # Access action parameters passed in the 'param' dictionary try: self.save_progress('Base URL is: {base_url} - Community: {polyswarm_community}'. format(base_url=config['base_url'], polyswarm_community=config['polyswarm_community'])) except: self.save_progress(POLYSWARM_DEBUG_ERROR_MSG) return phantom.APP_ERROR return phantom.APP_SUCCESS def finalize(self): # Save the state, this data is saved across actions and app upgrades self.save_state(self._state) return phantom.APP_SUCCESS def _update_results(self, action_result, total_scans, positives, uuid): # update result_data -> summary action_result.update_summary({'total_scans': str(total_scans)}) action_result.update_summary({'scan_uuid': uuid}) action_result.update_summary({'positives': str(positives)}) # update result_data -> data data = { 'total': str(total_scans), 'permalink': '{url_results}/{uuid}'. format(url_results=POLYSWARM_URL_RESULTS, uuid=uuid), 'positives': str(positives), 'scan_uuid': uuid } action_result.add_data(data) def _handle_test_connectivity(self, param): EICAR_HASH = '131f95c51cc819465fa1797f6ccacf9d494aaaff46fa3eac73ae63ffbdfd8267' # Polywarm API Response # HTTP Response # status code # response status_code = 0 response = '' # Add an action result object to self (BaseConnector) to represent the action for this param action_result = self.add_action_result(ActionResult(dict(param))) try: status_code, response = self.polyswarm_api.search_hash(EICAR_HASH) if (phantom.is_fail(status_code)): # the call to the 3rd party device or service failed, action result should contain all the error details # for now the return is commented out, but after implementation, return from here return action_result.get_status() except requests.exceptions.HTTPError as err: return action_result.\ set_status(phantom.APP_ERROR, 'Error with endpoint: {err}'. format(err=err)) self.save_progress("Connection successful") return action_result.set_status(phantom.APP_SUCCESS) def _handle_file_reputation(self, param): self.save_progress('In action handler for: {0}'. format(self.get_action_identifier())) # Add an action result object to self (BaseConnector) # to represent the action for this param action_result = self.add_action_result(ActionResult(dict(param))) # default values total_scans = 0 positives = 0 # Polywarm API Response # HTTP Response # status code # response # uuid = uuid from Polyswarm status_code = 0 response = '' uuid = 'null' try: status_code, response = self.polyswarm_api.search_hash(param['hash']) if (phantom.is_fail(status_code)): # the call to the 3rd party device or service failed, action result should contain all the error details # for now the return is commented out, but after implementation, return from here return action_result.get_status() # load json response for iteration try: artifact_instances = json.loads(response)['result'][0]['artifact_instances'] except: return action_result.set_status(phantom.APP_ERROR, 'Error in response. Details: ' + (str(response))) uuid = artifact_instances[0]['bounty_result']['uuid'] assertions = artifact_instances[0]['bounty_result']['files'][0]['assertions'] for assertion in assertions: for k, v in assertion.items(): if k == 'verdict' and v: positives += 1 total_scans += 1 self.debug_print('Positives: {positives} - Total Scans: {total_scans}'. format(positives=positives, total_scans=total_scans)) except requests.exceptions.HTTPError as err: if err.response.status_code == 404: # sample not found # returning default values == 0 pass else: # we got another err - report it return action_result.\ set_status(phantom.APP_ERROR, 'Error with endpoint: {err}'. format(err=err)) self._update_results(action_result, total_scans, positives, uuid) return action_result.set_status(phantom.APP_SUCCESS) def _handle_get_file(self, param): self.save_progress('In action handler for: {0}'. format(self.get_action_identifier())) action_result = self.add_action_result(ActionResult(dict(param))) # Polywarm API Response # HTTP Response # status code # response status_code = 0 response = '' try: status_code, response = self.polyswarm_api.get_file(param['hash']) if (phantom.is_fail(status_code)): return action_result.get_status() if hasattr(Vault, 'get_vault_tmp_dir'): temp_dir = Vault.get_vault_tmp_dir() else: temp_dir = 'opt/phantom/vault/tmp' temp_dir = temp_dir + '/{}'.format(uuid.uuid4()) os.makedirs(temp_dir) file_path = os.path.join(temp_dir, param['hash']) with open(file_path, 'wb') as f: f.write(response) if self.cli: container_id = 1 else: container_id = self.get_container_id() self.debug_print('file_path: {file_path}'.format(file_path=file_path)) self.debug_print('container_id: {container_id}'. format(container_id=container_id)) vault_response = Vault.add_attachment(file_location=file_path, container_id=container_id, file_name=param['hash']) self.debug_print(vault_response) if vault_response['succeeded']: file_info = Vault.get_file_info(file_name=param['hash'])[0] self.debug_print('Vault File Info: {file_info}'. format(file_info=file_info)) action_result.update_summary(file_info) action_result.add_data(file_info) return action_result.set_status(phantom.APP_SUCCESS, 'File Downloaded Successfully') else: return action_result.set_status(phantom.APP_ERROR, vault_response['message']) except requests.exceptions.HTTPError as err: if err.response.status_code == 404: # sample not found return action_result.set_status(phantom.APP_ERROR, 'File Not Found') else: # we got another err - report it return action_result.\ set_status(phantom.APP_ERROR, 'Error with endpoint: {err}'. format(err=err)) def _handle_detonate_file(self, param): self.save_progress('In action handler for: {0}'. format(self.get_action_identifier())) # Add an action result object to self (BaseConnector) to represent the action for this param action_result = self.add_action_result(ActionResult(dict(param))) # default values total_scans = 0 positives = 0 file_info = None # Polywarm API Response # HTTP Response # status_code # response # Result # uuid = uuid from Polyswarm status_code = 0 response = '' uuid = '' vault_id = param['vault_id'] try: file_info = Vault.get_file_info(vault_id=vault_id)[0] self.debug_print(file_info) except: if not file_info: return action_result.set_status(phantom.APP_ERROR, 'Error: File not found in Vault') try: status_code, response, uuid = self.polyswarm_api.detonate_file(file_info['name'], file_info['path']) if (phantom.is_fail(status_code)): return action_result.get_status() # load json response for iteration try: assertions = json.loads(response)['result']['files'][0]['assertions'] except: return action_result.set_status(phantom.APP_ERROR, 'Error in response. Details: ' + (str(response))) # iterate for getting positives and total_scan number for assertion in assertions: for k, v in assertion.items(): if k == 'verdict' and v: positives += 1 total_scans += 1 self.debug_print('Positives: {positives} - Total Scans: {total_scans}'. format(positives=positives, total_scans=total_scans)) except requests.exceptions.HTTPError as err: # we got another err - report it return action_result.\ set_status(phantom.APP_ERROR, 'Error with endpoint: {err}'. format(err=err)) self._update_results(action_result, total_scans, positives, uuid) return action_result.set_status(phantom.APP_SUCCESS) def _handle_url_reputation(self, param, artifact): self.save_progress('In action handler for: {0}'. format(self.get_action_identifier())) # Add an action result object to self (BaseConnector) to represent the action for this param action_result = self.add_action_result(ActionResult(dict(param))) # default values total_scans = 0 positives = 0 # Polywarm API Response # HTTP Response # status_code # response # Result # uuid = uuid from Polyswarm status_code = 0 response = '' uuid = '' try: status_code, response, uuid = self.polyswarm_api.search_url(param[artifact]) if (phantom.is_fail(status_code)): # the call to the 3rd party device or service failed, action result should contain all the error details # for now the return is commented out, but after implementation, return from here return action_result.get_status() # load json response for iteration try: assertions = json.loads(response)['result']['files'][0]['assertions'] except: return action_result.set_status(phantom.APP_ERROR, 'Error in response. Details: ' + (str(response))) # iterate for getting positives and total_scan number for assertion in assertions: for k, v in assertion.items(): if k == 'verdict' and v: positives += 1 total_scans += 1 except requests.exceptions.HTTPError as err: # err return action_result.\ set_status(phantom.APP_ERROR, 'Error with endpoint: {err}'. format(err=err)) self._update_results(action_result, total_scans, positives, uuid) return action_result.set_status(phantom.APP_SUCCESS) def _handle_get_report(self, param): self.save_progress('In action handler for: {0}'. format(self.get_action_identifier())) # Add an action result object to self (BaseConnector) to represent the action for this param action_result = self.add_action_result(ActionResult(dict(param))) # default values total_scans = 0 positives = 0 # Polywarm API Response # HTTP Response # status_code # response status_code = 0 response = '' try: status_code, response = self.polyswarm_api.lookup(param['scan_uuid']) if (phantom.is_fail(status_code)): # the call to the 3rd party device or service failed, action result should contain all the error details # for now the return is commented out, but after implementation, return from here return action_result.get_status() # load json response for iteration try: assertions = json.loads(response)['result']['files'][0]['assertions'] except: return action_result.set_status(phantom.APP_ERROR, 'Error in response. Details: ' + (str(response))) # iterate for getting positives and total_scan number for assertion in assertions: for k, v in assertion.items(): if k == 'verdict' and v: positives += 1 total_scans += 1 except requests.exceptions.HTTPError as err: # err return action_result.\ set_status(phantom.APP_ERROR, 'Error with endpoint: {err}'. format(err=err)) self._update_results(action_result, total_scans, positives, param['scan_uuid']) return action_result.set_status(phantom.APP_SUCCESS) def handle_action(self, param): ret_val = phantom.APP_SUCCESS # Get the action that we are supposed to execute for this App Run action_id = self.get_action_identifier() self.debug_print('action_id', self.get_action_identifier()) if action_id == 'test_connectivity': ret_val = self._handle_test_connectivity(param) elif action_id == 'file_reputation': ret_val = self._handle_file_reputation(param) elif action_id == 'get_file': ret_val = self._handle_get_file(param) elif action_id == 'detonate_file': ret_val = self._handle_detonate_file(param) elif action_id == 'url_reputation': ret_val = self._handle_url_reputation(param, 'url') elif action_id == 'ip_reputation': ret_val = self._handle_url_reputation(param, 'ip') elif action_id == 'domain_reputation': ret_val = self._handle_url_reputation(param, 'domain') elif action_id == 'detonate_url': ret_val = self._handle_url_reputation(param, 'url') elif action_id == 'get_report': ret_val = self._handle_get_report(param) return ret_val # standalone if __name__ == '__main__': # import pu'b import argparse # pudb.set_trace() argparser = argparse.ArgumentParser() argparser.add_argument('input_test_json', help='Input Test JSON file') argparser.add_argument('-u', '--username', help='username', required=False) argparser.add_argument('-p', '--password', help='password', required=False) args = argparser.parse_args() session_id = None username = args.username password = args.password if (username is not None and password is None): # User specified a username but not a password, so ask import getpass password = getpass.getpass('Password: ') if (username and password): try: login_url = PolyswarmConnector._get_phantom_base_url() + '/login' print ('Accessing the Login page') r = requests.get(login_url, verify=False) csrftoken = r.cookies['csrftoken'] data = dict() data['username'] = username data['password'] = password data['csrfmiddlewaretoken'] = csrftoken headers = dict() headers['Cookie'] = 'csrftoken=' + csrftoken headers['Referer'] = login_url print ('Logging into Platform to get the session id') r2 = requests.post(login_url, verify=False, data=data, headers=headers) session_id = r2.cookies['sessionid'] except Exception as e: print ('Unable to get session id from the platform. Error: {e}'. format(e=str(e))) exit(1) with open(args.input_test_json) as f: in_json = f.read() in_json = json.loads(in_json) print(json.dumps(in_json, indent=4)) connector = PolyswarmConnector(cli=True) connector.print_progress_message = True if (session_id is not None): in_json['user_session_token'] = session_id connector._set_csrf_info(csrftoken, headers['Referer']) ret_val = connector._handle_action(json.dumps(in_json), None) print (json.dumps(json.loads(ret_val), indent=4)) exit(0)
35.453521
127
0.559868
c3c5767d492ac42d94b70b85e050d5ded8962c69
8,409
py
Python
django/contrib/sitemaps/tests/test_http.py
dnozay/django
5dcdbe95c749d36072f527e120a8cb463199ae0d
[ "BSD-3-Clause" ]
1
2019-01-31T17:16:56.000Z
2019-01-31T17:16:56.000Z
django/contrib/sitemaps/tests/test_http.py
rmutter/django
5d044339037be879a11b03fe8bd8c3ef1d520b1a
[ "BSD-3-Clause" ]
null
null
null
django/contrib/sitemaps/tests/test_http.py
rmutter/django
5d044339037be879a11b03fe8bd8c3ef1d520b1a
[ "BSD-3-Clause" ]
null
null
null
from __future__ import unicode_literals import os from datetime import date from unittest import skipUnless from django.apps import apps from django.conf import settings from django.contrib.sitemaps import Sitemap, GenericSitemap from django.contrib.sites.models import Site from django.core.exceptions import ImproperlyConfigured from django.test import modify_settings, override_settings from django.utils.formats import localize from django.utils._os import upath from django.utils.translation import activate, deactivate from .base import TestModel, SitemapTestsBase class HTTPSitemapTests(SitemapTestsBase): def test_simple_sitemap_index(self): "A simple sitemap index can be rendered" response = self.client.get('/simple/index.xml') expected_content = """<?xml version="1.0" encoding="UTF-8"?> <sitemapindex xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"> <sitemap><loc>%s/simple/sitemap-simple.xml</loc></sitemap> </sitemapindex> """ % self.base_url self.assertXMLEqual(response.content.decode('utf-8'), expected_content) @override_settings( TEMPLATE_DIRS=(os.path.join(os.path.dirname(upath(__file__)), 'templates'),) ) def test_simple_sitemap_custom_index(self): "A simple sitemap index can be rendered with a custom template" response = self.client.get('/simple/custom-index.xml') expected_content = """<?xml version="1.0" encoding="UTF-8"?> <!-- This is a customised template --> <sitemapindex xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"> <sitemap><loc>%s/simple/sitemap-simple.xml</loc></sitemap> </sitemapindex> """ % self.base_url self.assertXMLEqual(response.content.decode('utf-8'), expected_content) def test_simple_sitemap_section(self): "A simple sitemap section can be rendered" response = self.client.get('/simple/sitemap-simple.xml') expected_content = """<?xml version="1.0" encoding="UTF-8"?> <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"> <url><loc>%s/location/</loc><lastmod>%s</lastmod><changefreq>never</changefreq><priority>0.5</priority></url> </urlset> """ % (self.base_url, date.today()) self.assertXMLEqual(response.content.decode('utf-8'), expected_content) def test_simple_sitemap(self): "A simple sitemap can be rendered" response = self.client.get('/simple/sitemap.xml') expected_content = """<?xml version="1.0" encoding="UTF-8"?> <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"> <url><loc>%s/location/</loc><lastmod>%s</lastmod><changefreq>never</changefreq><priority>0.5</priority></url> </urlset> """ % (self.base_url, date.today()) self.assertXMLEqual(response.content.decode('utf-8'), expected_content) @override_settings( TEMPLATE_DIRS=(os.path.join(os.path.dirname(upath(__file__)), 'templates'),) ) def test_simple_custom_sitemap(self): "A simple sitemap can be rendered with a custom template" response = self.client.get('/simple/custom-sitemap.xml') expected_content = """<?xml version="1.0" encoding="UTF-8"?> <!-- This is a customised template --> <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"> <url><loc>%s/location/</loc><lastmod>%s</lastmod><changefreq>never</changefreq><priority>0.5</priority></url> </urlset> """ % (self.base_url, date.today()) self.assertXMLEqual(response.content.decode('utf-8'), expected_content) def test_sitemap_last_modified(self): "Tests that Last-Modified header is set correctly" response = self.client.get('/lastmod/sitemap.xml') self.assertEqual(response['Last-Modified'], 'Wed, 13 Mar 2013 10:00:00 GMT') def test_sitemap_last_modified_missing(self): "Tests that Last-Modified header is missing when sitemap has no lastmod" response = self.client.get('/generic/sitemap.xml') self.assertFalse(response.has_header('Last-Modified')) def test_sitemap_last_modified_mixed(self): "Tests that Last-Modified header is omitted when lastmod not on all items" response = self.client.get('/lastmod-mixed/sitemap.xml') self.assertFalse(response.has_header('Last-Modified')) @skipUnless(settings.USE_I18N, "Internationalization is not enabled") @override_settings(USE_L10N=True) def test_localized_priority(self): "The priority value should not be localized (Refs #14164)" activate('fr') self.assertEqual('0,3', localize(0.3)) # Retrieve the sitemap. Check that priorities # haven't been rendered in localized format response = self.client.get('/simple/sitemap.xml') self.assertContains(response, '<priority>0.5</priority>') self.assertContains(response, '<lastmod>%s</lastmod>' % date.today()) deactivate() @modify_settings(INSTALLED_APPS={'remove': 'django.contrib.sites'}) def test_requestsite_sitemap(self): # Make sure hitting the flatpages sitemap without the sites framework # installed doesn't raise an exception. response = self.client.get('/simple/sitemap.xml') expected_content = """<?xml version="1.0" encoding="UTF-8"?> <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"> <url><loc>http://testserver/location/</loc><lastmod>%s</lastmod><changefreq>never</changefreq><priority>0.5</priority></url> </urlset> """ % date.today() self.assertXMLEqual(response.content.decode('utf-8'), expected_content) @skipUnless(apps.is_installed('django.contrib.sites'), "django.contrib.sites app not installed.") def test_sitemap_get_urls_no_site_1(self): """ Check we get ImproperlyConfigured if we don't pass a site object to Sitemap.get_urls and no Site objects exist """ Site.objects.all().delete() self.assertRaises(ImproperlyConfigured, Sitemap().get_urls) @modify_settings(INSTALLED_APPS={'remove': 'django.contrib.sites'}) def test_sitemap_get_urls_no_site_2(self): """ Check we get ImproperlyConfigured when we don't pass a site object to Sitemap.get_urls if Site objects exists, but the sites framework is not actually installed. """ self.assertRaises(ImproperlyConfigured, Sitemap().get_urls) def test_sitemap_item(self): """ Check to make sure that the raw item is included with each Sitemap.get_url() url result. """ test_sitemap = GenericSitemap({'queryset': TestModel.objects.all()}) def is_testmodel(url): return isinstance(url['item'], TestModel) item_in_url_info = all(map(is_testmodel, test_sitemap.get_urls())) self.assertTrue(item_in_url_info) def test_cached_sitemap_index(self): """ Check that a cached sitemap index can be rendered (#2713). """ response = self.client.get('/cached/index.xml') expected_content = """<?xml version="1.0" encoding="UTF-8"?> <sitemapindex xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"> <sitemap><loc>%s/cached/sitemap-simple.xml</loc></sitemap> </sitemapindex> """ % self.base_url self.assertXMLEqual(response.content.decode('utf-8'), expected_content) def test_x_robots_sitemap(self): response = self.client.get('/simple/index.xml') self.assertEqual(response['X-Robots-Tag'], 'noindex, noodp, noarchive') response = self.client.get('/simple/sitemap.xml') self.assertEqual(response['X-Robots-Tag'], 'noindex, noodp, noarchive') def test_empty_sitemap(self): response = self.client.get('/empty/sitemap.xml') self.assertEqual(response.status_code, 200) @override_settings(LANGUAGES=(('en', 'English'), ('pt', 'Portuguese'))) def test_simple_i18nsitemap_index(self): "A simple i18n sitemap index can be rendered" response = self.client.get('/simple/i18n.xml') expected_content = """<?xml version="1.0" encoding="UTF-8"?> <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"> <url><loc>{0}/en/i18n/testmodel/{1}/</loc><changefreq>never</changefreq><priority>0.5</priority></url><url><loc>{0}/pt/i18n/testmodel/{1}/</loc><changefreq>never</changefreq><priority>0.5</priority></url> </urlset> """.format(self.base_url, self.i18n_model.pk) self.assertXMLEqual(response.content.decode('utf-8'), expected_content)
45.454054
204
0.692829
dcfb050c8bb645de527e6088c93d56750205e7c6
3,128
py
Python
bokeh/core/property/any.py
Jaok-ku/bokeh
9330ed3afd22712baa152e2848c74d7843e74645
[ "BSD-3-Clause" ]
1
2021-10-30T00:32:00.000Z
2021-10-30T00:32:00.000Z
bokeh/core/property/any.py
Jaok-ku/bokeh
9330ed3afd22712baa152e2848c74d7843e74645
[ "BSD-3-Clause" ]
1
2021-02-12T19:50:48.000Z
2021-02-12T23:32:21.000Z
bokeh/core/property/any.py
Jaok-ku/bokeh
9330ed3afd22712baa152e2848c74d7843e74645
[ "BSD-3-Clause" ]
2
2021-01-12T18:22:24.000Z
2021-10-30T00:32:02.000Z
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2020, Anaconda, Inc., and Bokeh Contributors. # All rights reserved. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- """ Provide wildcard properties. The Any and AnyRef properties can be used to hold values without performing any validation. """ #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- import logging # isort:skip log = logging.getLogger(__name__) #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Bokeh imports from .bases import Property #----------------------------------------------------------------------------- # Globals and constants #----------------------------------------------------------------------------- __all__ = ( 'Any', 'AnyRef' ) #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- class Any(Property): """ Accept all values. The ``Any`` property does not do any validation or transformation. Args: default (obj or None, optional) : A default value for attributes created from this property to have (default: None) help (str or None, optional) : A documentation string for this property. It will be automatically used by the :ref:`bokeh.sphinxext.bokeh_prop` extension when generating Spinx documentation. (default: None) serialized (bool, optional) : Whether attributes created from this property should be included in serialization (default: True) readonly (bool, optional) : Whether attributes created from this property are read-only. (default: False) Example: .. code-block:: python >>> class AnyModel(HasProps): ... prop = Any() ... >>> m = AnyModel() >>> m.prop = True >>> m.prop = 10 >>> m.prop = 3.14 >>> m.prop = "foo" >>> m.prop = [1, 2, 3] """ class AnyRef(Property): """ Accept all values and force reference discovery. """ @property def has_ref(self): return True #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------
30.368932
78
0.356777
9f15ec3e595e537d83146381242aa66460e42f11
197
py
Python
Contest/ABC064/d/main.py
mpses/AtCoder
9c101fcc0a1394754fcf2385af54b05c30a5ae2a
[ "CC0-1.0" ]
null
null
null
Contest/ABC064/d/main.py
mpses/AtCoder
9c101fcc0a1394754fcf2385af54b05c30a5ae2a
[ "CC0-1.0" ]
null
null
null
Contest/ABC064/d/main.py
mpses/AtCoder
9c101fcc0a1394754fcf2385af54b05c30a5ae2a
[ "CC0-1.0" ]
null
null
null
#!/usr/bin/env python3 input() s = input() L = R = 0 for t in s: if t == "(": R += 1 else: if R: R -= 1 else: L += 1 print("("*L + s + ")"*R)
15.153846
24
0.329949
ea019b4e3a69ed6d00ebb2a624c0f55704669fce
725
py
Python
var/spack/repos/builtin/packages/r-scrime/package.py
jeanbez/spack
f4e51ce8f366c85bf5aa0eafe078677b42dae1ba
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/r-scrime/package.py
jeanbez/spack
f4e51ce8f366c85bf5aa0eafe078677b42dae1ba
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
8
2021-11-09T20:28:40.000Z
2022-03-15T03:26:33.000Z
var/spack/repos/builtin/packages/r-scrime/package.py
jeanbez/spack
f4e51ce8f366c85bf5aa0eafe078677b42dae1ba
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
2
2019-02-08T20:37:20.000Z
2019-03-31T15:19:26.000Z
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack.package import * class RScrime(RPackage): """Analysis of High-Dimensional Categorical Data Such as SNP Data. Tools for the analysis of high-dimensional data developed/implemented at the group "Statistical Complexity Reduction In Molecular Epidemiology" (SCRIME). Main focus is on SNP data. But most of the functions can also be applied to other types of categorical data.""" cran = "scrime" version('1.3.5', sha256='5d97d3e57d8eb30709340fe572746029fd139456d7a955421c4e3aa75d825578')
36.25
95
0.764138
12dcdc6ceeee060647e272c39b26adfb1ab55d4f
11,915
py
Python
porterStemmer.py
jcob-sikorski/searchEngine
db8b6295f81bc617e81abf5f8a8280f1f2073fd8
[ "MIT" ]
null
null
null
porterStemmer.py
jcob-sikorski/searchEngine
db8b6295f81bc617e81abf5f8a8280f1f2073fd8
[ "MIT" ]
null
null
null
porterStemmer.py
jcob-sikorski/searchEngine
db8b6295f81bc617e81abf5f8a8280f1f2073fd8
[ "MIT" ]
null
null
null
import sys class PorterStemmer: def __init__(self): """The main part of the stemming algorithm starts here. b is a buffer holding a word to be stemmed. The letters are in b[k0], b[k0+1] ... ending at b[k]. In fact k0 = 0 in this demo program. k is readjusted downwards as the stemming progresses. Zero termination is not in fact used in the algorithm. Note that only lower case sequences are stemmed. Forcing to lower case should be done before stem(...) is called. """ self.b = "" # buffer for word to be stemmed self.k = 0 self.k0 = 0 self.j = 0 # j is a general offset into the string def cons(self, i): """cons(i) is TRUE <=> b[i] is a consonant.""" if self.b[i] == 'a' or self.b[i] == 'e' or self.b[i] == 'i' or self.b[i] == 'o' or self.b[i] == 'u': return 0 if self.b[i] == 'y': if i == self.k0: return 1 else: return (not self.cons(i - 1)) return 1 def m(self): """m() measures the number of consonant sequences between k0 and j. if c is a consonant sequence and v a vowel sequence, and <..> indicates arbitrary presence, <c><v> gives 0 <c>vc<v> gives 1 <c>vcvc<v> gives 2 <c>vcvcvc<v> gives 3 .... """ n = 0 i = self.k0 while 1: if i > self.j: return n if not self.cons(i): break i = i + 1 i = i + 1 while 1: while 1: if i > self.j: return n if self.cons(i): break i = i + 1 i = i + 1 n = n + 1 while 1: if i > self.j: return n if not self.cons(i): break i = i + 1 i = i + 1 def vowelinstem(self): """vowelinstem() is TRUE <=> k0,...j contains a vowel""" for i in range(self.k0, self.j + 1): if not self.cons(i): return 1 return 0 def doublec(self, j): """doublec(j) is TRUE <=> j,(j-1) contain a double consonant.""" if j < (self.k0 + 1): return 0 if (self.b[j] != self.b[j-1]): return 0 return self.cons(j) def cvc(self, i): """cvc(i) is TRUE <=> i-2,i-1,i has the form consonant - vowel - consonant and also if the second c is not w,x or y. this is used when trying to restore an e at the end of a short e.g. cav(e), lov(e), hop(e), crim(e), but snow, box, tray. """ if i < (self.k0 + 2) or not self.cons(i) or self.cons(i-1) or not self.cons(i-2): return 0 ch = self.b[i] if ch == 'w' or ch == 'x' or ch == 'y': return 0 return 1 def ends(self, s): """ends(s) is TRUE <=> k0,...k ends with the string s.""" length = len(s) if s[length - 1] != self.b[self.k]: # tiny speed-up return 0 if length > (self.k - self.k0 + 1): return 0 if self.b[self.k-length+1:self.k+1] != s: return 0 self.j = self.k - length return 1 def setto(self, s): """setto(s) sets (j+1),...k to the characters in the string s, readjusting k.""" length = len(s) self.b = self.b[:self.j+1] + s + self.b[self.j+length+1:] self.k = self.j + length def r(self, s): """r(s) is used further down.""" if self.m() > 0: self.setto(s) def step1ab(self): """step1ab() gets rid of plurals and -ed or -ing. e.g. caresses -> caress ponies -> poni ties -> ti caress -> caress cats -> cat feed -> feed agreed -> agree disabled -> disable matting -> mat mating -> mate meeting -> meet milling -> mill messing -> mess meetings -> meet """ if self.b[self.k] == 's': if self.ends("sses"): self.k = self.k - 2 elif self.ends("ies"): self.setto("i") elif self.b[self.k - 1] != 's': self.k = self.k - 1 if self.ends("eed"): if self.m() > 0: self.k = self.k - 1 elif (self.ends("ed") or self.ends("ing")) and self.vowelinstem(): self.k = self.j if self.ends("at"): self.setto("ate") elif self.ends("bl"): self.setto("ble") elif self.ends("iz"): self.setto("ize") elif self.doublec(self.k): self.k = self.k - 1 ch = self.b[self.k] if ch == 'l' or ch == 's' or ch == 'z': self.k = self.k + 1 elif (self.m() == 1 and self.cvc(self.k)): self.setto("e") def step1c(self): """step1c() turns terminal y to i when there is another vowel in the stem.""" if (self.ends("y") and self.vowelinstem()): self.b = self.b[:self.k] + 'i' + self.b[self.k+1:] def step2(self): """step2() maps double suffices to single ones. so -ization ( = -ize plus -ation) maps to -ize etc. note that the string before the suffix must give m() > 0. """ if self.b[self.k - 1] == 'a': if self.ends("ational"): self.r("ate") elif self.ends("tional"): self.r("tion") elif self.b[self.k - 1] == 'c': if self.ends("enci"): self.r("ence") elif self.ends("anci"): self.r("ance") elif self.b[self.k - 1] == 'e': if self.ends("izer"): self.r("ize") elif self.b[self.k - 1] == 'l': if self.ends("bli"): self.r("ble") # --DEPARTURE-- # To match the published algorithm, replace this phrase with # if self.ends("abli"): self.r("able") elif self.ends("alli"): self.r("al") elif self.ends("entli"): self.r("ent") elif self.ends("eli"): self.r("e") elif self.ends("ousli"): self.r("ous") elif self.b[self.k - 1] == 'o': if self.ends("ization"): self.r("ize") elif self.ends("ation"): self.r("ate") elif self.ends("ator"): self.r("ate") elif self.b[self.k - 1] == 's': if self.ends("alism"): self.r("al") elif self.ends("iveness"): self.r("ive") elif self.ends("fulness"): self.r("ful") elif self.ends("ousness"): self.r("ous") elif self.b[self.k - 1] == 't': if self.ends("aliti"): self.r("al") elif self.ends("iviti"): self.r("ive") elif self.ends("biliti"): self.r("ble") elif self.b[self.k - 1] == 'g': # --DEPARTURE-- if self.ends("logi"): self.r("log") # To match the published algorithm, delete this phrase def step3(self): """step3() dels with -ic-, -full, -ness etc. similar strategy to step2.""" if self.b[self.k] == 'e': if self.ends("icate"): self.r("ic") elif self.ends("ative"): self.r("") elif self.ends("alize"): self.r("al") elif self.b[self.k] == 'i': if self.ends("iciti"): self.r("ic") elif self.b[self.k] == 'l': if self.ends("ical"): self.r("ic") elif self.ends("ful"): self.r("") elif self.b[self.k] == 's': if self.ends("ness"): self.r("") def step4(self): """step4() takes off -ant, -ence etc., in context <c>vcvc<v>.""" if self.b[self.k - 1] == 'a': if self.ends("al"): pass else: return elif self.b[self.k - 1] == 'c': if self.ends("ance"): pass elif self.ends("ence"): pass else: return elif self.b[self.k - 1] == 'e': if self.ends("er"): pass else: return elif self.b[self.k - 1] == 'i': if self.ends("ic"): pass else: return elif self.b[self.k - 1] == 'l': if self.ends("able"): pass elif self.ends("ible"): pass else: return elif self.b[self.k - 1] == 'n': if self.ends("ant"): pass elif self.ends("ement"): pass elif self.ends("ment"): pass elif self.ends("ent"): pass else: return elif self.b[self.k - 1] == 'o': if self.ends("ion") and (self.b[self.j] == 's' or self.b[self.j] == 't'): pass elif self.ends("ou"): pass # takes care of -ous else: return elif self.b[self.k - 1] == 's': if self.ends("ism"): pass else: return elif self.b[self.k - 1] == 't': if self.ends("ate"): pass elif self.ends("iti"): pass else: return elif self.b[self.k - 1] == 'u': if self.ends("ous"): pass else: return elif self.b[self.k - 1] == 'v': if self.ends("ive"): pass else: return elif self.b[self.k - 1] == 'z': if self.ends("ize"): pass else: return else: return if self.m() > 1: self.k = self.j def step5(self): """step5() removes a final -e if m() > 1, and changes -ll to -l if m() > 1. """ self.j = self.k if self.b[self.k] == 'e': a = self.m() if a > 1 or (a == 1 and not self.cvc(self.k-1)): self.k = self.k - 1 if self.b[self.k] == 'l' and self.doublec(self.k) and self.m() > 1: self.k = self.k -1 def stem(self, p, i, j): """In stem(p,i,j), p is a char pointer, and the string to be stemmed is from p[i] to p[j] inclusive. Typically i is zero and j is the offset to the last character of a string, (p[j+1] == '\0'). The stemmer adjusts the characters p[i] ... p[j] and returns the new end-point of the string, k. Stemming never increases word length, so i <= k <= j. To turn the stemmer into a module, declare 'stem' as extern, and delete the remainder of this file. """ # copy the parameters into statics self.b = p self.k = j self.k0 = i if self.k <= self.k0 + 1: return self.b # --DEPARTURE-- # With this line, strings of length 1 or 2 don't go through the # stemming process, although no mention is made of this in the # published algorithm. Remove the line to match the published # algorithm. self.step1ab() self.step1c() self.step2() self.step3() self.step4() self.step5() return self.b[self.k0:self.k+1] if __name__ == '__main__': p = PorterStemmer() if len(sys.argv) > 1: for f in sys.argv[1:]: infile = open(f, 'r') while 1: output = '' word = '' line = infile.readline() if line == '': break for c in line: if c.isalpha(): word += c.lower() else: if word: output += p.stem(word, 0,len(word)-1) word = '' output += c.lower() print(output, end=" ") infile.close()
35.356083
108
0.450441
50259feea42b50c6b199d86006f2937571486739
10,148
py
Python
spikeinterface/sortingcomponents/motion_correction.py
chyumin/spikeinterface
12b7863684b705e3d0ae8165bb3009143c70530c
[ "MIT" ]
null
null
null
spikeinterface/sortingcomponents/motion_correction.py
chyumin/spikeinterface
12b7863684b705e3d0ae8165bb3009143c70530c
[ "MIT" ]
null
null
null
spikeinterface/sortingcomponents/motion_correction.py
chyumin/spikeinterface
12b7863684b705e3d0ae8165bb3009143c70530c
[ "MIT" ]
null
null
null
import numpy as np import scipy.interpolate import sklearn from tqdm import tqdm import sklearn.metrics from spikeinterface.toolkit.preprocessing.basepreprocessor import BasePreprocessor, BasePreprocessorSegment try: import numba HAVE_NUMBA = True except ImportError: HAVE_NUMBA = False def correct_motion_on_peaks(peaks, peak_locations, times, motion, temporal_bins, spatial_bins, direction='y', progress_bar=False): """ Given the output of estimate_motion(), apply inverse motion on peak location. Parameters ---------- peaks: np.array peaks vector peak_locations: np.array peaks location vector times: np.array times vector of recording motion: np.array 2D motion.shape[0] equal temporal_bins.shape[0] motion.shape[1] equal 1 when "rigid" motion equal temporal_bins.shape[0] when "none rigid" temporal_bins: np.array Temporal bins in second. spatial_bins: None or np.array Bins for non-rigid motion. If None, rigid motion is used Returns ------- corrected_peak_locations: np.array Motion-corrected peak locations """ corrected_peak_locations = peak_locations.copy() if spatial_bins is None: # rigid motion interpolation 1D sample_bins = np.searchsorted(times, temporal_bins) f = scipy.interpolate.interp1d(sample_bins, motion[:, 0], bounds_error=False, fill_value="extrapolate") shift = f(peaks['sample_ind']) corrected_peak_locations[direction] -= shift else: # non rigid motion = interpolation 2D sample_bins = np.searchsorted(times, temporal_bins) f = scipy.interpolate.RegularGridInterpolator((sample_bins, spatial_bins), motion, method='linear', bounds_error=False, fill_value=None) shift = f(list(zip(peaks['sample_ind'], peak_locations[direction]))) corrected_peak_locations[direction] -= shift return corrected_peak_locations def correct_motion_on_traces(traces, times, channel_locations, motion, temporal_bins, spatial_bins, direction=1,): """ Apply inverse motion with spatial interpolation on traces. Traces can be full traces, but also waveforms snippets. Parameters ---------- traces : np.array Trace snippet (num_samples, num_channels) channel_location: np.array 2d Channel location with shape (n, 2) or (n, 3) motion: np.array 2D motion.shape[0] equal temporal_bins.shape[0] motion.shape[1] equal 1 when "rigid" motion equal temporal_bins.shape[0] when "none rigid" temporal_bins: np.array Temporal bins in second. spatial_bins: None or np.array Bins for non-rigid motion. If None, rigid motion is used direction: int in (0, 1, 2) Dimension of shift in channel_locations. Returns ------- channel_motions: np.array Shift over time by channel Shape (times.shape[0], channel_location.shape[0]) """ assert HAVE_NUMBA assert times.shape[0] == traces.shape[0] traces_corrected = np.zeros_like(traces) # print(traces_corrected.shape) if spatial_bins is None: # rigid motion interpolation 1D raise NotImplementedError else: # non rigid motion = interpolation 2D # regroup times by closet temporal_bins bin_inds = _get_closest_ind(temporal_bins, times) # inperpolation kernel will be the same per temporal bin for bin_ind in np.unique(bin_inds): # Step 1 : interpolation channel motion for this temporal bin f = scipy.interpolate.interp1d(spatial_bins, motion[bin_ind, :], kind='linear', axis=0, bounds_error=False, fill_value="extrapolate") locs = channel_locations[:, direction] channel_motions = f(locs) channel_locations_moved = channel_locations.copy() channel_locations_moved[:, direction] += channel_motions # Step 2 : interpolate trace # interpolation is done with Inverse Distance Weighted # because it is simple to implement # Instead vwe should use use the convex hull, Delaunay triangulation http://www.qhull.org/ # scipy.interpolate.LinearNDInterpolator and qhull.Delaunay should help for this distances = sklearn.metrics.pairwise_distances(channel_locations_moved, channel_locations, metric='euclidean') num_chans = channel_locations.shape[0] num_closest = 3 closest_chans = np.zeros((num_chans, num_closest), dtype='int64') weights = np.zeros((num_chans, num_closest), dtype='float32') for c in range(num_chans): ind_sorted = np.argsort(distances[c, ]) closest_chans[c, :] = ind_sorted[:num_closest] dists = distances[c, ind_sorted[:num_closest]] if dists[0] == 0.: # no interpolation the first have zeros distance weights[c, :] = 0 weights[c, 0] = 1 else: # Inverse Distance Weighted w = 1 / dists w /= np.sum(w) weights[c, :] = w my_inverse_weighted_distance_interpolation(traces, traces_corrected, closest_chans, weights) return traces_corrected if HAVE_NUMBA: @numba.jit(parallel=False) def my_inverse_weighted_distance_interpolation(traces, traces_corrected, closest_chans, weights): num_sample = traces.shape[0] num_chan = traces.shape[1] num_closest = closest_chans.shape[1] for sample_ind in range(num_sample): for chan_ind in range(num_chan): v = 0 for i in range(num_closest): other_chan = closest_chans[chan_ind, i] v += weights[chan_ind, i] * traces[sample_ind, other_chan] traces_corrected[sample_ind, chan_ind] = v def _get_closest_ind(array, values): # https://stackoverflow.com/questions/2566412/find-nearest-value-in-numpy-array # get insert positions idxs = np.searchsorted(array, values, side="left") # find indexes where previous index is closer prev_idx_is_less = ((idxs == len(array)) | (np.fabs(values - array[np.maximum(idxs-1, 0)]) < np.fabs(values - array[np.minimum(idxs, len(array)-1)]))) idxs[prev_idx_is_less] -= 1 return idxs class CorrectMotionRecording(BasePreprocessor): """ Recording that corrects motion on-the-fly given a rigid or non-rigid motion vector estimation. This internally applies for every time bin an inverse weighted distance interpolation on the original after reverse the motion. This is still experimental at the moment. estimate_motion() must be call before this to get the motion vector. Parameters ---------- recording: Recording The parent recording. motion: np.array 2D motion.shape[0] equal temporal_bins.shape[0] motion.shape[1] equal 1 when "rigid" motion equal temporal_bins.shape[0] when "none rigid" temporal_bins: np.array Temporal bins in second. spatial_bins: None or np.array Bins for non-rigid motion. If None, rigid motion is used direction: int in (0, 1, 2) Dimension of shift in channel_locations. Returns ------- Corrected_recording: CorrectMotionRecording Recording after motion correction """ name = 'correct_motion' def __init__(self, recording, motion, temporal_bins, spatial_bins, direction=1): assert recording.get_num_segments() == 1, 'correct is handle only for one segment for the moment' BasePreprocessor.__init__(self, recording) channel_locations = recording.get_channel_locations() for parent_segment in recording._recording_segments: rec_segment = CorrectMotionRecordingSegment(parent_segment, channel_locations, motion, temporal_bins, spatial_bins, direction) self.add_recording_segment(rec_segment) self._kwargs = dict(recording=recording.to_dict(), motion=motion, temporal_bins=temporal_bins, spatial_bins=spatial_bins, direction=direction) # self.is_dumpable= False class CorrectMotionRecordingSegment(BasePreprocessorSegment): def __init__(self, parent_recording_segment, channel_locations, motion, temporal_bins, spatial_bins, direction): BasePreprocessorSegment.__init__(self, parent_recording_segment) self.channel_locations = channel_locations self.motion = motion self.temporal_bins = temporal_bins self.spatial_bins = spatial_bins self.direction = direction def get_traces(self, start_frame, end_frame, channel_indices): if self.time_vector is not None: times = np.asarray(self.time_vector[start_frame:end_frame]) else: times = np.arange(end_frame - start_frame, dtype='float64') times /= self.sampling_frequency t0 = start_frame / self.sampling_frequency if self.t_start is not None: t0 = t0 + self.t_start times += t0 traces = self.parent_recording_segment.get_traces(start_frame, end_frame, channel_indices=None) # print(traces.shape, times.shape, self.channel_locations, self.motion, self.temporal_bins, self.spatial_bins) trace2 = correct_motion_on_traces(traces, times, self.channel_locations, self.motion, self.temporal_bins, self.spatial_bins, direction=self.direction) if trace2 is not None: trace2 = trace2[:, channel_indices] return trace2
39.640625
118
0.642787
aa1144058ab1a707dc8a629c2b87c94bb797cad6
2,984
py
Python
problem_3.py
johangenis/problems_vs_algorithms
9925d7319de849fd7814cf87050232c22d8c2a96
[ "MIT" ]
null
null
null
problem_3.py
johangenis/problems_vs_algorithms
9925d7319de849fd7814cf87050232c22d8c2a96
[ "MIT" ]
null
null
null
problem_3.py
johangenis/problems_vs_algorithms
9925d7319de849fd7814cf87050232c22d8c2a96
[ "MIT" ]
null
null
null
def heapsort(arr): arr_len = len(arr) for i in range(arr_len - 1, -1, -1): heapify(arr, len(arr), i) # Swap the top element in heap with last element in array arr[0], arr[i] = arr[i], arr[0] def heapify(arr, n, i): """ :param: arr - array to heapify n -- number of elements in the array i -- index of the current node TODO: Converts an array (in place) into a maxheap, a complete binary tree with the largest values at the top """ for i in range(1, i + 1): # Perform heapify processing data_index = i while data_index > 0: parent_index = (data_index - 1) // 2 if arr[data_index] > arr[parent_index]: arr[data_index], arr[parent_index] = arr[parent_index], arr[data_index] data_index = parent_index else: break def rearrange_digits(input_list): """ Rearrange Array Elements so as to form two number such that their sum is maximum. Args: input_list(list): Input List Returns: (int),(int): Two maximum sums """ # Handle empty input list if len(input_list) == 0: return [] # Step 1 - perform heap sort on the input list heapsort(input_list) # Step 2 - base on the sorted list, construct the 2 numbers so their sum is maximum number_1_list = list() number_2_list = list() input_list_len = len(input_list) # If the no. of digits is odd, then set the first digit of the first number as if input_list_len % 2 == 1: digit = input_list.pop() number_1_list.append(digit) # Append the digits in input list to the 2 numbers in an interleave manner input_list_len = len(input_list) for i in range(input_list_len, 0, -1): digit = input_list.pop() if i % 2 == 0: number_1_list.append(digit) else: number_2_list.append(digit) # Convert the 2 list of digits into a string number_1_str = ''.join(str(n) for n in number_1_list) number_2_str = ''.join(str(n) for n in number_2_list) # Convert the number string to int number_1 = int(number_1_str) number_2 = int(number_2_str) return [number_1, number_2] def test_function(test_case): output = rearrange_digits(test_case[0]) solution = test_case[1] if sum(output) == sum(solution): print("Pass") else: print("Fail") # Test case 1 - un-sorted array as input print("Calling function with un-sorted array: [4, 6, 2, 5, 9, 8]") test_case_1 = [[4, 6, 2, 5, 9, 8], [964, 852]] # Should print pass as the output should be [964, 852] test_function(test_case_1) # Test case 2 - sorted array as input test_case_2 = [[1, 2, 3, 4, 5], [542, 31]] # Should print pass as the output should be [542, 31] test_function(test_case_2) # Test case 3 - empty array as input test_case_3 = [[], []] # Should print pass as the output should be [] test_function(test_case_3)
29.544554
112
0.62567
22ec2b60ed48f41c8cf56978f53627d7dbc08996
869
py
Python
tests/unit/test_vcs_mercurial.py
rogerhil/pip
7616583dbb2dcbda5a19d78873642d6751fbf017
[ "MIT" ]
7,089
2015-01-01T10:48:04.000Z
2022-03-31T08:47:02.000Z
tests/unit/test_vcs_mercurial.py
rogerhil/pip
7616583dbb2dcbda5a19d78873642d6751fbf017
[ "MIT" ]
8,417
2015-01-01T13:03:16.000Z
2022-03-31T17:40:27.000Z
tests/unit/test_vcs_mercurial.py
rogerhil/pip
7616583dbb2dcbda5a19d78873642d6751fbf017
[ "MIT" ]
2,663
2015-01-02T04:02:12.000Z
2022-03-30T02:30:46.000Z
""" Contains functional tests of the Mercurial class. """ import configparser import os from pip._internal.utils.misc import hide_url from pip._internal.vcs.mercurial import Mercurial from tests.lib import need_mercurial from tests.lib.path import Path @need_mercurial def test_mercurial_switch_updates_config_file_when_found(tmpdir: Path) -> None: hg = Mercurial() options = hg.make_rev_options() hg_dir = os.path.join(tmpdir, ".hg") os.mkdir(hg_dir) config = configparser.RawConfigParser() config.add_section("paths") config.set("paths", "default", "old_url") hgrc_path = os.path.join(hg_dir, "hgrc") with open(hgrc_path, "w") as f: config.write(f) hg.switch(tmpdir, hide_url("new_url"), options) config.read(hgrc_path) default_path = config.get("paths", "default") assert default_path == "new_url"
25.558824
79
0.715765
0907706108a486018d923d966cbe435c34c93499
158
py
Python
tests/model_control/detailed/transf_BoxCox/model_control_one_enabled_BoxCox_PolyTrend_Seasonal_Hour_SVR.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
null
null
null
tests/model_control/detailed/transf_BoxCox/model_control_one_enabled_BoxCox_PolyTrend_Seasonal_Hour_SVR.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
1
2019-11-30T23:39:38.000Z
2019-12-01T04:34:35.000Z
tests/model_control/detailed/transf_BoxCox/model_control_one_enabled_BoxCox_PolyTrend_Seasonal_Hour_SVR.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
null
null
null
import pyaf.tests.model_control.test_ozone_custom_models_enabled as testmod testmod.build_model( ['BoxCox'] , ['PolyTrend'] , ['Seasonal_Hour'] , ['SVR'] );
39.5
80
0.746835
362f9a0dac1296db6e42d55e75d8a22d5b411754
4,461
py
Python
leo/plugins/leo_babel/tests/idle_time.py
leonidborisenko/leo-editor
db55bd00c94fb8501795284453891ad64ce12af9
[ "MIT" ]
null
null
null
leo/plugins/leo_babel/tests/idle_time.py
leonidborisenko/leo-editor
db55bd00c94fb8501795284453891ad64ce12af9
[ "MIT" ]
null
null
null
leo/plugins/leo_babel/tests/idle_time.py
leonidborisenko/leo-editor
db55bd00c94fb8501795284453891ad64ce12af9
[ "MIT" ]
null
null
null
#!/usr/bin/python #coding=utf-8 #@+leo-ver=5-thin #@+node:bob.20180206123613.1: * @file leo_babel/tests/idle_time.py #@@first #@@first #@@language python #@@tabwidth -4 #@+<< imports >> #@+node:bob.20180206123613.2: ** << imports >> import os import time # import traceback import leo.core.leoGlobals as leoG assert leoG #@-<< imports >> #@+<< version >> #@+node:bob.20180206123613.3: ** << version >> version = '1.0' #@-<< version >> #@+others #@+node:bob.20180206123725.1: ** class IdleTime class IdleTime: """ This is an implementation of the Leo-Editor class IdleTime() for use with Leo-Bridge. """ #@+others #@+node:bob.20180206125732.1: *3* Class Parameters list_active = list() list_inactive = list() #@+node:bob.20180206123842.1: *3* __init__() def __init__(self, handler, delay=500, tag=None): """ Create an Idle Time Object Instance Arguments: handler: Function to execute when idle delay: Minimum time in milliseconds between calls to handler tag: Identifier for the purpose of the handler Returns: None """ self._handler = handler self._delay = delay / 1000. self._tag = tag self._active = False IdleTime.list_inactive.append(self) #traceStk = [lix.strip() for lix in traceback.format_stack()] #leoG.trace('Trace: {0}'.format(traceStk[-2])) #leoG.trace('IdleTime() {0}'.format(id(self))) #@+node:bob.20180206124140.1: *3* start() def start(self): """ Start an Idle Time Instance Arguments: self: IdleTime instance Returns: None """ #leoG.trace(id(self)) IdleTime.list_inactive.remove(self) self._nexttime = time.clock() IdleTime.list_active.insert(0, self) self._active = True #@+node:bob.20180206125022.1: *3* stop() def stop(self): """ Stop an Idle Time Instance Arguments: self: IdleTime instance Returns: None """ #leoG.trace(id(self)) if self._active: IdleTime.list_active.remove(self) IdleTime.list_inactive.append(self) self._active = False #@+node:bob.20180206123934.1: *3* idle() Class method @classmethod def idle(cls): """ Application idle -- Except for Idle Time handler execution Arguments: cls: The IdleTime class object Returns: None """ #traceStk = [lix.strip() for lix in traceback.format_stack()] #leoG.trace('Trace: {0}'.format(traceStk[-2])) itoLast = 0 while True: if not cls.list_active: break # pylint: disable=no-member os.sched_yield() timeCur = time.clock() idleTimeObj = cls.list_active.pop(0) #leoG.trace('Popped {0} leaving {1}'.format(id(idleTimeObj), [id(ent) for ent in cls.list_active])) if timeCur >= idleTimeObj._nexttime: nexttime = timeCur + idleTimeObj._delay idleTimeObj._nexttime = nexttime for idx, idleTimeObj2 in enumerate(cls.list_active): if nexttime < idleTimeObj2._nexttime: #leoG.trace('Insert at {0}'.format(idx)) cls.list_active.insert(idx, idleTimeObj) break else: #leoG.trace('Append') cls.list_active.append(idleTimeObj) if itoLast != idleTimeObj: itoLast = idleTimeObj #leoG.trace('Run {0} cls.list_active={1}'.format(id(idleTimeObj), [id(ent) for ent in cls.list_active])) idleTimeObj._handler(idleTimeObj) #leoG.trace('Handler return. cls.list_active={0}'.format([id(ent) for ent in cls.list_active])) else: # Nothing to run yet cls.list_active.insert(0, idleTimeObj) #leoG.trace('Exiting cls.list_active={0}'.format([id(ent) for ent in cls.list_active])) #@-others #@+node:bob.20180206123613.16: ** main() def main(): """ Command Line Program Entry point """ raise NotImplementedError('{0} is not a command line program.'.format(__file__)) #@-others if __name__ == "__main__": main() #@-leo
30.979167
124
0.566465
151de6f670ffc75d29ac25cd6f2024aa0810efaa
6,048
py
Python
utils.py
ethanluoyc/compile-jax
65bea174b0b546b27ef17774bca90e0f25b11f7d
[ "MIT" ]
null
null
null
utils.py
ethanluoyc/compile-jax
65bea174b0b546b27ef17774bca90e0f25b11f7d
[ "MIT" ]
null
null
null
utils.py
ethanluoyc/compile-jax
65bea174b0b546b27ef17774bca90e0f25b11f7d
[ "MIT" ]
null
null
null
"""Utility functions.""" import numpy as np import jax import jax.numpy as jnp from jax import nn, random EPS = 1e-17 NEG_INF = -1e30 def cross_entropy(logits, labels, reduction='none'): sequence_length, batch_size = logits.shape[:2] targets = jax.nn.one_hot(labels, logits.shape[-1]) return -jnp.sum(targets * jax.nn.log_softmax(logits, -1), -1) def gumbel_sample(rng, shape): """Sample Gumbel noise.""" uniform = random.uniform(rng, shape=shape) return -jnp.log(EPS - jnp.log(uniform + EPS)) def gumbel_softmax_sample(rng, logits, temp=1.): """Sample from the Gumbel softmax / concrete distribution.""" gumbel_noise = gumbel_sample(rng, logits.shape) return nn.softmax((logits + gumbel_noise) / temp, axis=-1) def gaussian_sample(rng, mu, log_var): """Sample from Gaussian distribution.""" gaussian_noise = random.normal(rng, mu.shape) return mu + jnp.exp(log_var * 0.5) * gaussian_noise def kl_gaussian(mu, log_var): """KL divergence between Gaussian posterior and standard normal prior.""" return -0.5 * jnp.sum(1 + log_var - jnp.square(mu) - jnp.exp(log_var), axis=1) def kl_categorical_uniform(preds): """KL divergence between categorical distribution and uniform prior.""" kl_div = preds * jnp.log(preds + EPS) # Constant term omitted. return kl_div.sum(1) def kl_categorical(preds, log_prior): """KL divergence between two categorical distributions.""" kl_div = preds * (jnp.log(preds + EPS) - log_prior) return kl_div.sum(1) def poisson_categorical_log_prior(length, rate): """Categorical prior populated with log probabilities of Poisson dist.""" rate = jnp.array(rate, dtype=jnp.float32) values = jnp.expand_dims(jnp.arange(1, length + 1, dtype=jnp.float32), 0) log_prob_unnormalized = jax.lax.lgamma( jnp.log(rate) * values - rate - (values + 1)) # TODO(tkipf): Length-sensitive normalization. return nn.log_softmax(log_prob_unnormalized, axis=1) # Normalize. def log_cumsum(probs, axis=1): """Calculate log of inclusive cumsum.""" return jnp.log(jnp.cumsum(probs, axis=axis) + EPS) def generate_toy_data(num_symbols=5, num_segments=3, max_segment_len=5): """Generate toy data sample with repetition of symbols (EOS symbol: 0).""" seq = [] symbols = np.random.choice( np.arange(1, num_symbols + 1), num_segments, replace=False) for seg_id in range(num_segments): segment_len = np.random.choice(np.arange(1, max_segment_len)) seq += [symbols[seg_id]] * segment_len seq += [0] return np.array(seq, dtype=jnp.int64) def get_lstm_initial_state(batch_size, hidden_dim): """Get empty (zero) initial states for LSTM.""" hidden_state = jnp.zeros((batch_size, hidden_dim)) cell_state = jnp.zeros((batch_size, hidden_dim)) return hidden_state, cell_state def get_segment_probs(all_b_samples, all_masks, segment_id): """Get segment probabilities for a particular segment ID.""" neg_cumsum = 1 - jnp.cumsum(all_b_samples[segment_id], axis=1) if segment_id > 0: return neg_cumsum * all_masks[segment_id - 1] else: return neg_cumsum def get_losses( inputs, outputs, args, beta_b=.1, beta_z=.1, prior_rate=3., ): """Get losses (NLL, KL divergences and neg. ELBO). Args: inputs: Padded input sequences. outputs: CompILE model output tuple. args: Argument dict from `ArgumentParser`. beta_b: Scaling factor for KL term of boundary variables (b). beta_z: Scaling factor for KL term of latents (z). prior_rate: Rate (lambda) for Poisson prior. """ targets = inputs.reshape(-1) all_encs, all_recs, all_masks, all_b, all_z = outputs input_dim = args.num_symbols + 1 nll = 0. kl_z = 0. for seg_id in range(args.num_segments): seg_prob = get_segment_probs(all_b['samples'], all_masks, seg_id) preds = all_recs[seg_id].reshape(-1, input_dim) seg_loss = cross_entropy( preds, targets, reduction='none').reshape(-1, inputs.shape[1]) # print(seg_loss.shape, seg_prob.shape) # Ignore EOS token (last sequence element) in loss. nll += (seg_loss[:, :-1] * seg_prob[:, :-1]).sum(1).mean(0) # KL divergence on z. if args.latent_dist == 'gaussian': mu, log_var = jnp.split(all_z['logits'][seg_id], 2, axis=1) kl_z += kl_gaussian(mu, log_var).mean(0) elif args.latent_dist == 'concrete': kl_z += kl_categorical_uniform( nn.softmax(all_z['logits'][seg_id], axis=-1)).mean(0) else: raise ValueError('Invalid argument for `latent_dist`.') # KL divergence on b (first segment only, ignore first time step). # TODO(tkipf): Implement alternative prior on soft segment length. probs_b = nn.softmax(all_b['logits'][0], axis=-1) log_prior_b = poisson_categorical_log_prior(probs_b.shape[1], prior_rate) kl_b = args.num_segments * kl_categorical(probs_b[:, 1:], log_prior_b[:, 1:]).mean(0) loss = nll + beta_z * kl_z + beta_b * kl_b return loss, nll, kl_z, kl_b def get_reconstruction_accuracy(inputs, outputs, args): """Calculate reconstruction accuracy (averaged over sequence length).""" all_encs, all_recs, all_masks, all_b, all_z = outputs batch_size = inputs.shape[0] rec_seq = [] rec_acc = 0. for sample_idx in range(batch_size): prev_boundary_pos = 0 rec_seq_parts = [] for seg_id in range(args.num_segments): boundary_pos = jnp.argmax(all_b['samples'][seg_id], axis=-1)[sample_idx] if prev_boundary_pos > boundary_pos: boundary_pos = prev_boundary_pos seg_rec_seq = jnp.argmax(all_recs[seg_id], axis=-1) rec_seq_parts.append(seg_rec_seq[sample_idx, prev_boundary_pos:boundary_pos]) prev_boundary_pos = boundary_pos rec_seq.append(jnp.concatenate(rec_seq_parts)) cur_length = rec_seq[sample_idx].shape[0] matches = rec_seq[sample_idx] == inputs[sample_idx, :cur_length] rec_acc += matches.astype(jnp.float32).mean() rec_acc /= batch_size return rec_acc, rec_seq
33.787709
80
0.689319
d23ae359ed05a2f17804adca3b27a947d9003f6c
499
py
Python
plotly/validators/mesh3d/_scene.py
gnestor/plotly.py
a8ae062795ddbf9867b8578fe6d9e244948c15ff
[ "MIT" ]
12
2020-04-18T18:10:22.000Z
2021-12-06T10:11:15.000Z
plotly/validators/mesh3d/_scene.py
gnestor/plotly.py
a8ae062795ddbf9867b8578fe6d9e244948c15ff
[ "MIT" ]
27
2020-04-28T21:23:12.000Z
2021-06-25T15:36:38.000Z
plotly/validators/mesh3d/_scene.py
gnestor/plotly.py
a8ae062795ddbf9867b8578fe6d9e244948c15ff
[ "MIT" ]
6
2020-04-18T23:07:08.000Z
2021-11-18T07:53:06.000Z
import _plotly_utils.basevalidators class SceneValidator(_plotly_utils.basevalidators.SubplotidValidator): def __init__(self, plotly_name='scene', parent_name='mesh3d', **kwargs): super(SceneValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, dflt=kwargs.pop('dflt', 'scene'), edit_type=kwargs.pop('edit_type', 'calc+clearAxisTypes'), role=kwargs.pop('role', 'info'), **kwargs )
33.266667
76
0.641283
85d391f7bec3296b0d2909766e165b7e58ed9c44
59
py
Python
sis-inf.py
jorgegene/sis-inf-project
ed97162a828abb5c3c2013c33c6511e2ae0b6efd
[ "MIT" ]
null
null
null
sis-inf.py
jorgegene/sis-inf-project
ed97162a828abb5c3c2013c33c6511e2ae0b6efd
[ "MIT" ]
null
null
null
sis-inf.py
jorgegene/sis-inf-project
ed97162a828abb5c3c2013c33c6511e2ae0b6efd
[ "MIT" ]
null
null
null
from app import app, db from app.models import User, Poster
29.5
35
0.79661
6a2c86f09a1cd21b272da4436eeae50fb0865cd2
17,527
py
Python
Modelling Scenarios/scenario forecast folders/Epidemic Modelling v0710/metrics/COVID19_r0.py
ec-jrc/COVID-19
c9ef6ca3ae69edc8ba77b9f99d4a6875416136aa
[ "CC-BY-4.0" ]
43
2020-04-23T08:46:49.000Z
2022-03-29T07:49:50.000Z
Modelling Scenarios/scenario forecast folders/Epidemic Modelling v0710/metrics/COVID19_r0.py
ebuitragod/COVID-19
b6989fe4cf9d10bdb47be7f840036f597d293e21
[ "CC-BY-4.0" ]
44
2020-05-05T08:35:20.000Z
2022-01-13T03:29:28.000Z
Modelling Scenarios/scenario forecast folders/Epidemic Modelling v0710/metrics/COVID19_r0.py
ebuitragod/COVID-19
b6989fe4cf9d10bdb47be7f840036f597d293e21
[ "CC-BY-4.0" ]
24
2020-05-19T16:45:01.000Z
2021-12-14T06:00:59.000Z
import os, sys, getopt import pandas as pd import numpy as np import datetime from scipy import stats as sps from scipy.interpolate import interp1d # Gamma is 1/serial interval # https://wwwnc.cdc.gov/eid/article/26/7/20-0282_article # https://www.nejm.org/doi/full/10.1056/NEJMoa2001316 GAMMA = 1/7 def highest_density_interval(pmf, p=.9, debug=False): # If we pass a DataFrame, just call this recursively on the columns if(isinstance(pmf, pd.DataFrame)): return pd.DataFrame([highest_density_interval(pmf[col], p=p) for col in pmf], index=pmf.columns) cumsum = np.cumsum(pmf.values) # N x N matrix of total probability mass for each low, high total_p = cumsum - cumsum[:, None] # Return all indices with total_p > p lows, highs = (total_p > p).nonzero() # Find the smallest range (highest density) try: best = (highs - lows).argmin() except: best=highs low = pmf.index[lows[best]] high = pmf.index[highs[best]] return pd.Series([low, high], index=[f'Low_{p*100:.0f}', f'High_{p*100:.0f}']) def prepare_cases(cases, cutoff=25,step=14): new_cases = cases.diff() smoothed = new_cases.rolling(step, win_type='gaussian', min_periods=1, center=True).mean(std=2).round() idx_start = np.searchsorted(smoothed, cutoff) smoothed = smoothed.iloc[idx_start:] original = new_cases.loc[smoothed.index] #if len(smoothed)==0: # if step==7: # original,smoothed=prepare_cases(cases,cutoff,1) # else: # original=cases # smoothed=cases if len(smoothed)==0: cutoff -=1 #print (cutoff) if cutoff>0: original,smoothed=prepare_cases(cases,cutoff,step) else: original=cases smoothed=cases return original, smoothed def get_posteriors(sr, sigma=0.15): # We create an array for every possible value of Rt R_T_MAX = 12 r_t_range = np.linspace(0, R_T_MAX, R_T_MAX*100+1) # (1) Calculate Lambda lam = sr[:-1].values * np.exp(GAMMA * (r_t_range[:, None] - 1)) # (2) Calculate each day's likelihood likelihoods = pd.DataFrame( data = sps.poisson.pmf(sr[1:].values, lam), index = r_t_range, columns = sr.index[1:]) # (3) Create the Gaussian Matrix process_matrix = sps.norm(loc=r_t_range, scale=sigma ).pdf(r_t_range[:, None]) # (3a) Normalize all rows to sum to 1 process_matrix /= process_matrix.sum(axis=0) # (4) Calculate the initial prior #prior0 = sps.gamma(a=4).pdf(r_t_range) prior0 = np.ones_like(r_t_range)/len(r_t_range) prior0 /= prior0.sum() # Create a DataFrame that will hold our posteriors for each day # Insert our prior as the first posterior. #try: posteriors = pd.DataFrame( index=r_t_range, columns=sr.index, data={sr.index[0]: prior0} ) #except: # print ('error in data') # We said we'd keep track of the sum of the log of the probability # of the data for maximum likelihood calculation. log_likelihood = 0.0 # (5) Iteratively apply Bayes' rule for previous_day, current_day in zip(sr.index[:-1], sr.index[1:]): #(5a) Calculate the new prior current_prior = process_matrix @ posteriors[previous_day] #(5b) Calculate the numerator of Bayes' Rule: P(k|R_t)P(R_t) numerator = likelihoods[current_day] * current_prior #(5c) Calcluate the denominator of Bayes' Rule P(k) denominator = np.sum(numerator) # Execute full Bayes' Rule posteriors[current_day] = numerator/denominator # Add to the running sum of log likelihoods log_likelihood += np.log(denominator) return posteriors, log_likelihood def calcR0s(state_name,states,reg=''): # if states=='': # url = 'https://github.com/ec-jrc/COVID-19/raw/master/data-by-country/jrc-covid-19-all-days-by-country.csv' # states = pd.read_csv(url, # usecols=['Date', 'CountryName', 'CumulativePositive'], # parse_dates=['Date'], # index_col=['CountryName', 'Date'], # squeeze=True).sort_index() # state_name = 'Belgium' if reg=='': cases0 = states.xs(state_name).rename(f"{state_name} cases") else: cases0 = states.xs(state_name).xs(reg).rename(f"{state_name+' '+reg} cases") cases = cases0[0:len(cases0)] #print (cases) original, smoothed = prepare_cases(cases) # Note that we're fixing sigma to a value just for the example posteriors, log_likelihood = get_posteriors(smoothed, sigma=.25) # Note that this takes a while to execute - it's not the most efficient algorithm hdis = highest_density_interval(posteriors, p=.9) most_likely = posteriors.idxmax().rename('ML') # Look into why you shift -1 result = pd.concat([most_likely, hdis], axis=1) csv=result.to_csv() rows=csv.replace('\r','').split('\n') x=[];r0=[];rl=[];rh=[] for r in rows: if r.startswith('Date'):continue if r=='':continue p=r.split(',') d=datetime.datetime.strptime(p[0],'%Y-%m-%d') try: r0f=float(p[1]);rlf=float(p[2]);rhf=float(p[3]) r0.append(r0f) rl.append(rlf) rh.append(rhf) x.append(d) except: #print ('error in data for ',d,r) r=r #print ('AA',np.shape(x),np.shape(r0),p) return x,r0,rl,rh, csv #result.to_csv(state_name+'rt.csv') def calcR0(cou): if cou=='Czech_Republic': cou=cou.replace("_"," ") #!!! PB url = 'https://github.com/ec-jrc/COVID-19/raw/master/data-by-country/jrc-covid-19-all-days-by-country.csv' states = pd.read_csv(url, usecols=['Date', 'CountryName', 'CumulativePositive'], parse_dates=['Date'], index_col=['CountryName', 'Date'], squeeze=True).sort_index() x,r0,rl,rh, csv=calcR0s(cou,states) return x,r0,rl,rh,csv def gd(a1,a0): return (a1-a0).days+(a1-a0).seconds/3600./24. def calcR0_JRC(cou,reg=''): if cou=='Czech_Republic': cou=cou.replace("_"," ") #!!! PB if reg=='': url = 'https://github.com/ec-jrc/COVID-19/raw/master/data-by-country/jrc-covid-19-all-days-by-country.csv' states = pd.read_csv(url, usecols=['Date', 'CountryName', 'CumulativePositive'], parse_dates=['Date'], index_col=['CountryName', 'Date'], squeeze=True).sort_index() else: url='https://raw.githubusercontent.com/ec-jrc/COVID-19/master/data-by-region/jrc-covid-19-all-days-by-regions.csv' states = pd.read_csv(url,usecols=['Date', 'CountryName','Region','CumulativePositive'], parse_dates=['Date'], index_col=['CountryName','Region','Date'],squeeze=True).sort_index() x,r0,rl,rh=calcR0_JRCs(cou,states,reg) return x,r0,rl,rh def calcR0_7d(cou,reg='',ndays=7): if cou=='Czech_Republic': cou=cou.replace("_"," ") #!!! PB if reg=='': url = 'https://github.com/ec-jrc/COVID-19/raw/master/data-by-country/jrc-covid-19-all-days-by-country.csv' states = pd.read_csv(url, usecols=['Date', 'CountryName', 'CumulativePositive'], parse_dates=['Date'], index_col=['CountryName', 'Date'], squeeze=True).sort_index() else: url='https://raw.githubusercontent.com/ec-jrc/COVID-19/master/data-by-region/jrc-covid-19-all-days-by-regions.csv' states = pd.read_csv(url,usecols=['Date', 'CountryName','Region','CumulativePositive'], parse_dates=['Date'], index_col=['CountryName','Region','Date'],squeeze=True).sort_index() x,r0=calcR0_7ds(cou,states,reg,ndays) return x,r0 def calcR0_RKI(cou,reg='',ndays=4): if cou=='Czech_Republic': cou=cou.replace("_"," ") #!!! PB if reg=='': url = 'https://github.com/ec-jrc/COVID-19/raw/master/data-by-country/jrc-covid-19-all-days-by-country.csv' states = pd.read_csv(url, usecols=['Date', 'CountryName', 'CumulativePositive'], parse_dates=['Date'], index_col=['CountryName', 'Date'], squeeze=True).sort_index() else: url='https://raw.githubusercontent.com/ec-jrc/COVID-19/master/data-by-region/jrc-covid-19-all-days-by-regions.csv' states = pd.read_csv(url,usecols=['Date', 'CountryName','Region','CumulativePositive'], parse_dates=['Date'], index_col=['CountryName','Region','Date'],squeeze=True).sort_index() x,r0=calcR0_RKIs(cou,states,reg,ndays) return x,r0 def calcR0_RKIs(state_name,states,reg='',ndays=4): if reg=='': cases0 = states.xs(state_name).rename(f"{state_name} cases") else: cases0 = states.xs(state_name).xs(reg).rename(f"{state_name+' '+reg} cases") cases = cases0[0:len(cases0)] original, smoothed = prepare_cases(cases,10,5) sdif=pd.array(smoothed) dd=pd.array(smoothed.index) dates=[];r0=[];rmin=[];rmax=[] for k in range(2*ndays,sdif.shape[0]): week1=0.0 week2=0.0 for j in range(0,ndays): week1 += sdif[k-2*ndays+j] week2 += sdif[k-ndays+j] if week1 !=0: rrki=week2/week1 else: rrki=0.0 dates.append(datetime.datetime.strptime(format(dd[k],'%Y-%m-%d'),'%Y-%m-%d')) r0.append(rrki) return dates,r0 def calcR0_7ds(state_name,states,reg='',ndays=7): if reg=='': cases0 = states.xs(state_name).rename(f"{state_name} cases") else: cases0 = states.xs(state_name).xs(reg).rename(f"{state_name+' '+reg} cases") cases = cases0[0:len(cases0)] original, smoothed = prepare_cases(cases,10,5) sdif=pd.array(smoothed) dd=pd.array(smoothed.index) dates=[];r0=[];rmin=[];rmax=[] for k in range(2*ndays,sdif.shape[0]): week1=0.0 week2=0.0 for j in range(0,ndays): week1 += sdif[k-2*ndays+j] week2 += sdif[k-ndays+j] if week1 !=0: rrki=week2/week1 else: rrki=0.0 dates.append(datetime.datetime.strptime(format(dd[k],'%Y-%m-%d'),'%Y-%m-%d')) r0.append(rrki) return dates,r0 def calcR0_JRCs(state_name,states,reg=''): if reg=='': cases0 = states.xs(state_name).rename(f"{state_name} cases") else: cases0 = states.xs(state_name).xs(reg).rename(f"{state_name+' '+reg} cases") cases = cases0[0:len(cases0)] original, smoothed = prepare_cases(cases,10,5) sdif=pd.array(smoothed) dd=pd.array(smoothed.index) genTime=7.0 dates=[];r0=[];rmin=[];rmax=[] for k in range(8,sdif.shape[0]): if sdif[k]>0 and sdif[k-7]>0: vr0=(np.log(sdif[k])-np.log(sdif[k-7]))*genTime/gd(dd[k],dd[k-7])+1 vrmax=(np.log(sdif[k])-np.log(sdif[k-7]))*(genTime+1)/gd(dd[k],dd[k-7])+1 vrmin=(np.log(sdif[k])-np.log(sdif[k-7]))*(genTime-1)/gd(dd[k],dd[k-7])+1 #print(r0,sdif[k],sdif[k-7],gd(dd[k],dd[k-7]),np.log(sdif[k]),np.log(sdif[k-7])) else: vr0=0.0 vrmin=0.0 vrmax=0.0 dates.append( datetime.datetime.strptime(format(dd[k],'%Y-%m-%d'),'%Y-%m-%d')) r0.append(vr0) rmin.append(vrmin) rmax.append(vrmax) return dates,r0,rmin,rmax def calcR0_CRAN(cou,readFolder,reg='',reg0=''): print(' calcR0_cran' ,cou,reg,readFolder) if not os.path.exists(readFolder): os.makedirs(readFolder) create=False sreg='' if reg!='': sreg=' '+reg print('checking '+readFolder+'\\'+cou+sreg+' _R0.csv') if not (os.path.exists(readFolder+'\\'+cou+sreg+' _R0.csv') and os.path.exists(readFolder+'\\'+cou+sreg+' _R0_COU.csv') and os.path.exists(readFolder+'\\'+cou+sreg+' _R0_confint.csv')): print('file not existing, to be created '+readFolder+'\\'+cou+reg+' _R0.csv') create=True else: st=os.stat(readFolder+'\\'+cou+sreg+' _R0.csv') fdate=datetime.datetime.fromtimestamp(st.st_mtime) age=datetime.datetime.now()-fdate #print(age.days+age.seconds/(3600.0*24.0)) if age.days+age.seconds/(3600.0*24.0)>0.5: print('file existing but old, to be created') create=True print('>'+cou+'<>'+reg+'<') if create: if (reg==''): cmd=r'"C:\Program Files\R\R-4.0.0\bin\Rscript.exe"'+' calcR0.R -mode NAT -o '+readFolder+' -c '+cou.replace(" ","_") else: cmd=r'"C:\Program Files\R\R-4.0.0\bin\Rscript.exe"'+' calcR0.R -mode REG -o '+readFolder+' -c '+cou.replace(" ","_") +' -r '+reg.replace(" ","_") print('calcR0_CRAN command= ' + cmd) os.system(cmd) dates=[];r0=[];rlow=[];rhigh=[] fname=readFolder+'\\'+cou+sreg+' _R0.csv' if not os.path.exists(fname): reg=reg0 fname=readFolder+'\\'+cou+sreg+' _R0.csv' if not os.path.exists(fname): return dates,r0,rlow,rhigh fname=readFolder+'\\'+cou+sreg+' _R0.csv';f=open(fname,'r');textR0=f.read();f.close() fname=readFolder+'\\'+cou+sreg+' _R0_COU.csv';f=open(fname,'r',encoding='UTF-8');textCOU=f.read();f.close() fname=readFolder+'\\'+cou+sreg+' _R0_confint.csv';f=open(fname,'r');textCI=f.read();f.close() lines=textCOU.split('\n') for k in range(2,len(lines)-1): p=lines[k].split(',') #print(p) #print(p[len(p)-2]) d=datetime.datetime.strptime(p[len(p)-2],'%Y-%m-%d') dates.append(d) lines1=textR0.split('\n') lines2=textCI.split('\n') r0.append(0);rlow.append(0);rhigh.append(0) #r0.append(0);rlow.append(0);rhigh.append(0) #r0.append(0);rlow.append(0);rhigh.append(0) for k in range(2,len(lines1)-2): if lines1[k]=='':continue p=lines2[k].split(',') r0.append(float(lines1[k])) rlow.append(float(p[0])) rhigh.append(float(p[1])) # print (len(r0),len(dates)) # for k in range(len(dates)): # print(dates[k],r0[k]) return dates,r0,rlow,rhigh if __name__ == "__main__": opts, args = getopt.getopt(sys.argv[1:],"c:o:i:h",["cou=","odir=","idir=","help="]) if len(opts)<1: print ('INPUT ERROR') print ('COVID19_r0.py -c <country|ALL> -o <outputdir> ') print (' example:') print ('python D:\mnt\output\COVID-19\scripts_py3\COVID19_r0.py -c Italy -o D:\mnt\output\COVID-19\pdfOut\ ') sys.exit() for opt, arg in opts: if opt in ("-h", "--help"): print ('python D:\mnt\output\COVID-19\scripts\COVID19_r0.py -c Italy -o D:\mnt\output\COVID-19\pdfOut\ ') sys.exit() elif opt in ("-o", "--odir"): dirout = arg elif opt in ("-i", "--idir"): readFolder = arg elif opt in ("-c", "--cou"): cou = arg else: print ('error parameter not available: '+opt) sys.exit() url = 'https://github.com/ec-jrc/COVID-19/raw/master/data-by-country/jrc-covid-19-all-days-by-country.csv' states = pd.read_csv(url,usecols=['Date', 'CountryName', 'CumulativePositive'],parse_dates=['Date'],index_col=['CountryName', 'Date'],squeeze=True).sort_index() now=datetime.datetime.now().strftime("%Y%m%d") rowLast="country,date,r0_ML,Low_90',High_90\n" print (cou) if cou=="ALL": ecList = "Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden".split(', ') eucmParticip = "Iceland,Montenegro,North Macedonia,Norway,Turkey,United Kingdom,Switzerland".split(',') for cou in ecList: print(cou) try: x,r0,rl,rh,csv=calcR0s(cou,states) f=open(dirout+"\\"+now+"_"+cou+"_r0.csv","w") f.write(csv.replace("\n","")) f.close() rowLast +=cou+','+format(x[len(x)-1])+','+"%.2f" % r0[len(r0)-1]+','+"%.2f" % rl[len(rl)-1]+','+"%.2f" % rh[len(rh)-1]+'\n' except: rowLast +=cou+",,,,\n" for cou in eucmParticip: print(cou) try: x,r0,rl,rh,csv=calcR0s(cou,states) f=open(dirout+"\\"+now+"_"+cou+"_r0.csv","w") f.write(csv.replace("\n","")) f.close() rowLast +=cou+','+format(x[len(x)-1])+','+"%.2f" % r0[len(r0)-1]+','+"%.2f" % rl[len(rl)-1]+','+"%.2f" % rh[len(rh)-1]+'\n' except: rowLast +=cou+",,,,\n" else: #try: x,r0,rl,rh,csv=calcR0s(cou,states) #print(r0) f=open(dirout+"\\"+now+"_"+cou+"_r0.csv","w") f.write(csv.replace("\n","")) f.close() rowLast +=cou+','+format(x[len(x)-1])+','+"%.2f" % r0[len(r0)-1]+','+"%.2f" % rl[len(rl)-1]+','+"%.2f" % rh[len(rh)-1]+'\n' if readFolder !='': x,r0,rl,rh=calcR0_CRAN(cou,cou,readFolder) # except: # print('Error calling calcR0') # rowLast +=cou+",,,," f=open(dirout+"\\"+now+"_r0_last.csv","w") f.write(rowLast) f.close() # #x,r0,rl,rh=calcR0('Italy') # x,r0,rl,rh=calcR0('Austria') # print(r0)
38.019523
280
0.579791
6e57882d06037ef3c5e93993bd8588cf5a550f61
7,485
py
Python
ingest/prepare_scripts/alos/alos2_prepare.py
ChetanKhanna/NE-GeoCloud
bad907045729cd9ffd086ede034ef1805eeecc8b
[ "Apache-2.0" ]
1
2019-07-22T05:24:40.000Z
2019-07-22T05:24:40.000Z
ingest/prepare_scripts/alos/alos2_prepare.py
SivaramakrishnanKN/NE-GeoCloud
affcae49e0ccd7d29360a2771a9517147ed56590
[ "Apache-2.0" ]
1
2019-06-06T18:31:29.000Z
2019-06-06T18:31:29.000Z
ingest/prepare_scripts/alos/alos2_prepare.py
SivaramakrishnanKN/NE-GeoCloud
affcae49e0ccd7d29360a2771a9517147ed56590
[ "Apache-2.0" ]
5
2019-06-05T07:26:13.000Z
2019-06-08T06:53:11.000Z
# coding=utf-8 """ Ingest data from the command-line. """ from __future__ import absolute_import, division from __future__ import print_function import logging import uuid from xml.etree import ElementTree import re from pathlib import Path import yaml from dateutil import parser from datetime import timedelta import rasterio.warp import click from osgeo import osr import os _STATIONS = { '023': 'TKSC', '022': 'SGS', '010': 'GNC', '011': 'HOA', '012': 'HEOC', '013': 'IKR', '014': 'KIS', '015': 'LGS', '016': 'MGR', '017': 'MOR', '032': 'LGN', '019': 'MTI', '030': 'KHC', '031': 'MLK', '018': 'MPS', '003': 'BJC', '002': 'ASN', '001': 'AGS', '007': 'DKI', '006': 'CUB', '005': 'CHM', '004': 'BKT', '009': 'GLC', '008': 'EDC', '029': 'JSA', '028': 'COA', '021': 'PFS', '020': 'PAC' } def band_name(path): name = path.stem layername = name # position = name.find('_') if 'HH' in str(path): layername = 'hh_gamma0' if 'HV' in str(path): layername = 'hv_gamma0' if 'date' in str(path): layername = 'observation_date' if 'linci' in str(path): layername = 'incidence_angle' if 'mask' in str(path): layername = 'mask' # if position == -1: # raise ValueError('Unexpected tif image in eods: %r' % path) # if re.match(r"[Bb]\d+", name[position+1:]): # layername = name[position+2:] # else: # layername = name[position+1:] return layername def get_projection(path): with rasterio.open(str(path)) as img: left, bottom, right, top = img.bounds return { 'spatial_reference': str(str(getattr(img, 'crs_wkt', None) or img.crs.wkt)), 'geo_ref_points': { 'ul': { 'x': left, 'y': top }, 'ur': { 'x': right, 'y': top }, 'll': { 'x': left, 'y': bottom }, 'lr': { 'x': right, 'y': bottom }, } } def get_coords(geo_ref_points, spatial_ref): spatial_ref = osr.SpatialReference(spatial_ref) t = osr.CoordinateTransformation(spatial_ref, spatial_ref.CloneGeogCS()) def transform(p): lon, lat, z = t.TransformPoint(p['x'], p['y']) return {'lon': lon, 'lat': lat} return {key: transform(p) for key, p in geo_ref_points.items()} def populate_coord(doc): proj = doc['grid_spatial']['projection'] doc['extent']['coord'] = get_coords(proj['geo_ref_points'], proj['spatial_reference']) def crazy_parse(timestr): try: return parser.parse(timestr) except ValueError: if not timestr[-2:] == "60": raise return parser.parse(timestr[:-2] + '00') + timedelta(minutes=1) def prep_dataset(fields, path): # for file in os.listdir(str(path)): # if file.endswith(".xml") and (not file.endswith('aux.xml')): # metafile = file # Parse xml ElementTree gives me a headache so using lxml # doc = ElementTree.parse(os.path.join(str(path), metafile)) # TODO root method doesn't work here - need to include xlmns... # for global_metadata in doc.findall('{http://espa.cr.usgs.gov/v1.2}global_metadata'): # satellite = (global_metadata.find('{http://espa.cr.usgs.gov/v1.2}satellite')).text # instrument = (global_metadata.find('{http://espa.cr.usgs.gov/v1.2}instrument')).text # acquisition_date = str((global_metadata # .find('{http://espa.cr.usgs.gov/v1.2}acquisition_date')).text).replace("-","") # scene_center_time = (global_metadata.find('{http://espa.cr.usgs.gov/v1.2}scene_center_time')).text[:8] # center_dt = crazy_parse(acquisition_date+"T"+scene_center_time) # aos = crazy_parse(acquisition_date+"T"+scene_center_time)-timedelta(seconds=(24/2)) # los = aos + timedelta(seconds=24) # lpgs_metadata_file = (global_metadata.find('{http://espa.cr.usgs.gov/v1.2}lpgs_metadata_file')).text # groundstation = lpgs_metadata_file[16:19] # fields.update({'instrument': instrument, 'satellite': satellite}) aos = crazy_parse('20' + fields['mosaic_year'] + '-01-01T00:00:00') los = aos fields['creation_dt'] = aos fields['satellite'] = 'ALOS_2' images = { band_name(im_path): { 'path': str(im_path.relative_to(path)) } for im_path in path.glob('*.tif') if "RGB" not in str(im_path) } doc = { 'id': str(uuid.uuid4()), 'processing_level': "terrain", 'product_type': "gamma0", 'creation_dt': aos, 'platform': { 'code': 'ALOS_2' }, 'instrument': { 'name': 'PALSAR' }, 'acquisition': { 'groundstation': { 'code': '023', 'aos': str(aos), 'los': str(los) } }, 'extent': { 'from_dt': str(aos), 'to_dt': str(aos), 'center_dt': str(aos) }, 'format': { 'name': 'GeoTiff' }, 'grid_spatial': { 'projection': get_projection(path / next(iter(images.values()))['path']) }, 'image': { # 'satellite_ref_point_start': {'path': 0, 'row': 0}, # 'satellite_ref_point_end': {'path': 0, 'row': 0}, 'bands': images }, # TODO include 'lineage': {'source_datasets': {'lpgs_metadata_file': lpgs_metadata_file}} 'lineage': { 'source_datasets': {} } } populate_coord(doc) return doc def dataset_folder(fields): fmt_str = "{vehicle}_{instrument}_{type}_{level}_GA{type}{product}-{groundstation}_{path}_{row}_{date}" return fmt_str.format(**fields) # INPUT path is parsed for elements - below hardcoded for testing def prepare_datasets(alos2_path): print(alos2_path) fields = re.match((r"(?P<latitude_dir>N|S)" r"(?P<latitude>[0-9]{2})" r"(?P<longitude_dir>E|W)" r"(?P<longitude>[0-9]{3})" "_" r"(?P<mosaic_year>[0-9]{2})"), alos2_path.stem).groupdict() # timedelta(days=int(fields["julianday"])) # , 'creation_dt': ((crazy_parse(fields["productyear"]+'0101T00:00:00'))+timedelta(days=int(fields["julianday"])))}) fields.update({'level': 'gamma0', 'type': 'intensity'}) alos2 = prep_dataset(fields, alos2_path) return (alos2, alos2_path) @click.command(help="Prepare ALOS2 PALSAR dataset for ingestion into the Data Cube.") @click.argument('datasets', type=click.Path(exists=True, readable=True, writable=True), nargs=-1) def main(datasets): logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s', level=logging.INFO) for dataset in datasets: path = Path(dataset) logging.info("Processing %s", path) documents = prepare_datasets(path) dataset, folder = documents yaml_path = str(folder.joinpath('agdc-metadata.yaml')) logging.info("Writing %s", yaml_path) with open(yaml_path, 'w') as stream: yaml.dump(dataset, stream) if __name__ == "__main__": main()
30.303644
120
0.551637
64d8b91ffc54d7be0d117e747508e9449f29b37e
5,263
py
Python
honeybee_schema/energy/construction.py
MingboPeng/honeybee-schema
84bfea4c4ed038e3cf71ae2d708b937cb98334d5
[ "BSD-3-Clause" ]
null
null
null
honeybee_schema/energy/construction.py
MingboPeng/honeybee-schema
84bfea4c4ed038e3cf71ae2d708b937cb98334d5
[ "BSD-3-Clause" ]
null
null
null
honeybee_schema/energy/construction.py
MingboPeng/honeybee-schema
84bfea4c4ed038e3cf71ae2d708b937cb98334d5
[ "BSD-3-Clause" ]
null
null
null
"""Construction Schema""" from pydantic import Field, constr from typing import List, Union from ._base import IDdEnergyBaseModel from .material import EnergyMaterial, EnergyMaterialNoMass, \ EnergyWindowMaterialGas, EnergyWindowMaterialGasCustom, \ EnergyWindowMaterialGasMixture, EnergyWindowMaterialSimpleGlazSys, \ EnergyWindowMaterialBlind, EnergyWindowMaterialGlazing, EnergyWindowMaterialShade from .schedule import ScheduleRuleset, ScheduleFixedInterval class WindowConstructionAbridged(IDdEnergyBaseModel): """Construction for window objects (Aperture, Door).""" type: constr(regex='^WindowConstructionAbridged$') = 'WindowConstructionAbridged' layers: List[constr(min_length=1, max_length=100)] = Field( ..., description='List of strings for material identifiers. The order of the ' 'materials is from exterior to interior.', min_items=1, max_items=8 ) class WindowConstruction(WindowConstructionAbridged): """Construction for window objects (Aperture, Door).""" type: constr(regex='^WindowConstruction$') = 'WindowConstruction' materials: List[ Union[ EnergyWindowMaterialGas, EnergyWindowMaterialGasCustom, EnergyWindowMaterialGasMixture, EnergyWindowMaterialSimpleGlazSys, EnergyWindowMaterialBlind, EnergyWindowMaterialGlazing, EnergyWindowMaterialShade ] ] = Field( ..., description='List of materials. The order of the materials is from outside ' 'to inside.', min_items=1, max_items=8 ) class OpaqueConstructionAbridged(IDdEnergyBaseModel): """Construction for opaque objects (Face, Shade, Door).""" type: constr(regex='^OpaqueConstructionAbridged$') = 'OpaqueConstructionAbridged' layers: List[constr(min_length=1, max_length=100)] = Field( ..., description='List of strings for material identifiers. The order of the materials ' 'is from exterior to interior.', min_items=1, max_items=10 ) class OpaqueConstruction(OpaqueConstructionAbridged): """Construction for opaque objects (Face, Shade, Door).""" type: constr(regex='^OpaqueConstruction$') = 'OpaqueConstruction' materials: List[Union[EnergyMaterial, EnergyMaterialNoMass]] = Field( ..., description='List of materials. The order of the materials is from outside to' ' inside.', min_items=1, max_items=10 ) class ShadeConstruction(IDdEnergyBaseModel): """Construction for Shade objects.""" type: constr(regex='^ShadeConstruction$') = 'ShadeConstruction' solar_reflectance: float = Field( 0.2, ge=0, le=1, description=' A number for the solar reflectance of the construction.' ) visible_reflectance: float = Field( 0.2, ge=0, le=1, description=' A number for the visible reflectance of the construction.' ) is_specular: bool = Field( default=False, description='Boolean to note whether the reflection off the shade is diffuse ' '(False) or specular (True). Set to True if the construction is ' 'representing a glass facade or a mirror material.' ) class AirBoundaryConstructionAbridged(IDdEnergyBaseModel): """Construction for Air Boundary objects.""" type: constr(regex='^AirBoundaryConstructionAbridged$') = \ 'AirBoundaryConstructionAbridged' air_mixing_per_area: float = Field( 0.1, ge=0, description='A positive number for the amount of air mixing between Rooms ' 'across the air boundary surface [m3/s-m2]. Default: 0.1 corresponds ' 'to average indoor air speeds of 0.1 m/s (roughly 20 fpm), which is ' 'typical of what would be induced by a HVAC system.' ) air_mixing_schedule: str = Field( ..., min_length=1, max_length=100, description='Identifier of a fractional schedule for the air mixing schedule ' 'across the construction.' ) class AirBoundaryConstruction(AirBoundaryConstructionAbridged): """Construction for Air Boundary objects.""" type: constr(regex='^AirBoundaryConstruction$') = 'AirBoundaryConstruction' air_mixing_schedule: Union[ScheduleRuleset, ScheduleFixedInterval] = Field( ..., description='A fractional schedule as a ScheduleRuleset or ' 'ScheduleFixedInterval for the air mixing schedule across ' 'the construction.' ) class Config: @staticmethod def schema_extra(schema, model): schema['properties']['air_mixing_schedule']['anyOf'] = [ {"$ref": "#/components/schemas/ScheduleRuleset"}, {"$ref": "#/components/schemas/ScheduleFixedInterval"} ] if __name__ == '__main__': print(WindowConstructionAbridged.schema_json(indent=2)) print(WindowConstruction.schema_json(indent=2)) print(OpaqueConstructionAbridged.schema_json(indent=2)) print(OpaqueConstruction.schema_json(indent=2)) print(ShadeConstruction.schema_json(indent=2)) print(AirBoundaryConstruction.schema_json(indent=2))
34.398693
99
0.67832
e600482d981d9faf663eb9739276f889dfa0775e
2,999
py
Python
configs/config_BiCLSTM_dunet.py
dkswxd/unetpp_pytorch_qiu
df439b07d13c5d8c87975f0cca4dd7a5ff19f8c2
[ "Apache-2.0" ]
null
null
null
configs/config_BiCLSTM_dunet.py
dkswxd/unetpp_pytorch_qiu
df439b07d13c5d8c87975f0cca4dd7a5ff19f8c2
[ "Apache-2.0" ]
null
null
null
configs/config_BiCLSTM_dunet.py
dkswxd/unetpp_pytorch_qiu
df439b07d13c5d8c87975f0cca4dd7a5ff19f8c2
[ "Apache-2.0" ]
null
null
null
from collections import OrderedDict config_name = 'BiCLSTM_dunet' config_dataset = OrderedDict([ ('dataset', 'hyper'), ('channels', 60), ('n_class', 2), ('norm_kwargs', {'type':'data'}), ('npy_dir', '../cancer/npy/'), ('label_dir', '../cancer/label/'), ('train_split', '../cancer/split/split_0_train.txt'), ('val_split', '../cancer/split/split_0_val.txt'), ('test_split', '../cancer/split/split_0_test.txt'), ('batch_size', 1), ('channel_transform', '5:45:2'), ('aug_config', 'none') ]) config_model = OrderedDict([ ('model', config_name), ('layers', 4), ('feature_root', 32), ('BiCLSTM_feature_root', 8), ('conv_repeat', 2), ('use_bn', True), ('track_running_stats', False), # ('track_running_stats', True), ('bn_momentum', 0.1), ('use_gn', False), ('num_groups', 16), ('deform_CLSTM', False), ('epoch', 50), ('save_interval', 5), ('restore', False), # TODO: restore training not implemented! ('modulated', True), ('use_deform', ['down3_conv0', 'down3_conv1', 'down2_conv0', 'down2_conv1', 'up2_conv0', 'up2_conv1']), ]) config_optimizer = OrderedDict([ ('loss', 'BCE'), ('optimizer', 'Adam'), ('learning_rate', 0.001), ('weight_decay', 0.001), ('scheduler', [40]), ('scheduler_rate', 0.1), ]) config_utils = OrderedDict([ ('workdir', '../cancer/workdir/{}_public/'.format(config_name)), ('work_phase', 'train-val-test'), # ('work_phase', 'train-test'), # ('work_phase', 'test'), ]) config_public = OrderedDict() config_public.update(config_dataset) config_public.update(config_model) config_public.update(config_optimizer) config_public.update(config_utils) ################################################## split configs config_split_all = [] for i in range(5): config_split_all.append(config_public.copy()) config_split_all[-1]['train_split'] = '../cancer/split/split_{}_train.txt'.format(i) config_split_all[-1]['val_split'] = '../cancer/split/split_{}_val.txt'.format(i) config_split_all[-1]['test_split'] = '../cancer/split/split_{}_test.txt'.format(i) config_split_all[-1]['workdir'] = '../cancer/workdir/{}_split_{}/'.format(config_name, i) ################################################## split configs ################################################## split configs config_split_all = [] for i in range(5): config_split_all.append(config_public.copy()) # config_split_all[-1]['deform_CLSTM'] = True config_split_all[-1]['train_split'] = '../cancer/split/split_{}_train.txt'.format(i) config_split_all[-1]['val_split'] = '../cancer/split/split_{}_val.txt'.format(i) config_split_all[-1]['test_split'] = '../cancer/split/split_{}_test.txt'.format(i) config_split_all[-1]['workdir'] = '../cancer/workdir/{}_deform_split_{}/'.format(config_name, i) ################################################## split configs all_configs = config_split_all # all_configs = []
34.471264
107
0.598533
93a5510b7ca805ea8519bb98e84cc5a3c5e509ea
7,927
py
Python
code/brain_pipeline.py
Delta-Sigma/brain_segmentation
4462bde26e8434391c91cf3d9a8ac53fd6d494bc
[ "MIT" ]
315
2016-04-19T20:17:51.000Z
2022-03-22T05:48:13.000Z
code/brain_pipeline.py
Delta-Sigma/brain_segmentation
4462bde26e8434391c91cf3d9a8ac53fd6d494bc
[ "MIT" ]
29
2016-10-16T13:32:18.000Z
2021-08-30T01:40:34.000Z
code/brain_pipeline.py
Delta-Sigma/brain_segmentation
4462bde26e8434391c91cf3d9a8ac53fd6d494bc
[ "MIT" ]
206
2016-06-16T06:29:39.000Z
2022-02-16T12:38:03.000Z
import numpy as np import subprocess import random import progressbar from glob import glob from skimage import io np.random.seed(5) # for reproducibility progress = progressbar.ProgressBar(widgets=[progressbar.Bar('*', '[', ']'), progressbar.Percentage(), ' ']) class BrainPipeline(object): ''' A class for processing brain scans for one patient INPUT: (1) filepath 'path': path to directory of one patient. Contains following mha files: flair, t1, t1c, t2, ground truth (gt) (2) bool 'n4itk': True to use n4itk normed t1 scans (defaults to True) (3) bool 'n4itk_apply': True to apply and save n4itk filter to t1 and t1c scans for given patient. This will only work if the ''' def __init__(self, path, n4itk = True, n4itk_apply = False): self.path = path self.n4itk = n4itk self.n4itk_apply = n4itk_apply self.modes = ['flair', 't1', 't1c', 't2', 'gt'] # slices=[[flair x 155], [t1], [t1c], [t2], [gt]], 155 per modality self.slices_by_mode, n = self.read_scans() # [ [slice1 x 5], [slice2 x 5], ..., [slice155 x 5]] self.slices_by_slice = n self.normed_slices = self.norm_slices() def read_scans(self): ''' goes into each modality in patient directory and loads individual scans. transforms scans of same slice into strip of 5 images ''' print 'Loading scans...' slices_by_mode = np.zeros((5, 155, 240, 240)) slices_by_slice = np.zeros((155, 5, 240, 240)) flair = glob(self.path + '/*Flair*/*.mha') t2 = glob(self.path + '/*_T2*/*.mha') gt = glob(self.path + '/*more*/*.mha') t1s = glob(self.path + '/**/*T1*.mha') t1_n4 = glob(self.path + '/*T1*/*_n.mha') t1 = [scan for scan in t1s if scan not in t1_n4] scans = [flair[0], t1[0], t1[1], t2[0], gt[0]] # directories to each image (5 total) if self.n4itk_apply: print '-> Applyling bias correction...' for t1_path in t1: self.n4itk_norm(t1_path) # normalize files scans = [flair[0], t1_n4[0], t1_n4[1], t2[0], gt[0]] elif self.n4itk: scans = [flair[0], t1_n4[0], t1_n4[1], t2[0], gt[0]] for scan_idx in xrange(5): # read each image directory, save to self.slices slices_by_mode[scan_idx] = io.imread(scans[scan_idx], plugin='simpleitk').astype(float) for mode_ix in xrange(slices_by_mode.shape[0]): # modes 1 thru 5 for slice_ix in xrange(slices_by_mode.shape[1]): # slices 1 thru 155 slices_by_slice[slice_ix][mode_ix] = slices_by_mode[mode_ix][slice_ix] # reshape by slice return slices_by_mode, slices_by_slice def norm_slices(self): ''' normalizes each slice in self.slices_by_slice, excluding gt subtracts mean and div by std dev for each slice clips top and bottom one percent of pixel intensities if n4itk == True, will apply n4itk bias correction to T1 and T1c images ''' print 'Normalizing slices...' normed_slices = np.zeros((155, 5, 240, 240)) for slice_ix in xrange(155): normed_slices[slice_ix][-1] = self.slices_by_slice[slice_ix][-1] for mode_ix in xrange(4): normed_slices[slice_ix][mode_ix] = self._normalize(self.slices_by_slice[slice_ix][mode_ix]) print 'Done.' return normed_slices def _normalize(self, slice): ''' INPUT: (1) a single slice of any given modality (excluding gt) (2) index of modality assoc with slice (0=flair, 1=t1, 2=t1c, 3=t2) OUTPUT: normalized slice ''' b, t = np.percentile(slice, (0.5,99.5)) slice = np.clip(slice, b, t) if np.std(slice) == 0: return slice else: return (slice - np.mean(slice)) / np.std(slice) def save_patient(self, reg_norm_n4, patient_num): ''' INPUT: (1) int 'patient_num': unique identifier for each patient (2) string 'reg_norm_n4': 'reg' for original images, 'norm' normalized images, 'n4' for n4 normalized images OUTPUT: saves png in Norm_PNG directory for normed, Training_PNG for reg ''' print 'Saving scans for patient {}...'.format(patient_num) progress.currval = 0 if reg_norm_n4 == 'norm': #saved normed slices for slice_ix in progress(xrange(155)): # reshape to strip strip = self.normed_slices[slice_ix].reshape(1200, 240) if np.max(strip) != 0: # set values < 1 strip /= np.max(strip) if np.min(strip) <= -1: # set values > -1 strip /= abs(np.min(strip)) # save as patient_slice.png io.imsave('Norm_PNG/{}_{}.png'.format(patient_num, slice_ix), strip) elif reg_norm_n4 == 'reg': for slice_ix in progress(xrange(155)): strip = self.slices_by_slice[slice_ix].reshape(1200, 240) if np.max(strip) != 0: strip /= np.max(strip) io.imsave('Training_PNG/{}_{}.png'.format(patient_num, slice_ix), strip) else: for slice_ix in progress(xrange(155)): # reshape to strip strip = self.normed_slices[slice_ix].reshape(1200, 240) if np.max(strip) != 0: # set values < 1 strip /= np.max(strip) if np.min(strip) <= -1: # set values > -1 strip /= abs(np.min(strip)) # save as patient_slice.png io.imsave('n4_PNG/{}_{}.png'.format(patient_num, slice_ix), strip) def n4itk_norm(self, path, n_dims=3, n_iters='[20,20,10,5]'): ''' INPUT: (1) filepath 'path': path to mha T1 or T1c file (2) directory 'parent_dir': parent directory to mha file OUTPUT: writes n4itk normalized image to parent_dir under orig_filename_n.mha ''' output_fn = path[:-4] + '_n.mha' # run n4_bias_correction.py path n_dim n_iters output_fn subprocess.call('python n4_bias_correction.py ' + path + ' ' + str(n_dims) + ' ' + n_iters + ' ' + output_fn, shell = True) def save_patient_slices(patients, type): ''' INPUT (1) list 'patients': paths to any directories of patients to save. for example- glob("Training/HGG/**") (2) string 'type': options = reg (non-normalized), norm (normalized, but no bias correction), n4 (bias corrected and normalized) saves strips of patient slices to approriate directory (Training_PNG/, Norm_PNG/ or n4_PNG/) as patient-num_slice-num ''' for patient_num, path in enumerate(patients): a = BrainPipeline(path) a.save_patient(type, patient_num) def s3_dump(directory, bucket): ''' dump files from a given directory to an s3 bucket INPUT (1) string 'directory': directory containing files to save (2) string 'bucket': name od s3 bucket to dump files ''' subprocess.call('aws s3 cp' + ' ' + directory + ' ' + 's3://' + bucket + ' ' + '--recursive') def save_labels(fns): ''' INPUT list 'fns': filepaths to all labels ''' progress.currval = 0 for label_idx in progress(xrange(len(labels))): slices = io.imread(labels[label_idx], plugin = 'simpleitk') for slice_idx in xrange(len(slices)): io.imsave('Labels/{}_{}L.png'.format(label_idx, slice_idx), slices[slice_idx]) if __name__ == '__main__': labels = glob('Original_Data/Training/HGG/**/*more*/**.mha') save_labels(labels) # patients = glob('Training/HGG/**') # save_patient_slices(patients, 'reg') # save_patient_slices(patients, 'norm') # save_patient_slices(patients, 'n4') # s3_dump('Graveyard/Training_PNG/', 'orig-training-png')
46.629412
140
0.59783
8f97a33bf65c5c1152061e1d471f109c80327372
2,192
py
Python
setup.py
remram44/find_projections
f3988a206c4902e039ea75d832d2c3ef695c1f91
[ "MIT" ]
1
2021-03-29T18:23:57.000Z
2021-03-29T18:23:57.000Z
setup.py
remram44/find_projections
f3988a206c4902e039ea75d832d2c3ef695c1f91
[ "MIT" ]
null
null
null
setup.py
remram44/find_projections
f3988a206c4902e039ea75d832d2c3ef695c1f91
[ "MIT" ]
2
2021-03-18T19:39:48.000Z
2022-01-05T16:25:44.000Z
import os import sys from distutils.core import Extension from setuptools import setup home_folder = os.path.expanduser("~") user_site_packages_folder = "{0}/.local/lib/python{1}.{2}/site-packages".format(home_folder, sys.version_info[0], sys.version_info[1]) if user_site_packages_folder not in sys.path: sys.path.append(user_site_packages_folder) import numpy as np NAME = 'find_projections' VERSION = '2.3.1' REQUIRES = ['numpy >= 1.13'] find_projections_module = Extension('libfind_projections', sources=['find_projections/binary_tree.cpp', 'find_projections/projection.cpp', 'find_projections/search.cpp', 'find_projections/helper.cpp', 'find_projections/numeric_binary_tree.cpp', 'find_projections/discrete_binary_tree.cpp', 'find_projections/datset.cpp', 'find_projections/pyfind_projections.cpp'], include_dirs=[np.get_include()], extra_compile_args=['-pthread', '-std=c++14'], extra_link_args=['-shared', '-pthread', '-lboost_python-py36'] ) setup( name=NAME, version=VERSION, url='http://autonlab.org', author='Saswati Ray', author_email='sray@cs.cmu.edu', description='Search for 2-d projection boxes separating out classes/quantiles of output', keywords='d3m_primitive', license='MIT', ext_modules=[find_projections_module], packages=['find_projections'], entry_points={ 'd3m.primitives': [ 'classification.search.Find_projections = find_projections:Search', 'regression.search_numeric.Find_projections = find_projections:SearchNumeric', 'classification.search_hybrid.Find_projections = find_projections:SearchHybrid', 'regression.search_hybrid_numeric.Find_projections = find_projections:SearchHybridNumeric', ] } )
42.980392
120
0.593978
10720d1808c8f355c4a5f13de6ca92d051cedb4c
46
py
Python
bitmovin/services/manifests/__init__.py
camberbridge/bitmovin-python
3af4c6e79b0291fda05fd1ceeb5bed1bba9f3c95
[ "Unlicense" ]
44
2016-12-12T17:37:23.000Z
2021-03-03T09:48:48.000Z
bitmovin/services/manifests/__init__.py
camberbridge/bitmovin-python
3af4c6e79b0291fda05fd1ceeb5bed1bba9f3c95
[ "Unlicense" ]
38
2017-01-09T14:45:45.000Z
2022-02-27T18:04:33.000Z
bitmovin/services/manifests/__init__.py
camberbridge/bitmovin-python
3af4c6e79b0291fda05fd1ceeb5bed1bba9f3c95
[ "Unlicense" ]
27
2017-02-02T22:49:31.000Z
2019-11-21T07:04:57.000Z
from .manifest_service import ManifestService
23
45
0.891304
3de44afd8d8da955f0f6fdc847cd1cee0ff44303
4,753
py
Python
tests/test_rule_building.py
zStupan/NiaARM
3ade6c5f89a22da7f1e7309cb4fec227bb913e6b
[ "MIT" ]
null
null
null
tests/test_rule_building.py
zStupan/NiaARM
3ade6c5f89a22da7f1e7309cb4fec227bb913e6b
[ "MIT" ]
14
2022-03-02T07:38:34.000Z
2022-03-15T11:18:50.000Z
tests/test_rule_building.py
zStupan/NiaARM
3ade6c5f89a22da7f1e7309cb4fec227bb913e6b
[ "MIT" ]
1
2022-03-01T14:41:07.000Z
2022-03-01T14:41:07.000Z
""" Test intended for testing the main procedure for building an association rule from candidate solutions. """ from unittest import TestCase from niaarm.niaarm import NiaARM from niaarm.dataset import Dataset from niaarm.feature import Feature import os class TestBuildRuleA(TestCase): # let's borrow a test case from Wikipedia: # https://en.wikipedia.org/wiki/Lift_(data_mining) def setUp(self): data = Dataset(os.path.join(os.path.dirname(__file__), 'test_data', 'wiki_test_case.csv')) self.features = data.features self.transactions = data.transactions self.oper = NiaARM(data.dimension, data.features, data.transactions, ('support',)) def test_threshold_move(self): move = self.oper.threshold_move(0) move2 = self.oper.threshold_move(1) self.assertEqual(move, 1) self.assertEqual(move2, 2) def test_vector_position(self): """Important test for checking the position of feature in vector Categorical features consists of two vector elements, while each numerical feature consists of three vector elements. """ position1 = self.oper.feature_position(0) position2 = self.oper.feature_position(1) self.assertEqual(position1, 0) self.assertEqual(position2, 2) def test_build_rule(self): """Test procedure for building rules""" rule1 = self.oper.build_rule([0.45328107, 0.13655004, 0.6860223, 0.78527931, 0.96291945, 0.18117294, 0.50567635]) rule2 = self.oper.build_rule([0.95328107, 0.13655004, 0.6860223, 0.78527931, 0.96291945, 0.18117294, 0.50567635]) rule3 = self.oper.build_rule([0.95328107, 0.98655004, 0.6860223, 0.78527931, 0.96291945, 0.18117294, 0.50567635]) rule4 = self.oper.build_rule([0.45328107, 0.20655004, 0.6860223, 0.78527931, 0.10291945, 0.18117294, 0.50567635]) rule5 = self.oper.build_rule([0.45328107, 0.20655004, 0.2060223, 0.79527931, 0.10291945, 0.18117294, 0.50567635]) rule6 = self.oper.build_rule([0.45328107, 0.20655004, 0.2060223, 0.19727931, 0.10291945, 0.18117294, 0.50567635]) rule7 = self.oper.build_rule([0.95328107, 0.20655004, 0.2060223, 0.19727931, 0.10291945, 0.18117294, 0.50567635]) self.assertEqual(rule1, [Feature('Feat1', dtype='cat', categories=["A"]), None]) self.assertEqual(rule2, [Feature('Feat1', dtype='cat', categories=["B"]), None]) self.assertEqual(rule3, [None, None]) self.assertEqual(rule4, [Feature('Feat1', dtype='cat', categories=["A"]), Feature('Feat2', dtype='int', min_val=1, max_val=1)]) self.assertEqual(rule5, [Feature('Feat1', dtype='cat', categories=["A"]), Feature('Feat2', dtype='int', min_val=0, max_val=1)]) self.assertEqual(rule6, [Feature('Feat1', dtype='cat', categories=["A"]), Feature('Feat2', dtype='int', min_val=0, max_val=0)]) self.assertEqual(rule7, [Feature('Feat1', dtype='cat', categories=["B"]), Feature('Feat2', dtype='int', min_val=0, max_val=0)])
45.701923
98
0.432779
63eb059266786adf59e3541fe6bfe0ca075a37bf
6,912
py
Python
tni.py
AvidDabbler/TitleVI-Analysis
bc447ead902c4c6bf4fbfbb92f4dfbb75f22b5a6
[ "MIT" ]
1
2019-10-28T03:06:44.000Z
2019-10-28T03:06:44.000Z
tni.py
AvidDabbler/TitleVI-Analysis
bc447ead902c4c6bf4fbfbb92f4dfbb75f22b5a6
[ "MIT" ]
5
2019-10-28T15:28:33.000Z
2019-10-28T15:33:10.000Z
tni.py
AvidDabbler/TitleVI-Analysis
bc447ead902c4c6bf4fbfbb92f4dfbb75f22b5a6
[ "MIT" ]
null
null
null
# ! are the imports needed if they are defined in main? import arcpy import os import shutil from helpers import * # ! are we using tni at all? # Compute Transit Need Index (TNI) based on the 2003 service standards for each census blockgroup. # Use the minority, income, age and car ownership data computed in prior functions as inputs, and # add a feature class indicating TNI to the final output gdb (final_gdb_loc) def tni(year, root_dir, final_gdb_loc): arcpy.env.overwriteOutput = True # set a working gdb gdb = f"TransitNeedIndex{year}.gdb" replaceGDB(root_dir, gdb) gdb_loc = os.path.join(root_dir,gdb) # define input feature classes, generated from prior functions minority_fc = os.path.join(final_gdb_loc, f'Minority{year}_final') medhhinc_fc = os.path.join(final_gdb_loc, f'MedHHInc{year}_final') senior_fc = os.path.join(final_gdb_loc, f'Senior{year}_final') NoCar_fc = os.path.join(final_gdb_loc, f"NoCar{year}_Final") arcpy.env.workspace = os.path.join(root_dir, gdb) # -----> Change Year # ! what is this comment? arcpy.ClearWorkspaceCache_management() # MAke a working feature class from a copy of the minority fc. Define minority TNI fields and calculate them TNI_Minority = arcpy.conversion.FeatureClassToFeatureClass(in_features=minority_fc, out_path=arcpy.env.workspace, out_name=f"TNI_Minority{year}") arcpy.management.AddFields(in_table=TNI_Minority, field_description=[["TNI_Minority", "DOUBLE"],["PopDens", "DOUBLE"],["RegPopDens", "DOUBLE"],["TNI_Pop", "DOUBLE"]]) # ! should this use percentage rather than density? If we use this later on I can adjust (if it should be adjusted) # Process: Calculate Field (6) (Calculate Field) (management) arcpy.management.CalculateField(in_table=TNI_Minority, field="PopDens", expression="!TPOP! / !SqMiles!", expression_type="PYTHON3", code_block="", field_type="TEXT") arcpy.management.CalculateField(in_table=TNI_Minority, field="RegPopDens", expression="!RegTPOP! / !RegSqMiles!", expression_type="PYTHON3", code_block="", field_type="TEXT") arcpy.management.CalculateField(in_table=TNI_Minority, field="TNI_Minority", expression="!MinorityDens! / !RegMinorityDens!", expression_type="PYTHON3", code_block="", field_type="TEXT") arcpy.management.CalculateField(in_table=TNI_Minority, field="TNI_Pop", expression="!PopDens! / !RegPopDens!", expression_type="PYTHON3", code_block="", field_type="TEXT") # copy income fc, define TNI fields, and join to minority working fc. # note that median income is used directly in TNI calcs. TNI_MedHHInc = arcpy.conversion.FeatureClassToFeatureClass(in_features=os.path.join(final_gdb_loc, medhhinc_fc), out_path=gdb_loc, out_name=f"TNI_MedHHInc{year}")[0] arcpy.management.AddFields(in_table=TNI_MedHHInc,field_description=[["TNI_MedInc", "DOUBLE"],["TNI_MedInc", "DOUBLE"]]) TNI_Minority_MedHHInc_Join = arcpy.management.JoinField(in_data=TNI_Minority, in_field="GEOID", join_table=TNI_MedHHInc, join_field="GEOID", fields=["RegMedHHInc", "MedHHInc", "TNI_MedInc"])[0] # same as above, with senior TNI_Senior = arcpy.conversion.FeatureClassToFeatureClass(in_features=os.path.join(final_gdb_loc, senior_fc), out_path=gdb_loc, out_name=f"TNI_Senior{year}")[0] arcpy.management.AddField(in_table=TNI_Senior, field_name="TNI_Senior", field_type="DOUBLE") arcpy.management.CalculateField(in_table=TNI_Senior, field="TNI_Senior", expression="!SeniorDens! / !RegSeniorDens!", expression_type="PYTHON3", code_block="", field_type="DOUBLE") TNI_Join = arcpy.management.JoinField(in_data=TNI_Minority_MedHHInc_Join, in_field="GEOID", join_table=TNI_Senior, join_field="GEOID", fields=["TSenior", "SeniorDens", "RegSeniorDens", "TNI_Senior"])[0] # Same as above, with zero car households TNI_NoCar = arcpy.conversion.FeatureClassToFeatureClass(in_features=os.path.join(final_gdb_loc, NoCar_fc), out_path=gdb_loc, out_name="TNI_NoCar",)[0] arcpy.management.AddField(in_table=TNI_NoCar, field_name="TNI_NoCar", field_type="DOUBLE")[0] arcpy.management.AddField(in_table=TNI_NoCar, field_name="TNI_LowCar", field_type="DOUBLE")[0] arcpy.management.CalculateField(in_table=TNI_NoCar, field="TNI_NoCar", expression="!NoCarDens! / !RegNoCarDens!", expression_type="PYTHON3", field_type="DOUBLE")[0] arcpy.management.CalculateField(in_table=TNI_NoCar, field="TNI_LowCar", expression="!LowCarDens! / !RegLowCarDens!", expression_type="PYTHON3", code_block="", field_type="TEXT")[0] TNI_Join = arcpy.management.JoinField(in_data=TNI_Join, in_field="GEOID", join_table=TNI_NoCar, join_field="GEOID", fields=["TNoCar", "NoCarDens", "RegNoCarDens", "TNI_NoCar", "TLowCar", "LowCarDens", "RegLowCarDens", "TNI_LowCar"])[0] # Create and calculate the TNI arcpy.management.AddField(in_table=TNI_Join, field_name="TNI", field_type="DOUBLE") arcpy.management.CalculateField(in_table=TNI_Join, field="TNI", expression="(!TNI_MedInc!*3.5)+(!TNI_Minority!*1)+(!TNI_Senior!*1)+(!TNI_LowCar!*1.5)+(!TNI_Pop!*2)", expression_type="PYTHON3", field_type="TEXT") # compare each blockgroup's TNI to the regional TNI # Determine the regional mean and standard deviation TNI, then join to each blockgroup. # Finally, define each regions need (Very Low to High) based on how it compares to regional TNI TNI_Join_Dissolve = arcpy.management.Dissolve(in_features=TNI_Join, out_feature_class=f"{TNI_Join}_dissolve", dissolve_field=[], statistics_fields=[["TNI", "STD"], ["TNI", "MEAN"]], multi_part="MULTI_PART", unsplit_lines="DISSOLVE_LINES")[0] TNI_Join_Dissolve_SpJoin = arcpy.analysis.SpatialJoin(target_features=TNI_Join, join_features=TNI_Join_Dissolve, out_feature_class=f'{TNI_Join_Dissolve}_SpJoin', join_operation="JOIN_ONE_TO_ONE", join_type="KEEP_ALL")[0] arcpy.management.AddField(in_table=TNI_Join_Dissolve_SpJoin, field_name="Propensity", field_type="DOUBLE")[0] arcpy.management.CalculateField(in_table=TNI_Join_Dissolve_SpJoin, field="Propensity", expression="ifBlock(!TNI!,!STD_TNI!,!MEAN_TNI!)", expression_type="PYTHON3", code_block='''def ifBlock(TNI, STD_TNI, MEAN_TNI): if TNI < (MEAN_TNI-(STD_TNI*1.5)): return \"VL\" elif TNI > (MEAN_TNI-(STD_TNI*1.5)) and TNI < (MEAN_TNI-(STD_TNI*.5)): return \"L\" elif TNI > (MEAN_TNI-(STD_TNI*.5)) and TNI < (MEAN_TNI+(STD_TNI*.5)): return \"A\" elif TNI > (MEAN_TNI+(STD_TNI*.5)) and TNI < (MEAN_TNI+(STD_TNI*1.5)): return \"H\" elif TNI > (MEAN_TNI+(STD_TNI*1.5)): return \"VH\" else: return \"ERROR\" ''', field_type="TEXT")[0] # create TNI feature classes within output gdb's arcpy.conversion.FeatureClassToFeatureClass(in_features=TNI_Join_Dissolve_SpJoin, out_path=gdb_loc, out_name=f"TNI{year}_Final")[0] arcpy.conversion.FeatureClassToFeatureClass(in_features=TNI_Join_Dissolve_SpJoin, out_path=final_gdb_loc, out_name=f"TNI{year}_Final")[0]
65.207547
244
0.754051
6e0fce2d79b732da02e8ec7fbf23e9b5b8e1b453
7,769
py
Python
_test/test_indentation.py
zvxr/ruamel-yaml
0f5e5dd4c650ee0d9faa7c49a5cbc0a3f3488759
[ "MIT" ]
8
2020-08-10T11:59:25.000Z
2022-03-07T19:12:08.000Z
_test/test_indentation.py
zvxr/ruamel-yaml
0f5e5dd4c650ee0d9faa7c49a5cbc0a3f3488759
[ "MIT" ]
2
2022-01-12T10:02:57.000Z
2022-02-22T21:11:29.000Z
_test/test_indentation.py
zvxr/ruamel-yaml
0f5e5dd4c650ee0d9faa7c49a5cbc0a3f3488759
[ "MIT" ]
4
2020-12-11T21:26:42.000Z
2022-02-01T13:36:21.000Z
# coding: utf-8 import pytest # NOQA from roundtrip import round_trip, round_trip_load, round_trip_dump, dedent, YAML def rt(s): res = round_trip_dump(round_trip_load(s)) return res.strip() + '\n' class TestIndent: def test_roundtrip_inline_list(self): s = 'a: [a, b, c]\n' output = rt(s) assert s == output def test_roundtrip_mapping_of_inline_lists(self): s = dedent("""\ a: [a, b, c] j: [k, l, m] """) output = rt(s) assert s == output def test_roundtrip_mapping_of_inline_lists_comments(self): s = dedent("""\ # comment A a: [a, b, c] # comment B j: [k, l, m] """) output = rt(s) assert s == output def test_roundtrip_mapping_of_inline_sequence_eol_comments(self): s = dedent("""\ # comment A a: [a, b, c] # comment B j: [k, l, m] # comment C """) output = rt(s) assert s == output # first test by explicitly setting flow style def test_added_inline_list(self): s1 = dedent(""" a: - b - c - d """) s = 'a: [b, c, d]\n' data = round_trip_load(s1) val = data['a'] val.fa.set_flow_style() # print(type(val), '_yaml_format' in dir(val)) output = round_trip_dump(data) assert s == output # ############ flow mappings def test_roundtrip_flow_mapping(self): s = dedent("""\ - {a: 1, b: hallo} - {j: fka, k: 42} """) data = round_trip_load(s) output = round_trip_dump(data) assert s == output def test_roundtrip_sequence_of_inline_mappings_eol_comments(self): s = dedent("""\ # comment A - {a: 1, b: hallo} # comment B - {j: fka, k: 42} # comment C """) output = rt(s) assert s == output def test_indent_top_level(self): inp = """ - a: - b """ round_trip(inp, indent=4) def test_set_indent_5_block_list_indent_1(self): inp = """ a: - b: c - 1 - d: - 2 """ round_trip(inp, indent=5, block_seq_indent=1) def test_set_indent_4_block_list_indent_2(self): inp = """ a: - b: c - 1 - d: - 2 """ round_trip(inp, indent=4, block_seq_indent=2) def test_set_indent_3_block_list_indent_0(self): inp = """ a: - b: c - 1 - d: - 2 """ round_trip(inp, indent=3, block_seq_indent=0) def Xtest_set_indent_3_block_list_indent_2(self): inp = """ a: - b: c - 1 - d: - 2 """ round_trip(inp, indent=3, block_seq_indent=2) def test_set_indent_3_block_list_indent_2(self): inp = """ a: - b: c - 1 - d: - 2 """ round_trip(inp, indent=3, block_seq_indent=2) def Xtest_set_indent_2_block_list_indent_2(self): inp = """ a: - b: c - 1 - d: - 2 """ round_trip(inp, indent=2, block_seq_indent=2) # this is how it should be: block_seq_indent stretches the indent def test_set_indent_2_block_list_indent_2(self): inp = """ a: - b: c - 1 - d: - 2 """ round_trip(inp, indent=2, block_seq_indent=2) # have to set indent! def test_roundtrip_four_space_indents(self): # fmt: off s = ( 'a:\n' '- foo\n' '- bar\n' ) # fmt: on round_trip(s, indent=4) def test_roundtrip_four_space_indents_no_fail(self): inp = """ a: - foo - bar """ exp = """ a: - foo - bar """ assert round_trip_dump(round_trip_load(inp)) == dedent(exp) class TestYpkgIndent: def test_00(self): inp = """ name : nano version : 2.3.2 release : 1 homepage : http://www.nano-editor.org source : - http://www.nano-editor.org/dist/v2.3/nano-2.3.2.tar.gz : ff30924807ea289f5b60106be8 license : GPL-2.0 summary : GNU nano is an easy-to-use text editor builddeps : - ncurses-devel description: | GNU nano is an easy-to-use text editor originally designed as a replacement for Pico, the ncurses-based editor from the non-free mailer package Pine (itself now available under the Apache License as Alpine). """ round_trip( inp, indent=4, block_seq_indent=2, top_level_colon_align=True, prefix_colon=' ' ) def guess(s): from ruamel.yaml.util import load_yaml_guess_indent x, y, z = load_yaml_guess_indent(dedent(s)) return y, z class TestGuessIndent: def test_guess_20(self): inp = """\ a: - 1 """ assert guess(inp) == (2, 0) def test_guess_42(self): inp = """\ a: - 1 """ assert guess(inp) == (4, 2) def test_guess_42a(self): # block seq indent prevails over nested key indent level inp = """\ b: a: - 1 """ assert guess(inp) == (4, 2) def test_guess_3None(self): inp = """\ b: a: 1 """ assert guess(inp) == (3, None) class TestSeparateMapSeqIndents: # using uncommon 6 indent with 3 push in as 2 push in automatically # gets you 4 indent even if not set def test_00(self): # old style yaml = YAML() yaml.indent = 6 yaml.block_seq_indent = 3 inp = """ a: - 1 - [1, 2] """ yaml.round_trip(inp) def test_01(self): yaml = YAML() yaml.indent(sequence=6) yaml.indent(offset=3) inp = """ a: - 1 - {b: 3} """ yaml.round_trip(inp) def test_02(self): yaml = YAML() yaml.indent(mapping=5, sequence=6, offset=3) inp = """ a: b: - 1 - [1, 2] """ yaml.round_trip(inp) def test_03(self): inp = """ a: b: c: - 1 - [1, 2] """ round_trip(inp, indent=4) def test_04(self): yaml = YAML() yaml.indent(mapping=5, sequence=6) inp = """ a: b: - 1 - [1, 2] - {d: 3.14} """ yaml.round_trip(inp) def test_issue_51(self): yaml = YAML() # yaml.map_indent = 2 # the default yaml.indent(sequence=4, offset=2) yaml.preserve_quotes = True yaml.round_trip(""" role::startup::author::rsyslog_inputs: imfile: - ruleset: 'AEM-slinglog' File: '/opt/aem/author/crx-quickstart/logs/error.log' startmsg.regex: '^[-+T.:[:digit:]]*' tag: 'error' - ruleset: 'AEM-slinglog' File: '/opt/aem/author/crx-quickstart/logs/stdout.log' startmsg.regex: '^[-+T.:[:digit:]]*' tag: 'stdout' """) # ############ indentation
23.191045
95
0.460677
e30d5101f2fc8f75c04560c168376fce1539be29
5,150
py
Python
tests/test_add_option_enqueue.py
benhowes/loguru
b576d9767e32129c6c04869c054f20a739d6ce5c
[ "MIT" ]
1
2020-05-30T10:00:36.000Z
2020-05-30T10:00:36.000Z
tests/test_add_option_enqueue.py
benhowes/loguru
b576d9767e32129c6c04869c054f20a739d6ce5c
[ "MIT" ]
null
null
null
tests/test_add_option_enqueue.py
benhowes/loguru
b576d9767e32129c6c04869c054f20a739d6ce5c
[ "MIT" ]
null
null
null
from loguru import logger import pytest import time import re import sys class NotPicklable: def __getstate__(self): raise RuntimeError("You shall not serialize me!") def __setstate__(self, state): pass class NotUnpicklable: def __getstate__(self): return "..." def __setstate__(self, state): raise RuntimeError("You shall not de-serialize me!") class NotWritable: def write(self, message): if "fail" in message.record["extra"]: raise RuntimeError("You asked me to fail...") print(message, end="") def test_enqueue(): x = [] def sink(message): time.sleep(0.1) x.append(message) logger.add(sink, format="{message}", enqueue=True) logger.debug("Test") assert len(x) == 0 time.sleep(0.2) assert len(x) == 1 assert x[0] == "Test\n" def test_enqueue_with_exception(): x = [] def sink(message): time.sleep(0.1) x.append(message) logger.add(sink, format="{message}", enqueue=True) try: 1 / 0 except ZeroDivisionError: logger.exception("Error") assert len(x) == 0 time.sleep(0.2) assert len(x) == 1 lines = x[0].splitlines() assert lines[0] == "Error" assert lines[-1] == "ZeroDivisionError: division by zero" def test_caught_exception_queue_put(writer, capsys): logger.add(writer, enqueue=True, catch=True, format="{message}") logger.info("It's fine") logger.bind(broken=NotPicklable()).info("Bye bye...") logger.info("It's fine again") logger.remove() out, err = capsys.readouterr() lines = err.strip().splitlines() assert writer.read() == "It's fine\nIt's fine again\n" assert out == "" assert lines[0] == "--- Logging error in Loguru Handler #0 ---" assert re.match(r"Record was: \{.*Bye bye.*\}", lines[1]) assert lines[-2] == "RuntimeError: You shall not serialize me!" assert lines[-1] == "--- End of logging error ---" def test_caught_exception_queue_get(writer, capsys): logger.add(writer, enqueue=True, catch=True, format="{message}") logger.info("It's fine") logger.bind(broken=NotUnpicklable()).info("Bye bye...") logger.info("It's fine again") logger.remove() out, err = capsys.readouterr() lines = err.strip().splitlines() assert writer.read() == "It's fine\nIt's fine again\n" assert out == "" assert lines[0] == "--- Logging error in Loguru Handler #0 ---" assert lines[1] == "Record was: None" assert lines[-2] == "RuntimeError: You shall not de-serialize me!" assert lines[-1] == "--- End of logging error ---" def test_caught_exception_sink_write(capsys): logger.add(NotWritable(), enqueue=True, catch=True, format="{message}") logger.info("It's fine") logger.bind(fail=True).info("Bye bye...") logger.info("It's fine again") logger.remove() out, err = capsys.readouterr() lines = err.strip().splitlines() assert out == "It's fine\nIt's fine again\n" assert lines[0] == "--- Logging error in Loguru Handler #0 ---" assert re.match(r"Record was: \{.*Bye bye.*\}", lines[1]) assert lines[-2] == "RuntimeError: You asked me to fail..." assert lines[-1] == "--- End of logging error ---" def test_not_caught_exception_queue_put(writer, capsys): logger.add(writer, enqueue=True, catch=False, format="{message}") logger.info("It's fine") with pytest.raises(RuntimeError, match=r"You shall not serialize me!"): logger.bind(broken=NotPicklable()).info("Bye bye...") logger.remove() out, err = capsys.readouterr() lines = err.strip().splitlines() assert writer.read() == "It's fine\n" assert out == "" assert err == "" def test_not_caught_exception_queue_get(writer, capsys): logger.add(writer, enqueue=True, catch=False, format="{message}") logger.info("It's fine") logger.bind(broken=NotUnpicklable()).info("Bye bye...") logger.info("It's not fine") logger.remove() out, err = capsys.readouterr() lines = err.strip().splitlines() assert writer.read() == "It's fine\n" assert out == "" assert lines[0].startswith("Exception") assert lines[-1] == "RuntimeError: You shall not de-serialize me!" def test_not_caught_exception_sink_write(capsys): logger.add(NotWritable(), enqueue=True, catch=False, format="{message}") logger.info("It's fine") logger.bind(fail=True).info("Bye bye...") logger.info("It's not fine") logger.remove() out, err = capsys.readouterr() lines = err.strip().splitlines() assert out == "It's fine\n" assert lines[0].startswith("Exception") assert lines[-1] == "RuntimeError: You asked me to fail..." def test_wait_for_all_messages_enqueued(capsys): def slow_sink(message): time.sleep(0.01) sys.stderr.write(message) logger.add(slow_sink, enqueue=True, catch=False, format="{message}") for i in range(10): logger.info(i) logger.complete() out, err = capsys.readouterr() assert out == "" assert err == "".join("%d\n" % i for i in range(10))
27.688172
76
0.629709
4089d5a55890ee41005c2ca825c7644b9733f297
753
py
Python
src/dockerjango/dockerjango/urls.py
adamappsdev/Dockerjango
76ecc537a4d8ef7efe41c4a8c69a5214edd23403
[ "MIT" ]
null
null
null
src/dockerjango/dockerjango/urls.py
adamappsdev/Dockerjango
76ecc537a4d8ef7efe41c4a8c69a5214edd23403
[ "MIT" ]
null
null
null
src/dockerjango/dockerjango/urls.py
adamappsdev/Dockerjango
76ecc537a4d8ef7efe41c4a8c69a5214edd23403
[ "MIT" ]
null
null
null
"""dockerjango URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path urlpatterns = [ path('admin/', admin.site.urls), ]
34.227273
77
0.710491
31358cf08831bc34d6a22910e63bb5a0259f59d3
420
py
Python
run_demo.py
natchapolt/face-orientation-prep
378b25fa78c7429d007cf384410c39791cbd317c
[ "MIT" ]
null
null
null
run_demo.py
natchapolt/face-orientation-prep
378b25fa78c7429d007cf384410c39791cbd317c
[ "MIT" ]
3
2021-03-19T01:39:32.000Z
2022-01-13T01:22:13.000Z
run_demo.py
natchapolt/face-orientation-prep
378b25fa78c7429d007cf384410c39791cbd317c
[ "MIT" ]
null
null
null
import cv2 import sys from faceorientationprep.faceorientationfixer import FaceOrientationFixer def main(): if len(sys.argv) == 1: msg = """Usage: python run_demo.py \"<image-path>\"""" print(msg) return f = FaceOrientationFixer() im = cv2.imread(sys.argv[1]) cv2.imshow("s", f.fixOrientation(im)) cv2.waitKey(0) return if __name__ == '__main__': main()
19.090909
73
0.619048
dcdb4a5b552f18aa140b708e3701bf1f940c8660
4,167
py
Python
source/lambda/capture_news_feed/test/test_stream_helper.py
knihit/discovering-hot-topics-using-machine-learning
a7d2d87bedee54d18d6885d472f758b0bacf9db8
[ "Apache-2.0" ]
null
null
null
source/lambda/capture_news_feed/test/test_stream_helper.py
knihit/discovering-hot-topics-using-machine-learning
a7d2d87bedee54d18d6885d472f758b0bacf9db8
[ "Apache-2.0" ]
21
2021-07-22T19:02:25.000Z
2022-02-14T16:28:18.000Z
source/lambda/ingestion-youtube/test/test_stream_helper.py
aassadza-org/discovering-hot-topics-using-machine-learning
ef5f9d00a14b6b2024c9e0f9dfb915a6e632074d
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python ###################################################################################################################### # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance # # with the License. A copy of the License is located at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # or in the 'license' file accompanying this file. This file is distributed on an 'AS IS' BASIS, WITHOUT WARRANTIES # # OR CONDITIONS OF ANY KIND, express or implied. See the License for the specific language governing permissions # # and limitations under the License. # ###################################################################################################################### import json import os import unittest from datetime import datetime from moto import mock_kinesis from shared_util.service_helper import get_service_client from util.stream_helper import buffer_data_into_stream @mock_kinesis def stream_setup(stream_name): kds_client = get_service_client("kinesis") kds_client.create_stream(StreamName=stream_name, ShardCount=1) return kds_client def delete_stream_setup(kds_client, stream_name): kds_client.delete_stream(StreamName=stream_name) @mock_kinesis class TestStreamBuffer(unittest.TestCase): def setUp(self): self.stream_name = os.environ["STREAM_NAME"] self.kds_client = stream_setup(self.stream_name) def tearDown(self): delete_stream_setup(self.kds_client, self.stream_name) def test_buffer_data_into_stream(self): data = { "account_name": "fakeaccount", "platform": "fakeplatform", "search_query": "query_str", "feed": { "created_at": datetime.now().timestamp(), "id": "fakeid", "id_str": "fakeid", "text": "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.", "entities": {"media": [{"media_url_https": "https://fakeimageurl", "type": "image/jpeg"}]}, "extended_entities": {"media": [{"media_url_https": "https://fakeimageurl", "type": "image/jpeg"}]}, "lang": "en", "metadata": {"website": "fakeurl.com", "country": "US", "topic": "faketopic"}, }, } self.assertEqual(buffer_data_into_stream(data)["ResponseMetadata"]["HTTPStatusCode"], 200) # To verify the data read the data from the mock stream response = self.kds_client.describe_stream(StreamName=self.stream_name) shard_id = response["StreamDescription"]["Shards"][0]["ShardId"] self.assertEqual(shard_id, "shardId-000000000000") shard_iterator = self.kds_client.get_shard_iterator( StreamName=self.stream_name, ShardId=shard_id, ShardIteratorType="TRIM_HORIZON" ) shard_iterator = shard_iterator["ShardIterator"] records = self.kds_client.get_records(ShardIterator=shard_iterator, Limit=1) self.assertEqual(json.loads(records["Records"][0]["Data"]), data)
56.310811
472
0.552676
598544731ee469685aaff8bb7b149b02adf21435
2,039
py
Python
examples/custom_eval.py
zangy17/OpenAttack
9114a8af12680f14684d2bf1bc6a5c5e34f8932c
[ "MIT" ]
1
2020-09-27T23:10:14.000Z
2020-09-27T23:10:14.000Z
examples/custom_eval.py
zangy17/OpenAttack
9114a8af12680f14684d2bf1bc6a5c5e34f8932c
[ "MIT" ]
null
null
null
examples/custom_eval.py
zangy17/OpenAttack
9114a8af12680f14684d2bf1bc6a5c5e34f8932c
[ "MIT" ]
1
2020-09-01T11:14:42.000Z
2020-09-01T11:14:42.000Z
''' This example code shows how to design a customized attack evaluation metric, namely BLEU score. ''' import OpenAttack from nltk.translate.bleu_score import sentence_bleu class CustomAttackEval(OpenAttack.DefaultAttackEval): def __init__(self, attacker, clsf, processor=OpenAttack.DefaultTextProcessor(), **kwargs): super().__init__(attacker, clsf, processor=processor, **kwargs) self.__processor = processor # We extend :py:class:`.DefaultAttackEval` and use ``processor`` option to specify # the :py:class:`.TextProcessor` used in our ``CustomAttackEval``. def measure(self, x_orig, x_adv): # Invoke the original ``measure`` method to get measurements info = super().measure(x_orig, x_adv) if info["Succeed"]: # Add ``Blue`` score which is calculated by **NLTK toolkit** if attack succeed. token_orig = [token for token, pos in self.__processor.get_tokens(x_orig)] token_adv = [token for token, pos in self.__processor.get_tokens(x_adv)] info["Bleu"] = sentence_bleu([x_orig], x_adv) return info def update(self, info): info = super().update(info) if info["Succeed"]: # Add bleu score that we just calculated to the total result. self.__result["bleu"] += info["Bleu"] return info def clear(self): super().clear() self.__result = { "bleu": 0 } # Clear results def get_result(self): result = super().get_result() # Calculate average bleu scores and return. result["Avg. Bleu"] = self.__result["bleu"] / result["Successful Instances"] return result def main(): clsf = OpenAttack.load("Victim.BiLSTM.SST") dataset = OpenAttack.load("Dataset.SST.sample")[:10] attacker = OpenAttack.attackers.GeneticAttacker() attack_eval = CustomAttackEval(attacker, clsf) attack_eval.eval(dataset, visualize=True) if __name__ == "__main__": main()
38.471698
95
0.641981
9b075415b437ccaa3a7d86cc2ef16be39ef9c0af
5,001
py
Python
src/clients/ctm_api_client/models/host_group_data.py
IceT-M/ctm-python-client
0ef1d8a3c9a27a01c088be1cdf5d177d25912bac
[ "BSD-3-Clause" ]
5
2021-12-01T18:40:00.000Z
2022-03-04T10:51:44.000Z
src/clients/ctm_api_client/models/host_group_data.py
IceT-M/ctm-python-client
0ef1d8a3c9a27a01c088be1cdf5d177d25912bac
[ "BSD-3-Clause" ]
3
2022-02-21T20:08:32.000Z
2022-03-16T17:41:03.000Z
src/clients/ctm_api_client/models/host_group_data.py
IceT-M/ctm-python-client
0ef1d8a3c9a27a01c088be1cdf5d177d25912bac
[ "BSD-3-Clause" ]
7
2021-12-01T11:59:16.000Z
2022-03-01T18:16:40.000Z
# coding: utf-8 """ Control-M Services Provides access to BMC Control-M Services # noqa: E501 OpenAPI spec version: 9.20.215 Contact: customer_support@bmc.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from clients.ctm_api_client.configuration import Configuration class HostGroupData(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { "hostgroup": "str", "tag": "str", "agentslist": "list[AgentInGroupParams]", } attribute_map = {"hostgroup": "hostgroup", "tag": "tag", "agentslist": "agentslist"} def __init__( self, hostgroup=None, tag=None, agentslist=None, _configuration=None ): # noqa: E501 """HostGroupData - a model defined in Swagger""" # noqa: E501 if _configuration is None: _configuration = Configuration() self._configuration = _configuration self._hostgroup = None self._tag = None self._agentslist = None self.discriminator = None if hostgroup is not None: self.hostgroup = hostgroup if tag is not None: self.tag = tag if agentslist is not None: self.agentslist = agentslist @property def hostgroup(self): """Gets the hostgroup of this HostGroupData. # noqa: E501 Host Group name # noqa: E501 :return: The hostgroup of this HostGroupData. # noqa: E501 :rtype: str """ return self._hostgroup @hostgroup.setter def hostgroup(self, hostgroup): """Sets the hostgroup of this HostGroupData. Host Group name # noqa: E501 :param hostgroup: The hostgroup of this HostGroupData. # noqa: E501 :type: str """ self._hostgroup = hostgroup @property def tag(self): """Gets the tag of this HostGroupData. # noqa: E501 Host Group tag # noqa: E501 :return: The tag of this HostGroupData. # noqa: E501 :rtype: str """ return self._tag @tag.setter def tag(self, tag): """Sets the tag of this HostGroupData. Host Group tag # noqa: E501 :param tag: The tag of this HostGroupData. # noqa: E501 :type: str """ self._tag = tag @property def agentslist(self): """Gets the agentslist of this HostGroupData. # noqa: E501 Agents list # noqa: E501 :return: The agentslist of this HostGroupData. # noqa: E501 :rtype: list[AgentInGroupParams] """ return self._agentslist @agentslist.setter def agentslist(self, agentslist): """Sets the agentslist of this HostGroupData. Agents list # noqa: E501 :param agentslist: The agentslist of this HostGroupData. # noqa: E501 :type: list[AgentInGroupParams] """ self._agentslist = agentslist def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list( map(lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value) ) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict( map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items(), ) ) else: result[attr] = value if issubclass(HostGroupData, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, HostGroupData): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, HostGroupData): return True return self.to_dict() != other.to_dict()
27.478022
88
0.565487
8a873f00dcfbdb93174d03b2016b4767148bbd9e
154
py
Python
tests/odm/test_sqlite.py
quantmind/lux
7318fcd86c77616aada41d8182a04339680a554c
[ "BSD-3-Clause" ]
21
2015-03-28T23:27:43.000Z
2020-11-23T13:24:10.000Z
tests/odm/test_sqlite.py
quantmind/lux
7318fcd86c77616aada41d8182a04339680a554c
[ "BSD-3-Clause" ]
195
2015-02-18T17:22:28.000Z
2017-12-01T23:01:16.000Z
tests/odm/test_sqlite.py
quantmind/lux
7318fcd86c77616aada41d8182a04339680a554c
[ "BSD-3-Clause" ]
16
2015-03-31T23:15:38.000Z
2017-04-18T11:59:43.000Z
import tests.odm.test_postgresql as postgresql from tests.odm.utils import SqliteMixin class TestSql(SqliteMixin, postgresql.TestPostgreSql): pass
19.25
54
0.818182
4e8d13c8d1d568534d5ea1b9a820686c3ea45080
501
py
Python
tests/system/test_base.py
kussj/cassandrabeat
feaf39f9eddc905780a59bb281983ec5ea28acd8
[ "Apache-2.0" ]
null
null
null
tests/system/test_base.py
kussj/cassandrabeat
feaf39f9eddc905780a59bb281983ec5ea28acd8
[ "Apache-2.0" ]
null
null
null
tests/system/test_base.py
kussj/cassandrabeat
feaf39f9eddc905780a59bb281983ec5ea28acd8
[ "Apache-2.0" ]
null
null
null
from cassandrabeat import BaseTest import os class Test(BaseTest): def test_base(self): """ Basic test with exiting Cassandrabeat normally """ self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/*" ) cassandrabeat_proc = self.start_beat() self.wait_until( lambda: self.log_contains("cassandrabeat is running")) exit_code = cassandrabeat_proc.kill_and_wait() assert exit_code == 0
25.05
79
0.638723
1dfee333e6fa0523611657da2908d959068d44f8
4,911
py
Python
tests/test_fallback_expressions.py
Symmetry-International/m2cgen
3157e0cbd5bd1ee7e044a992223c60224e2b7709
[ "MIT" ]
1
2021-05-28T06:59:21.000Z
2021-05-28T06:59:21.000Z
tests/test_fallback_expressions.py
Symmetry-International/m2cgen
3157e0cbd5bd1ee7e044a992223c60224e2b7709
[ "MIT" ]
null
null
null
tests/test_fallback_expressions.py
Symmetry-International/m2cgen
3157e0cbd5bd1ee7e044a992223c60224e2b7709
[ "MIT" ]
null
null
null
from m2cgen import ast from m2cgen.interpreters import CInterpreter, PythonInterpreter from tests.utils import assert_code_equal def test_abs_fallback_expr(): expr = ast.AbsExpr(ast.NumVal(-2.0)) interpreter = CInterpreter() interpreter.abs_function_name = NotImplemented expected_code = """ double score(double * input) { double var0; double var1; var1 = -2.0; if ((var1) < (0.0)) { var0 = (0.0) - (var1); } else { var0 = var1; } return var0; } """ assert_code_equal(interpreter.interpret(expr), expected_code) def test_tanh_fallback_expr(): expr = ast.TanhExpr(ast.NumVal(2.0)) interpreter = PythonInterpreter() interpreter.tanh_function_name = NotImplemented expected_code = """ import math def score(input): var1 = 2.0 if (var1) > (44.0): var0 = 1.0 else: if (var1) < (-44.0): var0 = -1.0 else: var0 = (1.0) - ((2.0) / ((math.exp((2.0) * (var1))) + (1.0))) return var0 """ assert_code_equal(interpreter.interpret(expr), expected_code) def test_sqrt_fallback_expr(): expr = ast.SqrtExpr(ast.NumVal(2.0)) interpreter = PythonInterpreter() interpreter.sqrt_function_name = NotImplemented expected_code = """ import math def score(input): return math.pow(2.0, 0.5) """ assert_code_equal(interpreter.interpret(expr), expected_code) def test_exp_fallback_expr(): expr = ast.ExpExpr(ast.NumVal(2.0)) interpreter = PythonInterpreter() interpreter.exponent_function_name = NotImplemented expected_code = """ import math def score(input): return math.pow(2.718281828459045, 2.0) """ assert_code_equal(interpreter.interpret(expr), expected_code) def test_log1p_fallback_expr(): expr = ast.Log1pExpr(ast.NumVal(2.0)) interpreter = PythonInterpreter() interpreter.log1p_function_name = NotImplemented expected_code = """ import math def score(input): var1 = 2.0 var2 = (1.0) + (var1) var3 = (var2) - (1.0) if (var3) == (0.0): var0 = var1 else: var0 = ((var1) * (math.log(var2))) / (var3) return var0 """ assert_code_equal(interpreter.interpret(expr), expected_code) def test_atan_fallback_expr(): expr = ast.AtanExpr(ast.NumVal(2.0)) interpreter = PythonInterpreter() interpreter.atan_function_name = NotImplemented expected_code = ( """ def score(input): var1 = 2.0 var2 = abs(var1) if (var2) > (2.414213562373095): var0 = (1.0) / (var2) else: if (var2) > (0.66): var0 = ((var2) - (1.0)) / ((var2) + (1.0)) else: var0 = var2 var3 = var0 var4 = (var3) * (var3) if (var2) > (2.414213562373095): var5 = -1.0 else: var5 = 1.0 if (var2) <= (0.66): var6 = 0.0 else: if (var2) > (2.414213562373095): var6 = 1.5707963267948968 else: var6 = 0.7853981633974484 if (var1) < (0.0): var7 = -1.0 else: var7 = 1.0 return (((((var3) * ((var4) * ((((var4) * (((var4) * (((var4) * """ """(((var4) * (-0.8750608600031904)) - (16.157537187333652))) - """ """(75.00855792314705))) - (122.88666844901361))) - """ """(64.85021904942025)) / ((194.5506571482614) + ((var4) * """ """((485.3903996359137) + ((var4) * ((432.88106049129027) + """ """((var4) * ((165.02700983169885) + ((var4) * """ """((24.858464901423062) + (var4))))))))))))) + (var3)) * """ """(var5)) + (var6)) * (var7)""") assert_code_equal(interpreter.interpret(expr), expected_code) def test_softmax_fallback_expr(): expr = ast.SoftmaxExpr([ast.NumVal(2.0), ast.NumVal(3.0)]) class InterpreterWithoutSoftmax(PythonInterpreter): softmax_function_name = NotImplemented def interpret_softmax_expr(self, expr, **kwargs): return super(PythonInterpreter, self).interpret_softmax_expr( expr, **kwargs) interpreter = InterpreterWithoutSoftmax() expected_code = """ import math def score(input): var0 = math.exp(2.0) var1 = math.exp(3.0) var2 = (var0) + (var1) return [(var0) / (var2), (var1) / (var2)] """ assert_code_equal(interpreter.interpret(expr), expected_code) def test_sigmoid_fallback_expr(): expr = ast.SigmoidExpr(ast.NumVal(2.0)) class InterpreterWithoutSigmoid(PythonInterpreter): sigmoid_function_name = NotImplemented def interpret_sigmoid_expr(self, expr, **kwargs): return super(PythonInterpreter, self).interpret_sigmoid_expr( expr, **kwargs) interpreter = InterpreterWithoutSigmoid() expected_code = """ import math def score(input): return (1.0) / ((1.0) + (math.exp((0.0) - (2.0)))) """ assert_code_equal(interpreter.interpret(expr), expected_code)
25.184615
75
0.604358
10252181dfd15e2891365d5cf56448ee9a38231d
1,887
py
Python
autokeras/hyper_preprocessors.py
jwliou/autokeras
f9b4cdf445368d69f776317f372b09b66f45b69e
[ "Apache-2.0" ]
4,704
2017-12-03T02:40:27.000Z
2019-12-19T23:23:34.000Z
autokeras/hyper_preprocessors.py
jwliou/autokeras
f9b4cdf445368d69f776317f372b09b66f45b69e
[ "Apache-2.0" ]
541
2018-02-13T21:59:58.000Z
2019-04-01T15:21:57.000Z
autokeras/hyper_preprocessors.py
jwliou/autokeras
f9b4cdf445368d69f776317f372b09b66f45b69e
[ "Apache-2.0" ]
738
2018-02-07T03:01:13.000Z
2019-12-19T23:23:36.000Z
# Copyright 2020 The AutoKeras Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from tensorflow import keras from autokeras import preprocessors from autokeras.engine import hyper_preprocessor def serialize(encoder): return keras.utils.serialize_keras_object(encoder) def deserialize(config, custom_objects=None): return keras.utils.deserialize_keras_object( config, module_objects=globals(), custom_objects=custom_objects, printable_module_name="preprocessors", ) class DefaultHyperPreprocessor(hyper_preprocessor.HyperPreprocessor): """HyperPreprocessor without Hyperparameters to tune. It would always return the same preprocessor. No hyperparameters to be tuned. # Arguments preprocessor: The Preprocessor to return when calling build. """ def __init__(self, preprocessor, *args, **kwargs): super().__init__(*args, **kwargs) self.preprocessor = preprocessor def build(self, hp, dataset): return self.preprocessor def get_config(self): config = super().get_config() config.update({"preprocessor": preprocessors.serialize(self.preprocessor)}) return config @classmethod def from_config(cls, config): config["preprocessor"] = preprocessors.deserialize(config["preprocessor"]) return super().from_config(config)
31.983051
83
0.72973
fe3c7a998c371a89535d41f098a60635a861c1d9
13,331
py
Python
autokeras/image_supervised.py
Bennnun/autokeras
8cd0b8dd5627e41ba31ea1f099a7c2ae469f902f
[ "MIT" ]
null
null
null
autokeras/image_supervised.py
Bennnun/autokeras
8cd0b8dd5627e41ba31ea1f099a7c2ae469f902f
[ "MIT" ]
null
null
null
autokeras/image_supervised.py
Bennnun/autokeras
8cd0b8dd5627e41ba31ea1f099a7c2ae469f902f
[ "MIT" ]
null
null
null
import csv import os import pickle import time from abc import abstractmethod from functools import reduce import numpy as np from scipy import ndimage import torch from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from autokeras.loss_function import classification_loss, regression_loss from autokeras.supervised import Supervised from autokeras.constant import Constant from autokeras.metric import Accuracy, MSE from autokeras.preprocessor import OneHotEncoder, DataTransformer from autokeras.search import Searcher, train from autokeras.utils import ensure_dir, has_file, pickle_from_file, pickle_to_file, temp_folder_generator def _validate(x_train, y_train): """Check `x_train`'s type and the shape of `x_train`, `y_train`.""" try: x_train = x_train.astype('float64') except ValueError: raise ValueError('x_train should only contain numerical data.') if len(x_train.shape) < 2: raise ValueError('x_train should at least has 2 dimensions.') if x_train.shape[0] != y_train.shape[0]: raise ValueError('x_train and y_train should have the same number of instances.') def run_searcher_once(train_data, test_data, path, timeout): if Constant.LIMIT_MEMORY: pass searcher = pickle_from_file(os.path.join(path, 'searcher')) searcher.search(train_data, test_data, timeout) def read_csv_file(csv_file_path): """Read the csv file and returns two separate list containing files name and their labels. Args: csv_file_path: Path to the CSV file. Returns: file_names: List containing files names. file_label: List containing their respective labels. """ file_names = [] file_labels = [] with open(csv_file_path, 'r') as files_path: path_list = csv.DictReader(files_path) fieldnames = path_list.fieldnames for path in path_list: file_names.append(path[fieldnames[0]]) file_labels.append(path[fieldnames[1]]) return file_names, file_labels def read_images(img_file_names, images_dir_path): """Read the images from the path and return their numpy.ndarray instance. Return a numpy.ndarray instance containing the training data. Args: img_file_names: List containing images names. images_dir_path: Path to the directory containing images. """ x_train = [] if os.path.isdir(images_dir_path): for img_file in img_file_names: img_path = os.path.join(images_dir_path, img_file) if os.path.exists(img_path): img = ndimage.imread(fname=img_path) if len(img.shape) < 3: img = img[..., np.newaxis] x_train.append(img) else: raise ValueError("%s image does not exist" % img_file) else: raise ValueError("Directory containing images does not exist") return np.asanyarray(x_train) def load_image_dataset(csv_file_path, images_path): """Load images from the files and labels from a csv file. Second, the dataset is a set of images and the labels are in a CSV file. The CSV file should contain two columns whose names are 'File Name' and 'Label'. The file names in the first column should match the file names of the images with extensions, e.g., .jpg, .png. The path to the CSV file should be passed through the `csv_file_path`. The path to the directory containing all the images should be passed through `image_path`. Args: csv_file_path: CSV file path. images_path: Path where images exist. Returns: x: Four dimensional numpy.ndarray. The channel dimension is the last dimension. y: The labels. """ img_file_name, y = read_csv_file(csv_file_path) x = read_images(img_file_name, images_path) return np.array(x), np.array(y) class ImageSupervised(Supervised): """The image classifier class. It is used for image classification. It searches convolutional neural network architectures for the best configuration for the dataset. Attributes: path: A path to the directory to save the classifier. y_encoder: An instance of OneHotEncoder for `y_train` (array of categorical labels). verbose: A boolean value indicating the verbosity mode. searcher: An instance of BayesianSearcher. It searches different neural architecture to find the best model. searcher_args: A dictionary containing the parameters for the searcher's __init__ function. augment: A boolean value indicating whether the data needs augmentation. """ def __init__(self, verbose=False, path=None, resume=False, searcher_args=None, augment=None): """Initialize the instance. The classifier will be loaded from the files in 'path' if parameter 'resume' is True. Otherwise it would create a new one. Args: verbose: A boolean of whether the search process will be printed to stdout. path: A string. The path to a directory, where the intermediate results are saved. resume: A boolean. If True, the classifier will continue to previous work saved in path. Otherwise, the classifier will start a new search. augment: A boolean value indicating whether the data needs augmentation. """ super().__init__(verbose) if searcher_args is None: searcher_args = {} if path is None: path = temp_folder_generator() if augment is None: augment = Constant.DATA_AUGMENTATION if has_file(os.path.join(path, 'classifier')) and resume: classifier = pickle_from_file(os.path.join(path, 'classifier')) self.__dict__ = classifier.__dict__ self.path = path else: self.y_encoder = None self.data_transformer = None self.verbose = verbose self.searcher = False self.path = path self.searcher_args = searcher_args self.augment = augment ensure_dir(path) @property @abstractmethod def metric(self): pass @property @abstractmethod def loss(self): pass def fit(self, x_train=None, y_train=None, time_limit=None): """Find the best neural architecture and train it. Based on the given dataset, the function will find the best neural architecture for it. The dataset is in numpy.ndarray format. So they training data should be passed through `x_train`, `y_train`. Args: x_train: A numpy.ndarray instance containing the training data. y_train: A numpy.ndarray instance containing the label of the training data. time_limit: The time limit for the search in seconds. """ if y_train is None: y_train = [] if x_train is None: x_train = [] x_train = np.array(x_train) y_train = np.array(y_train).flatten() _validate(x_train, y_train) y_train = self.transform_y(y_train) # Transform x_train if self.data_transformer is None: self.data_transformer = DataTransformer(x_train, augment=self.augment) # Create the searcher and save on disk if not self.searcher: input_shape = x_train.shape[1:] self.searcher_args['n_output_node'] = self.get_n_output_node() self.searcher_args['input_shape'] = input_shape self.searcher_args['path'] = self.path self.searcher_args['metric'] = self.metric self.searcher_args['loss'] = self.loss self.searcher_args['verbose'] = self.verbose searcher = Searcher(**self.searcher_args) self.save_searcher(searcher) self.searcher = True # Divide training data into training and testing data. x_train, x_test, y_train, y_test = train_test_split(x_train, y_train, test_size=min(Constant.VALIDATION_SET_SIZE, int(len(y_train) * 0.2)), random_state=42) # Wrap the data into DataLoaders train_data = self.data_transformer.transform_train(x_train, y_train) test_data = self.data_transformer.transform_test(x_test, y_test) # Save the classifier pickle.dump(self, open(os.path.join(self.path, 'classifier'), 'wb')) pickle_to_file(self, os.path.join(self.path, 'classifier')) if time_limit is None: time_limit = 24 * 60 * 60 start_time = time.time() time_remain = time_limit try: while time_remain > 0: run_searcher_once(train_data, test_data, self.path, int(time_remain)) if len(self.load_searcher().history) >= Constant.MAX_MODEL_NUM: break time_elapsed = time.time() - start_time time_remain = time_limit - time_elapsed # if no search executed during the time_limit, then raise an error if time_remain <= 0: raise TimeoutError except TimeoutError: if len(self.load_searcher().history) == 0: raise TimeoutError("Search Time too short. No model was found during the search time.") elif self.verbose: print('Time is out.') @abstractmethod def get_n_output_node(self): pass def transform_y(self, y_train): return y_train def predict(self, x_test): """Return predict results for the testing data. Args: x_test: An instance of numpy.ndarray containing the testing data. Returns: A numpy.ndarray containing the results. """ if Constant.LIMIT_MEMORY: pass test_loader = self.data_transformer.transform_test(x_test) model = self.load_searcher().load_best_model().produce_model() model.eval() outputs = [] with torch.no_grad(): for index, inputs in enumerate(test_loader): outputs.append(model(inputs).numpy()) output = reduce(lambda x, y: np.concatenate((x, y)), outputs) return self.inverse_transform_y(output) def inverse_transform_y(self, output): return output def evaluate(self, x_test, y_test): """Return the accuracy score between predict value and `y_test`.""" y_predict = self.predict(x_test) return accuracy_score(y_test, y_predict) def save_searcher(self, searcher): pickle.dump(searcher, open(os.path.join(self.path, 'searcher'), 'wb')) def load_searcher(self): return pickle_from_file(os.path.join(self.path, 'searcher')) def final_fit(self, x_train, y_train, x_test, y_test, trainer_args=None, retrain=False): """Final training after found the best architecture. Args: x_train: A numpy.ndarray of training data. y_train: A numpy.ndarray of training targets. x_test: A numpy.ndarray of testing data. y_test: A numpy.ndarray of testing targets. trainer_args: A dictionary containing the parameters of the ModelTrainer constructor. retrain: A boolean of whether reinitialize the weights of the model. """ if trainer_args is None: trainer_args = {'max_no_improvement_num': 30} y_train = self.transform_y(y_train) y_test = self.transform_y(y_test) train_data = self.data_transformer.transform_train(x_train, y_train) test_data = self.data_transformer.transform_test(x_test, y_test) searcher = self.load_searcher() graph = searcher.load_best_model() if retrain: graph.weighted = False _, _1, graph = train((graph, train_data, test_data, trainer_args, None, self.metric, self.loss, self.verbose)) def get_best_model_id(self): """ Return an integer indicating the id of the best model.""" return self.load_searcher().get_best_model_id() class ImageClassifier(ImageSupervised): @property def loss(self): return classification_loss def transform_y(self, y_train): # Transform y_train. if self.y_encoder is None: self.y_encoder = OneHotEncoder() self.y_encoder.fit(y_train) y_train = self.y_encoder.transform(y_train) return y_train def inverse_transform_y(self, output): return self.y_encoder.inverse_transform(output) def get_n_output_node(self): return self.y_encoder.n_classes @property def metric(self): return Accuracy class ImageRegressor(ImageSupervised): @property def loss(self): return regression_loss @property def metric(self): return MSE def get_n_output_node(self): return 1 def transform_y(self, y_train): return y_train.flatten().reshape(len(y_train), 1) def inverse_transform_y(self, output): return output.flatten()
36.225543
118
0.647963
97d5ae1f5dc76405bc0f01803d647534988f1616
3,229
py
Python
research/object_detection/generate_tfrecord.py
stesha2016/models
addb5baa31875232b6b8f5b61d0522de56a79f08
[ "Apache-2.0" ]
1
2021-07-17T11:33:57.000Z
2021-07-17T11:33:57.000Z
research/object_detection/generate_tfrecord.py
stesha2016/models
addb5baa31875232b6b8f5b61d0522de56a79f08
[ "Apache-2.0" ]
null
null
null
research/object_detection/generate_tfrecord.py
stesha2016/models
addb5baa31875232b6b8f5b61d0522de56a79f08
[ "Apache-2.0" ]
1
2019-07-24T03:52:18.000Z
2019-07-24T03:52:18.000Z
""" Usage: # From tensorflow/models/ # Create train data: python generate_tfrecord.py --csv_input=images/train_labels.csv --image_dir=images/train --output_path=train.record # Create test data: python generate_tfrecord.py --csv_input=images/test_labels.csv --image_dir=images/test --output_path=test.record """ from __future__ import division from __future__ import print_function from __future__ import absolute_import import os import io import pandas as pd import tensorflow as tf from PIL import Image from object_detection.utils import dataset_util from collections import namedtuple, OrderedDict flags = tf.app.flags flags.DEFINE_string('dataset', 'boxes', 'dataset name such as boxes') FLAGS = flags.FLAGS def class_text_to_int(row_label): if row_label == 'box': return 1 else: None def split(df, group): data = namedtuple('data', ['filename', 'object']) gb = df.groupby(group) return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)] def create_tf_example(group, path): with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = Image.open(encoded_jpg_io) width, height = image.size filename = group.filename.encode('utf8') image_format = b'jpg' xmins = [] xmaxs = [] ymins = [] ymaxs = [] classes_text = [] classes = [] for index, row in group.object.iterrows(): xmins.append(row['xmin'] / width) xmaxs.append(row['xmax'] / width) ymins.append(row['ymin'] / height) ymaxs.append(row['ymax'] / height) classes_text.append(row['class'].encode('utf8')) classes.append(class_text_to_int(row['class'])) tf_example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature(filename), 'image/source_id': dataset_util.bytes_feature(filename), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature(image_format), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), })) return tf_example def main(_): for set in ['train', 'test']: output_path = './project_images/{}/{}.tfrecord'.format(FLAGS.dataset, set) image_dir = 'project_images/{}/{}'.format(FLAGS.dataset, set) csv_input = './project_images/{}/{}_labels.csv'.format(FLAGS.dataset, set) writer = tf.python_io.TFRecordWriter(output_path) path = os.path.join(os.getcwd(), image_dir) examples = pd.read_csv(csv_input) grouped = split(examples, 'filename') for group in grouped: tf_example = create_tf_example(group, path) writer.write(tf_example.SerializeToString()) writer.close() print('Successfully created the TFRecords: {}'.format(output_path)) if __name__ == '__main__': tf.app.run()
34.72043
136
0.743574
769801b46e9f88419eea9f92be1c8656bf986912
2,364
py
Python
MH.py
EricBlythe/RSA
25b87c17ec56a21488c3f84dcc77a847f2dc5ef2
[ "MIT" ]
1
2021-07-01T13:57:29.000Z
2021-07-01T13:57:29.000Z
MH.py
EricBlythe/RSA
25b87c17ec56a21488c3f84dcc77a847f2dc5ef2
[ "MIT" ]
null
null
null
MH.py
EricBlythe/RSA
25b87c17ec56a21488c3f84dcc77a847f2dc5ef2
[ "MIT" ]
null
null
null
def gcd(a,b): a,b=abs(a), abs(b) if a<b: t=a a=b b=t if a%b==0: return b else: return gcd(a%b, b) class Fraction: def __init__(self,a,b): if a==0: self.a=0 self.b=1 return if a*b<0: a=-abs(a) b=abs(b) d=gcd(a,b) a=int(a/d) b=int(b/d) self.a=a self.b=b def __repr__(self): return str(self.a)+'/'+str(self.b) def __str__(self): return str(self.a)+'/'+str(self.b) def __add__(self,other): return Fraction(self.a*other.b+self.b*other.a, self.b*other.b) def __sub__(self, other): return Fraction(self.a*other.b-self.b*other.a, self.b*other.b) def __neg__(self): return Fraction(0,1)-self def __mul__(self, other): return Fraction(self.a*other.a,self.b*other.b) def __truediv__(self, other): return self*Fraction(other.b,other.a) def __pow__(self, other): return (self.a/self.b)**other def __eq__(self,other): if self.a==other.a and self.b==other.b: return True return False def __gt__(self, other): if (self-other).a>0: return True return False def Euc(a,b): x=0 if a<b: t=a a=b b=t x=1 if a%b==0: M=1 N=-a//b+1 if x==1: t=M M=N N=t return [M,N] else: r=a%b q=(a-a%b)//b m=Euc(r,b)[0] n=Euc(r,b)[1] M=m N=n-q*m if x==1: t=M M=N N=t return [M,N] def inv(a,p): x=Euc(a,p)[0] x=x%p return x def prime(N): N=N-2 A=2 P=[] P.append(A) A=3 P.append(A) while A<=N: A=A+2 t=2+N**0.5 t=int(t) for p in P: if p>t: break if A%p==0: break if A%p==0: continue P.append(A) return P def RIntegral(f, lower, higher): step=0.001 a=lower result=0 while a<higher: result+=step*(f(a)+f(a+step))/2 a+=step return result
20.556522
71
0.416244
f8431aca0f5b810642bb4e9ef2d4ce581a0d28a8
537
py
Python
mmdet/models/detectors/solov2.py
Joxis/mmdetection
ad14c6e820f7516c3b31514fea271ba5c46e8fdb
[ "Apache-2.0" ]
null
null
null
mmdet/models/detectors/solov2.py
Joxis/mmdetection
ad14c6e820f7516c3b31514fea271ba5c46e8fdb
[ "Apache-2.0" ]
null
null
null
mmdet/models/detectors/solov2.py
Joxis/mmdetection
ad14c6e820f7516c3b31514fea271ba5c46e8fdb
[ "Apache-2.0" ]
null
null
null
from .single_stage_ins import SingleStageInsDetector from ..builder import DETECTORS @DETECTORS.register_module class SOLOv2(SingleStageInsDetector): def __init__(self, backbone, neck, bbox_head, mask_feat_head, train_cfg=None, test_cfg=None, pretrained=None): super(SOLOv2, self).__init__(backbone, neck, bbox_head, mask_feat_head, train_cfg, test_cfg, pretrained)
29.833333
79
0.56797
2a5cd013563e07934fdfe94f81b94a324ca01984
101
py
Python
python/rpdk/python/__init__.py
RG4421/cloudformation-cli-python-plugin
a53dc519764f7b876e1cc3cef4b9daea70822887
[ "Apache-2.0" ]
null
null
null
python/rpdk/python/__init__.py
RG4421/cloudformation-cli-python-plugin
a53dc519764f7b876e1cc3cef4b9daea70822887
[ "Apache-2.0" ]
null
null
null
python/rpdk/python/__init__.py
RG4421/cloudformation-cli-python-plugin
a53dc519764f7b876e1cc3cef4b9daea70822887
[ "Apache-2.0" ]
2
2020-09-01T16:42:30.000Z
2021-09-28T05:20:36.000Z
import logging __version__ = "2.1.0" logging.getLogger(__name__).addHandler(logging.NullHandler())
16.833333
61
0.782178
a5aa0be7303ab8e928d16b283a18bcd25cac9c51
5,638
py
Python
app/model/utils.py
othmanKisha/In-Door-Face-Mask-Inspector
d094ff80f8ed16285d668905a081c237d4345919
[ "MIT" ]
3
2020-12-06T17:03:57.000Z
2021-01-01T13:11:39.000Z
app/model/utils.py
Alnasser0/In-Door-Face-Mask-Inspector-1
d094ff80f8ed16285d668905a081c237d4345919
[ "MIT" ]
null
null
null
app/model/utils.py
Alnasser0/In-Door-Face-Mask-Inspector-1
d094ff80f8ed16285d668905a081c237d4345919
[ "MIT" ]
1
2021-01-21T18:55:05.000Z
2021-01-21T18:55:05.000Z
# -*- encoding=utf-8 # Code from this Repository: https://github.com/AIZOOTech/FaceMaskDetection import numpy as np def generate_anchors(feature_map_sizes, anchor_sizes, anchor_ratios, offset=0.5): ''' generate anchors. :param feature_map_sizes: list of list, for example: [[40,40], [20,20]] :param anchor_sizes: list of list, for example: [[0.05, 0.075], [0.1, 0.15]] :param anchor_ratios: list of list, for example: [[1, 0.5], [1, 0.5]] :param offset: default to 0.5 :return: ''' anchor_bboxes = [] for idx, feature_size in enumerate(feature_map_sizes): cx = (np.linspace(0, feature_size[0] - 1, feature_size[0]) + 0.5) / feature_size[0] cy = (np.linspace(0, feature_size[1] - 1, feature_size[1]) + 0.5) / feature_size[1] cx_grid, cy_grid = np.meshgrid(cx, cy) cx_grid_expend = np.expand_dims(cx_grid, axis=-1) cy_grid_expend = np.expand_dims(cy_grid, axis=-1) center = np.concatenate((cx_grid_expend, cy_grid_expend), axis=-1) num_anchors = len(anchor_sizes[idx]) + len(anchor_ratios[idx]) - 1 center_tiled = np.tile(center, (1, 1, 2* num_anchors)) anchor_width_heights = [] # different scales with the first aspect ratio for scale in anchor_sizes[idx]: ratio = anchor_ratios[idx][0] # select the first ratio width = scale * np.sqrt(ratio) height = scale / np.sqrt(ratio) anchor_width_heights.extend([-width / 2.0, -height / 2.0, width / 2.0, height / 2.0]) # the first scale, with different aspect ratios (except the first one) for ratio in anchor_ratios[idx][1:]: s1 = anchor_sizes[idx][0] # select the first scale width = s1 * np.sqrt(ratio) height = s1 / np.sqrt(ratio) anchor_width_heights.extend([-width / 2.0, -height / 2.0, width / 2.0, height / 2.0]) bbox_coords = center_tiled + np.array(anchor_width_heights) bbox_coords_reshape = bbox_coords.reshape((-1, 4)) anchor_bboxes.append(bbox_coords_reshape) anchor_bboxes = np.concatenate(anchor_bboxes, axis=0) return anchor_bboxes def decode_bbox(anchors, raw_outputs, variances=[0.1, 0.1, 0.2, 0.2]): ''' Decode the actual bbox according to the anchors. the anchor value order is:[xmin,ymin, xmax, ymax] :param anchors: numpy array with shape [batch, num_anchors, 4] :param raw_outputs: numpy array with the same shape with anchors :param variances: list of float, default=[0.1, 0.1, 0.2, 0.2] :return: ''' anchor_centers_x = (anchors[:, :, 0:1] + anchors[:, :, 2:3]) / 2 anchor_centers_y = (anchors[:, :, 1:2] + anchors[:, :, 3:]) / 2 anchors_w = anchors[:, :, 2:3] - anchors[:, :, 0:1] anchors_h = anchors[:, :, 3:] - anchors[:, :, 1:2] raw_outputs_rescale = raw_outputs * np.array(variances) predict_center_x = raw_outputs_rescale[:, :, 0:1] * anchors_w + anchor_centers_x predict_center_y = raw_outputs_rescale[:, :, 1:2] * anchors_h + anchor_centers_y predict_w = np.exp(raw_outputs_rescale[:, :, 2:3]) * anchors_w predict_h = np.exp(raw_outputs_rescale[:, :, 3:]) * anchors_h predict_xmin = predict_center_x - predict_w / 2 predict_ymin = predict_center_y - predict_h / 2 predict_xmax = predict_center_x + predict_w / 2 predict_ymax = predict_center_y + predict_h / 2 predict_bbox = np.concatenate([predict_xmin, predict_ymin, predict_xmax, predict_ymax], axis=-1) return predict_bbox def single_class_non_max_suppression(bboxes, confidences, conf_thresh=0.2, iou_thresh=0.5, keep_top_k=-1): ''' do nms on single class. Hint: for the specific class, given the bbox and its confidence, 1) sort the bbox according to the confidence from top to down, we call this a set 2) select the bbox with the highest confidence, remove it from set, and do IOU calculate with the rest bbox 3) remove the bbox whose IOU is higher than the iou_thresh from the set, 4) loop step 2 and 3, util the set is empty. :param bboxes: numpy array of 2D, [num_bboxes, 4] :param confidences: numpy array of 1D. [num_bboxes] :param conf_thresh: :param iou_thresh: :param keep_top_k: :return: ''' if len(bboxes) == 0: return [] conf_keep_idx = np.where(confidences > conf_thresh)[0] bboxes = bboxes[conf_keep_idx] confidences = confidences[conf_keep_idx] pick = [] xmin = bboxes[:, 0] ymin = bboxes[:, 1] xmax = bboxes[:, 2] ymax = bboxes[:, 3] area = (xmax - xmin + 1e-3) * (ymax - ymin + 1e-3) idxs = np.argsort(confidences) while len(idxs) > 0: last = len(idxs) - 1 i = idxs[last] pick.append(i) # keep top k if keep_top_k != -1: if len(pick) >= keep_top_k: break overlap_xmin = np.maximum(xmin[i], xmin[idxs[:last]]) overlap_ymin = np.maximum(ymin[i], ymin[idxs[:last]]) overlap_xmax = np.minimum(xmax[i], xmax[idxs[:last]]) overlap_ymax = np.minimum(ymax[i], ymax[idxs[:last]]) overlap_w = np.maximum(0, overlap_xmax - overlap_xmin) overlap_h = np.maximum(0, overlap_ymax - overlap_ymin) overlap_area = overlap_w * overlap_h overlap_ratio = overlap_area / (area[idxs[:last]] + area[i] - overlap_area) need_to_be_deleted_idx = np.concatenate(([last], np.where(overlap_ratio > iou_thresh)[0])) idxs = np.delete(idxs, need_to_be_deleted_idx) # if the number of final bboxes is less than keep_top_k, we need to pad it. # TODO return conf_keep_idx[pick]
43.038168
111
0.643313
502422d75e51be247286f1aa47b5ade27441fea5
11,649
py
Python
MetamorphicTests/all_mutants/sales_forecasting_file/155.py
anuragbms/Sales-forecasting-with-RNNs
22b4639ecbb48381af53326ace94a3538201b586
[ "Apache-2.0" ]
null
null
null
MetamorphicTests/all_mutants/sales_forecasting_file/155.py
anuragbms/Sales-forecasting-with-RNNs
22b4639ecbb48381af53326ace94a3538201b586
[ "Apache-2.0" ]
null
null
null
MetamorphicTests/all_mutants/sales_forecasting_file/155.py
anuragbms/Sales-forecasting-with-RNNs
22b4639ecbb48381af53326ace94a3538201b586
[ "Apache-2.0" ]
1
2022-02-06T14:59:43.000Z
2022-02-06T14:59:43.000Z
def gen_mutants(): import tensorflow as tf import pandas import numpy as np DATAFILE_TRAIN = 'mock_kaggle_edit_train.csv' DATAFILE_VALIDATE = 'mock_kaggle_edit_validate.csv' TRAINED_MODEL_PATH = 'savedModel' TIME_STEPS = 10 NUMBER_OF_DAYS_TO_FORECAST = 1 BATCH_SIZE = 100 NUM_EPOCHS = 100 LSTM_UNITS = 250 TENSORBOARD_LOGDIR = 'tensorboard_log' data_train = pandas.read_csv(DATAFILE_TRAIN) data_validate = pandas.read_csv(DATAFILE_VALIDATE) data_train.head() numTrainingData = len(data_train) numValidationData = len(data_validate) trainingData_date = data_train['date'][0:numTrainingData] trainingData_sales = data_train['sales'][0:numTrainingData] trainindData_price = data_train['price'][0:numTrainingData] validationData_date = data_validate['date'][0:numValidationData] validationData_sales = data_validate['sales'][0:numValidationData] validationData_price = data_validate['price'][0:numValidationData] trainingData_sales.head() print(len(trainingData_sales)) print(len(validationData_sales)) trainingData_sales_min = min(trainingData_sales) trainingData_sales_max = max(trainingData_sales) trainingData_sales_range = trainingData_sales_max - trainingData_sales_min trainingData_sales_normalised = [(i - trainingData_sales_min) / trainingData_sales_range for i in trainingData_sales] validationData_sales_normalised = [(i - trainingData_sales_min) / trainingData_sales_range for i in validationData_sales] print('Min:', trainingData_sales_min) print('Range:', trainingData_sales_max - trainingData_sales_min) trainingDataSequence_sales = np.zeros(shape=(((len(trainingData_sales) - TIME_STEPS) - NUMBER_OF_DAYS_TO_FORECAST) + 1, TIME_STEPS, 1)) targetDataSequence_sales = np.zeros(shape=(((len(trainingData_sales) - TIME_STEPS) - NUMBER_OF_DAYS_TO_FORECAST) + 1, NUMBER_OF_DAYS_TO_FORECAST)) start = 0 for i in range(TIME_STEPS, (len(trainingData_sales) - NUMBER_OF_DAYS_TO_FORECAST) + 1): trainingDataSequence_sales[start,:,0] = trainingData_sales_normalised[start:i] targetDataSequence_sales[start] = trainingData_sales_normalised[i:i + NUMBER_OF_DAYS_TO_FORECAST] start = start + 1 [trainingDataSequence_sales[i,:,0] for i in range(3)] [targetDataSequence_sales[i] for i in range(3)] a = np.arange(len(targetDataSequence_sales)) np.random.shuffle(a) trainingDataSequence_sales_shuffle = np.zeros(shape=(((len(trainingData_sales) - TIME_STEPS) - NUMBER_OF_DAYS_TO_FORECAST) + 1, TIME_STEPS, 1)) targetDataSequence_sales_shuffle = np.zeros(shape=(((len(trainingData_sales) - TIME_STEPS) - NUMBER_OF_DAYS_TO_FORECAST) + 1, NUMBER_OF_DAYS_TO_FORECAST)) loc = 0 for i in a: trainingDataSequence_sales_shuffle[loc] = trainingDataSequence_sales[i] targetDataSequence_sales_shuffle[loc] = targetDataSequence_sales[i] loc += 1 trainingDataSequence_sales = trainingDataSequence_sales_shuffle targetDataSequence_sales = targetDataSequence_sales_shuffle validationDataSequence_sales = np.zeros(shape=(((len(validationData_sales) - TIME_STEPS) - NUMBER_OF_DAYS_TO_FORECAST) + 1, TIME_STEPS, 1)) validationDataSequence_sales_target = np.zeros(shape=(((len(validationData_sales) - TIME_STEPS) - NUMBER_OF_DAYS_TO_FORECAST) + 1, NUMBER_OF_DAYS_TO_FORECAST)) start = 0 for i in range(TIME_STEPS, (len(validationData_sales) - NUMBER_OF_DAYS_TO_FORECAST) + 1): validationDataSequence_sales[start,:,0] = validationData_sales_normalised[start:i] validationDataSequence_sales_target[start] = validationData_sales_normalised[i:i + NUMBER_OF_DAYS_TO_FORECAST] start += 1 tf.reset_default_graph() inputSequencePlaceholder = tf.placeholder(dtype=tf.float32, shape=(None, TIME_STEPS, 1), name='inputSequencePlaceholder') targetPlaceholder = tf.placeholder(dtype=tf.float32, shape=(None, NUMBER_OF_DAYS_TO_FORECAST), name='targetPlaceholder') cell = tf.nn.rnn_cell.LSTMCell(num_units=LSTM_UNITS, name='LSTM_cell') (output, state) = tf.nn.dynamic_rnn(cell=cell, inputs=inputSequencePlaceholder, dtype=tf.float32) lastCellOutput = output[:,-1,:] print('output:', output) print('state:', state) print('lastCellOutput:', lastCellOutput) weights = tf.Variable(initial_value=tf.truncated_normal(shape=(LSTM_UNITS, NUMBER_OF_DAYS_TO_FORECAST))) bias = tf.Variable(initial_value=tf.ones(shape=NUMBER_OF_DAYS_TO_FORECAST)) forecast = tf.add(x=tf.matmul(a=lastCellOutput, b=weights), y=bias, name='forecast_normalised_scale') forecast_originalScale = tf.add(x=forecast * trainingData_sales_range, y=trainingData_sales_min, name='forecast_original_scale') print(forecast) print(forecast_originalScale) loss = tf.reduce_mean(tf.squared_difference(x=forecast, y=targetPlaceholder), name='loss_comp') tf.summary.scalar(tensor=loss, name='loss') optimizer = tf.train.AdamOptimizer(learning_rate=1.1) minimize_step = optimizer.minimize(loss) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) tensorboard_writer = tf.summary.FileWriter(TENSORBOARD_LOGDIR, sess.graph) all_summary_ops = tf.summary.merge_all() numSteps = 0 for e in range(NUM_EPOCHS): print('starting training for epoch:', e + 1) startLocation = 0 iteration = 0 for iteration in range(int(len(targetDataSequence_sales) / BATCH_SIZE)): print('epoch:', e + 1, ' iteration:', iteration + 1) trainingBatchInput = trainingDataSequence_sales[startLocation:startLocation + BATCH_SIZE,:,:] trainingBatchTarget = targetDataSequence_sales[startLocation:startLocation + BATCH_SIZE] (_, lsBatch, forecastBatch, forecastBatch_originalScale, summary_values) = sess.run([minimize_step, loss, forecast, forecast_originalScale, all_summary_ops], feed_dict={inputSequencePlaceholder: trainingBatchInput, \ targetPlaceholder: trainingBatchTarget}) tensorboard_writer.add_summary(summary_values, numSteps) numSteps += 1 if (iteration + 1) % 1 == 0: print('got a loss of:', lsBatch) print('the forecast of first 5 normalised are:', forecastBatch[0:5]) print('while the actuals were normalised :', trainingBatchTarget[0:5]) print('the forecast of first 5 orignal scale are:', forecastBatch_originalScale[0:5]) print('while the actuals were original scale :', (trainingBatchTarget[0:5] * trainingData_sales_range) + trainingData_sales_min) startLocation += BATCH_SIZE if len(targetDataSequence_sales) > startLocation: print('epoch:', e + 1, ' iteration:', iteration + 1) trainingBatchInput = trainingDataSequence_sales[startLocation:len(targetDataSequence_sales),:,:] trainingBatchTarget = targetDataSequence_sales[startLocation:len(targetDataSequence_sales)] (_, lsBatch, forecastBatch, forecastBatch_originalScale) = sess.run([minimize_step, loss, forecast, forecast_originalScale], feed_dict={inputSequencePlaceholder: trainingBatchInput, \ targetPlaceholder: trainingBatchTarget}) print('got a loss of:', lsBatch) print('the forecast of first 5 normalised are:', forecastBatch[0:5]) print('while the actuals were normalised :', trainingBatchTarget[0:5]) print('the forecast of first 5 orignal scale are:', forecastBatch_originalScale[0:5]) print('while the actuals were original scale :', (trainingBatchTarget[0:5] * trainingData_sales_range) + trainingData_sales_min) totalValidationLoss = 0 startLocation = 0 print('starting validation') for iter in range(len(validationDataSequence_sales) // BATCH_SIZE): validationBatchInput = validationDataSequence_sales[startLocation:startLocation + BATCH_SIZE,:,:] validationBatchTarget = validationDataSequence_sales_target[startLocation:startLocation + BATCH_SIZE] (validationLsBatch, validationForecastBatch, validationForecastBatch_originalScale) = sess.run([loss, forecast, forecast_originalScale], feed_dict={inputSequencePlaceholder: validationBatchInput, \ targetPlaceholder: validationBatchTarget}) startLocation += BATCH_SIZE totalValidationLoss += validationLsBatch print('first five predictions:', validationForecastBatch[0:5]) print('first five actuals :', validationBatchTarget[0:5]) print('the forecast of first 5 orignal scale are:', validationForecastBatch_originalScale[0:5]) print('while the actuals were original scale :', (validationBatchTarget[0:5] * trainingData_sales_range) + trainingData_sales_min) if startLocation < len(validationDataSequence_sales): validationBatchInput = validationDataSequence_sales[startLocation:len(validationDataSequence_sales)] validationBatchTarget = validationDataSequence_sales_target[startLocation:len(validationDataSequence_sales)] (validationLsBatch, validationForecastBatch) = sess.run([loss, forecast], feed_dict={inputSequencePlaceholder: validationBatchInput, \ targetPlaceholder: validationBatchTarget}) totalValidationLoss += validationLsBatch print('Validation completed after epoch:', e + 1, '. Total validation loss:', totalValidationLoss) print('----------- Saving Model') tf.saved_model.simple_save(sess, export_dir=TRAINED_MODEL_PATH, inputs=\ {'inputSequencePlaceholder': inputSequencePlaceholder, 'targetPlaceholder': targetPlaceholder}, outputs=\ {'loss': loss, 'forecast_originalScale': forecast_originalScale}) print('saved model to:', TRAINED_MODEL_PATH) print('----------- Finis')
31.230563
232
0.629668
bef213c633a620d295b147bfa27439b22c57ecc4
6,782
py
Python
glue/core/tests/test_hub.py
bsipocz/glue
7b7e4879b4c746b2419a0eca2a17c2d07a3fded3
[ "BSD-3-Clause" ]
null
null
null
glue/core/tests/test_hub.py
bsipocz/glue
7b7e4879b4c746b2419a0eca2a17c2d07a3fded3
[ "BSD-3-Clause" ]
null
null
null
glue/core/tests/test_hub.py
bsipocz/glue
7b7e4879b4c746b2419a0eca2a17c2d07a3fded3
[ "BSD-3-Clause" ]
null
null
null
#pylint: disable=I0011,W0613,W0201,W0212,E1101,E1103 import pytest from mock import MagicMock from ..exceptions import InvalidSubscriber, InvalidMessage from ..message import SubsetMessage, Message from ..hub import Hub, HubListener from ..subset import Subset from ..data import Data from ..data_collection import DataCollection class TestHub(object): def setup_method(self, method): self.hub = Hub() def get_subscription(self): msg = Message handler = MagicMock() subscriber = MagicMock(spec_set=HubListener) return msg, handler, subscriber def test_subscribe(self): msg, handler, subscriber = self.get_subscription() self.hub.subscribe(subscriber, msg, handler) assert self.hub.is_subscribed(subscriber, msg) assert self.hub.get_handler(subscriber, msg) == handler def test_get_handler(self): msg, handler, subscriber = self.get_subscription() self.hub.subscribe(subscriber, msg, handler) assert self.hub.get_handler(subscriber, msg) == handler assert self.hub.get_handler(subscriber, None) is None assert self.hub.get_handler(None, msg) is None def test_unsubscribe(self): msg, handler, subscriber = self.get_subscription() self.hub.subscribe(subscriber, msg, handler) self.hub.unsubscribe(subscriber, msg) assert not self.hub.is_subscribed(subscriber, msg) assert self.hub.get_handler(subscriber, msg) is None def test_unsubscribe_all(self): msg, handler, subscriber = self.get_subscription() msg2 = SubsetMessage self.hub.subscribe(subscriber, msg, handler) self.hub.subscribe(subscriber, msg2, handler) self.hub.unsubscribe_all(subscriber) assert not self.hub.is_subscribed(subscriber, msg) assert not self.hub.is_subscribed(subscriber, msg2) def test_unsubscribe_specific_to_message(self): msg, handler, subscriber = self.get_subscription() msg2 = SubsetMessage self.hub.subscribe(subscriber, msg, handler) self.hub.subscribe(subscriber, msg2, handler) self.hub.unsubscribe(subscriber, msg) assert not self.hub.is_subscribed(subscriber, msg) assert self.hub.is_subscribed(subscriber, msg2) def test_broadcast(self): msg, handler, subscriber = self.get_subscription() self.hub.subscribe(subscriber, msg, handler) msg_instance = msg("Test") self.hub.broadcast(msg_instance) handler.assert_called_once_with(msg_instance) def test_unsubscribe_halts_broadcast(self): msg, handler, subscriber = self.get_subscription() self.hub.subscribe(subscriber, msg, handler) self.hub.unsubscribe(subscriber, msg) msg_instance = msg("Test") self.hub.broadcast(msg_instance) assert handler.call_count == 0 def test_unsubscribe_spec_setific_to_message(self): msg, handler, subscriber = self.get_subscription() msg2 = SubsetMessage self.hub.subscribe(subscriber, msg2, handler) msg_instance = msg("Test") self.hub.broadcast(msg_instance) assert handler.call_count == 0 def test_subscription_catches_message_subclasses(self): msg, handler, subscriber = self.get_subscription() msg2 = SubsetMessage self.hub.subscribe(subscriber, msg, handler) msg_instance = msg2(MagicMock(spec_set=Subset)) self.hub.broadcast(msg_instance) handler.assert_called_once_with(msg_instance) def test_handler_ignored_if_subset_handler_present(self): msg, handler, subscriber = self.get_subscription() handler2 = MagicMock() msg2 = SubsetMessage self.hub.subscribe(subscriber, msg, handler) self.hub.subscribe(subscriber, msg2, handler2) msg_instance = SubsetMessage(Subset(None)) self.hub.broadcast(msg_instance) handler2.assert_called_once_with(msg_instance) assert handler.call_count == 0 def test_filter(self): msg, handler, subscriber = self.get_subscription() filter = lambda x: False self.hub.subscribe(subscriber, msg, handler) msg_instance = msg("Test") self.hub.broadcast(msg) assert handler.call_count == 0 def test_broadcast_sends_to_all_subsribers(self): msg, handler, subscriber = self.get_subscription() msg, handler2, subscriber2 = self.get_subscription() self.hub.subscribe(subscriber, msg, handler) self.hub.subscribe(subscriber2, msg, handler2) msg_instance = msg("Test") self.hub.broadcast(msg_instance) handler.assert_called_once_with(msg_instance) handler2.assert_called_once_with(msg_instance) def test_invalid_unsubscribe_ignored(self): msg, handler, subscriber = self.get_subscription() self.hub.unsubscribe(handler, subscriber) def test_invalid_subscribe(self): msg, handler, subscriber = self.get_subscription() with pytest.raises(InvalidSubscriber) as exc: self.hub.subscribe(None, msg, handler) assert exc.value.args[0].startswith("Subscriber must be a HubListener") with pytest.raises(InvalidMessage) as exc: self.hub.subscribe(subscriber, None, handler) assert exc.value.args[0].startswith("message class must be " "a subclass of glue.Message") def test_default_handler(self): msg, handler, subscriber = self.get_subscription() self.hub.subscribe(subscriber, msg) msg_instance = msg("Test") self.hub.broadcast(msg_instance) subscriber.notify.assert_called_once_with(msg_instance) def test_autosubscribe(self): l = MagicMock(spec_set=HubListener) d = MagicMock(spec_set=Data) s = MagicMock(spec_set=Subset) dc = MagicMock(spec_set=DataCollection) hub = Hub(l, d, s, dc) l.register_to_hub.assert_called_once_with(hub) d.register_to_hub.assert_called_once_with(hub) dc.register_to_hub.assert_called_once_with(hub) s.register.assert_called_once_with() def test_invalid_init(self): with pytest.raises(TypeError) as exc: Hub(None) assert exc.value.args[0] == ("Inputs must be HubListener, data, " "subset, or data collection objects") class TestHubListener(object): """This is a dumb test, I know. Fixated on code coverage""" def test_unimplemented(self): hl = HubListener() with pytest.raises(NotImplementedError): hl.register_to_hub(None) with pytest.raises(NotImplementedError): hl.notify(None)
38.534091
79
0.680183
9e5e2e5abb5a02221b2950ed094527ad8d7acf32
18,030
py
Python
test/test_LensModel/test_Profiles/test_chameleon.py
DarthLazar/lenstronomy
64f72a89bb08ef19d3641b7e5e048238632e9094
[ "MIT" ]
null
null
null
test/test_LensModel/test_Profiles/test_chameleon.py
DarthLazar/lenstronomy
64f72a89bb08ef19d3641b7e5e048238632e9094
[ "MIT" ]
1
2022-02-26T21:04:47.000Z
2022-02-26T21:04:47.000Z
test/test_LensModel/test_Profiles/test_chameleon.py
DarthLazar/lenstronomy
64f72a89bb08ef19d3641b7e5e048238632e9094
[ "MIT" ]
1
2022-02-08T20:31:45.000Z
2022-02-08T20:31:45.000Z
import pytest import numpy as np import numpy.testing as npt from lenstronomy.LensModel.Profiles.nie import NIE from lenstronomy.LensModel.Profiles.chameleon import Chameleon, DoubleChameleon, DoubleChameleonPointMass, TripleChameleon from lenstronomy.LightModel.Profiles.chameleon import DoubleChameleon as DoubleChameleonLight from lenstronomy.LightModel.Profiles.chameleon import TripleChameleon as TripleChameleonLight import lenstronomy.Util.param_util as param_util class TestChameleon(object): """ class to test the Moffat profile """ def setup(self): self.chameleon = Chameleon() self.nie = NIE() def test_theta_E_convert(self): w_c, w_t = 2, 1 theta_E_convert, w_c, w_t, s_scale_1, s_scale_2 = self.chameleon.param_convert(alpha_1=1, w_c=w_c, w_t=w_t, e1=0, e2=0) assert w_c == 1 assert w_t == 2 assert theta_E_convert == 0 def test_function(self): """ :return: """ x = np.linspace(0.1, 10, 10) w_c, w_t = 0.5, 1. phi_G, q = 0.3, 0.8 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) kwargs_light = {'alpha_1': 1., 'w_c': .5, 'w_t': 1., 'e1': e1, 'e2': e2} theta_E_convert, w_c, w_t, s_scale_1, s_scale_2 = self.chameleon.param_convert(alpha_1=1, w_c=0.5, w_t=1., e1=e1, e2=e2) kwargs_1 = {'theta_E': theta_E_convert, 's_scale': s_scale_1, 'e1': e1, 'e2': e2} kwargs_2 = {'theta_E': theta_E_convert, 's_scale': s_scale_2, 'e1': e1, 'e2': e2} f_ = self.chameleon.function(x=x, y=1., **kwargs_light) f_1 = self.nie.function(x=x, y=1., **kwargs_1) f_2 = self.nie.function(x=x, y=1., **kwargs_2) npt.assert_almost_equal(f_, (f_1 - f_2), decimal=5) def test_derivatives(self): """ :return: """ x = np.linspace(0.1, 10, 10) w_c, w_t = 0.5, 1. phi_G, q = 0.3, 0.8 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) kwargs_light = {'alpha_1': 1., 'w_c': .5, 'w_t': 1., 'e1': e1, 'e2': e2} theta_E_convert, w_c, w_t, s_scale_1, s_scale_2 = self.chameleon.param_convert(alpha_1=1, w_c=0.5, w_t=1., e1=e1, e2=e2) kwargs_1 = {'theta_E': theta_E_convert, 's_scale': s_scale_1, 'e1': e1, 'e2': e2} kwargs_2 = {'theta_E': theta_E_convert, 's_scale': s_scale_2, 'e1': e1, 'e2': e2} f_x, f_y = self.chameleon.derivatives(x=x, y=1., **kwargs_light) f_x_1, f_y_1 = self.nie.derivatives(x=x, y=1., **kwargs_1) f_x_2, f_y_2 = self.nie.derivatives(x=x, y=1., **kwargs_2) npt.assert_almost_equal(f_x, (f_x_1 - f_x_2), decimal=5) npt.assert_almost_equal(f_y, (f_y_1 - f_y_2), decimal=5) f_x, f_y = self.chameleon.derivatives(x=1, y=0., **kwargs_light) npt.assert_almost_equal(f_x, 1, decimal=1) def test_hessian(self): """ :return: """ x = np.linspace(0.1, 10, 10) w_c, w_t = 0.5, 1. phi_G, q = 0.3, 0.8 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) kwargs_light = {'alpha_1': 1., 'w_c': .5, 'w_t': 1., 'e1': e1, 'e2': e2} theta_E_convert, w_c, w_t, s_scale_1, s_scale_2 = self.chameleon.param_convert(alpha_1=1, w_c=0.5, w_t=1., e1=e1, e2=e2) kwargs_1 = {'theta_E': theta_E_convert, 's_scale': s_scale_1, 'e1': e1, 'e2': e2} kwargs_2 = {'theta_E': theta_E_convert, 's_scale': s_scale_2, 'e1': e1, 'e2': e2} f_xx, f_xy, f_yx, f_yy = self.chameleon.hessian(x=x, y=1., **kwargs_light) f_xx_1, f_xy_1, f_yx_1, f_yy_1 = self.nie.hessian(x=x, y=1., **kwargs_1) f_xx_2, f_xy_2, f_yx_2, f_yy_2 = self.nie.hessian(x=x, y=1., **kwargs_2) npt.assert_almost_equal(f_xx, (f_xx_1 - f_xx_2), decimal=5) npt.assert_almost_equal(f_yy, (f_yy_1 - f_yy_2), decimal=5) npt.assert_almost_equal(f_xy, (f_xy_1 - f_xy_2), decimal=5) npt.assert_almost_equal(f_yx, (f_yx_1 - f_yx_2), decimal=5) def test_static(self): x, y = 1., 1. phi_G, q = 0.3, 0.8 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) kwargs_light = {'alpha_1': 1., 'w_c': .5, 'w_t': 1., 'e1': e1, 'e2': e2} f_ = self.chameleon.function(x, y, **kwargs_light) self.chameleon.set_static(**kwargs_light) f_static = self.chameleon.function(x, y, **kwargs_light) npt.assert_almost_equal(f_, f_static, decimal=8) self.chameleon.set_dynamic() kwargs_light = {'alpha_1': 2., 'w_c': .5, 'w_t': 1., 'e1': e1, 'e2': e2} f_dyn = self.chameleon.function(x, y, **kwargs_light) assert f_dyn != f_static class TestDoubleChameleon(object): """ class to test the Moffat profile """ def setup(self): pass def test_param_name(self): chameleon = DoubleChameleon() names = chameleon.param_names assert names[0] == 'alpha_1' def test_function(self): """ :return: """ doublechameleon = DoubleChameleon() chameleon = Chameleon() x = np.linspace(0.1, 10, 10) phi_G, q = 0.3, 0.8 theta_E = 1. ratio = 2. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) kwargs_light = {'alpha_1': 1., 'ratio': 2, 'w_c1': .5, 'w_t1': 1., 'e11': e1, 'e21': e2, 'w_c2': .1, 'w_t2': .5, 'e12': e1, 'e22': e2} kwargs_1 = {'alpha_1': theta_E / (1 + 1. / ratio), 'w_c': .5, 'w_t': 1., 'e1': e1, 'e2': e2} kwargs_2 = {'alpha_1': theta_E / (1 + ratio), 'w_c': .1, 'w_t': .5, 'e1': e1, 'e2': e2} flux = doublechameleon.function(x=x, y=1., **kwargs_light) flux1 = chameleon.function(x=x, y=1., **kwargs_1) flux2 = chameleon.function(x=x, y=1., **kwargs_2) npt.assert_almost_equal(flux, flux1 + flux2, decimal=8) def test_derivatives(self): """ :return: """ doublechameleon = DoubleChameleon() chameleon = Chameleon() x = np.linspace(0.1, 10, 10) phi_G, q = 0.3, 0.8 theta_E = 1. ratio = 2. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) kwargs_light = {'alpha_1': 1., 'ratio': 2, 'w_c1': .5, 'w_t1': 1., 'e11': e1, 'e21': e2, 'w_c2': .1, 'w_t2': .5, 'e12': e1, 'e22': e2} kwargs_1 = {'alpha_1': theta_E / (1 + 1. / ratio), 'w_c': .5, 'w_t': 1., 'e1': e1, 'e2': e2} kwargs_2 = {'alpha_1': theta_E / (1 + ratio), 'w_c': .1, 'w_t': .5, 'e1': e1, 'e2': e2} f_x, f_y = doublechameleon.derivatives(x=x, y=1., **kwargs_light) f_x1, f_y1 = chameleon.derivatives(x=x, y=1., **kwargs_1) f_x2, f_y2 = chameleon.derivatives(x=x, y=1., **kwargs_2) npt.assert_almost_equal(f_x, f_x1 + f_x2, decimal=8) npt.assert_almost_equal(f_y, f_y1 + f_y2, decimal=8) def test_hessian(self): """ :return: """ doublechameleon = DoubleChameleon() chameleon = Chameleon() x = np.linspace(0.1, 10, 10) phi_G, q = 0.3, 0.8 theta_E = 1. ratio = 2. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) kwargs_lens = {'alpha_1': theta_E, 'ratio': ratio, 'w_c1': .5, 'w_t1': 1., 'e11': e1, 'e21': e2, 'w_c2': .1, 'w_t2': .5, 'e12': e1, 'e22': e2} kwargs_light = {'amp': theta_E, 'ratio': ratio, 'w_c1': .5, 'w_t1': 1., 'e11': e1, 'e21': e2, 'w_c2': .1, 'w_t2': .5, 'e12': e1, 'e22': e2} kwargs_1 = {'alpha_1': theta_E / (1 + 1./ratio), 'w_c': .5, 'w_t': 1., 'e1': e1, 'e2': e2} kwargs_2 = {'alpha_1': theta_E / (1 + ratio), 'w_c': .1, 'w_t': .5, 'e1': e1, 'e2': e2} f_xx, f_xy, f_yx, f_yy = doublechameleon.hessian(x=x, y=1., **kwargs_lens) f_xx1, f_xy1, f_yx1, f_yy1 = chameleon.hessian(x=x, y=1., **kwargs_1) f_xx2, f_xy2, f_yx2, f_yy2 = chameleon.hessian(x=x, y=1., **kwargs_2) npt.assert_almost_equal(f_xx, f_xx1 + f_xx2, decimal=8) npt.assert_almost_equal(f_yy, f_yy1 + f_yy2, decimal=8) npt.assert_almost_equal(f_xy, f_xy1 + f_xy2, decimal=8) npt.assert_almost_equal(f_yx, f_yx1 + f_yx2, decimal=8) light = DoubleChameleonLight() f_xx, f_xy, f_yx, f_yy = doublechameleon.hessian(x=np.linspace(0, 1, 10), y=np.zeros(10), **kwargs_lens) kappa = 1./2 * (f_xx + f_yy) kappa_norm = kappa / np.mean(kappa) flux = light.function(x=np.linspace(0, 1, 10), y=np.zeros(10), **kwargs_light) flux_norm = flux / np.mean(flux) npt.assert_almost_equal(kappa_norm, flux_norm, decimal=5) def test_static(self): doublechameleon = DoubleChameleon() x, y = 1., 1. phi_G, q = 0.3, 0.8 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) kwargs_light = {'alpha_1': 1, 'ratio': 0.5, 'w_c1': .5, 'w_t1': 1., 'e11': e1, 'e21': e2, 'w_c2': .1, 'w_t2': .5, 'e12': e1, 'e22': e2} f_ = doublechameleon.function(x, y, **kwargs_light) doublechameleon.set_static(**kwargs_light) f_static = doublechameleon.function(x, y, **kwargs_light) npt.assert_almost_equal(f_, f_static, decimal=8) doublechameleon.set_dynamic() kwargs_light = {'alpha_1': 2, 'ratio': 0.5, 'w_c1': .5, 'w_t1': 1., 'e11': e1, 'e21': e2, 'w_c2': .1, 'w_t2': .5, 'e12': e1, 'e22': e2} f_dyn = doublechameleon.function(x, y, **kwargs_light) assert f_dyn != f_static class TestDoubleChameleonPointMass(object): """ class to test the Moffat profile """ def setup(self): pass def test_param_name(self): chameleon = DoubleChameleonPointMass() names = chameleon.param_names assert names[0] == 'alpha_1' def test_function(self): """ :return: """ doublechameleon = DoubleChameleonPointMass() phi_G, q = 0.3, 0.8 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) kwargs_light = {'alpha_1': 1., 'ratio_pointmass': 3, 'ratio_chameleon': 2, 'w_c1': .5, 'w_t1': 1., 'e11': e1, 'e21': e2, 'w_c2': .1, 'w_t2': .5, 'e12': e1, 'e22': e2} flux = doublechameleon.function(x=1, y=1., **kwargs_light) npt.assert_almost_equal(flux, 1.2767176964863585, decimal=4) def test_derivatives(self): """ :return: """ doublechameleon = DoubleChameleonPointMass() phi_G, q = 0.3, 0.8 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) kwargs_light = {'alpha_1': 1., 'ratio_pointmass': 3, 'ratio_chameleon': 2, 'w_c1': .5, 'w_t1': 1., 'e11': e1, 'e21': e2, 'w_c2': .1, 'w_t2': .5, 'e12': e1, 'e22': e2} f_x, f_y = doublechameleon.derivatives(x=1, y=1., **kwargs_light) npt.assert_almost_equal(f_x, 0.4348690461571936, decimal=4) npt.assert_almost_equal(f_y, 0.4530081649948411, decimal=4) def test_hessian(self): """ :return: """ doublechameleon = DoubleChameleonPointMass() phi_G, q = 0.3, 0.8 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) kwargs_light = {'alpha_1': 1., 'ratio_pointmass': 3, 'ratio_chameleon': 2, 'w_c1': .5, 'w_t1': 1., 'e11': e1, 'e21': e2, 'w_c2': .1, 'w_t2': .5, 'e12': e1, 'e22': e2} f_xx, f_xy, f_yx, f_yy = doublechameleon.hessian(x=1, y=1., **kwargs_light) npt.assert_almost_equal(f_xx, 0.0633838122066912, decimal=4) npt.assert_almost_equal(f_xy, -0.3986532840628945, decimal=4) npt.assert_almost_equal(f_yx, -0.3986532840628945, decimal=4) npt.assert_almost_equal(f_yy, 0.04802318253385707, decimal=4) class TestTripleChameleon(object): """ class to test the Moffat profile """ def setup(self): pass def test_param_name(self): chameleon = TripleChameleon() names = chameleon.param_names assert names[0] == 'alpha_1' def test_function(self): """ :return: """ triplechameleon = TripleChameleon() chameleon = Chameleon() x = np.linspace(0.1, 10, 10) phi_G, q = 0.3, 0.8 ratio12 = 2. ratio13 = 3 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) kwargs_light = {'alpha_1': 1., 'ratio12': ratio12, 'ratio13': ratio13, 'w_c1': .5, 'w_t1': 1., 'e11': e1, 'e21': e2, 'w_c2': .1, 'w_t2': .5, 'e12': e1, 'e22': e2, 'w_c3': .1, 'w_t3': .5, 'e13': e1, 'e23': e2 } amp1 = 1. / (1. + 1. / ratio12 + 1. / ratio13) amp2 = amp1 / ratio12 amp3 = amp1 / ratio13 kwargs_1 = {'alpha_1': amp1, 'w_c': .5, 'w_t': 1., 'e1': e1, 'e2': e2} kwargs_2 = {'alpha_1': amp2, 'w_c': .1, 'w_t': .5, 'e1': e1, 'e2': e2} kwargs_3 = {'alpha_1': amp3, 'w_c': .1, 'w_t': .5, 'e1': e1, 'e2': e2} flux = triplechameleon.function(x=x, y=1., **kwargs_light) flux1 = chameleon.function(x=x, y=1., **kwargs_1) flux2 = chameleon.function(x=x, y=1., **kwargs_2) flux3 = chameleon.function(x=x, y=1., **kwargs_3) npt.assert_almost_equal(flux, flux1 + flux2 + flux3, decimal=8) def test_derivatives(self): """ :return: """ triplechameleon = TripleChameleon() chameleon = Chameleon() x = np.linspace(0.1, 10, 10) phi_G, q = 0.3, 0.8 ratio12 = 2. ratio13 = 3 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) kwargs_light = {'alpha_1': 1., 'ratio12': ratio12, 'ratio13': ratio13, 'w_c1': .5, 'w_t1': 1., 'e11': e1, 'e21': e2, 'w_c2': .1, 'w_t2': .5, 'e12': e1, 'e22': e2, 'w_c3': .1, 'w_t3': .5, 'e13': e1, 'e23': e2 } amp1 = 1. / (1. + 1. / ratio12 + 1. / ratio13) amp2 = amp1 / ratio12 amp3 = amp1 / ratio13 kwargs_1 = {'alpha_1': amp1, 'w_c': .5, 'w_t': 1., 'e1': e1, 'e2': e2} kwargs_2 = {'alpha_1': amp2, 'w_c': .1, 'w_t': .5, 'e1': e1, 'e2': e2} kwargs_3 = {'alpha_1': amp3, 'w_c': .1, 'w_t': .5, 'e1': e1, 'e2': e2} f_x, f_y = triplechameleon.derivatives(x=x, y=1., **kwargs_light) f_x1, f_y1 = chameleon.derivatives(x=x, y=1., **kwargs_1) f_x2, f_y2 = chameleon.derivatives(x=x, y=1., **kwargs_2) f_x3, f_y3 = chameleon.derivatives(x=x, y=1., **kwargs_3) npt.assert_almost_equal(f_x, f_x1 + f_x2 + f_x3, decimal=8) npt.assert_almost_equal(f_y, f_y1 + f_y2 + f_y3, decimal=8) def test_hessian(self): """ :return: """ triplechameleon = TripleChameleon() chameleon = Chameleon() x = np.linspace(0.1, 10, 10) phi_G, q = 0.3, 0.8 ratio12 = 2. ratio13 = 3 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) kwargs_lens = {'alpha_1': 1., 'ratio12': ratio12, 'ratio13': ratio13, 'w_c1': .5, 'w_t1': 1., 'e11': e1, 'e21': e2, 'w_c2': .1, 'w_t2': .5, 'e12': e1, 'e22': e2, 'w_c3': .1, 'w_t3': .5, 'e13': e1, 'e23': e2 } kwargs_light = {'amp': 1., 'ratio12': ratio12, 'ratio13': ratio13, 'w_c1': .5, 'w_t1': 1., 'e11': e1, 'e21': e2, 'w_c2': .1, 'w_t2': .5, 'e12': e1, 'e22': e2, 'w_c3': .1, 'w_t3': .5, 'e13': e1, 'e23': e2 } amp1 = 1. / (1. + 1. / ratio12 + 1. / ratio13) amp2 = amp1 / ratio12 amp3 = amp1 / ratio13 kwargs_1 = {'alpha_1': amp1, 'w_c': .5, 'w_t': 1., 'e1': e1, 'e2': e2} kwargs_2 = {'alpha_1': amp2, 'w_c': .1, 'w_t': .5, 'e1': e1, 'e2': e2} kwargs_3 = {'alpha_1': amp3, 'w_c': .1, 'w_t': .5, 'e1': e1, 'e2': e2} f_xx, f_xy, f_yx, f_yy = triplechameleon.hessian(x=x, y=1., **kwargs_lens) f_xx1, f_xy1, f_yx1, f_yy1 = chameleon.hessian(x=x, y=1., **kwargs_1) f_xx2, f_xy2, f_yx2, f_yy2 = chameleon.hessian(x=x, y=1., **kwargs_2) f_xx3, f_xy3, f_yx3, f_yy3 = chameleon.hessian(x=x, y=1., **kwargs_3) npt.assert_almost_equal(f_xx, f_xx1 + f_xx2 + f_xx3, decimal=8) npt.assert_almost_equal(f_yy, f_yy1 + f_yy2 + f_yy3, decimal=8) npt.assert_almost_equal(f_xy, f_xy1 + f_xy2 + f_xy3, decimal=8) npt.assert_almost_equal(f_yx, f_yx1 + f_yx2 + f_yx3, decimal=8) light = TripleChameleonLight() f_xx, f_xy, f_yx, f_yy = triplechameleon.hessian(x=np.linspace(0, 1, 10), y=np.zeros(10), **kwargs_lens) kappa = 1./2 * (f_xx + f_yy) kappa_norm = kappa / np.mean(kappa) flux = light.function(x=np.linspace(0, 1, 10), y=np.zeros(10), **kwargs_light) flux_norm = flux / np.mean(flux) npt.assert_almost_equal(kappa_norm, flux_norm, decimal=5) def test_static(self): triplechameleon = TripleChameleon() x, y = 1., 1. phi_G, q = 0.3, 0.8 ratio12 = 2. ratio13 = 3 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) kwargs_lens = {'alpha_1': 1., 'ratio12': ratio12, 'ratio13': ratio13, 'w_c1': .5, 'w_t1': 1., 'e11': e1, 'e21': e2, 'w_c2': .1, 'w_t2': .5, 'e12': e1, 'e22': e2, 'w_c3': .1, 'w_t3': .5, 'e13': e1, 'e23': e2 } f_ = triplechameleon.function(x, y, **kwargs_lens) triplechameleon.set_static(**kwargs_lens) f_static = triplechameleon.function(x, y, **kwargs_lens) npt.assert_almost_equal(f_, f_static, decimal=8) triplechameleon.set_dynamic() kwargs_lens = {'alpha_1': 2., 'ratio12': ratio12, 'ratio13': ratio13, 'w_c1': .5, 'w_t1': 1., 'e11': e1, 'e21': e2, 'w_c2': .1, 'w_t2': .5, 'e12': e1, 'e22': e2, 'w_c3': .1, 'w_t3': .5, 'e13': e1, 'e23': e2 } f_dyn = triplechameleon.function(x, y, **kwargs_lens) assert f_dyn != f_static if __name__ == '__main__': pytest.main()
43.341346
174
0.553356
0e6178979d3b16aadc68fd67e1409ab958dc6e6f
7,082
py
Python
metrics/algorithmic.py
cassianobecker/dnn
bb2ea04f77733de9df10f795bb049ac3b9d30478
[ "MIT" ]
3
2020-02-21T21:35:07.000Z
2020-09-29T15:20:00.000Z
metrics/algorithmic.py
cassianobecker/dnn
bb2ea04f77733de9df10f795bb049ac3b9d30478
[ "MIT" ]
27
2020-02-20T21:00:23.000Z
2020-05-22T15:23:25.000Z
metrics/algorithmic.py
cassianobecker/dnn
bb2ea04f77733de9df10f795bb049ac3b9d30478
[ "MIT" ]
null
null
null
import math from fwk.metrics import Metric from fwk.config import Config class EpochCounter(Metric): def __init__(self) -> None: super().__init__() self.epoch = None self.total_epochs = None def on_before_epoch(self, local_variables): self.epoch = local_variables['epoch'] self.total_epochs = int(Config.config['ALGORITHM']['epochs']) self.print_metric() def text_record(self): record_str = f'\n---- epoch {self.epoch + 1:03d} of {self.total_epochs:03d} --------------------\n' return record_str class TrainBatchCounter(Metric): def __init__(self) -> None: super().__init__() self.number_of_subjects = None self.batch_idx = None self.subjects_per_batch = None self.number_of_batches = None self.regime = 'train' def on_before_train_batch(self, local_variables): self.number_of_subjects = len(local_variables['self'].data_loaders[self.regime].dataset.subjects) self.subjects_per_batch = int(Config.config['ALGORITHM'][f'{self.regime}_batch_size']) self.batch_idx = local_variables['batch_idx'] self.number_of_batches = math.ceil(self.number_of_subjects / self.subjects_per_batch) self.print_metric() def text_record(self): text_record = f'\n batch {self.batch_idx + 1:03d} of {self.number_of_batches:03d} ({self.regime})\n' return text_record class TestBatchCounter(Metric): def __init__(self) -> None: super().__init__() self.number_of_subjects = None self.batch_idx = None self.subjects_per_batch = None self.number_of_batches = None self.regime = 'test' def on_before_test_batch(self, local_variables): self.number_of_subjects = len(local_variables['self'].data_loaders[self.regime].dataset.subjects) self.subjects_per_batch = int(Config.config['ALGORITHM'][f'{self.regime}_batch_size']) self.batch_idx = local_variables['batch_idx'] self.number_of_batches = math.ceil(self.number_of_subjects / self.subjects_per_batch) self.print_metric() def text_record(self): text_record = f'\n batch {self.batch_idx + 1:03d} of {self.number_of_batches:03d} ({self.regime})\n' return text_record class ImageTrainBatchCounter(Metric): def __init__(self) -> None: super().__init__() self.number_of_images = None self.batch_idx = None self.images_per_batch = None self.number_of_batches = None self.regime = 'train' def on_before_train_batch(self, local_variables): self.number_of_images = len(local_variables['self'].data_loaders[self.regime].dataset.images) self.images_per_batch = int(Config.config['ALGORITHM'][f'{self.regime}_batch_size']) self.batch_idx = local_variables['batch_idx'] self.number_of_batches = int(self.number_of_images / self.images_per_batch) self.print_metric() def text_record(self): text_record = f'\n batch {self.batch_idx + 1:03d} of {self.number_of_batches:03d} ({self.regime})\n' return text_record class ImageTestBatchCounter(Metric): def __init__(self) -> None: super().__init__() self.number_of_images = None self.batch_idx = None self.images_per_batch = None self.number_of_batches = None self.regime = 'test' def on_before_test_batch(self, local_variables): self.number_of_images = len(local_variables['self'].data_loaders[self.regime].dataset.images) self.images_per_batch = int(Config.config['ALGORITHM'][f'{self.regime}_batch_size']) self.batch_idx = local_variables['batch_idx'] self.number_of_batches = int(self.number_of_images / self.images_per_batch) self.print_metric() def text_record(self): text_record = f'\n batch {self.batch_idx + 1:03d} of {self.number_of_batches:03d} ({self.regime})\n' return text_record class BatchLoss(Metric): def __init__(self) -> None: super().__init__() self.loss = None def on_after_train_batch(self, local_variables): self.loss = local_variables['loss'].item() self.print_metric() def text_record(self): text_record = f' batch loss: {self.loss:.3e}\n' return text_record class EpochLoss(Metric): def __init__(self) -> None: super().__init__() self.loss = None def on_after_train_batch(self, local_variables): self.loss += local_variables['loss'].item() def on_before_epoch(self, local_variables): self.loss = 0 def on_after_epoch(self, local_variables): self.print_metric() def text_record(self): text_record = f'\n epoch loss: {self.loss:.3e}\n' return text_record def numpy_record(self, records=None): if 'epoch_loss' not in records.keys(): records['epoch_loss'] = list() records['epoch_loss'].append(self.loss) return records class GradientMetrics(Metric): def __init__(self) -> None: super().__init__() self.gradient_norm = None self.batch_idx = None self.epoch = None def on_after_train_batch(self, local_variables): model = local_variables['self'].model self.batch_idx = local_variables['batch_idx'] self.epoch = local_variables['epoch'] self.gradient_norm = self._compute_norm(model) self.print_metric() def text_record(self): text_record = f' gradient norm: {self.gradient_norm:.3e}\n' return text_record def numpy_record(self, records=None): if 'gradient_norm' not in records.keys(): records['gradient_norm'] = [] if self.batch_idx == 0: records['gradient_norm'].append([self.gradient_norm]) else: records['gradient_norm'][self.epoch].append(self.gradient_norm) return records @staticmethod def _compute_norm(model): total_norm = 0 for p in model.parameters(): param_norm = p.grad.norm(2).item() if p.grad is not None else 0 total_norm += param_norm ** 2 total_norm = total_norm ** (1. / 2) return total_norm class NumberOfParameters(Metric): def __init__(self) -> None: super().__init__() self.model = None def on_after_setup(self, local_variables): self.model = local_variables['self'].model self.print_metric() def text_record(self): total_str = f'number of parameters {self._total_parameters(self.model):1.3e}\n' total_trainable_str = f'number of trainable parameters {self._total_trainable_parameters(self.model):1.3e}\n' return total_str + total_trainable_str @staticmethod def _total_parameters(model): return sum(p.numel() for p in model.parameters()) @staticmethod def _total_trainable_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad)
32.045249
117
0.655888
dc3d2b6d0f91f2b2a25bbb50c3fea732c8baed81
2,296
py
Python
GetTheFieldsAndSubfields.py
WissamAntoun/LebaneseEngineers
c0cc7e85ead4e7ec6677882f80a5a7bcd4d80e87
[ "MIT" ]
1
2021-02-12T21:00:53.000Z
2021-02-12T21:00:53.000Z
GetTheFieldsAndSubfields.py
WissamAntoun/LebaneseEngineers
c0cc7e85ead4e7ec6677882f80a5a7bcd4d80e87
[ "MIT" ]
null
null
null
GetTheFieldsAndSubfields.py
WissamAntoun/LebaneseEngineers
c0cc7e85ead4e7ec6677882f80a5a7bcd4d80e87
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np import requests import sys import codecs sys.stdout.reconfigure(encoding="utf-8") if __name__ == "__main__": subfields_df = pd.read_csv("subfields.csv", encoding="utf-8", index_col=0) fields_df = pd.read_csv("fields.csv", encoding="utf-8", index_col=0) fields = np.delete( fields_df.index.to_numpy(), np.where(fields_df.index.to_numpy() == -1) ) subfields = np.delete( subfields_df.index.to_numpy(), np.where(subfields_df.index.to_numpy() == -1) ) print("Hello") # "fstname":, # "lstname":, # "fatname":, # "numb":, with codecs.open("TheCatogories.txt", "w", encoding="utf-8") as file1: for field in fields: for subfield in subfields: # print(field, subfield) # subfield = -1 # field = -1 parameters = { "PageID": 112, "CurrPage": 1, "spec": field, "spec1": subfield, "searchoption": "And", "rand": 0.055286690143709905, } r = requests.get( "https://www.oea.org.lb/Arabic/GetMembers.aspx", params=parameters ) response = r.text if "لا يوجد أي نتيجة" in response: print("wrong issue") else: print( field, fields_df.loc[field].Field, subfield, subfields_df.loc[subfield].Subfield, sep=", ", ) # Writing data to a file file1.write( ", ".join( map( str, [ field, fields_df.loc[field].Field, subfield, subfields_df.loc[subfield].Subfield, ], ) ) ) file1.write("\n")
31.888889
86
0.39939
a3ecb9050652368eccb195869c30f26e32c10fe4
38,248
py
Python
visualizations/plot_utils.py
afogarty85/typos
30b79a4ab4cd7c996fb394524906a6bffab3a2ab
[ "MIT" ]
null
null
null
visualizations/plot_utils.py
afogarty85/typos
30b79a4ab4cd7c996fb394524906a6bffab3a2ab
[ "MIT" ]
1
2021-04-15T16:41:31.000Z
2021-04-15T16:41:31.000Z
visualizations/plot_utils.py
afogarty85/typos
30b79a4ab4cd7c996fb394524906a6bffab3a2ab
[ "MIT" ]
1
2021-04-22T14:29:36.000Z
2021-04-22T14:29:36.000Z
############################################################################ # IMPORTS ############################################################################ import numpy as np import seaborn as sns import pandas as pd import altair as alt from collections import OrderedDict from vega_datasets import data import matplotlib as mpl mpl.rcParams['font.family'] = 'serif' mpl.rcParams['font.serif'] = 'Times New Roman' from matplotlib import pyplot as plt import matplotlib.ticker as tck ############################################################################ # Plotting Utilities, Constants, Methods for W209 arXiv project ############################################################################ #--------------------------------------------------------------------------- ## Plotting Palette # # Create a dict object containing U.C. Berkeley official school colors for plot palette # reference : https://brand.berkeley.edu/colors/ # secondary reference : https://alumni.berkeley.edu/brand/color-palette# CLass Initialization #--------------------------------------------------------------------------- berkeley_palette = OrderedDict({ 'berkeley_blue' : '#003262', 'california_gold' : '#fdb515', 'founders_rock' : '#3b7ea1', 'medalist' : '#c4820e', 'bay_fog' : '#ddd5c7', 'lawrence' : '#00b0da', 'sather_gate' : '#b9d3b6', 'pacific' : '#46535e', 'soybean' : '#859438', 'south_hall' : '#6c3302', 'wellman_tile' : '#D9661F', 'rose_garden' : '#ee1f60', 'golden_gate' : '#ed4e33', 'lap_lane' : '#00a598', 'ion' : '#cfdd45', 'stone_pine' : '#584f29', 'grey' : '#eeeeee', 'web_grey' : '#888888', # alum only colors 'metallic_gold' : '#BC9B6A', 'california_purple' : '#5C3160', # standard web colors 'white' : '#FFFFFF', 'black' : '#000000' }) #--------------------------------------------------------------------------- ## Altair custom "Cal" theme #--------------------------------------------------------------------------- def cal_theme(): font = "Lato" return { "config": { "title": { "fontSize": 30, "font": font, "anchor": "middle", "align":"center", "color": berkeley_palette['berkeley_blue'], "subtitleFontSize": 20, "subtitleFont": font, "subtitleAcchor": "middle", "subtitleAlign": "center", "subtitleColor": berkeley_palette['berkeley_blue'] }, "axisX": { "labelFont": font, "labelColor": berkeley_palette['pacific'], "labelFontSize": 15, "titleFont": font, "titleFontSize": 20, "titleColor": berkeley_palette['berkeley_blue'], "titleAlign": "right", "titleAnchor": "end", "titlePadding": 20 }, "axisY": { "labelFont": font, "labelColor": berkeley_palette['pacific'], "labelFontSize": 15, "titleFont": font, "titleFontSize": 20, "titleColor": berkeley_palette['berkeley_blue'], "titleAlign": "right", "titleAnchor": "end", "titlePadding": 20 }, "headerRow": { "labelFont": font, "titleFont": font, "titleFontSize": 15, "titleColor": berkeley_palette['berkeley_blue'], "titleAlign": "right", "titleAnchor": "end" }, "legend": { "labelFont": font, "labelFontSize": 15, "labelColor": berkeley_palette['stone_pine'], "symbolType": "stroke", "symbolStrokeWidth": 3, "symbolOpacity": 1.0, "symbolSize": 500, "titleFont": font, "titleFontSize": 20, "titleColor": berkeley_palette['berkeley_blue'] }, "view": { "labelFont": font, "labelColor": berkeley_palette['pacific'], "labelFontSize": 15, "titleFont": font, "titleFontSize": 20, "titleColor": berkeley_palette['berkeley_blue'], "titleAlign": "right", "titleAnchor": "end" }, "facet": { "labelFont": font, "labelColor": berkeley_palette['pacific'], "labelFontSize": 15, "titleFont": font, "titleFontSize": 20, "titleColor": berkeley_palette['berkeley_blue'], "titleAlign": "right", "titleAnchor": "end" }, "row": { "labelFont": font, "labelColor": berkeley_palette['pacific'], "labelFontSize": 15, "titleFont": font, "titleFontSize": 20, "titleColor": berkeley_palette['berkeley_blue'], "titleAlign": "right", "titleAnchor": "end" } } } alt.themes.register("my_cal_theme", cal_theme) alt.themes.enable("my_cal_theme") ################################################################################### ################################################################################### ## DIVERGENCE DATA PREP ################################################################################### ################################################################################### def get_divergence_data(df): df2_effective = df.groupby(by=['Treatment','Prompt','Effective']).ROWID.count().reset_index().sort_values(by=['Prompt','Effective','Treatment']) df2_effective.columns = ['treatment', 'prompt','rank','total'] df2_effective['question'] = 'effective' df2_intelligence = df.groupby(by=['Treatment','Prompt','Intelligence']).ROWID.count().reset_index().sort_values(by=['Prompt','Intelligence','Treatment']) df2_intelligence.columns = ['treatment', 'prompt','rank','total'] df2_intelligence['question'] = 'intelligence' df2_writing = df.groupby(by=['Treatment','Prompt','Writing']).ROWID.count().reset_index().sort_values(by=['Prompt','Writing','Treatment']) df2_writing.columns = ['treatment', 'prompt','rank','total'] df2_writing['question'] = 'writing' df2 = pd.concat([df2_effective, df2_intelligence, df2_writing], axis=0, ignore_index=True) gt = df2.groupby(by=['treatment','prompt','question']).agg({'total':'sum'}).reset_index() gt.columns = ['treatment','prompt','question','grand_total'] df2 = df2.merge(gt, on=['treatment','prompt','question'], how='inner') df2['pct_of_total'] = (df2.total / df2.grand_total) * 100. df2['pct_start'] = np.nan df2['pct_end'] = np.nan # fill in any missing votes as 0 percent votes x = [(a, b, c, d) for a in df2.treatment.unique() for b in df2.prompt.unique() for c in df2['rank'].unique() for d in df2.question.unique()] x = pd.DataFrame(x, columns=['treatment','prompt','rank','question']) x = x.merge(df2[['treatment','prompt','rank','question','pct_of_total']], how='left', on=['treatment','prompt','rank','question']) x = x[(x.pct_of_total.isna()==True)] x.pct_of_total = np.float32(0.0) df2 = pd.concat([df2,x], axis=0, ignore_index=True) # set baseline in the middle df2.loc[(df2['rank'] == 4), 'pct_start'] = df2.loc[(df2['rank'] == 4), 'pct_of_total']/2 * -1 df2['pct_end'] = df2['pct_start'] * -1 # calculate ranks 1-3 and 5-7 for r,t,p,q in [(a,b,c,d) for a in [3,2,1] for b in df2.treatment.unique() for c in df2.prompt.unique() for d in df2.question.unique()]: # get starting value for negative percentages, this becomes the "end" value for the next rank down pct_start = np.float32(df2[((df2['rank'] == (r+1)) & (df2.treatment == t) & (df2.prompt == p) & (df2.question == q))].pct_start) df2.loc[((df2['rank'] == r) & (df2.treatment == t) & (df2.prompt == p) & (df2.question == q)), 'pct_end'] = pct_start pct_new_start = np.float32(df2.loc[((df2['rank'] == r) & (df2.treatment == t) & (df2.prompt == p) & (df2.question == q)), 'pct_of_total'] * -1) + pct_start df2.loc[((df2['rank'] == r) & (df2.treatment == t) & (df2.prompt == p) & (df2.question == q)), 'pct_start'] = pct_new_start for r,t,p,q in [(a,b,c,d) for a in [5,6,7] for b in df2.treatment.unique() for c in df2.prompt.unique() for d in df2.question.unique()]: pct_start = np.float32(df2[((df2['rank'] == (r-1)) & (df2.treatment == t) & (df2.prompt == p) & (df2.question == q))].pct_end) df2.loc[((df2['rank'] == r) & (df2.treatment == t) & (df2.prompt == p) & (df2.question == q)), 'pct_start'] = pct_start pct_end = np.float32(df2.loc[((df2['rank'] == r) & (df2.treatment == t) & (df2.prompt == p) & (df2.question == q)), 'pct_of_total']) + pct_start df2.loc[((df2['rank'] == r) & (df2.treatment == t) & (df2.prompt == p) & (df2.question == q)), 'pct_end'] = pct_end return df2 ################################################################################### ################################################################################### ## DIVERGENCE PLOTS (LIKERT) ################################################################################### ################################################################################### def diverge_plot(data, question): color_scale = alt.Scale( domain=["1","2","3","4","5","6","7"], range=[berkeley_palette["rose_garden"], berkeley_palette["medalist"], berkeley_palette["california_gold"], berkeley_palette["bay_fog"], berkeley_palette["lawrence"], berkeley_palette["founders_rock"], berkeley_palette["berkeley_blue"]] ) select = alt.selection_multi(fields=['rank']) p = alt.Chart()\ .transform_filter(alt.datum.question == question)\ .mark_bar().encode( x=alt.X('pct_start:Q'), x2=alt.X2('pct_end:Q'), y=alt.Y('prompt:N', axis=alt.Axis(title=None, ticks=False, domain=False, offset=5, minExtent=60)), color=alt.Color( 'rank:O', legend=None, scale=color_scale), tooltip=[alt.Tooltip('treatment:N', title='Assignment'), alt.Tooltip('question:N', title='Question'), alt.Tooltip('rank:O', title='Rank (1-7)'), alt.Tooltip('pct_of_total:Q', title='% of Total', format='.2f')], opacity=alt.condition(select, alt.OpacityValue(1.0), alt.OpacityValue(0.5)) ).properties(height=150,width=650,title={'text':''}).add_selection(select) l = alt.Chart(pd.DataFrame({'X':[0]})).mark_rule(size=3, color=berkeley_palette["pacific"], strokeDash=[10,5])\ .encode(x=alt.X('X', type='quantitative', title=None)) return alt.layer(p, l) def macro_diverge_plot(data, question, title): c = diverge_plot(data, question)\ .facet( row=alt.Row('treatment:N', sort=alt.SortArray(['Control','Typographical','Phonological']), header=alt.Header( labelColor=berkeley_palette['pacific'], labelFontSize=20, labelFont='Lato', title="" ) ), title=title, data=data)\ .configure(padding={'top':20, 'left':20, 'right':20,'bottom':20})\ .configure_facet(spacing=10)\ .configure_view(stroke=None)\ .configure_title(anchor='middle')\ .configure_axis(grid=False)\ .configure_title(dy=-20) return c ################################################################################### ################################################################################### ## PARTICIPANT COUNT PLOTS (send in only with [treatment, total] columns) ################################################################################### ################################################################################### def participant_count_plot(data): b = alt.Chart().mark_bar(line={'color':berkeley_palette['web_grey']}).encode( x = alt.X('treatment:O', sort=['Control', 'Typographical', 'Phonological'], axis = alt.Axis(title = 'Assignment Group', labelAngle=0, labelPadding=10, labelFontSize=20, titleFontSize=25)), y = alt.Y('total:Q', axis = alt.Axis(title = "Participants Assigned", labelPadding=10, labelFontSize=20, titleFontSize=25), scale=alt.Scale(domain=[0,14])), color = alt.Color('treatment:O', legend = None, scale=alt.Scale(range = [berkeley_palette['pacific'], berkeley_palette['berkeley_blue'], berkeley_palette['founders_rock']])) ) t = alt.Chart().mark_text( color = berkeley_palette['white'], size = 20, align='center', baseline='middle', dy = 20).encode( x = alt.X('treatment:O', axis=None, sort=['Control', 'Typographical','Phonological']), y = alt.Y('total:Q'), text = alt.Text('total:Q') ) p = alt.layer(b, t, data = data)\ .properties(height=300,width=650,title={'text':'Pilot Participation'})\ .configure(padding={'top':20, 'left':20, 'right':20,'bottom':20})\ .configure_facet(spacing=10)\ .configure_view(stroke=None)\ .configure_title(anchor='middle')\ .configure_axis(grid=False)\ .configure_title(dy=-20) return p def participant_count_plot_live(data): df2 = data[['Start Date','Treatment','ROWID']].copy() df2['Start Date'] = df2['Start Date'].dt.normalize() df2 = df2.drop_duplicates().groupby(by=['Start Date','Treatment']).agg({'ROWID':'count'}).reset_index() df2.columns = ['date','branch','total'] df2['display_date'] = df2.date.dt.strftime('%b %d') df2['source'] = 'Amazon' df2.loc[(df2.date > '2021-04-05'), 'source'] = 'XLab' df2 = df2.groupby(by=['branch','source']).agg({'total':'sum'}).reset_index().rename(columns={'branch':'treatment'}) base = alt.Chart().mark_bar().encode( x=alt.X('total:Q', axis=alt.Axis(title = 'Participants Assigned', labelPadding=10, labelFontSize=20, titleFontSize=25)), y = alt.X('treatment:O', axis=alt.Axis(title = '', labelAngle=0, labelPadding=10, labelFontSize=20, titleFontSize=25), sort=['Control', 'Typographical','Phonological']), color = alt.Color('treatment:O', legend = None, scale=alt.Scale(range = [berkeley_palette['pacific'], berkeley_palette['berkeley_blue'], berkeley_palette['founders_rock']])) ).properties(width=650, height=150) txt = base.mark_text(dx=-15, size=15).encode( text='total:Q', color=alt.value('white') ) p = alt.layer(base, txt).properties(width=600, height=150, title={'text':''})\ .facet( row=alt.Row('source:N', sort=alt.SortArray(['XLab','Amazon']), header=alt.Header(labelColor=berkeley_palette['pacific'], labelFontSize=25,labelFont='Lato',title='') ), data=df2, title='Live Study Participation' ).configure(padding={'top':20, 'left':20, 'right':20,'bottom':20})\ .configure_facet(spacing=10)\ .configure_view(stroke=None)\ .configure_title(anchor='middle')\ .configure_axis(grid=False)\ .configure_title(dy=-20) return p ################################################################################### ################################################################################### ## MISSING DEMOGRAPHICS DATA (HTML w/ PANDAS STYLER) ################################################################################### ################################################################################### def color_all_missing(val): color = 'white' if val == 0 else 'black' return 'color: %s' % color def highlight_missing(s): is_max = s == 0 return ['background-color: black' if v else '' for v in is_max] def highlight_missing_max(s): is_max = s == s.max() return ['background-color: black' if v else '' for v in is_max] def color_all_missing_max(val): color = 'white' if val == df.shape[0] else 'black' return 'color: %s' % color def get_missing_demographics(df): cm = sns.light_palette("#0067B0", as_cmap=True) cols = [c for c in df.columns if c in ['Year','Gender','English','Race', 'Country','State','Student','Degree']] rend = pd.DataFrame({'% Missing Values' : round(df[cols].isnull().mean() * 100, 2), 'Missing Values (Count)' : df[cols].isnull().sum(), 'Non-Null Values' : df[cols].notnull().sum(), 'Density' : 1 / df[cols].nunique()})\ .style.bar(color = "#22a7f0", align = 'left', subset=['% Missing Values'])\ .background_gradient(cmap=cm, subset=['Density'])\ .apply(highlight_missing, subset=['Non-Null Values'])\ .apply(highlight_missing_max, subset=['Missing Values (Count)'])\ .set_caption('Distribution of Missing Demographic Values')\ .set_precision(2) return rend ################################################################################### ################################################################################### ## DEMOGRAPHICS : YEAR DISTRIBUTION (GOOD DATA ONLY) ################################################################################### ################################################################################### def get_good_demographic_year(df): df2 = df.copy() df2.Year = df2.Year.fillna('<MISSING>') df2 = pd.DataFrame(df2.groupby(by=['ROWID','Year']).size()\ .reset_index()[['ROWID','Year']].Year.value_counts(dropna=False))\ .reset_index().rename(columns={'index':'year', 'Year':'count'}).sort_values(by='year') strange_values = ['19996','25','26','54','<MISSING>','Los Angeles','Mumbai, India','US','2020'] good = df2[(~df2.year.isin(strange_values))].copy() good['year'] = good['year'].astype(int) p = alt.Chart(good).mark_bar(size=15, color=berkeley_palette['pacific'], line={'color':berkeley_palette['web_grey']})\ .encode( x = alt.X('year:Q', bin=False, axis=alt.Axis(format='.0f', labelAngle=-45), scale=alt.Scale(domain=[min(good.year), max(good.year)]), title='Year of Birth' ), y = alt.Y('count:Q', axis=alt.Axis(title='Frequency') ) ).properties(height=300, width=650, title={'text':'Distribution of Birth Year', 'subtitle':'Valid Data Only'})\ .configure(padding={'top':20, 'left':20, 'right':20,'bottom':20})\ .configure_facet(spacing=10)\ .configure_view(stroke=None)\ .configure_title(anchor='middle')\ .configure_axis(grid=False)\ .configure_title(dy=-10) return p ################################################################################### ################################################################################### ## DEMOGRAPHICS : GENDER DISTRIBUTION PLOT ################################################################################### ################################################################################### def get_demographic_gender(df): df2 = df.copy() df2.Gender = df2.Gender.fillna('<MISSING>') df2 = pd.DataFrame(df2.groupby(by=['ROWID','Gender']).size()\ .reset_index()[['ROWID','Gender']].Gender.value_counts(dropna=False))\ .reset_index().rename(columns={'index':'gender', 'Gender':'count'}).sort_values(by='gender') b = alt.Chart()\ .mark_bar( color=berkeley_palette['rose_garden'], opacity=0.85, stroke=berkeley_palette['berkeley_blue'], strokeWidth=1 ).encode( x=alt.X('gender:N', axis=alt.Axis(labelAngle=-45, labelFontSize=20, title='Participant Gender', titleFontSize=25)), y=alt.Y('count:Q', axis = alt.Axis(title='Frequency', titleFontSize=25)) ) t = alt.Chart().mark_text( color = berkeley_palette['pacific'], size = 20, align='center', baseline='middle', dy = -20 ).encode( x = alt.X('gender:N', axis=None), y = alt.Y('count:Q', axis=None), text = alt.Text('count:Q') ) p = alt.layer(b, t, data=df2)\ .properties(height=300,width=700,title={'text':'Distribution of Gender'})\ .configure(padding={'top':20, 'left':20, 'right':20,'bottom':20})\ .configure_facet(spacing=10)\ .configure_view(stroke=None)\ .configure_title(anchor='middle')\ .configure_axis(grid=False)\ .configure_title(dy=-20) return p ################################################################################### ################################################################################### ## DEMOGRAPHICS : COUNTRY DISTRIBUTION ################################################################################### ################################################################################### def get_demographic_country(df): df2 = df.copy() df2.Country = df2.Country.fillna('<MISSING>') df2 = pd.DataFrame(df2.groupby(by=['ROWID','Country']).size()\ .reset_index()[['ROWID','Country']].Country.value_counts(dropna=False))\ .reset_index().rename(columns={'index':'country', 'Country':'count'}).sort_values(by='country') ctry = pd.DataFrame({ 'country':['<MISSING>', 'Afghanistan', 'Canada', 'China', 'France', 'Hong Kong (S.A.R.)', 'India', 'Italy', 'Mexico', 'New Zealand', 'Portugal', 'Singapore', 'United Kingdom of Great Britain and Northern Ireland', 'United States of America'], 'id':[0, 4, 124, 156, 250, 344, 356, 380, 484, 554, 620, 702, 826, 840]}) df2 = df2.merge(ctry, how='inner', on='country') source = alt.topo_feature(data.world_110m.url, "countries") background = alt.Chart(source).mark_geoshape(fill="white") foreground = ( alt.Chart(source) .mark_geoshape(stroke=berkeley_palette['bay_fog'], strokeWidth=0.25) .encode( color=alt.Color( "count:N", scale=alt.Scale(range=[berkeley_palette['pacific'], berkeley_palette['lawrence'], berkeley_palette['lap_lane'], berkeley_palette['founders_rock'], berkeley_palette['founders_rock'], berkeley_palette['berkeley_blue']]), legend=None, ), tooltip=[ alt.Tooltip("country:N", title="Country"), alt.Tooltip("count:Q", title="Participants"), ], ) .transform_lookup( lookup="id", from_=alt.LookupData(df2, "id", ["count", "country"]), ) ) final_map = alt.layer(background, foreground)\ .properties(width=700, height=400, title={'text':'Distribution of Country'})\ .configure_title(anchor='middle')\ .configure_title(dy=-10)\ .project("naturalEarth1")\ .configure(padding={'top':20, 'left':20, 'right':20,'bottom':20})\ .configure_view(stroke=None, strokeWidth=0)\ .configure_axis(grid=False) return final_map ################################################################################### ################################################################################### ## DEMOGRAPHICS : STATE DISTRIBUTION ################################################################################### ################################################################################### def get_demographic_state(df): df2 = df.copy() df2.State = df2.State.fillna('<MISSING>') df2 = pd.DataFrame(df2.groupby(by=['ROWID','State']).size()\ .reset_index()[['ROWID','State']].State.value_counts(dropna=False))\ .reset_index().rename(columns={'index':'state', 'State':'count'}).sort_values(by='state') codes = pd.DataFrame({'state':['Alabama','Alaska','Arizona','Arkansas','California', 'Colorado','Connecticut','Delaware','District of Columbia','Florida','Georgia', 'Hawaii','Idaho','Illinois','Indiana','Iowa','Kansas','Kentucky','Louisiana', 'Maine','Maryland','Massachusetts','Michigan','Minnesota','Mississippi','Missouri', 'Montana','Nebraska','Nevada','New Hampshire','New Jersey','New Mexico','New York', 'North Carolina','North Dakota','Ohio','Oklahoma','Oregon','Pennsylvania','Rhode Island', 'South Carolina','South Dakota','Tennessee','Texas','Utah','Vermont','Virginia', 'Washington','West Virginia','Wisconsin','Wyoming','Puerto Rico'], 'id':[1,2,4,5,6,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31, 32,33,34,35,36,37,38,39,40,41,42,44,45,46,47,48,49,50,51,53,54,55,56,72]}) df2 = df2.merge(codes, how='left', on='state').fillna(-99) df2.id = df2.id.astype(int) states = alt.topo_feature(data.us_10m.url, 'states') b = alt.Chart(states).mark_geoshape(stroke=berkeley_palette['white'], strokeWidth=0.25).encode( color=alt.Color( "count:N", scale=alt.Scale(range=[berkeley_palette['pacific'], "#00b0da", "#009dcb", "#008aba", "#0077aa", "#006598", "#005386", "#004274", "#003262"]), legend=None), tooltip=[ alt.Tooltip("state:N", title="U.S. State"), alt.Tooltip("count:Q", title="Participants")] ).transform_lookup( lookup='id', from_=alt.LookupData(df2, 'id', ["count","state"]))\ .project(type='albersUsa')\ .properties(width=700, height=400, title={'text':'Distribution of U.S. State'})\ .configure_title(anchor='middle')\ .configure_title(dy=-10)\ .configure(padding={'top':20, 'left':20, 'right':20,'bottom':20})\ .configure_view(stroke=None, strokeWidth=0)\ .configure_axis(grid=False) return b ################################################################################### ################################################################################### ## DEMOGRAPHICS : STUDENT STATUS DISTRIBUTION ################################################################################### ################################################################################### def get_demographic_student_status(df): df2 = df.copy() df2.Student = df2.Student.fillna('<MISSING>') df2 = pd.DataFrame(df2.groupby(by=['ROWID','Student']).size()\ .reset_index()[['ROWID','Student']].Student.value_counts(dropna=False))\ .reset_index().rename(columns={'index':'student', 'Student':'count'}).sort_values(by='student') df2 = df2.sort_values(by = ['count','student'], ascending=False) y = df2['count'].values x = df2.student.values x_label = 'Student Status' y_label = 'Frequency' y_label2 = '% of Total' title = 'Distribution of Student Status' show_pct_y = True tot = df2['count'].sum() pct_format='{0:.0%}' def my_format(num, x): return (str(num*100)[:4 + (x-1)] + '%').replace('.','') # build the pareto chart fig = plt.figure(figsize=(10, 7), dpi = 100) ax1 = fig.add_subplot(111) ax2 = ax1.twinx() bars = ax1.bar(x = x, height = y, width = 0.9, align = 'center', edgecolor = berkeley_palette['berkeley_blue'], color = '#0078D4', linewidth = 1, alpha = 0.8) ax1.set_xticks(range(df2.shape[0])) ax1.set_xticklabels(x, rotation = 45, fontsize=12) for xtick in ax1.get_xticklabels(): xtick.set_color(berkeley_palette['black']) ax1.get_yaxis().set_major_formatter( tck.FuncFormatter(lambda x, p: format(int(x), ','))) ax1.tick_params(axis = 'y', labelsize = 10) ax1.tick_params(axis = 'y', labelcolor = berkeley_palette['pacific']) if x_label: ax1.set_xlabel(x_label, fontsize = 20, horizontalalignment = 'right', x = 1.0, color = berkeley_palette['pacific'], labelpad=10) if y_label: ax1.set_ylabel(y_label, fontsize = 20, horizontalalignment = 'right', y = 1.0, color = berkeley_palette['pacific'], labelpad=20) if title: plt.title(title, fontsize = 25, fontweight = 'semibold', color = berkeley_palette['berkeley_blue'], pad = 30, loc='center') weights = y / tot cumsum = weights.cumsum() cumsum = [0.999999999 if x >= 1.0 else x for x in cumsum] cumsum[len(cumsum)-1] = 1.0 ax2.plot(x, cumsum, color =berkeley_palette['black'], label = 'Cumulative Distribution', alpha = 1) ax2.scatter(x, cumsum, color = berkeley_palette['rose_garden'], marker = 'D', s = 15) ax2.set_ylabel('', color = berkeley_palette['berkeley_blue']) ax2.tick_params('y', colors = berkeley_palette['web_grey']) ax2.set_ylim(0, 1.01) vals = ax2.get_yticks() ax2.set_yticks(vals.tolist()) ax2.set_yticklabels([pct_format.format(x) for x in vals], fontsize = 10) # hide y-labels on right side if not show_pct_y: ax2.set_yticks([]) else: if y_label2: ax2.set_ylabel(y_label2, fontsize = 20, horizontalalignment = 'right', y = 1.0, color = berkeley_palette['pacific'], labelpad = 20) ax2.set_yticklabels([]) ax2.set_yticks([]) #formatted_weights = [pct_format.format(x) for x in cumsum] formatted_weights = [my_format(x, 0) for x in cumsum] for i, txt in enumerate(formatted_weights): ax2.annotate(text = txt, xy = (x[i], cumsum[i] + .05), fontweight = 'bold', color = berkeley_palette['black'], fontsize=15) if '<MISSING>' in df2.student.values: yy = df2[(df2.student.values=='<MISSING>')].values[0][1] b = bars.get_children()[len(bars.get_children())-1] xx = (b.get_x() + b.get_width() / 2) - 0.05 ax1.annotate(text = str(yy), xy = (xx, yy+5), fontweight = 'bold', color = berkeley_palette['rose_garden'], fontsize=15) # Adjust the plot spine borders to be lighter for ax in [ax1, ax2]: for p, v in zip(["top", "bottom", "right", "left"], [0.0, 0.3, 0.0, 0.3]): ax.spines[p].set_alpha(v) # Sset the Y-axis grid-lines to dim, and display the Accuracy plot. plt.grid(axis='y', alpha=.3) plt.tight_layout() #plt.show() return plt ################################################################################### ################################################################################### ## DESCRIPTIVE STATISTICS STYLER (PANDAS) ################################################################################### ################################################################################### def get_descriptive_statistics(df, cols = None): if not cols: cols = df.columns rend = df[cols].describe()\ .T.style.background_gradient(cmap=sns.light_palette("#0067B0", as_cmap=True))\ .set_precision(2) return rend ################################################################################### ################################################################################### ## LIKERT SCALE ANSWER VARIANCE PLOT ################################################################################### ################################################################################### def get_likert_variance(df): df2 = df.copy() df2['likert_var'] = np.var(df2[['Interest','Effective','Intelligence','Writing','Meet']], axis=1) df2['group'] = 'XLab' df2.loc[(df2['Start Date'] < "2021-04-05"), 'group'] = 'Amazon' at = alt.Chart(df2).transform_density('likert_var', as_=['likert_var','Density'], groupby=['group'])\ .mark_area(opacity=0.5, stroke=berkeley_palette['black'], strokeWidth=2)\ .encode( x = alt.X('likert_var:Q', axis=alt.Axis(values=list(np.arange(0.0, 9.5, 0.5)), tickCount=19), title="Variance"), y = alt.Y('Density:Q'), color = alt.Color('group:N', scale=alt.Scale(domain=df2.group.unique(), range=[berkeley_palette['berkeley_blue'], berkeley_palette['california_gold']]), legend = alt.Legend(title="Participant Group", padding=10, symbolType="square", symbolStrokeWidth=1, orient="right", offset=-170)))\ .properties(height=250, width=650, title={'text':'Distribution of Variance', 'subtitle':'for Likert Scale Answers'})\ .configure(padding={'top':20, 'left':20, 'right':20,'bottom':20})\ .configure_facet(spacing=10)\ .configure_view(stroke=None)\ .configure_title(anchor='middle')\ .configure_axis(grid=False)\ .configure_title(dy=-5) return at ################################################################################### ################################################################################### ## LIKERT SCALE ANSWER VARIANCE PLOT ################################################################################### ################################################################################### def get_likert_counts_by_group(df): df2 = df.copy() df2['likert_var'] = np.var(df2[['Interest','Effective','Intelligence','Writing','Meet']], axis=1) df2['group'] = 'XLab' df2.loc[(df2['Start Date'] < "2021-04-05"), 'group'] = 'Amazon' tot = df2.groupby(by=['group','ROWID']).size().reset_index().rename(columns={'ROWID':'participant_id',0:'total_responses'}) lik = df2[(df2.likert_var == 0.0)].groupby(by=['group','ROWID']).size().reset_index().rename(columns={'ROWID':'participant_id',0:'uniform_responses'}) tot = tot.merge(lik, how='inner', on=['group','participant_id']) tot['pct_uniform'] = tot.uniform_responses / tot.total_responses tot.groupby(by=['group','uniform_responses']).size().reset_index().rename(columns={0:'count'}) base = alt.Chart().mark_bar(stroke=berkeley_palette['pacific'], strokeWidth=0.5).encode( x=alt.X('count:Q', axis=alt.Axis(title = 'Frequency', labelPadding=10, labelFontSize=20, titleFontSize=25)), y = alt.Y('uniform_responses:O', axis=alt.Axis(title = '', labelAngle=0, labelPadding=10, labelFontSize=20, titleFontSize=25, values=[1,2,3,4,5,6], tickCount=6), sort=[1,2,3,4,5,6]), color = alt.Color('uniform_responses:O', legend = None, scale=alt.Scale(range = [berkeley_palette['bay_fog'], "#00b0da", "#004274", berkeley_palette['golden_gate'], berkeley_palette['rose_garden']])) ).properties(width=650, height=150) txt = base.mark_text(dx=-15, size=15).encode( text='count:Q', color=alt.value('white') ) p = alt.layer(base, txt).properties(width=600, height=150, title={'text':''})\ .facet( row=alt.Row('group:N', sort=alt.SortArray(['XLab','Amazon']), header=alt.Header(labelColor=berkeley_palette['pacific'], labelFontSize=25,labelFont='Lato', title='') ), data=tot.groupby(by=['group','uniform_responses']).size().reset_index().rename(columns={0:'count'}), title='Uniform Likert Respones' ).configure(padding={'top':20, 'left':20, 'right':20,'bottom':20})\ .configure_facet(spacing=10)\ .configure_view(stroke=None)\ .configure_title(anchor='middle')\ .configure_axis(grid=False)\ .configure_title(dy=-20) return p ################################################################################### ################################################################################### ## LIKERT SCALE ANSWER VARIANCE PLOT ################################################################################### ################################################################################### def get_wpm_plot(df): df2 = df.copy() df2['likert_var'] = np.var(df2[['Interest','Effective','Intelligence','Writing','Meet']], axis=1) df2['group'] = 'XLab' df2.loc[(df2['Start Date'] < "2021-04-05"), 'group'] = 'Amazon' p = alt.Chart(df2).mark_bar(opacity=0.8, stroke=berkeley_palette['black'], strokeWidth=0.5).encode( x = alt.X('wpm:Q', bin=alt.Bin(maxbins=100), title="Words per Minute (bin=100)"), y = alt.Y('count()', title='Frequency'), color=alt.Color('group:N', scale=alt.Scale(range = [berkeley_palette['berkeley_blue'], berkeley_palette['california_gold']]), legend = alt.Legend(title="Participant Group", padding=10, symbolType="square", symbolStrokeWidth=1, orient="right", offset=-170)) ).properties(height=300,width=650, title={'text':'Distribution of Response Time', 'subtitle':'Evaluated in Words per Minute'})\ .configure(padding={'top':20, 'left':20, 'right':20,'bottom':20})\ .configure_facet(spacing=10)\ .configure_view(stroke=None)\ .configure_title(anchor='middle')\ .configure_axis(grid=False)\ .configure_title(dy=-5) return p
44.892019
177
0.501935
a342a453e598c5666a65e62341c4df474c7b78af
737
py
Python
pymc3/examples/arbitrary_stochastic.py
vpolisky/pymc3
87cdd712c86321121c2ed3150764f3d847f5083c
[ "Apache-2.0" ]
15
2016-03-29T17:22:45.000Z
2021-05-05T06:28:06.000Z
pymc3/examples/arbitrary_stochastic.py
taku-y/pymc3
70e3ca5e137b67aac0390c7e3979ec16842c4aed
[ "Apache-2.0" ]
1
2019-08-17T06:58:38.000Z
2019-08-17T06:58:38.000Z
pymc3/examples/arbitrary_stochastic.py
rsumner31/pymc3-23
539c0fc04c196679a1cdcbf4bc2dbea4dee10080
[ "Apache-2.0" ]
6
2016-06-30T08:58:16.000Z
2019-01-26T16:50:54.000Z
import numpy as np import pymc3 as pm import theano.tensor as tt def build_model(): with pm.Model() as model: lam = pm.Exponential('lam', 1) failure = np.array([0, 1]) value = np.array([1, 0]) def logp(failure, value): return tt.sum(failure * np.log(lam) - lam * value) pm.DensityDist('x', logp, observed={'failure': failure, 'value': value}) return model def run(n_samples=3000): model = build_model() start = model.test_point h = pm.find_hessian(start, model=model) step = pm.Metropolis(model.vars, h, blocked=True, model=model) trace = pm.sample(n_samples, step=step, start=start, model=model) return trace if __name__ == "__main__": run()
26.321429
80
0.626866
9dc4ac1939f203f6dd514e3f7bfdde55b7e22e06
4,433
py
Python
tests/unit/plugins/openstack/context/network/test_network.py
aforalee/rallyALi
8050ca08b0e253aeb19a1cec34f33c648f00136a
[ "Apache-2.0" ]
2
2015-02-06T11:03:12.000Z
2015-03-02T10:39:44.000Z
tests/unit/plugins/openstack/context/network/test_network.py
aforalee/rallyALi
8050ca08b0e253aeb19a1cec34f33c648f00136a
[ "Apache-2.0" ]
null
null
null
tests/unit/plugins/openstack/context/network/test_network.py
aforalee/rallyALi
8050ca08b0e253aeb19a1cec34f33c648f00136a
[ "Apache-2.0" ]
2
2016-03-16T03:52:13.000Z
2020-10-02T07:58:50.000Z
# Copyright 2014: Mirantis Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock import netaddr from rally.plugins.openstack.context.network import networks as network_context from tests.unit import test NET = "rally.plugins.openstack.wrappers.network." class NetworkTestCase(test.TestCase): def get_context(self, **kwargs): return {"task": {"uuid": "foo_task"}, "admin": {"endpoint": "foo_admin"}, "config": {"network": kwargs}, "users": [{"id": "foo_user", "tenant_id": "foo_tenant"}, {"id": "bar_user", "tenant_id": "bar_tenant"}], "tenants": {"foo_tenant": {"networks": [{"id": "foo_net"}]}, "bar_tenant": {"networks": [{"id": "bar_net"}]}}} def test_START_CIDR_DFLT(self): netaddr.IPNetwork(network_context.Network.DEFAULT_CONFIG["start_cidr"]) @mock.patch("rally.osclients.Clients") @mock.patch(NET + "wrap", return_value="foo_service") def test__init__default(self, mock_wrap, mock_clients): context = network_context.Network(self.get_context()) self.assertEqual(context.config["networks_per_tenant"], 1) self.assertEqual(context.config["start_cidr"], network_context.Network.DEFAULT_CONFIG["start_cidr"]) @mock.patch("rally.osclients.Clients") @mock.patch(NET + "wrap", return_value="foo_service") def test__init__explicit(self, mock_wrap, mock_clients): context = network_context.Network( self.get_context(start_cidr="foo_cidr", networks_per_tenant=42, network_create_args={"fakearg": "fake"})) self.assertEqual(context.config["networks_per_tenant"], 42) self.assertEqual(context.config["start_cidr"], "foo_cidr") self.assertDictEqual(context.config["network_create_args"], {"fakearg": "fake"}) @mock.patch(NET + "wrap") @mock.patch("rally.plugins.openstack.context.network.networks.utils") @mock.patch("rally.osclients.Clients") def test_setup(self, mock_clients, mock_utils, mock_wrap): mock_utils.iterate_per_tenants.return_value = [ ("foo_user", "foo_tenant"), ("bar_user", "bar_tenant")] mock_create = mock.Mock(side_effect=lambda t, **kw: t + "-net") mock_utils.generate_random_name = mock.Mock() mock_wrap.return_value = mock.Mock(create_network=mock_create) nets_per_tenant = 2 net_context = network_context.Network( self.get_context(networks_per_tenant=nets_per_tenant, network_create_args={"fakearg": "fake"})) net_context.setup() create_calls = [ mock.call(tenant, add_router=True, subnets_num=1, network_create_args={"fakearg": "fake"}) for user, tenant in mock_utils.iterate_per_tenants.return_value] mock_create.assert_has_calls(create_calls) mock_utils.iterate_per_tenants.assert_called_once_with( net_context.context["users"]) expected_networks = ["bar_tenant-net", "foo_tenant-net"] * nets_per_tenant actual_networks = [] for tenant_id, tenant_ctx in net_context.context["tenants"].items(): actual_networks.extend(tenant_ctx["networks"]) self.assertSequenceEqual(sorted(expected_networks), sorted(actual_networks)) @mock.patch("rally.osclients.Clients") @mock.patch(NET + "wrap") def test_cleanup(self, mock_wrap, mock_clients): net_context = network_context.Network(self.get_context()) net_context.cleanup() mock_wrap().delete_network.assert_has_calls( [mock.call({"id": "foo_net"}), mock.call({"id": "bar_net"})], any_order=True)
45.234694
79
0.643582
a0c393565bb26f88c2ae74f20002c1cffa8d8639
2,462
py
Python
emcap-compress.py
rpp0/emma
fab81e1c66b8a88d14e68b8878ddbb5ee6528de2
[ "MIT" ]
36
2019-01-08T12:49:36.000Z
2022-03-31T08:11:48.000Z
emcap-compress.py
rpp0/emma
fab81e1c66b8a88d14e68b8878ddbb5ee6528de2
[ "MIT" ]
6
2020-01-28T22:59:05.000Z
2022-02-10T00:14:43.000Z
emcap-compress.py
rpp0/emma
fab81e1c66b8a88d14e68b8878ddbb5ee6528de2
[ "MIT" ]
3
2019-02-12T11:55:42.000Z
2020-08-12T23:30:05.000Z
#!/usr/bin/python """ This program compresses datasets captured with emcap using either PCA or an autoencoder. It looks for a manifest.emcap inside the dataset directory and applies the compression to the trace set given as argument. The program is called from emcap to mitigate the fact that Python 3 is not supported by GNU Radio (required for calling EMMA dsp and ML functions. After release of GNU Radio 3.8, the compress_dataset function can be directly applied on the numpy array in emcap itself. """ import argparse import os import pickle import emma.io.io as emio from emma.processing import ops from emma.utils.utils import EMMAException, conf_delete_action from emma.io.emresult import EMResult from emma.processing.action import Action def compress_trace_set(trace_set_path): if trace_set_path.endswith('.npy'): parent_dataset_path = os.path.dirname(trace_set_path) manifest_path = os.path.join(parent_dataset_path, 'manifest.emcap') if os.path.exists(manifest_path): # Open manifest with open(manifest_path, 'rb') as manifest_file: manifest = pickle.load(manifest_file) conf = manifest['conf'] # Load trace set trace_set = emio.get_trace_set(trace_set_path, 'cw', remote=False) conf_delete_action(conf, 'optimize_capture') # Make sure there is no optimize_capture action anymore # Add appropriate actions if 'pca' in manifest: conf.actions.append(Action('pca[%s]' % manifest_path)) elif 'autoenc' in manifest: conf.actions.append(Action('corrtest[autoenc]')) # Perform compression result = EMResult() ops.process_trace_set(result, trace_set, conf, keep_trace_sets=True) processed_trace_set = result.trace_sets[0] # Save compressed trace set processed_trace_set.save(os.path.abspath(parent_dataset_path), dry=False) else: raise EMMAException("No manifest.emcap in %s, so don't know how to compress." % parent_dataset_path) else: raise EMMAException("Not a valid traceset_path in numpy format") if __name__ == "__main__": parser = argparse.ArgumentParser(description='EMCap compress') parser.add_argument('trace_set_path', type=str, help="Trace set to compress") args = parser.parse_args() compress_trace_set(args.trace_set_path)
41.033333
121
0.6974
ff639141c6df908b8b14b6f18ec91167ca534325
7,409
py
Python
qa/rpc-tests/test_framework/test_framework.py
dnoiz1/ruxcoin
07e30a2b5ebc624ac8a2d92be435e895ede5deae
[ "MIT" ]
null
null
null
qa/rpc-tests/test_framework/test_framework.py
dnoiz1/ruxcoin
07e30a2b5ebc624ac8a2d92be435e895ede5deae
[ "MIT" ]
null
null
null
qa/rpc-tests/test_framework/test_framework.py
dnoiz1/ruxcoin
07e30a2b5ebc624ac8a2d92be435e895ede5deae
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Ruxcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # Base class for RPC testing import logging import optparse import os import sys import shutil import tempfile import traceback from .util import ( initialize_chain, start_nodes, connect_nodes_bi, sync_blocks, sync_mempools, stop_nodes, stop_node, wait_ruxcoinds, enable_coverage, check_json_precision, initialize_chain_clean, PortSeed, ) from .authproxy import JSONRPCException class RuxcoinTestFramework(object): def __init__(self): self.num_nodes = 4 self.setup_clean_chain = False self.nodes = None def run_test(self): raise NotImplementedError def add_options(self, parser): pass def setup_chain(self): print("Initializing test directory "+self.options.tmpdir) if self.setup_clean_chain: initialize_chain_clean(self.options.tmpdir, self.num_nodes) else: initialize_chain(self.options.tmpdir, self.num_nodes) def stop_node(self, num_node): stop_node(self.nodes[num_node], num_node) def setup_nodes(self): return start_nodes(self.num_nodes, self.options.tmpdir) def setup_network(self, split = False): self.nodes = self.setup_nodes() # Connect the nodes as a "chain". This allows us # to split the network between nodes 1 and 2 to get # two halves that can work on competing chains. # If we joined network halves, connect the nodes from the joint # on outward. This ensures that chains are properly reorganised. if not split: connect_nodes_bi(self.nodes, 1, 2) sync_blocks(self.nodes[1:3]) sync_mempools(self.nodes[1:3]) connect_nodes_bi(self.nodes, 0, 1) connect_nodes_bi(self.nodes, 2, 3) self.is_network_split = split self.sync_all() def split_network(self): """ Split the network of four nodes into nodes 0/1 and 2/3. """ assert not self.is_network_split stop_nodes(self.nodes) wait_ruxcoinds() self.setup_network(True) def sync_all(self): if self.is_network_split: sync_blocks(self.nodes[:2]) sync_blocks(self.nodes[2:]) sync_mempools(self.nodes[:2]) sync_mempools(self.nodes[2:]) else: sync_blocks(self.nodes) sync_mempools(self.nodes) def join_network(self): """ Join the (previously split) network halves together. """ assert self.is_network_split stop_nodes(self.nodes) wait_ruxcoinds() self.setup_network(False) def main(self): parser = optparse.OptionParser(usage="%prog [options]") parser.add_option("--nocleanup", dest="nocleanup", default=False, action="store_true", help="Leave ruxcoinds and test.* datadir on exit or error") parser.add_option("--noshutdown", dest="noshutdown", default=False, action="store_true", help="Don't stop ruxcoinds after the test execution") parser.add_option("--srcdir", dest="srcdir", default=os.path.normpath(os.path.dirname(os.path.realpath(__file__))+"/../../../src"), help="Source directory containing ruxcoind/ruxcoin-cli (default: %default)") parser.add_option("--tmpdir", dest="tmpdir", default=tempfile.mkdtemp(prefix="test"), help="Root directory for datadirs") parser.add_option("--tracerpc", dest="trace_rpc", default=False, action="store_true", help="Print out all RPC calls as they are made") parser.add_option("--portseed", dest="port_seed", default=os.getpid(), type='int', help="The seed to use for assigning port numbers (default: current process id)") parser.add_option("--coveragedir", dest="coveragedir", help="Write tested RPC commands into this directory") self.add_options(parser) (self.options, self.args) = parser.parse_args() self.options.tmpdir += '/' + str(self.options.port_seed) if self.options.trace_rpc: logging.basicConfig(level=logging.DEBUG, stream=sys.stdout) if self.options.coveragedir: enable_coverage(self.options.coveragedir) PortSeed.n = self.options.port_seed os.environ['PATH'] = self.options.srcdir+":"+self.options.srcdir+"/qt:"+os.environ['PATH'] check_json_precision() success = False try: if not os.path.isdir(self.options.tmpdir): os.makedirs(self.options.tmpdir) self.setup_chain() self.setup_network() self.run_test() success = True except JSONRPCException as e: print("JSONRPC error: "+e.error['message']) traceback.print_tb(sys.exc_info()[2]) except AssertionError as e: print("Assertion failed: " + str(e)) traceback.print_tb(sys.exc_info()[2]) except KeyError as e: print("key not found: "+ str(e)) traceback.print_tb(sys.exc_info()[2]) except Exception as e: print("Unexpected exception caught during testing: " + repr(e)) traceback.print_tb(sys.exc_info()[2]) except KeyboardInterrupt as e: print("Exiting after " + repr(e)) if not self.options.noshutdown: print("Stopping nodes") stop_nodes(self.nodes) wait_ruxcoinds() else: print("Note: ruxcoinds were not stopped and may still be running") if not self.options.nocleanup and not self.options.noshutdown and success: print("Cleaning up") shutil.rmtree(self.options.tmpdir) else: print("Not cleaning up dir %s" % self.options.tmpdir) if success: print("Tests successful") sys.exit(0) else: print("Failed") sys.exit(1) # Test framework for doing p2p comparison testing, which sets up some ruxcoind # binaries: # 1 binary: test binary # 2 binaries: 1 test binary, 1 ref binary # n>2 binaries: 1 test binary, n-1 ref binaries class ComparisonTestFramework(RuxcoinTestFramework): def __init__(self): super().__init__() self.num_nodes = 2 self.setup_clean_chain = True def add_options(self, parser): parser.add_option("--testbinary", dest="testbinary", default=os.getenv("RUXCOIND", "ruxcoind"), help="ruxcoind binary to test") parser.add_option("--refbinary", dest="refbinary", default=os.getenv("RUXCOIND", "ruxcoind"), help="ruxcoind binary to use for reference nodes (if any)") def setup_network(self): self.nodes = start_nodes( self.num_nodes, self.options.tmpdir, extra_args=[['-debug', '-whitelist=127.0.0.1']] * self.num_nodes, binary=[self.options.testbinary] + [self.options.refbinary]*(self.num_nodes-1))
34.460465
139
0.613848
86e0b1ede63cdfbc23a29baa3671e3de0fa8fd4c
246
py
Python
instaread/instapaper/example.py
anhdat/instaread
c554c58ae32119d3d80c8db1a163a1712c3f4f90
[ "MIT" ]
null
null
null
instaread/instapaper/example.py
anhdat/instaread
c554c58ae32119d3d80c8db1a163a1712c3f4f90
[ "MIT" ]
null
null
null
instaread/instapaper/example.py
anhdat/instaread
c554c58ae32119d3d80c8db1a163a1712c3f4f90
[ "MIT" ]
null
null
null
import instapaper I = instapaper.Instapaper("<oauth_consumer_key>", "<oauth_consumer_secret>") I.login("<user_name>", "<password>") b = instapaper.Bookmark(I, {"url": "https://www.biblegateway.com/passage/?search=John+1&version=NIV"}) b.save()
30.75
102
0.723577
758678e10d95a793dcf123dd81afd7a6fccf5711
326
py
Python
2017/day21/part1.py
dcabezas98/advent-of-code
c3a1e376bfea877a5af3b4472bb1ca6a5807b52e
[ "MIT" ]
null
null
null
2017/day21/part1.py
dcabezas98/advent-of-code
c3a1e376bfea877a5af3b4472bb1ca6a5807b52e
[ "MIT" ]
null
null
null
2017/day21/part1.py
dcabezas98/advent-of-code
c3a1e376bfea877a5af3b4472bb1ca6a5807b52e
[ "MIT" ]
null
null
null
pattern = [['.','#','.'],['.','.','#'],['#','#','#']] rules_book_inputs = {} rules_book_outputs = {} with open("input.txt") as f: for line in f: i, o = line[:-1].split(" => ") i = i.split("/") i = list(map(list,i)) o = o.split("/") o = list(map(list,o)) rules_book = {}
20.375
53
0.407975
1ad9d0054f90f20f4055ba5af3fb3c2bb931f247
15,932
py
Python
tensorflow/python/keras/engine/sequential.py
Byambaa0325/tensorflow
dc001fd87b0661436d090af8fd51253c8264679f
[ "Apache-2.0" ]
1
2020-03-03T13:36:29.000Z
2020-03-03T13:36:29.000Z
tensorflow/python/keras/engine/sequential.py
Byambaa0325/tensorflow
dc001fd87b0661436d090af8fd51253c8264679f
[ "Apache-2.0" ]
2
2021-08-25T15:59:18.000Z
2022-02-10T02:00:23.000Z
tensorflow/python/keras/engine/sequential.py
Byambaa0325/tensorflow
dc001fd87b0661436d090af8fd51253c8264679f
[ "Apache-2.0" ]
1
2022-03-18T04:26:38.000Z
2022-03-18T04:26:38.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=protected-access """Home of the `Sequential` model. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy from tensorflow.python.keras import layers as layer_module from tensorflow.python.keras.engine import base_layer from tensorflow.python.keras.engine import base_layer_utils from tensorflow.python.keras.engine import input_layer from tensorflow.python.keras.engine import training from tensorflow.python.keras.engine import training_utils from tensorflow.python.keras.saving.saved_model import model_serialization from tensorflow.python.keras.utils import generic_utils from tensorflow.python.keras.utils import layer_utils from tensorflow.python.keras.utils import tf_utils from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training.tracking import base as trackable from tensorflow.python.training.tracking import layer_utils as trackable_layer_utils from tensorflow.python.util import nest from tensorflow.python.util import tf_inspect from tensorflow.python.util.deprecation import deprecated from tensorflow.python.util.tf_export import keras_export SINGLE_LAYER_OUTPUT_ERROR_MSG = ('All layers in a Sequential model should have ' 'a single output tensor. For multi-output ' 'layers, use the functional API.') @keras_export('keras.Sequential', 'keras.models.Sequential') class Sequential(training.Model): """`Sequential` groups a linear stack of layers into a `tf.keras.Model`. `Sequential` provides training and inference features on this model. Examples: >>> # Optionally, the first layer can receive an `input_shape` argument: >>> model = tf.keras.Sequential() >>> model.add(tf.keras.layers.Dense(8, input_shape=(16,))) >>> # Afterwards, we do automatic shape inference: >>> model.add(tf.keras.layers.Dense(4)) >>> # This is identical to the following: >>> model = tf.keras.Sequential() >>> model.add(tf.keras.layers.Dense(8, input_dim=16)) >>> # And to the following: >>> model = tf.keras.Sequential() >>> model.add(tf.keras.layers.Dense(8, batch_input_shape=(None, 16))) >>> # Note that you can also omit the `input_shape` argument. >>> # In that case the model doesn't have any weights until the first call >>> # to a training/evaluation method (since it isn't yet built): >>> model = tf.keras.Sequential() >>> model.add(tf.keras.layers.Dense(8)) >>> model.add(tf.keras.layers.Dense(4)) >>> # model.weights not created yet >>> # Whereas if you specify the input shape, the model gets built >>> # continuously as you are adding layers: >>> model = tf.keras.Sequential() >>> model.add(tf.keras.layers.Dense(8, input_shape=(16,))) >>> model.add(tf.keras.layers.Dense(4)) >>> len(model.weights) 4 >>> # When using the delayed-build pattern (no input shape specified), you can >>> # choose to manually build your model by calling >>> # `build(batch_input_shape)`: >>> model = tf.keras.Sequential() >>> model.add(tf.keras.layers.Dense(8)) >>> model.add(tf.keras.layers.Dense(4)) >>> model.build((None, 16)) >>> len(model.weights) 4 ```python # Note that when using the delayed-build pattern (no input shape specified), # the model gets built the first time you call `fit` (or other training and # evaluation methods). model = tf.keras.Sequential() model.add(tf.keras.layers.Dense(8)) model.add(tf.keras.layers.Dense(1)) model.compile(optimizer='sgd', loss='mse') # This builds the model for the first time: model.fit(x, y, batch_size=32, epochs=10) ``` """ @trackable.no_automatic_dependency_tracking def __init__(self, layers=None, name=None): """Creates a `Sequential` model instance. Args: layers: Optional list of layers to add to the model. name: Optional name for the model. """ super(Sequential, self).__init__(name=name, autocast=False) self.supports_masking = True self._compute_output_and_mask_jointly = True self._auto_track_sub_layers = False self._layer_call_argspecs = {} # Add to the model any layers passed to the constructor. if layers: if not isinstance(layers, (list, tuple)): layers = [layers] tf_utils.assert_no_legacy_layers(layers) for layer in layers: self.add(layer) @property def layers(self): # Historically, `sequential.layers` only returns layers that were added # via `add`, and omits the auto-generated `InputLayer` that comes at the # bottom of the stack. # `Trackable` manages the `_layers` attributes and does filtering # over it. layers = super(Sequential, self).layers if layers and isinstance(layers[0], input_layer.InputLayer): return layers[1:] return layers[:] @property @trackable_layer_utils.cache_recursive_attribute('dynamic') def dynamic(self): return any(layer.dynamic for layer in self.layers) @trackable.no_automatic_dependency_tracking def add(self, layer): """Adds a layer instance on top of the layer stack. Arguments: layer: layer instance. Raises: TypeError: If `layer` is not a layer instance. ValueError: In case the `layer` argument does not know its input shape. ValueError: In case the `layer` argument has multiple output tensors, or is already connected somewhere else (forbidden in `Sequential` models). """ # If we are passed a Keras tensor created by keras.Input(), we can extract # the input layer from its keras history and use that without any loss of # generality. if hasattr(layer, '_keras_history'): origin_layer = layer._keras_history[0] if isinstance(origin_layer, input_layer.InputLayer): layer = origin_layer if not isinstance(layer, base_layer.Layer): raise TypeError('The added layer must be ' 'an instance of class Layer. ' 'Found: ' + str(layer)) tf_utils.assert_no_legacy_layers([layer]) # This allows the added layer to broadcast mutations to the current # layer, which is necessary to ensure cache correctness. layer._attribute_sentinel.add_parent(self._attribute_sentinel) self.built = False set_inputs = False if not self._layers: if isinstance(layer, input_layer.InputLayer): # Corner case where the user passes an InputLayer layer via `add`. assert len(nest.flatten(layer._inbound_nodes[-1].output_tensors)) == 1 set_inputs = True else: batch_shape, dtype = training_utils.get_input_shape_and_dtype(layer) if batch_shape: # Instantiate an input layer. x = input_layer.Input( batch_shape=batch_shape, dtype=dtype, name=layer.name + '_input') # This will build the current layer # and create the node connecting the current layer # to the input layer we just created. layer(x) set_inputs = True if set_inputs: # If an input layer (placeholder) is available. if len(nest.flatten(layer._inbound_nodes[-1].output_tensors)) != 1: raise ValueError(SINGLE_LAYER_OUTPUT_ERROR_MSG) self.outputs = [ nest.flatten(layer._inbound_nodes[-1].output_tensors)[0] ] self.inputs = layer_utils.get_source_inputs(self.outputs[0]) elif self.outputs: # If the model is being built continuously on top of an input layer: # refresh its output. output_tensor = layer(self.outputs[0]) if len(nest.flatten(output_tensor)) != 1: raise ValueError(SINGLE_LAYER_OUTPUT_ERROR_MSG) self.outputs = [output_tensor] if self.outputs: # True if set_inputs or self._is_graph_network or if adding a layer # to an already built deferred seq model. self.built = True if set_inputs or self._is_graph_network: self._init_graph_network(self.inputs, self.outputs, name=self.name) else: self._layers.append(layer) self._handle_deferred_layer_dependencies([layer]) self._layer_call_argspecs[layer] = tf_inspect.getfullargspec(layer.call) # Different Model types add to `._layers` in different ways, so for safety # we do a cache invalidation to make sure the changes are reflected. self._attribute_sentinel.invalidate_all() @trackable.no_automatic_dependency_tracking def pop(self): """Removes the last layer in the model. Raises: TypeError: if there are no layers in the model. """ if not self.layers: raise TypeError('There are no layers in the model.') layer = self._layers.pop() self._layer_call_argspecs.pop(layer) self._attribute_sentinel.invalidate_all() if not self.layers: self.outputs = None self.inputs = None self.built = False elif self._is_graph_network: self.layers[-1]._outbound_nodes = [] self.outputs = [self.layers[-1].output] self._init_graph_network(self.inputs, self.outputs, name=self.name) self.built = True @base_layer_utils.default def build(self, input_shape=None): if self._is_graph_network: self._init_graph_network(self.inputs, self.outputs, name=self.name) else: if input_shape is None: raise ValueError('You must provide an `input_shape` argument.') input_shape = tuple(input_shape) self._build_input_shape = input_shape super(Sequential, self).build(input_shape) self.built = True def call(self, inputs, training=None, mask=None): # pylint: disable=redefined-outer-name if self._build_input_shape is None: input_shapes = nest.map_structure(_get_shape_tuple, inputs) self._build_input_shape = input_shapes if self._is_graph_network: if not self.built: self._init_graph_network(self.inputs, self.outputs, name=self.name) return super(Sequential, self).call(inputs, training=training, mask=mask) outputs = inputs # handle the corner case where self.layers is empty for layer in self.layers: # During each iteration, `inputs` are the inputs to `layer`, and `outputs` # are the outputs of `layer` applied to `inputs`. At the end of each # iteration `inputs` is set to `outputs` to prepare for the next layer. kwargs = {} argspec = self._layer_call_argspecs[layer].args if 'mask' in argspec: kwargs['mask'] = mask if 'training' in argspec: kwargs['training'] = training outputs = layer(inputs, **kwargs) if len(nest.flatten(outputs)) != 1: raise ValueError(SINGLE_LAYER_OUTPUT_ERROR_MSG) # `outputs` will be the inputs to the next layer. inputs = outputs mask = outputs._keras_mask return outputs def compute_output_shape(self, input_shape): shape = input_shape for layer in self.layers: shape = layer.compute_output_shape(shape) return shape def compute_mask(self, inputs, mask): # TODO(omalleyt): b/123540974 This function is not really safe to call # by itself because it will duplicate any updates and losses in graph # mode by `call`ing the Layers again. outputs = self.call(inputs, mask=mask) return outputs._keras_mask @deprecated('2021-01-01', 'Please use `model.predict()` instead.') def predict_proba(self, x, batch_size=32, verbose=0): """Generates class probability predictions for the input samples. The input samples are processed batch by batch. Arguments: x: input data, as a Numpy array or list of Numpy arrays (if the model has multiple inputs). batch_size: integer. verbose: verbosity mode, 0 or 1. Returns: A Numpy array of probability predictions. """ preds = self.predict(x, batch_size, verbose) if preds.min() < 0. or preds.max() > 1.: logging.warning('Network returning invalid probability values. ' 'The last layer might not normalize predictions ' 'into probabilities ' '(like softmax or sigmoid would).') return preds @deprecated('2021-01-01', 'Please use instead:' '* `np.argmax(model.predict(x), axis=-1)`, ' ' if your model does multi-class classification ' ' (e.g. if it uses a `softmax` last-layer activation).' '* `(model.predict(x) > 0.5).astype("int32")`, ' ' if your model does binary classification ' ' (e.g. if it uses a `sigmoid` last-layer activation).') def predict_classes(self, x, batch_size=32, verbose=0): """Generate class predictions for the input samples. The input samples are processed batch by batch. Arguments: x: input data, as a Numpy array or list of Numpy arrays (if the model has multiple inputs). batch_size: integer. verbose: verbosity mode, 0 or 1. Returns: A numpy array of class predictions. """ proba = self.predict(x, batch_size=batch_size, verbose=verbose) if proba.shape[-1] > 1: return proba.argmax(axis=-1) else: return (proba > 0.5).astype('int32') def get_config(self): layer_configs = [] for layer in self.layers: layer_configs.append(generic_utils.serialize_keras_object(layer)) # When constructed using an `InputLayer` the first non-input layer may not # have the shape information to reconstruct `Sequential` as a graph network. if (self._is_graph_network and layer_configs and 'batch_input_shape' not in layer_configs[0]['config'] and isinstance(self._layers[0], input_layer.InputLayer)): batch_input_shape = self._layers[0]._batch_input_shape layer_configs[0]['config']['batch_input_shape'] = batch_input_shape config = { 'name': self.name, 'layers': copy.deepcopy(layer_configs) } if self._build_input_shape is not None: config['build_input_shape'] = self._build_input_shape return config @classmethod def from_config(cls, config, custom_objects=None): if 'name' in config: name = config['name'] build_input_shape = config.get('build_input_shape') layer_configs = config['layers'] else: name = None build_input_shape = None layer_configs = config model = cls(name=name) for layer_config in layer_configs: layer = layer_module.deserialize(layer_config, custom_objects=custom_objects) model.add(layer) if (not model.inputs and build_input_shape and isinstance(build_input_shape, (tuple, list))): model.build(build_input_shape) return model @property def input_spec(self): if self.layers and hasattr(self.layers[0], 'input_spec'): return self.layers[0].input_spec return None @property def _trackable_saved_model_saver(self): return model_serialization.SequentialSavedModelSaver(self) def _get_shape_tuple(t): if hasattr(t, 'shape'): shape = t.shape if shape.rank is not None: return tuple(shape.as_list()) return None return None
37.575472
91
0.682651
13599f1abb1b715b6c351d091033137d9fcbb2df
902
py
Python
jobs/delete_unsaved_candidates.py
jialin-wu-02/skyportal
29d606ad8567b2230fb0553b18dd3cb9d3ab2d84
[ "BSD-3-Clause" ]
null
null
null
jobs/delete_unsaved_candidates.py
jialin-wu-02/skyportal
29d606ad8567b2230fb0553b18dd3cb9d3ab2d84
[ "BSD-3-Clause" ]
156
2019-10-17T19:35:22.000Z
2021-08-01T13:23:47.000Z
jobs/delete_unsaved_candidates.py
jialin-wu-02/skyportal
29d606ad8567b2230fb0553b18dd3cb9d3ab2d84
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python import datetime from skyportal.models import init_db, Candidate, Source, Obj, DBSession from baselayer.app.env import load_env env, cfg = load_env() init_db(**cfg["database"]) try: n_days = int(cfg["misc.days_to_keep_unsaved_candidates"]) except ValueError: raise ValueError("Invalid (non-integer) value provided for " "days_to_keep_unsaved_candidates in config file.") if not 1 <= n_days <= 30: raise ValueError("days_to_keep_unsaved_candidates must be an integer between 1 and 30") cutoff_datetime = datetime.datetime.now() - datetime.timedelta(days=n_days) n_deleted = ( Obj.query .filter(Obj.id.in_(DBSession.query(Candidate.obj_id))) .filter(Obj.id.notin_(DBSession.query(Source.obj_id))) .filter(Obj.created_at <= cutoff_datetime) .delete() ) DBSession.commit() print(f"Deleted {n_deleted} unsaved candidates.")
27.333333
91
0.727273
43777880f7de832c2dea7ab11d6cd56f586c7559
14,268
py
Python
Python/Vague/piddletest3.py
joel-s/portfolio
4b45f0c9bbf1647ef7865e0d2616b78030a27389
[ "FSFAP" ]
null
null
null
Python/Vague/piddletest3.py
joel-s/portfolio
4b45f0c9bbf1647ef7865e0d2616b78030a27389
[ "FSFAP" ]
null
null
null
Python/Vague/piddletest3.py
joel-s/portfolio
4b45f0c9bbf1647ef7865e0d2616b78030a27389
[ "FSFAP" ]
null
null
null
"""piddletest.py This module puts the various PIDDLE backends through their paces. """ import pagesizes from piddle import * import string import sys import math from math import pi from math import sin from math import cos backends = ['piddlePDF','piddlePIL','piddleVCR','piddleTK', 'piddlePS','piddleAI','piddleQD','piddleGL', 'piddleWX', 'piddleGTK'] backends.sort() #---------------------------------------------------------------------- # note, these tests do not flush() the canvas #---------------------------------------------------------------------- def minimal(canvasClass): """Just a very basic test of line drawing and canvas size.""" canvas = canvasClass(pagesizes.A6, "testA") # A6 is a quarter page drawMinimal(canvas) return canvas def drawMinimal(canvas): saver = StateSaver(canvas) # leave canvas state as you found it, restores state when leaves scope size = canvas.size # (actual size *may* differ from requested size) canvas.defaultLineColor = green canvas.drawLine(1,1,size[0]-1,size[1]-1) canvas.drawLine(1,size[1]-1,size[0]-1,1) canvas.drawRect(1,1,size[0]-1,size[1]-1, edgeWidth=5) return canvas #---------------------------------------------------------------------- def basics(canvasClass): """A general test of most of the drawing primitives except images and strings.""" canvas = canvasClass((400,400), "test-basics") return drawBasics(canvas) def drawTree(canvas, x,y, scale, t, tscale, i): xp = x + cos(t)*scale/9 yp = y + sin(t)*scale/9 canvas.drawLine(x, y, xp, yp) if i > 0: drawTree(canvas, xp,yp, scale*8/9, t - tscale, tscale*6/7, i-1) drawTree(canvas, xp,yp, scale*8/9, t + tscale, tscale*6/7, i-1) def drawBasics(canvas): saver = StateSaver(canvas) # leave canvas state as you found it, restores state when leaves scope canvas.defaultLineColor = black canvas.defaultLineWidth = 2 for i in range(6): drawTree(canvas, 200.0,200.0, 250.0, i*pi/3, pi/16.5, 10) # canvas.drawCurve( 20,20, 100,50, 50,100, 160,160 ) return canvas #---------------------------------------------------------------------- def advanced(canvasClass): """A general test of most of the drawing primitives except images and strings.""" canvas = canvasClass((400,400), "test-advanced") return drawAdvanced(canvas) def drawBranch(canvas, x,y, t,ts, r,rs, i): x0 = x + cos(t)*r y0 = y + sin(t)*r rp = r+rs tp1 = t - ts/2 tp2 = t + ts/2 canvas.drawCurve(x0,y0, x0,y0, x+cos(tp1)*r,y+sin(tp1)*r, x + cos(tp1)*rp, y + sin(tp1)*rp) canvas.drawCurve(x0,y0, x0,y0, x+cos(tp2)*r,y+sin(tp2)*r, x + cos(tp2)*rp, y + sin(tp2)*rp) if i > 0: drawBranch(canvas, x,y, tp1,ts/2, rp,rs*2/3, i-1) drawBranch(canvas, x,y, tp2,ts/2, rp,rs*2/3, i-1) def drawAdvanced(canvas): saver = StateSaver(canvas) # leave canvas state as you found it, restores state when leaves scope canvas.defaultLineColor = black canvas.defaultLineWidth = 2 for i in range(3): if i == 2: canvas.defaultLineColor = green drawBranch(canvas, 200.0,200.0, i*2*pi/3,pi/3, 200.0,-40.0, 8) # canvas.drawCurve( 20,20, 100,50, 50,100, 160,160 ) return canvas def drawAdvanced2(canvas): saver = StateSaver(canvas) # leave canvas state as you found it, restores state when leaves scope canvas.defaultLineColor = black canvas.defaultLineWidth = 2 for i in range(6): drawBranch(canvas, 200.0,200.0,250.0, i*2*pi/3,pi/6, 200.0,4/5.0, 6) # canvas.drawCurve( 20,20, 100,50, 50,100, 160,160 ) return canvas #---------------------------------------------------------------------- ## def advanced(canvasClass): ## """A test of figures and images.""" ## canvas = canvasClass((300,300), "test-advanced") ## return drawAdvanced(canvas) ## def drawAdvanced(canvas): ## saver = StateSaver(canvas) # leave canvas state as you found it, restores state when leaves scope ## figure = [ ## ( figureCurve, 20,20, 100,50, 50,100, 160,160 ), ## ( figureLine, 200,200, 250,150 ), ## ( figureArc, 50,10, 250,150, 10,90 ) ] ## canvas.drawFigure(figure, fillColor=yellow, edgeWidth=4) ## try: ## import Image ## except: ## canvas.drawString("PIL not available!", 20,200) ## Image = None ## if Image: ## img = Image.open("python.gif") ## canvas.drawImage( img, 120,50,120+32,50+64 ); ## canvas.drawImage( img, 0,210,300,210+32 ); ## return canvas #---------------------------------------------------------------------- def bluefunc(x): return 1.0 / (1.0 + math.exp(-10*(x-0.6))) def redfunc(x): return 1.0 / (1.0 + math.exp(10*(x-0.5))) def greenfunc(x): return 1 - pow(redfunc(x+0.2),2) - bluefunc(x-0.3) def spectrum(canvasClass): canvas = canvasClass((300,300), "test-spectrum") return drawSpectrum(canvas) def drawSpectrum(canvas): """Generates a spectrum plot; illustrates colors and useful application.""" saver = StateSaver(canvas) # leave canvas state as you found it, restores state when leaves scope def plot(f,canvas,offset=0): for i in range(0,100): x = float(i)/100 canvas.drawLine(i*3+offset,250, i*3+offset,250-100*f(x)) def genColors(n=100): out = [None]*n; for i in range(n): x = float(i)/n out[i] = Color(redfunc(x), greenfunc(x), bluefunc(x)); return out colors = genColors(300) # draw a black background for the spectrum canvas.drawRect( 0,0,300,100, edgeColor=black, fillColor=black ) # draw the spectrum for i in range(len(colors)): canvas.drawLine(i,20,i,80, colors[i]) # plot the components of the spectrum canvas.defaultLineColor = red plot(redfunc, canvas) canvas.defaultLineColor = blue plot(bluefunc, canvas, 1) canvas.defaultLineColor = green plot(greenfunc, canvas, 2) return canvas #---------------------------------------------------------------------- def strings(canvasClass): canvas = canvasClass( size=(400,400), name="test-strings" ) return drawStrings(canvas) def CenterAndBox(canvas, s, cx=200, y=40): "tests string positioning, stringWidth, fontAscent, and fontDescent" canvas.drawLine(cx,y-30, cx,y+30, color=yellow) w = canvas w = canvas.stringWidth(s) canvas.drawLine(cx-w/2, y, cx+w/2, y, color=red) canvas.drawString(s, cx-w/2, y ) canvas.defaultLineColor = Color(0.7,0.7,1.0) # light blue canvas.drawLine(cx-w/2, y-20, cx-w/2, y+20) # left canvas.drawLine(cx+w/2, y-20, cx+w/2, y+20) # right asc, desc = canvas.fontAscent(), canvas.fontDescent() canvas.drawLine(cx-w/2-20, y-asc, cx+w/2+20, y-asc) # top canvas.drawLine(cx-w/2-20, y+desc, cx+w/2+20, y+desc) # bottom def drawStrings(canvas): """Checks font metrics, and also illustrates the standard fonts.""" saver = StateSaver(canvas) # leave canvas state as you found it, restores state when leaves scope def Write(canvas, s, font, curs): if font: canvas.defaultFont = font text = s while text and text[-1] == '\n': text = text[:-1] canvas.drawString(text, x=curs[0], y=curs[1]) if s[-1] == '\n': curs[0] = 10 curs[1] = curs[1] + canvas.fontHeight() + canvas.fontDescent() else: curs[0] = curs[0] + canvas.stringWidth(s) def StandardFonts(canvas, Write): canvas.defaultLineColor = black curs = [10,70] for size in (12, 18): for fontname in ("times", "courier", "helvetica", "symbol", "monospaced", "serif", "sansserif"): curs[0] = 10 curs[1] = curs[1] + size*1.5 Write(canvas, "%s %d " % (fontname,size), Font(face=fontname, size=size), curs) Write(canvas, "bold ", Font(face=fontname, size=size, bold=1), curs) Write(canvas, "italic ", Font(face=fontname, size=size, italic=1), curs) Write(canvas, "underline", Font(face=fontname, size=size, underline=1), curs) CenterAndBox(canvas, "spam, spam, spam, baked beans, and spam!") StandardFonts(canvas, Write) return canvas #---------------------------------------------------------------------- def rotstring(canvasClass): canvas = canvasClass( (450,300), name='test-rotstring' ) return drawRotstring(canvas) def drawRotstring(canvas): """Draws rotated strings.""" saver = StateSaver(canvas) # leave canvas state as you found it, restores state when leaves scope canvas.defaultFont = Font(bold=1) canvas.defaultLineColor = (blue + white)/2 canvas.drawLine(0,150, 300,150) canvas.drawLine(150,0, 150,300) s = " __albatros at " w = canvas.stringWidth(s) canvas.drawEllipse(150-w,150-w, 150+w, 150+w, fillColor=transparent) colors = [red,orange,yellow,green,blue,purple] cnum = 0 for ang in range(0, 359, 30): canvas.defaultLineColor = colors[cnum] s2 = s + str(ang) canvas.drawString(s2, 150, 150, angle=ang) cnum = (cnum+1) % len(colors) canvas.drawString( "This is a\nrotated\nmulti-line string!!!", 350, 100, angle= -90, font=Font(underline=1) ) #canvas.drawString( "This is a\nrotated\nmulti-line string!!!", 400, 175, angle= -45, font=Font(underline=1) ) return canvas #---------------------------------------------------------------------- #---------------------------------------------------------------------- def tkTest(testfunc): # piddleTK tests are called from here because need TK's event loop try : import piddleTK import Tkinter except: print "A module needed for piddleTK is not available, select another backend" return root = Tkinter.Tk() frame = Tkinter.Frame(root) # label='piddletestTK' #tkcanvas = piddleTK.TKCanvas(size=(400,400), name='piddletestTK', master = frame) # try new Tk canvas tkcanvas = piddleTK.TKCanvas(size=(400,400), name='piddletestTK', master = frame) bframe = Tkinter.Frame(root) minimalB=Tkinter.Button(bframe, text='minimal test', command= lambda c=tkcanvas : (c.clear(),drawMinimal(c), c.flush())).pack(side=Tkinter.LEFT) basicB = Tkinter.Button(bframe, text='basic test', command= lambda c=tkcanvas: (c.clear(),drawBasics(c),c.flush()) ).pack(side=Tkinter.LEFT) spectB =Tkinter.Button(bframe, text='spectrum test', command= lambda c=tkcanvas: (c.clear(),drawSpectrum(c),c.flush()) ).pack(side=Tkinter.LEFT) stringsB = Tkinter.Button(bframe, text='strings test', command= lambda c=tkcanvas:(c.clear(),drawStrings(c),c.flush()) ).pack(side=Tkinter.LEFT) rotstrB = Tkinter.Button(bframe, text='rotated strings test', command= lambda c=tkcanvas:(c.clear(), drawRotstring(c),c.flush()) ).pack(side=Tkinter.LEFT) advancedB = Tkinter.Button(bframe, text='advanced test', command= lambda c=tkcanvas:(c.clear(), drawAdvanced(c),c.flush() ) ).pack(side=Tkinter.LEFT) bframe.pack(side=Tkinter.TOP) frame.pack() # try to draw before running mainloop if testfunc== minimal: drawMinimal(tkcanvas) elif testfunc == basics: drawBasics(tkcanvas) elif testfunc == advanced : drawAdvanced(tkcanvas) elif testfunc == spectrum : drawSpectrum(tkcanvas) elif testfunc == strings : drawStrings(tkcanvas) elif testfunc == rotstring : drawRotstring(tkcanvas) else : print "Illegal testfunc handed to tkTest" raise "Unsupported testfunc" tkcanvas.flush() root.mainloop() root.destroy() #---------------------------------------------------------------------- def wxTest(testfunc): try : import piddleWX from wxPython.wx import wxApp except: print "A module needed for piddleWX is not available, select another backend" return global wx_app if not globals().has_key("wx_app"): class CanvasApp(wxApp): "The wxApp that runs canvas. Initializes windows, and handles redrawing" def OnInit(self): return 1 wx_app = CanvasApp(0) # run the test, passing the canvas class and returning the canvas canvas = testfunc(piddleWX.WXCanvas) canvas.flush() # Run the main loop wx_app.MainLoop() def runtest(backend, testfunc): # special cases: if backend=='piddleTK': tkTest(testfunc) # takes care of import, etc. return if backend=='piddleWX': wxTest(testfunc) # takes care of import, etc. return # import the relevant module module = __import__(backend) # figure out the canvas class name (e.g., "PILCanvas") and get that canvasClass = getattr(module, backend[6:]+"Canvas") # run the test, passing the canvas class and returning the canvas canvas = testfunc(canvasClass) # do post-test cleanup canvas.flush() # handle save's here if backend == 'piddlePIL': canvas.save(format='png') # save as a PNG file elif backend == 'piddleVCR': filename = canvas.name + ".vcr" canvas.save(filename) print filename, "saved" else: # if backend == 'piddlePS' or backend== 'piddlePDF': canvas.save() # should be "pass'ed" by Canvas's that don't use save def mainLoop(): global tests, backends backend = None test = None if len(sys.argv) == 2: runtest('piddleTK', advanced) sys.exit(0) while 1: # print backends on left, tests on right, indicate chosen one of each i = 0 while i < len(backends) or i < len(tests): try: bstr = str(i+1) + '. ' + backends[i] except: bstr = '' try: tstr = chr(65+i) + '. ' + tests[i].__name__ except: tstr = '' if i == backend: bflag = '==>' else: bflag = '' if i == test: tflag = '==>' else: tflag = '' print "%10s %-20s %10s %-20s" % (bflag, bstr, tflag, tstr) i = i+1 print inp = raw_input("Selection (0 to exit): ") print if inp == '0': return if inp: testinp = '' if inp[-1] in string.letters: testinp = inp[-1] elif inp[0] in string.letters: testinp = inp[0] backinp = string.join(filter(lambda x:x in '0123456789',inp),'') if backinp: backend = int(backinp)-1 if backend < len(backends): docstr = __import__(backends[backend]).__doc__ if docstr: print docstr else: print "<no doc string>" else: backend = None if testinp: test = ord(string.upper(testinp[0])) - ord('A') if test >= 0 and test < len(tests): docstr = tests[test].__doc__ if docstr: print docstr else: test = None print # now, if we have a valid backend and test, run it if backend != None and test != None: runtest(backends[backend], tests[test]) tests = (minimal, basics, advanced, spectrum, strings, rotstring) if __name__=='__main__': mainLoop()
31.706667
119
0.629591
dce453660a898f30d149906116f2416c01f2cf85
6,482
py
Python
tests/test_np.py
k7hoven/np
1d0ba711c5b679c2d1c1204c2f6ae50d2f5a5e92
[ "0BSD" ]
6
2015-10-21T18:10:56.000Z
2021-08-11T13:48:17.000Z
tests/test_np.py
artificialligence/np
1d0ba711c5b679c2d1c1204c2f6ae50d2f5a5e92
[ "0BSD" ]
null
null
null
tests/test_np.py
artificialligence/np
1d0ba711c5b679c2d1c1204c2f6ae50d2f5a5e92
[ "0BSD" ]
2
2016-08-31T13:51:10.000Z
2021-07-01T07:39:54.000Z
# -*- coding: utf-8 -*- """ Created on Wed Feb 24 19:49:23 2016 @author: Koos Zevenhoven """ import unittest import unittest.mock import np import sys class NPTestCase(unittest.TestCase): def assertIdenticalArray(self, arr1, arr2): self.assertTrue((arr1 == arr2).all()) self.assertEqual(arr1.dtype, arr2.dtype) self.assertEqual(arr1.shape, arr2.shape) class QuickSubscriptArray(NPTestCase): def test_1D(self): self.assertIdenticalArray(np[1,3,4,5,6,9], np.array([1,3,4,5,6,9])) def test_mixed_values(self): self.assertIdenticalArray(np[1,2.3,4,5.6], np.array([1,2.3,4,5.6])) def test_float_values(self): self.assertIdenticalArray(np[1.0,2.0], np.array([1.0, 2.0])) def test_2D(self): a2d = np.arange(12).reshape((3,4)) self.assertIdenticalArray(np[[0,1,2,3],[4,5,6,7],[8,9,10,11]], np.array(a2d)) def test_3D(self): a3d = np.arange(12).reshape((2,3,2)) self.assertIdenticalArray(np[[[ 0, 1], [ 2, 3], [ 4, 5]], [[ 6, 7], [ 8, 9], [10, 11]]], np.array(a3d)) class QuickSubscriptMatrix(NPTestCase): def test_row(self): self.assertIdenticalArray(np.m[1,2,3], np.array([[1,2,3]])) def test_matrix_singlecolon(self): self.assertIdenticalArray(np.m[1,2 : 3,4 : 5,6], np.array([[1,2],[3,4],[5,6]])) def test_matrix_doublecolon(self): self.assertIdenticalArray(np.m[1,2: :3,4: :5,6], np.array([[1,2],[3,4],[5,6]])) def test_mixed_values(self): self.assertIdenticalArray(np.m[1,2.3:4,5.6], np.array([[1,2.3],[4,5.6]])) def test_float_values(self): self.assertIdenticalArray(np.m[1.0, 2.0: 3.0, 4.0], np.array([[1.0, 2.0],[3.0,4.0]])) class QuickArray(NPTestCase): def test_0D(self): self.assertIdenticalArray(np(3), np.array(3)) def test_1D(self): self.assertIdenticalArray(np([1,3,4,5,6,9]), np.array([1,3,4,5,6,9])) def test_mixed_values(self): self.assertIdenticalArray(np([1,2.3,4,5.6]), np.array([1,2.3,4,5.6])) def test_float_values(self): self.assertIdenticalArray(np([1.0, 2.0]), np.array([1.0,2.0])) def test_2D(self): a2d = np.arange(12).reshape((3,4)) self.assertIdenticalArray(np(a2d), np.array(a2d)) def test_3D(self): a3d = np.arange(12).reshape((2,3,2)) self.assertIdenticalArray(np(a3d), np.array(a3d)) def for_dtype_shortcuts(test_method): def test_for_all_shortcuts(self): for shortcut, dtype in np.np_quick_types.items(): test_method(self, getattr(np, shortcut), dtype) return test_for_all_shortcuts def for_dtype_matrix_shortcuts(test_method): def test_for_all_shortcuts(self): for shortcut, dtype in np.np_quick_types.items(): test_method(self, getattr(np.m, shortcut), dtype) return test_for_all_shortcuts class QuickTypeSubscriptArray(NPTestCase): @for_dtype_shortcuts def test_1D(self, sc, dtype): self.assertIdenticalArray(sc[1,3,4,5,6,9], np.array([1,3,4,5,6,9], dtype=dtype)) @for_dtype_shortcuts def test_mixed_values(self, sc, dtype): self.assertIdenticalArray(sc[1,2.3,4,5.6], np.array([1,2.3,4,5.6], dtype=dtype)) @for_dtype_shortcuts def test_float_values(self, sc, dtype): self.assertIdenticalArray(sc[1.0,2.0], np.array([1.0, 2.0], dtype=dtype)) @for_dtype_shortcuts def test_2D(self, sc, dtype): a2d = np.arange(12).reshape((3,4)) self.assertIdenticalArray(sc[[0,1,2,3],[4,5,6,7],[8,9,10,11]], np.array(a2d, dtype=dtype)) @for_dtype_shortcuts def test_3D(self, sc, dtype): a3d = np.arange(12).reshape((2,3,2)) self.assertIdenticalArray(sc[[[ 0, 1], [ 2, 3], [ 4, 5]], [[ 6, 7], [ 8, 9], [10, 11]]], np.array(a3d, dtype=dtype)) @unittest.skip("Skipping dtyped subscript matrices (not yet implemented)") class QuickTypeSubscriptMatrix(NPTestCase): @for_dtype_matrix_shortcuts def test_row(self, sc, dtype): self.assertIdenticalArray(sc[1,2,3], np.array([[1,2,3]], dtype=dtype)) @for_dtype_matrix_shortcuts def test_matrix_singlecolon(self, sc, dtype): self.assertIdenticalArray(sc[1,2 : 3,4 : 5,6], np.array([[1,2],[3,4],[5,6]], dtype=dtype)) @for_dtype_matrix_shortcuts def test_matrix_doublecolon(self, sc, dtype): self.assertIdenticalArray(sc[1,2: :3,4: :5,6], np.array([[1,2],[3,4],[5,6]], dtype=dtype)) @for_dtype_matrix_shortcuts def test_mixed_values(self, sc, dtype): self.assertIdenticalArray(sc[1,2.3:4,5.6], np.array([[1,2.3],[4,5.6]], dtype=dtype)) @for_dtype_matrix_shortcuts def test_float_values(self, sc, dtype): self.assertIdenticalArray(sc[1.0, 2.0: 3.0, 4.0], np.array([[1.0, 2.0],[3.0,4.0]], dtype=dtype)) class QuickTypeArray(NPTestCase): @for_dtype_shortcuts def test_0D(self, sc, dtype): self.assertIdenticalArray(sc(3), np.array(3, dtype=dtype)) @for_dtype_shortcuts def test_1D(self, sc, dtype): self.assertIdenticalArray(sc([1,3,4,5,6,9]), np.array([1,3,4,5,6,9], dtype=dtype)) @for_dtype_shortcuts def test_mixed_values(self, sc, dtype): self.assertIdenticalArray(sc([1,2.3,4,5.6]), np.array([1,2.3,4,5.6], dtype=dtype)) @for_dtype_shortcuts def test_float_values(self, sc, dtype): self.assertIdenticalArray(sc([1.0, 2.0]), np.array([1.0,2.0], dtype=dtype)) @for_dtype_shortcuts def test_2D(self, sc, dtype): a2d = np.arange(12).reshape((3,4)) self.assertIdenticalArray(sc(a2d), np.array(a2d, dtype=dtype)) @for_dtype_shortcuts def test_3D(self, sc, dtype): a3d = np.arange(12).reshape((2,3,2)) self.assertIdenticalArray(sc(a3d), np.array(a3d, dtype=dtype)) if __name__ == "__main__": unittest.main()
37.252874
104
0.573743
8c34cf54735c671cea4917cf8bc9e72219e36613
263
py
Python
coinmarketcap/__init__.py
tfrizza/coinmarketcap-4.1.1
6013f3ef893bd98b9e3168f82908d7ad9429239e
[ "Apache-2.0" ]
null
null
null
coinmarketcap/__init__.py
tfrizza/coinmarketcap-4.1.1
6013f3ef893bd98b9e3168f82908d7ad9429239e
[ "Apache-2.0" ]
null
null
null
coinmarketcap/__init__.py
tfrizza/coinmarketcap-4.1.1
6013f3ef893bd98b9e3168f82908d7ad9429239e
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- __title__ = 'coinmarketcap' __version__ = '4.1.1' __author__ = 'Martin Simon <me@martinsimon.me>' __repo__ = 'https://github.com/mrsmn/coinmarketcap-api' __license__ = 'Apache v2.0 License' from .core import Market
23.909091
55
0.711027
df6726a3fff69f96fb1bbe9ab76b475ca59236d9
7,286
py
Python
deepcell/utils/testing_utils.py
jackstellwagen/deepcell-tf
d9326b8aceb2f25637e0d3934646da8f6a9f9539
[ "Apache-2.0" ]
null
null
null
deepcell/utils/testing_utils.py
jackstellwagen/deepcell-tf
d9326b8aceb2f25637e0d3934646da8f6a9f9539
[ "Apache-2.0" ]
null
null
null
deepcell/utils/testing_utils.py
jackstellwagen/deepcell-tf
d9326b8aceb2f25637e0d3934646da8f6a9f9539
[ "Apache-2.0" ]
null
null
null
# Copyright 2016-2019 David Van Valen at California Institute of Technology # (Caltech), with support from the Paul Allen Family Foundation, Google, # & National Institutes of Health (NIH) under Grant U24CA224309-01. # All rights reserved. # # Licensed under a modified Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.github.com/vanvalenlab/deepcell-tf/LICENSE # # The Work provided may be used for non-commercial academic purposes only. # For any other use of the Work, including commercial use, please contact: # vanvalenlab@gmail.com # # Neither the name of Caltech nor the names of its contributors may be used # to endorse or promote products derived from this software without specific # prior written permission. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities testing Keras layers""" from __future__ import absolute_import from __future__ import print_function from __future__ import division import numpy as np from tensorflow.python import keras from tensorflow.python.framework import tensor_shape from tensorflow.python.training.rmsprop import RMSPropOptimizer from tensorflow.python.util import tf_inspect def layer_test(layer_cls, kwargs=None, input_shape=None, input_dtype=None, input_data=None, expected_output=None, expected_output_dtype=None, custom_objects=None): """Test routine for a layer with a single input and single output. Args: layer_cls: Layer class object. kwargs: Optional dictionary of keyword arguments for instantiating the layer. input_shape: Input shape tuple. input_dtype: Data type of the input data. input_data: Numpy array of input data. expected_output: Shape tuple for the expected shape of the output. expected_output_dtype: Data type expected for the output. custom_objects: Custom Objects to test custom layers Returns: The output data (Numpy array) returned by the layer, for additional checks to be done by the calling code. """ if input_data is None: assert input_shape if not input_dtype: input_dtype = 'float32' input_data_shape = list(input_shape) for i, e in enumerate(input_data_shape): if e is None: input_data_shape[i] = np.random.randint(1, 4) input_data = 10 * np.random.random(input_data_shape) if input_dtype[:5] == 'float': input_data -= 0.5 input_data = input_data.astype(input_dtype) elif input_shape is None: input_shape = input_data.shape if input_dtype is None: input_dtype = input_data.dtype if expected_output_dtype is None: expected_output_dtype = input_dtype # instantiation kwargs = kwargs or {} layer = layer_cls(**kwargs) # test get_weights , set_weights at layer level weights = layer.get_weights() layer.set_weights(weights) # test and instantiation from weights if 'weights' in tf_inspect.getargspec(layer_cls.__init__): kwargs['weights'] = weights layer = layer_cls(**kwargs) # test in functional API x = keras.layers.Input(shape=input_shape[1:], dtype=input_dtype) y = layer(x) if keras.backend.dtype(y) != expected_output_dtype: raise AssertionError( 'When testing layer %s, for input %s, found output dtype=%s but ' 'expected to find %s.\nFull kwargs: %s' % (layer_cls.__name__, x, keras.backend.dtype(y), expected_output_dtype, kwargs)) # check shape inference model = keras.models.Model(x, y) expected_output_shape = tuple( layer.compute_output_shape( tensor_shape.TensorShape(input_shape)).as_list()) actual_output = model.predict(input_data) actual_output_shape = actual_output.shape for expected_dim, actual_dim in zip(expected_output_shape, actual_output_shape): if expected_dim is not None: if expected_dim != actual_dim: raise AssertionError( 'When testing layer %s, for input %s, found output_shape=' '%s but expected to find %s.\nFull kwargs: %s' % (layer_cls.__name__, x, actual_output_shape, expected_output_shape, kwargs)) if expected_output is not None: np.testing.assert_allclose(actual_output, expected_output, rtol=1e-3) # test serialization, weight setting at model level model_config = model.get_config() # Edited to add custom_objects to model.from_config recovered_model = keras.models.Model.from_config( model_config, custom_objects=custom_objects) # End Edits if model.weights: weights = model.get_weights() recovered_model.set_weights(weights) output = recovered_model.predict(input_data) np.testing.assert_allclose(output, actual_output, rtol=1e-3) # test training mode (e.g. useful for dropout tests) model.compile(RMSPropOptimizer(0.01), 'mse') model.train_on_batch(input_data, actual_output) # test as first layer in Sequential API layer_config = layer.get_config() layer_config['batch_input_shape'] = input_shape layer = layer.__class__.from_config(layer_config) model = keras.models.Sequential() model.add(layer) actual_output = model.predict(input_data) actual_output_shape = actual_output.shape for expected_dim, actual_dim in zip(expected_output_shape, actual_output_shape): if expected_dim is not None: if expected_dim != actual_dim: raise AssertionError( 'When testing layer %s, for input %s, found output_shape=' '%s but expected to find %s.\nFull kwargs: %s' % (layer_cls.__name__, x, actual_output_shape, expected_output_shape, kwargs)) if expected_output is not None: np.testing.assert_allclose(actual_output, expected_output, rtol=1e-3) # test serialization, weight setting at model level model_config = model.get_config() # Edited to add custom_objects to model.from_config recovered_model = keras.models.Sequential.from_config( model_config, custom_objects=custom_objects) if model.weights: weights = model.get_weights() recovered_model.set_weights(weights) output = recovered_model.predict(input_data) np.testing.assert_allclose(output, actual_output, rtol=1e-3) # for further checks in the caller function return actual_output
40.703911
80
0.666072