hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
5578dc4f671307398a9d0705dce7afae3c84c6e1
2,323
py
Python
blueprints/vgg_cifar.py
vdeuschle/rysia
c8c5adc2c770424b3a328a936f23a80a38c9f0f2
[ "Apache-2.0" ]
2
2020-08-17T15:46:30.000Z
2020-08-20T19:20:57.000Z
blueprints/vgg_cifar.py
vdeuschle/rysia
c8c5adc2c770424b3a328a936f23a80a38c9f0f2
[ "Apache-2.0" ]
null
null
null
blueprints/vgg_cifar.py
vdeuschle/rysia
c8c5adc2c770424b3a328a936f23a80a38c9f0f2
[ "Apache-2.0" ]
null
null
null
from rysia.core import blueprint as bp architecture = bp.model( bp.InputLayer(shape=(32, 32, 3)), bp.Convolution(channel=64, kernel_size=(3, 3), activation='relu'), bp.Convolution(channel=64, kernel_size=(3, 3), activation='relu'), bp.Pooling(kernel_size=(2, 2)), bp.Convolution(channel=128, kernel_size=(3, 3), activation='relu'), bp.Convolution(channel=128, kernel_size=(3, 3), activation='relu'), bp.Pooling(kernel_size=(2, 2)), bp.Convolution(channel=256, kernel_size=(3, 3), activation='relu'), bp.Convolution(channel=256, kernel_size=(3, 3), activation='relu'), bp.Convolution(channel=256, kernel_size=(3, 3), activation='relu'), bp.Pooling(kernel_size=(2, 2)), bp.Convolution(channel=512, kernel_size=(3, 3), activation='relu'), bp.Convolution(channel=512, kernel_size=(3, 3), activation='relu'), bp.Convolution(channel=512, kernel_size=(3, 3), activation='relu'), bp.Pooling(kernel_size=(2, 2)), bp.Flatten(), bp.FullyConnected(size=512, activation='relu'), bp.FullyConnected(size=256, activation='relu'), bp.FullyConnected(size=10, activation='linear') ) learning_rate = 0.01 epochs = 100 batch_size = 128 loss_function = 'cross_entropy' optimizer = 'adam' optimizer_mode = 'default' state_sizes = None train_seq_length = None test_seq_length = None truncated_backprop_length = None reshape_input_data = [None] runs = 7 python_seed = 42 numpy_seed = 42 framework_seed = 42 monitors = [] mode = 'training' frameworks = ['mxnet', 'tensorflow', 'pytorch'] aws = True region_name = 'aws_region' bucket_name = 'bucket_name' instance_types = ['c4.2xlarge', 'c5.2xlarge', 'p2.xlarge', 'p3.2xlarge'] job_name = 'imdb' ami_id = 'ami_id' env_min_cpu = 0 env_desired_cpu = 0 env_max_cpu = 512 subnets = ['subnet1', 'subnet2', 'subnet3'] security_group_ids = ['secourity_group_id'] instance_role = 'instance_role_arn' service_role = 'service_role_arn' account_id = 'aws_account_id' container_images = ['cpu_image', 'gpu_image'] job_def_names = ['cpu_job_definition', 'gpu_job_definition'] job_num_vcpu = None job_memory_size = None tear_down_comp_env = False train_data_path = 'train_data_path' train_label_path = 'train_label_path' test_data_path = None test_label_path = None result_folder_path = 'result_folder_path' model_params_path = None
32.71831
72
0.727077
3a18c3eb44bd9861ea3b6d21912ef619a2cf25d0
2,037
py
Python
scripts/pyqtgraph-develop/examples/GLVolumeItem.py
kuldeepaman/tf-pose
8050912c52a7b4f3c8a2656f267d47ba21d093f6
[ "Apache-2.0" ]
null
null
null
scripts/pyqtgraph-develop/examples/GLVolumeItem.py
kuldeepaman/tf-pose
8050912c52a7b4f3c8a2656f267d47ba21d093f6
[ "Apache-2.0" ]
null
null
null
scripts/pyqtgraph-develop/examples/GLVolumeItem.py
kuldeepaman/tf-pose
8050912c52a7b4f3c8a2656f267d47ba21d093f6
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Demonstrates GLVolumeItem for displaying volumetric data. """ ## Add path to library (just for examples; you do not need this) import initExample from pyqtgraph.Qt import QtCore, QtGui import pyqtgraph.opengl as gl app = QtGui.QApplication([]) w = gl.GLViewWidget() w.opts['distance'] = 200 w.show() w.setWindowTitle('pyqtgraph example: GLVolumeItem') #b = gl.GLBoxItem() #w.addItem(b) g = gl.GLGridItem() g.scale(10, 10, 1) w.addItem(g) import numpy as np ## Hydrogen electron probability density def psi(i, j, k, offset=(50,50,100)): x = i-offset[0] y = j-offset[1] z = k-offset[2] th = np.arctan2(z, (x**2+y**2)**0.5) phi = np.arctan2(y, x) r = (x**2 + y**2 + z **2)**0.5 a0 = 2 #ps = (1./81.) * (2./np.pi)**0.5 * (1./a0)**(3/2) * (6 - r/a0) * (r/a0) * np.exp(-r/(3*a0)) * np.cos(th) ps = (1./81.) * 1./(6.*np.pi)**0.5 * (1./a0)**(3/2) * (r/a0)**2 * np.exp(-r/(3*a0)) * (3 * np.cos(th)**2 - 1) return ps #return ((1./81.) * (1./np.pi)**0.5 * (1./a0)**(3/2) * (r/a0)**2 * (r/a0) * np.exp(-r/(3*a0)) * np.sin(th) * np.cos(th) * np.exp(2 * 1j * phi))**2 data = np.fromfunction(psi, (100,100,200)) positive = np.log(np.clip(data, 0, data.max())**2) negative = np.log(np.clip(-data, 0, -data.min())**2) d2 = np.empty(data.shape + (4,), dtype=np.ubyte) d2[..., 0] = positive * (255./positive.max()) d2[..., 1] = negative * (255./negative.max()) d2[..., 2] = d2[...,1] d2[..., 3] = d2[..., 0]*0.3 + d2[..., 1]*0.3 d2[..., 3] = (d2[..., 3].astype(float) / 255.) **2 * 255 d2[:, 0, 0] = [255,0,0,100] d2[0, :, 0] = [0,255,0,100] d2[0, 0, :] = [0,0,255,100] v = gl.GLVolumeItem(d2) v.translate(-50,-50,-100) w.addItem(v) ax = gl.GLAxisItem() w.addItem(ax) ## Start Qt event loop unless running in interactive mode. if __name__ == '__main__': import sys if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'): QtGui.QApplication.instance().exec_()
29.1
152
0.542464
f2ee387253d25f8855ea851e5966c94fce6ed421
20,223
py
Python
inventories/views.py
lueho/BRIT
1eae630c4da6f072aa4e2139bc406db4f4756391
[ "MIT" ]
null
null
null
inventories/views.py
lueho/BRIT
1eae630c4da6f072aa4e2139bc406db4f4756391
[ "MIT" ]
4
2022-03-29T20:52:31.000Z
2022-03-29T20:52:31.000Z
inventories/views.py
lueho/BRIT
1eae630c4da6f072aa4e2139bc406db4f4756391
[ "MIT" ]
null
null
null
import io import json from bootstrap_modal_forms.generic import BSModalCreateView, BSModalUpdateView, BSModalDeleteView from celery.result import AsyncResult from django.contrib.auth.mixins import LoginRequiredMixin, UserPassesTestMixin from django.http import JsonResponse, HttpResponse from django.shortcuts import render, redirect from django.urls import reverse_lazy from django.views.generic import CreateView, DetailView, View from django.views.generic.base import TemplateResponseMixin from django.views.generic.edit import ModelFormMixin from rest_framework.views import APIView from brit.views import DualUserListView, UserOwnsObjectMixin, NextOrSuccessUrlMixin, OwnedObjectModalUpdateView from layer_manager.models import Layer from maps.models import Catchment, GeoDataset from maps.serializers import BaseResultMapSerializer from materials.models import SampleSeries from users.models import get_default_owner from users.views import ModalLoginRequiredMixin from .evaluations import ScenarioResult from .forms import ( ScenarioModalModelForm, ScenarioInventoryConfigurationAddForm, ScenarioInventoryConfigurationUpdateForm, SeasonalDistributionModelForm, ) from .models import ( Scenario, ScenarioInventoryConfiguration, InventoryAlgorithm, InventoryAlgorithmParameter, InventoryAlgorithmParameterValue, ScenarioStatus, RunningTask ) from .tasks import run_inventory class SeasonalDistributionCreateView(LoginRequiredMixin, CreateView): form_class = SeasonalDistributionModelForm template_name = 'seasonal_distribution_create.html' success_url = '/inventories/materials/{material_id}' # ----------- Scenarios ------------------------------------------------------------------------------------------------ # ---------------------------------------------------------------------------------------------------------------------- # ----------- Scenarios CRUD ------------------------------------------------------------------------------------------- class ScenarioListView(DualUserListView): model = Scenario template_name = 'scenario_list.html' # class ScenarioCreateView(LoginRequiredMixin, CreateView): # model = Scenario # form_class = ScenarioModelForm # template_name = 'scenario_create.html' # success_url = reverse_lazy('scenario_list') # # def form_valid(self, form): # form.instance.owner = self.request.user # return super().form_valid(form) class ScenarioCreateView(LoginRequiredMixin, NextOrSuccessUrlMixin, BSModalCreateView): form_class = ScenarioModalModelForm template_name = 'modal_form.html' success_url = reverse_lazy('scenario_list') def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context.update({ 'form_title': 'Create new scenario', 'submit_button_text': 'Create' }) return context def form_valid(self, form): form.instance.owner = self.request.user return super().form_valid(form) class ScenarioDetailView(UserPassesTestMixin, DetailView): """Summary of the Scenario with complete configuration. Page for final review, which also contains the 'run' button.""" model = Scenario template_name = 'scenario_detail.html' object = None config = None allow_edit = False region_url = reverse_lazy('ajax_region_geometries') load_region = True load_catchment = True catchment_url = reverse_lazy('ajax_catchment_geometries') load_features = False adjust_bounds_to_features = False marker_style = { 'color': '#4061d2', 'fillOpacity': 1, 'stroke': False } def get(self, request, *args, **kwargs): self.object = self.get_object() self.config = self.object.configuration_for_template() context = self.get_context_data(object=self.object) context['config'] = self.config context['allow_edit'] = self.allow_edit return self.render_to_response(context) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context.update({ 'map_config': { 'region_url': self.region_url, 'catchment_url': self.catchment_url, 'load_features': self.load_features, 'adjust_bounds_to_features': self.adjust_bounds_to_features, 'region_id': self.object.region.id, 'load_catchment': self.load_catchment, 'catchment_id': self.get_catchment_id(), 'load_region': self.load_region, 'markerStyle': self.marker_style } }) return context def get_catchment_id(self): return self.object.catchment.id def post(self, request, *args, **kwargs): self.object = self.get_object() scenario = self.object scenario.set_status(ScenarioStatus.Status.RUNNING) run_inventory(scenario.id) return redirect('scenario-result', scenario.id) def test_func(self): self.object = self.get_object() standard_owner = get_default_owner() if self.object.owner == standard_owner: if self.request.user == standard_owner: self.allow_edit = True return True elif self.object.owner == self.request.user: self.allow_edit = True return True else: return False class ScenarioUpdateView(ModalLoginRequiredMixin, UserOwnsObjectMixin, NextOrSuccessUrlMixin, BSModalUpdateView): model = Scenario form_class = ScenarioModalModelForm template_name = 'modal_form.html' def get_form_kwargs(self): kwargs = super().get_form_kwargs() kwargs.update({ 'region_id': self.object.region.id }) return kwargs class ScenarioModalUpdateView(OwnedObjectModalUpdateView): template_name = 'modal_form.html' model = Scenario form_class = ScenarioModalModelForm permission_required = 'inventories.change_scenario' class ScenarioDeleteView(LoginRequiredMixin, UserOwnsObjectMixin, NextOrSuccessUrlMixin, BSModalDeleteView): model = Scenario template_name = 'modal_delete.html' success_message = 'Successfully deleted.' success_url = reverse_lazy('scenario_list') def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context.update({ 'form_title': 'Delete scenario', 'submit_button_text': 'Delete' }) return context def get_evaluation_status(request, task_id=None): task_result = AsyncResult(task_id) result = { "task_id": task_id, "task_status": task_result.status, "task_result": task_result.result, "task_info": task_result.info } return JsonResponse(result, status=200) class ScenarioAddInventoryAlgorithmView(LoginRequiredMixin, UserPassesTestMixin, TemplateResponseMixin, ModelFormMixin, View): model = ScenarioInventoryConfiguration form_class = ScenarioInventoryConfigurationAddForm template_name = 'scenario_configuration_add.html' object = None def test_func(self): scenario = Scenario.objects.get(id=self.kwargs.get('pk')) return self.request.user == scenario.owner @staticmethod def post(request, *args, **kwargs): scenario_id = request.POST.get('scenario') scenario = Scenario.objects.get(id=scenario_id) feedstock = SampleSeries.objects.get(id=request.POST.get('feedstock')) algorithm_id = request.POST.get('inventory_algorithm') algorithm = InventoryAlgorithm.objects.get(id=algorithm_id) parameters = algorithm.inventoryalgorithmparameter_set.all() values = {} for parameter in parameters: values[parameter] = [] parameter_id = 'parameter_' + str(parameter.pk) if parameter_id in request.POST: value_id = request.POST.get(parameter_id) values[parameter].append(InventoryAlgorithmParameterValue.objects.get(id=value_id)) scenario.add_inventory_algorithm(feedstock, algorithm, values) return redirect('scenario_detail', pk=scenario_id) def get_object(self, **kwargs): return Scenario.objects.get(pk=self.kwargs.get('pk')) def get_initial(self): return { 'feedstocks': self.object.available_feedstocks(), 'scenario': self.object } def get_context_data(self, **kwargs): context = {'scenario': self.object, 'form': self.get_form()} return super().get_context_data(**context) def get(self, request, *args, **kwargs): self.object = self.get_object() context = self.get_context_data(object=self.object) return self.render_to_response(context) class ScenarioAlgorithmConfigurationUpdateView(LoginRequiredMixin, UserPassesTestMixin, TemplateResponseMixin, ModelFormMixin, View): model = ScenarioInventoryConfiguration form_class = ScenarioInventoryConfigurationUpdateForm template_name = 'scenario_configuration_update.html' object = None def test_func(self): scenario = Scenario.objects.get(id=self.kwargs.get('scenario_pk')) return self.request.user == scenario.owner @staticmethod def post(request, *args, **kwargs): scenario = Scenario.objects.get(id=request.POST.get('scenario')) current_algorithm = InventoryAlgorithm.objects.get(id=request.POST.get('current_algorithm')) feedstock = SampleSeries.objects.get(id=request.POST.get('feedstock')) scenario.remove_inventory_algorithm(current_algorithm, feedstock) new_algorithm = InventoryAlgorithm.objects.get(id=request.POST.get('inventory_algorithm')) parameters = new_algorithm.inventoryalgorithmparameter_set.all() values = {} for parameter in parameters: values[parameter] = [] parameter_id = 'parameter_' + str(parameter.pk) if parameter_id in request.POST: value_id = request.POST.get(parameter_id) values[parameter].append(InventoryAlgorithmParameterValue.objects.get(id=value_id)) scenario.add_inventory_algorithm(feedstock, new_algorithm, values) return redirect('scenario_detail', pk=request.POST.get('scenario')) def get_object(self, **kwargs): return Scenario.objects.get(pk=self.kwargs.get('scenario_pk')) def get_initial(self): scenario = Scenario.objects.get(id=self.kwargs.get('scenario_pk')) algorithm = InventoryAlgorithm.objects.get(id=self.kwargs.get('algorithm_pk')) config = scenario.inventory_algorithm_config(algorithm) return config def get_context_data(self, **kwargs): context = self.get_initial() context['form'] = self.get_form() return super().get_context_data(**context) def get(self, request, *args, **kwargs): self.object = self.get_object() context = self.get_context_data(object=self.object) return self.render_to_response(context) class ScenarioRemoveInventoryAlgorithmView(LoginRequiredMixin, UserPassesTestMixin, View): scenario = None algorithm = None feedstock = None def test_func(self): self.scenario = Scenario.objects.get(id=self.kwargs.get('scenario_pk')) return self.scenario.owner == self.request.user def get(self, request, *args, **kwargs): self.scenario = Scenario.objects.get(id=self.kwargs.get('scenario_pk')) self.algorithm = InventoryAlgorithm.objects.get(id=self.kwargs.get('algorithm_pk')) self.feedstock = SampleSeries.objects.get(id=self.kwargs.get('feedstock_pk')) self.scenario.remove_inventory_algorithm(algorithm=self.algorithm, feedstock=self.feedstock) return redirect('scenario_detail', pk=self.scenario.id) def download_scenario_summary(request, scenario_pk): file_name = f'scenario_{scenario_pk}_summary.json' scenario = Scenario.objects.get(id=scenario_pk) with io.StringIO(json.dumps(scenario.summary_dict(), indent=4)) as file: response = HttpResponse(file, content_type='application/json') response['Content-Disposition'] = 'attachment; filename=%s' % file_name return response def load_catchment_options(request): region_id = request.GET.get('region_id') or request.GET.get('region') if region_id: return render(request, 'catchment_dropdown_list_options.html', {'catchments':Catchment.objects.filter(parent_region_id=region_id)}) else: return render(request, 'catchment_dropdown_list_options.html', {'catchments': Catchment.objects.none()}) def load_geodataset_options(request): scenario = Scenario.objects.get(id=request.GET.get('scenario')) if request.GET.get('feedstock'): feedstock = SampleSeries.objects.get(id=request.GET.get('feedstock')) if request.GET.get('options') == 'create': geodatasets = scenario.remaining_geodataset_options(feedstock=feedstock.material) elif request.GET.get('options') == 'update': current = GeoDataset.objects.filter(id=request.GET.get('current_geodataset')) geodatasets = scenario.remaining_geodataset_options(feedstock=feedstock.material).union(current) else: geodatasets = scenario.available_geodatasets() else: geodatasets = GeoDataset.objects.none() return render(request, 'geodataset_dropdown_list_options.html', {'geodatasets': geodatasets}) def load_algorithm_options(request): scenario = Scenario.objects.get(id=request.GET.get('scenario')) if request.GET.get('feedstock') and request.GET.get('geodataset'): feedstock = SampleSeries.objects.get(id=request.GET.get('feedstock')) geodataset = GeoDataset.objects.get(id=request.GET.get('geodataset')) if request.GET.get('options') == 'create': algorithms = scenario.remaining_inventory_algorithm_options(feedstock, geodataset) elif request.GET.get('options') == 'update': current_algorithm = InventoryAlgorithm.objects.filter(id=request.GET.get('current_inventory_algorithm'), feedstock=feedstock.material, geodataset=geodataset) algorithms = scenario.remaining_inventory_algorithm_options(feedstock, geodataset).union(current_algorithm) else: algorithms = scenario.available_inventory_algorithms() else: algorithms = InventoryAlgorithm.objects.none() return render(request, 'algorithm_dropdown_list_options.html', {'algorithms': algorithms}) def load_parameter_options(request): if request.GET.get('inventory_algorithm'): algorithm = InventoryAlgorithm.objects.get(id=request.GET.get('inventory_algorithm')) parameters = InventoryAlgorithmParameter.objects.filter(inventory_algorithm=algorithm) context = { 'parameters': { parameter: InventoryAlgorithmParameterValue.objects.filter(parameter=parameter) for parameter in parameters}} return render(request, 'parameters_dropdown_list_options.html', context) else: return HttpResponse("") class ResultMapAPI(APIView): """Rest API to get features from automatically generated result tables. Endpoint for Leaflet maps""" @staticmethod def get(request, *args, **kwargs): layer = Layer.objects.get(table_name=kwargs['layer_name']) feature_collection = layer.get_feature_collection() features = feature_collection.objects.all() serializer_class = BaseResultMapSerializer serializer_class.Meta.model = feature_collection serializer = serializer_class(features, many=True) data = { 'catchment_id': layer.scenario.catchment_id, 'region_id': layer.scenario.region_id, 'geoJson': serializer.data, } return JsonResponse(data, safe=False) class ScenarioResultView(DetailView): """ View with summaries of the results of each algorithm and a total summary. """ template_name = 'scenario_result_detail.html' model = Scenario context_object_name = 'scenario' object = None allow_edit = False region_url = reverse_lazy('ajax_region_geometries') load_region = True catchment_url = reverse_lazy('ajax_catchment_geometries') load_catchment = True load_features = False adjust_bounds_to_features = False marker_style = { 'color': '#4061d2', 'fillOpacity': 1, 'stroke': False } def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) scenario = self.object result = ScenarioResult(scenario) context['layers'] = [layer.as_dict() for layer in result.layers] context['charts'] = result.get_charts() context['allow_edit'] = self.allow_edit context['map_config'] = { 'region_url': self.region_url, 'catchment_url': self.catchment_url, 'catchment_id': self.get_catchment_id(), 'load_catchment': self.load_catchment, 'load_features': self.load_features, 'adjust_bounds_to_features': self.adjust_bounds_to_features, 'region_id': self.object.region.id, 'load_region': self.load_region, 'markerStyle': self.marker_style } return context def get(self, request, *args, **kwargs): self.object = self.get_object() scenario = self.object if scenario.status == 2: context = { 'scenario': scenario, 'task_list': {'tasks': []} } for task in RunningTask.objects.filter(scenario=scenario): context['task_list']['tasks'].append({ 'task_id': task.uuid, 'algorithm_name': task.algorithm.name }) return render(request, 'evaluation_progress.html', context) else: context = self.get_context_data() return self.render_to_response(context) def get_catchment_id(self): return self.object.catchment.id def test_func(self): self.object = self.get_object() standard_owner = get_default_owner() if self.object.owner == standard_owner: if self.request.user == standard_owner: self.allow_edit = True return True elif self.object.owner == self.request.user: self.allow_edit = True return True else: return False class ScenarioEvaluationProgressView(DetailView): """ The page users land on if a scenario is being calculated. The progress of the evaluation is shown and upon finishing the calculation, the user is redirected to the result page. """ template_name = 'evaluation_progress.html' model = Scenario class ScenarioResultDetailMapView(DetailView): """View of an individual result map in large size""" model = Layer context_object_name = 'layer' template_name = 'result_detail_map.html' def get_object(self, **kwargs): scenario = Scenario.objects.get(id=self.kwargs.get('pk')) algorithm = InventoryAlgorithm.objects.get(id=self.kwargs.get('algorithm_pk')) feedstock = SampleSeries.objects.get(id=self.kwargs.get('feedstock_pk')) return Layer.objects.get(scenario=scenario, algorithm=algorithm, feedstock=feedstock) def download_scenario_result_summary(request, scenario_pk): scenario = Scenario.objects.get(id=scenario_pk) result = ScenarioResult(scenario) with io.StringIO(json.dumps(result.summary_dict(), indent=4)) as file: response = HttpResponse(file, content_type='application/json') response['Content-Disposition'] = f'attachment; filename=scenario_{scenario_pk}_result_summary.json' return response
39.575342
139
0.673985
d1acdb1eaacc0eb45792fa18a2baa078cb4224ce
151
py
Python
Exercicios/Mundo1/ex003.py
mpaullos/cursoemvideo-python
80732626b6b5471ec7fea6dc01d83931e5cfd8fb
[ "MIT" ]
null
null
null
Exercicios/Mundo1/ex003.py
mpaullos/cursoemvideo-python
80732626b6b5471ec7fea6dc01d83931e5cfd8fb
[ "MIT" ]
null
null
null
Exercicios/Mundo1/ex003.py
mpaullos/cursoemvideo-python
80732626b6b5471ec7fea6dc01d83931e5cfd8fb
[ "MIT" ]
null
null
null
n1 = int (input ('Digite um valor: ')) n2 = int (input ('Digite outro valor: ')) soma = n1+n2 print('A soma entre {} e {} vale {}!'.format(n1,n2,soma))
37.75
57
0.602649
2a8e3513acfbfe8c954078bc9d7b57c695f1d818
4,868
py
Python
ngraph/frontends/onnx/tests/test_ops_nonlinear.py
NervanaSystems/ngraph-python
ac032c83c7152b615a9ad129d54d350f9d6a2986
[ "Apache-2.0" ]
18
2018-03-19T04:16:49.000Z
2021-02-08T14:44:58.000Z
ngraph/frontends/onnx/tests/test_ops_nonlinear.py
rsumner31/ngraph
5e5c9bb9f24d95aee190b914dd2d44122fc3be53
[ "Apache-2.0" ]
2
2019-04-16T06:41:49.000Z
2019-05-06T14:08:13.000Z
ngraph/frontends/onnx/tests/test_ops_nonlinear.py
rsumner31/ngraph
5e5c9bb9f24d95aee190b914dd2d44122fc3be53
[ "Apache-2.0" ]
11
2018-06-16T15:59:08.000Z
2021-03-06T00:45:30.000Z
# ****************************************************************************** # Copyright 2017-2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ****************************************************************************** from __future__ import print_function, division import numpy as np import onnx import pytest from ngraph.frontends.onnx.tests.utils import convert_and_calculate def import_and_compute(op_type, input_data, **node_attrs): data_inputs = [np.array(input_data)] node = onnx.helper.make_node(op_type, inputs=['x'], outputs=['y'], **node_attrs) return convert_and_calculate(node, data_inputs, data_inputs).pop() def assert_onnx_import_equals_callable(onnx_op_type, python_function, data, **kwargs): data = np.array(data, dtype=np.float32) assert np.allclose(import_and_compute(onnx_op_type, data, **kwargs), python_function(data, **kwargs)) def test_sigmoid(): def sigmoid(x): return 1 / (1 + np.exp(-x)) assert_onnx_import_equals_callable('Sigmoid', sigmoid, [-2, -1., 0., 1., 2.]) assert_onnx_import_equals_callable('Sigmoid', sigmoid, [0.]) assert_onnx_import_equals_callable('Sigmoid', sigmoid, [-2, -1., 0., 1., 2.]) def test_tanh(): assert_onnx_import_equals_callable('Tanh', np.tanh, [-2, -1., 0., 1., 2.]) assert_onnx_import_equals_callable('Tanh', np.tanh, [0.]) assert_onnx_import_equals_callable('Tanh', np.tanh, [-2, -1., 0., 1., 2.]) def test_relu(): def relu(x): return np.maximum(x, 0) assert_onnx_import_equals_callable('Relu', relu, [-2, -1., 0., 1., 2.]) assert_onnx_import_equals_callable('Relu', relu, [0.]) assert_onnx_import_equals_callable('Relu', relu, [-0.9, -0.8, -0.7, -0.4, -0.3, -0.2, -0.1]) assert_onnx_import_equals_callable('Relu', relu, [[1, 2, 3], [4, 5, 6]]) assert_onnx_import_equals_callable('Relu', relu, [[-3, -2, -1], [1, 2, 3]]) def test_leaky_relu(): def leaky_relu(x, alpha=0.01): return np.maximum(alpha * x, x) assert_onnx_import_equals_callable('LeakyRelu', leaky_relu, [-2, -1., 0., 1., 2.], alpha=0.5) assert_onnx_import_equals_callable('LeakyRelu', leaky_relu, [0.]) assert_onnx_import_equals_callable('LeakyRelu', leaky_relu, [-0.9, -0.8, -0.7, -0.4, -0.3, -0.2, -0.1], alpha=1) assert_onnx_import_equals_callable('LeakyRelu', leaky_relu, [[1, 2, 3], [4, 5, 6]], alpha=0.2) assert_onnx_import_equals_callable('LeakyRelu', leaky_relu, [[-3, -2, -1], [1, 2, 3]]) @pytest.mark.parametrize('x,slope', [ ([-2, -1., 0., 1., 2.], 0.5), ([0.], 1), ([-0.9, -0.8, -0.7, -0.4, -0.3, -0.2, -0.1], 1), ([[1, 2, 3], [4, 5, 6]], 0.5), ([[-3, -2, -1], [1, 2, 3]], 1), ]) def test_parametric_relu(x, slope): def parametic_relu(x, slope): return np.where(x < 0, slope * x, x) x, slope = np.array(x), np.array(slope) expected_output = parametic_relu(x, slope) node = onnx.helper.make_node('PRelu', inputs=['x', 'slope'], outputs=['y']) output = convert_and_calculate(node, [x, slope], [expected_output]).pop() assert np.allclose(output, expected_output) def test_selu(): # f(x) = gamma * (alpha * exp(x) - alpha) for x <= 0, y = gamma * x for x > 0 def selu(x, alpha=1.6732, gamma=1.0507): return np.where(x <= 0, gamma * (alpha * np.exp(x) - alpha), gamma * x) assert_onnx_import_equals_callable('Selu', selu, [-2, -1., 0., 1., 2.]) assert_onnx_import_equals_callable('Selu', selu, [0.]) assert_onnx_import_equals_callable('Selu', selu, [-0.9, -0.8, -0.7, -0.4, -0.3, -0.2, -0.1]) assert_onnx_import_equals_callable('Selu', selu, [[1, 2, 3], [4, 5, 6]]) assert_onnx_import_equals_callable('Selu', selu, [-2, -1., 0., 1., 2.], gamma=0.5, alpha=0.5) def test_elu(): # f(x) = alpha * (exp(x) - 1) for x < 0, f(x) = x for x >= 0 def elu(x, alpha=1): return np.where(x < 0, alpha * (np.exp(x) - 1), x) assert_onnx_import_equals_callable('Elu', elu, [-2, -1., 0., 1., 2.]) assert_onnx_import_equals_callable('Elu', elu, [0.]) assert_onnx_import_equals_callable('Elu', elu, [-0.9, -0.8, -0.7, -0.4, -0.3, -0.2, -0.1]) assert_onnx_import_equals_callable('Elu', elu, [[1, 2, 3], [4, 5, 6]]) assert_onnx_import_equals_callable('Elu', elu, [-2, -1., 0., 1., 2.], alpha=0.5)
42.330435
98
0.615859
b1e2167bca2d6040007b1b06c4c4ba5d6314b44a
64,763
py
Python
ivi/tektronix/tektronixBaseScope.py
sacherjj/python-ivi
6dd1ba93d65dc30a652a3a1b34c66921d94315e8
[ "MIT" ]
161
2015-01-23T17:43:01.000Z
2022-03-29T14:42:42.000Z
ivi/tektronix/tektronixBaseScope.py
sacherjj/python-ivi
6dd1ba93d65dc30a652a3a1b34c66921d94315e8
[ "MIT" ]
45
2015-01-15T13:35:04.000Z
2021-06-03T01:58:55.000Z
ivi/tektronix/tektronixBaseScope.py
sacherjj/python-ivi
6dd1ba93d65dc30a652a3a1b34c66921d94315e8
[ "MIT" ]
87
2015-01-31T10:55:23.000Z
2022-03-17T08:18:47.000Z
""" Python Interchangeable Virtual Instrument Library Copyright (c) 2016-2017 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import array import sys import time from .. import ivi from .. import scope from .. import scpi from .. import extra AcquisitionTypeMapping = { 'normal': 'sample', 'peak_detect': 'peakdetect', 'high_resolution': 'hires', 'average': 'average', 'envelope': 'envelope'} VerticalCoupling = set(['ac', 'dc']) TriggerTypeMapping = { 'edge': 'edge', 'runt': 'pulse', 'width': 'pulse', 'glitch': 'pulse', 'tv': 'video', #'immediate': '', 'ac_line': 'edge', 'logic': 'logic', 'bus': 'bus'} TriggerCouplingMapping = { 'ac': 'ac', 'dc': 'dc', 'hf_reject': 'hfrej', 'lf_reject': 'lfrej', 'noise_reject': 'noiserej'} TVTriggerEventMapping = {'field1': 'odd', 'field2': 'even', 'any_field': 'allfields', 'any_line': 'alllines', 'line_number': 'numeric'} TVTriggerFormatMapping = {'ntsc': 'ntsc', 'pal': 'pal', 'secam': 'secam', 'bilevelcustom': 'bilevelcustom', 'trilevelcustom': 'trilevelcustom', 'hd480p60' : 'hd480p60', 'hd576p50' : 'hd576p50', 'hd720p30' : 'hd720p30', 'hd720p50' : 'hd720p50', 'hd720p60' : 'hd720p60', 'hd875i60' : 'hd875i60', 'hd1080p24' : 'hd1080p24', 'hd1080sf24' : 'hd1080sf24', 'hd1080i50' : 'hd1080i50', 'hd1080i60' : 'hd1080i60', 'hd1080p25' : 'hd1080p25', 'hd1080p30' : 'hd1080p30', 'hd1080p50' : 'hd1080p50', 'hd1080p60' : 'hd1080p60'} PolarityMapping = {'positive': 'positive', 'negative': 'negative'} PolarityMapping3 = {'positive': 'positive', 'negative': 'negative', 'either': 'either'} GlitchConditionMapping = {'less_than': 'lessthan', 'greater_than': 'morethan', 'equal': 'equal', 'unequal': 'unequal'} WidthConditionMapping = {'within': 'within', 'outside': 'outside'} SampleModeMapping = {'real_time': 'rtim', 'equivalent_time': 'etim', 'segmented': 'segm'} SlopeMapping = { 'positive': 'rise', 'negative': 'fall', 'either': 'either'} MeasurementFunctionMapping = { 'rise_time': 'rise', 'fall_time': 'fall', 'frequency': 'frequency', 'period': 'period', 'voltage_rms': 'rms', 'voltage_peak_to_peak': 'pk2pk', 'voltage_max': 'maximum', 'voltage_min': 'minimum', 'voltage_high': 'high', 'voltage_low': 'low', 'voltage_average': 'mean', 'width_negative': 'nwidth', 'width_positive': 'pwidth', 'duty_cycle_negative': 'nduty', 'duty_cycle_positive': 'pduty', 'amplitude': 'amplitude', 'voltage_cycle_rms': 'crms', 'voltage_cycle_average': 'cmean', 'overshoot': 'tovershoot', 'area': 'area', 'burst': 'burst', 'cycle_area': 'carea', 'overshoot_negative': 'novershoot', 'overshoot_positive': 'povershoot', 'edgecount_negative': 'nedgecount', 'edgecount_positive': 'pedgecount', 'pulsecount_negative': 'npulsecount', 'pulsecount_positive': 'ppulsecount', 'histogram_hits': 'hits', 'histogram_peak_hits': 'peakhits', 'histogram_median': 'median', 'histogram_sigma1': 'sigma1', 'histogram_sigma2': 'sigma2', 'histogram_sigma3': 'sigma3', 'histogram_stdev': 'stdev', 'histogram_waveforms': 'waveforms', 'phase': 'phase', 'delay': 'delay'} MeasurementFunctionMappingDigital = { 'rise_time': 'risetime', 'fall_time': 'falltime', 'frequency': 'frequency', 'period': 'period', 'width_negative': 'nwidth', 'width_positive': 'pwidth', 'duty_cycle_positive': 'dutycycle'} ScreenshotImageFormatMapping = { 'tif': 'tiff', 'tiff': 'tiff', 'bmp': 'bmp', 'bmp24': 'bmp', 'png': 'png', 'png24': 'png'} TimebaseModeMapping = { 'main': 'main', 'window': 'window', 'xy': 'xy'} TriggerModifierMapping = {'none': 'normal', 'auto': 'auto'} class tektronixBaseScope(scpi.common.IdnCommand, scpi.common.Reset, scpi.common.Memory, scpi.common.SystemSetup, scope.Base, scope.TVTrigger, scope.RuntTrigger, scope.GlitchTrigger, scope.WidthTrigger, scope.AcLineTrigger, scope.WaveformMeasurement, scope.MinMaxWaveform, scope.ContinuousAcquisition, scope.AverageAcquisition, scope.TriggerModifier, scope.AutoSetup, extra.common.Screenshot, ivi.Driver): "Tektronix generic IVI oscilloscope driver" def __init__(self, *args, **kwargs): self.__dict__.setdefault('_instrument_id', '') self._analog_channel_name = list() self._analog_channel_count = 4 self._digital_channel_name = list() self._digital_channel_count = 16 self._channel_count = self._analog_channel_count + self._digital_channel_count self._channel_label = list() self._channel_probe_skew = list() self._channel_scale = list() self._channel_trigger_level = list() self._channel_invert = list() self._channel_probe_id = list() self._channel_bw_limit = list() super(tektronixBaseScope, self).__init__(*args, **kwargs) self._memory_size = 10 self._memory_offset = 1 self._analog_channel_name = list() self._analog_channel_count = 4 self._digital_channel_name = list() self._digital_channel_count = 16 self._channel_count = self._analog_channel_count + self._digital_channel_count self._bandwidth = 1e9 self._horizontal_divisions = 10 self._vertical_divisions = 10 self._acquisition_segmented_count = 2 self._acquisition_segmented_index = 1 self._timebase_mode = 'main' self._timebase_reference = 'center' self._timebase_position = 0.0 self._timebase_range = 1e-3 self._timebase_scale = 100e-6 self._timebase_window_position = 0.0 self._timebase_window_range = 5e-6 self._timebase_window_scale = 500e-9 self._display_screenshot_image_format_mapping = ScreenshotImageFormatMapping self._display_vectors = True self._display_labels = True self._identity_description = "Tektronix generic IVI oscilloscope driver" self._identity_identifier = "" self._identity_revision = "" self._identity_vendor = "" self._identity_instrument_manufacturer = "Tektronix" self._identity_instrument_model = "" self._identity_instrument_firmware_revision = "" self._identity_specification_major_version = 4 self._identity_specification_minor_version = 1 self._identity_supported_instrument_models = ['DPO4032', 'DPO4034', 'DPO4054', 'DPO4104', 'DPO4014B', 'DPO4034B', 'DPO4054B', 'DPO4102B', 'DPO4104B', 'MSO4032', 'MSO4034', 'MSO4054', 'MSO4104', 'MSO4014B', 'MSO4034B', 'MSO4054B', 'MSO4102B', 'MSO4104B', 'MDO4054', 'MDO4104', 'MDO4014B', 'MDO4034B', 'MDO4054B', 'MDO4104B', 'MDO3012', 'MDO3014', 'MDO3022', 'MDO3024', 'MDO3032', 'MDO3034', 'MDO3052', 'MDO3054', 'MDO3102', 'MDO3104'] self._add_property('channels[].invert', self._get_channel_invert, self._set_channel_invert, None, ivi.Doc(""" Selects whether or not to invert the channel. """)) self._add_property('channels[].label', self._get_channel_label, self._set_channel_label, None, ivi.Doc(""" Sets the channel label. Setting a channel label also adds the label to the nonvolatile label list. """)) self._add_property('channels[].probe_id', self._get_channel_probe_id, None, None, ivi.Doc(""" Returns the type of probe attached to the channel. """)) self._add_property('channels[].probe_skew', self._get_channel_probe_skew, self._set_channel_probe_skew, None, ivi.Doc(""" Specifies the channel-to-channel skew factor for the channel. Each analog channel can be adjusted + or - 100 ns for a total of 200 ns difference between channels. This can be used to compensate for differences in cable delay. Units are seconds. """)) self._add_property('channels[].scale', self._get_channel_scale, self._set_channel_scale, None, ivi.Doc(""" Specifies the vertical scale, or units per division, of the channel. Units are volts. """)) self._add_property('channels[].trigger_level', self._get_channel_trigger_level, self._set_channel_trigger_level, None, ivi.Doc(""" Specifies the trigger level of the channel. Units are volts. """)) self._add_property('timebase.mode', self._get_timebase_mode, self._set_timebase_mode, None, ivi.Doc(""" Sets the current time base. There are four time base modes: * 'main': normal timebase * 'window': zoomed or delayed timebase * 'xy': channels are plotted against each other, no timebase * 'roll': data moves continuously from left to right """)) self._add_property('timebase.position', self._get_timebase_position, self._set_timebase_position, None, ivi.Doc(""" Sets the time interval between the trigger event and the display reference point on the screen. The maximum position value depends on the time/division settings. """)) self._add_property('timebase.range', self._get_timebase_range, self._set_timebase_range, None, ivi.Doc(""" Sets the full-scale horizontal time in seconds for the main window. The range is 10 times the current time-per-division setting. """)) self._add_property('timebase.scale', self._get_timebase_scale, self._set_timebase_scale, None, ivi.Doc(""" Sets the horizontal scale or units per division for the main window. """)) self._add_property('timebase.window.position', self._get_timebase_window_position, self._set_timebase_window_position, None, ivi.Doc(""" Sets the horizontal position in the zoomed (delayed) view of the main sweep. The main sweep range and the main sweep horizontal position determine the range for this command. The value for this command must keep the zoomed view window within the main sweep range. """)) self._add_property('timebase.window.range', self._get_timebase_window_range, self._set_timebase_window_range, None, ivi.Doc(""" Sets the fullscale horizontal time in seconds for the zoomed (delayed) window. The range is 10 times the current zoomed view window seconds per division setting. The main sweep range determines the range for this command. The maximum value is one half of the timebase.range value. """)) self._add_property('timebase.window.scale', self._get_timebase_window_scale, self._set_timebase_window_scale, None, ivi.Doc(""" Sets the zoomed (delayed) window horizontal scale (seconds/division). The main sweep scale determines the range for this command. The maximum value is one half of the timebase.scale value. """)) self._add_property('display.vectors', self._get_display_vectors, self._set_display_vectors, None, ivi.Doc(""" When enabled, draws a line between consecutive waveform data points. """)) self._add_method('display.clear', self._display_clear, ivi.Doc(""" Clears the display and resets all associated measurements. If the oscilloscope is stopped, all currently displayed data is erased. If the oscilloscope is running, all the data in active channels and functions is erased; however, new data is displayed on the next acquisition. """)) self._add_method('system.display_string', self._system_display_string, ivi.Doc(""" Writes a string to the advisory line on the instrument display. Send None or an empty string to clear the advisory line. """)) self._init_channels() def _initialize(self, resource = None, id_query = False, reset = False, **keywargs): "Opens an I/O session to the instrument." self._channel_count = self._analog_channel_count + self._digital_channel_count super(tektronixBaseScope, self)._initialize(resource, id_query, reset, **keywargs) # interface clear if not self._driver_operation_simulate: self._clear() # check ID if id_query and not self._driver_operation_simulate: id = self.identity.instrument_model id_check = self._instrument_id id_short = id[:len(id_check)] if id_short != id_check: raise Exception("Instrument ID mismatch, expecting %s, got %s", id_check, id_short) # reset if reset: self.utility.reset() def _utility_disable(self): pass def _utility_lock_object(self): pass def _utility_unlock_object(self): pass def _init_channels(self): try: super(tektronixBaseScope, self)._init_channels() except AttributeError: pass self._channel_name = list() self._channel_label = list() self._channel_probe_skew = list() self._channel_invert = list() self._channel_probe_id = list() self._channel_scale = list() self._channel_trigger_level = list() self._channel_bw_limit = list() self._analog_channel_name = list() for i in range(self._analog_channel_count): self._channel_name.append("ch%d" % (i+1)) self._channel_label.append("") self._analog_channel_name.append("ch%d" % (i+1)) self._channel_probe_skew.append(0) self._channel_scale.append(1.0) self._channel_trigger_level.append(0.0) self._channel_invert.append(False) self._channel_probe_id.append("NONE") self._channel_bw_limit.append(False) # digital channels self._digital_channel_name = list() if (self._digital_channel_count > 0): for i in range(self._digital_channel_count): self._channel_name.append("d%d" % i) self._channel_label.append("") self._digital_channel_name.append("d%d" % i) for i in range(self._analog_channel_count, self._channel_count): self._channel_input_impedance[i] = 100000 self._channel_input_frequency_max[i] = 1e9 self._channel_probe_attenuation[i] = 1 self._channel_coupling[i] = 'dc' self._channel_offset[i] = 0 self._channel_range[i] = 1 self._channel_count = self._analog_channel_count + self._digital_channel_count self.channels._set_list(self._channel_name) self._channel_name_dict = ivi.get_index_dict(self._channel_name) def _utility_error_query(self): error_code = 0 error_message = "No error" if not self._driver_operation_simulate: esr = self._ask("*esr?") error_code, error_message = self._ask("evmsg?").split(',') error_code = int(error_code) error_message = error_message.strip(' "') return (error_code, error_message) def _utility_self_test(self): code = 0 message = "Self test passed" if not self._driver_operation_simulate: self._write("diag:select all") self._write("diag:loop:option once") self._write("diag:state execute") # wait for test to complete res = '' while 1: res = self._ask("diag:result:flag?").strip('"').lower() if res != 'in progress': break time.sleep(5) code = 0 if res == 'pass' else 1 if code != 0: message = "Self test failed" return (code, message) def _system_display_string(self, string = None): if string is None: string = "" if not self._driver_operation_simulate: self._write(":message:show \"%s\"" % string) self._write(":message:state 1") def _display_fetch_screenshot(self, format='png', invert=False): if self._driver_operation_simulate: return b'' if format not in self._display_screenshot_image_format_mapping: raise ivi.ValueNotSupportedException() format = self._display_screenshot_image_format_mapping[format] self._write(":hardcopy:inksaver %d" % int(bool(invert))) self._write(":save:image:fileformat %s" % format) self._write(":hardcopy start") return self._read_raw() def _get_timebase_mode(self): if not self._driver_operation_simulate and not self._get_cache_valid(): if int(self._ask(":zoom:state?")): self._timebase_mode = "window" elif self._ask(":display:xy?") == "TRIGGERED": self._timebase_mode = "xy" else: self._timebase_mode = "main" self._set_cache_valid() return self._timebase_mode def _set_timebase_mode(self, value): if value not in TimebaseModeMapping: raise ivi.ValueNotSupportedException() if not self._driver_operation_simulate: if value == 'window': self._write(":display:xy off") self._write(":zoom:state 1") elif value == 'xy': self._write(":zoom:state 0") self._write(":display:xy triggered") else: self._write(":zoom:state 0") self._write(":display:xy off") self._timebase_mode = value self._set_cache_valid() def _get_timebase_position(self): if not self._driver_operation_simulate and not self._get_cache_valid(): self._timebase_position = float(self._ask(":horizontal:delay:time?")) self._set_cache_valid() return self._timebase_position def _set_timebase_position(self, value): value = float(value) if not self._driver_operation_simulate: self._write(":horizontal:delay:mode 1") self._write(":horizontal:delay:time %e" % value) self._timebase_position = value self._set_cache_valid() self._set_cache_valid(False, 'acquisition_start_time') self._set_cache_valid(False, 'timebase_window_position') def _get_timebase_range(self): return self._get_timebase_scale() * self._horizontal_divisions def _set_timebase_range(self, value): value = float(value) self._set_timebase_scale(value / self._horizontal_divisions) def _get_timebase_scale(self): if not self._driver_operation_simulate and not self._get_cache_valid(): self._timebase_scale = float(self._ask(":horizontal:scale?")) self._timebase_range = self._timebase_scale * self._horizontal_divisions self._set_cache_valid() return self._timebase_scale def _set_timebase_scale(self, value): value = float(value) if not self._driver_operation_simulate: self._write(":horizontal:scale %e" % value) self._timebase_scale = value self._timebase_range = value * self._horizontal_divisions self._set_cache_valid() self._set_cache_valid(False, 'timebase_window_range') def _get_timebase_window_position(self): if not self._driver_operation_simulate and not self._get_cache_valid(): self._timebase_window_position = (float(self._ask(":zoom:zoom1:position?"))-50) / 100 * self._get_timebase_range() + self._get_timebase_position() self._set_cache_valid() return self._timebase_window_position def _set_timebase_window_position(self, value): value = float(value) if not self._driver_operation_simulate: self._write(":zoom:zoom1:position %e" % (((value - self._get_timebase_position()) / self._get_timebase_range() * 100) + 50)) self._timebase_window_position = value self._set_cache_valid() def _get_timebase_window_range(self): return self._get_timebase_window_scale() * self._horizontal_divisions def _set_timebase_window_range(self, value): value = float(value) self._set_timebase_window_scale(value / self._horizontal_divisions) def _get_timebase_window_scale(self): if not self._driver_operation_simulate and not self._get_cache_valid(): self._timebase_window_scale = float(self._ask(":zoom:zoom1:scale?")) self._timebase_window_range = self._timebase_window_scale * self._horizontal_divisions self._set_cache_valid() return self._timebase_window_scale def _set_timebase_window_scale(self, value): value = float(value) if not self._driver_operation_simulate: self._write(":zoom:zoom1:scale %e" % value) self._timebase_window_scale = value self._timebase_window_range = value * self._horizontal_divisions self._set_cache_valid() def _get_display_vectors(self): if not self._driver_operation_simulate and not self._get_cache_valid(): self._display_vectors = not bool(int(self._ask(":display:style:dotsonly?"))) self._set_cache_valid() return self._display_vectors def _set_display_vectors(self, value): value = bool(value) if not self._driver_operation_simulate: self._write(":display:style:dotsonly %d" % int(not value)) self._display_vectors = value self._set_cache_valid() def _display_clear(self): if not self._driver_operation_simulate: self._write(":message:state 0") self._write(":display:persistence clear") def _get_acquisition_start_time(self): if not self._driver_operation_simulate and not self._get_cache_valid(): self._acquisition_start_time = float(self._ask(":horizontal:delay:time?")) - self._get_acquisition_time_per_record() / 2 self._set_cache_valid() return self._acquisition_start_time def _set_acquisition_start_time(self, value): value = float(value) value = value + self._get_acquisition_time_per_record() / 2 if not self._driver_operation_simulate: self._write(":horizontal:delay:time %e" % value) self._acquisition_start_time = value self._set_cache_valid() def _get_acquisition_type(self): if not self._driver_operation_simulate and not self._get_cache_valid(): value = self._ask(":acquire:mode?").lower() self._acquisition_type = [k for k,v in AcquisitionTypeMapping.items() if v==value][0] self._set_cache_valid() return self._acquisition_type def _set_acquisition_type(self, value): if value not in AcquisitionTypeMapping: raise ivi.ValueNotSupportedException() if not self._driver_operation_simulate: self._write(":acquire:mode %s" % AcquisitionTypeMapping[value]) self._acquisition_type = value self._set_cache_valid() def _get_acquisition_number_of_points_minimum(self): if not self._driver_operation_simulate and not self._get_cache_valid(): self._acquisition_number_of_points_minimum = int(self._ask(":horizontal:recordlength?")) self._set_cache_valid() return self._acquisition_number_of_points_minimum def _set_acquisition_number_of_points_minimum(self, value): value = int(value) # coerce value? if not self._driver_operation_simulate: self._write(":horizontal:recordlength %d" % value) self._acquisition_number_of_points_minimum = value self._set_cache_valid() def _get_acquisition_record_length(self): if not self._driver_operation_simulate and not self._get_cache_valid(): self._acquisition_record_length = int(self._ask(":horizontal:recordlength?")) self._set_cache_valid() return self._acquisition_record_length def _get_acquisition_time_per_record(self): return self._get_timebase_range() def _set_acquisition_time_per_record(self, value): self._set_timebase_range(value) def _get_channel_label(self, index): index = ivi.get_index(self._channel_name, index) if not self._driver_operation_simulate and not self._get_cache_valid(index=index): self._channel_label[index] = self._ask(":%s:label?" % self._channel_name[index]).strip('"') self._set_cache_valid(index=index) return self._channel_label[index] def _set_channel_label(self, index, value): value = str(value) index = ivi.get_index(self._channel_name, index) if not self._driver_operation_simulate: self._write(":%s:label \"%s\"" % (self._channel_name[index], value)) self._channel_label[index] = value self._set_cache_valid(index=index) def _get_channel_enabled(self, index): index = ivi.get_index(self._channel_name, index) if not self._driver_operation_simulate and not self._get_cache_valid(index=index): self._channel_enabled[index] = bool(int(self._ask(":select:%s?" % self._channel_name[index]))) self._set_cache_valid(index=index) return self._channel_enabled[index] def _set_channel_enabled(self, index, value): value = bool(value) index = ivi.get_index(self._channel_name, index) if not self._driver_operation_simulate: self._write(":select:%s %d" % (self._channel_name[index], int(value))) self._channel_enabled[index] = value self._set_cache_valid(index=index) def _get_channel_input_impedance(self, index): index = ivi.get_index(self._analog_channel_name, index) if not self._driver_operation_simulate and not self._get_cache_valid(index=index): self._channel_input_impedance[index] = float(self._ask(":%s:termination?" % self._channel_name[index])) self._set_cache_valid(index=index) return self._channel_input_impedance[index] def _set_channel_input_impedance(self, index, value): value = float(value) index = ivi.get_index(self._analog_channel_name, index) if value != 50 and value != 1000000: raise Exception('Invalid impedance selection') if not self._driver_operation_simulate: self._write(":%s:termination %f" % (self._channel_name[index], value)) self._channel_input_impedance[index] = value self._set_cache_valid(index=index) def _get_channel_input_frequency_max(self, index): index = ivi.get_index(self._analog_channel_name, index) if not self._driver_operation_simulate and not self._get_cache_valid(index=index): self._channel_input_frequency_max[index] = float(self._ask(":%s:bandwidth?" % self._channel_name[index])) self._set_cache_valid(index=index) return self._channel_input_frequency_max[index] def _set_channel_input_frequency_max(self, index, value): value = float(value) index = ivi.get_index(self._analog_channel_name, index) if not self._driver_operation_simulate: self._write(":%s:bandwidth %e" % (self._channel_name[index], value)) self._channel_input_frequency_max[index] = value self._set_cache_valid(index=index) def _get_channel_probe_attenuation(self, index): index = ivi.get_index(self._analog_channel_name, index) if not self._driver_operation_simulate and not self._get_cache_valid(index=index): self._channel_probe_attenuation[index] = 1/float(self._ask(":%s:probe:gain?" % self._channel_name[index])) self._set_cache_valid(index=index) return self._channel_probe_attenuation[index] def _set_channel_probe_attenuation(self, index, value): index = ivi.get_index(self._analog_channel_name, index) value = 1/float(value) if not self._driver_operation_simulate: self._write(":%s:probe:gain %e" % (self._channel_name[index], value)) self._channel_probe_attenuation[index] = value self._set_cache_valid(index=index) self._set_cache_valid(False, 'channel_offset', index) self._set_cache_valid(False, 'channel_scale', index) def _get_channel_probe_skew(self, index): index = ivi.get_index(self._analog_channel_name, index) if not self._driver_operation_simulate and not self._get_cache_valid(index=index): self._channel_probe_skew[index] = float(self._ask(":%s:deskew?" % self._channel_name[index])) self._set_cache_valid(index=index) return self._channel_probe_skew[index] def _set_channel_probe_skew(self, index, value): index = ivi.get_index(self._analog_channel_name, index) value = float(value) if not self._driver_operation_simulate: self._write(":%s:deskew %e" % (self._channel_name[index], value)) self._channel_probe_skew[index] = value self._set_cache_valid(index=index) def _get_channel_invert(self, index): index = ivi.get_index(self._analog_channel_name, index) if not self._driver_operation_simulate and not self._get_cache_valid(index=index): self._channel_invert[index] = bool(int(self._ask(":%s:invert?" % self._channel_name[index]))) self._set_cache_valid(index=index) return self._channel_invert[index] def _set_channel_invert(self, index, value): index = ivi.get_index(self._analog_channel_name, index) value = bool(value) if not self._driver_operation_simulate: self._write(":%s:invert %e" % (self._channel_name[index], int(value))) self._channel_invert[index] = value self._set_cache_valid(index=index) def _get_channel_probe_id(self, index): index = ivi.get_index(self._analog_channel_name, index) if not self._driver_operation_simulate and not self._get_cache_valid(index=index): self._channel_probe_id[index] = self._ask(":%s:probe:id?" % self._channel_name[index]) self._set_cache_valid(index=index) return self._channel_probe_id[index] def _get_channel_coupling(self, index): index = ivi.get_index(self._analog_channel_name, index) if not self._driver_operation_simulate and not self._get_cache_valid(index=index): self._channel_coupling[index] = self._ask(":%s:coupling?" % self._channel_name[index]).lower() self._set_cache_valid(index=index) return self._channel_coupling[index] def _set_channel_coupling(self, index, value): index = ivi.get_index(self._analog_channel_name, index) if value not in VerticalCoupling: raise ivi.ValueNotSupportedException() if not self._driver_operation_simulate: self._write(":%s:coupling %s" % (self._channel_name[index], value)) self._channel_coupling[index] = value self._set_cache_valid(index=index) def _get_channel_offset(self, index): index = ivi.get_index(self._channel_name, index) if not self._driver_operation_simulate and not self._get_cache_valid(index=index): self._channel_offset[index] = -float(self._ask(":%s:position?" % self._channel_name[index])) * self._get_channel_scale(index) self._set_cache_valid(index=index) return self._channel_offset[index] def _set_channel_offset(self, index, value): index = ivi.get_index(self._channel_name, index) value = float(value) if not self._driver_operation_simulate: self._write(":%s:position %e" % (self._channel_name[index], -value / self._get_channel_scale(index))) self._channel_offset[index] = value self._set_cache_valid(index=index) def _get_channel_range(self, index): return self._get_channel_scale(index) * self._vertical_divisions def _set_channel_range(self, index, value): value = float(value) self._set_channel_scale(index, value / self._vertical_divisions) def _get_channel_scale(self, index): index = ivi.get_index(self._channel_name, index) if not self._driver_operation_simulate and not self._get_cache_valid(index=index): self._channel_scale[index] = float(self._ask(":%s:scale?" % self._channel_name[index])) self._set_cache_valid(index=index) return self._channel_scale[index] def _set_channel_scale(self, index, value): index = ivi.get_index(self._channel_name, index) value = float(value) if not self._driver_operation_simulate: self._write(":%s:scale %e" % (self._channel_name[index], value)) self._channel_scale[index] = value self._set_cache_valid(index=index) self._set_cache_valid(False, "channel_offset", index) def _get_channel_trigger_level(self, index): index = ivi.get_index(self._channel_name, index) if not self._driver_operation_simulate and not self._get_cache_valid(index=index): self._channel_trigger_level[index] = float(self._ask(":trigger:a:level:%s?" % self._channel_name[index])) self._set_cache_valid(index=index) return self._channel_trigger_level[index] def _set_channel_trigger_level(self, index, value): index = ivi.get_index(self._channel_name, index) value = float(value) if not self._driver_operation_simulate: self._write(":trigger:a:level:%s %e" % (self._channel_name[index], value)) self._channel_trigger_level[index] = value self._set_cache_valid(index=index) self._set_cache_valid(False, "trigger_level") def _get_measurement_status(self): if not self._driver_operation_simulate: if int(self._ask(":acquire:numacq?")) > 0: return "complete" elif int(self._ask(":acquire:state?")) > 0: return "in_progress" else: return "unknown" return self._measurement_status def _get_trigger_coupling(self): if not self._driver_operation_simulate and not self._get_cache_valid(): value = self._ask(":trigger:a:edge:coupling?").lower() self._trigger_coupling = [k for k,v in TriggerCouplingMapping.items() if v==value][0] return self._trigger_coupling def _set_trigger_coupling(self, value): if value not in TriggerCouplingMapping: raise ivi.ValueNotSupportedException() if not self._driver_operation_simulate: self._write(":trigger:a:edge:coupling %s" % TriggerCouplingMapping[value]) self._trigger_coupling = value self._set_cache_valid() def _get_trigger_holdoff(self): if not self._driver_operation_simulate and not self._get_cache_valid(): self._trigger_holdoff = float(self._ask(":trigger:a:holdoff?")) self._set_cache_valid() return self._trigger_holdoff def _set_trigger_holdoff(self, value): value = float(value) if not self._driver_operation_simulate: self._write(":trigger:a:holdoff %e" % value) self._trigger_holdoff = value self._set_cache_valid() def _get_trigger_level(self): if not self._driver_operation_simulate and not self._get_cache_valid(): ch = self._get_trigger_source() try: self._trigger_level = self._get_channel_trigger_level(ch) self._set_cache_valid() except: pass return self._trigger_level def _set_trigger_level(self, value): value = float(value) if not self._driver_operation_simulate: ch = self._get_trigger_source() self._set_channel_trigger_level(ch, value) self._trigger_level = value self._set_cache_valid() def _get_trigger_edge_slope(self): if not self._driver_operation_simulate and not self._get_cache_valid(): value = self._ask(":trigger:a:edge:slope?").lower() self._trigger_edge_slope = [k for k,v in SlopeMapping.items() if v==value][0] self._set_cache_valid() return self._trigger_edge_slope def _set_trigger_edge_slope(self, value): if value not in SlopeMapping: raise ivi.ValueNotSupportedException() if not self._driver_operation_simulate: self._write(":trigger:a:edge:slope %s" % SlopeMapping[value]) self._trigger_edge_slope = value self._set_cache_valid() def _get_trigger_source(self): if not self._driver_operation_simulate and not self._get_cache_valid(): t = self._ask(":trigger:a:type?").lower() if t == 'edge': value = self._ask(":trigger:a:edge:source?").lower() elif t == 'logic': # TODO value = '' elif t == 'pulse': pc = self._ask(":trigger:a:pulse:class?").lower() if pc == 'runt': value = self._ask(":trigger:a:runt:source?").lower() elif pc == 'width': value = self._ask(":trigger:a:pulsewidth:source?").lower() elif pc == 'transition': value = self._ask(":trigger:a:transition:source?").lower() elif pc == 'timeout': value = self._ask(":trigger:a:timeout:source?").lower() elif t == 'bus': # TODO value = '' elif t == 'video': value = self._ask(":trigger:a:video:source?").lower() # TODO process value self._trigger_source = value self._set_cache_valid() return self._trigger_source def _set_trigger_source(self, value): if hasattr(value, 'name'): value = value.name value = str(value) if value not in self._channel_name: raise ivi.UnknownPhysicalNameException() if not self._driver_operation_simulate: t = self._ask(":trigger:a:type?").lower() if t == 'edge': self._write(":trigger:a:edge:source %s" % value) elif t == 'logic': # TODO pass elif t == 'pulse': pc = self._ask(":trigger:a:pulse:class?").lower() if pc == 'runt': self._write(":trigger:a:runt:source %s" % value) elif pc == 'width': self._write(":trigger:a:pulsewidth:source %s" % value) elif pc == 'transition': self._write(":trigger:a:transition:source %s" % value) elif pc == 'timeout': self._write(":trigger:a:timeout:source %s" % value) elif t == 'bus': # TODO pass elif t == 'video': self._write(":trigger:a:video:source %s" % value) #self._write(":trigger:source %s" % value) self._trigger_source = value self._set_cache_valid() self._set_cache_valid(False, 'trigger_level') self._set_cache_valid(False, 'trigger_runt_threshold_high') self._set_cache_valid(False, 'trigger_runt_threshold_low') for i in range(self._analog_channel_count): self._set_cache_valid(False, 'channel_trigger_level', i) def _get_trigger_type(self): if not self._driver_operation_simulate and not self._get_cache_valid(): value = self._ask(":trigger:a:type?").lower() if value == 'edge': src = self._ask(":trigger:a:edge:source?").lower() if src == 'line': value = 'ac_line' elif value == 'logic': # TODO value = 'logic' elif value == 'pulse': pc = self._ask(":trigger:a:pulse:class?").lower() if pc == 'width': wh = self._ask(":trigger:a:pulsewidth:when?").lower() if wh in GlitchConditionMapping.values(): value = 'glitch' else: value = 'width' else: value = pc elif value == 'bus': # TODO value = 'bus' elif value == 'video': value = 'tv' #else: # value = [k for k,v in TriggerTypeMapping.items() if v==value][0] self._trigger_type = value self._set_cache_valid() return self._trigger_type def _set_trigger_type(self, value): if value not in TriggerTypeMapping: raise ivi.ValueNotSupportedException() if not self._driver_operation_simulate: self._write(":trigger:a:type %s" % TriggerTypeMapping[value]) if value == 'ac_line': self._write(":trigger:a:edge:source line") elif value in ['runt', 'width', 'glitch', 'transition', 'timeout']: self._write(":trigger:a:pulse:class %s" % value) print(value) if value == 'glitch': t = self._ask(":trigger:a:pulsewidth:when?").lower() if t not in GlitchConditionMapping.values(): self._write(":trigger:a:pulsewidth:when %s" % GlitchConditionMapping[self._trigger_glitch_condition]) elif value == 'width': t = self._ask(":trigger:a:pulsewidth:when?").lower() if t not in WidthConditionMapping.values(): self._write(":trigger:a:pulsewidth:when %s" % WidthConditionMapping[self._trigger_width_condition]) self._trigger_type = value self._set_cache_valid() self._set_cache_valid(False, 'trigger_source') self._set_cache_valid(False, 'trigger_level') def _measurement_abort(self): pass def _get_trigger_tv_trigger_event(self): if not self._driver_operation_simulate and not self._get_cache_valid(): value = self._ask(":trigger:a:video:sync?").lower() # may need processing self._trigger_tv_trigger_event = [k for k,v in TVTriggerEventMapping.items() if v==value][0] self._set_cache_valid() return self._trigger_tv_trigger_event def _set_trigger_tv_trigger_event(self, value): if value not in TVTriggerEventMapping: raise ivi.ValueNotSupportedException() # may need processing if not self._driver_operation_simulate: self._write(":trigger:a:video:sync %s" % TVTriggerEventMapping[value]) self._trigger_tv_trigger_event = value self._set_cache_valid() def _get_trigger_tv_line_number(self): if not self._driver_operation_simulate and not self._get_cache_valid(): value = int(self._ask(":trigger:a:video:line?")) # may need processing self._trigger_tv_line_number = value self._set_cache_valid() return self._trigger_tv_line_number def _set_trigger_tv_line_number(self, value): value = int(value) # may need processing if not self._driver_operation_simulate: self._write(":trigger:a:video:line %e" % value) self._trigger_tv_line_number = value self._set_cache_valid() def _get_trigger_tv_polarity(self): if not self._driver_operation_simulate and not self._get_cache_valid(): value = self._ask(":trigger:a:video:polarity?").lower() self._trigger_tv_polarity = [k for k,v in PolarityMapping.items() if v==value][0] self._set_cache_valid() return self._trigger_tv_polarity def _set_trigger_tv_polarity(self, value): if value not in PolarityMapping: raise ivi.ValueNotSupportedException() if not self._driver_operation_simulate: self._write(":trigger:a:video:polarity %s" % PolarityMapping[value]) self._trigger_tv_polarity = value self._set_cache_valid() def _get_trigger_tv_signal_format(self): if not self._driver_operation_simulate and not self._get_cache_valid(): value = self._ask(":trigger:a:video:standard?").lower() self._trigger_tv_signal_format = [k for k,v in TVTriggerFormatMapping.items() if v==value][0] self._set_cache_valid() return self._trigger_tv_signal_format def _set_trigger_tv_signal_format(self, value): if value not in TVTriggerFormatMapping: raise ivi.ValueNotSupportedException() if not self._driver_operation_simulate: self._write(":trigger:a:video:standard %s" % TVTriggerFormatMapping[value]) self._trigger_tv_signal_format = value self._set_cache_valid() def _get_trigger_runt_threshold_high(self): if not self._driver_operation_simulate and not self._get_cache_valid(): ch = self._ask(":trigger:a:runt:source?") self._trigger_runt_threshold_high = float(self._ask(":trigger:a:upperthreshold:%s?" % ch)) self._set_cache_valid() return self._trigger_runt_threshold_high def _set_trigger_runt_threshold_high(self, value): value = float(value) if not self._driver_operation_simulate: ch = self._get_trigger_source() self._write(":trigger:a:upperthreshold:%s %e" % (ch, value)) self._trigger_runt_threshold_high = value self._set_cache_valid() def _get_trigger_runt_threshold_low(self): if not self._driver_operation_simulate and not self._get_cache_valid(): ch = self._ask(":trigger:a:runt:source?") self._trigger_runt_threshold_low = float(self._ask(":trigger:a:lowerthreshold:%s?" % ch)) self._set_cache_valid() return self._trigger_runt_threshold_low def _set_trigger_runt_threshold_low(self, value): value = float(value) if not self._driver_operation_simulate: ch = self._get_trigger_source() self._write(":trigger:a:lowerthreshold:%s %e" % (ch, value)) self._trigger_runt_threshold_low = value self._set_cache_valid() self._set_cache_valid(False, 'trigger_level') for i in range(self._analog_channel_count): self._set_cache_valid(False, 'channel_trigger_level', i) def _get_trigger_runt_polarity(self): if not self._driver_operation_simulate and not self._get_cache_valid(): value = self._ask(":trigger:a:runt:polarity?").lower() self._trigger_runt_polarity = [k for k,v in PolarityMapping3.items() if v==value][0] self._set_cache_valid() return self._trigger_runt_polarity def _set_trigger_runt_polarity(self, value): if value not in PolarityMapping3: raise ivi.ValueNotSupportedException() if not self._driver_operation_simulate: self._write(":trigger:a:runt:polarity %s" % PolarityMapping3[value]) self._trigger_runt_polarity = value self._set_cache_valid() # TODO: need runt condition and width def _get_trigger_glitch_condition(self): if not self._driver_operation_simulate and not self._get_cache_valid(): value = self._ask(":trigger:a:pulsewidth:when?").lower() if value in GlitchConditionMapping.values(): self._trigger_glitch_condition = [k for k,v in GlitchConditionMapping.items() if v==value][0] self._set_cache_valid() return self._trigger_glitch_condition def _set_trigger_glitch_condition(self, value): if value not in GlitchConditionMapping: raise ivi.ValueNotSupportedException() if not self._driver_operation_simulate: self._write(":trigger:a:pulsewidth:when %s" % GlitchConditionMapping[value]) self._trigger_glitch_condition = value self._set_cache_valid() def _get_trigger_glitch_polarity(self): return self._get_trigger_width_polarity() def _set_trigger_glitch_polarity(self, value): self._set_trigger_width_polarity(value) def _get_trigger_glitch_width(self): if not self._driver_operation_simulate and not self._get_cache_valid(): self._trigger_glitch_width = float(self._ask(":trigger:a:pulsewidth:width?")) self._set_cache_valid() return self._trigger_glitch_width def _set_trigger_glitch_width(self, value): value = float(value) if not self._driver_operation_simulate: self._write(":trigger:a:pulsewidth:width %e" % value) self._trigger_glitch_width = value self._set_cache_valid() def _get_trigger_width_condition(self): if not self._driver_operation_simulate and not self._get_cache_valid(): value = self._ask(":trigger:a:pulsewidth:when?").lower() if value in WidthConditionMapping.values(): self._trigger_width_condition = [k for k,v in WidthConditionMapping.items() if v==value][0] self._set_cache_valid() return self._trigger_width_condition def _set_trigger_width_condition(self, value): if value not in WidthConditionMapping: raise ivi.ValueNotSupportedException() if not self._driver_operation_simulate: self._write(":trigger:a:pulsewidth:when %s" % WidthConditionMapping[value]) self._trigger_width_condition = value self._set_cache_valid() def _get_trigger_width_threshold_high(self): if not self._driver_operation_simulate and not self._get_cache_valid(): self._trigger_width_threshold_high = float(self._ask(":trigger:a:pulsewidth:highlimit?")) self._set_cache_valid() return self._trigger_width_threshold_high def _set_trigger_width_threshold_high(self, value): value = float(value) if not self._driver_operation_simulate: self._write(":trigger:a:pulsewidth:highlimit %e" % value) self._trigger_width_threshold_high = value self._set_cache_valid() def _get_trigger_width_threshold_low(self): if not self._driver_operation_simulate and not self._get_cache_valid(): self._trigger_width_threshold_low = float(self._ask(":trigger:a:pulsewidth:lowlimit?")) self._set_cache_valid() return self._trigger_width_threshold_low def _set_trigger_width_threshold_low(self, value): value = float(value) if not self._driver_operation_simulate: self._write(":trigger:a:pulsewidth:lowlimit %e" % value) self._trigger_width_threshold_low = value self._set_cache_valid() def _get_trigger_width_polarity(self): if not self._driver_operation_simulate and not self._get_cache_valid(): value = self._ask(":trigger:a:pulsewidth:polarity?").lower() self._trigger_width_polarity = [k for k,v in PolarityMapping.items() if v==value][0] self._set_cache_valid() return self._trigger_width_polarity def _set_trigger_width_polarity(self, value): if value not in PolarityMapping: raise ivi.ValueNotSupportedException() if not self._driver_operation_simulate: self._write(":trigger:a:pulsewidth:polarity %s" % PolarityMapping[value]) self._trigger_width_polarity = value self._set_cache_valid() def _get_trigger_ac_line_slope(self): return self._get_trigger_edge_slope() def _set_trigger_ac_line_slope(self, value): self._set_trigger_edge_slope(value) def _measurement_fetch_waveform(self, index): index = ivi.get_index(self._channel_name, index) if self._driver_operation_simulate: return ivi.TraceYT() self._write(":data:source %s" % self._channel_name[index]) self._write(":data:encdg fastest") self._write(":data:width 2") self._write(":data:start 1") self._write(":data:stop 1e10") trace = ivi.TraceYT() # Read preamble pre = self._ask(":wfmoutpre?").split(';') acq_format = pre[7].strip().upper() points = int(pre[6]) point_size = int(pre[0]) point_enc = pre[2].strip().upper() point_fmt = pre[3].strip().upper() byte_order = pre[4].strip().upper() trace.x_increment = float(pre[10]) trace.x_origin = float(pre[11]) trace.x_reference = int(float(pre[12])) trace.y_increment = float(pre[14]) trace.y_reference = int(float(pre[15])) trace.y_origin = float(pre[16]) if acq_format != 'Y': raise UnexpectedResponseException() if point_enc != 'BINARY': raise UnexpectedResponseException() # Read waveform data raw_data = self._ask_for_ieee_block(":curve?") self._read_raw() # flush buffer # Store in trace object if point_fmt == 'RP' and point_size == 1: trace.y_raw = array.array('B', raw_data[0:points*2]) elif point_fmt == 'RP' and point_size == 2: trace.y_raw = array.array('H', raw_data[0:points*2]) elif point_fmt == 'RI' and point_size == 1: trace.y_raw = array.array('b', raw_data[0:points*2]) elif point_fmt == 'RI' and point_size == 2: trace.y_raw = array.array('h', raw_data[0:points*2]) elif point_fmt == 'FP' and point_size == 4: trace.y_increment = 1 trace.y_reference = 0 trace.y_origin = 0 trace.y_raw = array.array('f', raw_data[0:points*4]) else: raise UnexpectedResponseException() if (byte_order == 'LSB') != (sys.byteorder == 'little'): trace.y_raw.byteswap() return trace def _measurement_read_waveform(self, index, maximum_time): return self._measurement_fetch_waveform(index) def _measurement_initiate(self): if not self._driver_operation_simulate: self._write(":acquire:stopafter sequence") self._write(":acquire:state run") self._set_cache_valid(False, 'trigger_continuous') def _get_reference_level_high(self): if not self._driver_operation_simulate and not self._get_cache_valid(): self._reference_level_high = float(self._ask(":measurement:reflevel:percent:high?")) self._set_cache_valid() return self._reference_level_high def _set_reference_level_high(self, value): value = float(value) if value < 0: value = 0 if value > 100: value = 100 if not self._driver_operation_simulate: self._write(":measurement:reflevel:method percent") self._write(":measurement:reflevel:percent:high %e" % value) self._reference_level_high = value self._set_cache_valid() def _get_reference_level_low(self): if not self._driver_operation_simulate and not self._get_cache_valid(): self._reference_level_low = float(self._ask(":measurement:reflevel:percent:low?")) self._set_cache_valid() return self._reference_level_low def _set_reference_level_low(self, value): value = float(value) if value < 0: value = 0 if value > 100: value = 100 if not self._driver_operation_simulate: self._write(":measurement:reflevel:method percent") self._write(":measurement:reflevel:percent:low %e" % value) self._reference_level_low = value self._set_cache_valid() def _get_reference_level_middle(self): if not self._driver_operation_simulate and not self._get_cache_valid(): self._reference_level_middle = float(self._ask(":measurement:reflevel:percent:mid1?")) self._set_cache_valid() return self._reference_level_middle def _set_reference_level_middle(self, value): value = float(value) if value < 0: value = 0 if value > 100: value = 100 if not self._driver_operation_simulate: self._write(":measurement:reflevel:method percent") self._write(":measurement:reflevel:percent:mid1 %e" % value) self._write(":measurement:reflevel:percent:mid2 %e" % value) self._reference_level_middle = value self._set_cache_valid() def _measurement_fetch_waveform_measurement(self, index, measurement_function, ref_channel = None): index = ivi.get_index(self._channel_name, index) if index < self._analog_channel_count: if measurement_function not in MeasurementFunctionMapping: raise ivi.ValueNotSupportedException() func = MeasurementFunctionMapping[measurement_function] else: if measurement_function not in MeasurementFunctionMappingDigital: raise ivi.ValueNotSupportedException() func = MeasurementFunctionMappingDigital[measurement_function] if not self._driver_operation_simulate: self._write(":measurement:immed:type %s" % func) self._write(":measurement:immed:source1 %s" % self._channel_name[index]) if measurement_function in ['ratio', 'phase', 'delay']: if hasattr(ref_channel, 'name'): ref_channel = ref_channel.name ref_index = ivi.get_index(self._channel_name, ref_channel) self._write(":measurement:immed:source2 %s" % self._channel_name[ref_index]) return float(self._ask(":measurement:immed:value?")) return 0 def _measurement_read_waveform_measurement(self, index, measurement_function, maximum_time): return self._measurement_fetch_waveform_measurement(index, measurement_function) def _get_acquisition_number_of_envelopes(self): return self._acquisition_number_of_envelopes def _set_acquisition_number_of_envelopes(self, value): self._acquisition_number_of_envelopes = value def _measurement_fetch_waveform_min_max(self, index): index = ivi.get_index(self._channel_name, index) data = list() return data def _measurement_read_waveform_min_max(self, index, maximum_time): return self._measurement_fetch_waveform_min_max(index) def _get_trigger_continuous(self): if not self._driver_operation_simulate and not self._get_cache_valid(): self._trigger_continuous = self._ask(":acquire:stopafter?").lower() == 'runstop' self._set_cache_valid() return self._trigger_continuous def _set_trigger_continuous(self, value): value = bool(value) if not self._driver_operation_simulate: if value: self._write(":acquire:stopafter runstop") self._write(":acquire:state run") else: self._write(":acquire:stopafter sequence") self._trigger_continuous = value self._set_cache_valid() def _get_acquisition_number_of_averages(self): if not self._driver_operation_simulate and not self._get_cache_valid(): self._acquisition_number_of_averages = int(self._ask(":acquire:numavg?")) self._set_cache_valid() return self._acquisition_number_of_averages def _set_acquisition_number_of_averages(self, value): if value not in [2, 4, 8, 16, 32, 64, 128, 256, 512]: raise ivi.OutOfRangeException() if not self._driver_operation_simulate: self._write(":acquire:numavg %d" % value) self._acquisition_number_of_averages = value self._set_cache_valid() def _get_trigger_modifier(self): if not self._driver_operation_simulate and not self._get_cache_valid(): value = self._ask(":trigger:a:mode?").lower() self._trigger_modifier = [k for k,v in TriggerModifierMapping.items() if v==value][0] self._set_cache_valid() return self._trigger_modifier def _set_trigger_modifier(self, value): if value not in TriggerModifierMapping: raise ivi.ValueNotSupportedException() if not self._driver_operation_simulate: self._write(":trigger:a:mode %s" % TriggerModifierMapping[value]) self._trigger_modifier = value self._set_cache_valid() def _measurement_auto_setup(self): if not self._driver_operation_simulate: self._write(":autoset execute")
43.996603
158
0.623257
e36ad755e4f82ff66aa727d3a110dfda597c1faf
1,960
py
Python
tornado_ipware/ip.py
lumbrefrio/tornado-ipware
a557c4a57c6354a6db61c45c3f6bce4ae34c2783
[ "MIT" ]
null
null
null
tornado_ipware/ip.py
lumbrefrio/tornado-ipware
a557c4a57c6354a6db61c45c3f6bce4ae34c2783
[ "MIT" ]
null
null
null
tornado_ipware/ip.py
lumbrefrio/tornado-ipware
a557c4a57c6354a6db61c45c3f6bce4ae34c2783
[ "MIT" ]
null
null
null
from . import utils as util from . import defaults as defs def get_client_ip( request, proxy_order='left-most', proxy_count=None, proxy_trusted_ips=None, request_header_order=None, ): client_ip = None routable = False if proxy_count is None: proxy_count = -1 if proxy_trusted_ips is None: proxy_trusted_ips = [] if request_header_order is None: request_header_order = defs.IPWARE_META_PRECEDENCE_ORDER for key in request_header_order: value = util.get_request_header(request, key) if value: ips, ip_count = util.get_ips_from_string(value) if ip_count < 1: # we are expecting at least one IP address to process continue if proxy_count == 0 and ip_count > 1: # we are not expecting requests via any proxies continue if proxy_count > 0 and proxy_count != ip_count - 1: # we are expecting requests via `proxy_count` number of proxies continue if proxy_trusted_ips and ip_count < 2: # we are expecting requests via at least one trusted proxy continue if proxy_order == 'right-most' and ip_count > 1: # we are expecting requests via proxies to be custom as per `<proxy2>, <proxy1>, <client>` ips.reverse() if proxy_trusted_ips: for proxy in proxy_trusted_ips: if proxy in ips[-1]: client_ip, routable = util.get_ip_info(ips[0]) if client_ip and routable: return client_ip, routable else: client_ip, routable = util.get_ip_info(util.get_best_ip(client_ip, ips[0])) if client_ip and routable: return client_ip, routable return client_ip, routable
32.131148
106
0.578061
a3125dc4e4024c4f1f946d3877005b9d61dc4aad
9,058
py
Python
venv/Lib/site-packages/pandas/tests/arrays/integer/test_dtypes.py
OliviaNabbosa89/Disaster_Responses
1e66d77c303cec685dfc2ca94f4fca4cc9400570
[ "MIT" ]
null
null
null
venv/Lib/site-packages/pandas/tests/arrays/integer/test_dtypes.py
OliviaNabbosa89/Disaster_Responses
1e66d77c303cec685dfc2ca94f4fca4cc9400570
[ "MIT" ]
null
null
null
venv/Lib/site-packages/pandas/tests/arrays/integer/test_dtypes.py
OliviaNabbosa89/Disaster_Responses
1e66d77c303cec685dfc2ca94f4fca4cc9400570
[ "MIT" ]
null
null
null
import numpy as np import pytest from pandas.core.dtypes.generic import ABCIndexClass import pandas as pd import pandas._testing as tm from pandas.core.arrays import integer_array from pandas.core.arrays.integer import Int8Dtype, UInt32Dtype def test_dtypes(dtype): # smoke tests on auto dtype construction if dtype.is_signed_integer: assert np.dtype(dtype.type).kind == "i" else: assert np.dtype(dtype.type).kind == "u" assert dtype.name is not None @pytest.mark.parametrize("op", ["sum", "min", "max", "prod"]) def test_preserve_dtypes(op): # TODO(#22346): preserve Int64 dtype # for ops that enable (mean would actually work here # but generally it is a float return value) df = pd.DataFrame( { "A": ["a", "b", "b"], "B": [1, None, 3], "C": integer_array([1, None, 3], dtype="Int64"), } ) # op result = getattr(df.C, op)() if op in {"sum", "prod", "min", "max"}: assert isinstance(result, np.int64) else: assert isinstance(result, int) # groupby result = getattr(df.groupby("A"), op)() expected = pd.DataFrame( {"B": np.array([1.0, 3.0]), "C": integer_array([1, 3], dtype="Int64")}, index=pd.Index(["a", "b"], name="A"), ) tm.assert_frame_equal(result, expected) def test_astype_nansafe(): # see gh-22343 arr = integer_array([np.nan, 1, 2], dtype="Int8") msg = "cannot convert to 'uint32'-dtype NumPy array with missing values." with pytest.raises(ValueError, match=msg): arr.astype("uint32") @pytest.mark.parametrize("dropna", [True, False]) def test_construct_index(all_data, dropna): # ensure that we do not coerce to Float64Index, rather # keep as Index all_data = all_data[:10] if dropna: other = np.array(all_data[~all_data.isna()]) else: other = all_data result = pd.Index(integer_array(other, dtype=all_data.dtype)) expected = pd.Index(other, dtype=object) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("dropna", [True, False]) def test_astype_index(all_data, dropna): # as an int/uint index to Index all_data = all_data[:10] if dropna: other = all_data[~all_data.isna()] else: other = all_data dtype = all_data.dtype idx = pd.Index(np.array(other)) assert isinstance(idx, ABCIndexClass) result = idx.astype(dtype) expected = idx.astype(object).astype(dtype) tm.assert_index_equal(result, expected) def test_astype(all_data): all_data = all_data[:10] ints = all_data[~all_data.isna()] mixed = all_data dtype = Int8Dtype() # coerce to same type - ints s = pd.Series(ints) result = s.astype(all_data.dtype) expected = pd.Series(ints) tm.assert_series_equal(result, expected) # coerce to same other - ints s = pd.Series(ints) result = s.astype(dtype) expected = pd.Series(ints, dtype=dtype) tm.assert_series_equal(result, expected) # coerce to same numpy_dtype - ints s = pd.Series(ints) result = s.astype(all_data.dtype.numpy_dtype) expected = pd.Series(ints._data.astype(all_data.dtype.numpy_dtype)) tm.assert_series_equal(result, expected) # coerce to same type - mixed s = pd.Series(mixed) result = s.astype(all_data.dtype) expected = pd.Series(mixed) tm.assert_series_equal(result, expected) # coerce to same other - mixed s = pd.Series(mixed) result = s.astype(dtype) expected = pd.Series(mixed, dtype=dtype) tm.assert_series_equal(result, expected) # coerce to same numpy_dtype - mixed s = pd.Series(mixed) msg = r"cannot convert to .*-dtype NumPy array with missing values.*" with pytest.raises(ValueError, match=msg): s.astype(all_data.dtype.numpy_dtype) # coerce to object s = pd.Series(mixed) result = s.astype("object") expected = pd.Series(np.asarray(mixed)) tm.assert_series_equal(result, expected) def test_astype_copy(): arr = pd.array([1, 2, 3, None], dtype="Int64") orig = pd.array([1, 2, 3, None], dtype="Int64") # copy=True -> ensure both data and mask are actual copies result = arr.astype("Int64", copy=True) assert result is not arr assert not np.shares_memory(result._data, arr._data) assert not np.shares_memory(result._mask, arr._mask) result[0] = 10 tm.assert_extension_array_equal(arr, orig) result[0] = pd.NA tm.assert_extension_array_equal(arr, orig) # copy=False result = arr.astype("Int64", copy=False) assert result is arr assert np.shares_memory(result._data, arr._data) assert np.shares_memory(result._mask, arr._mask) result[0] = 10 assert arr[0] == 10 result[0] = pd.NA assert arr[0] is pd.NA # astype to different dtype -> always needs a copy -> even with copy=False # we need to ensure that also the mask is actually copied arr = pd.array([1, 2, 3, None], dtype="Int64") orig = pd.array([1, 2, 3, None], dtype="Int64") result = arr.astype("Int32", copy=False) assert not np.shares_memory(result._data, arr._data) assert not np.shares_memory(result._mask, arr._mask) result[0] = 10 tm.assert_extension_array_equal(arr, orig) result[0] = pd.NA tm.assert_extension_array_equal(arr, orig) def test_astype_to_larger_numpy(): a = pd.array([1, 2], dtype="Int32") result = a.astype("int64") expected = np.array([1, 2], dtype="int64") tm.assert_numpy_array_equal(result, expected) a = pd.array([1, 2], dtype="UInt32") result = a.astype("uint64") expected = np.array([1, 2], dtype="uint64") tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", [Int8Dtype(), "Int8", UInt32Dtype(), "UInt32"]) def test_astype_specific_casting(dtype): s = pd.Series([1, 2, 3], dtype="Int64") result = s.astype(dtype) expected = pd.Series([1, 2, 3], dtype=dtype) tm.assert_series_equal(result, expected) s = pd.Series([1, 2, 3, None], dtype="Int64") result = s.astype(dtype) expected = pd.Series([1, 2, 3, None], dtype=dtype) tm.assert_series_equal(result, expected) def test_astype_dt64(): # GH#32435 arr = pd.array([1, 2, 3, pd.NA]) * 10 ** 9 result = arr.astype("datetime64[ns]") expected = np.array([1, 2, 3, "NaT"], dtype="M8[s]").astype("M8[ns]") tm.assert_numpy_array_equal(result, expected) def test_construct_cast_invalid(dtype): msg = "cannot safely" arr = [1.2, 2.3, 3.7] with pytest.raises(TypeError, match=msg): integer_array(arr, dtype=dtype) with pytest.raises(TypeError, match=msg): pd.Series(arr).astype(dtype) arr = [1.2, 2.3, 3.7, np.nan] with pytest.raises(TypeError, match=msg): integer_array(arr, dtype=dtype) with pytest.raises(TypeError, match=msg): pd.Series(arr).astype(dtype) @pytest.mark.parametrize("in_series", [True, False]) def test_to_numpy_na_nan(in_series): a = pd.array([0, 1, None], dtype="Int64") if in_series: a = pd.Series(a) result = a.to_numpy(dtype="float64", na_value=np.nan) expected = np.array([0.0, 1.0, np.nan], dtype="float64") tm.assert_numpy_array_equal(result, expected) result = a.to_numpy(dtype="int64", na_value=-1) expected = np.array([0, 1, -1], dtype="int64") tm.assert_numpy_array_equal(result, expected) result = a.to_numpy(dtype="bool", na_value=False) expected = np.array([False, True, False], dtype="bool") tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("in_series", [True, False]) @pytest.mark.parametrize("dtype", ["int32", "int64", "bool"]) def test_to_numpy_dtype(dtype, in_series): a = pd.array([0, 1], dtype="Int64") if in_series: a = pd.Series(a) result = a.to_numpy(dtype=dtype) expected = np.array([0, 1], dtype=dtype) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", ["float64", "int64", "bool"]) def test_to_numpy_na_raises(dtype): a = pd.array([0, 1, None], dtype="Int64") with pytest.raises(ValueError, match=dtype): a.to_numpy(dtype=dtype) def test_astype_str(): a = pd.array([1, 2, None], dtype="Int64") expected = np.array(["1", "2", "<NA>"], dtype="<U21") tm.assert_numpy_array_equal(a.astype(str), expected) tm.assert_numpy_array_equal(a.astype("str"), expected) def test_astype_boolean(): # https://github.com/pandas-dev/pandas/issues/31102 a = pd.array([1, 0, -1, 2, None], dtype="Int64") result = a.astype("boolean") expected = pd.array([True, False, True, True, None], dtype="boolean") tm.assert_extension_array_equal(result, expected)
31.234483
82
0.631817
8d0cb5f5e0a0c7e6d66508db95ce15565aa33bb2
685
py
Python
test/mac/gyptest-postbuild-defaults.py
Jet-Streaming/gyp
6488d24fc7bdd8bc563998d77d9a0950781bbaf5
[ "BSD-3-Clause" ]
null
null
null
test/mac/gyptest-postbuild-defaults.py
Jet-Streaming/gyp
6488d24fc7bdd8bc563998d77d9a0950781bbaf5
[ "BSD-3-Clause" ]
null
null
null
test/mac/gyptest-postbuild-defaults.py
Jet-Streaming/gyp
6488d24fc7bdd8bc563998d77d9a0950781bbaf5
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # Copyright (c) 2012 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Verifies that a postbuild invoking |defaults| works. """ import TestGyp import sys if sys.platform == 'darwin': test = TestGyp.TestGyp(formats=['ninja', 'make', 'xcode']) CHDIR = 'postbuild-defaults' test.run_gyp('test.gyp', chdir=CHDIR) test.build('test.gyp', test.ALL, chdir=CHDIR) result_file = test.built_file_path('result', chdir=CHDIR) test.must_exist(result_file) test.must_contain(result_file, '''\ Test ${PRODUCT_NAME} ''') test.pass_test()
22.833333
73
0.678832
c8459be99440754474e0b768f4032e4902442a8b
408
py
Python
legacy/test_actor.py
LaoKpa/reinforcement_trader
1465731269e6d58900a28a040346bf45ffb5cf97
[ "MIT" ]
7
2020-09-28T23:36:40.000Z
2022-02-22T02:00:32.000Z
legacy/test_actor.py
LaoKpa/reinforcement_trader
1465731269e6d58900a28a040346bf45ffb5cf97
[ "MIT" ]
4
2020-11-13T18:48:52.000Z
2022-02-10T01:29:47.000Z
legacy/test_actor.py
lzcaisg/reinforcement_trader
1465731269e6d58900a28a040346bf45ffb5cf97
[ "MIT" ]
3
2020-11-23T17:31:59.000Z
2021-04-08T10:55:03.000Z
from Actor import Actor import datetime actor = Actor(todayDate=datetime.datetime(2016, 12, 10), startDate=datetime.datetime(2016, 9, 10), etfList=["FTSE 100", "Nasdaq 100", "Shanghai Composite"], initValue=1000000) print(actor.etfLocalMinMaxDict['FTSE 100']['max']["180"].to_string()) print(actor.etfLocalMinMaxDict['Shanghai Composite']['min']["60"].to_string())
40.8
78
0.671569
2ecae0fc450a182b8c5bf47f49f86b60f1dcfda7
6,613
py
Python
Lib/test/test_resource.py
Hadron/python
73137f499ed658169f49273eee46845e3b53e800
[ "PSF-2.0" ]
1,872
2015-01-02T18:56:47.000Z
2022-03-31T07:34:39.000Z
Lib/test/test_resource.py
Hadron/python
73137f499ed658169f49273eee46845e3b53e800
[ "PSF-2.0" ]
675
2015-02-27T09:01:01.000Z
2022-03-31T14:03:25.000Z
Lib/test/test_resource.py
Hadron/python
73137f499ed658169f49273eee46845e3b53e800
[ "PSF-2.0" ]
278
2015-01-02T03:48:20.000Z
2022-03-29T20:40:44.000Z
import contextlib import sys import os import unittest from test import support import time resource = support.import_module('resource') # This test is checking a few specific problem spots with the resource module. class ResourceTest(unittest.TestCase): def test_args(self): self.assertRaises(TypeError, resource.getrlimit) self.assertRaises(TypeError, resource.getrlimit, 42, 42) self.assertRaises(TypeError, resource.setrlimit) self.assertRaises(TypeError, resource.setrlimit, 42, 42, 42) def test_fsize_ismax(self): try: (cur, max) = resource.getrlimit(resource.RLIMIT_FSIZE) except AttributeError: pass else: # RLIMIT_FSIZE should be RLIM_INFINITY, which will be a really big # number on a platform with large file support. On these platforms, # we need to test that the get/setrlimit functions properly convert # the number to a C long long and that the conversion doesn't raise # an error. self.assertEqual(resource.RLIM_INFINITY, max) resource.setrlimit(resource.RLIMIT_FSIZE, (cur, max)) def test_fsize_enforced(self): try: (cur, max) = resource.getrlimit(resource.RLIMIT_FSIZE) except AttributeError: pass else: # Check to see what happens when the RLIMIT_FSIZE is small. Some # versions of Python were terminated by an uncaught SIGXFSZ, but # pythonrun.c has been fixed to ignore that exception. If so, the # write() should return EFBIG when the limit is exceeded. # At least one platform has an unlimited RLIMIT_FSIZE and attempts # to change it raise ValueError instead. try: try: resource.setrlimit(resource.RLIMIT_FSIZE, (1024, max)) limit_set = True except ValueError: limit_set = False f = open(support.TESTFN, "wb") try: f.write(b"X" * 1024) try: f.write(b"Y") f.flush() # On some systems (e.g., Ubuntu on hppa) the flush() # doesn't always cause the exception, but the close() # does eventually. Try flushing several times in # an attempt to ensure the file is really synced and # the exception raised. for i in range(5): time.sleep(.1) f.flush() except OSError: if not limit_set: raise if limit_set: # Close will attempt to flush the byte we wrote # Restore limit first to avoid getting a spurious error resource.setrlimit(resource.RLIMIT_FSIZE, (cur, max)) finally: f.close() finally: if limit_set: resource.setrlimit(resource.RLIMIT_FSIZE, (cur, max)) support.unlink(support.TESTFN) def test_fsize_toobig(self): # Be sure that setrlimit is checking for really large values too_big = 10**50 try: (cur, max) = resource.getrlimit(resource.RLIMIT_FSIZE) except AttributeError: pass else: try: resource.setrlimit(resource.RLIMIT_FSIZE, (too_big, max)) except (OverflowError, ValueError): pass try: resource.setrlimit(resource.RLIMIT_FSIZE, (max, too_big)) except (OverflowError, ValueError): pass def test_getrusage(self): self.assertRaises(TypeError, resource.getrusage) self.assertRaises(TypeError, resource.getrusage, 42, 42) usageself = resource.getrusage(resource.RUSAGE_SELF) usagechildren = resource.getrusage(resource.RUSAGE_CHILDREN) # May not be available on all systems. try: usageboth = resource.getrusage(resource.RUSAGE_BOTH) except (ValueError, AttributeError): pass try: usage_thread = resource.getrusage(resource.RUSAGE_THREAD) except (ValueError, AttributeError): pass # Issue 6083: Reference counting bug def test_setrusage_refcount(self): try: limits = resource.getrlimit(resource.RLIMIT_CPU) except AttributeError: pass else: class BadSequence: def __len__(self): return 2 def __getitem__(self, key): if key in (0, 1): return len(tuple(range(1000000))) raise IndexError resource.setrlimit(resource.RLIMIT_CPU, BadSequence()) def test_pagesize(self): pagesize = resource.getpagesize() self.assertIsInstance(pagesize, int) self.assertGreaterEqual(pagesize, 0) @unittest.skipUnless(sys.platform == 'linux', 'test requires Linux') def test_linux_constants(self): for attr in ['MSGQUEUE', 'NICE', 'RTPRIO', 'RTTIME', 'SIGPENDING']: with contextlib.suppress(AttributeError): self.assertIsInstance(getattr(resource, 'RLIMIT_' + attr), int) @support.requires_freebsd_version(9) def test_freebsd_contants(self): for attr in ['SWAP', 'SBSIZE', 'NPTS']: with contextlib.suppress(AttributeError): self.assertIsInstance(getattr(resource, 'RLIMIT_' + attr), int) @unittest.skipUnless(hasattr(resource, 'prlimit'), 'no prlimit') @support.requires_linux_version(2, 6, 36) def test_prlimit(self): self.assertRaises(TypeError, resource.prlimit) if os.geteuid() != 0: self.assertRaises(PermissionError, resource.prlimit, 1, resource.RLIMIT_AS) self.assertRaises(ProcessLookupError, resource.prlimit, -1, resource.RLIMIT_AS) limit = resource.getrlimit(resource.RLIMIT_AS) self.assertEqual(resource.prlimit(0, resource.RLIMIT_AS), limit) self.assertEqual(resource.prlimit(0, resource.RLIMIT_AS, limit), limit) def test_main(verbose=None): support.run_unittest(ResourceTest) if __name__ == "__main__": test_main()
39.598802
80
0.576743
ea06631a8b86dbab76914971df02be27908be89a
13,477
py
Python
amazonadapi/amazonclient.py
barce/amazonadapi
76558774f26a6d1e2b496b9cbc0be1c603c85346
[ "MIT" ]
3
2018-10-17T19:06:17.000Z
2021-04-04T13:52:39.000Z
amazonadapi/amazonclient.py
barce/amazonadapi
76558774f26a6d1e2b496b9cbc0be1c603c85346
[ "MIT" ]
5
2018-09-12T20:07:40.000Z
2018-10-15T16:34:52.000Z
amazonadapi/amazonclient.py
barce/amazonadapi
76558774f26a6d1e2b496b9cbc0be1c603c85346
[ "MIT" ]
3
2018-02-05T21:04:28.000Z
2018-10-27T09:45:56.000Z
#!/usr/bin/env python from future.standard_library import install_aliases install_aliases() import json import jwt import requests import time import os import sys import re from urllib3._collections import HTTPHeaderDict use_environment_variables = None try: from django.conf import settings except ImportError: use_environment_variables = True class AmazonOrder: id = None advertiserId = None name = None startDateTime = None endDateTime = None status = None budget = {} deliveryCaps = [] def __init__(self): self.status = 'INACTIVE' class AmazonLineItem: id = None orderId = None advertiserId = None name = None type = None startDateTime = None endDateTime = None status = None budget = {} deliveryCaps = [] def __init__(self): self.status = 'INACTIVE' class AmazonClient: client_id = None client_secret = None api_key = None id_host = None one_host = None aud = None payload = None encoded_payload = None oauth_url = None payload_url = None headers = None authorized_headers = None token = None refresh_token = None profile_id = None region = None region_list = {} host = None data = None page_token = None page_size = None next_page_url = None redirect_uri = None def __init__(self): self.client_id = os.environ['AMZN_AD_CLIENT_ID'] self.client_secret = os.environ['AMZN_AD_CLIENT_SECRET'] # self.auth_url = "https://www.amazon.com/ap/oa?client_id=" + self.client_id + "&scope=advertising::campaign_management&repsonse_type=code&redirect_url=https%3A//www.accuenplatform.com/accounts/login/%3Fnext%3D/backstage/api/advertiser" self.auth_url = os.environ['AMZN_AUTH_URL'] self.profile_id = os.environ['AMZN_DEFAULT_PROFILE_ID'] self.redirect_uri="https://www.accuenplatform.com/accounts/login/%3Fnext%3D/backstage/api/advertiser" try: self.refresh_token = os.environ['AMZN_REFRESH_TOKEN'] except KeyError as e: print("error missing:") print(e) self.region_list = {"UK": "advertising-api-eu.amazon.com", "IN": "advertising-api-eu.amazon.com", "US": "advertising-api.amazon.com", "JP": "advertising-api-fe.amazon.com"} try: self.host = self.region_list[os.environ['AMZN_REGION']] except KeyError as e: self.host = 'advertising-api.amazon.com' def connect(self): get_token_url = "https://api.amazon.com/auth/o2/token" payload = "grant_type=authorization_code&code=" + self.amzn_code + "&redirect_uri=" + self.redirect_uri + "&client_id=" + self.client_id + "&client_secret=" + self.client_secret headers = {'Content-Type': 'application/x-www-form-urlencoded'} print(get_token_url) print(payload) print(headers) r = requests.post(get_token_url, data=payload, headers=headers) results_json = r.json() return results_json def get_amazon_auth_url(self): print("Go to this URL:") print(self.auth_url) def cli_auth_dance(self): self.get_amazon_auth_url() if sys.version_info < (3, 0): self.amzn_code = raw_input("Enter Amazon auth code: ") else: self.amzn_code = input("Enter Amazon auth code: ") print("Auth code, {}, entered.".format(self.amzn_code)) self.raw_token_results = self.connect() print("raw_token_results:") print(self.raw_token_results) self.token = self.raw_token_results['access_token'] self.refresh_token = self.raw_token_results['refresh_token'] profiles_json = self.get_profiles() self.profile_id = str(profiles_json[0]['profileId']) return self.token def auto_refresh_token(self): i_sentinel = 1 i_counter = 0 while i_sentinel > 0: get_token_url = "https://api.amazon.com/auth/o2/token" payload = "grant_type=refresh_token&client_id=" + self.client_id + "&client_secret=" + self.client_secret + "&refresh_token=" + self.refresh_token headers = {'Content-Type': 'application/x-www-form-urlencoded'} r = requests.post(get_token_url, data=payload, headers=headers) results_json = r.json() if 'access_token' in results_json: self.token = results_json['access_token'] return results_json i_counter += 1 time.sleep(1) if i_counter >= 5: i_sentinel = 0 return results_json def set_region(self, region='US'): self.region = region try: self.host = self.region_list[region] except KeyError as e: self.host = self.region_list["US"] self.region = "US" return self.host # curl -X GET -H "Content-Type:application/json" -H "Authorization: Bearer $AMZN_TOKEN" https://advertising-api.amazon.com/v1/profiles def get_profiles(self): url = "https://" + self.host + "/v1/profiles" headers = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + self.token} # r = requests.get(url, headers=headers) # results_json = r.json() r = self.make_request(url, headers, 'GET') return r # -H Authorization: Bearer self.token # -H Host: advertising-api.amazon # -H Amazon-Advertising-API-Scope: PROFILE_ID # -H Content-Type: application/json # url: https://advertising-api.amazon.com/da/v1/advertisers def get_advertisers(self): i_sentinel = 1 ids = [] response_json = {} while i_sentinel == 1: if self.page_token == None: if self.page_size == None: url = "https://" + self.host + "/da/v1/advertisers" else: url = "https://" + self.host + "/da/v1/advertisers?page_size=" + str(self.page_size) self.page_size = None else: url = "https://" + self.host + "/da/v1/advertisers?page_token=" + self.page_token headers = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + self.token, 'Host': self.host, 'Amazon-Advertising-API-Scope': self.profile_id} r = self.make_request(url, headers, 'GET') try: print(r.headers['Link']) self.next_page_url = r.headers['Link'] except: i_sentinel = 0 if self.next_page_url != None: p = re.compile('.*page_token=(.*)>') matches = p.findall(self.next_page_url) self.page_token = matches[0] self.page_token = None self.page_size = None return r # -H Authorization: Bearer self.token # -H Host: advertising-api.amazon # -H Amazon-Advertising-API-Scope: PROFILE_ID # -H Content-Type: application/json # url: https://advertising-api.amazon.com/da/v1/advertisers/AD_ID/orders def get_orders(self, ad_id): i_sentinel = 1 while i_sentinel == 1: if self.page_token == None: if self.page_size == None: url = "https://" + self.host + "/da/v1/advertisers/" + str(ad_id) + "/orders" else: url = "https://" + self.host + "/da/v1/advertisers/" + str(ad_id) + "/orders?page_size=" + str(self.page_size) self.page_size = None else: url = "https://" + self.host + "/da/v1/advertisers/" + str(ad_id) + "/orders?page_token=" + self.page_token headers = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + self.token, 'Host': self.host, 'Amazon-Advertising-API-Scope': self.profile_id} r = self.make_request(url, headers, 'GET') try: self.next_page_url = r.headers['Link'] except: i_sentinel = 0 if self.next_page_url != None: p = re.compile('.*page_token=(.*)>') matches = p.findall(self.next_page_url) self.page_token = matches[0] self.page_token = None self.page_size = None return r # -H Authorization: Bearer self.token # -H Host: advertising-api.amazon # -H Amazon-Advertising-API-Scope: PROFILE_ID # -H Content-Type: application/json # url: https://advertising-api.amazon.com/da/v1/orders/ORDER_ID def get_order(self, order_id): url = "https://" + self.host + "/da/v1/orders/" + order_id headers = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + self.token, 'Host': self.host, 'Amazon-Advertising-API-Scope': self.profile_id} r = self.make_request(url, headers, 'GET') return r # -H Authorization: Bearer self.token # -H Host: advertising-api.amazon # -H Amazon-Advertising-API-Scope: PROFILE_ID # -H Content-Type: application/json # url: https://advertising-api.amazon.com/da/v1/orders/ORDER_ID/line-items def get_line_items(self, order_id): i_sentinel = 1 ids = [] response_json = {} while i_sentinel == 1: if self.page_token == None: if self.page_size == None: url = "https://" + self.host + "/da/v1/orders/" + order_id + "/line-items" else: url = "https://" + self.host + "/da/v1/orders/" + order_id + "/line-items?page_size=" + str(self.page_size) self.page_size = None else: url = "https://" + self.host + "/da/v1/orders/" + order_id + "/line-items?page_token=" + self.page_token headers = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + self.token, 'Host': self.host, 'Amazon-Advertising-API-Scope': self.profile_id} r = self.make_request(url, headers, 'GET') try: self.next_page_url = r.headers['Link'] except: i_sentinel = 0 if self.next_page_url != None: p = re.compile('.*page_token=(.*)>') matches = p.findall(self.next_page_url) self.page_token = matches[0] self.page_token = None self.page_size = None return r def get_line_item(self, line_item_id): url = "https://" + self.host + "/da/v1/line-items/" + line_item_id headers = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + self.token, 'Host': self.host, 'Amazon-Advertising-API-Scope': self.profile_id} r = self.make_request(url, headers, 'GET') return r def create_order(self, order): url = "https://" + self.host + "/da/v1/orders" headers = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + self.token, 'Host': self.host, 'Amazon-Advertising-API-Scope': self.profile_id} self.data = order r = self.make_request(url, headers, 'POST', self.data) return r def update_order(self, order): url = "https://" + self.host + "/da/v1/orders" headers = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + self.token, 'Host': self.host, 'Amazon-Advertising-API-Scope': self.profile_id} self.data = order r = self.make_request(url, headers, 'PUT', self.data) return r def create_line_item(self, line_item): url = "https://" + self.host + "/da/v1/line-items" headers = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + self.token, 'Host': self.host, 'Amazon-Advertising-API-Scope': self.profile_id} self.data = line_item r = self.make_request(url, headers, 'POST', self.data) return r def update_line_item(self, line_item): # url = "https://" + self.host + "/da/v1/line-items/" + line_item.id # <-- expected behavior for update url = "https://" + self.host + "/da/v1/line-items" headers = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + self.token, 'Host': self.host, 'Amazon-Advertising-API-Scope': self.profile_id} self.data = line_item r = self.make_request(url, headers, 'PUT', self.data) return r def error_check_json(self, results_json): # if results_json['error']['httpStatusCode'] in ['401'] or results_json['code'] in ['401']: refresh_results_json = self.auto_refresh_token() return refresh_results_json # create response_json method to abstract away the creation of return response that matt wants def generate_json_response(self, r, results_json, request_body): response_json = { 'response_code': r.status_code, 'request_body': request_body } # if request is successful, ensure msg_type is success if r.status_code in [200, 201]: response_json['msg_type'] = 'success' response_json['msg'] = '' response_json['data'] = results_json else: response_json['msg_type'] = 'error' # display the error message that comes back from request response_json['msg'] = results_json['error'] response_json['data'] = results_json['error'] return response_json # make_request(method_type) --> pass in method_type def make_request(self, url, headers, method_type, data=None): request_body = url, headers, data r, results_json = self.make_new_request(url, self.token, method_type, headers, data) if r.status_code in [400, 401]: # refresh access token self.token = self.error_check_json(results_json)['access_token'] # apply headers with new token, return response and response dict r, results_json = self.make_new_request(url, self.token, method_type, headers) # use results_json to create updated json dict response_json = self.generate_json_response(r, results_json, request_body) return json.dumps(response_json) def make_new_request(self, url, token, method_type, headers, data=None): # modify headers with new access token headers['Authorization'] = 'Bearer ' + token if method_type == 'GET': r = requests.get(url, headers=headers) if method_type == 'POST': r = requests.post(url, headers=headers, verify=False, data=json.dumps(data)) if method_type == 'PUT': r = requests.put(url, headers=headers, verify=False, data=json.dumps(data)) results_json = r.json() return r, results_json
34.468031
240
0.662759
d33cd77ce18a1ed2136790689ce81045bcd3c7ce
758
py
Python
chapter-09/Exercise_9_9.py
yuetsin/CS-902
ae945f55944830ed3c6e4d71cfff2798cdf571ac
[ "MIT" ]
1
2019-05-16T11:00:40.000Z
2019-05-16T11:00:40.000Z
chapter-09/Exercise_9_9.py
yuetsin/CS-902
ae945f55944830ed3c6e4d71cfff2798cdf571ac
[ "MIT" ]
null
null
null
chapter-09/Exercise_9_9.py
yuetsin/CS-902
ae945f55944830ed3c6e4d71cfff2798cdf571ac
[ "MIT" ]
null
null
null
# Exercise 9.9 from random import random from math import sin from math import cos def oneStep(): stepAngle = random() * 6.283185307178 return (cos(stepAngle), sin(stepAngle)) def goHiking(steps): Xpos = Ypos = 0 for i in range(steps): Movement = oneStep() Xpos += Movement[0] Ypos += Movement[1] return (Xpos, Ypos) def main(): times = input("How many times do you want to go hiking? >>> ") steps = input("How many steps do you want to go hiking? >>> ") totalX = totalY = 0.0 move = goHiking(steps) for i in range(times): totalX += move[0] totalY += move[1] print "Final destination will be about", totalX / times, totalY / times if __name__ == '__main__': main()
24.451613
75
0.612137
195370e5cba51682190098714416dac29f8693ad
182
py
Python
tests/testapp/application_urls.py
barseghyanartur/feincms3-language-sites
f02e46e895a8c0d52b0bdad60352926073ffbd4b
[ "BSD-3-Clause" ]
2
2021-09-14T07:23:32.000Z
2021-10-03T12:15:11.000Z
tests/testapp/application_urls.py
barseghyanartur/feincms3-language-sites
f02e46e895a8c0d52b0bdad60352926073ffbd4b
[ "BSD-3-Clause" ]
null
null
null
tests/testapp/application_urls.py
barseghyanartur/feincms3-language-sites
f02e46e895a8c0d52b0bdad60352926073ffbd4b
[ "BSD-3-Clause" ]
1
2021-09-14T07:23:34.000Z
2021-09-14T07:23:34.000Z
from django.http import HttpResponse from django.urls import path app_name = "application" urlpatterns = [ path("", lambda request: HttpResponse(request.path), name="root"), ]
20.222222
70
0.736264
d6fecc0794f5810a2b814da663443fa75093ad7f
88,971
py
Python
tests/integration/awslambda/test_lambda.py
TheRakeshPurohit/localstack
063e07827934a7c7ff00e6d7cf6e243bcce0eb99
[ "Apache-2.0" ]
null
null
null
tests/integration/awslambda/test_lambda.py
TheRakeshPurohit/localstack
063e07827934a7c7ff00e6d7cf6e243bcce0eb99
[ "Apache-2.0" ]
null
null
null
tests/integration/awslambda/test_lambda.py
TheRakeshPurohit/localstack
063e07827934a7c7ff00e6d7cf6e243bcce0eb99
[ "Apache-2.0" ]
null
null
null
import base64 import json import logging import os import re import shutil import time from io import BytesIO from typing import Dict, TypeVar import pytest from botocore.exceptions import ClientError from botocore.response import StreamingBody from localstack.constants import LAMBDA_TEST_ROLE, TEST_AWS_ACCOUNT_ID from localstack.services.awslambda import lambda_api from localstack.services.awslambda.lambda_api import ( LAMBDA_DEFAULT_HANDLER, get_lambda_policy_name, use_docker, ) from localstack.services.awslambda.lambda_utils import ( LAMBDA_RUNTIME_DOTNET6, LAMBDA_RUNTIME_DOTNETCORE31, LAMBDA_RUNTIME_GOLANG, LAMBDA_RUNTIME_JAVA8, LAMBDA_RUNTIME_JAVA8_AL2, LAMBDA_RUNTIME_JAVA11, LAMBDA_RUNTIME_NODEJS12X, LAMBDA_RUNTIME_NODEJS14X, LAMBDA_RUNTIME_PROVIDED, LAMBDA_RUNTIME_PROVIDED_AL2, LAMBDA_RUNTIME_PYTHON36, LAMBDA_RUNTIME_PYTHON37, LAMBDA_RUNTIME_PYTHON38, LAMBDA_RUNTIME_PYTHON39, LAMBDA_RUNTIME_RUBY27, ) from localstack.services.install import ( GO_RUNTIME_VERSION, INSTALL_PATH_LOCALSTACK_FAT_JAR, TEST_LAMBDA_JAVA, download_and_extract, ) from localstack.utils import testutil from localstack.utils.aws import aws_stack from localstack.utils.common import ( cp_r, get_arch, get_os, load_file, mkdir, new_tmp_dir, retry, run_safe, save_file, short_uid, to_bytes, to_str, unzip, ) from localstack.utils.generic.wait_utils import wait_until from localstack.utils.sync import poll_condition from localstack.utils.testutil import ( check_expected_lambda_log_events_length, create_lambda_archive, get_lambda_log_events, ) from .functions import lambda_integration from .lambda_test_util import concurrency_update_done, get_invoke_init_type, update_done THIS_FOLDER = os.path.dirname(os.path.realpath(__file__)) TEST_LAMBDA_PYTHON = os.path.join(THIS_FOLDER, "functions/lambda_integration.py") TEST_LAMBDA_PYTHON_ECHO = os.path.join(THIS_FOLDER, "functions/lambda_echo.py") TEST_LAMBDA_PYTHON_VERSION = os.path.join(THIS_FOLDER, "functions/lambda_python_version.py") TEST_LAMBDA_PYTHON_UNHANDLED_ERROR = os.path.join( THIS_FOLDER, "functions/lambda_unhandled_error.py" ) TEST_LAMBDA_PYTHON3 = os.path.join(THIS_FOLDER, "functions/lambda_python3.py") TEST_LAMBDA_INTEGRATION_NODEJS = os.path.join(THIS_FOLDER, "functions/lambda_integration.js") TEST_LAMBDA_NODEJS = os.path.join(THIS_FOLDER, "functions/lambda_handler.js") TEST_LAMBDA_GOLANG_ZIP = os.path.join(THIS_FOLDER, "functions/golang/handler.zip") TEST_LAMBDA_RUBY = os.path.join(THIS_FOLDER, "functions/lambda_integration.rb") TEST_LAMBDA_DOTNETCORE2 = os.path.join(THIS_FOLDER, "functions/dotnetcore2/dotnetcore2.zip") TEST_LAMBDA_DOTNETCORE31 = os.path.join(THIS_FOLDER, "functions/dotnetcore31/dotnetcore31.zip") TEST_LAMBDA_DOTNET6 = os.path.join(THIS_FOLDER, "functions/dotnet6/dotnet6.zip") TEST_LAMBDA_CUSTOM_RUNTIME = os.path.join(THIS_FOLDER, "functions/custom-runtime") TEST_LAMBDA_HTTP_RUST = os.path.join(THIS_FOLDER, "functions/rust-lambda/function.zip") TEST_LAMBDA_JAVA_WITH_LIB = os.path.join( THIS_FOLDER, "functions/java/lambda_echo/lambda-function-with-lib-0.0.1.jar" ) TEST_LAMBDA_JAVA_MULTIPLE_HANDLERS = os.path.join( THIS_FOLDER, "functions", "java", "lambda_multiple_handlers", "build", "distributions", "lambda-function-with-multiple-handlers.zip", ) TEST_LAMBDA_ENV = os.path.join(THIS_FOLDER, "functions/lambda_environment.py") TEST_LAMBDA_SEND_MESSAGE_FILE = os.path.join(THIS_FOLDER, "functions/lambda_send_message.py") TEST_LAMBDA_PUT_ITEM_FILE = os.path.join(THIS_FOLDER, "functions/lambda_put_item.py") TEST_LAMBDA_START_EXECUTION_FILE = os.path.join(THIS_FOLDER, "functions/lambda_start_execution.py") TEST_LAMBDA_FUNCTION_PREFIX = "lambda-function" TEST_GOLANG_LAMBDA_URL_TEMPLATE = "https://github.com/localstack/awslamba-go-runtime/releases/download/v{version}/example-handler-{os}-{arch}.tar.gz" TEST_LAMBDA_LIBS = [ "requests", "psutil", "urllib3", "chardet", "certifi", "idna", "pip", "dns", ] PYTHON_TEST_RUNTIMES = ( [ LAMBDA_RUNTIME_PYTHON36, LAMBDA_RUNTIME_PYTHON37, LAMBDA_RUNTIME_PYTHON38, LAMBDA_RUNTIME_PYTHON39, ] if use_docker() else [LAMBDA_RUNTIME_PYTHON38] ) NODE_TEST_RUNTIMES = ( [ LAMBDA_RUNTIME_NODEJS12X, LAMBDA_RUNTIME_NODEJS14X, ] if use_docker() else [LAMBDA_RUNTIME_NODEJS14X] ) JAVA_TEST_RUNTIMES = ( [ LAMBDA_RUNTIME_JAVA8, LAMBDA_RUNTIME_JAVA8_AL2, LAMBDA_RUNTIME_JAVA11, ] if use_docker() else [LAMBDA_RUNTIME_JAVA11] ) def is_old_provider(): return ( os.environ.get("TEST_TARGET") != "AWS_CLOUD" and os.environ.get("PROVIDER_OVERRIDE_LAMBDA") != "asf" ) PROVIDED_TEST_RUNTIMES = [ LAMBDA_RUNTIME_PROVIDED, # TODO remove skip once we use correct images pytest.param( LAMBDA_RUNTIME_PROVIDED_AL2, marks=pytest.mark.skipif( is_old_provider(), reason="curl missing in provided.al2 lambci image" ), ), ] T = TypeVar("T") def read_streams(payload: T) -> T: new_payload = {} for k, v in payload.items(): if isinstance(v, Dict): new_payload[k] = read_streams(v) elif isinstance(v, StreamingBody): new_payload[k] = to_str(v.read()) else: new_payload[k] = v return new_payload # API only functions (no lambda execution itself) class TestLambdaAPI: @pytest.mark.only_localstack def test_create_lambda_function(self, lambda_client): """Basic test that creates and deletes a Lambda function""" func_name = f"lambda_func-{short_uid()}" kms_key_arn = f"arn:{aws_stack.get_partition()}:kms:{aws_stack.get_region()}:{TEST_AWS_ACCOUNT_ID}:key11" vpc_config = { "SubnetIds": ["subnet-123456789"], "SecurityGroupIds": ["sg-123456789"], } tags = {"env": "testing"} kwargs = { "FunctionName": func_name, "Runtime": LAMBDA_RUNTIME_PYTHON37, "Handler": LAMBDA_DEFAULT_HANDLER, "Role": LAMBDA_TEST_ROLE, "KMSKeyArn": kms_key_arn, "Code": { "ZipFile": create_lambda_archive( load_file(TEST_LAMBDA_PYTHON_ECHO), get_content=True ) }, "Timeout": 3, "VpcConfig": vpc_config, "Tags": tags, "Environment": {"Variables": {"foo": "bar"}}, } result = lambda_client.create_function(**kwargs) function_arn = result["FunctionArn"] assert testutil.response_arn_matches_partition(lambda_client, function_arn) partial_function_arn = ":".join(function_arn.split(":")[3:]) # Get function by Name, ARN and partial ARN for func_ref in [func_name, function_arn, partial_function_arn]: rs = lambda_client.get_function(FunctionName=func_ref) assert rs["Configuration"].get("KMSKeyArn", "") == kms_key_arn assert rs["Configuration"].get("VpcConfig", {}) == vpc_config assert rs["Tags"] == tags # clean up lambda_client.delete_function(FunctionName=func_name) with pytest.raises(Exception) as exc: lambda_client.delete_function(FunctionName=func_name) assert "ResourceNotFoundException" in str(exc) @pytest.mark.skip_snapshot_verify def test_add_lambda_permission_aws( self, lambda_client, iam_client, create_lambda_function, account_id, snapshot ): """Testing the add_permission call on lambda, by adding a new resource-based policy to a lambda function""" snapshot.add_transformer(snapshot.transform.lambda_api()) function_name = f"lambda_func-{short_uid()}" lambda_create_response = create_lambda_function( handler_file=TEST_LAMBDA_PYTHON_ECHO, func_name=function_name, runtime=LAMBDA_RUNTIME_PYTHON36, ) lambda_arn = lambda_create_response["CreateFunctionResponse"]["FunctionArn"] snapshot.match("create_lambda", lambda_create_response) # create lambda permission action = "lambda:InvokeFunction" sid = "s3" principal = "s3.amazonaws.com" resp = lambda_client.add_permission( FunctionName=function_name, Action=action, StatementId=sid, Principal=principal, SourceArn=aws_stack.s3_bucket_arn("test-bucket"), ) snapshot.match("add_permission", resp) # fetch lambda policy get_policy_result = lambda_client.get_policy(FunctionName=function_name) snapshot.match("get_policy", get_policy_result) assert lambda_arn == json.loads(get_policy_result["Policy"])["Statement"][0]["Resource"] # TODO permissions cannot be added to $LATEST @pytest.mark.skipif( not is_old_provider(), reason="test does not make valid assertions against AWS" ) def test_add_lambda_permission(self, lambda_client, iam_client, create_lambda_function): function_name = f"lambda_func-{short_uid()}" lambda_create_response = create_lambda_function( handler_file=TEST_LAMBDA_PYTHON_ECHO, func_name=function_name, runtime=LAMBDA_RUNTIME_PYTHON36, ) lambda_arn = lambda_create_response["CreateFunctionResponse"]["FunctionArn"] # create lambda permission action = "lambda:InvokeFunction" sid = "s3" principal = "s3.amazonaws.com" resp = lambda_client.add_permission( FunctionName=function_name, Action=action, StatementId=sid, Principal=principal, SourceArn=aws_stack.s3_bucket_arn("test-bucket"), ) # fetch lambda policy policy = lambda_client.get_policy(FunctionName=function_name)["Policy"] assert isinstance(policy, str) policy = json.loads(to_str(policy)) assert action == policy["Statement"][0]["Action"] assert sid == policy["Statement"][0]["Sid"] assert lambda_arn == policy["Statement"][0]["Resource"] assert principal == policy["Statement"][0]["Principal"]["Service"] assert ( aws_stack.s3_bucket_arn("test-bucket") == policy["Statement"][0]["Condition"]["ArnLike"]["AWS:SourceArn"] ) # fetch IAM policy # this is not a valid assertion in general (especially against AWS) policies = iam_client.list_policies(Scope="Local", MaxItems=500)["Policies"] policy_name = get_lambda_policy_name(function_name) matching = [p for p in policies if p["PolicyName"] == policy_name] assert len(matching) == 1 assert ":policy/" in matching[0]["Arn"] # remove permission that we just added resp = lambda_client.remove_permission( FunctionName=function_name, StatementId=sid, Qualifier="qual1", RevisionId="r1", ) assert 200 == resp["ResponseMetadata"]["HTTPStatusCode"] @pytest.mark.skip_snapshot_verify def test_remove_multi_permissions(self, lambda_client, create_lambda_function, snapshot): """Tests creation and subsequent removal of multiple permissions, including the changes in the policy""" snapshot.add_transformer(snapshot.transform.lambda_api()) function_name = f"lambda_func-{short_uid()}" create_lambda_function( handler_file=TEST_LAMBDA_PYTHON_ECHO, func_name=function_name, runtime=LAMBDA_RUNTIME_PYTHON36, ) action = "lambda:InvokeFunction" sid = "s3" principal = "s3.amazonaws.com" permission_1_add = lambda_client.add_permission( FunctionName=function_name, Action=action, StatementId=sid, Principal=principal, ) snapshot.match("add_permission_1", permission_1_add) sid_2 = "sqs" principal_2 = "sqs.amazonaws.com" permission_2_add = lambda_client.add_permission( FunctionName=function_name, Action=action, StatementId=sid_2, Principal=principal_2, SourceArn=aws_stack.s3_bucket_arn("test-bucket"), ) snapshot.match("add_permission_2", permission_2_add) policy_response = lambda_client.get_policy( FunctionName=function_name, ) snapshot.match("policy_after_2_add", policy_response) with pytest.raises(ClientError) as e: lambda_client.remove_permission( FunctionName=function_name, StatementId="non-existent", ) snapshot.match("expect_error_remove_permission", e.value.response) assert e.value.response["Error"]["Code"] == "ResourceNotFoundException" lambda_client.remove_permission( FunctionName=function_name, StatementId=sid_2, ) policy = json.loads( lambda_client.get_policy( FunctionName=function_name, )["Policy"] ) snapshot.match("policy_after_removal", policy) assert policy["Statement"][0]["Sid"] == sid lambda_client.remove_permission( FunctionName=function_name, StatementId=sid, ) with pytest.raises(ClientError) as ctx: lambda_client.get_policy(FunctionName=function_name) snapshot.match("expect_exception_get_policy", ctx.value.response) assert ctx.value.response["Error"]["Code"] == "ResourceNotFoundException" @pytest.mark.skipif( not is_old_provider(), reason="test does not make valid assertions against AWS" ) def test_add_lambda_multiple_permission( self, iam_client, lambda_client, create_lambda_function ): """Test adding multiple permissions""" function_name = f"lambda_func-{short_uid()}" create_lambda_function( handler_file=TEST_LAMBDA_PYTHON_ECHO, func_name=function_name, runtime=LAMBDA_RUNTIME_PYTHON36, ) # create lambda permissions action = "lambda:InvokeFunction" principal = "s3.amazonaws.com" statement_ids = ["s4", "s5"] for sid in statement_ids: resp = lambda_client.add_permission( FunctionName=function_name, Action=action, StatementId=sid, Principal=principal, SourceArn=aws_stack.s3_bucket_arn("test-bucket"), ) assert "Statement" in resp # fetch IAM policy # this is not a valid assertion in general (especially against AWS) policies = iam_client.list_policies(Scope="Local", MaxItems=500)["Policies"] policy_name = get_lambda_policy_name(function_name) matching = [p for p in policies if p["PolicyName"] == policy_name] assert 1 == len(matching) assert ":policy/" in matching[0]["Arn"] # validate both statements policy = matching[0] versions = iam_client.list_policy_versions(PolicyArn=policy["Arn"])["Versions"] assert 1 == len(versions) statements = versions[0]["Document"]["Statement"] for i in range(len(statement_ids)): assert action == statements[i]["Action"] assert lambda_api.func_arn(function_name) == statements[i]["Resource"] assert principal == statements[i]["Principal"]["Service"] assert ( aws_stack.s3_bucket_arn("test-bucket") == statements[i]["Condition"]["ArnLike"]["AWS:SourceArn"] ) # check statement_ids in reverse order assert statement_ids[abs(i - 1)] == statements[i]["Sid"] # remove permission that we just added resp = lambda_client.remove_permission( FunctionName=function_name, StatementId=sid, Qualifier="qual1", RevisionId="r1", ) assert 200 == resp["ResponseMetadata"]["HTTPStatusCode"] @pytest.mark.skip_snapshot_verify @pytest.mark.snapshot def test_lambda_asynchronous_invocations( self, lambda_client, create_lambda_function, sqs_queue, sqs_queue_arn, lambda_su_role, snapshot, ): """Testing API actions of function event config""" snapshot.add_transformer(snapshot.transform.lambda_api()) function_name = f"lambda_func-{short_uid()}" create_lambda_function( handler_file=TEST_LAMBDA_PYTHON_ECHO, func_name=function_name, runtime=LAMBDA_RUNTIME_PYTHON36, role=lambda_su_role, ) queue_arn = sqs_queue_arn(sqs_queue) destination_config = { "OnSuccess": {"Destination": queue_arn}, "OnFailure": {"Destination": queue_arn}, } # adding event invoke config response = lambda_client.put_function_event_invoke_config( FunctionName=function_name, MaximumRetryAttempts=2, MaximumEventAgeInSeconds=123, DestinationConfig=destination_config, ) snapshot.match("put_function_event_invoke_config", response) # over writing event invoke config response = lambda_client.put_function_event_invoke_config( FunctionName=function_name, MaximumRetryAttempts=2, DestinationConfig=destination_config, ) snapshot.match("put_function_event_invoke_config_overwritemaxeventage", response) # updating event invoke config response = lambda_client.update_function_event_invoke_config( FunctionName=function_name, MaximumRetryAttempts=1, ) snapshot.match("put_function_event_invoke_config_maxattempt1", response) # clean up lambda_client.delete_function_event_invoke_config(FunctionName=function_name) def test_function_concurrency(self, lambda_client, create_lambda_function, snapshot): """Testing the api of the put function concurrency action""" snapshot.add_transformer(snapshot.transform.lambda_api()) function_name = f"lambda_func-{short_uid()}" create_lambda_function( handler_file=TEST_LAMBDA_PYTHON_ECHO, func_name=function_name, runtime=LAMBDA_RUNTIME_PYTHON36, ) # TODO botocore.errorfactory.InvalidParameterValueException: # An error occurred (InvalidParameterValueException) when calling the PutFunctionConcurrency operation: Specified ReservedConcurrentExecutions for function decreases account's UnreservedConcurrentExecution below its minimum value of [50]. response = lambda_client.put_function_concurrency( FunctionName=function_name, ReservedConcurrentExecutions=123 ) snapshot.match("put_function_concurrency", response) assert "ReservedConcurrentExecutions" in response response = lambda_client.get_function_concurrency(FunctionName=function_name) snapshot.match("get_function_concurrency", response) assert "ReservedConcurrentExecutions" in response lambda_client.delete_function_concurrency(FunctionName=function_name) @pytest.mark.skip_snapshot_verify def test_function_code_signing_config(self, lambda_client, create_lambda_function, snapshot): """Testing the API of code signing config""" snapshot.add_transformer(snapshot.transform.lambda_api()) function_name = f"lambda_func-{short_uid()}" create_lambda_function( handler_file=TEST_LAMBDA_PYTHON_ECHO, func_name=function_name, runtime=LAMBDA_RUNTIME_PYTHON36, ) response = lambda_client.create_code_signing_config( Description="Testing CodeSigning Config", AllowedPublishers={ "SigningProfileVersionArns": [ f"arn:aws:signer:{aws_stack.get_region()}:000000000000:/signing-profiles/test", ] }, CodeSigningPolicies={"UntrustedArtifactOnDeployment": "Enforce"}, ) snapshot.match("create_code_signing_config", response) assert "Description" in response["CodeSigningConfig"] assert "SigningProfileVersionArns" in response["CodeSigningConfig"]["AllowedPublishers"] assert ( "UntrustedArtifactOnDeployment" in response["CodeSigningConfig"]["CodeSigningPolicies"] ) code_signing_arn = response["CodeSigningConfig"]["CodeSigningConfigArn"] response = lambda_client.update_code_signing_config( CodeSigningConfigArn=code_signing_arn, CodeSigningPolicies={"UntrustedArtifactOnDeployment": "Warn"}, ) snapshot.match("update_code_signing_config", response) assert ( "Warn" == response["CodeSigningConfig"]["CodeSigningPolicies"]["UntrustedArtifactOnDeployment"] ) response = lambda_client.get_code_signing_config(CodeSigningConfigArn=code_signing_arn) assert 200 == response["ResponseMetadata"]["HTTPStatusCode"] snapshot.match("get_code_signing_config", response) response = lambda_client.put_function_code_signing_config( CodeSigningConfigArn=code_signing_arn, FunctionName=function_name ) assert 200 == response["ResponseMetadata"]["HTTPStatusCode"] snapshot.match("put_function_code_signing_config", response) response = lambda_client.get_function_code_signing_config(FunctionName=function_name) assert 200 == response["ResponseMetadata"]["HTTPStatusCode"] snapshot.match("get_function_code_signing_config", response) assert code_signing_arn == response["CodeSigningConfigArn"] assert function_name == response["FunctionName"] response = lambda_client.delete_function_code_signing_config(FunctionName=function_name) assert 204 == response["ResponseMetadata"]["HTTPStatusCode"] response = lambda_client.delete_code_signing_config(CodeSigningConfigArn=code_signing_arn) assert 204 == response["ResponseMetadata"]["HTTPStatusCode"] # TODO not executed def create_multiple_lambda_permissions(self, lambda_client, create_lambda_function, snapshot): """Test creating multiple lambda permissions and checking the policy""" snapshot.add_transformer(snapshot.transform.lambda_api()) function_name = f"test-function-{short_uid()}" # FIXME no zip file/function? create_lambda_function( func_name=function_name, runtime=LAMBDA_RUNTIME_PYTHON37, libs=TEST_LAMBDA_LIBS, ) action = "lambda:InvokeFunction" sid = "logs" resp = lambda_client.add_permission( FunctionName=function_name, Action=action, StatementId=sid, Principal="logs.amazonaws.com", ) snapshot.match("add_permission_response_1", resp) assert "Statement" in resp sid = "kinesis" resp = lambda_client.add_permission( FunctionName=function_name, Action=action, StatementId=sid, Principal="kinesis.amazonaws.com", ) snapshot.match("add_permission_response_2", resp) assert "Statement" in resp policy_response = lambda_client.get_policy( FunctionName=function_name, ) snapshot.match("policy_after_2_add", policy_response) class TestLambdaBaseFeatures: @pytest.mark.skip_snapshot_verify def test_dead_letter_queue( self, lambda_client, create_lambda_function, sqs_client, sqs_create_queue, sqs_queue_arn, lambda_su_role, snapshot, ): """Creates a lambda with a defined dead letter queue, and check failed lambda invocation leads to a message""" # create DLQ and Lambda function snapshot.add_transformer(snapshot.transform.lambda_api()) snapshot.add_transformer(snapshot.transform.sqs_api()) queue_name = f"test-{short_uid()}" lambda_name = f"test-{short_uid()}" queue_url = sqs_create_queue(QueueName=queue_name) queue_arn = sqs_queue_arn(queue_url) create_lambda_response = create_lambda_function( handler_file=TEST_LAMBDA_PYTHON, func_name=lambda_name, libs=TEST_LAMBDA_LIBS, runtime=LAMBDA_RUNTIME_PYTHON36, DeadLetterConfig={"TargetArn": queue_arn}, role=lambda_su_role, ) snapshot.match("create_lambda_with_dlq", create_lambda_response) # invoke Lambda, triggering an error payload = {lambda_integration.MSG_BODY_RAISE_ERROR_FLAG: 1} lambda_client.invoke( FunctionName=lambda_name, Payload=json.dumps(payload), InvocationType="Event", ) # assert that message has been received on the DLQ def receive_dlq(): result = sqs_client.receive_message(QueueUrl=queue_url, MessageAttributeNames=["All"]) assert len(result["Messages"]) > 0 msg_attrs = result["Messages"][0]["MessageAttributes"] assert "RequestID" in msg_attrs assert "ErrorCode" in msg_attrs assert "ErrorMessage" in msg_attrs snapshot.match("sqs_dlq_message", result) # on AWS, event retries can be quite delayed, so we have to wait up to 6 minutes here, potential flakes retry(receive_dlq, retries=120, sleep=3) # update DLQ config update_function_config_response = lambda_client.update_function_configuration( FunctionName=lambda_name, DeadLetterConfig={} ) snapshot.match("delete_dlq", update_function_config_response) # invoke Lambda again, assert that status code is 200 and error details contained in the payload result = lambda_client.invoke( FunctionName=lambda_name, Payload=json.dumps(payload), LogType="Tail" ) result = read_streams(result) payload = json.loads(to_str(result["Payload"])) snapshot.match("result_payload", payload) assert 200 == result["StatusCode"] assert "Unhandled" == result["FunctionError"] assert "$LATEST" == result["ExecutedVersion"] assert "Test exception" in payload["errorMessage"] assert "Exception" in payload["errorType"] assert isinstance(payload["stackTrace"], list) log_result = result.get("LogResult") assert log_result logs = to_str(base64.b64decode(to_str(log_result))) assert "START" in logs assert "Test exception" in logs assert "END" in logs assert "REPORT" in logs @pytest.mark.parametrize( "condition,payload", [ ("Success", {}), ("RetriesExhausted", {lambda_integration.MSG_BODY_RAISE_ERROR_FLAG: 1}), ], ) @pytest.mark.skip_snapshot_verify def test_assess_lambda_destination_invocation( self, condition, payload, lambda_client, sqs_client, create_lambda_function, sqs_create_queue, sqs_queue_arn, lambda_su_role, snapshot, ): snapshot.add_transformer(snapshot.transform.lambda_api()) snapshot.add_transformer(snapshot.transform.sqs_api()) # message body contains ARN snapshot.add_transformer(snapshot.transform.key_value("MD5OfBody")) """Testing the destination config API and operation (for the OnSuccess case)""" # create DLQ and Lambda function queue_name = f"test-{short_uid()}" lambda_name = f"test-{short_uid()}" queue_url = sqs_create_queue(QueueName=queue_name) queue_arn = sqs_queue_arn(queue_url) create_lambda_function( handler_file=TEST_LAMBDA_PYTHON, func_name=lambda_name, libs=TEST_LAMBDA_LIBS, role=lambda_su_role, ) put_event_invoke_config_response = lambda_client.put_function_event_invoke_config( FunctionName=lambda_name, DestinationConfig={ "OnSuccess": {"Destination": queue_arn}, "OnFailure": {"Destination": queue_arn}, }, ) snapshot.match("put_function_event_invoke_config", put_event_invoke_config_response) lambda_client.invoke( FunctionName=lambda_name, Payload=json.dumps(payload), InvocationType="Event", ) def receive_message(): rs = sqs_client.receive_message(QueueUrl=queue_url, MessageAttributeNames=["All"]) assert len(rs["Messages"]) > 0 msg = rs["Messages"][0]["Body"] msg = json.loads(msg) assert condition == msg["requestContext"]["condition"] snapshot.match("destination_message", rs) retry(receive_message, retries=120, sleep=3) @pytest.mark.skip_snapshot_verify(paths=["$..LogResult"]) def test_large_payloads(self, caplog, lambda_client, create_lambda_function, snapshot): """Testing large payloads sent to lambda functions (~5MB)""" snapshot.add_transformer(snapshot.transform.lambda_api()) # Set the loglevel to INFO for this test to avoid breaking a CI environment (due to excessive log outputs) caplog.set_level(logging.INFO) function_name = f"large_payload-{short_uid()}" create_lambda_function( handler_file=TEST_LAMBDA_PYTHON_ECHO, func_name=function_name, runtime=LAMBDA_RUNTIME_PYTHON36, ) payload = {"test": "test123456" * 100 * 1000 * 5} # 5MB payload payload_bytes = to_bytes(json.dumps(payload)) result = lambda_client.invoke(FunctionName=function_name, Payload=payload_bytes) result = read_streams(result) snapshot.match("invocation_response", result) assert 200 == result["ResponseMetadata"]["HTTPStatusCode"] result_data = result["Payload"] result_data = json.loads(to_str(result_data)) assert payload == result_data parametrize_python_runtimes = pytest.mark.parametrize( "runtime", PYTHON_TEST_RUNTIMES, ) class TestPythonRuntimes: @pytest.fixture( params=PYTHON_TEST_RUNTIMES, ) def python_function_name(self, request, lambda_client, create_lambda_function): function_name = f"python-test-function-{short_uid()}" create_lambda_function( func_name=function_name, handler_file=TEST_LAMBDA_PYTHON, libs=TEST_LAMBDA_LIBS, runtime=request.param, ) return function_name @pytest.mark.skip_snapshot_verify( paths=["$..Payload.context.memory_limit_in_mb", "$..logs.logs"] ) def test_invocation_type_not_set(self, lambda_client, python_function_name, snapshot): """Test invocation of a lambda with no invocation type set, but LogType="Tail""" "" snapshot.add_transformer(snapshot.transform.lambda_api()) snapshot.add_transformer( snapshot.transform.key_value("LogResult", reference_replacement=False) ) result = lambda_client.invoke( FunctionName=python_function_name, Payload=b"{}", LogType="Tail" ) result = read_streams(result) snapshot.match("invoke", result) result_data = json.loads(result["Payload"]) # assert response details assert 200 == result["StatusCode"] assert {} == result_data["event"] # assert that logs are contained in response logs = result.get("LogResult", "") logs = to_str(base64.b64decode(to_str(logs))) snapshot.add_transformer( snapshot.transform.regex( re.compile(r"Duration: \d+(\.\d{2})? ms"), "Duration: <duration> ms" ) ) snapshot.add_transformer( snapshot.transform.regex(re.compile(r"Used: \d+ MB"), "Used: <memory> MB") ) snapshot.match("logs", {"logs": logs}) assert "START" in logs assert "Lambda log message" in logs assert "END" in logs assert "REPORT" in logs @pytest.mark.skip_snapshot_verify( paths=["$..LogResult", "$..Payload.context.memory_limit_in_mb"] ) def test_invocation_type_request_response(self, lambda_client, python_function_name, snapshot): """Test invocation with InvocationType RequestResponse explicitely set""" snapshot.add_transformer(snapshot.transform.lambda_api()) result = lambda_client.invoke( FunctionName=python_function_name, Payload=b"{}", InvocationType="RequestResponse", ) result = read_streams(result) snapshot.match("invoke-result", result) result_data = result["Payload"] result_data = json.loads(result_data) assert "application/json" == result["ResponseMetadata"]["HTTPHeaders"]["content-type"] assert 200 == result["StatusCode"] assert isinstance(result_data, dict) @pytest.mark.skip_snapshot_verify(paths=["$..LogResult", "$..ExecutedVersion"]) def test_invocation_type_event(self, lambda_client, python_function_name, snapshot): """Check invocation response for type event""" snapshot.add_transformer(snapshot.transform.lambda_api()) result = lambda_client.invoke( FunctionName=python_function_name, Payload=b"{}", InvocationType="Event" ) result = read_streams(result) snapshot.match("invoke-result", result) assert 202 == result["StatusCode"] @pytest.mark.skip_snapshot_verify(paths=["$..LogResult", "$..ExecutedVersion"]) def test_invocation_type_dry_run(self, lambda_client, python_function_name, snapshot): """Check invocation response for type dryrun""" snapshot.add_transformer(snapshot.transform.lambda_api()) result = lambda_client.invoke( FunctionName=python_function_name, Payload=b"{}", InvocationType="DryRun" ) result = read_streams(result) snapshot.match("invoke-result", result) assert 204 == result["StatusCode"] @parametrize_python_runtimes @pytest.mark.skip_snapshot_verify def test_lambda_environment(self, lambda_client, create_lambda_function, runtime, snapshot): """Tests invoking a lambda function with environment variables set on creation""" snapshot.add_transformer(snapshot.transform.lambda_api()) function_name = f"env-test-function-{short_uid()}" env_vars = {"Hello": "World"} creation_result = create_lambda_function( handler_file=TEST_LAMBDA_ENV, libs=TEST_LAMBDA_LIBS, func_name=function_name, envvars=env_vars, runtime=runtime, ) snapshot.match("creation-result", creation_result) # invoke function and assert result contains env vars result = lambda_client.invoke(FunctionName=function_name, Payload=b"{}") result = read_streams(result) snapshot.match("invocation-result", result) result_data = result["Payload"] assert 200 == result["StatusCode"] assert json.loads(result_data) == env_vars # get function config and assert result contains env vars result = lambda_client.get_function_configuration(FunctionName=function_name) snapshot.match("get-configuration-result", result) assert result["Environment"] == {"Variables": env_vars} @parametrize_python_runtimes @pytest.mark.skip_snapshot_verify def test_invocation_with_qualifier( self, lambda_client, s3_client, s3_bucket, runtime, check_lambda_logs, lambda_su_role, wait_until_lambda_ready, snapshot, ): """Tests invocation of python lambda with a given qualifier""" snapshot.add_transformer(snapshot.transform.lambda_api()) function_name = f"test_lambda_{short_uid()}" bucket_key = "test_lambda.zip" # upload zip file to S3 zip_file = create_lambda_archive( load_file(TEST_LAMBDA_PYTHON), get_content=True, libs=TEST_LAMBDA_LIBS, runtime=runtime ) s3_client.upload_fileobj(BytesIO(zip_file), s3_bucket, bucket_key) # create lambda function response = lambda_client.create_function( FunctionName=function_name, Runtime=runtime, Role=lambda_su_role, Publish=True, Handler="handler.handler", Code={"S3Bucket": s3_bucket, "S3Key": bucket_key}, Timeout=10, ) snapshot.match("creation-response", response) assert "Version" in response qualifier = response["Version"] wait_until_lambda_ready(function_name=function_name, qualifier=qualifier) # invoke lambda function data_before = b'{"foo": "bar with \'quotes\\""}' result = lambda_client.invoke( FunctionName=function_name, Payload=data_before, Qualifier=qualifier ) result = read_streams(result) snapshot.match("invocation-response", result) data_after = json.loads(result["Payload"]) assert json.loads(to_str(data_before)) == data_after["event"] context = data_after["context"] assert response["Version"] == context["function_version"] assert context.get("aws_request_id") assert function_name == context["function_name"] assert f"/aws/lambda/{function_name}" == context["log_group_name"] assert context.get("log_stream_name") assert context.get("memory_limit_in_mb") # assert that logs are present expected = [".*Lambda log message - print function.*"] if use_docker(): # Note that during regular test execution, nosetests captures the output from # the logging module - hence we can only expect this when running in Docker expected.append(".*Lambda log message - logging module.*") def check_logs(): check_lambda_logs(function_name, expected_lines=expected) retry(check_logs, retries=10) lambda_client.delete_function(FunctionName=function_name) @parametrize_python_runtimes @pytest.mark.skip_snapshot_verify def test_upload_lambda_from_s3( self, lambda_client, s3_client, s3_bucket, runtime, lambda_su_role, wait_until_lambda_ready, snapshot, ): """Test invocation of a python lambda with its deployment package uploaded to s3""" snapshot.add_transformer(snapshot.transform.lambda_api()) snapshot.add_transformer(snapshot.transform.s3_api()) function_name = f"test_lambda_{short_uid()}" bucket_key = "test_lambda.zip" # upload zip file to S3 zip_file = testutil.create_lambda_archive( load_file(TEST_LAMBDA_PYTHON), get_content=True, libs=TEST_LAMBDA_LIBS, runtime=runtime ) s3_client.upload_fileobj(BytesIO(zip_file), s3_bucket, bucket_key) # create lambda function create_response = lambda_client.create_function( FunctionName=function_name, Runtime=runtime, Handler="handler.handler", Role=lambda_su_role, Code={"S3Bucket": s3_bucket, "S3Key": bucket_key}, Timeout=10, ) snapshot.match("creation-response", create_response) wait_until_lambda_ready(function_name=function_name) # invoke lambda function data_before = b'{"foo": "bar with \'quotes\\""}' result = lambda_client.invoke(FunctionName=function_name, Payload=data_before) result = read_streams(result) snapshot.match("invocation-response", result) data_after = json.loads(result["Payload"]) assert json.loads(to_str(data_before)) == data_after["event"] context = data_after["context"] assert "$LATEST" == context["function_version"] assert function_name == context["function_name"] # clean up lambda_client.delete_function(FunctionName=function_name) @parametrize_python_runtimes def test_handler_in_submodule(self, lambda_client, create_lambda_function, runtime): """Test invocation of a lambda handler which resides in a submodule (= not root module)""" function_name = f"test-function-{short_uid()}" zip_file = testutil.create_lambda_archive( load_file(TEST_LAMBDA_PYTHON), get_content=True, libs=TEST_LAMBDA_LIBS, runtime=runtime, file_name="localstack_package/def/main.py", ) create_lambda_function( func_name=function_name, zip_file=zip_file, handler="localstack_package.def.main.handler", runtime=runtime, ) # invoke function and assert result result = lambda_client.invoke(FunctionName=function_name, Payload=b"{}") result_data = json.loads(result["Payload"].read()) assert 200 == result["StatusCode"] assert json.loads("{}") == result_data["event"] @parametrize_python_runtimes def test_lambda_send_message_to_sqs( self, lambda_client, create_lambda_function, sqs_client, sqs_create_queue, runtime, lambda_su_role, ): """Send sqs message to sqs queue inside python lambda""" function_name = f"test-function-{short_uid()}" queue_name = f"lambda-queue-{short_uid()}" queue_url = sqs_create_queue(QueueName=queue_name) create_lambda_function( handler_file=TEST_LAMBDA_SEND_MESSAGE_FILE, func_name=function_name, runtime=runtime, role=lambda_su_role, ) event = { "message": f"message-from-test-lambda-{short_uid()}", "queue_name": queue_name, "region_name": sqs_client.meta.region_name, } lambda_client.invoke(FunctionName=function_name, Payload=json.dumps(event)) # assert that message has been received on the Queue def receive_message(): rs = sqs_client.receive_message(QueueUrl=queue_url, MessageAttributeNames=["All"]) assert len(rs["Messages"]) > 0 return rs["Messages"][0] message = retry(receive_message, retries=15, sleep=2) assert event["message"] == message["Body"] @parametrize_python_runtimes def test_lambda_put_item_to_dynamodb( self, lambda_client, create_lambda_function, dynamodb_create_table, runtime, dynamodb_resource, lambda_su_role, dynamodb_client, ): """Put item into dynamodb from python lambda""" table_name = f"ddb-table-{short_uid()}" function_name = f"test-function-{short_uid()}" dynamodb_create_table(table_name=table_name, partition_key="id") create_lambda_function( handler_file=TEST_LAMBDA_PUT_ITEM_FILE, func_name=function_name, runtime=runtime, role=lambda_su_role, ) data = {short_uid(): f"data-{i}" for i in range(3)} event = { "table_name": table_name, "region_name": dynamodb_client.meta.region_name, "items": [{"id": k, "data": v} for k, v in data.items()], } def wait_for_table_created(): return ( dynamodb_client.describe_table(TableName=table_name)["Table"]["TableStatus"] == "ACTIVE" ) assert poll_condition(wait_for_table_created, timeout=30) lambda_client.invoke(FunctionName=function_name, Payload=json.dumps(event)) rs = dynamodb_resource.Table(table_name).scan() items = rs["Items"] assert len(items) == len(data.keys()) for item in items: assert data[item["id"]] == item["data"] @parametrize_python_runtimes def test_lambda_start_stepfunctions_execution( self, lambda_client, stepfunctions_client, create_lambda_function, runtime, lambda_su_role ): """Start stepfunctions machine execution from lambda""" function_name = f"test-function-{short_uid()}" resource_lambda_name = f"test-resource-{short_uid()}" state_machine_name = f"state-machine-{short_uid()}" create_lambda_function( handler_file=TEST_LAMBDA_START_EXECUTION_FILE, func_name=function_name, runtime=runtime, role=lambda_su_role, ) resource_lambda_arn = create_lambda_function( handler_file=TEST_LAMBDA_PYTHON_ECHO, func_name=resource_lambda_name, runtime=runtime, role=lambda_su_role, )["CreateFunctionResponse"]["FunctionArn"] state_machine_def = { "StartAt": "step1", "States": { "step1": { "Type": "Task", "Resource": resource_lambda_arn, "ResultPath": "$.result_value", "End": True, } }, } rs = stepfunctions_client.create_state_machine( name=state_machine_name, definition=json.dumps(state_machine_def), roleArn=lambda_su_role, ) sm_arn = rs["stateMachineArn"] try: lambda_client.invoke( FunctionName=function_name, Payload=json.dumps( { "state_machine_arn": sm_arn, "region_name": stepfunctions_client.meta.region_name, "input": {}, } ), ) time.sleep(1) rs = stepfunctions_client.list_executions(stateMachineArn=sm_arn) # assert that state machine get executed 1 time assert 1 == len([ex for ex in rs["executions"] if ex["stateMachineArn"] == sm_arn]) finally: # clean up stepfunctions_client.delete_state_machine(stateMachineArn=sm_arn) @pytest.mark.skipif( not use_docker(), reason="Test for docker python runtimes not applicable if run locally" ) @parametrize_python_runtimes def test_python_runtime_correct_versions(self, lambda_client, create_lambda_function, runtime): """Test different versions of python runtimes to report back the correct python version""" function_name = f"test_python_executor_{short_uid()}" create_lambda_function( func_name=function_name, handler_file=TEST_LAMBDA_PYTHON_VERSION, runtime=runtime, ) result = lambda_client.invoke( FunctionName=function_name, Payload=b"{}", ) result = json.loads(to_str(result["Payload"].read())) assert result["version"] == runtime @pytest.mark.skipif( not use_docker(), reason="Test for docker python runtimes not applicable if run locally" ) @parametrize_python_runtimes @pytest.mark.skip_snapshot_verify def test_python_runtime_unhandled_errors( self, lambda_client, create_lambda_function, runtime, snapshot ): """Test unhandled errors during python lambda invocation""" snapshot.add_transformer(snapshot.transform.lambda_api()) function_name = f"test_python_executor_{short_uid()}" creation_response = create_lambda_function( func_name=function_name, handler_file=TEST_LAMBDA_PYTHON_UNHANDLED_ERROR, runtime=runtime, ) snapshot.match("creation_response", creation_response) result = lambda_client.invoke( FunctionName=function_name, Payload=b"{}", ) result = read_streams(result) snapshot.match("invocation_response", result) assert result["StatusCode"] == 200 assert result["ExecutedVersion"] == "$LATEST" assert result["FunctionError"] == "Unhandled" payload = json.loads(result["Payload"]) assert payload["errorType"] == "CustomException" assert payload["errorMessage"] == "some error occurred" assert "stackTrace" in payload if ( runtime == "python3.9" and not is_old_provider() ): # TODO: remove this after the legacy provider is gone assert "requestId" in payload else: assert "requestId" not in payload parametrize_node_runtimes = pytest.mark.parametrize( "runtime", NODE_TEST_RUNTIMES, ) class TestNodeJSRuntimes: @pytest.mark.skipif( not use_docker(), reason="Test for docker nodejs runtimes not applicable if run locally" ) @parametrize_node_runtimes @pytest.mark.skip_snapshot_verify def test_nodejs_lambda_with_context( self, lambda_client, create_lambda_function, runtime, check_lambda_logs, snapshot ): """Test context of nodejs lambda invocation""" snapshot.add_transformer(snapshot.transform.lambda_api()) function_name = f"test-function-{short_uid()}" creation_response = create_lambda_function( func_name=function_name, handler_file=TEST_LAMBDA_INTEGRATION_NODEJS, handler="lambda_integration.handler", runtime=runtime, ) snapshot.match("creation", creation_response) ctx = { "custom": {"foo": "bar"}, "client": {"snap": ["crackle", "pop"]}, "env": {"fizz": "buzz"}, } result = lambda_client.invoke( FunctionName=function_name, Payload=b"{}", ClientContext=to_str(base64.b64encode(to_bytes(json.dumps(ctx)))), ) result = read_streams(result) snapshot.match("invocation", result) result_data = result["Payload"] assert 200 == result["StatusCode"] client_context = json.loads(result_data)["context"]["clientContext"] # TODO in the old provider, for some reason this is necessary. That is invalid behavior if is_old_provider(): client_context = json.loads(client_context) assert "bar" == client_context.get("custom").get("foo") # assert that logs are present expected = [".*Node.js Lambda handler executing."] def check_logs(): check_lambda_logs(function_name, expected_lines=expected) retry(check_logs, retries=15) @parametrize_node_runtimes @pytest.mark.skip_snapshot_verify def test_invoke_nodejs_lambda( self, lambda_client, create_lambda_function, runtime, logs_client, snapshot ): """Test simple nodejs lambda invocation""" snapshot.add_transformer(snapshot.transform.lambda_api()) function_name = f"test-function-{short_uid()}" result = create_lambda_function( func_name=function_name, zip_file=testutil.create_zip_file(TEST_LAMBDA_NODEJS, get_content=True), runtime=runtime, handler="lambda_handler.handler", ) snapshot.match("creation-result", result) rs = lambda_client.invoke( FunctionName=function_name, Payload=json.dumps({"event_type": "test_lambda"}), ) assert 200 == rs["ResponseMetadata"]["HTTPStatusCode"] rs = read_streams(rs) snapshot.match("invocation-result", rs) payload = rs["Payload"] response = json.loads(payload) assert "response from localstack lambda" in response["body"] def assert_events(): events = get_lambda_log_events(function_name, logs_client=logs_client) assert len(events) > 0 retry(assert_events, retries=10) @parametrize_node_runtimes @pytest.mark.skip_snapshot_verify(paths=["$..LogResult"]) def test_invoke_nodejs_lambda_with_payload_containing_quotes( self, lambda_client, create_lambda_function, runtime, logs_client, snapshot ): """Test nodejs invocation of payload with quotes""" snapshot.add_transformer(snapshot.transform.lambda_api()) function_name = f"test_lambda_{short_uid()}" create_lambda_function( func_name=function_name, zip_file=testutil.create_zip_file(TEST_LAMBDA_NODEJS, get_content=True), runtime=runtime, handler="lambda_handler.handler", ) test_string = "test_string' with some quotes" body = f'{{"test_var": "{test_string}"}}' rs = lambda_client.invoke( FunctionName=function_name, Payload=body, ) assert 200 == rs["ResponseMetadata"]["HTTPStatusCode"] rs = read_streams(rs) snapshot.match("invoke-result", rs) response = json.loads(rs["Payload"]) assert "response from localstack lambda" in response["body"] def assert_events(): events = get_lambda_log_events(function_name, logs_client=logs_client) assert len(events) > 0 assert test_string in str(events[0]) retry(assert_events, retries=10) class TestCustomRuntimes: @pytest.mark.skipif( not use_docker(), reason="Test for docker provided runtimes not applicable if run locally" ) @pytest.mark.parametrize( "runtime", PROVIDED_TEST_RUNTIMES, ) @pytest.mark.skip_snapshot_verify def test_provided_runtimes( self, lambda_client, create_lambda_function, runtime, check_lambda_logs, snapshot ): """Test simple provided lambda (with curl as RIC) invocation""" snapshot.add_transformer(snapshot.transform.lambda_api()) function_name = f"test-function-{short_uid()}" result = create_lambda_function( func_name=function_name, handler_file=TEST_LAMBDA_CUSTOM_RUNTIME, handler="function.handler", runtime=runtime, ) snapshot.match("create-result", result) result = lambda_client.invoke( FunctionName=function_name, Payload=b'{"text": "bar with \'quotes\\""}', ) result = read_streams(result) snapshot.match("invoke-result", result) result_data = result["Payload"] assert 200 == result["StatusCode"] result_data = result_data.strip() # jsonify in pro (re-)formats the event json so we allow both versions here assert result_data in ( """Echoing request: '{"text": "bar with \'quotes\\""}'""", """Echoing request: '{"text":"bar with \'quotes\\""}'""", ) # assert that logs are present expected = [".*Custom Runtime Lambda handler executing."] def check_logs(): check_lambda_logs(function_name, expected_lines=expected) retry(check_logs, retries=20) class TestDotNetCoreRuntimes: @pytest.mark.skipif( not use_docker(), reason="Dotnet functions only supported with docker executor" ) @pytest.mark.parametrize( "zip_file,handler,runtime,expected_lines", [ ( TEST_LAMBDA_DOTNETCORE31, "dotnetcore31::dotnetcore31.Function::FunctionHandler", LAMBDA_RUNTIME_DOTNETCORE31, ["Running .NET Core 3.1 Lambda"], ), ( TEST_LAMBDA_DOTNET6, "dotnet6::dotnet6.Function::FunctionHandler", LAMBDA_RUNTIME_DOTNET6, ["Running .NET 6 Lambda"], ), ], ids=["dotnetcore3.1", "dotnet6"], ) @pytest.mark.skip_snapshot_verify def test_dotnet_lambda( self, zip_file, handler, runtime, expected_lines, lambda_client, create_lambda_function, snapshot, ): """Test simple dotnet lambda invocation""" snapshot.add_transformer(snapshot.transform.lambda_api()) function_name = f"test-function-{short_uid()}" create_result = create_lambda_function( func_name=function_name, zip_file=load_file(zip_file, mode="rb"), handler=handler, runtime=runtime, ) snapshot.match("create-result", create_result) result = lambda_client.invoke(FunctionName=function_name, Payload=b"{}") result = read_streams(result) snapshot.match("invoke-result", result) result_data = result["Payload"] assert 200 == result["StatusCode"] assert "{}" == result_data.strip() # TODO make lambda log checks more resilient to various formats # self.check_lambda_logs(func_name, expected_lines=expected_lines) class TestRubyRuntimes: @pytest.mark.skipif(not use_docker(), reason="ruby runtimes not supported in local invocation") @pytest.mark.skip_snapshot_verify def test_ruby_lambda_running_in_docker(self, lambda_client, create_lambda_function, snapshot): """Test simple ruby lambda invocation""" snapshot.add_transformer(snapshot.transform.lambda_api()) function_name = f"test-function-{short_uid()}" create_result = create_lambda_function( func_name=function_name, handler_file=TEST_LAMBDA_RUBY, handler="lambda_integration.handler", runtime=LAMBDA_RUNTIME_RUBY27, ) snapshot.match("create-result", create_result) result = lambda_client.invoke(FunctionName=function_name, Payload=b"{}") result = read_streams(result) snapshot.match("invoke-result", result) result_data = result["Payload"] assert 200 == result["StatusCode"] assert "{}" == to_str(result_data).strip() class TestGolangRuntimes: @pytest.mark.skip_snapshot_verify @pytest.mark.skip_offline def test_golang_lambda(self, lambda_client, tmp_path, create_lambda_function, snapshot): """Test simple golang lambda invocation""" snapshot.add_transformer(snapshot.transform.lambda_api()) # fetch platform-specific example handler url = TEST_GOLANG_LAMBDA_URL_TEMPLATE.format( version=GO_RUNTIME_VERSION, os=get_os(), arch=get_arch(), ) handler = tmp_path / "go-handler" download_and_extract(url, handler) # create function func_name = f"test_lambda_{short_uid()}" create_result = create_lambda_function( func_name=func_name, handler_file=handler, handler="handler", runtime=LAMBDA_RUNTIME_GOLANG, ) snapshot.match("create-result", create_result) # invoke result = lambda_client.invoke( FunctionName=func_name, Payload=json.dumps({"name": "pytest"}) ) result = read_streams(result) snapshot.match("invoke-result", result) result_data = result["Payload"] assert result["StatusCode"] == 200 assert result_data.strip() == '"Hello pytest!"' parametrize_java_runtimes = pytest.mark.parametrize( "runtime", JAVA_TEST_RUNTIMES, ) class TestJavaRuntimes: @pytest.fixture(scope="class") def test_java_jar(self) -> bytes: # The TEST_LAMBDA_JAVA jar file is downloaded with `make init-testlibs`. java_file = load_file(TEST_LAMBDA_JAVA, mode="rb") if not java_file: raise Exception( f"Test dependency {TEST_LAMBDA_JAVA} not found." "Please make sure to run 'make init-testlibs' to ensure the file is available." ) return java_file @pytest.fixture(scope="class") def test_java_zip(self, tmpdir_factory, test_java_jar) -> bytes: tmpdir = tmpdir_factory.mktemp("tmp-java-zip") zip_lib_dir = os.path.join(tmpdir, "lib") zip_jar_path = os.path.join(zip_lib_dir, "test.lambda.jar") mkdir(zip_lib_dir) cp_r( INSTALL_PATH_LOCALSTACK_FAT_JAR, os.path.join(zip_lib_dir, "executor.lambda.jar"), ) save_file(zip_jar_path, test_java_jar) return testutil.create_zip_file(tmpdir, get_content=True) @pytest.fixture( params=JAVA_TEST_RUNTIMES, ) def simple_java_lambda(self, create_lambda_function, test_java_zip, request): function_name = f"java-test-function-{short_uid()}" create_lambda_function( func_name=function_name, zip_file=test_java_zip, runtime=request.param, handler="cloud.localstack.sample.LambdaHandler", ) return function_name @pytest.mark.skip_snapshot_verify( paths=["$..invoke-result.LogResult", "$..invoke-result.Payload"] ) def test_java_runtime(self, lambda_client, simple_java_lambda, snapshot): """Tests a simple java lambda invocation""" snapshot.add_transformer(snapshot.transform.lambda_api()) result = lambda_client.invoke( FunctionName=simple_java_lambda, Payload=b'{"echo":"echo"}', ) result = read_streams(result) snapshot.match("invoke-result", result) result_data = result["Payload"] assert 200 == result["StatusCode"] # TODO: find out why the assertion below does not work in Travis-CI! (seems to work locally) assert "LinkedHashMap" in to_str(result_data) assert result_data is not None @pytest.mark.skip_snapshot_verify( paths=["$..invoke-result.LogResult", "$..invoke-result.Payload"] ) def test_java_runtime_with_large_payload( self, lambda_client, simple_java_lambda, caplog, snapshot ): """Tests a invocation against a java lambda with a 5MB payload""" snapshot.add_transformer(snapshot.transform.lambda_api()) # Set the loglevel to INFO for this test to avoid breaking a CI environment (due to excessive log outputs) caplog.set_level(logging.INFO) payload = {"test": "test123456" * 100 * 1000 * 5} # 5MB payload payload = to_bytes(json.dumps(payload)) result = lambda_client.invoke(FunctionName=simple_java_lambda, Payload=payload) result = read_streams(result) snapshot.match("invoke-result", result) result_data = result["Payload"] assert 200 == result["StatusCode"] assert "LinkedHashMap" in result_data assert result_data is not None @pytest.mark.skip_snapshot_verify def test_java_runtime_with_lib(self, lambda_client, create_lambda_function, snapshot): """Test lambda creation/invocation with different deployment package types (jar, zip, zip-with-gradle)""" snapshot.add_transformer(snapshot.transform.lambda_api()) java_jar_with_lib = load_file(TEST_LAMBDA_JAVA_WITH_LIB, mode="rb") # create ZIP file from JAR file jar_dir = new_tmp_dir() zip_dir = new_tmp_dir() unzip(TEST_LAMBDA_JAVA_WITH_LIB, jar_dir) zip_lib_dir = os.path.join(zip_dir, "lib") shutil.move(os.path.join(jar_dir, "lib"), zip_lib_dir) jar_without_libs_file = testutil.create_zip_file(jar_dir) shutil.copy(jar_without_libs_file, os.path.join(zip_lib_dir, "lambda.jar")) java_zip_with_lib = testutil.create_zip_file(zip_dir, get_content=True) java_zip_with_lib_gradle = load_file( os.path.join( THIS_FOLDER, "functions", "java", "lambda_echo", "build", "distributions", "lambda-function-built-by-gradle.zip", ), mode="rb", ) for archive_desc, archive in [ ("jar-with-lib", java_jar_with_lib), ("zip-with-lib", java_zip_with_lib), ("zip-with-lib-gradle", java_zip_with_lib_gradle), ]: lambda_name = f"test-function-{short_uid()}" create_result = create_lambda_function( func_name=lambda_name, zip_file=archive, runtime=LAMBDA_RUNTIME_JAVA11, handler="cloud.localstack.sample.LambdaHandlerWithLib", ) snapshot.match(f"create-result-{archive_desc}", create_result) result = lambda_client.invoke(FunctionName=lambda_name, Payload=b'{"echo":"echo"}') result = read_streams(result) snapshot.match(f"invoke-result-{archive_desc}", result) result_data = result["Payload"] assert 200 == result["StatusCode"] assert "echo" in to_str(result_data) def test_sns_event(self, lambda_client, simple_java_lambda): result = lambda_client.invoke( FunctionName=simple_java_lambda, InvocationType="Event", Payload=b'{"Records": [{"Sns": {"Message": "{}"}}]}', ) assert 202 == result["StatusCode"] def test_ddb_event(self, lambda_client, simple_java_lambda): result = lambda_client.invoke( FunctionName=simple_java_lambda, InvocationType="Event", Payload=b'{"Records": [{"dynamodb": {"Message": "{}"}}]}', ) assert 202 == result["StatusCode"] @parametrize_java_runtimes def test_kinesis_invocation( self, lambda_client, create_lambda_function, test_java_zip, runtime ): payload = ( b'{"Records": [{' b'"kinesis": {"data": "dGVzdA==", "partitionKey": "partition"},' b'"eventID": "shardId-000000000001:12345678901234567890123456789012345678901234567890",' b'"eventSourceARN": "arn:aws:kinesis:us-east-1:123456789012:stream/test"}]}' ) # deploy lambda - Java with Kinesis input object function_name = f"test-lambda-{short_uid()}" create_lambda_function( func_name=function_name, zip_file=test_java_zip, runtime=runtime, handler="cloud.localstack.awssdkv1.sample.KinesisLambdaHandler", ) result = lambda_client.invoke(FunctionName=function_name, Payload=payload) result_data = result["Payload"].read() assert 200 == result["StatusCode"] assert '"test "' == to_str(result_data).strip() def test_kinesis_event(self, lambda_client, simple_java_lambda): payload = ( b'{"Records": [{' b'"kinesis": {"data": "dGVzdA==", "partitionKey": "partition"},' b'"eventID": "shardId-000000000001:12345678901234567890123456789012345678901234567890",' b'"eventSourceARN": "arn:aws:kinesis:us-east-1:123456789012:stream/test"}]}' ) result = lambda_client.invoke( FunctionName=simple_java_lambda, InvocationType="Event", Payload=payload, ) result_data = result["Payload"].read() assert 202 == result["StatusCode"] assert "" == to_str(result_data).strip() @parametrize_java_runtimes def test_stream_handler(self, lambda_client, create_lambda_function, test_java_jar, runtime): function_name = f"test-lambda-{short_uid()}" create_lambda_function( func_name=function_name, zip_file=test_java_jar, runtime=runtime, handler="cloud.localstack.awssdkv1.sample.LambdaStreamHandler", ) result = lambda_client.invoke( FunctionName=function_name, Payload=b'{"echo":"echo"}', ) result_data = result["Payload"].read() assert 200 == result["StatusCode"] assert "{}" == to_str(result_data).strip() @parametrize_java_runtimes @pytest.mark.skip_snapshot_verify def test_serializable_input_object( self, lambda_client, create_lambda_function, test_java_zip, runtime, snapshot ): snapshot.add_transformer(snapshot.transform.lambda_api()) # deploy lambda - Java with serializable input object function_name = f"test-lambda-{short_uid()}" create_result = create_lambda_function( func_name=function_name, zip_file=test_java_zip, runtime=runtime, handler="cloud.localstack.awssdkv1.sample.SerializedInputLambdaHandler", ) snapshot.match("create-result", create_result) result = lambda_client.invoke( FunctionName=function_name, Payload=b'{"bucket": "test_bucket", "key": "test_key"}', ) result = read_streams(result) snapshot.match("invoke-result", result) result_data = result["Payload"] assert 200 == result["StatusCode"] assert json.loads(result_data) == { "validated": True, "bucket": "test_bucket", "key": "test_key", } @pytest.mark.skip_snapshot_verify def test_trigger_java_lambda_through_sns( self, lambda_client, s3_client, sns_client, sns_subscription, simple_java_lambda, s3_bucket, sns_create_topic, logs_client, snapshot, ): snapshot.add_transformer(snapshot.transform.lambda_api()) snapshot.add_transformer(snapshot.transform.s3_api()) snapshot.add_transformer(snapshot.transform.key_value("Sid")) topic_name = f"topic-{short_uid()}" key = f"key-{short_uid()}" function_name = simple_java_lambda function_result = lambda_client.get_function(FunctionName=function_name) snapshot.match("get-function", function_result) function_arn = function_result["Configuration"]["FunctionArn"] permission_id = f"test-statement-{short_uid()}" topic_arn = sns_create_topic(Name=topic_name)["TopicArn"] s3_sns_policy = f"""{{ "Version": "2012-10-17", "Id": "example-ID", "Statement": [ {{ "Sid": "Example SNS topic policy", "Effect": "Allow", "Principal": {{ "Service": "s3.amazonaws.com" }}, "Action": [ "SNS:Publish" ], "Resource": "{topic_arn}", "Condition": {{ "ArnLike": {{ "aws:SourceArn": "arn:aws:s3:*:*:{s3_bucket}" }} }} }} ] }} """ sns_client.set_topic_attributes( TopicArn=topic_arn, AttributeName="Policy", AttributeValue=s3_sns_policy ) s3_client.put_bucket_notification_configuration( Bucket=s3_bucket, NotificationConfiguration={ "TopicConfigurations": [{"TopicArn": topic_arn, "Events": ["s3:ObjectCreated:*"]}] }, ) add_permission_response = lambda_client.add_permission( FunctionName=function_name, StatementId=permission_id, Action="lambda:InvokeFunction", Principal="sns.amazonaws.com", SourceArn=topic_arn, ) snapshot.match("add-permission", add_permission_response) sns_subscription( TopicArn=topic_arn, Protocol="lambda", Endpoint=function_arn, ) events_before = ( run_safe( get_lambda_log_events, function_name, regex_filter="Records", logs_client=logs_client, ) or [] ) s3_client.put_object(Bucket=s3_bucket, Key=key, Body="something") # We got an event that confirm lambda invoked retry( function=check_expected_lambda_log_events_length, retries=30, sleep=1, expected_length=len(events_before) + 1, function_name=function_name, regex_filter="Records", logs_client=logs_client, ) # clean up s3_client.delete_objects(Bucket=s3_bucket, Delete={"Objects": [{"Key": key}]}) @pytest.mark.parametrize( "handler,expected_result", [ ( "cloud.localstack.sample.LambdaHandlerWithInterfaceAndCustom::handleRequestCustom", "CUSTOM", ), ("cloud.localstack.sample.LambdaHandlerWithInterfaceAndCustom", "INTERFACE"), ( "cloud.localstack.sample.LambdaHandlerWithInterfaceAndCustom::handleRequest", "INTERFACE", ), ], ) # this test is only compiled against java 11 @pytest.mark.skip_snapshot_verify def test_java_custom_handler_method_specification( self, lambda_client, create_lambda_function, handler, expected_result, check_lambda_logs, snapshot, ): snapshot.add_transformer(snapshot.transform.lambda_api()) java_handler_multiple_handlers = load_file(TEST_LAMBDA_JAVA_MULTIPLE_HANDLERS, mode="rb") expected = ['.*"echo": "echo".*'] function_name = f"lambda_handler_test_{short_uid()}" create_result = create_lambda_function( func_name=function_name, zip_file=java_handler_multiple_handlers, runtime=LAMBDA_RUNTIME_JAVA11, handler=handler, ) snapshot.match("create-result", create_result) result = lambda_client.invoke(FunctionName=function_name, Payload=b'{"echo":"echo"}') result = read_streams(result) snapshot.match("invoke-result", result) result_data = result["Payload"] assert 200 == result["StatusCode"] assert expected_result == result_data.strip('"\n ') def check_logs(): check_lambda_logs(function_name, expected_lines=expected) retry(check_logs, retries=20) TEST_LAMBDA_CACHE_NODEJS = os.path.join(THIS_FOLDER, "functions", "lambda_cache.js") TEST_LAMBDA_CACHE_PYTHON = os.path.join(THIS_FOLDER, "functions", "lambda_cache.py") TEST_LAMBDA_TIMEOUT_PYTHON = os.path.join(THIS_FOLDER, "functions", "lambda_timeout.py") TEST_LAMBDA_INTROSPECT_PYTHON = os.path.join(THIS_FOLDER, "functions", "lambda_introspect.py") class TestLambdaBehavior: @pytest.mark.parametrize( ["lambda_fn", "lambda_runtime"], [ ( TEST_LAMBDA_CACHE_NODEJS, LAMBDA_RUNTIME_NODEJS12X, ), # TODO: can we do some kind of nested parametrize here? (TEST_LAMBDA_CACHE_PYTHON, LAMBDA_RUNTIME_PYTHON38), ], ids=["nodejs", "python"], ) @pytest.mark.xfail( os.environ.get("TEST_TARGET") != "AWS_CLOUD", reason="lambda caching not supported currently", ) # TODO: should be removed after the lambda rework def test_lambda_cache_local( self, lambda_client, create_lambda_function, lambda_fn, lambda_runtime ): """tests the local context reuse of packages in AWS lambda""" func_name = f"test_lambda_{short_uid()}" create_lambda_function( func_name=func_name, handler_file=lambda_fn, runtime=lambda_runtime, client=lambda_client, ) result = lambda_client.invoke(FunctionName=func_name) result_data = result["Payload"].read() assert result["StatusCode"] == 200 assert json.loads(result_data)["counter"] == 0 result = lambda_client.invoke(FunctionName=func_name) result_data = result["Payload"].read() assert result["StatusCode"] == 200 assert json.loads(result_data)["counter"] == 1 @pytest.mark.parametrize( ["lambda_fn", "lambda_runtime"], [ (TEST_LAMBDA_TIMEOUT_PYTHON, LAMBDA_RUNTIME_PYTHON38), ], ids=["python"], ) @pytest.mark.xfail( os.environ.get("TEST_TARGET") != "AWS_CLOUD", reason="lambda timeouts not supported currently", ) # TODO: should be removed after the lambda rework def test_lambda_timeout_logs( self, lambda_client, create_lambda_function, lambda_fn, lambda_runtime, logs_client, snapshot, ): """tests the local context reuse of packages in AWS lambda""" snapshot.add_transformer(snapshot.transform.lambda_api()) func_name = f"test_lambda_{short_uid()}" create_result = create_lambda_function( func_name=func_name, handler_file=lambda_fn, runtime=lambda_runtime, client=lambda_client, timeout=1, ) snapshot.match("create-result", create_result) result = lambda_client.invoke(FunctionName=func_name, Payload=json.dumps({"wait": 2})) snapshot.match("invoke-result", result) assert result["StatusCode"] == 200 log_group_name = f"/aws/lambda/{func_name}" ls_result = logs_client.describe_log_streams(logGroupName=log_group_name) log_stream_name = ls_result["logStreams"][0]["logStreamName"] def assert_events(): log_events = logs_client.get_log_events( logGroupName=log_group_name, logStreamName=log_stream_name )["events"] assert any(["starting wait" in e["message"] for e in log_events]) assert not any(["done waiting" in e["message"] for e in log_events]) retry(assert_events, retries=15) @pytest.mark.parametrize( ["lambda_fn", "lambda_runtime"], [ (TEST_LAMBDA_TIMEOUT_PYTHON, LAMBDA_RUNTIME_PYTHON38), ], ids=["python"], ) @pytest.mark.skip_snapshot_verify def test_lambda_no_timeout_logs( self, lambda_client, create_lambda_function, lambda_fn, lambda_runtime, logs_client, snapshot, ): """tests the local context reuse of packages in AWS lambda""" snapshot.add_transformer(snapshot.transform.lambda_api()) func_name = f"test_lambda_{short_uid()}" create_result = create_lambda_function( func_name=func_name, handler_file=lambda_fn, runtime=lambda_runtime, client=lambda_client, timeout=2, ) snapshot.match("create-result", create_result) result = lambda_client.invoke(FunctionName=func_name, Payload=json.dumps({"wait": 1})) snapshot.match("invoke-result", result) assert result["StatusCode"] == 200 log_group_name = f"/aws/lambda/{func_name}" def _log_stream_available(): result = logs_client.describe_log_streams(logGroupName=log_group_name)["logStreams"] return len(result) > 0 wait_until(_log_stream_available, strategy="linear") ls_result = logs_client.describe_log_streams(logGroupName=log_group_name) log_stream_name = ls_result["logStreams"][0]["logStreamName"] def _assert_log_output(): log_events = logs_client.get_log_events( logGroupName=log_group_name, logStreamName=log_stream_name )["events"] return any(["starting wait" in e["message"] for e in log_events]) and any( ["done waiting" in e["message"] for e in log_events] ) wait_until(_assert_log_output, strategy="linear") @pytest.mark.skip(reason="very slow (only execute when needed)") def test_lambda_provisioned_concurrency_moves_with_alias( self, lambda_client, logs_client, create_lambda_function, snapshot ): """ create fn ⇒ publish version ⇒ create alias for version ⇒ put concurrency on alias ⇒ new version with change ⇒ change alias to new version ⇒ concurrency moves with alias? same behavior for calls to alias/version? """ snapshot.add_transformer(snapshot.transform.lambda_api()) func_name = f"test_lambda_{short_uid()}" alias_name = f"test_alias_{short_uid()}" create_result = create_lambda_function( func_name=func_name, handler_file=TEST_LAMBDA_INTROSPECT_PYTHON, runtime=LAMBDA_RUNTIME_PYTHON38, client=lambda_client, timeout=2, ) snapshot.match("create-result", create_result) fn = lambda_client.get_function_configuration(FunctionName=func_name, Qualifier="$LATEST") snapshot.match("get-function-configuration", fn) assert fn["State"] == "Active" first_ver = lambda_client.publish_version( FunctionName=func_name, RevisionId=fn["RevisionId"], Description="my-first-version" ) snapshot.match("publish_version_1", first_ver) assert first_ver["State"] == "Active" assert fn["RevisionId"] != first_ver["RevisionId"] get_function_configuration = lambda_client.get_function_configuration( FunctionName=func_name, Qualifier=first_ver["Version"] ) snapshot.match("get_function_configuration_version_1", first_ver) assert get_function_configuration["RevisionId"] == first_ver["RevisionId"] # There's no ProvisionedConcurrencyConfiguration yet assert get_invoke_init_type(lambda_client, func_name, first_ver["Version"]) == "on-demand" # Create Alias and add ProvisionedConcurrencyConfiguration to it alias = lambda_client.create_alias( FunctionName=func_name, FunctionVersion=first_ver["Version"], Name=alias_name ) snapshot.match("create_alias", alias) assert alias["FunctionVersion"] == first_ver["Version"] assert alias["RevisionId"] != first_ver["RevisionId"] get_function_result = lambda_client.get_function( FunctionName=func_name, Qualifier=first_ver["Version"] ) versioned_revision_id_before = get_function_result["Configuration"]["RevisionId"] snapshot.match("get_function_before_provisioned", get_function_result) lambda_client.put_provisioned_concurrency_config( FunctionName=func_name, Qualifier=alias_name, ProvisionedConcurrentExecutions=1 ) assert wait_until(concurrency_update_done(lambda_client, func_name, alias_name)) get_function_result = lambda_client.get_function( FunctionName=func_name, Qualifier=alias_name ) snapshot.match("get_function_after_provisioned", get_function_result) versioned_revision_id_after = get_function_result["Configuration"]["RevisionId"] assert versioned_revision_id_before != versioned_revision_id_after # Alias AND Version now both use provisioned-concurrency (!) assert ( get_invoke_init_type(lambda_client, func_name, first_ver["Version"]) == "provisioned-concurrency" ) assert ( get_invoke_init_type(lambda_client, func_name, alias_name) == "provisioned-concurrency" ) # Update lambda configuration and publish new version lambda_client.update_function_configuration(FunctionName=func_name, Timeout=10) assert wait_until(update_done(lambda_client, func_name)) lambda_conf = lambda_client.get_function_configuration(FunctionName=func_name) snapshot.match("get_function_after_update", lambda_conf) # Move existing alias to the new version new_version = lambda_client.publish_version( FunctionName=func_name, RevisionId=lambda_conf["RevisionId"] ) snapshot.match("publish_version_2", new_version) new_alias = lambda_client.update_alias( FunctionName=func_name, FunctionVersion=new_version["Version"], Name=alias_name ) snapshot.match("update_alias", new_alias) assert new_alias["RevisionId"] != new_version["RevisionId"] # lambda should now be provisioning new "hot" execution environments for this new alias->version pointer # the old one should be de-provisioned get_provisioned_config_result = lambda_client.get_provisioned_concurrency_config( FunctionName=func_name, Qualifier=alias_name ) snapshot.match("get_provisioned_config_after_alias_move", get_provisioned_config_result) assert wait_until( concurrency_update_done(lambda_client, func_name, alias_name), strategy="linear", wait=30, max_retries=20, _max_wait=600, ) # this is SLOW (~6-8 min) # concurrency should still only work for the alias now # NOTE: the old version has been de-provisioned and will run 'on-demand' now! assert get_invoke_init_type(lambda_client, func_name, first_ver["Version"]) == "on-demand" assert ( get_invoke_init_type(lambda_client, func_name, new_version["Version"]) == "provisioned-concurrency" ) assert ( get_invoke_init_type(lambda_client, func_name, alias_name) == "provisioned-concurrency" ) # ProvisionedConcurrencyConfig should only be "registered" to the alias, not the referenced version with pytest.raises(Exception) as e: lambda_client.get_provisioned_concurrency_config( FunctionName=func_name, Qualifier=new_version["Version"] ) e.match("ProvisionedConcurrencyConfigNotFoundException") @pytest.mark.skip(reason="very slow (only execute when needed)") def test_lambda_provisioned_concurrency_doesnt_apply_to_latest( self, lambda_client, logs_client, create_lambda_function ): """create fn ⇒ publish version ⇒ provisioned concurrency @version ⇒ test if it applies to call to $LATEST""" func_name = f"test_lambda_{short_uid()}" create_lambda_function( func_name=func_name, handler_file=TEST_LAMBDA_INTROSPECT_PYTHON, runtime=LAMBDA_RUNTIME_PYTHON38, client=lambda_client, timeout=2, ) fn = lambda_client.get_function_configuration(FunctionName=func_name, Qualifier="$LATEST") assert fn["State"] == "Active" first_ver = lambda_client.publish_version( FunctionName=func_name, RevisionId=fn["RevisionId"], Description="my-first-version" ) assert first_ver["State"] == "Active" assert fn["RevisionId"] != first_ver["RevisionId"] assert ( lambda_client.get_function_configuration( FunctionName=func_name, Qualifier=first_ver["Version"] )["RevisionId"] == first_ver["RevisionId"] ) # Normal published version without ProvisionedConcurrencyConfiguration assert get_invoke_init_type(lambda_client, func_name, first_ver["Version"]) == "on-demand" # Create ProvisionedConcurrencyConfiguration for this Version versioned_revision_id_before = lambda_client.get_function( FunctionName=func_name, Qualifier=first_ver["Version"] )["Configuration"]["RevisionId"] lambda_client.put_provisioned_concurrency_config( FunctionName=func_name, Qualifier=first_ver["Version"], ProvisionedConcurrentExecutions=1, ) assert wait_until(concurrency_update_done(lambda_client, func_name, first_ver["Version"])) versioned_revision_id_after = lambda_client.get_function( FunctionName=func_name, Qualifier=first_ver["Version"] )["Configuration"]["RevisionId"] assert versioned_revision_id_before != versioned_revision_id_after assert ( get_invoke_init_type(lambda_client, func_name, first_ver["Version"]) == "provisioned-concurrency" ) # $LATEST does *NOT* use provisioned concurrency assert get_invoke_init_type(lambda_client, func_name, "$LATEST") == "on-demand" # TODO: why is this flaky? # assert lambda_client.get_function(FunctionName=func_name, Qualifier='$LATEST')['Configuration']['RevisionId'] == lambda_client.get_function(FunctionName=func_name, Qualifier=first_ver['Version'])['Configuration']['RevisionId']
38.415803
247
0.64584
06d783690782d48e595dd4b1b084b7b4f832fb63
20,724
py
Python
interact/core/topology_dataframe.py
MD-Studio/MDInteract
55bb51d27ec8d4095118837a997eea7467c2ac53
[ "Apache-2.0" ]
4
2019-06-24T12:56:28.000Z
2021-03-27T17:32:17.000Z
interact/core/topology_dataframe.py
MD-Studio/MDInteract
55bb51d27ec8d4095118837a997eea7467c2ac53
[ "Apache-2.0" ]
1
2020-09-25T12:15:27.000Z
2020-10-11T10:28:30.000Z
interact/core/topology_dataframe.py
MD-Studio/MDInteract
55bb51d27ec8d4095118837a997eea7467c2ac53
[ "Apache-2.0" ]
5
2019-09-12T02:35:04.000Z
2021-07-30T18:05:28.000Z
# -*- coding: utf-8 -*- import logging import numpy from pandas import DataFrame, Series, concat from scipy.spatial.distance import cdist from interact import constants, reference_data, __module__ from interact.core.topology_base import TopologyBaseClass from interact.core.topology_series import TopologySeries from interact.core.sssr import sssr logger = logging.getLogger(__module__) class TopologyDataFrame(TopologyBaseClass, DataFrame): """ TopologyDataFrame class An extended Pandas DataFrame for working with MDTraj molecular structure topologies and associated atom coordinates. A TopologyDataFrame object is initiated from a pandas topology DataFrame obtained using `mdtraj.System.to_dataframe` method. An internal coordinate representation that is persistent over dataframe selections is initiated using the `set_coordinates` method. """ def __init__(self, *args, **kwargs): super(TopologyDataFrame, self).__init__(*args, **kwargs) # Set parent the first time if not hasattr(self, '_parent'): self._parent = self if not hasattr(self, '_coordinates'): self._coordinates = None if not hasattr(self, '_distance_matrix'): self._distance_matrix = None self.unitcell_vectors = None self.unitcell_lengths = None self.unitcell_angles = None self.time = None def contains(self, other): """ Check if the atom selection in other is contained in self Implementing `contains` as magic method `__contains__` is not possible as the native __contains__ is used internally by Pandas. :param other: Other topology DataFrame :type other: :interact:TopologyDataFrame :rtype: :py:bool """ return set(other.get_index()).issubset(set(self.get_index())) def __getitem__(self, item): return self._wrapped_pandas_method('__getitem__', item) @property def _constructor(self): return TopologyDataFrame @property def _constructor_sliced(self): return TopologySeries def _wrapped_pandas_method(self, mtd, *args, **kwargs): """ Wrap a generic pandas method to ensure it returns a TopologySeries """ result = getattr(super(TopologyDataFrame, self), mtd)(*args, **kwargs) if isinstance(result, TopologySeries): for name in self._metadata: object.__setattr__(result, name, getattr(self, name, None)) return result def squeeze(self, *args, **kwargs): return self._wrapped_pandas_method('squeeze', *args, **kwargs) def iterrows(self): columns = self.columns klass = self._constructor_sliced for k, v in zip(self.index, self.values): s = klass(v, index=columns, name=k) for name in self._metadata: setattr(s, name, getattr(self, name, None)) yield k, s def labels(self): """ Unified method to return TopologyDataFrame column labels or TopologySeries axis labels as list. :return: data labels :rtype: :py:list """ return self.columns.tolist() def get_index(self): return list(self.index) def charge(self, partial=False): """ Get the partial or formal charge of the selection Computes charge as the sum of partial charges in the the 'charge' column. Rounds the the nearest integer value unless `partial` is True. :param partial: Return partial charge of selection :type partial: :py:bool :return: charge of selection :rtype: :py:int or :py:float if partial """ if 'charge' not in self.columns: raise AttributeError('No charge column') partial_charge = self['charge'].sum() if not partial: return int(round(partial_charge)) return partial_charge def center(self, mass=False): """ Computes 3D coordinates of the geometrical center or the center of mass of atoms in the selection. Given the atoms of a ring it will calculate the ring center. :param mass: calculate center of mass :type mass: :py:bool :return: coordinate representing center :rtype: :numpy:ndarray """ coords = self.coord if mass: elements = reference_data['element_data'] atom_mass = Series(elements.atomicMass.values, index=elements.symbol).to_dict() scale = numpy.array([atom_mass.get(element, 12.0) for element in self['element']]) else: scale = numpy.ones((len(coords), 1)) scaled = coords * scale return numpy.mean(scaled, axis=0) def distances(self, target=None, max_distmat_size=75000000): """ Compute pairwise distance matrix Compute a Euclidean distance matrix between all atom pairs of the current source selection and the target selection using the `scipy.spatial.distance.cdist` method. If the `target` is not set it equals the current source selection resulting in a square pairwise distance matrix. Once build, the distance matrix is referenced in all TopologyDataFrame and TopologySeries selections made from the parent frame until `distances` is called again or a new set of coordinates is registered. Structure your workflow as such that you build the distance matrix from the initial parent frame once and reuse it in subsequent selections. Note: Although building a pairwise distance matrix is pretty fast, the memory load increases quickly with every new atom added to the selection. A full MD system of a biomolecular structure in a box with explicit solvent will probably not fit in memory anymore. An upper limit on the matrix size (max_distmat_size) is enforced to prevent problems. :param target: target atom selection :type target: :interact:TopologyDataFrame :param max_distmat_size: Maximum size of pairwise distance matrix to prevent memory flooding. :type max_distmat_size: :py:int :return: pairwise distance matrix with rows for source selection and columns for the target. :rtype: :pandas:DataFrame :raises: OverflowError, matrix size > max_distmat_size """ if target is None: target = self # Get dataframe/series index for source and target set source_atoms = self.get_index() target_atoms = target.get_index() # Restrict size of pairwise matrix matrix_size = len(source_atoms) * len(target_atoms) if matrix_size > max_distmat_size: raise OverflowError('Pairwise distance matrix size to large {0} > {1}'.format(matrix_size, max_distmat_size)) # Calculate pairwise distance matrix and make DataFrame out of it # using source and target index. distances = cdist(self.coord, target.coord, metric='euclidean') self._distance_matrix = DataFrame(distances, index=source_atoms, columns=target_atoms) # Set in parent if called from child. Should not be needed and # creates one more retained object if self._parent._distance_matrix is None: self._parent._distance_matrix = self._distance_matrix return self._distance_matrix def extend(self, mode='resSeq'): """ Extend the current atom selection based on similarity in topology column types defined by the `mode` argument. Selection is always restricted to a match in chainID to avoid duplicate selection in for instance a dimer complex for example: Default `resSeq` mode will extend the current selection with all additional atoms that share the same residue number as the ones in the selection. :param mode: extend selection criterium :type mode: :py:str :return: new TopologyDataFrame with extended atom selection :rtype: :interact:TopologyDataFrame :raises: AttributeError """ if mode not in self.labels(): raise AttributeError('TopologyDataFrame has no column named {0}'.format(mode)) chainid_restriction = set(self['chainID']) return self._parent[(self._parent[mode].isin(self[mode].unique())) & (self._parent['chainID'].isin(chainid_restriction))] def contacts(self, target=None, intra=False): """ Get the distance between the atoms in the current selection (source) and the target. If the target is not specified it is set to the full system (_parent) without the source. The returned contact DataFrame is a representation of the pairwise distance matrix between the source and target containing all atom pairs. A distance cutoff is not applied but that can be easily done by quering on the resulting contact DataFrame. :param target: system DataFrame congaing a target selection :type target: :interact:TopologyDataFrame :param intra: calculate intra-molecular contacts :type intra: :py:bool :return: all pairwise contacts between source and target :rtype: :pandas:DataFrame """ source_index = set(self.get_index()) # Get intra-selection contacts (target == self) if intra: target_index = source_index # Inter-selection contacts. # Get index of source (current selection) and target (without source) else: if target is not None: target_index = set(target.get_index()).difference(source_index) else: target_index = set(self.get_index()).difference(source_index) # Get slice of contact matrix representing the selection, reformat to row based Dataframe contacts = self._distance_matrix.loc[source_index, target_index] contacts = contacts.unstack().reset_index() contacts.columns = ['target', 'source', 'distance'] # Get selection for source and target from parent, reindex and concatenate into new DataFrame source = self._parent.loc[(self._parent.index.isin(contacts['source'])), :].copy() source.insert(0, 'index', source.index) source = source.loc[contacts['source'], :] source.index = range(len(source)) target = self._parent.loc[(self._parent.index.isin(contacts['target'])), :].copy() target.insert(0, 'index', target.index) target = target.loc[contacts['target'], :] target.index = range(len(target)) columns = source.columns.tolist() contacts_frame = concat([source, target, contacts['distance']], axis=1) multi_index = [(['source'] * len(columns) + ['target'] * (len(columns) + 1)), columns * 2 + ['distance']] contacts_frame.columns = multi_index contacts_frame.columns.names = [0, 1] # Add angle column (for contacts with angle constraints) contacts_frame['target', 'angle'] = numpy.nan # Add a contact column and fill it with 'nd' (type not determined) contacts_frame['contact'] = 'nd' return contacts_frame.sort_values(by=('source', 'serial')) def covalent_bonds(self, cutoff=constants['max_covalent_bond_dist']): """ Return covalently bonded atoms in the selection as ContactFrame :param cutoff: covalent bond upper distance :type cutoff: :py:float :return: Covalently bonded atoms :rtype: :pandas:DataFrame """ # Get all intra selection distances cf = self.contacts(intra=True) # Get atom pairs within covalent bonded distance return cf[(cf[('target', 'distance')] >= 0.05) & (cf[('target', 'distance')] <= cutoff)] def is_amino_acid(self): """ Quick selector for residues of type amino acid (aa) according to their three-letter code described in the `residue_data` reference set. The returned pandas Series object can be used in additional data queries. For custom amino acid selection use the pandas `isin` selector. :return: boolean series of the same length as the DataFrame indicating if a row is an amino acid. :rtype: :interact:TopologySeries """ data = reference_data['residue_data'] aa = data.loc[data['type'] == 'aa', 'three-letter'] return self['resName'].isin(set(aa)) def is_amino_acid_backbone(self, backbone=('C', 'CA', 'CB', 'N', 'O', 'H', 'HA')): """ Quick selector for amino acid backbone atoms by first selecting all amino acids using `is_amino_acid` followed by selecting the backbone atoms defined in the `backbone` attribute The returned pandas Series object can be used in additional data queries. :param backbone: backbone atom names :type backbone: :py:list :return: boolean series of the same length as the DataFrame indicating if a row is an amino acid backbone atom. :rtype: :interact:TopologySeries """ return self.is_amino_acid() & self['name'].isin(backbone) def is_nucleic_acid(self): """ Quick selector for residues of type nucleic acid (na) according to their two-letter code described in the `residue_data` reference set. The returned pandas Series object can be used in additional data queries. For custom nucleic acids selection use the pandas `isin` selector. :return: boolean series of the same length as the DataFrame indicating if a row is a nucleic acid. :rtype: :interact:TopologySeries """ data = reference_data['residue_data'] na = list(data.loc[data['type'] == 'na', 'two-letter']) na.extend(list(data.loc[data['type'] == 'na', 'three-letter'])) return self['resName'].isin(set(na)) def is_nucleic_acid_backbone(self, backbone=('P', 'O1P', 'O2P', "O5'", "C5'", "1H5'", "2H5'", "C4'", "H4'", "C3'", "O3'", "H3'", "C2'", "1H2'", "2H2'", "C1'", "H1'", "O4'")): """ Quick selector for nucleic acid backbone atoms by first selecting all nucleic acids using `is_nucleic_acid` followed by selecting the backbone atoms defined in the `backbone` attribute The returned pandas Series object can be used in additional data queries. :param backbone: backbone atom names :type backbone: :py:list :return: boolean series of the same length as the DataFrame indicating if a row is an nucleic acid backbone atom. :rtype: :interact:TopologySeries """ return self.is_nucleic_acid() & self['name'].isin(backbone) def is_ligand(self): """ Quick selector for ligand residues identified as those residues not part of the amino-acid, nucleic-acid, solvent and ion residue/element groups. The returned pandas Series object can be used in additional data queries. For custom ligand selection use the pandas `isin` selector. :return: boolean series of the same length as the DataFrame indicating if a row is a ligand. :rtype: :interact:TopologySeries """ data = reference_data['residue_data'] known_types = list(data.loc[data['type'].isin(('sol', 'ion')), 'two-letter']) known_types.extend(list(data.loc[data['type'].isin(('sol', 'ion')), 'three-letter'])) known_types.extend(list(reference_data['element_data']['symbol'])) return ~self.is_nucleic_acid() & ~self.is_amino_acid() & ~self['resName'].isin(set(known_types)) def is_ring(self, **kwargs): """ Quick selector for rings in the system. This method provides an accumulated view on all rings in the system. Use the `find_rings` method to obtain individual isolated rings in a selection. Ring type (aromatic, planar) can be further specified using the keyword arguments accepted by the interact.core.sssr method :param kwargs: keyword arguments passed along to the `sssr` method :return: boolean series of the same length as the DataFrame indicating if a row is part of a ring. :rtype: :interact:TopologySeries """ serials = [] for residue in self.residues(): detected = residue.find_rings(**kwargs) for ring in detected: serials.extend(list(ring.index)) return self.index.isin(serials) def residues(self, extend=False): """ Residue iterator Iterate over all residues in the current TopologyDataFrame by residue number and yield new TopologyDataFrame with the residue selection. If 'extend', return all atoms of the given residue. :param extend: extend to all atoms of the residue in case of subset :type extend: :py:bool :return: TopologyDataFrame :rtype: :interact:TopologyDataFrame :raises: AttributeError """ for residue in self['resSeq'].unique(): residue_frame = self[self['resSeq'] == residue] if extend: yield residue_frame.extend(mode='resSeq') else: yield residue_frame def find_rings(self, **kwargs): """ Find rings in the structure Uses SSSR implemented in the `interact.core.sssr` method for finding the Smallest Subset of Smallest Rings. :param kwargs: keyword arguments passed along to the sssr method :return: list of rings as TopologyDataFrames :rtype: :py:list """ return sssr(self, **kwargs) def find_charged_centers(self, negative=True, positive=True, neg_atoms=('O.co2', 'S.O2', 'S.3'), pos_atoms=('N.4', 'N.pl3', 'N.ar')): """ Find charged centers in the current residue selection Extend the neighbourhood of the input atoms to include covalently bonded atoms that are not of element type 'C' and 'H'. :param negative: include negative charged centers :type negative: :py:bool :param positive: include positive charged centers :type positive: :py:bool :param neg_atoms: sybyl atom types of negative charged atoms to include :type neg_atoms: :py:tuple :param pos_atoms: sysbyl atom types of positive charged atoms to include :type pos_atoms: :py:tuple """ centers = [] for residue in self.residues(extend=True): charge = self.charge() if charge <= -1 and negative: charge_selection = residue[residue['attype'].isin(neg_atoms)] elif charge >= 1 and positive: charge_selection = residue[residue['attype'].isin(pos_atoms)] else: continue if not charge_selection.empty: # Get direct covalent neighbours not of element type C, H resseq = charge_selection['resSeq'].unique()[0] parent = charge_selection._parent n = list(charge_selection.index) sel = charge_selection while not sel.empty: neighbours = sel.neighbours(cutoff=constants['max_covalent_bond_dist']) neighbours = neighbours[~neighbours['element'].isin(('C', 'H')) & (neighbours['resSeq'] == resseq)] serials = [i for i in list(neighbours.index) if i not in n] n.extend(serials) sel = parent[parent.index.isin(serials)] centers.append((parent[parent.index.isin(n)], charge)) return centers
37.68
119
0.618655
e06dd96e75fcb6625fd86ce3cd96170940051c46
6,413
py
Python
avalanche/benchmarks/utils/data_loader.py
ryanlindeborg/avalanche
32333776e729bad22f369f8923bc32416c9edcf9
[ "MIT" ]
12
2021-04-16T15:49:59.000Z
2022-02-27T18:04:58.000Z
avalanche/benchmarks/utils/data_loader.py
ryanlindeborg/avalanche
32333776e729bad22f369f8923bc32416c9edcf9
[ "MIT" ]
null
null
null
avalanche/benchmarks/utils/data_loader.py
ryanlindeborg/avalanche
32333776e729bad22f369f8923bc32416c9edcf9
[ "MIT" ]
2
2021-06-22T04:11:52.000Z
2021-11-12T03:27:18.000Z
################################################################################ # Copyright (c) 2021 ContinualAI. # # Copyrights licensed under the MIT License. # # See the accompanying LICENSE file for terms. # # # # Date: 01-12-2020 # # Author(s): Antonio Carta # # E-mail: contact@continualai.org # # Website: avalanche.continualai.org # ################################################################################ from torch.utils.data.dataloader import DataLoader from typing import Dict class MultiTaskDataLoader: def __init__(self, data_dict: Dict, oversample_small_tasks: bool = False, **kwargs): """ Custom data loader for multi-task training. The dictionary `data_dict` maps task ids into their corresponding datasets. When iterating over the data, it returns sequentially a different batch for each task (i.e. first a batch for task 1, then task 2, and so on). If `oversample_small_tasks == True` smaller tasks are oversampled to match the largest task. It is suggested to use this loader only if tasks have approximately the same length. :param data_dict: a dictionary with task ids as keys and Datasets as values. :param oversample_small_tasks: whether smaller tasks should be oversampled to match the largest one. :param kwargs: data loader arguments used to instantiate the loader for each task separately. See pytorch :class:`DataLoader`. """ self.data_dict = data_dict self.loaders_dict: Dict[int, DataLoader] = {} self.oversample_small_tasks = oversample_small_tasks for task_id, data in self.data_dict.items(): self.loaders_dict[task_id] = DataLoader(data, **kwargs) self.max_len = max([len(d) for d in self.loaders_dict.values()]) def __iter__(self): iter_dataloaders = {} for t in self.loaders_dict.keys(): iter_dataloaders[t] = iter(self.loaders_dict[t]) max_len = max([len(d) for d in iter_dataloaders.values()]) try: for it in range(max_len): # list() is necessary because we may remove keys from the # dictionary. This would break the generator. for t in list(self.data_dict.keys()): t_loader = iter_dataloaders[t] try: x, y, *_ = next(t_loader) yield t, x, y except StopIteration: # StopIteration is thrown if dataset ends. # reinitialize data loader if self.oversample_small_tasks: # reinitialize data loader iter_dataloaders[t] = iter(t_loader) self.current_dataloader = iter_dataloaders[t] x, y = next(t_loader) else: del iter_dataloaders[t] continue yield t, x, y except StopIteration: return def __len__(self): return self.max_len * len(self.loaders_dict) class MultiTaskMultiBatchDataLoader: def __init__(self, data_dict: Dict, oversample_small_tasks: bool = False, **kwargs): """ Custom data loader for multi-task training. The dictionary `data_dict` maps task ids into their corresponding datasets. mini-batches emitted by this dataloader are dictionaries with task labels as keys and mini-batches as values. Therefore, each mini-batch contains separate data for each task (i.e. key 1 batch for task 1). If `oversample_small_tasks == True` smaller tasks are oversampled to match the largest task. It is suggested to use this loader only if tasks have approximately the same length. :param data_dict: a dictionary with task ids as keys and Datasets as values. :param oversample_small_task: whether smaller tasks should be oversampled to match the largest one. :param kwargs: data loader arguments used to instantiate the loader for each task separately. See pytorch :class:`DataLoader`. """ self.data_dict = data_dict self.loaders_dict: Dict[int, DataLoader] = {} self.oversample_small_tasks = oversample_small_tasks for task_id, data in self.data_dict.items(): self.loaders_dict[task_id] = DataLoader(data, **kwargs) self.max_len = max([len(d) for d in self.loaders_dict.values()]) def __iter__(self): iter_dataloaders = {} for t in self.loaders_dict.keys(): iter_dataloaders[t] = iter(self.loaders_dict[t]) max_len = max([len(d) for d in iter_dataloaders.values()]) try: for it in range(max_len): mb_curr = {} # list() is necessary because we may remove keys from the # dictionary. This would break the generator. for t in list(self.data_dict.keys()): t_loader = iter_dataloaders[t] try: x, y, *_ = next(t_loader) except StopIteration: # StopIteration is thrown if dataset ends. if self.oversample_small_tasks: # reinitialize data loader iter_dataloaders[t] = iter(t_loader) self.current_dataloader = iter_dataloaders[t] x, y = next(t_loader) else: del iter_dataloaders[t] continue mb_curr[t] = x, y yield mb_curr except StopIteration: return def __len__(self): return self.max_len
45.161972
80
0.52877
f5e49e1739f75184ca42fed0eccfc0275e567f4d
1,540
py
Python
cifar10/cifar10_pre_process.py
Arvind-Ideas2IT/pytorch-pipeline
dc9f8a7b8f45a18dc5cc045a692e15eb17f2d99e
[ "MIT" ]
null
null
null
cifar10/cifar10_pre_process.py
Arvind-Ideas2IT/pytorch-pipeline
dc9f8a7b8f45a18dc5cc045a692e15eb17f2d99e
[ "MIT" ]
null
null
null
cifar10/cifar10_pre_process.py
Arvind-Ideas2IT/pytorch-pipeline
dc9f8a7b8f45a18dc5cc045a692e15eb17f2d99e
[ "MIT" ]
1
2021-02-16T08:48:02.000Z
2021-02-16T08:48:02.000Z
import sys, argparse, logging import os import torch.utils.data from PIL import Image import json import pandas as pd import numpy as np import torch import torchvision from torch.utils.data import DataLoader, Dataset import torchvision.transforms as transforms import webdataset as wds from pathlib import Path from sklearn.model_selection import train_test_split if __name__ == "__main__": import json import subprocess output_path = json.loads(sys.argv[2])[0] trainset = torchvision.datasets.CIFAR10(root="./", train=True, download=True) testset = torchvision.datasets.CIFAR10(root="./", train=False, download=True) Path(output_path + "/train").mkdir(parents=True, exist_ok=True) Path(output_path + "/val").mkdir(parents=True, exist_ok=True) Path(output_path + "/test").mkdir(parents=True, exist_ok=True) random_seed = 25 y = trainset.targets trainset, valset, y_train, y_val = train_test_split( trainset, y, stratify=y, shuffle=True, test_size=0.2, random_state=random_seed ) for name in [(trainset, "train"), (valset, "val"), (testset, "test")]: with wds.ShardWriter( output_path + "/" + str(name[1]) + "/" + str(name[1]) + "-%d.tar", maxcount=1000 ) as sink: for index, (image, cls) in enumerate(name[0]): sink.write({"__key__": "%06d" % index, "ppm": image, "cls": cls}) entry_point=["ls", "-R", output_path] run_code = subprocess.run(entry_point, stdout=subprocess.PIPE) print(run_code.stdout)
32.765957
93
0.681818
e8e854481b0e934e4271724e1e97b7b382f331bf
4,493
py
Python
tensorflow/python/data/experimental/kernel_tests/service/coordinated_read_ft_test.py
ashutom/tensorflow-upstream
c16069c19de9e286dd664abb78d0ea421e9f32d4
[ "Apache-2.0" ]
10
2021-05-25T17:43:04.000Z
2022-03-08T10:46:09.000Z
tensorflow/python/data/experimental/kernel_tests/service/coordinated_read_ft_test.py
CaptainGizzy21/tensorflow
3457a2b122e50b4d44ceaaed5a663d635e5c22df
[ "Apache-2.0" ]
1,056
2019-12-15T01:20:31.000Z
2022-02-10T02:06:28.000Z
tensorflow/python/data/experimental/kernel_tests/service/coordinated_read_ft_test.py
CaptainGizzy21/tensorflow
3457a2b122e50b4d44ceaaed5a663d635e5c22df
[ "Apache-2.0" ]
6
2016-09-07T04:00:15.000Z
2022-01-12T01:47:38.000Z
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Fault tolerance testst for tf.data service coordinated reads.""" from absl.testing import parameterized from tensorflow.python.data.experimental.kernel_tests.service import test_base as data_service_test_base from tensorflow.python.data.kernel_tests import test_base from tensorflow.python.framework import combinations from tensorflow.python.platform import test class CoordinatedReadFTTest(data_service_test_base.TestBase, parameterized.TestCase): @combinations.generate( combinations.times(test_base.eager_only_combinations(), combinations.combine(workers_to_add=[1, 3, 10]))) def testAddWorkers(self, workers_to_add): starting_workers = 3 cluster = data_service_test_base.TestCluster(num_workers=starting_workers) # Round robin reads can cause slow cluster shutdown. data_service_test_base.GLOBAL_CLUSTERS.add(cluster) num_consumers = 7 ds = self.make_coordinated_read_dataset(cluster, num_consumers) get_next = self.getNext(ds, requires_initialization=True) results = [] zeros_seen = 0 for _ in range(25): results.append(self.evaluate(get_next())) if results[-1] == 0: zeros_seen += 1 for _ in range(workers_to_add): cluster.add_worker() # Read until all new workers have joined. while zeros_seen < starting_workers + workers_to_add: results.append(self.evaluate(get_next())) if results[-1] == 0: zeros_seen += 1 # Read some more. for _ in range(25): results.append(self.evaluate(get_next())) self.checkCoordinatedReadGroups(results, num_consumers) @combinations.generate(test_base.eager_only_combinations()) def testRestartWorker(self): num_workers = 3 # Set a shutdown quiet period to prevent workers from shutting down partway # through a round. cluster = data_service_test_base.TestCluster( num_workers, worker_shutdown_quiet_period_ms=2000) # Round robin reads can cause slow cluster shutdown. data_service_test_base.GLOBAL_CLUSTERS.add(cluster) num_consumers = 5 ds = self.make_coordinated_read_dataset(cluster, num_consumers) get_next = self.getNext(ds, requires_initialization=True) results = [] self.read(get_next, results, 20) cluster.workers[1].stop() # Check that we can continue to read even with a worker stopped. self.read(get_next, results, 20) cluster.workers[1].restart() # Read until we get results from the restarted worker, then read some more. while results[-1] != 0: results.append(self.evaluate(get_next())) self.read(get_next, results, 20) self.checkCoordinatedReadGroups(results, num_consumers) @combinations.generate(test_base.eager_only_combinations()) def testMultiStartStop(self): num_workers = 3 # Set a shutdown quiet period to prevent workers from shutting down partway # through a round. cluster = data_service_test_base.TestCluster( num_workers, worker_shutdown_quiet_period_ms=2000) # Round robin reads can cause slow cluster shutdown. data_service_test_base.GLOBAL_CLUSTERS.add(cluster) num_consumers = 5 ds = self.make_coordinated_read_dataset(cluster, num_consumers) get_next = self.getNext(ds, requires_initialization=True) results = [] self.read(get_next, results, 20) for i in range(num_workers): cluster.workers[i].stop() self.read(get_next, results, 20) cluster.workers[i].restart() self.read(get_next, results, 20) cluster.add_worker() cluster.restart_dispatcher() for i in range(num_workers): cluster.workers[i].stop() self.read(get_next, results, 20) self.checkCoordinatedReadGroups(results, num_consumers) if __name__ == "__main__": test.main()
37.756303
104
0.718228
b4f9e74a03a71d7129afa6dd86d7e72809eee736
1,793
py
Python
frappe/templates/pages/integrations/razorpay_checkout.py
GitlabABC/frappe
be3aaf715c1c978240bfe276bfcbb699c1dc33ba
[ "MIT" ]
null
null
null
frappe/templates/pages/integrations/razorpay_checkout.py
GitlabABC/frappe
be3aaf715c1c978240bfe276bfcbb699c1dc33ba
[ "MIT" ]
null
null
null
frappe/templates/pages/integrations/razorpay_checkout.py
GitlabABC/frappe
be3aaf715c1c978240bfe276bfcbb699c1dc33ba
[ "MIT" ]
null
null
null
# Copyright (c) 2021, Frappe Technologies Pvt. Ltd. and Contributors # License: MIT. See LICENSE import json import frappe from frappe import _ from frappe.utils import cint, flt no_cache = 1 expected_keys = ( "amount", "title", "description", "reference_doctype", "reference_docname", "payer_name", "payer_email", "order_id", "currency", ) def get_context(context): context.no_cache = 1 context.api_key = get_api_key() try: doc = frappe.get_doc("Integration Request", frappe.form_dict["token"]) payment_details = json.loads(doc.data) for key in expected_keys: context[key] = payment_details[key] context["token"] = frappe.form_dict["token"] context["amount"] = flt(context["amount"]) context["subscription_id"] = ( payment_details["subscription_id"] if payment_details.get("subscription_id") else "" ) except Exception as e: frappe.redirect_to_message( _("Invalid Token"), _("Seems token you are using is invalid!"), http_status_code=400, indicator_color="red", ) frappe.local.flags.redirect_location = frappe.local.response.location raise frappe.Redirect def get_api_key(): api_key = frappe.db.get_value("Razorpay Settings", None, "api_key") if cint(frappe.form_dict.get("use_sandbox")): api_key = frappe.conf.sandbox_api_key return api_key @frappe.whitelist(allow_guest=True) def make_payment(razorpay_payment_id, options, reference_doctype, reference_docname, token): data = {} if isinstance(options, str): data = json.loads(options) data.update( { "razorpay_payment_id": razorpay_payment_id, "reference_docname": reference_docname, "reference_doctype": reference_doctype, "token": token, } ) data = frappe.get_doc("Razorpay Settings").create_request(data) frappe.db.commit() return data
22.4125
92
0.731177
5c6c04ae0e226dd143d55c85ce2a1026b409607b
130
py
Python
utils/__init__.py
Kylin9511/CRNet
22c9abd61490af46af63d737ca470f0943efa973
[ "MIT" ]
52
2019-10-25T17:00:34.000Z
2022-03-28T12:36:45.000Z
utils/__init__.py
WANDERMEN/CRNet
45427797c702bd88d7667ab703e9774900340676
[ "MIT" ]
6
2019-10-30T03:14:34.000Z
2022-03-25T15:20:02.000Z
utils/__init__.py
WANDERMEN/CRNet
45427797c702bd88d7667ab703e9774900340676
[ "MIT" ]
23
2019-11-01T02:14:52.000Z
2022-01-09T10:37:39.000Z
from . import logger from .logger import log_level, line_seg from .init import * from .scheduler import * from .solver import *
16.25
39
0.753846
e406a519c8d982209cc618d6d7ee3cff06d4c268
1,665
py
Python
bbsauth.py
HenryHu/pybbs
cb2a870f3879d5432739d0748a01842660793ba9
[ "BSD-2-Clause-FreeBSD" ]
14
2015-01-18T16:27:20.000Z
2021-06-20T19:27:32.000Z
bbsauth.py
HenryHu/pybbs
cb2a870f3879d5432739d0748a01842660793ba9
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
bbsauth.py
HenryHu/pybbs
cb2a870f3879d5432739d0748a01842660793ba9
[ "BSD-2-Clause-FreeBSD" ]
2
2016-04-11T07:08:04.000Z
2018-08-02T15:39:27.000Z
"""bbsauth -- verifies session token <http://www.ietf.org/rfc/rfc4616.txt> Copyright (c) 2009, Coptix, Inc. All rights reserved. See the LICENSE file for license terms and warranty disclaimer. """ from __future__ import absolute_import from sasl import mechanism as mech, auth __all__ = ('BBSAuth') class BBSAuth(mech.Mechanism): """The bbsauth mechanism simply submits the optional authorization id, the authentication id, and token separated by null bytes.""" NULL = u'\x00' def __init__(self, auth): self.auth = auth def verify(self, *args): return self.auth.verify_token(*args) state = mech.AuthState ## Server def challenge(self): return self.state(self.verify_challenge, None, '') def verify_challenge(self, entity, response): try: token = response.decode('utf-8') except ValueError as exc: return self.state(False, entity, None) try: result = self.verify(token) if result: entity = entity or self.auth.username() return self.state(result, entity, None) except auth.PasswordError as exc: return self.state(False, entity, None) ## Client def respond(self, data): assert data == '' auth = self.auth zid = auth.authorization_id() cid = auth.username() response = self.NULL.join(( u'' if (not zid or zid == cid) else zid, (cid or u''), (auth.token() or u'') )).encode('utf-8') self.authorized = zid or cid return self.state(None, zid or cid, response)
25.615385
70
0.601802
60e065fca11b08c0e5f4263776eab5ffbfc1f083
9,495
py
Python
RockPhysicsInversionDriver.py
aadm/SeReMpy
16486812b35d6c0e8d8c9787cd1e7cfe05a5e960
[ "MIT" ]
null
null
null
RockPhysicsInversionDriver.py
aadm/SeReMpy
16486812b35d6c0e8d8c9787cd1e7cfe05a5e960
[ "MIT" ]
null
null
null
RockPhysicsInversionDriver.py
aadm/SeReMpy
16486812b35d6c0e8d8c9787cd1e7cfe05a5e960
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Nov 20 07:24:51 2020 @author: dariograna Reference: Grana and de Figueiredo, 2021, SeReMpy """ #% Rock physics inversion Driver %% # In this script we apply the Bayesian Rock phyisics inversion to predict # the petrophysical properties (porosity, clay volume, and water saturation # We implement 4 different options: # Gaussian distribution and linear model # Gaussian mixture distribution and linear model (Grana, 2016) # Gaussian mixture distribution and non-linear model (Grana and Della Rossa, 2010) # Non-parametric distribution and non-linear model (Grana, 2018). # The linear rock physics model is a multi-linear regression and it is # estimated from a training dataset. # In this implementation of the non-linear model we assume that the joint # distribution of model and % data can be estimated from a training dataset # (generated, for example, using a rock physics model) import numpy as np from scipy.linalg import toeplitz from numpy.linalg import multi_dot from scipy import stats from scipy.io import loadmat import matplotlib.pyplot as plt from RockPhysics import * from Inversion import * #% Available data and parameters # Load data (seismic data and time) x = np.loadtxt('Data/data4.dat') Clay = x[:,0].reshape(-1, 1) Depth = x[:,1].reshape(-1, 1) Facies = x[:,2].reshape(-1, 1) Phi = x[:,3].reshape(-1, 1) Rho = x[:,4].reshape(-1, 1) Rhorpm = x[:,5].reshape(-1, 1) Sw = x[:,6].reshape(-1, 1) Vp = x[:,7].reshape(-1, 1) Vprpm = x[:,8].reshape(-1, 1) Vs = x[:,9].reshape(-1, 1) Vsrpm = x[:,10].reshape(-1, 1) Facies = Facies-1 Facies = Facies.astype(int) # training dataset mtrain = np.hstack([Phi, Clay, Sw]) nv = mtrain.shape[1] dtrain = np.hstack([Vprpm, Vsrpm, Rhorpm]) nd = dtrain.shape[1] nf = max(np.unique(Facies))+1 # domain to evaluate the posterior PDF phidomain = np.arange(0,0.405,0.005) cdomain = np.arange(0,0.81,0.01) swdomain = np.arange(0,1.01,0.01) P, V, S = np.mgrid[0:0.405:0.005, 0:0.81:0.01, 0:1.01:0.01] mdomain = np.stack((P,V,S), axis=3) # measured data (elastic logs) dcond = np.hstack([Vp, Vs, Rho]) ns = dcond.shape[0] # matrix associated to the linear rock physics operator R = np.zeros((nd, nv + 1)) X = np.hstack([mtrain, np.ones(Phi.shape)]) R[0, :] = (np.linalg.lstsq(X,Vprpm,rcond=None)[0]).T R[1, :] = (np.linalg.lstsq(X,Vsrpm,rcond=None)[0]).T R[2, :] = (np.linalg.lstsq(X,Rhorpm,rcond=None)[0]).T # Error sigmaerr = 10 ** -2 * np.eye(nd) #% Gaussian linear case # prior model mum = np.mean(mtrain,axis=0) mum = mum.reshape(1,nv) sm = np.cov(mtrain.T) # linearization G = R[:,0:nv] datacond = dcond - R[:,-1].T # # inversion [mupost, sigmapost, Ppost] = RockPhysicsLinGaussInversion(mum, sm, G, mdomain, datacond, sigmaerr) # posterior mean Phipost = mupost[:, 0] Cpost = mupost[:, 1] Swpost = mupost[:, 2] Philp = mupost[:, 0] - 1.96 * np.sqrt(sigmapost[0,0]) Clp = mupost[:, 1] - 1.96 * np.sqrt(sigmapost[1,1]) Swlp = mupost[:, 2] - 1.96 * np.sqrt(sigmapost[2,2]) Phiup = mupost[:, 0] + 1.96 * np.sqrt(sigmapost[0,0]) Cup = mupost[:, 1] + 1.96 * np.sqrt(sigmapost[1,1]) Swup = mupost[:, 2] + 1.96 * np.sqrt(sigmapost[2,2]) # marginal posterior distributions Ppostphi = np.zeros((ns, len(phidomain))) Ppostclay = np.zeros((ns, len(cdomain))) Ppostsw = np.zeros((ns, len(swdomain))) for i in range(ns): Ppostphi[i,:]= np.sum(np.squeeze(np.sum(np.squeeze(Ppost[i,:,:,:]), axis=2)), axis=1) Ppostclay[i,:]= np.sum(np.squeeze(np.sum(np.squeeze(Ppost[i,:,:,:]), axis=2)), axis=0) Ppostsw[i,:]= np.sum(np.squeeze(np.sum(np.squeeze(Ppost[i,:,:,:]), axis=1)), axis=0) Ppostphi[i,:]= Ppostphi[i,:] / sum(Ppostphi[i,:]) Ppostclay[i,:]= Ppostclay[i,:] / sum(Ppostclay[i,:]) Ppostsw[i,:]= Ppostsw[i,:] / sum(Ppostsw[i,:]) # plots plt.figure(1) plt.subplot(131) plt.pcolor(phidomain, Depth, Ppostphi) plt.colorbar() plt.plot(Phi, Depth, 'k') plt.plot(Phipost, Depth, 'r') plt.ylabel('Depth (m)') plt.xlabel('Porosity') plt.xlim([0, 0.4]) plt.ylim([max(Depth), min(Depth)]) plt.subplot(132) plt.pcolor(cdomain, Depth, Ppostclay) plt.colorbar() plt.plot(Clay, Depth, 'k') plt.plot(Cpost, Depth, 'r') plt.xlabel('Clay volume') plt.xlim([0, 0.8]) plt.ylim([max(Depth), min(Depth)]) plt.subplot(133) plt.pcolor(swdomain, Depth, Ppostsw) plt.colorbar() plt.plot(Sw, Depth, 'k') plt.plot(Swpost, Depth, 'r') plt.ylabel('Depth (m)') plt.xlabel('Water saturation') plt.xlim([0, 1]) plt.ylim([max(Depth), min(Depth)]) plt.suptitle('Rock physics linear inversion') plt.show() #% Gaussian mixture linear case # prior model pf = np.zeros((nf,1)) mum = np.zeros((nf,nv)) sm = np.zeros((nv,nv,nf)) for k in range(nf): pf[k,0] = np.sum(Facies == k) / ns mum[k,:] = np.mean(mtrain[Facies[:,0] == k,:],axis=0) sm[:,:,k] = np.cov(mtrain[Facies[:,0] == k,:].T) mupost, sigmapost, pfpost, Ppost = RockPhysicsLinGaussMixInversion(pf, mum, sm, G, mdomain, datacond, sigmaerr) # marginal posterior distributions Ppostphi = np.zeros((ns, len(phidomain))) Ppostclay = np.zeros((ns, len(cdomain))) Ppostsw = np.zeros((ns, len(swdomain))) Phimap = np.zeros((ns, 1)) Cmap = np.zeros((ns, 1)) Swmap = np.zeros((ns, 1)) for i in range(ns): Ppostphi[i,:]= np.sum(np.squeeze(np.sum(np.squeeze(Ppost[i,:,:,:]), axis=2)), axis=1) Ppostclay[i,:]= np.sum(np.squeeze(np.sum(np.squeeze(Ppost[i,:,:,:]), axis=2)), axis=0) Ppostsw[i,:]= np.sum(np.squeeze(np.sum(np.squeeze(Ppost[i,:,:,:]), axis=1)), axis=0) Ppostphi[i,:]= Ppostphi[i,:] / sum(Ppostphi[i,:]) Ppostclay[i,:]= Ppostclay[i,:] / sum(Ppostclay[i,:]) Ppostsw[i,:]= Ppostsw[i,:] / sum(Ppostsw[i,:]) Phimapind = np.argmax(Ppostphi[i,:]) Cmapind = np.argmax(Ppostclay[i,:]) Swmapind = np.argmax(Ppostsw[i,:]) Phimap[i,0]= phidomain[Phimapind] Cmap[i,0]= cdomain[Cmapind] Swmap[i,0]= swdomain[Swmapind] # plots plt.figure(2) plt.subplot(131) plt.pcolor(phidomain, Depth, Ppostphi) plt.colorbar() plt.plot(Phi, Depth, 'k') plt.plot(Phimap, Depth, 'r') plt.ylabel('Depth (m)') plt.xlabel('Porosity') plt.xlim([0, 0.4]) plt.ylim([max(Depth), min(Depth)]) plt.subplot(132) plt.pcolor(cdomain, Depth, Ppostclay) plt.colorbar() plt.plot(Clay, Depth, 'k') plt.plot(Cmap, Depth, 'r') plt.xlabel('Clay volume') plt.xlim([0, 0.8]) plt.ylim([max(Depth), min(Depth)]) plt.subplot(133) plt.pcolor(swdomain, Depth, Ppostsw) plt.colorbar() plt.plot(Sw, Depth, 'k') plt.plot(Swmap, Depth, 'r') plt.ylabel('Depth (m)') plt.xlabel('Water saturation') plt.xlim([0, 1]) plt.ylim([max(Depth), min(Depth)]) plt.suptitle('Rock physics linear inversion - Gaussian Mix prior') plt.show() #% Gaussian mixture case # The joint Gaussian mixture distribution is estimated from the training dataset mupost, sigmapost, pfpost, Ppost = RockPhysicsGaussMixInversion(Facies, mtrain, dtrain, mdomain, dcond, sigmaerr) # The joint Gaussian distribution can also be used # mupost, sigmapost, Ppost = RockPhysicsGaussInversion(mtrain, dtrain, mdomain, dcond, sigmaerr); # marginal posterior distributions Ppostphi = np.zeros((ns, len(phidomain))) Ppostclay = np.zeros((ns, len(cdomain))) Ppostsw = np.zeros((ns, len(swdomain))) Phimap = np.zeros((ns, 1)) Cmap = np.zeros((ns, 1)) Swmap = np.zeros((ns, 1)) for i in range(ns): Ppostphi[i,:]= np.sum(np.squeeze(np.sum(np.squeeze(Ppost[i,:,:,:]), axis=2)), axis=1) Ppostclay[i,:]= np.sum(np.squeeze(np.sum(np.squeeze(Ppost[i,:,:,:]), axis=2)), axis=0) Ppostsw[i,:]= np.sum(np.squeeze(np.sum(np.squeeze(Ppost[i,:,:,:]), axis=1)), axis=0) Ppostphi[i,:]= Ppostphi[i,:] / sum(Ppostphi[i,:]) Ppostclay[i,:]= Ppostclay[i,:] / sum(Ppostclay[i,:]) Ppostsw[i,:]= Ppostsw[i,:] / sum(Ppostsw[i,:]) Phimapind = np.argmax(Ppostphi[i,:]) Cmapind = np.argmax(Ppostclay[i,:]) Swmapind = np.argmax(Ppostsw[i,:]) Phimap[i,0]= phidomain[Phimapind] Cmap[i,0]= cdomain[Cmapind] Swmap[i,0]= swdomain[Swmapind] # plots plt.figure(3) plt.subplot(131) plt.pcolor(phidomain, Depth, Ppostphi) plt.colorbar() plt.plot(Phi, Depth, 'k') plt.plot(Phimap, Depth, 'r') plt.ylabel('Depth (m)') plt.xlabel('Porosity') plt.xlim([0, 0.4]) plt.ylim([max(Depth), min(Depth)]) plt.subplot(132) plt.pcolor(cdomain, Depth, Ppostclay) plt.colorbar() plt.plot(Clay, Depth, 'k') plt.plot(Cmap, Depth, 'r') plt.xlabel('Clay volume') plt.xlim([0, 0.8]) plt.ylim([max(Depth), min(Depth)]) plt.subplot(133) plt.pcolor(swdomain, Depth, Ppostsw) plt.colorbar() plt.plot(Sw, Depth, 'k') plt.plot(Swmap, Depth, 'r') plt.ylabel('Depth (m)') plt.xlabel('Water saturation') plt.xlim([0, 1]) plt.ylim([max(Depth), min(Depth)]) plt.suptitle('Rock physics inversion - Gaussian Mix joint distribution') plt.show() # % Non-parametric case (Kernel density estimation) ## Inefficient implementation ## # # phidomain = np.arange(0,0.425,0.025) # # cdomain = np.arange(0,0.85,0.05) # # swdomain = np.arange(0,1.05,0.05) # P, V, S, VP, VS, R= np.mgrid[0:0.42:0.02, 0:0.85:0.05, 0:1.05:0.05, min(Vp):max(Vp):(max(Vp)-min(Vp))/30, min(Vs):max(Vs):(max(Vs)-min(Vs))/30, min(Rho):max(Rho):(max(Rho)-min(Rho))/30] # jointdomain = np.vstack([P.ravel(), V.ravel(), S.ravel(), VP.ravel(), VS.ravel(), R.ravel()]) # datadomain = np.vstack([VP[0,0,0,:,0,0], VS[0,0,0,0,:,0], R[0,0,0,0,0,:]]) # phidomain=P[:,0,0,0,0,0] # cdomain=V[0,:,0,0,0,0] # swdomain=S[0,0,:,0,0,0] # jointdim = P.shape # mdim = P[:,:,:,0,0,0].shape # # # inversion # Ppost = RockPhysicsKDEInversion(mtrain, dtrain, jointdomain, datadomain, dcond, jointdim, mdim)
32.406143
187
0.661295
ff793e04829b0530c5aaa13414fc7efa98c78d4d
603
py
Python
ganexa_event_manager/users/migrations/0002_auto_20220315_0511.py
luiscberrocal/ganexa_event_manager
c74d2b687c713cc9c90e8bf33dcf48a4eecf0000
[ "MIT" ]
null
null
null
ganexa_event_manager/users/migrations/0002_auto_20220315_0511.py
luiscberrocal/ganexa_event_manager
c74d2b687c713cc9c90e8bf33dcf48a4eecf0000
[ "MIT" ]
6
2022-03-18T10:41:25.000Z
2022-03-31T10:38:16.000Z
ganexa_event_manager/users/migrations/0002_auto_20220315_0511.py
luiscberrocal/ganexa_event_manager
c74d2b687c713cc9c90e8bf33dcf48a4eecf0000
[ "MIT" ]
null
null
null
# Generated by Django 3.2.12 on 2022-03-15 10:11 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.AddField( model_name='user', name='first_name', field=models.CharField(blank=True, max_length=80, verbose_name='First name'), ), migrations.AddField( model_name='user', name='last_name', field=models.CharField(blank=True, max_length=80, verbose_name='Last name'), ), ]
25.125
89
0.588723
7582d7e4e7ccdf08edeacffb8ac393bed5aa65e1
16,372
py
Python
lib/exabgp/bgp/message/update/nlri/flow.py
lochiiconnectivity/exabgp
2cb8a99af89969ff4b0b5561de6168a18179b704
[ "BSD-3-Clause" ]
null
null
null
lib/exabgp/bgp/message/update/nlri/flow.py
lochiiconnectivity/exabgp
2cb8a99af89969ff4b0b5561de6168a18179b704
[ "BSD-3-Clause" ]
null
null
null
lib/exabgp/bgp/message/update/nlri/flow.py
lochiiconnectivity/exabgp
2cb8a99af89969ff4b0b5561de6168a18179b704
[ "BSD-3-Clause" ]
null
null
null
# encoding: utf-8 """ flow.py Created by Thomas Mangin on 2010-01-14. Copyright (c) 2009-2015 Exa Networks. All rights reserved. """ # Do not use __slots__ here, we never create enough of them to be worth it # And it really break complex inheritance from struct import pack from struct import unpack from exabgp.protocol.ip import IP from exabgp.protocol.ip import NoIP from exabgp.protocol.family import AFI from exabgp.protocol.family import SAFI from exabgp.bgp.message import OUT from exabgp.bgp.message.notification import Notify from exabgp.bgp.message.update.nlri.cidr import CIDR from exabgp.protocol import Protocol from exabgp.protocol import NamedProtocol from exabgp.protocol.ip.icmp import ICMPType from exabgp.protocol.ip.icmp import ICMPCode from exabgp.protocol.ip.icmp import NamedICMPType from exabgp.protocol.ip.icmp import NamedICMPCode from exabgp.protocol.ip.fragment import Fragment from exabgp.protocol.ip.fragment import NamedFragment from exabgp.protocol.ip.tcp.flag import TCPFlag from exabgp.protocol.ip.tcp.flag import NamedTCPFlag from exabgp.bgp.message.update.nlri.nlri import NLRI from exabgp.bgp.message.update.nlri.qualifier.rd import RouteDistinguisher # =================================================================== Flow Components class IComponent (object): # all have ID # should have an interface for serialisation and put it here pass class CommonOperator (object): # power (2,x) is the same as 1 << x which is what the RFC say the len is power = {0:1, 1:2, 2:4, 3:8,} rewop = {1:0, 2:1, 4:2, 8:3,} len_position = 0x30 EOL = 0x80 # 0b10000000 AND = 0x40 # 0b01000000 LEN = 0x30 # 0b00110000 NOP = 0x00 OPERATOR = 0xFF ^ (EOL | LEN) @staticmethod def eol (data): return data & CommonOperator.EOL @staticmethod def operator (data): return data & CommonOperator.OPERATOR @staticmethod def length (data): return 1 << ((data & CommonOperator.LEN) >> 4) class NumericOperator (CommonOperator): # reserved = 0x08 # 0b00001000 LT = 0x04 # 0b00000100 GT = 0x02 # 0b00000010 EQ = 0x01 # 0b00000001 class BinaryOperator (CommonOperator): # reserved = 0x0C # 0b00001100 NOT = 0x02 # 0b00000010 MATCH = 0x01 # 0b00000001 def _len_to_bit (value): return NumericOperator.rewop[value] << 4 def _bit_to_len (value): return NumericOperator.power[(value & CommonOperator.len_position) >> 4] def _number (string): value = 0 for c in string: value = (value << 8) + ord(c) return value # def short (value): # return (ord(value[0]) << 8) + ord(value[1]) # Interface .................. class IPv4 (object): afi = AFI.ipv4 class IPv6 (object): afi = AFI.ipv6 class IPrefix (object): pass # Prococol class IPrefix4 (IPrefix,IComponent,IPv4): # not used, just present for simplying the nlri generation operations = 0x0 # NAME def __init__ (self,raw,netmask): self.nlri = CIDR(raw,netmask) def pack (self): raw = self.nlri.pack() return "%s%s" % (chr(self.ID),raw) def __str__ (self): return str(self.nlri) class IPrefix6 (IPrefix,IComponent,IPv6): # not used, just present for simplying the nlri generation operations = 0x0 # NAME def __init__ (self,raw,netmask,offset): self.nlri = CIDR(raw,netmask) self.offset = offset def pack (self): raw = self.nlri.packed_ip() return "%s%s%s%s" % (chr(self.ID),chr(self.nlri.mask),chr(self.offset),raw) def __str__ (self): return "%s/%s" % (self.nlri,self.offset) class IOperation (IComponent): # need to implement encode which encode the value of the operator def __init__ (self,operations,value): self.operations = operations self.value = value self.first = None # handled by pack/str def pack (self): l,v = self.encode(self.value) op = self.operations | _len_to_bit(l) return "%s%s" % (chr(op),v) def encode (self,value): raise NotImplemented('this method must be implemented by subclasses') def decode (self,value): raise NotImplemented('this method must be implemented by subclasses') #class IOperationIPv4 (IOperation): # def encode (self,value): # return 4, socket.pton(socket.AF_INET,value) class IOperationByte (IOperation): def encode (self,value): return 1,chr(value) def decode (self,bgp): return ord(bgp[0]),bgp[1:] class IOperationByteShort (IOperation): def encode (self,value): if value < (1<<8): return 1,chr(value) return 2,pack('!H',value) def decode (self,bgp): return unpack('!H',bgp[:2])[0],bgp[2:] # String representation for Numeric and Binary Tests class NumericString (object): _string = { NumericOperator.LT : '<', NumericOperator.GT : '>', NumericOperator.EQ : '=', NumericOperator.LT|NumericOperator.EQ : '<=', NumericOperator.GT|NumericOperator.EQ : '>=', NumericOperator.AND|NumericOperator.LT : '&<', NumericOperator.AND|NumericOperator.GT : '&>', NumericOperator.AND|NumericOperator.EQ : '&=', NumericOperator.AND|NumericOperator.LT|NumericOperator.EQ : '&<=', NumericOperator.AND|NumericOperator.GT|NumericOperator.EQ : '&>=', } def __str__ (self): return "%s%s" % (self._string[self.operations & (CommonOperator.EOL ^ 0xFF)], self.value) class BinaryString (object): _string = { BinaryOperator.NOT : '!', BinaryOperator.MATCH : '=', BinaryOperator.AND|BinaryOperator.NOT : '&!', BinaryOperator.AND|BinaryOperator.MATCH : '&=', } def __str__ (self): return "%s%s" % (self._string[self.operations & (CommonOperator.EOL ^ 0xFF)], self.value) # Components .............................. def converter (function,klass=int): def _integer (value): try: return klass(value) except ValueError: return function(value) return _integer def decoder (function,klass=int): def _inner (value): return klass(function(value)) return _inner def PacketLength (data): _str_bad_length = "cloudflare already found that invalid max-packet length for for you .." number = int(data) if number > 0xFFFF: raise ValueError(_str_bad_length) return number def PortValue (data): _str_bad_port = "you tried to set an invalid port number .." number = int(data) if number < 0 or number > 0xFFFF: raise ValueError(_str_bad_port) return number def DSCPValue (data): _str_bad_dscp = "you tried to filter a flow using an invalid dscp for a component .." number = int(data) if number < 0 or number > 0xFFFF: raise ValueError(_str_bad_dscp) return number def ClassValue (data): _str_bad_class = "you tried to filter a flow using an invalid traffic class for a component .." number = int(data) if number < 0 or number > 0xFFFF: raise ValueError(_str_bad_class) return number def LabelValue (data): _str_bad_label = "you tried to filter a flow using an invalid traffic label for a component .." number = int(data) if number < 0 or number > 0xFFFFF: # 20 bits 5 bytes raise ValueError(_str_bad_label) return number # Protocol Shared class FlowDestination (object): ID = 0x01 NAME = 'destination' class FlowSource (object): ID = 0x02 NAME = 'source' # Prefix class Flow4Destination (IPrefix4,FlowDestination): pass # Prefix class Flow4Source (IPrefix4,FlowSource): pass # Prefix class Flow6Destination (IPrefix6,FlowDestination): pass # Prefix class Flow6Source (IPrefix6,FlowSource): pass class FlowIPProtocol (IOperationByte,NumericString,IPv4): ID = 0x03 NAME = 'protocol' converter = staticmethod(converter(NamedProtocol,Protocol)) decoder = staticmethod(decoder(ord,Protocol)) class FlowNextHeader (IOperationByte,NumericString,IPv6): ID = 0x03 NAME = 'next-header' converter = staticmethod(converter(NamedProtocol,Protocol)) decoder = staticmethod(decoder(ord,Protocol)) class FlowAnyPort (IOperationByteShort,NumericString,IPv4,IPv6): ID = 0x04 NAME = 'port' converter = staticmethod(converter(PortValue)) decoder = staticmethod(_number) class FlowDestinationPort (IOperationByteShort,NumericString,IPv4,IPv6): ID = 0x05 NAME = 'destination-port' converter = staticmethod(converter(PortValue)) decoder = staticmethod(_number) class FlowSourcePort (IOperationByteShort,NumericString,IPv4,IPv6): ID = 0x06 NAME = 'source-port' converter = staticmethod(converter(PortValue)) decoder = staticmethod(_number) class FlowICMPType (IOperationByte,BinaryString,IPv4,IPv6): ID = 0x07 NAME = 'icmp-type' converter = staticmethod(converter(NamedICMPType)) decoder = staticmethod(decoder(_number,ICMPType)) class FlowICMPCode (IOperationByte,BinaryString,IPv4,IPv6): ID = 0x08 NAME = 'icmp-code' converter = staticmethod(converter(NamedICMPCode)) decoder = staticmethod(decoder(_number,ICMPCode)) class FlowTCPFlag (IOperationByte,BinaryString,IPv4,IPv6): ID = 0x09 NAME = 'tcp-flags' converter = staticmethod(converter(NamedTCPFlag)) decoder = staticmethod(decoder(ord,TCPFlag)) class FlowPacketLength (IOperationByteShort,NumericString,IPv4,IPv6): ID = 0x0A NAME = 'packet-length' converter = staticmethod(converter(PacketLength)) decoder = staticmethod(_number) # RFC2474 class FlowDSCP (IOperationByteShort,NumericString,IPv4): ID = 0x0B NAME = 'dscp' converter = staticmethod(converter(DSCPValue)) decoder = staticmethod(_number) # RFC2460 class FlowTrafficClass (IOperationByte,NumericString,IPv6): ID = 0x0B NAME = 'traffic-class' converter = staticmethod(converter(ClassValue)) decoder = staticmethod(_number) # BinaryOperator class FlowFragment (IOperationByteShort,NumericString,IPv4): ID = 0x0C NAME = 'fragment' converter = staticmethod(converter(NamedFragment)) decoder = staticmethod(decoder(ord,Fragment)) # draft-raszuk-idr-flow-spec-v6-01 class FlowFlowLabel (IOperationByteShort,NumericString,IPv6): ID = 0x0D NAME = 'flow-label' converter = staticmethod(converter(LabelValue)) decoder = staticmethod(_number) # .......................................................... decode = {AFI.ipv4: {}, AFI.ipv6: {}} factory = {AFI.ipv4: {}, AFI.ipv6: {}} for content in dir(): klass = globals().get(content,None) if not isinstance(klass,type(IComponent)): continue if not issubclass(klass,IComponent): continue if issubclass(klass,IPv4): afi = AFI.ipv4 elif issubclass(klass,IPv6): afi = AFI.ipv6 else: continue ID = getattr(klass,'ID',None) if not ID: continue factory[afi][ID] = klass name = getattr(klass,'NAME') if issubclass(klass, IOperation): if issubclass(klass, BinaryString): decode[afi][ID] = 'binary' elif issubclass(klass, NumericString): decode[afi][ID] = 'numeric' else: raise RuntimeError('invalid class defined (string)') elif issubclass(klass, IPrefix): decode[afi][ID] = 'prefix' else: raise RuntimeError('unvalid class defined (type)') # .......................................................... def _unique (): value = 0 while True: yield value value += 1 unique = _unique() class Flow (NLRI): def __init__ (self,afi=AFI.ipv4,safi=SAFI.flow_ip,nexthop=None,rd=None): NLRI.__init__(self,afi,safi) self.rules = {} self.action = OUT.announce self.nexthop = IP.unpack(nexthop) if nexthop else NoIP self.rd = rd self.unique = unique.next() def __len__ (self): return len(self.pack()) def add (self,rule): ID = rule.ID if ID in (FlowDestination.ID,FlowSource.ID): if ID in self.rules: return False if ID == FlowDestination.ID: pair = self.rules.get(FlowSource.ID,[]) else: pair = self.rules.get(FlowDestination.ID,[]) if pair: if rule.afi != pair[0].afi: return False self.rules.setdefault(ID,[]).append(rule) return True # The API requires addpath, but it is irrelevant here. def pack (self,addpath=None): ordered_rules = [] # the order is a RFC requirement for ID in sorted(self.rules.keys()): rules = self.rules[ID] # for each component get all the operation to do # the format use does not prevent two opposing rules meaning that no packet can ever match for rule in rules: rule.operations &= (CommonOperator.EOL ^ 0xFF) rules[-1].operations |= CommonOperator.EOL # and add it to the last rule if ID not in (FlowDestination.ID,FlowSource.ID): ordered_rules.append(chr(ID)) ordered_rules.append(''.join(rule.pack() for rule in rules)) components = ''.join(ordered_rules) if self.safi == SAFI.flow_vpn: components = self.rd.pack() + components l = len(components) if l < 0xF0: data = "%s%s" % (chr(l),components) elif l < 0x0FFF: data = "%s%s" % (pack('!H',l | 0xF000),components) else: raise Notify(3,0,"rule too big for NLRI - how to handle this - does this work ?") # data = "%s" % chr(0) return data def extensive (self): string = [] for index in sorted(self.rules): rules = self.rules[index] s = [] for idx,rule in enumerate(rules): # only add ' ' after the first element if idx and not rule.operations & NumericOperator.AND: s.append(' ') s.append(rule) string.append(' %s %s' % (rules[0].NAME,''.join(str(_) for _ in s))) nexthop = ' next-hop %s' % self.nexthop if self.nexthop is not NoIP else '' rd = str(self.rd) if self.rd else '' return 'flow' + rd + ''.join(string) + nexthop def __str__ (self): return self.extensive() def _json (self): string = [] for index in sorted(self.rules): rules = self.rules[index] s = [] for idx,rule in enumerate(rules): # only add ' ' after the first element if idx and not rule.operations & NumericOperator.AND: s.append(', ') s.append('"%s"' % rule) string.append(' "%s": [ %s ]' % (rules[0].NAME,''.join(str(_) for _ in s))) nexthop = ', "next-hop": "%s"' % self.nexthop if self.nexthop is not NoIP else '' rd = ', %s' % self.rd.json() if self.rd else '' compatibility = ', "string": "%s"' % self.extensive() return '{' + rd + ','.join(string) + nexthop + compatibility +' }' def json (self): # this is a stop gap so flow route parsing does not crash exabgp # delete unique when this is fixed return '"flow-%d": %s' % (self.unique,self._json()) def index (self): return self.pack() @classmethod def unpack (cls,afi,safi,bgp,has_multiple_path,nexthop,action): total = len(bgp) length,bgp = ord(bgp[0]),bgp[1:] if length & 0xF0 == 0xF0: # bigger than 240 extra,bgp = ord(bgp[0]),bgp[1:] length = ((length & 0x0F) << 16) + extra if length > len(bgp): raise Notify(3,10,'invalid length at the start of the the flow') bgp = bgp[:length] nlri = Flow(afi,safi,nexthop) nlri.action = action if safi == SAFI.flow_vpn: nlri.rd = RouteDistinguisher(bgp[:8]) bgp = bgp[8:] seen = [] while bgp: what,bgp = ord(bgp[0]),bgp[1:] if what not in decode.get(afi,{}): raise Notify(3,10,'unknown flowspec component received for address family %d' % what) seen.append(what) if sorted(seen) != seen: raise Notify(3,10,'components are not sent in the right order %s' % seen) decoder = decode[afi][what] klass = factory[afi][what] if decoder == 'prefix': if afi == AFI.ipv4: _,rd,_,mask,size,prefix,left = NLRI._nlri(afi,safi,bgp,action,False) adding = klass(prefix,mask) if not nlri.add(adding): raise Notify(3,10,'components are incompatible (two sources, two destinations, mix ipv4/ipv6) %s' % seen) # logger.parser(LazyFormat("added flow %s (%s) payload " % (klass.NAME,adding),od,bgp[:-len(left)])) bgp = left else: byte,bgp = bgp[1],bgp[0]+bgp[2:] offset = ord(byte) _,rd,_,mask,size,prefix,left = NLRI._nlri(afi,safi,bgp,action,False) adding = klass(prefix,mask,offset) if not nlri.add(adding): raise Notify(3,10,'components are incompatible (two sources, two destinations, mix ipv4/ipv6) %s' % seen) # logger.parser(LazyFormat("added flow %s (%s) payload " % (klass.NAME,adding),od,bgp[:-len(left)])) bgp = left else: end = False while not end: byte,bgp = ord(bgp[0]),bgp[1:] end = CommonOperator.eol(byte) operator = CommonOperator.operator(byte) length = CommonOperator.length(byte) value,bgp = bgp[:length],bgp[length:] adding = klass.decoder(value) nlri.add(klass(operator,adding)) # logger.parser(LazyFormat("added flow %s (%s) operator %d len %d payload " % (klass.NAME,adding,byte,length),od,value)) return total-len(bgp),nlri for safi in (SAFI.flow_ip,SAFI.flow_vpn): for afi in (AFI.ipv4, AFI.ipv6): Flow.register_nlri(afi,safi)
27.986325
125
0.689836
804c5d561600d69d59b80e5b2dd0b0e4b67416ba
2,878
py
Python
fidesctl/src/fidesapi/main.py
Tannahooks/fides
d4e1b3bdf3490a31ae5a7876b65ce527884d25d8
[ "Apache-2.0" ]
null
null
null
fidesctl/src/fidesapi/main.py
Tannahooks/fides
d4e1b3bdf3490a31ae5a7876b65ce527884d25d8
[ "Apache-2.0" ]
null
null
null
fidesctl/src/fidesapi/main.py
Tannahooks/fides
d4e1b3bdf3490a31ae5a7876b65ce527884d25d8
[ "Apache-2.0" ]
null
null
null
""" Contains the code that sets up the API. """ from datetime import datetime from enum import Enum from logging import WARNING from typing import Callable, Dict from fastapi import FastAPI, Request, Response from loguru import logger as log from uvicorn import Config, Server from fidesapi import crud, database, db_session, view, visualize from fidesapi.logger import setup as setup_logging from fidesctl.core.config import FidesctlConfig, get_config app = FastAPI(title="fidesctl") CONFIG: FidesctlConfig = get_config() def configure_routes() -> None: "Include all of the routers not defined in this module." routers = crud.routers + visualize.routers for router in routers: log.debug(f'Adding router to fidesctl: {" ".join(router.tags)}') app.include_router(router) app.include_router(view.router) # Configure the routes here so we can generate the openapi json file configure_routes() def configure_db(database_url: str) -> None: "Set up the db to be used by the app." database.create_db_if_not_exists(database_url) db_session.global_init(database_url) database.init_db(database_url) @app.on_event("startup") def setup_server() -> None: "Run all of the required setup steps for the webserver." setup_logging( CONFIG.api.log_level, serialize=CONFIG.api.log_serialization, desination=CONFIG.api.log_destination, ) configure_db(CONFIG.api.database_url) @app.middleware("http") async def log_request(request: Request, call_next: Callable) -> Response: "Log basic information about every request handled by the server." start = datetime.now() response = await call_next(request) handler_time = datetime.now() - start log.bind( method=request.method, status_code=response.status_code, handler_time=f"{handler_time.microseconds * 0.001}ms", path=request.url.path, ).info("Request received") return response @app.get("/health", tags=["Health"]) async def health() -> Dict: "Confirm that the API is running and healthy." return {"data": {"message": "Fidesctl API service is healthy!"}} class DBActions(str, Enum): "The available path parameters for the `/admin/db/{action}` endpoint." init = "init" reset = "reset" @app.post("/admin/db/{action}", tags=["Admin"]) async def db_action(action: DBActions) -> Dict: """ Initiate one of the enumerated DBActions. """ action_text = "initialized" if action == DBActions.reset: database.reset_db(CONFIG.api.database_url) action_text = DBActions.reset configure_db(CONFIG.api.database_url) return {"data": {"message": f"Fidesctl database {action_text}"}} def start_webserver() -> None: "Run the webserver." server = Server(Config(app, host="0.0.0.0", port=8080, log_level=WARNING)) server.run()
29.367347
78
0.706393
398811e51d14355898a6134e31708bc98e1715ff
2,155
py
Python
src/classes/Property.py
PayParty/dbtools
086d4df9072e81befd4257540ab7d3034c44b721
[ "MIT" ]
null
null
null
src/classes/Property.py
PayParty/dbtools
086d4df9072e81befd4257540ab7d3034c44b721
[ "MIT" ]
null
null
null
src/classes/Property.py
PayParty/dbtools
086d4df9072e81befd4257540ab7d3034c44b721
[ "MIT" ]
null
null
null
from bson import ObjectId class Property: # Property # # Represents a simple property contained in a model. # def __init__(self, from_plain=None, **kwargs): # Constructor # # Properties # _class: string with object class # name: string with property name # type: string with property type # optional: whether or not the property is optional (bool) # if from_plain: self.__class = 'Property' self.name = from_plain.get('name', '') self.type = from_plain.get('type', 'None') self.optional = from_plain.get('optional', False) else: self.__class = 'Property' self.name = kwargs.get('name', '') self.type = kwargs.get('type', 'None') self.optional = kwargs.get('optional', False) def __repr__(self): return ( 'Property object \'{name}\' of type {type}.'.format(name=self.name, type=self.type) ) def analyze(self, document_property): types = { 'String': [str], 'Number': [int, float], 'Boolean': [bool], 'ObjectID': [ObjectId], 'Any': [str, int, float, bool, ObjectId, dict, list] } if document_property == None: if self.optional: return None else: return 'missing property' else: if type(document_property) in types[self.type]: return None else: return 'incorrect property type' def to_plain(self): # to_plain # # Returns a plain python object representing the Property object # return { '__class': self.__class, 'name': self.name, 'type': self.type, 'optional': self.optional } @property def name(self): return self.__name @name.setter def name(self, new_name): if isinstance(new_name, str): self.__name = new_name @property def type(self): return self.__type @type.setter def type(self, new_type): if isinstance(new_type, str): self.__type = new_type @property def optional(self): return self.__optional @optional.setter def optional(self, new_optional): if isinstance(new_optional, bool): self.__optional = new_optional
22.447917
89
0.620882
41092111f70e26e08ed312e033de3e34d7e1fcce
217
py
Python
tests/integration/testdata/logs/python-apigw-sfn/apigw-function/app.py
praneetap/aws-sam-cli
2a713566c8de72a68eb8954584674a61a2d807ac
[ "Apache-2.0" ]
2,285
2017-08-11T16:57:31.000Z
2018-05-08T20:38:25.000Z
tests/integration/testdata/logs/python-apigw-sfn/apigw-function/app.py
praneetap/aws-sam-cli
2a713566c8de72a68eb8954584674a61a2d807ac
[ "Apache-2.0" ]
314
2017-08-11T17:29:27.000Z
2018-05-08T20:51:47.000Z
tests/integration/testdata/logs/python-apigw-sfn/apigw-function/app.py
praneetap/aws-sam-cli
2a713566c8de72a68eb8954584674a61a2d807ac
[ "Apache-2.0" ]
284
2017-08-11T17:35:48.000Z
2018-05-08T20:15:59.000Z
def handler(event, context): print("Hello world from HelloWorldServerlessApi/hello function") print("Hello world from ApiGwFunction function") print("this should be filtered ApiGwFunction") return {}
31
68
0.741935
416a13c10d0d11eb00aede9096e16fcdca6732bb
885
py
Python
ws2122-lspm/Lib/site-packages/pm4py/algo/conformance/tree_alignments/__init__.py
Malekhy/ws2122-lspm
e4dc8b801d12f862b8ef536a0f125f346f085a00
[ "MIT" ]
1
2022-01-19T04:02:46.000Z
2022-01-19T04:02:46.000Z
ws2122-lspm/Lib/site-packages/pm4py/algo/conformance/tree_alignments/__init__.py
Malekhy/ws2122-lspm
e4dc8b801d12f862b8ef536a0f125f346f085a00
[ "MIT" ]
1
2021-11-19T07:21:48.000Z
2021-11-19T07:21:48.000Z
ws2122-lspm/Lib/site-packages/pm4py/algo/conformance/tree_alignments/__init__.py
Malekhy/ws2122-lspm
e4dc8b801d12f862b8ef536a0f125f346f085a00
[ "MIT" ]
1
2022-01-14T17:15:38.000Z
2022-01-14T17:15:38.000Z
''' This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de). PM4Py is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. PM4Py is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with PM4Py. If not, see <https://www.gnu.org/licenses/>. ''' import warnings warnings.warn("please use the pm4py.algo.conformance.alignments.process_tree package.") from pm4py.algo.conformance.alignments.process_tree import *
40.227273
87
0.748023
2701ad89bf85792091760d18d393b7124981569b
2,171
py
Python
packages/Python/lldbsuite/test/lang/swift/variables/cgtypes/TestCGTypes.py
xiaobai/swift-lldb
9238527ce430e6837108a16d2a91b147551fb83c
[ "Apache-2.0" ]
765
2015-12-03T16:44:59.000Z
2022-03-07T12:41:10.000Z
packages/Python/lldbsuite/test/lang/swift/variables/cgtypes/TestCGTypes.py
xiaobai/swift-lldb
9238527ce430e6837108a16d2a91b147551fb83c
[ "Apache-2.0" ]
1,815
2015-12-11T23:56:05.000Z
2020-01-10T19:28:43.000Z
packages/Python/lldbsuite/test/lang/swift/variables/cgtypes/TestCGTypes.py
xiaobai/swift-lldb
9238527ce430e6837108a16d2a91b147551fb83c
[ "Apache-2.0" ]
284
2015-12-03T16:47:25.000Z
2022-03-12T05:39:48.000Z
# TestCGTypes.py # # This source file is part of the Swift.org open source project # # Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors # Licensed under Apache License v2.0 with Runtime Library Exception # # See https://swift.org/LICENSE.txt for license information # See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors # # ------------------------------------------------------------------------------ """ Test that we are able to properly format basic CG types """ import lldb from lldbsuite.test.lldbtest import * from lldbsuite.test.decorators import * import lldbsuite.test.lldbutil as lldbutil import os import unittest2 class TestSwiftCoreGraphicsTypes(TestBase): mydir = TestBase.compute_mydir(__file__) @swiftTest @skipUnlessDarwin def test_swift_coregraphics_types(self): """Test that we are able to properly format basic CG types""" self.build() self.do_test() def setUp(self): TestBase.setUp(self) def do_test(self): """Test that we are able to properly format basic CG types""" self.build() lldbutil.run_to_source_breakpoint( self, 'Set breakpoint here', lldb.SBFileSpec('main.swift')) self.expect('frame variable f', substrs=[' = 1']) self.expect('frame variable p', substrs=[' = (x = 1, y = 1)']) self.expect('frame variable r', substrs=[ ' = (origin = (x = 0, y = 0), size = (width = 0, height = 0))']) self.expect('expr f', substrs=[' = 1']) self.expect('expr p', substrs=[' = (x = 1, y = 1)']) self.expect( 'expr r', substrs=[' = (origin = (x = 0, y = 0), size = (width = 0, height = 0))']) self.expect('po f', substrs=['1.0']) self.expect('po p', substrs=['x : 1.0', 'y : 1.0']) self.expect( 'po r', substrs=[ 'x : 0.0', 'y : 0.0', 'width : 0.0', 'height : 0.0']) if __name__ == '__main__': import atexit lldb.SBDebugger.Initialize() atexit.register(lldb.SBDebugger.Terminate) unittest2.main()
31.014286
85
0.573929
480d1df18c2e9a74bc42bf0c110e981cf89f2f2b
1,488
py
Python
test/cmd/at/test_cmd_at_get_imsi.py
carr-elagheb/moler
b896ff668d9cc3704b6f806f7c2bf6e76c13427d
[ "BSD-3-Clause" ]
null
null
null
test/cmd/at/test_cmd_at_get_imsi.py
carr-elagheb/moler
b896ff668d9cc3704b6f806f7c2bf6e76c13427d
[ "BSD-3-Clause" ]
null
null
null
test/cmd/at/test_cmd_at_get_imsi.py
carr-elagheb/moler
b896ff668d9cc3704b6f806f7c2bf6e76c13427d
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Testing AtGetIMSI commands. """ __author__ = 'Lukasz Blaszkiewicz, Kamil Kania, Grzegorz Latuszek' __copyright__ = 'Copyright (C) 2018, Nokia' __email__ = 'kamil.kania@nokia.com, grzegorz.latuszek@nokia.com' import pytest # --------------------------- testing base class --------------------------- def test_calling_at_cmd_get_imsi_returns_expected_result(buffer_connection): from moler.cmd.at import get_imsi at_cmd_get_imsi = get_imsi.AtCmdGetIMSI(connection=buffer_connection.moler_connection, **get_imsi.COMMAND_KWARGS_ver_execute) buffer_connection.remote_inject_response([get_imsi.COMMAND_OUTPUT_ver_execute]) result = at_cmd_get_imsi() assert result == get_imsi.COMMAND_RESULT_ver_execute def test_at_cmd_get_imsi_raises_AtCommandModeNotSupported_when_instantiated_in_read_mode(): from moler.cmd.at.get_imsi import AtCmdGetIMSI, AtCommandModeNotSupported with pytest.raises(AtCommandModeNotSupported): AtCmdGetIMSI(operation="read") def test_calling_at_cmd_get_imsi_in_test_mode_returns_empty_result(buffer_connection): from moler.cmd.at import get_imsi buffer_connection.remote_inject_response([get_imsi.COMMAND_OUTPUT_ver_test]) at_cmd_get_imsi = get_imsi.AtCmdGetIMSI(connection=buffer_connection.moler_connection, **get_imsi.COMMAND_KWARGS_ver_test) result = at_cmd_get_imsi() assert result == {}
41.333333
91
0.733199
237b6353d53104d1ccca9ecedea6efd6910a2128
23,439
py
Python
heisenbridge/private_room.py
sumnerevans/heisenbridge
caf122a0f064b8bc2cd9fbd0f9ae703d323b7d04
[ "MIT" ]
null
null
null
heisenbridge/private_room.py
sumnerevans/heisenbridge
caf122a0f064b8bc2cd9fbd0f9ae703d323b7d04
[ "MIT" ]
null
null
null
heisenbridge/private_room.py
sumnerevans/heisenbridge
caf122a0f064b8bc2cd9fbd0f9ae703d323b7d04
[ "MIT" ]
null
null
null
import asyncio import html import logging import re import unicodedata from datetime import datetime from datetime import timezone from html import escape from typing import List from typing import Optional from typing import Tuple from urllib.parse import urlparse from mautrix.api import Method from mautrix.api import SynapseAdminPath from heisenbridge.command_parse import CommandManager from heisenbridge.command_parse import CommandParser from heisenbridge.command_parse import CommandParserError from heisenbridge.parser import IRCMatrixParser from heisenbridge.parser import IRCRecursionContext from heisenbridge.room import Room class NetworkRoom: pass def unix_to_local(timestamp: Optional[str]): try: dt = datetime.fromtimestamp(int(timestamp), timezone.utc) return dt.strftime("%c %Z") # intentionally UTC for now except ValueError: logging.debug("Tried to convert '{timestamp}' to int") return timestamp def connected(f): def wrapper(*args, **kwargs): self = args[0] if not self.network or not self.network.conn or not self.network.conn.connected: self.send_notice("Need to be connected to use this command.") return asyncio.sleep(0) return f(*args, **kwargs) return wrapper # this is very naive and will break html tag close/open order right now def parse_irc_formatting(input: str, pills=None) -> Tuple[str, Optional[str]]: plain = [] formatted = [] have_formatting = False bold = False italic = False underline = False for m in re.finditer( r"(\x02|\x03([0-9]{1,2})?(,([0-9]{1,2}))?|\x1D|\x1F|\x16|\x0F)?([^\x02\x03\x1D\x1F\x16\x0F]*)", input ): # fg is group 2, bg is group 4 but we're ignoring them now (ctrl, text) = (m.group(1), m.group(5)) if ctrl: have_formatting = True if ctrl[0] == "\x02": if not bold: formatted.append("<b>") else: formatted.append("</b>") bold = not bold if ctrl[0] == "\x03": """ ignoring color codes for now """ elif ctrl[0] == "\x1D": if not italic: formatted.append("<i>") else: formatted.append("</i>") italic = not italic elif ctrl[0] == "\x1F": if not underline: formatted.append("<u>") else: formatted.append("</u>") underline = not underline elif ctrl[0] == "\x16": """ ignore reverse """ elif ctrl[0] == "\x0F": if bold: formatted.append("</b>") if italic: formatted.append("</i>") if underline: formatted.append("</u>") bold = italic = underline = False if text: plain.append(text) # escape any existing html in the text text = escape(text) # create pills if pills: def replace_pill(m): word = m.group(0).lower() if word in pills: mxid, displayname = pills[word] return f'<a href="https://matrix.to/#/{escape(mxid)}">{escape(displayname)}</a>' return m.group(0) # this will also match some non-nick characters so pillify fails on purpose text = re.sub(r"[^\s\?!:;,\.]+(\.[A-Za-z0-9])?", replace_pill, text) # if the formatted version has a link, we took some pills if "<a href" in text: have_formatting = True formatted.append(text) if bold: formatted.append("</b>") if italic: formatted.append("</i>") if underline: formatted.append("</u>") return ("".join(plain), "".join(formatted) if have_formatting else None) def split_long(nick, user, host, target, message): out = [] # this is an easy template to calculate the overhead of the sender and target template = f":{nick}!{user}@{host} PRIVMSG {target} :\r\n" maxlen = 512 - len(template.encode()) dots = "..." words = [] for word in message.split(" "): words.append(word) line = " ".join(words) if len(line.encode()) + len(dots) > maxlen: words.pop() out.append(" ".join(words) + dots) words = [dots, word] out.append(" ".join(words)) return out # generate an edit that follows usual IRC conventions def line_diff(a, b): a = a.split() b = b.split() pre = None post = None mlen = min(len(a), len(b)) for i in range(0, mlen): if a[i] != b[i]: break pre = i + 1 for i in range(1, mlen + 1): if a[-i] != b[-i]: break post = -i rem = a[pre:post] add = b[pre:post] if len(add) == 0 and len(rem) > 0: return "-" + (" ".join(rem)) if len(rem) == 0 and len(add) > 0: return "+" + (" ".join(add)) if len(add) > 0: return "* " + (" ".join(add)) return None class PrivateRoom(Room): # irc nick of the other party, name for consistency name: str network: Optional[NetworkRoom] network_id: str network_name: Optional[str] media: List[List[str]] # for compatibility with plumbed rooms max_lines = 0 force_forward = False commands: CommandManager def init(self) -> None: self.name = None self.network = None self.network_id = None self.network_name = None # deprecated self.media = [] self.commands = CommandManager() if type(self) == PrivateRoom: cmd = CommandParser(prog="WHOIS", description="WHOIS the other user") self.commands.register(cmd, self.cmd_whois) self.mx_register("m.room.message", self.on_mx_message) self.mx_register("m.room.redaction", self.on_mx_redaction) def from_config(self, config: dict) -> None: if "name" not in config: raise Exception("No name key in config for ChatRoom") self.name = config["name"] if "network_id" in config: self.network_id = config["network_id"] if "media" in config: self.media = config["media"] # only used for migration if "network" in config: self.network_name = config["network"] if self.network_name is None and self.network_id is None: raise Exception("No network or network_id key in config for PrivateRoom") def to_config(self) -> dict: return {"name": self.name, "network": self.network_name, "network_id": self.network_id, "media": self.media[:5]} @staticmethod def create(network: NetworkRoom, name: str) -> "PrivateRoom": logging.debug(f"PrivateRoom.create(network='{network.name}', name='{name}')") irc_user_id = network.serv.irc_user_id(network.name, name) room = PrivateRoom( None, network.user_id, network.serv, [network.user_id, irc_user_id, network.serv.user_id], [], ) room.name = name.lower() room.network = network room.network_id = network.id room.network_name = network.name asyncio.ensure_future(room._create_mx(name)) return room async def _create_mx(self, displayname) -> None: if self.id is None: irc_user_id = await self.network.serv.ensure_irc_user_id(self.network.name, displayname, update_cache=False) self.id = await self.network.serv.create_room( "{} ({})".format(displayname, self.network.name), "Private chat with {} on {}".format(displayname, self.network.name), [self.network.user_id, irc_user_id], ) self.serv.register_room(self) await self.az.intent.user(irc_user_id).ensure_joined(self.id) await self.save() # start event queue now that we have an id self._queue.start() # attach to network space if self.network.space: await self.network.space.attach(self.id) def is_valid(self) -> bool: if self.network_id is None and self.network_name is None: return False if self.name is None: return False if self.user_id is None: return False if not self.in_room(self.user_id): return False return True def cleanup(self) -> None: logging.debug(f"Cleaning up network connected room {self.id}.") # cleanup us from network space if we have it if self.network and self.network.space: asyncio.ensure_future(self.network.space.detach(self.id)) # cleanup us from network rooms if self.network and self.name in self.network.rooms: logging.debug(f"... and we are attached to network {self.network.id}, detaching.") del self.network.rooms[self.name] # if leaving this room invalidated the network, clean it up if not self.network.is_valid(): logging.debug(f"... and we invalidated network {self.network.id} while cleaning up.") self.network.serv.unregister_room(self.network.id) self.network.cleanup() asyncio.ensure_future(self.network.serv.leave_room(self.network.id, self.network.members)) super().cleanup() def send_notice( self, text: str, user_id: Optional[str] = None, formatted=None, fallback_html: Optional[str] = None, forward=False, ): if (self.force_forward or forward) and user_id is None: self.network.send_notice(text=f"{self.name}: {text}", formatted=formatted, fallback_html=fallback_html) else: super().send_notice(text=text, user_id=user_id, formatted=formatted, fallback_html=fallback_html) def send_notice_html(self, text: str, user_id: Optional[str] = None, forward=False) -> None: if (self.force_forward or forward) and user_id is None: self.network.send_notice_html(text=f"{self.name}: {text}") else: super().send_notice_html(text=text, user_id=user_id) def pills(self): # if pills are disabled, don't generate any if self.network.pills_length < 1: return None ret = {} ignore = list(map(lambda x: x.lower(), self.network.pills_ignore)) # push our own name first lnick = self.network.conn.real_nickname.lower() if self.user_id in self.displaynames and len(lnick) >= self.network.pills_length and lnick not in ignore: ret[lnick] = (self.user_id, self.displaynames[self.user_id]) # assuming displayname of a puppet matches nick for member in self.members: if not member.startswith("@" + self.serv.puppet_prefix) or not member.endswith(":" + self.serv.server_name): continue if member in self.displaynames: nick = self.displaynames[member] lnick = nick.lower() if len(nick) >= self.network.pills_length and lnick not in ignore: ret[lnick] = (member, nick) return ret def on_privmsg(self, conn, event) -> None: if self.network is None: return irc_user_id = self.serv.irc_user_id(self.network.name, event.source.nick) (plain, formatted) = parse_irc_formatting(event.arguments[0], self.pills()) if event.source.nick == self.network.conn.real_nickname: self.send_message(f"You said: {plain}", formatted=(f"You said: {formatted}" if formatted else None)) return self.send_message( plain, irc_user_id, formatted=formatted, fallback_html=f"<b>Message from {str(event.source)}</b>: {html.escape(plain)}", ) # lazy update displayname if we detect a change if ( not self.serv.is_user_cached(irc_user_id, event.source.nick) and irc_user_id not in self.lazy_members and irc_user_id in self.members ): asyncio.ensure_future(self.serv.ensure_irc_user_id(self.network.name, event.source.nick)) def on_privnotice(self, conn, event) -> None: if self.network is None: return (plain, formatted) = parse_irc_formatting(event.arguments[0]) if event.source.nick == self.network.conn.real_nickname: self.send_notice(f"You noticed: {plain}", formatted=(f"You noticed: {formatted}" if formatted else None)) return # if the local user has left this room notify in network if self.user_id not in self.members: source = self.network.source_text(conn, event) self.network.send_notice_html( f"Notice from <b>{source}:</b> {formatted if formatted else html.escape(plain)}" ) return irc_user_id = self.serv.irc_user_id(self.network.name, event.source.nick) self.send_notice( plain, irc_user_id, formatted=formatted, fallback_html=f"<b>Notice from {str(event.source)}</b>: {formatted if formatted else html.escape(plain)}", ) def on_ctcp(self, conn, event) -> None: if self.network is None: return irc_user_id = self.serv.irc_user_id(self.network.name, event.source.nick) command = event.arguments[0].upper() if command == "ACTION" and len(event.arguments) > 1: (plain, formatted) = parse_irc_formatting(event.arguments[1]) if event.source.nick == self.network.conn.real_nickname: self.send_emote(f"(you) {plain}") return self.send_emote( plain, irc_user_id, fallback_html=f"<b>Emote from {str(event.source)}</b>: {html.escape(plain)}" ) else: (plain, formatted) = parse_irc_formatting(" ".join(event.arguments)) self.send_notice_html(f"<b>{str(event.source)}</b> requested <b>CTCP {html.escape(plain)}</b> (ignored)") def on_ctcpreply(self, conn, event) -> None: if self.network is None: return (plain, formatted) = parse_irc_formatting(" ".join(event.arguments)) self.send_notice_html(f"<b>{str(event.source)}</b> sent <b>CTCP REPLY {html.escape(plain)}</b> (ignored)") def _process_event_content(self, event, prefix, reply_to=None): content = event.content if content.formatted_body: lines = str( IRCMatrixParser.parse(content.formatted_body, IRCRecursionContext(displaynames=self.displaynames)) ).split("\n") elif content.body: body = content.body for user_id, displayname in self.displaynames.items(): body = body.replace(user_id, displayname) # FluffyChat prefixes mentions in fallback with @ body = body.replace("@" + displayname, displayname) lines = body.split("\n") else: logging.warning("_process_event_content called with no usable body") return # drop all whitespace-only lines lines = [x for x in lines if not re.match(r"^\s*$", x)] # handle replies if reply_to and reply_to.sender != event.sender: # resolve displayname sender = reply_to.sender if sender in self.displaynames: sender = self.displaynames[sender] # prefix first line with nickname of the reply_to source first_line = sender + ": " + lines.pop(0) lines.insert(0, first_line) messages = [] for i, line in enumerate(lines): # prefix first line if needed if i == 0 and prefix and len(prefix) > 0: line = prefix + line # filter control characters except ZWSP line = "".join(c for c in line if unicodedata.category(c)[0] != "C" or c == "\u200B") messages += split_long( self.network.conn.real_nickname, self.network.real_user, self.network.real_host, self.name, line, ) return messages async def _send_message(self, event, func, prefix=""): # try to find out if this was a reply reply_to = None if event.content.get_reply_to(): rel_event = event # traverse back all edits while rel_event.content.get_edit(): rel_event = await self.az.intent.get_event(self.id, rel_event.content.get_edit()) # see if the original is a reply if rel_event.content.get_reply_to(): reply_to = await self.az.intent.get_event(self.id, rel_event.content.get_reply_to()) if event.content.get_edit(): messages = self._process_event_content(event, prefix, reply_to) event_id = event.content.relates_to.event_id prev_event = self.last_messages[event.sender] if prev_event and prev_event.event_id == event_id: old_messages = self._process_event_content(prev_event, prefix, reply_to) mlen = max(len(messages), len(old_messages)) edits = [] for i in range(0, mlen): try: old_msg = old_messages[i] except IndexError: old_msg = "" try: new_msg = messages[i] except IndexError: new_msg = "" edit = line_diff(old_msg, new_msg) if edit: edits.append(prefix + edit) # use edits only if one line was edited if len(edits) == 1: messages = edits # update last message _content_ to current so re-edits work self.last_messages[event.sender].content = event.content else: # last event was not found so we fall back to full message BUT we can reconstrut enough of it self.last_messages[event.sender] = event else: # keep track of the last message self.last_messages[event.sender] = event messages = self._process_event_content(event, prefix, reply_to) for i, message in enumerate(messages): if self.max_lines > 0 and i == self.max_lines - 1 and len(messages) > self.max_lines: self.react(event.event_id, "\u2702") # scissors if self.use_pastebin: content_uri = await self.az.intent.upload_media( "\n".join(messages).encode("utf-8"), mime_type="text/plain; charset=UTF-8" ) if self.max_lines == 1: func( self.name, f"{prefix}{self.serv.mxc_to_url(str(content_uri))} (long message, {len(messages)} lines)", ) else: func( self.name, f"... long message truncated: {self.serv.mxc_to_url(str(content_uri))} ({len(messages)} lines)", ) self.react(event.event_id, "\U0001f4dd") # memo self.media.append([event.event_id, str(content_uri)]) await self.save() else: if self.max_lines == 1: # best effort is to send the first line and give up func(self.name, message) else: func(self.name, "... long message truncated") return func(self.name, message) # show number of lines sent to IRC if self.max_lines == 0 and len(messages) > 1: self.react(event.event_id, f"\u2702 {len(messages)} lines") async def on_mx_message(self, event) -> None: if event.sender != self.user_id: return if self.network is None or self.network.conn is None or not self.network.conn.connected: self.send_notice("Not connected to network.") return if str(event.content.msgtype) == "m.emote": await self._send_message(event, self.network.conn.action) elif str(event.content.msgtype) in ["m.image", "m.file", "m.audio", "m.video"]: self.network.conn.privmsg(self.name, self.serv.mxc_to_url(event.content.url, event.content.body)) self.react(event.event_id, "\U0001F517") # link self.media.append([event.event_id, event.content.url]) await self.save() elif str(event.content.msgtype) == "m.text": # allow commanding the appservice in rooms match = re.match(r"^\s*@?([^:,\s]+)[\s:,]*(.+)$", event.content.body) if match and match.group(1).lower() == self.serv.registration["sender_localpart"]: try: await self.commands.trigger(match.group(2)) except CommandParserError as e: self.send_notice(str(e)) finally: return await self._send_message(event, self.network.conn.privmsg) await self.az.intent.send_receipt(event.room_id, event.event_id) async def on_mx_redaction(self, event) -> None: for media in self.media: if media[0] == event.redacts: url = urlparse(media[1]) if self.serv.synapse_admin: try: await self.az.intent.api.request( Method.POST, SynapseAdminPath.v1.media.quarantine[url.netloc][url.path[1:]] ) self.network.send_notice( f"Associated media {media[1]} for redacted event {event.redacts} " + f"in room {self.name} was quarantined." ) except Exception: self.network.send_notice( f"Failed to quarantine media! Associated media {media[1]} " + f"for redacted event {event.redacts} in room {self.name} is left available." ) else: self.network.send_notice( f"No permission to quarantine media! Associated media {media[1]} " + f"for redacted event {event.redacts} in room {self.name} is left available." ) return @connected async def cmd_whois(self, args) -> None: self.network.conn.whois(f"{self.name} {self.name}")
35.567527
124
0.55894
64c09a058b4774ff4bf88d9b1dba9a494a4179e1
322
py
Python
setup.py
shinoaki-tatsuya/mp4tojson
3b21e8966b56774105481ba88e76fe35e0e4c123
[ "MIT" ]
null
null
null
setup.py
shinoaki-tatsuya/mp4tojson
3b21e8966b56774105481ba88e76fe35e0e4c123
[ "MIT" ]
null
null
null
setup.py
shinoaki-tatsuya/mp4tojson
3b21e8966b56774105481ba88e76fe35e0e4c123
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages import mp4tojson setup( name='mp4tojson', version=mp4tojson.__version__, packages=find_packages(exclude=['tests']), entry_points=''' [console_scripts] mp4tojson = mp4tojson.main:main ''', install_requires=[ 'click', ])
21.466667
46
0.636646
9364babed1813daf4504ebae83fe160b7ee54f6b
8,040
py
Python
examples/pybullet/gym/pybullet_envs/bullet/kuka.py
msieb1/bullet3
0803a1f53e22ddd212eafe1194b1dd9e891a7eaf
[ "Zlib" ]
null
null
null
examples/pybullet/gym/pybullet_envs/bullet/kuka.py
msieb1/bullet3
0803a1f53e22ddd212eafe1194b1dd9e891a7eaf
[ "Zlib" ]
null
null
null
examples/pybullet/gym/pybullet_envs/bullet/kuka.py
msieb1/bullet3
0803a1f53e22ddd212eafe1194b1dd9e891a7eaf
[ "Zlib" ]
null
null
null
import os, inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(os.path.dirname(currentdir)) os.sys.path.insert(0,parentdir) import pybullet as p import numpy as np import copy import math import pybullet_data import time from pdb import set_trace class Kuka: def __init__(self, urdfRootPath=pybullet_data.getDataPath(), timeStep=0.01): self.urdfRootPath = urdfRootPath self.timeStep = timeStep self.maxVelocity = .35 self.maxForce = 200. self.fingerAForce = 2 self.fingerBForce = 2.5 self.fingerTipForce = 2 self.useInverseKinematics = 1 self.useSimulation = 1 self.useNullSpace = 0 self.useOrientation = 1 self.kukaEndEffectorIndex = 6 self.kukaGripperIndex = 7 #lower limits for null space self.ll=[-.967,-2 ,-2.96,0.19,-2.96,-2.09,-3.05] #upper limits for null space self.ul=[.967,2 ,2.96,2.29,2.96,2.09,3.05] #joint ranges for null space self.jr=[5.8,4,5.8,4,5.8,4,6] #restposes for null space self.rp=[0,0,0,0.5*math.pi,0,-math.pi*0.5*0.66,0] #joint damping coefficents self.jd=[0.00001,0.00001,0.00001,0.00001,0.00001,0.00001,0.00001,0.00001,0.00001,0.00001,0.00001,0.00001,0.00001,0.00001] self.reset() def reset(self): objects = p.loadSDF(os.path.join(self.urdfRootPath,"kuka_iiwa/kuka_with_gripper2.sdf")) self.kukaUid = objects[0] #for i in range (p.getNumJoints(self.kukaUid)): # print(p.getJointInfo(self.kukaUid,i)) p.resetBasePositionAndOrientation(self.kukaUid,[-0.100000,0.000000,0.070000],[0.000000,0.000000,0.000000,1.000000]) self.jointPositions=[ 0.006418, 0.413184, -0.011401, -1.589317, 0.005379, 1.137684, -0.006539, 0.000048, -0.299912, 0.000000, -0.000043, 0.299960, 0.000000, -0.000200 ] self.numJoints = p.getNumJoints(self.kukaUid) for jointIndex in range (self.numJoints): p.resetJointState(self.kukaUid,jointIndex,self.jointPositions[jointIndex]) p.setJointMotorControl2(self.kukaUid,jointIndex,p.POSITION_CONTROL,targetPosition=self.jointPositions[jointIndex],force=self.maxForce) #self.trayUid = p.loadURDF(os.path.join(self.urdfRootPath,"tray/tray.urdf"), 0.640000,0.075000,-0.190000,0.000000,0.000000,1.000000,0.000000) self.endEffectorPos = [0.537,0.0,0.5] self.endEffectorAngle = 0 self.motorNames = [] self.motorIndices = [] for i in range (self.numJoints): jointInfo = p.getJointInfo(self.kukaUid,i) qIndex = jointInfo[3] if qIndex > -1: #print("motorname") #print(jointInfo[1]) self.motorNames.append(str(jointInfo[1])) self.motorIndices.append(i) def getActionDimension(self): if (self.useInverseKinematics): return len(self.motorIndices) return 6 #position x,y,z and roll/pitch/yaw euler angles of end effector def getObservationDimension(self): return len(self.getObservation()) def getObservation(self): observation = [] state = p.getLinkState(self.kukaUid,self.kukaGripperIndex) pos = state[0] orn = state[1] euler = p.getEulerFromQuaternion(orn) observation.extend(list(pos)) observation.extend(list(euler)) return observation def applyAction(self, motorCommands): #print ("self.numJoints") #print (self.numJoints) if (self.useInverseKinematics): xlow = 0.4 xhigh = 0.8 ylow = -0.2 yhigh = 0.2 zlow = 0.6 zhigh = 0.2 dx = motorCommands[0] dy = motorCommands[1] dz = motorCommands[2] da = motorCommands[3] fingerAngle = motorCommands[4] state = p.getLinkState(self.kukaUid,self.kukaEndEffectorIndex) actualEndEffectorPos = state[0] #print("pos[2] (getLinkState(kukaEndEffectorIndex)") #print(actualEndEffectorPos[2]) self.endEffectorPos[0] = self.endEffectorPos[0]+dx if (self.endEffectorPos[0]>xhigh): self.endEffectorPos[0]=xhigh if (self.endEffectorPos[0]<xlow): self.endEffectorPos[0]=xlow self.endEffectorPos[1] = self.endEffectorPos[1]+dy if (self.endEffectorPos[1]<ylow): self.endEffectorPos[1]=ylow if (self.endEffectorPos[1]>yhigh): self.endEffectorPos[1]=yhigh self.endEffectorPos[2] = self.endEffectorPos[2]+dz if (self.endEffectorPos[2]<zlow): self.endEffectorPos[2]=zlow if (self.endEffectorPos[2]>zhigh): self.endEffectorPos[2]=zhigh #print ("self.endEffectorPos[2]") #print (self.endEffectorPos[2]) #print("actualEndEffectorPos[2]") #print(actualEndEffectorPos[2]) #if (dz<0 or actualEndEffectorPos[2]<0.5): self.endEffectorAngle = self.endEffectorAngle + da pos = self.endEffectorPos orn = p.getQuaternionFromEuler([0,-math.pi,0]) # -math.pi,yaw]) if (self.useNullSpace==1): if (self.useOrientation==1): jointPoses = p.calculateInverseKinematics(self.kukaUid,self.kukaEndEffectorIndex,pos,orn,self.ll,self.ul,self.jr,self.rp) else: jointPoses = p.calculateInverseKinematics(self.kukaUid,self.kukaEndEffectorIndex,pos,lowerLimits=self.ll, upperLimits=self.ul, jointRanges=self.jr, restPoses=self.rp) else: if (self.useOrientation==1): jointPoses = p.calculateInverseKinematics(self.kukaUid,self.kukaEndEffectorIndex,pos,orn,jointDamping=self.jd) else: jointPoses = p.calculateInverseKinematics(self.kukaUid,self.kukaEndEffectorIndex,pos) #print("jointPoses") #print(jointPoses) #print("self.kukaEndEffectorIndex") #print(self.kukaEndEffectorIndex) if (self.useSimulation): for i in range (self.kukaEndEffectorIndex+1): #print(i) p.setJointMotorControl2(bodyUniqueId=self.kukaUid,jointIndex=i,controlMode=p.POSITION_CONTROL,targetPosition=jointPoses[i],targetVelocity=0,force=self.maxForce,maxVelocity=self.maxVelocity, positionGain=0.3,velocityGain=1) else: #reset the joint state (ignoring all dynamics, not recommended to use during simulation) for i in range (self.numJoints): p.resetJointState(self.kukaUid,i,jointPoses[i]) #fingers p.setJointMotorControl2(self.kukaUid,7,p.POSITION_CONTROL,targetPosition=self.endEffectorAngle,force=self.maxForce) p.setJointMotorControl2(self.kukaUid,8,p.POSITION_CONTROL,targetPosition=-fingerAngle,force=self.fingerAForce) p.setJointMotorControl2(self.kukaUid,11,p.POSITION_CONTROL,targetPosition=fingerAngle,force=self.fingerBForce) p.setJointMotorControl2(self.kukaUid,10,p.POSITION_CONTROL,targetPosition=0,force=self.fingerTipForce) p.setJointMotorControl2(self.kukaUid,13,p.POSITION_CONTROL,targetPosition=0,force=self.fingerTipForce) else: for action in range (len(motorCommands)): motor = self.motorIndices[action] p.setJointMotorControl2(self.kukaUid,motor,p.POSITION_CONTROL,targetPosition=motorCommands[action],force=self.maxForce) def moveKukaEndtoPos(self, newxy, orn=None): if orn is None: orn = p.getQuaternionFromEuler([0, -math.pi,0]) # so gripper is always pointing down kuka_min_height = 0.0 #limit min height newxy[2] = max(kuka_min_height, newxy[2]) for kuka_sec in range(500): jointPoses = p.calculateInverseKinematics( self.kukaUid, self.kukaEndEffectorIndex, newxy, orn, lowerLimits=self.ll, upperLimits=self.ul, jointRanges=self.jr, restPoses=self.rp) for i in range(self.kukaEndEffectorIndex+1): p.setJointMotorControl2(bodyIndex=self.kukaUid,jointIndex=i,controlMode=p.POSITION_CONTROL,\ targetPosition=jointPoses[i],targetVelocity=0,force=self.maxForce,positionGain=0.03,velocityGain=1) p.stepSimulation() time.sleep(0.001)
40.2
232
0.6801
9a213abc44ec3762e4b3676f12a5c930d48e419c
633
py
Python
rapidfire/__init__.py
wanshot/rapid_fire
edee22a86b609805c602bb701bd6812c214f5c7b
[ "MIT" ]
2
2017-02-16T00:05:20.000Z
2017-03-06T09:00:49.000Z
rapidfire/__init__.py
wanshot/rapid_fire
edee22a86b609805c602bb701bd6812c214f5c7b
[ "MIT" ]
14
2017-02-19T14:52:18.000Z
2017-05-28T07:09:28.000Z
rapidfire/__init__.py
wanshot/RapidFire
edee22a86b609805c602bb701bd6812c214f5c7b
[ "MIT" ]
null
null
null
__version__ = '1.0.0' __license__ = 'MIT' __author__ = 'wanshot' __author_email__ = 'nishikawa0228@sj9.so-net.ne.jp' __logo__ = """ ____ _ _________ / __ \____ _____ (_)___/ / ____(_)_______ / /_/ / __ `/ __ \/ / __ / /_ / / ___/ _ \\ / _, _/ /_/ / /_/ / / /_/ / __/ / / / / __/ /_/ |_|\__,_/ .___/_/\__,_/_/ /_/_/ \___/ /_/ """ from .core import Core def task(*args, **kwargs): # call @task if len(args) == 1 and callable(args[0]): return Core(args[0], **kwargs) def inner(obj): # call @task() return Core(obj, **kwargs) return inner
23.444444
51
0.496051
2646eb026ed9e4bf15b8e8bfb6d0edab5104a3bc
6,936
py
Python
utils.py
meta-inf/qbdiv
27ea43d5a453b9367aabadf08349a4cbc287e9b2
[ "MIT" ]
2
2022-03-04T20:48:44.000Z
2022-03-14T04:19:28.000Z
utils.py
meta-inf/qbdiv
27ea43d5a453b9367aabadf08349a4cbc287e9b2
[ "MIT" ]
null
null
null
utils.py
meta-inf/qbdiv
27ea43d5a453b9367aabadf08349a4cbc287e9b2
[ "MIT" ]
null
null
null
# import torch as th from __future__ import annotations from typing import Iterable, Callable, Any, Union, Tuple import numpy as onp import scipy import jax from jax import numpy as np class UniformNystromSampler(object): """ the sampler will not modify its state """ def __init__(self, pkey: jax.random.PRNGKey, rho=0.5, a=1, mn=60): self.pkey, self.rho, self.a, self.mn = pkey, rho, a, mn def __call__(self, z_all: np.ndarray) -> np.ndarray: n = z_all.shape[0] m = min(max(self.mn, int(self.a * n**self.rho)), n) idcs = jax.random.permutation(self.pkey, n)[:m] return z_all[idcs] def split_pkey(k: Union[jax.random.PRNGKey, None], num: int = 2): if k is not None: return jax.random.split(k, num) return tuple([None] * num) class PRNGKeyHolder(object): """ For use inside a function. """ def __init__(self, pkey): self.pkey = pkey def gen_key(self): self.pkey, ckey = jax.random.split(self.pkey) return ckey def ceil_div(a, b): return (a + b - 1) // b def gen_bs_mask(pkey, N, ratio, n_particles): if ratio + 1e-4 < 1: Mk = np.ones((N, n_particles), dtype=np.bool_) idcs = np.arange(N) bs_n_removed = max(int(N * (1 - ratio)), 1) for i in range(n_particles): pkey, ckey = jax.random.split(pkey) excluded = jax.random.choice(ckey, idcs, (bs_n_removed, 1), replace=False) Mk = jax.ops.index_update(Mk, jax.ops.index[excluded, i], False) else: Mk = np.zeros((N, n_particles), dtype=np.float32) for i in range(n_particles): pkey, ckey = jax.random.split(pkey) idcs = jax.random.randint(ckey, (N, 1), 0, N) Mk = jax.ops.index_add(Mk, jax.ops.index[idcs, i], 1) return Mk def l2_regularizer(params: Any) -> np.ndarray: return jax.tree_util.tree_reduce( lambda x, y: x+y, jax.tree_map(lambda p: (p**2).sum(), params)) def ci_coverage( actual: np.ndarray, pmean: np.ndarray, psd: np.ndarray, r: float = 0.95) -> np.ndarray: assert actual.shape == pmean.shape == psd.shape k = scipy.stats.norm.ppf((1+r) / 2) return np.logical_and(pmean - k*psd <= actual, actual <= pmean + k*psd).mean() def mse(a: np.ndarray, b: np.ndarray) -> np.ndarray: assert a.shape == b.shape return ((a-b) ** 2).mean() def normal_loglh(mean, sd, val): return -0.5 * (np.log(np.pi*2) + 2*np.log(sd) + ((mean-val)/sd)**2) class TensorDataLoader(object): """ Lightweight DataLoader . TensorDataset for jax """ def __init__(self, *arrs, batch_size=None, shuffle=False, rng=None, dtype=np.float32): assert batch_size is not None self.arrs = [a.astype(dtype) for a in arrs] self.N, self.B = arrs[0].shape[0], batch_size self.shuffle = shuffle assert all(a.shape[0] == self.N for a in arrs[1:]) self.rng = rng if rng is not None else onp.random.RandomState(23) def __iter__(self): idcs = onp.arange(self.N) if self.shuffle: self.rng.shuffle(idcs) self.arrs_cur = [a[idcs] for a in self.arrs] self.i = 0 return self def __next__(self): if self.i < self.N: old_i = self.i self.i = min(self.i + self.B, self.N) return tuple(a[old_i:self.i] for a in self.arrs) else: raise StopIteration def __len__(self): return (self.N+self.B-1) // self.B def split_list_args(s, typ=float): if len(s.strip()) == 0: return [] return list(map(typ, s.split(','))) def data_split(*arrs, split_ratio=0.8, rng=None): if rng == None: rng = onp.random N = arrs[0].shape[0] assert all(a.shape[0] == N for a in arrs) idcs = onp.arange(N) rng.shuffle(idcs) split = int(N * split_ratio) train_tuple = tuple(a[idcs[:split]] for a in arrs) test_tuple = tuple(a[idcs[split:]] for a in arrs) return train_tuple, test_tuple def log_linspace(s, e, n): return onp.exp(onp.linspace(onp.log(s), onp.log(e), n)) class Accumulator(object): def __init__(self): self.a = [] def append(self, d): # if isinstance(d, th.Tensor): # d = d.item() if isinstance(d, jax.numpy.ndarray) and hasattr(d, '_device'): d = float(d) self.a.append(d) def average(self): return onp.mean(self.a) def minimum(self, s=0): return onp.min(self.a[s:]) def maximum(self, s=0): return onp.max(self.a[s:]) def argmin(self): return onp.argmin(self.a) def __getitem__(self, i): return self.a[i] class StatsDict(dict): def __init__(self, *args): if len(args) == 0: super().__init__() else: assert len(args) == 1 a = args[0] if isinstance(a, dict): super().__init__(a.items()) else: super().__init__(a) def add_prefix(self, pref: str, sep: str = '/') -> StatsDict: return StatsDict((pref + sep + k, v) for k, v in self.items()) def filter(self, pred_or_key: Union[Callable[[str], True], str]): pred = pred_or_key if callable(pred_or_key) else lambda k: k == pred_or_key return StatsDict((k, v) for k, v in self.items() if not pred(k)) class StatsAccumulator(object): def __init__(self): pass def append(self, d: dict): if not hasattr(self, 'stats'): self.stats = dict((k, Accumulator()) for k in d) for k in d: v = float(d[k]) self.stats[k].append(v) def dump(self) -> StatsDict: return StatsDict((k, self.stats[k].average()) for k in self.stats) def __getitem__(self, k: str) -> Accumulator: return self.stats[k] def traverse_ds( step_fn: Callable[[Any], Any], dset: Iterable[Any], has_stats: bool, rng: Union[np.ndarray, None] = None ) -> Tuple[float, StatsDict]: stats = StatsAccumulator() for data in dset: if rng is not None: rng, c_rng = jax.random.split(rng) ret = step_fn(data, rng=c_rng) else: ret = step_fn(data) if has_stats: loss, rdct = ret rdct['_loss'] = loss else: rdct = StatsDict({'_loss': ret}) stats.append(rdct) ret = stats.dump() return ret['_loss'], ret class DummyContext(object): def __init__(self, v): self.v = v def __enter__(self): return self.v def __exit__(self, *args, **kw): pass def set_postfix(self): pass def add_bool_flag(parser, name, default=None): parser.add_argument('-'+name, action='store_true', default=default) parser.add_argument('-no_'+name, action='store_false', dest=name)
28.195122
95
0.575836
864da24b695fd8123732b16c273cfa57f14655df
1,027
py
Python
ingaia-helpers/config.py
emersonfdias/ingaia-helpers
f9670072a3339c7cbd619f27e80278b109f67819
[ "MIT" ]
null
null
null
ingaia-helpers/config.py
emersonfdias/ingaia-helpers
f9670072a3339c7cbd619f27e80278b109f67819
[ "MIT" ]
null
null
null
ingaia-helpers/config.py
emersonfdias/ingaia-helpers
f9670072a3339c7cbd619f27e80278b109f67819
[ "MIT" ]
null
null
null
""" api.helpers.config ~~~~~~~~~~~~~~~~~~~~~~~~~ Implements project configuration helpers. """ import yaml class Dotable(dict): __getattr__= dict.__getitem__ def __init__(self, d): self.update(**dict((k, self.parse(v)) for k, v in d.iteritems())) @classmethod def parse(cls, v): if isinstance(v, dict): return cls(v) elif isinstance(v, list): return [cls.parse(i) for i in v] else: return v def env(): from google.appengine.api.app_identity import get_application_id appname = get_application_id() if appname.find('-development') > 0 or appname.find('-dev') > 0: return 'dev' elif appname.find('-staging') > 0 or appname.find('-st') > 0: return 'staging' else: return 'prod' def version(): import os; return os.environ['CURRENT_VERSION_ID'] with open('config/%s.yaml' % env(), 'r') as yamlfile: config = Dotable.parse(yaml.load(yamlfile))
23.883721
68
0.573515
1de1909c4179fc455525beb87a0303ecd36b9979
1,148
py
Python
metricbeat/scripts/generate_imports_helper.py
swift1911/beats
f9e06417b654c6e32bb7d05d34fb63b7a759f77a
[ "Apache-2.0" ]
11
2018-04-01T06:15:48.000Z
2021-04-29T06:02:58.000Z
metricbeat/scripts/generate_imports_helper.py
swift1911/beats
f9e06417b654c6e32bb7d05d34fb63b7a759f77a
[ "Apache-2.0" ]
13
2018-03-23T21:04:55.000Z
2019-02-06T21:27:01.000Z
metricbeat/scripts/generate_imports_helper.py
swift1911/beats
f9e06417b654c6e32bb7d05d34fb63b7a759f77a
[ "Apache-2.0" ]
4
2019-02-08T16:32:49.000Z
2021-06-23T14:55:56.000Z
from os.path import abspath, isdir, join from os import listdir comment = """Package include imports all Module and MetricSet packages so that they register their factories with the global registry. This package can be imported in the main package to automatically register all of the standard supported Metricbeat modules.""" def get_importable_lines(go_beat_path, import_line): path = abspath("module") imported_lines = [] modules = [m for m in listdir(path) if isdir(join(path, m)) and m != "_meta"] for module in modules: module_import = import_line.format(beat_path=go_beat_path, module="module", name=module) imported_lines.append(module_import) module_path = join(path, module) metricsets = [m for m in listdir(module_path) if isdir(join(module_path, m)) and m not in ["_meta", "vendor"]] for metricset in metricsets: metricset_name = "{}/{}".format(module, metricset) metricset_import = import_line.format(beat_path=go_beat_path, module="module", name=metricset_name) imported_lines.append(metricset_import) return sorted(imported_lines)
42.518519
118
0.718641
834f97fb57966ed7136d2ddaf2ab7a0ec4e86e09
1,184
py
Python
postgres/migrations/migrations/versions/3dcd7657d563_.py
rbroc/neuroscout
da6b0097050c1a468baf03d3c71161adbf688d5b
[ "BSD-3-Clause" ]
null
null
null
postgres/migrations/migrations/versions/3dcd7657d563_.py
rbroc/neuroscout
da6b0097050c1a468baf03d3c71161adbf688d5b
[ "BSD-3-Clause" ]
9
2019-11-05T16:02:19.000Z
2022-03-11T23:52:52.000Z
postgres/migrations/migrations/versions/3dcd7657d563_.py
rbroc/neuroscout
da6b0097050c1a468baf03d3c71161adbf688d5b
[ "BSD-3-Clause" ]
1
2019-07-22T18:08:55.000Z
2019-07-22T18:08:55.000Z
"""empty message Revision ID: 3dcd7657d563 Revises: 9efb0d7634e3 Create Date: 2019-05-22 19:23:56.537827 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '3dcd7657d563' down_revision = '9efb0d7634e3' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('result') op.add_column('analysis', sa.Column('traceback', sa.Text(), nullable=True)) op.drop_column('analysis', 'compile_traceback') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('analysis', sa.Column('compile_traceback', sa.TEXT(), autoincrement=False, nullable=True)) op.drop_column('analysis', 'traceback') op.create_table('result', sa.Column('id', sa.INTEGER(), autoincrement=True, nullable=False), sa.Column('analysis_id', sa.INTEGER(), autoincrement=False, nullable=True), sa.ForeignKeyConstraint(['analysis_id'], ['analysis.id'], name='result_analysis_id_fkey'), sa.PrimaryKeyConstraint('id', name='result_pkey') ) # ### end Alembic commands ###
31.157895
108
0.701014
d5d40f573c6a7992d8c580173eb490cb1838befd
140
py
Python
test/__init__.py
JosephMcGrath/Chao-Examiner
a1b5b016ccfd579fbe0ae7a9ab9810ab280b3432
[ "MIT" ]
null
null
null
test/__init__.py
JosephMcGrath/Chao-Examiner
a1b5b016ccfd579fbe0ae7a9ab9810ab280b3432
[ "MIT" ]
null
null
null
test/__init__.py
JosephMcGrath/Chao-Examiner
a1b5b016ccfd579fbe0ae7a9ab9810ab280b3432
[ "MIT" ]
null
null
null
""" Tests for the chao_examiner package. """ import sys sys.path.append("src") import chao_examiner chao_examiner.setup_logging("test")
11.666667
36
0.75
b5f23acd5972d0bbe44ccc4bba9d69319eb1e888
3,085
py
Python
configs/_base_/models/centerpoint_02pillar_second_secfpn_nus.py
BB88Lee/mmdetection3d
62aeeadf70ac1229c595e3a4fe09d8a49df808f1
[ "Apache-2.0" ]
136
2021-06-03T06:37:56.000Z
2022-03-29T13:29:03.000Z
configs/_base_/models/centerpoint_02pillar_second_secfpn_nus.py
BB88Lee/mmdetection3d
62aeeadf70ac1229c595e3a4fe09d8a49df808f1
[ "Apache-2.0" ]
38
2021-06-05T12:41:30.000Z
2022-03-23T07:31:28.000Z
configs/_base_/models/centerpoint_02pillar_second_secfpn_nus.py
BB88Lee/mmdetection3d
62aeeadf70ac1229c595e3a4fe09d8a49df808f1
[ "Apache-2.0" ]
14
2020-08-12T13:14:32.000Z
2022-01-28T16:34:21.000Z
voxel_size = [0.2, 0.2, 8] model = dict( type='CenterPoint', pts_voxel_layer=dict( max_num_points=20, voxel_size=voxel_size, max_voxels=(30000, 40000)), pts_voxel_encoder=dict( type='PillarFeatureNet', in_channels=5, feat_channels=[64], with_distance=False, voxel_size=(0.2, 0.2, 8), norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01), legacy=False), pts_middle_encoder=dict( type='PointPillarsScatter', in_channels=64, output_shape=(512, 512)), pts_backbone=dict( type='SECOND', in_channels=64, out_channels=[64, 128, 256], layer_nums=[3, 5, 5], layer_strides=[2, 2, 2], norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01), conv_cfg=dict(type='Conv2d', bias=False)), pts_neck=dict( type='SECONDFPN', in_channels=[64, 128, 256], out_channels=[128, 128, 128], upsample_strides=[0.5, 1, 2], norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01), upsample_cfg=dict(type='deconv', bias=False), use_conv_for_no_stride=True), pts_bbox_head=dict( type='CenterHead', in_channels=sum([128, 128, 128]), tasks=[ dict(num_class=1, class_names=['car']), dict(num_class=2, class_names=['truck', 'construction_vehicle']), dict(num_class=2, class_names=['bus', 'trailer']), dict(num_class=1, class_names=['barrier']), dict(num_class=2, class_names=['motorcycle', 'bicycle']), dict(num_class=2, class_names=['pedestrian', 'traffic_cone']), ], common_heads=dict( reg=(2, 2), height=(1, 2), dim=(3, 2), rot=(2, 2), vel=(2, 2)), share_conv_channel=64, bbox_coder=dict( type='CenterPointBBoxCoder', post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0], max_num=500, score_threshold=0.1, out_size_factor=4, voxel_size=voxel_size[:2], code_size=9), seperate_head=dict( type='SeparateHead', init_bias=-2.19, final_kernel=3), loss_cls=dict(type='GaussianFocalLoss', reduction='mean'), loss_bbox=dict(type='L1Loss', reduction='mean', loss_weight=0.25), norm_bbox=True)) # model training and testing settings train_cfg = dict( pts=dict( grid_size=[512, 512, 1], voxel_size=voxel_size, out_size_factor=4, dense_reg=1, gaussian_overlap=0.1, max_objs=500, min_radius=2, code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2])) test_cfg = dict( pts=dict( post_center_limit_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0], max_per_img=500, max_pool_nms=False, min_radius=[4, 12, 10, 1, 0.85, 0.175], score_threshold=0.1, pc_range=[-51.2, -51.2], out_size_factor=4, voxel_size=voxel_size[:2], nms_type='rotate', pre_max_size=1000, post_max_size=83, nms_thr=0.2))
36.72619
77
0.572447
fdc0bd1b448005fad76d752deb47bfb177420ba8
776
py
Python
game/data/scripts/custom/7001_ClanItems/__init__.py
TheDemonLife/Lineage2Server-Interlude
d23d145db533fd899d4064026e4bc7ee45c6624a
[ "Apache-2.0" ]
10
2019-07-27T13:12:11.000Z
2022-01-15T19:13:26.000Z
game/data/scripts/custom/7001_ClanItems/__init__.py
TheDemonLife/Lineage2Server-Interlude
d23d145db533fd899d4064026e4bc7ee45c6624a
[ "Apache-2.0" ]
1
2021-08-06T12:15:01.000Z
2021-08-09T10:18:47.000Z
game/data/scripts/custom/7001_ClanItems/__init__.py
TheDemonLife/Lineage2Server-Interlude
d23d145db533fd899d4064026e4bc7ee45c6624a
[ "Apache-2.0" ]
2
2020-02-20T23:02:26.000Z
2020-11-22T09:27:51.000Z
# Created by L2Emu Team import sys from ru.catssoftware.gameserver.model.quest import State from ru.catssoftware.gameserver.model.quest import QuestState from ru.catssoftware.gameserver.model.quest.jython import QuestJython as JQuest qn = "7001_ClanItems" class Quest (JQuest) : def __init__(self,id,name,descr): JQuest.__init__(self,id,name,descr) def onFirstTalk (Self,npc,player): st = player.getQuestState(qn) npcId = npc.getNpcId() if npcId in [32024,32025] : if player.isClanLeader() : htmltext = str(npcId) + ".htm" else : htmltext = str(npcId) + "-no.htm" return htmltext QUEST = Quest(7001,qn,"custom") QUEST.addStartNpc(32024) QUEST.addStartNpc(32025) QUEST.addFirstTalkId(32024) QUEST.addFirstTalkId(32025)
26.758621
79
0.722938
6148e4fdd5599aff18b9c6d8af04b75ab214fbf1
81
py
Python
egs2/slurp_entity/asr1/local/evaluation/metrics/__init__.py
roshansh-cmu/espnet
5fa6dcc4e649dc66397c629d0030d09ecef36b80
[ "Apache-2.0" ]
null
null
null
egs2/slurp_entity/asr1/local/evaluation/metrics/__init__.py
roshansh-cmu/espnet
5fa6dcc4e649dc66397c629d0030d09ecef36b80
[ "Apache-2.0" ]
null
null
null
egs2/slurp_entity/asr1/local/evaluation/metrics/__init__.py
roshansh-cmu/espnet
5fa6dcc4e649dc66397c629d0030d09ecef36b80
[ "Apache-2.0" ]
null
null
null
from .distance import Distance from .metrics import ErrorMetric, compute_metrics
27
49
0.851852
5a8ccc7a90068c91644e1667a207cbe0377655df
28,319
py
Python
cirq-core/cirq/work/observable_measurement.py
BearerPipelineTest/Cirq
e00767a2ef1233e82e9089cf3801a77e4cc3aea3
[ "Apache-2.0" ]
1
2022-02-05T22:17:39.000Z
2022-02-05T22:17:39.000Z
cirq-core/cirq/work/observable_measurement.py
BearerPipelineTest/Cirq
e00767a2ef1233e82e9089cf3801a77e4cc3aea3
[ "Apache-2.0" ]
4
2022-01-16T14:12:15.000Z
2022-02-24T03:58:46.000Z
cirq-core/cirq/work/observable_measurement.py
Nexuscompute/Cirq
640ef8f82d6a56ec95361388ce7976e096cca906
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import dataclasses import itertools import os import tempfile import warnings from typing import Any, Dict, Iterable, List, Optional, Sequence, Set, Tuple, TYPE_CHECKING, Union import numpy as np import pandas as pd import sympy from cirq import circuits, study, ops, value, protocols from cirq._doc import document from cirq.work.observable_grouping import group_settings_greedy, GROUPER_T from cirq.work.observable_measurement_data import ( BitstringAccumulator, ObservableMeasuredResult, flatten_grouped_results, ) from cirq.work.observable_settings import InitObsSetting, observables_to_settings, _MeasurementSpec if TYPE_CHECKING: import cirq from cirq.value.product_state import _NamedOneQubitState MAX_REPETITIONS_PER_JOB = 3_000_000 document( MAX_REPETITIONS_PER_JOB, """The maximum repetitions allowed in a single batch job. This depends on the Sampler executing your batch job. It is set to be tens of minutes assuming ~kilosamples per second. """, ) def _with_parameterized_layers( circuit: 'cirq.AbstractCircuit', qubits: Sequence['cirq.Qid'], needs_init_layer: bool ) -> 'cirq.Circuit': """Return a copy of the input circuit with parameterized single-qubit rotations. These rotations flank the circuit: the initial two layers of X and Y gates are given parameter names "{qubit}-Xi" and "{qubit}-Yi" and are used to set up the initial state. If `needs_init_layer` is False, these two layers of gates are omitted. The final two layers of X and Y gates are given parameter names "{qubit}-Xf" and "{qubit}-Yf" and are use to change the frame of the qubit before measurement, effectively measuring in bases other than Z. """ x_beg_mom = circuits.Moment([ops.X(q) ** sympy.Symbol(f'{q}-Xi') for q in qubits]) y_beg_mom = circuits.Moment([ops.Y(q) ** sympy.Symbol(f'{q}-Yi') for q in qubits]) x_end_mom = circuits.Moment([ops.X(q) ** sympy.Symbol(f'{q}-Xf') for q in qubits]) y_end_mom = circuits.Moment([ops.Y(q) ** sympy.Symbol(f'{q}-Yf') for q in qubits]) meas_mom = circuits.Moment([ops.measure(*qubits, key='z')]) if needs_init_layer: total_circuit = circuits.Circuit([x_beg_mom, y_beg_mom]) total_circuit += circuit.unfreeze() else: total_circuit = circuit.unfreeze() total_circuit.append([x_end_mom, y_end_mom, meas_mom]) return total_circuit class StoppingCriteria(abc.ABC): """An abstract object that queries a BitstringAccumulator to figure out whether that `meas_spec` is complete.""" @abc.abstractmethod def more_repetitions(self, accumulator: BitstringAccumulator) -> int: """Return the number of additional repetitions to take. StoppingCriteria should be respectful and have some notion of a maximum number of repetitions per chunk. """ @dataclasses.dataclass(frozen=True) class VarianceStoppingCriteria(StoppingCriteria): """Stop sampling when average variance per term drops below a variance bound.""" variance_bound: float repetitions_per_chunk: int = 10_000 def more_repetitions(self, accumulator: BitstringAccumulator) -> int: if len(accumulator.bitstrings) == 0: return self.repetitions_per_chunk cov = accumulator.covariance() n_terms = cov.shape[0] sum_variance = np.sum(cov) var_of_the_e = sum_variance / len(accumulator.bitstrings) vpt = var_of_the_e / n_terms if vpt <= self.variance_bound: # Done return 0 return self.repetitions_per_chunk def _json_dict_(self): return protocols.dataclass_json_dict(self) @dataclasses.dataclass(frozen=True) class RepetitionsStoppingCriteria(StoppingCriteria): """Stop sampling when the number of repetitions has been reached.""" total_repetitions: int repetitions_per_chunk: int = 10_000 def more_repetitions(self, accumulator: BitstringAccumulator) -> int: done = accumulator.n_repetitions todo = self.total_repetitions - done if todo <= 0: return 0 to_do_next = min(self.repetitions_per_chunk, todo) return to_do_next def _json_dict_(self): return protocols.dataclass_json_dict(self) _OBS_TO_PARAM_VAL: Dict[Tuple['cirq.Pauli', bool], Tuple[float, float]] = { (ops.X, False): (0, -1 / 2), (ops.X, True): (0, +1 / 2), (ops.Y, False): (1 / 2, 0), (ops.Y, True): (-1 / 2, 0), (ops.Z, False): (0, 0), (ops.Z, True): (1, 0), } """Mapping from single-qubit Pauli observable to the X- and Y-rotation parameter values. The second element in the key is whether to measure in the positive or negative (flipped) basis for readout symmetrization.""" _STATE_TO_PARAM_VAL: Dict['_NamedOneQubitState', Tuple[float, float]] = { value.KET_PLUS: (0, +1 / 2), value.KET_MINUS: (0, -1 / 2), value.KET_IMAG: (-1 / 2, 0), value.KET_MINUS_IMAG: (+1 / 2, 0), value.KET_ZERO: (0, 0), value.KET_ONE: (1, 0), } """Mapping from an initial _NamedOneQubitState to the X- and Y-rotation parameter values.""" def _get_params_for_setting( setting: InitObsSetting, flips: Iterable[bool], qubits: Sequence['cirq.Qid'], needs_init_layer: bool, ) -> Dict[str, float]: """Return the parameter dictionary for the given setting. This must be used in conjunction with a circuit generated by `_with_parameterized_layers`. `flips` (used for readout symmetrization) should be of the same length as `qubits` and will modify the parameters to also include a bit flip (`X`). Code responsible for running the circuit should make sure to flip bits back prior to analysis. Like `_with_parameterized_layers`, we omit params for initialization gates if we know that `setting.init_state` is the all-zeros state and `needs_init_layer` is False. """ setting = _pad_setting(setting, qubits) params = {} for qubit, flip in itertools.zip_longest(qubits, flips): if qubit is None or flip is None: raise ValueError("`qubits` and `flips` must be equal length") # When getting the one-qubit state / observable for this qubit, # you may be wondering what if there's no observable specified # for that qubit. We mandate that by the time you get to this stage, # each _max_setting has # weight(in_state) == weight(out_operator) == len(qubits) # See _pad_setting pauli = setting.observable[qubit] xf_param, yf_param = _OBS_TO_PARAM_VAL[pauli, flip] params[f'{qubit}-Xf'] = xf_param params[f'{qubit}-Yf'] = yf_param if needs_init_layer: state = setting.init_state[qubit] xi_param, yi_param = _STATE_TO_PARAM_VAL[state] params[f'{qubit}-Xi'] = xi_param params[f'{qubit}-Yi'] = yi_param return params def _pad_setting( max_setting: InitObsSetting, qubits: Sequence['cirq.Qid'], pad_init_state_with=value.KET_ZERO, pad_obs_with: 'cirq.Gate' = ops.Z, ) -> InitObsSetting: """Pad `max_setting`'s `init_state` and `observable` with `pad_xx_with` operations (defaults: |0> and Z) so each max_setting has the same qubits. We need this to be the case so we can fill in all the parameters, see `_get_params_for_setting`. """ obs = max_setting.observable assert obs.coefficient == 1, "Only the max_setting should be padded." for qubit in qubits: if not qubit in obs: obs *= pad_obs_with(qubit) init_state = max_setting.init_state init_state_original_qubits = init_state.qubits for qubit in qubits: if not qubit in init_state_original_qubits: init_state *= pad_init_state_with(qubit) return InitObsSetting(init_state=init_state, observable=obs) def _aggregate_n_repetitions(next_chunk_repetitions: Set[int]) -> int: """A stopping criteria can request a different number of more_repetitions for each measurement spec. For batching efficiency, we take the max and issue a warning in this case.""" if len(next_chunk_repetitions) == 1: return list(next_chunk_repetitions)[0] reps = max(next_chunk_repetitions) warnings.warn( f"The stopping criteria specified a various numbers of " f"repetitions to perform next. To be able to submit as a single " f"sweep, the largest value will be used: {reps}." ) return reps def _check_meas_specs_still_todo( meas_specs: List[_MeasurementSpec], accumulators: Dict[_MeasurementSpec, BitstringAccumulator], stopping_criteria: StoppingCriteria, ) -> Tuple[List[_MeasurementSpec], int]: """Filter `meas_specs` in case some are done. In the sampling loop in `measure_grouped_settings`, we submit each `meas_spec` in chunks. This function contains the logic for removing `meas_spec`s from the loop if they are done. """ still_todo = [] repetitions_set: Set[int] = set() for meas_spec in meas_specs: accumulator = accumulators[meas_spec] more_repetitions = stopping_criteria.more_repetitions(accumulator) if more_repetitions < 0: raise ValueError( "Stopping criteria's `more_repetitions` should return 0 or a positive number." ) if more_repetitions == 0: continue repetitions_set.add(more_repetitions) still_todo.append(meas_spec) if len(still_todo) == 0: return still_todo, 0 repetitions = _aggregate_n_repetitions(repetitions_set) total_repetitions = len(still_todo) * repetitions if total_repetitions > MAX_REPETITIONS_PER_JOB: old_repetitions = repetitions repetitions = MAX_REPETITIONS_PER_JOB // len(still_todo) if repetitions < 10: raise ValueError( "You have requested too many parameter settings to batch your job effectively. " "Consider fewer sweeps or manually splitting sweeps into multiple jobs." ) warnings.warn( f"The number of requested sweep parameters is high. To avoid a batched job with more " f"than {MAX_REPETITIONS_PER_JOB} shots, the number of shots per call to run_sweep " f"(per parameter value) will be throttled from {old_repetitions} to {repetitions}." ) return still_todo, repetitions @dataclasses.dataclass(frozen=True) class _FlippyMeasSpec: """Internally, each MeasurementSpec class is split into two _FlippyMeasSpecs to support readout symmetrization. Bitstring results are combined, so this should be opaque to the user. """ meas_spec: _MeasurementSpec flips: np.ndarray qubits: Sequence['cirq.Qid'] def param_tuples(self, *, needs_init_layer=True): yield from _get_params_for_setting( self.meas_spec.max_setting, flips=self.flips, qubits=self.qubits, needs_init_layer=needs_init_layer, ).items() yield from self.meas_spec.circuit_params.items() def _subdivide_meas_specs( meas_specs: Iterable[_MeasurementSpec], repetitions: int, qubits: Sequence['cirq.Qid'], readout_symmetrization: bool, ) -> Tuple[List[_FlippyMeasSpec], int]: """Split measurement specs into sub-jobs for readout symmetrization In readout symmetrization, we first run the "normal" circuit followed by running the circuit with flipped measurement. One _MeasurementSpec is split into two _FlippyMeasSpecs. These are run separately but accumulated according to their shared _MeasurementSpec. """ n_qubits = len(qubits) flippy_mspecs = [] for meas_spec in meas_specs: all_normal = np.zeros(n_qubits, dtype=bool) flippy_mspecs.append(_FlippyMeasSpec(meas_spec=meas_spec, flips=all_normal, qubits=qubits)) if readout_symmetrization: all_flipped = np.ones(n_qubits, dtype=bool) flippy_mspecs.append( _FlippyMeasSpec(meas_spec=meas_spec, flips=all_flipped, qubits=qubits) ) if readout_symmetrization: repetitions //= 2 return flippy_mspecs, repetitions def _to_sweep(param_tuples): """Turn param tuples into a sweep.""" to_sweep = [dict(pt) for pt in param_tuples] to_sweep = study.to_sweep(to_sweep) return to_sweep def _parse_checkpoint_options( checkpoint: bool, checkpoint_fn: Optional[str], checkpoint_other_fn: Optional[str] ) -> Tuple[Optional[str], Optional[str]]: """Parse the checkpoint-oriented options in `measure_grouped_settings`. This function contains the validation and defaults logic. Please see `measure_grouped_settings` for documentation on these args. Returns: checkpoint_fn, checkpoint_other_fn: Parsed or default filenames for primary and previous checkpoint files. Raises: ValueError: If a `checkpoint_fn` was specified, but `checkpoint` was False, if the `checkpoint_fn` is not of the form filename.json, or if `checkout_fn` and `checkpoint_other_fn` are the same filename. """ if not checkpoint: if checkpoint_fn is not None or checkpoint_other_fn is not None: raise ValueError( "Checkpoint filenames were provided but `checkpoint` was set to False." ) return None, None if checkpoint_fn is None: checkpoint_dir = tempfile.mkdtemp() chk_basename = 'observables' checkpoint_fn = f'{checkpoint_dir}/{chk_basename}.json' if checkpoint_other_fn is None: checkpoint_dir = os.path.dirname(checkpoint_fn) chk_basename = os.path.basename(checkpoint_fn) chk_basename, dot, ext = chk_basename.rpartition('.') if chk_basename == '' or dot != '.' or ext == '': raise ValueError( f"You specified `checkpoint_fn={checkpoint_fn!r}` which does not follow the " f"pattern of 'filename.extension'. Please follow this pattern or fully specify " f"`checkpoint_other_fn`." ) if ext != 'json': raise ValueError( "Please use a `.json` filename or fully " "specify checkpoint_fn and checkpoint_other_fn" ) if checkpoint_dir == '': checkpoint_other_fn = f'{chk_basename}.prev.json' else: checkpoint_other_fn = f'{checkpoint_dir}/{chk_basename}.prev.json' if checkpoint_fn == checkpoint_other_fn: raise ValueError( f"`checkpoint_fn` and `checkpoint_other_fn` were set to the same " f"filename: {checkpoint_fn}. Please use two different filenames." ) return checkpoint_fn, checkpoint_other_fn @dataclasses.dataclass(frozen=True) class CheckpointFileOptions: """Options to configure "checkpointing" to save intermediate results. Args: checkpoint: If set to True, save cumulative raw results at the end of each iteration of the sampling loop. Load in these results with `cirq.read_json`. checkpoint_fn: The filename for the checkpoint file. If `checkpoint` is set to True and this is not specified, a file in a temporary directory will be used. checkpoint_other_fn: The filename for another checkpoint file, which contains the previous checkpoint. This lets us avoid losing data if a failure occurs during checkpoint writing. If `checkpoint` is set to True and this is not specified, a file in a temporary directory will be used. If `checkpoint` is set to True and `checkpoint_fn` is specified but this argument is *not* specified, "{checkpoint_fn}.prev.json" will be used. """ checkpoint: bool = False checkpoint_fn: Optional[str] = None checkpoint_other_fn: Optional[str] = None def __post_init__(self): fn, other_fn = _parse_checkpoint_options( self.checkpoint, self.checkpoint_fn, self.checkpoint_other_fn ) object.__setattr__(self, 'checkpoint_fn', fn) object.__setattr__(self, 'checkpoint_other_fn', other_fn) def maybe_to_json(self, obj: Any): """Call `cirq.to_json with `value` according to the configuration options in this class. If `checkpoint=False`, nothing will happen. Otherwise, we will use `checkpoint_fn` and `checkpoint_other_fn` as the destination JSON file as described in the class docstring. """ if not self.checkpoint: return assert self.checkpoint_fn is not None, 'mypy' assert self.checkpoint_other_fn is not None, 'mypy' if os.path.exists(self.checkpoint_fn): os.replace(self.checkpoint_fn, self.checkpoint_other_fn) protocols.to_json(obj, self.checkpoint_fn) def _needs_init_layer(grouped_settings: Dict[InitObsSetting, List[InitObsSetting]]) -> bool: """Helper function to go through init_states and determine if any of them need an initialization layer of single-qubit gates.""" for max_setting in grouped_settings.keys(): if any(st is not value.KET_ZERO for _, st in max_setting.init_state): return True return False def measure_grouped_settings( circuit: 'cirq.AbstractCircuit', grouped_settings: Dict[InitObsSetting, List[InitObsSetting]], sampler: 'cirq.Sampler', stopping_criteria: StoppingCriteria, *, readout_symmetrization: bool = False, circuit_sweep: 'cirq.Sweepable' = None, readout_calibrations: Optional[BitstringAccumulator] = None, checkpoint: CheckpointFileOptions = CheckpointFileOptions(), ) -> List[BitstringAccumulator]: """Measure a suite of grouped InitObsSetting settings. This is a low-level API for accessing the observable measurement framework. See also `measure_observables` and `measure_observables_df`. Args: circuit: The circuit. This can contain parameters, in which case you should also specify `circuit_sweep`. grouped_settings: A series of setting groups expressed as a dictionary. The key is the max-weight setting used for preparing single-qubit basis-change rotations. The value is a list of settings compatible with the maximal setting you desire to measure. Automated routing algorithms like `group_settings_greedy` can be used to construct this input. sampler: A sampler. stopping_criteria: A StoppingCriteria object that can report whether enough samples have been sampled. readout_symmetrization: If set to True, each `meas_spec` will be split into two runs: one normal and one where a bit flip is incorporated prior to measurement. In the latter case, the measured bit will be flipped back classically and accumulated together. This causes readout error to appear symmetric, p(0|0) = p(1|1). circuit_sweep: Additional parameter sweeps for parameters contained in `circuit`. The total sweep is the product of the circuit sweep with parameter settings for the single-qubit basis-change rotations. readout_calibrations: The result of `calibrate_readout_error`. checkpoint: Options to set up optional checkpointing of intermediate data for each iteration of the sampling loop. See the documentation for `CheckpointFileOptions` for more. Load in these results with `cirq.read_json`. Raises: ValueError: If readout calibration is specified, but `readout_symmetrization is not True. """ if readout_calibrations is not None and not readout_symmetrization: raise ValueError("Readout calibration only works if `readout_symmetrization` is enabled.") qubits = sorted({q for ms in grouped_settings.keys() for q in ms.init_state.qubits}) qubit_to_index = {q: i for i, q in enumerate(qubits)} needs_init_layer = _needs_init_layer(grouped_settings) measurement_param_circuit = _with_parameterized_layers(circuit, qubits, needs_init_layer) # meas_spec provides a key for accumulators. # meas_specs_todo is a mutable list. We will pop things from it as various # specs are measured to the satisfaction of the stopping criteria accumulators = {} meas_specs_todo = [] for max_setting, param_resolver in itertools.product( grouped_settings.keys(), study.to_resolvers(circuit_sweep) ): circuit_params = param_resolver.param_dict meas_spec = _MeasurementSpec(max_setting=max_setting, circuit_params=circuit_params) accumulator = BitstringAccumulator( meas_spec=meas_spec, simul_settings=grouped_settings[max_setting], qubit_to_index=qubit_to_index, readout_calibration=readout_calibrations, ) accumulators[meas_spec] = accumulator meas_specs_todo += [meas_spec] while True: meas_specs_todo, repetitions = _check_meas_specs_still_todo( meas_specs=meas_specs_todo, accumulators=accumulators, stopping_criteria=stopping_criteria, ) if len(meas_specs_todo) == 0: break flippy_meas_specs, repetitions = _subdivide_meas_specs( meas_specs=meas_specs_todo, repetitions=repetitions, qubits=qubits, readout_symmetrization=readout_symmetrization, ) resolved_params = [ flippy_ms.param_tuples(needs_init_layer=needs_init_layer) for flippy_ms in flippy_meas_specs ] resolved_params = _to_sweep(resolved_params) results = sampler.run_sweep( program=measurement_param_circuit, params=resolved_params, repetitions=repetitions ) assert len(results) == len( flippy_meas_specs ), 'Not as many results received as sweeps requested!' for flippy_ms, result in zip(flippy_meas_specs, results): accumulator = accumulators[flippy_ms.meas_spec] bitstrings = np.logical_xor(flippy_ms.flips, result.measurements['z']) accumulator.consume_results(bitstrings.astype(np.uint8, casting='safe')) checkpoint.maybe_to_json(list(accumulators.values())) return list(accumulators.values()) _GROUPING_FUNCS: Dict[str, GROUPER_T] = {'greedy': group_settings_greedy} def _parse_grouper(grouper: Union[str, GROUPER_T] = group_settings_greedy) -> GROUPER_T: """Logic for turning a named grouper into one of the build-in groupers in support of the high-level `measure_observables` API.""" if isinstance(grouper, str): try: grouper = _GROUPING_FUNCS[grouper.lower()] except KeyError: raise ValueError(f"Unknown grouping function {grouper}") return grouper def _get_all_qubits( circuit: 'cirq.AbstractCircuit', observables: Iterable['cirq.PauliString'] ) -> List['cirq.Qid']: """Helper function for `measure_observables` to get all qubits from a circuit and a collection of observables.""" qubit_set = set() for obs in observables: qubit_set |= set(obs.qubits) qubit_set |= circuit.all_qubits() return sorted(qubit_set) def measure_observables( circuit: 'cirq.AbstractCircuit', observables: Iterable['cirq.PauliString'], sampler: Union['cirq.Simulator', 'cirq.Sampler'], stopping_criteria: StoppingCriteria, *, readout_symmetrization: bool = False, circuit_sweep: Optional['cirq.Sweepable'] = None, grouper: Union[str, GROUPER_T] = group_settings_greedy, readout_calibrations: Optional[BitstringAccumulator] = None, checkpoint: CheckpointFileOptions = CheckpointFileOptions(), ) -> List[ObservableMeasuredResult]: """Measure a collection of PauliString observables for a state prepared by a Circuit. If you need more control over the process, please see `measure_grouped_settings` for a lower-level API. If you would like your results returned as a pandas DataFrame, please see `measure_observables_df`. Args: circuit: The circuit used to prepare the state to measure. This can contain parameters, in which case you should also specify `circuit_sweep`. observables: A collection of PauliString observables to measure. These will be grouped into simultaneously-measurable groups, see `grouper` argument. sampler: The sampler. stopping_criteria: A StoppingCriteria object to indicate how precisely to sample measurements for estimating observables. readout_symmetrization: If set to True, each run will be split into two: one normal and one where a bit flip is incorporated prior to measurement. In the latter case, the measured bit will be flipped back classically and accumulated together. This causes readout error to appear symmetric, p(0|0) = p(1|1). circuit_sweep: Additional parameter sweeps for parameters contained in `circuit`. The total sweep is the product of the circuit sweep with parameter settings for the single-qubit basis-change rotations. grouper: Either "greedy" or a function that groups lists of `InitObsSetting`. See the documentation for the `grouped_settings` argument of `measure_grouped_settings` for full details. readout_calibrations: The result of `calibrate_readout_error`. checkpoint: Options to set up optional checkpointing of intermediate data for each iteration of the sampling loop. See the documentation for `CheckpointFileOptions` for more. Load in these results with `cirq.read_json`. Returns: A list of ObservableMeasuredResult; one for each input PauliString. """ qubits = _get_all_qubits(circuit, observables) settings = list(observables_to_settings(observables, qubits)) actual_grouper = _parse_grouper(grouper) grouped_settings = actual_grouper(settings) accumulators = measure_grouped_settings( circuit=circuit, grouped_settings=grouped_settings, sampler=sampler, stopping_criteria=stopping_criteria, circuit_sweep=circuit_sweep, readout_symmetrization=readout_symmetrization, readout_calibrations=readout_calibrations, checkpoint=checkpoint, ) return flatten_grouped_results(accumulators) def measure_observables_df( circuit: 'cirq.AbstractCircuit', observables: Iterable['cirq.PauliString'], sampler: Union['cirq.Simulator', 'cirq.Sampler'], stopping_criteria: StoppingCriteria, *, readout_symmetrization: bool = False, circuit_sweep: Optional['cirq.Sweepable'] = None, grouper: Union[str, GROUPER_T] = group_settings_greedy, readout_calibrations: Optional[BitstringAccumulator] = None, checkpoint: CheckpointFileOptions = CheckpointFileOptions(), ): """Measure observables and return resulting data as a Pandas dataframe. Please see `measure_observables` for argument documentation. """ results = measure_observables( circuit=circuit, observables=observables, sampler=sampler, stopping_criteria=stopping_criteria, readout_symmetrization=readout_symmetrization, circuit_sweep=circuit_sweep, grouper=grouper, readout_calibrations=readout_calibrations, checkpoint=checkpoint, ) df = pd.DataFrame(res.as_dict() for res in results) return df
40.340456
99
0.694269
891d5b6d543f30860cddad3a823ee0f978da10f8
8,514
py
Python
tests/python/pants_test/engine/test_engine.py
anthonyjpratti/pants
d98e53af6ddd877861231bce8343f8204da0a9d1
[ "Apache-2.0" ]
null
null
null
tests/python/pants_test/engine/test_engine.py
anthonyjpratti/pants
d98e53af6ddd877861231bce8343f8204da0a9d1
[ "Apache-2.0" ]
null
null
null
tests/python/pants_test/engine/test_engine.py
anthonyjpratti/pants
d98e53af6ddd877861231bce8343f8204da0a9d1
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). import unittest from dataclasses import dataclass, field from textwrap import dedent from typing import List from pants.engine.rules import RootRule, rule from pants.engine.scheduler import ExecutionError from pants.engine.selectors import Get from pants.reporting.async_workunit_handler import AsyncWorkunitHandler from pants.testutil.engine.util import assert_equal_with_printing, remove_locations_from_traceback from pants_test.engine.scheduler_test_base import SchedulerTestBase class A: pass class B: pass class C: pass class D: pass def fn_raises(x): raise Exception(f'An exception for {type(x).__name__}') @rule def nested_raise(x: B) -> A: fn_raises(x) @dataclass(frozen=True) class Fib: val: int @rule def fib(n: int) -> Fib: if n < 2: yield Fib(n) x, y = yield Get(Fib, int(n-2)), Get(Fib, int(n-1)) yield Fib(x.val + y.val) @dataclass(frozen=True) class MyInt: val: int @dataclass(frozen=True) class MyFloat: val: float @rule def upcast(n: MyInt) -> MyFloat: yield MyFloat(float(n.val)) class EngineTest(unittest.TestCase, SchedulerTestBase): assert_equal_with_printing = assert_equal_with_printing def scheduler(self, rules, include_trace_on_error): return self.mk_scheduler(rules=rules, include_trace_on_error=include_trace_on_error) def test_recursive_multi_get(self): # Tests that a rule that "uses itself" multiple times per invoke works. rules = [ fib, RootRule(int), ] fib_10, = self.mk_scheduler(rules=rules).product_request(Fib, subjects=[10]) self.assertEqual(55, fib_10.val) def test_no_include_trace_error_raises_boring_error(self): rules = [ RootRule(B), nested_raise, ] scheduler = self.scheduler(rules, include_trace_on_error=False) with self.assertRaises(ExecutionError) as cm: list(scheduler.product_request(A, subjects=[(B())])) self.assert_equal_with_printing('1 Exception encountered:\n Exception: An exception for B', str(cm.exception)) def test_no_include_trace_error_multiple_paths_raises_executionerror(self): rules = [ RootRule(B), nested_raise, ] scheduler = self.scheduler(rules, include_trace_on_error=False) with self.assertRaises(ExecutionError) as cm: list(scheduler.product_request(A, subjects=[B(), B()])) self.assert_equal_with_printing(dedent(''' 2 Exceptions encountered: Exception: An exception for B Exception: An exception for B''').lstrip(), str(cm.exception)) def test_include_trace_error_raises_error_with_trace(self): rules = [ RootRule(B), nested_raise, ] scheduler = self.scheduler(rules, include_trace_on_error=True) with self.assertRaises(ExecutionError) as cm: list(scheduler.product_request(A, subjects=[(B())])) self.assert_equal_with_printing(dedent(''' 1 Exception encountered: Computing Select(<pants_test.engine.test_engine.B object at 0xEEEEEEEEE>, A) Computing Task(nested_raise(), <pants_test.engine.test_engine.B object at 0xEEEEEEEEE>, A, true) Throw(An exception for B) Traceback (most recent call last): File LOCATION-INFO, in call val = func(*args) File LOCATION-INFO, in nested_raise fn_raises(x) File LOCATION-INFO, in fn_raises raise Exception(f'An exception for {type(x).__name__}') Exception: An exception for B ''').lstrip()+'\n', remove_locations_from_traceback(str(cm.exception))) def test_fork_context(self): # A smoketest that confirms that we can successfully enter and exit the fork context, which # implies acquiring and releasing all relevant Engine resources. expected = "42" def fork_context_body(): return expected res = self.mk_scheduler().with_fork_context(fork_context_body) self.assertEquals(res, expected) @unittest.skip('Inherently flaky as described in https://github.com/pantsbuild/pants/issues/6829') def test_trace_multi(self): # Tests that when multiple distinct failures occur, they are each rendered. @rule def d_from_b_nested_raise(b: B) -> D: fn_raises(b) @rule def c_from_b_nested_raise(b: B) -> C: fn_raises(b) @rule def a_from_c_and_d(c: C, d: D) -> A: return A() rules = [ RootRule(B), d_from_b_nested_raise, c_from_b_nested_raise, a_from_c_and_d, ] scheduler = self.scheduler(rules, include_trace_on_error=True) with self.assertRaises(ExecutionError) as cm: list(scheduler.product_request(A, subjects=[(B())])) self.assert_equal_with_printing(dedent(''' 1 Exception encountered: Computing Select(<pants_test.engine.test_engine.B object at 0xEEEEEEEEE>, A) Computing Task(a_from_c_and_d(), <pants_test.engine.test_engine.B object at 0xEEEEEEEEE>, A, true) Computing Task(d_from_b_nested_raise(), <pants_test.engine.test_engine.B object at 0xEEEEEEEEE>, =D, true) Throw(An exception for B) Traceback (most recent call last): File LOCATION-INFO, in call val = func(*args) File LOCATION-INFO, in d_from_b_nested_raise fn_raises(b) File LOCATION-INFO, in fn_raises raise Exception('An exception for {}'.format(type(x).__name__)) Exception: An exception for B Computing Select(<pants_test.engine.test_engine.B object at 0xEEEEEEEEE>, A) Computing Task(a_from_c_and_d(), <pants_test.engine.test_engine.B object at 0xEEEEEEEEE>, A, true) Computing Task(c_from_b_nested_raise(), <pants_test.engine.test_engine.B object at 0xEEEEEEEEE>, =C, true) Throw(An exception for B) Traceback (most recent call last): File LOCATION-INFO, in call val = func(*args) File LOCATION-INFO, in c_from_b_nested_raise fn_raises(b) File LOCATION-INFO, in fn_raises raise Exception('An exception for {}'.format(type(x).__name__)) Exception: An exception for B ''').lstrip()+'\n', remove_locations_from_traceback(str(cm.exception))) def test_illegal_root_selection(self): rules = [ RootRule(B), ] scheduler = self.scheduler(rules, include_trace_on_error=False) # No rules are available to compute A. with self.assertRaises(Exception) as cm: list(scheduler.product_request(A, subjects=[(B())])) self.assert_equal_with_printing('No installed @rules can compute A for input Params(B).', str(cm.exception)) def test_non_existing_root_fails_differently(self): rules = [ upcast, ] with self.assertRaises(Exception) as cm: list(self.mk_scheduler(rules=rules, include_trace_on_error=False)) self.assert_equal_with_printing(dedent(''' Rules with errors: 1 (MyFloat, [MyInt], upcast()): No rule was available to compute MyInt. Maybe declare it as a RootRule(MyInt)? ''').strip(), str(cm.exception) ) def test_async_reporting(self): rules = [ fib, RootRule(int)] scheduler = self.mk_scheduler(rules, include_trace_on_error=False, should_report_workunits=True) @dataclass class Tracker: workunits: List[dict] = field(default_factory=list) def add(self, workunits) -> None: self.workunits.extend(workunits) tracker = Tracker() async_reporter = AsyncWorkunitHandler(scheduler, callback=tracker.add, report_interval_seconds=0.01) with async_reporter.session(): scheduler.product_request(Fib, subjects=[0]) # One workunit should be coming from the `Select` intrinsic, and the other from the single execution # of the `fib` rule, for two total workunits being appended during the run of this rule. self.assertEquals(len(tracker.workunits), 2) tracker.workunits = [] with async_reporter.session(): scheduler.product_request(Fib, subjects=[10]) # Requesting a bigger fibonacci number will result in more rule executions and thus more reported workunits. # In this case, we expect 10 invocations of the `fib` rule + the one Select for a total of 11. self.assertEquals(len(tracker.workunits), 11)
31.88764
116
0.685929
0fef6c7482ec5330a40fd7fdea2337f9f2d2b406
4,093
py
Python
python/wct.py
octo-willy/mapping-wetlands
a9acab6a55e25bb4ef2c70106389006fc5462fb7
[ "MIT" ]
null
null
null
python/wct.py
octo-willy/mapping-wetlands
a9acab6a55e25bb4ef2c70106389006fc5462fb7
[ "MIT" ]
null
null
null
python/wct.py
octo-willy/mapping-wetlands
a9acab6a55e25bb4ef2c70106389006fc5462fb7
[ "MIT" ]
1
2021-04-20T01:53:21.000Z
2021-04-20T01:53:21.000Z
#!/usr/bin/env python # coding: utf-8 # In[ ]: from sklearn.cluster import MiniBatchKMeans import rasterio as rio import numpy as np from skimage.filters import threshold_otsu from python.misc import compute_index from rasterio.plot import reshape_as_image def compute_cluster(img,k=3,random_seed=42): """ Computes cluster based on input image (stack). """ img_float = img.astype(np.float32)/10000 samples = reshape_as_image(img_float).reshape(-1,img_float.shape[0]) kmeans_pred = MiniBatchKMeans(n_clusters=k+1, random_state=random_seed, max_iter=10, batch_size=10000, reassignment_ratio=0).fit(samples) return kmeans_pred.labels_.reshape(img.shape[1], img.shape[2]).astype(rio.uint16) def compute_rws(mndwi_img,mgrn_img,thr=0.3): """ Computes Reliable Water Sample (RWS) region after (Chen et al.,2020). Requires MNDWI and MGRN images. """ if thr == 'otsu': thr = threshold_otsu(mndwi_img[mndwi_img>=0]) return np.where( (mndwi_img>=thr) &((mgrn_img>0) & (mgrn_img<0.15)),1,0) def compute_mnws(img,cluster_img): """ Computes Minimum Normalized Water Score (MNWS) image after (Chen et al.,2020). Requires input band image (stack) and clustered image. """ if len(img.shape) > 2 and img.shape[0] > 2: np.seterr(divide='ignore', invalid='ignore') mnws = [] max_i = np.argmax(np.unique(cluster_img,return_counts=True)[1]) all_labels = list(range(0,cluster_img.max()+1)) labels = list(set(all_labels)-set([all_labels[max_i]])) for label in labels: #calculate band stats region_img = np.where(cluster_img==label,img,0) band_means = np.array(list(map(lambda x:np.mean(region_img[x][region_img[x]!=0],dtype=np.float32), range(img.shape[0])))).reshape(img.shape[0],-1) band_std = np.array(list(map(lambda x:np.std(region_img[x][region_img[x]!=0],dtype=np.float32), range(img.shape[0])))).reshape(img.shape[0],-1) #calculate nws reshaped_img = img.reshape(img.shape[0],-1) nws = (((( abs(reshaped_img-band_means) /band_std)**2).sum(0)/img.shape[0])**0.5).reshape(img.shape[1],img.shape[2]) mnws.append(nws) mnws_img = np.array(mnws).min(0) return mnws_img def render_wcf(mnws_files,invalid_files,upland_file,thr=3,dec=2): """ Computes Water Coverage Frequency (WCF) image after (Chen et al.,2020). Requires path of MNWS image files, invalid pixel mask files and terrain (upland) mask file. """ with rio.open(upland_file) as src_upland: upland_mask = src_upland.read(1) water_rws_detected = [] invalid_pixels = [] for i in tqdm(range(len(mnws_files)),position=0, leave=True): mnws_file = mnws_files[i] cl_mask_file = invalid_files[i] with rio.open(mnws_file) as src_mnws,rio.open(cl_mask_file ) as src_mask: profile = src_mnws.profile.copy() mnws_img = src_mnws.read(1) mnws_img[np.isnan(mnws_img)]=9999 cl_mask = src_mask.read(1) invalid = np.where(cl_mask==2,1,0) invalid_pixels.append(invalid) water_rws = np.where(mnws_img<=thr,1,0) water_rws = np.where( cl_mask>0,0,water_rws) water_rws_detected.append(water_rws) water_rws_detected_sum = np.where(upland_mask==1,0,np.array(water_rws_detected).sum(0)) invalid_pixels_sum = np.array(invalid_pixels).sum(0) diff_invalid = len(mnws_files)-invalid_pixels_sum water_freq_img = np.true_divide(water_rws_detected_sum , diff_invalid, where=(diff_invalid!=0),dtype=np.float32)*12 water_freq_img_r = np.round(water_freq_img,dec) return water_freq_img_r,water_rws_detected_sum,profile
34.982906
128
0.620083
6989de50b8cb917f9a0186a4297967d681d036ee
454
py
Python
test/read_informs_test.py
qiyuangong/ppdpes_core
f4c955401559dcf09f62a7ef163e900df01f499b
[ "MIT" ]
null
null
null
test/read_informs_test.py
qiyuangong/ppdpes_core
f4c955401559dcf09f62a7ef163e900df01f499b
[ "MIT" ]
null
null
null
test/read_informs_test.py
qiyuangong/ppdpes_core
f4c955401559dcf09f62a7ef163e900df01f499b
[ "MIT" ]
null
null
null
import unittest from utils.read_informs_data import read_data from utils.read_informs_data import read_tree class test_read_informs(unittest.TestCase): """ informs dataset contains 58568 records """ def test_read_normal(self): data = read_data() self.assertEqual(len(data), 58568) def test_read_tree(self): ghs = read_tree() self.assertEqual(1, 1) if __name__ == '__main__': unittest.main()
19.73913
45
0.685022
7055f81cc915d1fe43ccc147082d5447eb4a4a54
2,031
py
Python
gdpr/utils.py
hronecviktor/django-GDPR
fa2a69e6f1d08fe8d2c646074c85fd0dc6ea6b8d
[ "MIT" ]
null
null
null
gdpr/utils.py
hronecviktor/django-GDPR
fa2a69e6f1d08fe8d2c646074c85fd0dc6ea6b8d
[ "MIT" ]
null
null
null
gdpr/utils.py
hronecviktor/django-GDPR
fa2a69e6f1d08fe8d2c646074c85fd0dc6ea6b8d
[ "MIT" ]
null
null
null
from typing import Any, Type from django.core.exceptions import FieldDoesNotExist from django.db.models import Model, QuerySet def str_to_class(class_string: str) -> Any: module_name, class_name = class_string.rsplit('.', 1) # load the module, will raise ImportError if module cannot be loaded m = __import__(module_name, globals(), locals(), [str(class_name)]) # get the class, will raise AttributeError if class cannot be found c = getattr(m, class_name) return c def get_number_guess_len(value): """ Safety measure against key getting one bigger (overflow) on decrypt e.g. (5)=1 -> 5 + 8 = 13 -> (13)=2 Args: value: Number convertible to int to get it's length Returns: The even length of the whole part of the number """ guess_len = len(str(int(value))) return guess_len if guess_len % 2 != 0 else (guess_len - 1) def get_field_or_none(model: Type[Model], field_name: str): """ Use django's _meta field api to get field or return None. Args: model: The model to get the field on field_name: The name of the field Returns: The field or None """ try: return model._meta.get_field(field_name) except FieldDoesNotExist: return None """ Enable support for druids reversion fork """ def get_reversion_versions(obj: Any) -> QuerySet: from reversion.models import Version from django.contrib.contenttypes.models import ContentType return Version.objects.get_for_object(obj) def get_reversion_version_model(version) -> Type[Model]: """Get object model of the version.""" if hasattr(version, '_model'): return version._model return version.content_type.model_class() def get_reversion_local_field_dict(obj): if hasattr(obj, '_local_field_dict'): return obj._local_field_dict return obj.flat_field_dict def is_reversion_installed(): try: import reversion return True except ImportError: return False
26.038462
106
0.687346
7fecbd18fa02c03d4003972af012cf71c6c34b8e
777
py
Python
francoralite/apps/francoralite_api/models/dance.py
Francoralite/francoralite
f8c5eeffe6d395c7e4222a9f5a4a7a01841b503c
[ "BSD-3-Clause" ]
2
2021-07-26T08:29:26.000Z
2021-07-26T08:29:27.000Z
francoralite/apps/francoralite_api/models/dance.py
lluc/telemeta-integration
c2fb116471235674eae597abac84a7113e0f7c82
[ "BSD-3-Clause" ]
167
2018-10-20T14:34:46.000Z
2021-06-01T10:40:55.000Z
francoralite/apps/francoralite_api/models/dance.py
Francoralite/francoralite
f8c5eeffe6d395c7e4222a9f5a4a7a01841b503c
[ "BSD-3-Clause" ]
1
2021-06-06T12:16:49.000Z
2021-06-06T12:16:49.000Z
# -*- coding: utf-8 -*- # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # Authors: Luc LEGER / Cooperative Artefacts <artefacts.lle@gmail.com> from django.db import models from django.utils.translation import gettext_lazy as _ class Dance(models.Model): # Description of the table "Type of dance" # List of the fields name = models.CharField(_('Nom'), unique=True, max_length=255) notes = models.TextField(_('Notes'), null=True, blank=True) class Meta: app_label = 'francoralite_api' db_table = 'api_dance' verbose_name_plural = _('dances') ordering = ['name'] def __unicode__(self): return self.name
27.75
74
0.673102
aee0e8c69d98fb983bce30bf8e64850c6c6c20b7
1,644
py
Python
JPMC-tech-task-1/jpm_module_1/client_test.py
Abhishek-Doshi/J_P_Morgan_Chase-Virtual-Internship
62500dcea4284f11424c2b02f33685830efce6c8
[ "MIT" ]
1
2020-07-02T15:11:10.000Z
2020-07-02T15:11:10.000Z
JPMC-tech-task-1/jpm_module_1/client_test.py
Abhishek-Doshi/J_P_Morgan_Chase-Virtual-Internship
62500dcea4284f11424c2b02f33685830efce6c8
[ "MIT" ]
null
null
null
JPMC-tech-task-1/jpm_module_1/client_test.py
Abhishek-Doshi/J_P_Morgan_Chase-Virtual-Internship
62500dcea4284f11424c2b02f33685830efce6c8
[ "MIT" ]
null
null
null
import unittest from client3 import getDataPoint, getRatio class ClientTest(unittest.TestCase): def test_getDataPoint_calculatePrice(self): quotes = [ {'top_ask': {'price': 121.2, 'size': 36}, 'timestamp': '2019-02-11 22:06:30.572453', 'top_bid': {'price': 120.48, 'size': 109}, 'id': '0.109974697771', 'stock': 'ABC'}, {'top_ask': {'price': 121.68, 'size': 4}, 'timestamp': '2019-02-11 22:06:30.572453', 'top_bid': {'price': 117.87, 'size': 81}, 'id': '0.109974697771', 'stock': 'DEF'} ] """ ------------ Add the assertion below ------------ """ for quote in quotes: self.assertEqual(getDataPoint(quote), (quote['stock'], quote['top_bid']['price'], quote['top_ask']['price'], (quote['top_bid']['price'] + quote['top_ask']['price'])/2)) def test_getDataPoint_calculatePriceBidGreaterThanAsk(self): quotes = [ {'top_ask': {'price': 119.2, 'size': 36}, 'timestamp': '2019-02-11 22:06:30.572453', 'top_bid': {'price': 120.48, 'size': 109}, 'id': '0.109974697771', 'stock': 'ABC'}, {'top_ask': {'price': 121.68, 'size': 4}, 'timestamp': '2019-02-11 22:06:30.572453', 'top_bid': {'price': 117.87, 'size': 81}, 'id': '0.109974697771', 'stock': 'DEF'} ] """ ------------ Add the assertion below ------------ """ for quote in quotes: self.assertEqual(getDataPoint(quote), (quote['stock'], quote['top_bid']['price'], quote['top_ask']['price'], (quote['top_bid']['price'] + quote['top_ask']['price'])/2)) """ ------------ Add more unit tests ------------ """ if __name__ == '__main__': unittest.main()
63.230769
180
0.559002
211d5fdda3ae431350ecddd346f910bb44c8516b
1,579
py
Python
tests/commands/new/test_validate_app_name.py
danyeaw/briefcase
fd9744e5b8dfc8a4c7606dc63cddfcda2dd00d78
[ "BSD-3-Clause" ]
1
2022-03-29T01:22:42.000Z
2022-03-29T01:22:42.000Z
tests/commands/new/test_validate_app_name.py
danyeaw/briefcase
fd9744e5b8dfc8a4c7606dc63cddfcda2dd00d78
[ "BSD-3-Clause" ]
null
null
null
tests/commands/new/test_validate_app_name.py
danyeaw/briefcase
fd9744e5b8dfc8a4c7606dc63cddfcda2dd00d78
[ "BSD-3-Clause" ]
null
null
null
import pytest @pytest.mark.parametrize( 'name', [ 'helloworld', 'helloWorld', 'hello42world', '42helloworld', # ?? Are we sure this is correct? 'hello_world', 'hello-world', ] ) def test_valid_app_name(new_command, name): "Test that valid app names are accepted" assert new_command.validate_app_name(name) @pytest.mark.parametrize( 'name', [ 'hello world', # contains a space 'helloworld!', # contains punctuation '_helloworld', # leading underscore '-helloworld', # leading hyphen 'pass', # python keyword 'Pass', # python keyword, but different case usage 'PASS', # python keyword, but all upper case 'in', # javascript keyword 'In', # javascript keyword, but different case usage 'IN', # javascript keyword, but all upper case 'synchronized', # Java keyword 'Synchronized', # Java keyword, but different case usage 'SYNCHRONIZED', # Java keyword, but all upper case 'false', # Python, Java and Javascript keyword (in different cases) 'False', # Python, Java and Javascript keyword (in different cases) 'FALSE', # Python, Java and Javascript keyword (in different cases) 'existing', # pre-existing directory name ] ) def test_invalid_app_name(new_command, name, tmp_path): "Test that invalid app names are rejected" (tmp_path / 'existing').mkdir() with pytest.raises(ValueError): new_command.validate_app_name(name)
31.58
76
0.626979
37577ff41d6ecff098e672c763977cfd4ac2b2f3
3,206
py
Python
Lib/importlib/__init__.py
ystk/debian-python3.1
6241444a6994140621d1b143a2d6b311b184366a
[ "PSF-2.0" ]
1
2020-11-26T18:53:46.000Z
2020-11-26T18:53:46.000Z
Lib/importlib/__init__.py
ystk/debian-python3.1
6241444a6994140621d1b143a2d6b311b184366a
[ "PSF-2.0" ]
null
null
null
Lib/importlib/__init__.py
ystk/debian-python3.1
6241444a6994140621d1b143a2d6b311b184366a
[ "PSF-2.0" ]
2
2018-08-06T04:37:38.000Z
2022-02-27T18:07:12.000Z
"""A pure Python implementation of import. References on import: * Language reference http://docs.python.org/ref/import.html * __import__ function http://docs.python.org/lib/built-in-funcs.html * Packages http://www.python.org/doc/essays/packages.html * PEP 235: Import on Case-Insensitive Platforms http://www.python.org/dev/peps/pep-0235 * PEP 275: Import Modules from Zip Archives http://www.python.org/dev/peps/pep-0273 * PEP 302: New Import Hooks http://www.python.org/dev/peps/pep-0302/ * PEP 328: Imports: Multi-line and Absolute/Relative http://www.python.org/dev/peps/pep-0328 """ __all__ = ['__import__', 'import_module'] from . import _bootstrap import os import re import tokenize # Bootstrap help ##################################################### def _case_ok(directory, check): """Check if the directory contains something matching 'check'. No check is done if the file/directory exists or not. """ if 'PYTHONCASEOK' in os.environ: return True elif check in os.listdir(directory): return True return False def _w_long(x): """Convert a 32-bit integer to little-endian. XXX Temporary until marshal's long functions are exposed. """ x = int(x) int_bytes = [] int_bytes.append(x & 0xFF) int_bytes.append((x >> 8) & 0xFF) int_bytes.append((x >> 16) & 0xFF) int_bytes.append((x >> 24) & 0xFF) return bytearray(int_bytes) def _r_long(int_bytes): """Convert 4 bytes in little-endian to an integer. XXX Temporary until marshal's long function are exposed. """ x = int_bytes[0] x |= int_bytes[1] << 8 x |= int_bytes[2] << 16 x |= int_bytes[3] << 24 return x # Required built-in modules. try: import posix as _os except ImportError: try: import nt as _os except ImportError: try: import os2 as _os except ImportError: raise ImportError('posix, nt, or os2 module required for importlib') _bootstrap._os = _os import imp, sys, marshal, errno, _io _bootstrap.imp = imp _bootstrap.sys = sys _bootstrap.marshal = marshal _bootstrap.errno = errno _bootstrap._io = _io import _warnings _bootstrap._warnings = _warnings from os import sep # For os.path.join replacement; pull from Include/osdefs.h:SEP . _bootstrap.path_sep = sep _bootstrap._case_ok = _case_ok marshal._w_long = _w_long marshal._r_long = _r_long # Public API ######################################################### from ._bootstrap import __import__ def import_module(name, package=None): """Import a module. The 'package' argument is required when performing a relative import. It specifies the package to use as the anchor point from which to resolve the relative import to an absolute import. """ level = 0 if name.startswith('.'): if not package: raise TypeError("relative imports require the 'package' argument") for character in name: if character != '.': break level += 1 return _bootstrap._gcd_import(name[level:], package, level)
25.648
80
0.636619
149139c3656900d7a2d576df6b01f25ee9a683ff
2,335
py
Python
src/assets/environments/mingw64/lib/gcc/x86_64-w64-mingw32/4.8.1/libstdc++_64-6.dll-gdb.py
Sunhr520/ioeditor
6790a4384d075d6c61c680e0e30f5cd92b6a5425
[ "MIT" ]
null
null
null
src/assets/environments/mingw64/lib/gcc/x86_64-w64-mingw32/4.8.1/libstdc++_64-6.dll-gdb.py
Sunhr520/ioeditor
6790a4384d075d6c61c680e0e30f5cd92b6a5425
[ "MIT" ]
null
null
null
src/assets/environments/mingw64/lib/gcc/x86_64-w64-mingw32/4.8.1/libstdc++_64-6.dll-gdb.py
Sunhr520/ioeditor
6790a4384d075d6c61c680e0e30f5cd92b6a5425
[ "MIT" ]
null
null
null
# -*- python -*- # Copyright (C) 2009-2013 Free Software Foundation, Inc. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import sys import gdb import os import os.path pythondir = '/mingw64tdm/share/gcc-4.8.1/python' libdir = '/mingw64tdm/lib/gcc/x86_64-w64-mingw32/4.8.1' # This file might be loaded when there is no current objfile. This # can happen if the user loads it manually. In this case we don't # update sys.path; instead we just hope the user managed to do that # beforehand. if gdb.current_objfile () is not None: # Update module path. We want to find the relative path from libdir # to pythondir, and then we want to apply that relative path to the # directory holding the objfile with which this file is associated. # This preserves relocatability of the gcc tree. # Do a simple normalization that removes duplicate separators. pythondir = os.path.normpath (pythondir) libdir = os.path.normpath (libdir) prefix = os.path.commonprefix ([libdir, pythondir]) # In some bizarre configuration we might have found a match in the # middle of a directory name. if prefix[-1] != '/': prefix = os.path.dirname (prefix) + '/' # Strip off the prefix. pythondir = pythondir[len (prefix):] libdir = libdir[len (prefix):] # Compute the ".."s needed to get from libdir to the prefix. dotdots = ('..' + os.sep) * len (libdir.split (os.sep)) objfile = gdb.current_objfile ().filename dir_ = os.path.join (os.path.dirname (objfile), dotdots, pythondir) if not dir_ in sys.path: sys.path.insert(0, dir_) # Load the pretty-printers. from libstdcxx.v6.printers import register_libstdcxx_printers register_libstdcxx_printers (gdb.current_objfile ())
38.278689
72
0.719058
d06853e47b4bfaf2f6b7da5ab40ff5fff23fc6a8
858
py
Python
projects/DA-project-3/problem-1.py
metanitesh/Data-Structure-Algorithm-Python
48c4e74909700a3b4438f79050c7f974cd95b9a2
[ "MIT" ]
null
null
null
projects/DA-project-3/problem-1.py
metanitesh/Data-Structure-Algorithm-Python
48c4e74909700a3b4438f79050c7f974cd95b9a2
[ "MIT" ]
null
null
null
projects/DA-project-3/problem-1.py
metanitesh/Data-Structure-Algorithm-Python
48c4e74909700a3b4438f79050c7f974cd95b9a2
[ "MIT" ]
null
null
null
def findRoot(starting, end, number): mid = (end+ starting) //2; if mid*mid == number: return mid; if (mid*mid < number) and (mid+1)*(mid+1)>number: return mid; if(mid*mid > number): return findRoot(0, mid, number) else: return findRoot(mid, end, number) def sqrt(number): if(number < 0): return 'negative numbers can not have square roots' if(number is 0 or number is 1): return number; return findRoot(0, number, number) print("Test-1----------------") print(sqrt(16)) # 4 print(sqrt(24)) # 4 print("Test-2----------------") print(sqrt(0)) # 0 print(sqrt(1)) # 1 print("Test-3----------------") print(sqrt(-100)) # negative numbers can not have square roots print("Test-4----------------") print(sqrt(20000000000000)) # 4472135 import math print(math.sqrt(20000000000000)) # 4472135.954999579
18.652174
57
0.601399
897ec9593bd7096aff055d2bb4cdb3e3b353b674
3,150
py
Python
lib/src/align/optimization/optimize_parameters.py
thormeier-fhnw-repos/ip619bb-i4ds02-audio-text-alignment
382800891c8de35c541d726da78f108a5a86b210
[ "MIT" ]
null
null
null
lib/src/align/optimization/optimize_parameters.py
thormeier-fhnw-repos/ip619bb-i4ds02-audio-text-alignment
382800891c8de35c541d726da78f108a5a86b210
[ "MIT" ]
null
null
null
lib/src/align/optimization/optimize_parameters.py
thormeier-fhnw-repos/ip619bb-i4ds02-audio-text-alignment
382800891c8de35c541d726da78f108a5a86b210
[ "MIT" ]
null
null
null
from bin._bin import bin_print from lib.src.align.aligner.google.GoogleFilesAligner import GoogleFilesAligner from lib.src.align.compare.compare_alignments import compare_alignments from typing import Dict, Any, List from GPyOpt.methods import BayesianOptimization import numpy as np def optimize_parameters( input_path: str, output_path: str, google_files_aligner: GoogleFilesAligner, alignment_parameters: Dict[str, Any], convergence_plot_file: str, verbosity: int ) -> None: """ Tries to find the best parameters for google alignment. :param input_path: Path to load all alignments from :param output_path: Path to write the alignments to :param google_files_aligner: GoogleFLiesAligner to re-align every epoch :param alignment_parameters: Alignment parameters for comparison :param convergence_plot_file: Where to save the convergence plot :param verbosity: Verbosity of the output :return: None """ def optimize_function(params: List) -> float: """ Function to optimize against :param params: Parameters given by BOpt :return: Calculated score """ bin_print(verbosity, 1, "Starting new iteration...") google_files_aligner.alignment_parameters["algorithm"]["match_reward"] = params[0][0] google_files_aligner.alignment_parameters["algorithm"]["mismatch_penalty"] = params[0][1] google_files_aligner.alignment_parameters["algorithm"]["gap_penalty"] = params[0][2] bin_print(verbosity, 3, "Configured params: ", google_files_aligner.alignment_parameters) google_files_aligner.align_files(input_path, output_path, 0) # Not "training_only", because we're using a further boiled down training set. result = compare_alignments(input_path, 0, "hand", "google", False, alignment_parameters) # Configurable, see config.example.yml score = eval(google_files_aligner.alignment_parameters["optimize_params_formula"], {"__builtins__": None}, { "deviation": result["scores"]["deviation"]["mean"], "iou": result["ious"]["mean"], "f1": result["appearance"]["f1_score"], "precision": result["appearance"]["precision"], "recall": result["appearance"]["recall"], }) bin_print(verbosity, 1, "Parameters: ", params) bin_print(verbosity, 1, "Achieved score (smaller == better): ", score) return score domain = [ {"name": "match_reward", "type": "continuous", "domain": (0, 100)}, {"name": "mismatch_penalty", "type": "continuous", "domain": (-100, 0)}, {"name": "gap_penalty", "type": "continuous", "domain": (-100, 0)}, ] bopt = BayesianOptimization( f=optimize_function, domain=domain, model_type="GP", acquisition_type="EI", acquisition_jitter=0.05 ) bopt.run_optimization(max_iter=25) bopt.plot_convergence(filename=convergence_plot_file) bin_print(verbosity, 0, "Best values:", bopt.x_opt)
37.951807
116
0.659048
a5675d7ea8d11072b039e787f858d722f135619e
2,218
py
Python
app/location.py
PhotoScout/API
24c2040b0a2fcb1ea906c7aa095c9e74d3ca4fa9
[ "MIT" ]
null
null
null
app/location.py
PhotoScout/API
24c2040b0a2fcb1ea906c7aa095c9e74d3ca4fa9
[ "MIT" ]
null
null
null
app/location.py
PhotoScout/API
24c2040b0a2fcb1ea906c7aa095c9e74d3ca4fa9
[ "MIT" ]
null
null
null
from app import app, db, auth, api from flask import Flask, request, url_for, jsonify, abort, g from flask_restful import Resource, reqparse, fields, marshal from app.models import Photo, Guide import requests from app.fields.places import * class Google_Location(): def __init__(self, place): self.latitude = place['geometry']['location']['lat'] self.longitude = place['geometry']['location']['lng'] self.name = place['name'] if 'photos' in place: self.image = self.getImage(place['photos'][0]['photo_reference']) def getImage(self, ref): url = "https://maps.googleapis.com/maps/api/place/photo?maxwidth=400&photoreference=" + ref + "&key="+app.config['GOOGLE_KEY'] response = requests.get(url) return response.url class Location_API(Resource): decorators = [auth.login_required] def get(self): """ Get the location nearby the guide """ parser = reqparse.RequestParser() # Get the guide ID parser.add_argument( 'id', type=int, required=True, help="Missing guide id" ) args = parser.parse_args() guide = Guide.query.get(args.id) # Get the guide location location = Guide.getFeaturedLocation(guide) print(location) if location: url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json?location=" + str(location['latitude'])+"," + str(location['longitude']) + "&radius=2000&keyword=point of interest&key="+app.config['GOOGLE_KEY'] response = requests.get(url) place_list = [] for res in response.json()['results']: res_full = Google_Location(res) place_list.append(res_full) return marshal(place_list, PLACE_FIELDS), 200 # No location available for this guide else: return "No location", 404 api.add_resource( Location_API, app.config['BASE_URL']+'/guide/near', endpoint='location' ) # https://maps.googleapis.com/maps/api/place/nearbysearch/json?location=-33.8670522,151.1957362&radius=500&type=restaurant&keyword=cruise&key=YOUR_API_KEY
31.685714
224
0.629847
04242b4ce015a4f80890e4dcd107fdd6acddc4c0
11,314
py
Python
tests/test_types.py
post-cyberlabs/bromelia
a21c6af591fa3ebe5335f2f34b13b60f03a48b55
[ "MIT" ]
25
2021-04-03T20:26:57.000Z
2022-02-08T15:02:17.000Z
tests/test_types.py
post-cyberlabs/bromelia
a21c6af591fa3ebe5335f2f34b13b60f03a48b55
[ "MIT" ]
8
2022-01-23T10:55:43.000Z
2022-03-01T14:03:01.000Z
tests/test_types.py
post-cyberlabs/bromelia
a21c6af591fa3ebe5335f2f34b13b60f03a48b55
[ "MIT" ]
3
2021-09-16T11:23:25.000Z
2022-01-23T10:49:26.000Z
# -*- coding: utf-8 -*- """ test.test_types ~~~~~~~~~~~~~~~ This module contains the Diameter protocol types unittests. :copyright: (c) 2020 Henrique Marques Ribeiro. :license: MIT, see LICENSE for more details. """ import unittest import os import sys testing_dir = os.path.dirname(os.path.abspath(__file__)) base_dir = os.path.dirname(testing_dir) sys.path.insert(0, base_dir) from bromelia.avps import * from bromelia.constants import * from bromelia.exceptions import * from bromelia.types import * class TestOctetStringType(unittest.TestCase): def test_octet_string_type__unable_to_instantiate_class(self): data = bytes.fromhex("00000011") with self.assertRaises(TypeError) as cm: _type = OctetStringType(data) if sys.version_info[1] <= 8: self.assertEqual(cm.exception.args[0], "Can't instantiate abstract class OctetStringType with abstract methods __init__") elif sys.version_info[1] == 9: self.assertEqual(cm.exception.args[0], "Can't instantiate abstract class OctetStringType with abstract method __init__") def test_octet_string_type__valid_input_data_for_subclass__str(self): avp = ProxyStateAVP("CLOSED") self.assertEqual(type(avp.data), bytes) def test_octet_string_type__valid_input_data_for_subclass__bytes(self): data = bytes.fromhex("00000011") avp = ClassAVP(data) self.assertEqual(type(avp.data), bytes) def test_octet_string_type__valid_input_vendor_id_for_subclass__4_bytes_long(self): class CustomAVP(DiameterAVP, OctetStringType): code = bytes.fromhex("00000000") def __init__(self, data): DiameterAVP.__init__(self, CustomAVP.code) DiameterAVP.set_vendor_id_bit(self, True) OctetStringType.__init__(self, data=data, vendor_id=bytes.fromhex("11110000")) avp = CustomAVP(data=bytes.fromhex("11")) self.assertEqual(type(avp.data), bytes) def test_octet_string_type__invalid_input_data_for_subclass__list(self): data = bytes.fromhex("00000011") with self.assertRaises(DataTypeError) as cm: avp = AcctSessionIdAVP([data, data]) self.assertEqual(cm.exception.args[0], "OctetStringType MUST have data argument of 'bytes' or 'str'") def test_octet_string_type__invalid_input_data_for_subclass__dict(self): data = bytes.fromhex("00000011") with self.assertRaises(DataTypeError) as cm: avp = AcctSessionIdAVP({"data": data}) self.assertEqual(cm.exception.args[0], "OctetStringType MUST have data argument of 'bytes' or 'str'") def test_octet_string_type__invalid_input_vendor_id_for_subclass__1_byte_long(self): class CustomAVP(DiameterAVP, OctetStringType): code = bytes.fromhex("00000000") def __init__(self, data): DiameterAVP.__init__(self, CustomAVP.code) DiameterAVP.set_vendor_id_bit(self, True) OctetStringType.__init__(self, data=data, vendor_id=bytes.fromhex("11")) with self.assertRaises(DataTypeError) as cm: avp = CustomAVP(data=bytes.fromhex("11")) self.assertEqual(cm.exception.args[0], "Invalid vendor_id format for OctetStringType. It MUST be 4 bytes long") def test_octet_string_type__invalid_input_vendor_id_for_subclass__2_bytes_long(self): class CustomAVP(DiameterAVP, OctetStringType): code = bytes.fromhex("00000000") def __init__(self, data): DiameterAVP.__init__(self, CustomAVP.code) DiameterAVP.set_vendor_id_bit(self, True) OctetStringType.__init__(self, data=data, vendor_id=bytes.fromhex("1111")) with self.assertRaises(DataTypeError) as cm: avp = CustomAVP(data=bytes.fromhex("11")) self.assertEqual(cm.exception.args[0], "Invalid vendor_id format for OctetStringType. It MUST be 4 bytes long") def test_octet_string_type__invalid_input_vendor_id_for_subclass__3_bytes_long(self): class CustomAVP(DiameterAVP, OctetStringType): code = bytes.fromhex("00000000") def __init__(self, data): DiameterAVP.__init__(self, CustomAVP.code) DiameterAVP.set_vendor_id_bit(self, True) OctetStringType.__init__(self, data=data, vendor_id=bytes.fromhex("111100")) with self.assertRaises(DataTypeError) as cm: avp = CustomAVP(data=bytes.fromhex("11")) self.assertEqual(cm.exception.args[0], "Invalid vendor_id format for OctetStringType. It MUST be 4 bytes long") class TestInteger32Type(unittest.TestCase): def test_integer32_type__unable_to_instantiate_class(self): data = bytes.fromhex("00000011") with self.assertRaises(TypeError) as cm: _type = Integer32Type(data) if sys.version_info[1] <= 8: self.assertEqual(cm.exception.args[0], "Can't instantiate abstract class Integer32Type with abstract methods __init__") elif sys.version_info[1] == 9: self.assertEqual(cm.exception.args[0], "Can't instantiate abstract class Integer32Type with abstract method __init__") def test_integer32_type__valid_input_data_for_subclass__4_bytes_long(self): class CustomAVP(DiameterAVP, Integer32Type): code = bytes.fromhex("00000000") def __init__(self, data): DiameterAVP.__init__(self, CustomAVP.code) DiameterAVP.set_vendor_id_bit(self, True) Integer32Type.__init__(self, data=data, vendor_id=bytes.fromhex("11110000")) avp = CustomAVP(data=bytes.fromhex("11001100")) self.assertEqual(type(avp.data), bytes) class TestUnsigned32Type(unittest.TestCase): def test_unsigned32_type__unable_to_instantiate_class(self): data = bytes.fromhex("00000011") with self.assertRaises(TypeError) as cm: _type = Unsigned32Type(data) if sys.version_info[1] <= 8: self.assertEqual(cm.exception.args[0], "Can't instantiate abstract class Unsigned32Type with abstract methods __init__") elif sys.version_info[1] == 9: self.assertEqual(cm.exception.args[0], "Can't instantiate abstract class Unsigned32Type with abstract method __init__") class TestUnsigned64Type(unittest.TestCase): def test_unsigned64_type__unable_to_instantiate_class(self): data = bytes.fromhex("00000011") with self.assertRaises(TypeError) as cm: _type = Unsigned64Type(data) if sys.version_info[1] <= 8: self.assertEqual(cm.exception.args[0], "Can't instantiate abstract class Unsigned64Type with abstract methods __init__") elif sys.version_info[1] == 9: self.assertEqual(cm.exception.args[0], "Can't instantiate abstract class Unsigned64Type with abstract method __init__") class TestGroupedType(unittest.TestCase): def test_grouped_type__unable_to_instantiate_class(self): data = bytes.fromhex("00000011") with self.assertRaises(TypeError) as cm: _type = GroupedType(data) if sys.version_info[1] <= 8: self.assertEqual(cm.exception.args[0], "Can't instantiate abstract class GroupedType with abstract methods __init__") elif sys.version_info[1] == 9: self.assertEqual(cm.exception.args[0], "Can't instantiate abstract class GroupedType with abstract method __init__") class TestAddressType(unittest.TestCase): def test_address_type__unable_to_instantiate_class(self): data = bytes.fromhex("00000011") with self.assertRaises(TypeError) as cm: _type = AddressType(data) if sys.version_info[1] <= 8: self.assertEqual(cm.exception.args[0], "Can't instantiate abstract class AddressType with abstract methods __init__") elif sys.version_info[1] == 9: self.assertEqual(cm.exception.args[0], "Can't instantiate abstract class AddressType with abstract method __init__") class TestTimeType(unittest.TestCase): def test_time_type__unable_to_instantiate_class(self): data = bytes.fromhex("00000011") with self.assertRaises(TypeError) as cm: _type = TimeType(data) if sys.version_info[1] <= 8: self.assertEqual(cm.exception.args[0], "Can't instantiate abstract class TimeType with abstract methods __init__") elif sys.version_info[1] == 9: self.assertEqual(cm.exception.args[0], "Can't instantiate abstract class TimeType with abstract method __init__") class TestUTF8StringType(unittest.TestCase): def test_utf8_string_type__unable_to_instantiate_class(self): data = bytes.fromhex("00000011") with self.assertRaises(TypeError) as cm: _type = UTF8StringType(data) if sys.version_info[1] <= 8: self.assertEqual(cm.exception.args[0], "Can't instantiate abstract class UTF8StringType with abstract methods __init__") elif sys.version_info[1] == 9: self.assertEqual(cm.exception.args[0], "Can't instantiate abstract class UTF8StringType with abstract method __init__") class TestDiameterIdentityType(unittest.TestCase): def test_diameter_identity_type__unable_to_instantiate_class(self): data = bytes.fromhex("00000011") with self.assertRaises(TypeError) as cm: _type = DiameterIdentityType(data) if sys.version_info[1] <= 8: self.assertEqual(cm.exception.args[0], "Can't instantiate abstract class DiameterIdentityType with abstract methods __init__") elif sys.version_info[1] == 9: self.assertEqual(cm.exception.args[0], "Can't instantiate abstract class DiameterIdentityType with abstract method __init__") class TestDiameterURIType(unittest.TestCase): def test_diameter_uri_type__unable_to_instantiate_class(self): data = bytes.fromhex("00000011") with self.assertRaises(TypeError) as cm: _type = DiameterURIType(data) if sys.version_info[1] <= 8: self.assertEqual(cm.exception.args[0], "Can't instantiate abstract class DiameterURIType with abstract methods __init__") elif sys.version_info[1] == 9: self.assertEqual(cm.exception.args[0], "Can't instantiate abstract class DiameterURIType with abstract method __init__") class TestEnumeratedType(unittest.TestCase): def test_enumerated_type__unable_to_instantiate_class(self): data = bytes.fromhex("00000011") with self.assertRaises(TypeError) as cm: _type = EnumeratedType(data) if sys.version_info[1] <= 8: self.assertEqual(cm.exception.args[0], "Can't instantiate abstract class EnumeratedType with abstract methods __init__") elif sys.version_info[1] == 9: self.assertEqual(cm.exception.args[0], "Can't instantiate abstract class EnumeratedType with abstract method __init__")
42.05948
138
0.680396
f9434ad6812b364772f198c34b0d780c1176903a
12,108
py
Python
yum/gui.py
HalfDeadPie/Yum4FIT
e47ae12f9da037c5c56277ae3e58d8d29b9692d0
[ "MIT" ]
1
2018-02-12T15:48:59.000Z
2018-02-12T15:48:59.000Z
yum/gui.py
HalfDeadPie/Yum4FIT
e47ae12f9da037c5c56277ae3e58d8d29b9692d0
[ "MIT" ]
1
2018-02-11T09:36:21.000Z
2018-02-11T09:36:21.000Z
yum/gui.py
HalfDeadPie/Yum4FIT
e47ae12f9da037c5c56277ae3e58d8d29b9692d0
[ "MIT" ]
null
null
null
import json import urllib import webbrowser from PyQt5.QtCore import QSize, Qt from PyQt5.QtWidgets import QVBoxLayout, QLabel, QListView, QListWidgetItem, QListWidget, QGroupBox, QTextBrowser, \ QCheckBox, QFileDialog, QInputDialog, QLineEdit from PyQt5.uic.Compiler.qtproxies import QtWidgets from PyQt5 import QtWidgets, uic, QtGui from yum import CONSTANTS, Parser, account, state, food, yum, connector class GUI(): """ Class representing and provides Yum4FIT services via graphic user interface. To open the GUI run "yum run" command """ def __init__(self, config): """ Constructor of the GUI class :param config: Config file (default=config.cfg) """ app = QtWidgets.QApplication([]) window = QtWidgets.QMainWindow() window.setWindowTitle("Yum4FIT") with open(CONSTANTS.WINDOW) as f: uic.loadUi(f, window) self.app = app self.w = window self.config = config self.profile = None self.state = None self.password = None self.hashtag = None self.show() def show(self): """ Function to set all the elements and show the main window :return: running configured GUI application """ self.login() self.loadProfileBox() self.loadFood() self.loadRecipe() self.loadShareButton() self.loadFriendButton() self.w.show() return self.app.exec() def login(self): """ Login to Instagram """ username = Parser.getUsername(None, self.config) password = Parser.getPassword(None, self.config) account.login(username, password) self.profile = account.getProfile() self.password = password self.hashtag = Parser.get(self.config,'instagram', 'hashtag') # ------------------------------------------------------------------------------------------------------------------ def loadUsername(self): """ Load username to label in profile block :return: """ label = self.w.findChild(QtWidgets.QLabel, 'labUsername') label.setText(self.profile.username) label.setAlignment(Qt.AlignCenter) def loadFullname(self): """ Load full name to label in profile block """ label = self.w.findChild(QtWidgets.QLabel, 'labFullname') label.setText(self.profile.full_name) label.setAlignment(Qt.AlignCenter) def loadEmail(self): """ Load email to label in profile block """ label = self.w.findChild(QtWidgets.QLabel,'labEmail') label.setText(self.profile.email) label.setAlignment(Qt.AlignCenter) def loadPicture(self): """ Load picture of user to label in profile block """ url = self.profile.avatar data = urllib.request.urlopen(url).read() image = QtGui.QImage() image.loadFromData(data) lbl = self.w.findChild(QtWidgets.QLabel,'labPicture') lbl.setPixmap(QtGui.QPixmap(image)) lbl.setAlignment(Qt.AlignCenter) def loadState(self): """ Load state of the user and set the level in profile block :return: """ self.state = state.State(0, False) label = self.w.findChild(QtWidgets.QLabel,'labLevel') label.setAlignment(Qt.AlignCenter) label.setText("Level: " + str(self.state.level)) def loadGainButton(self): """ Set the gain button """ button = self.w.findChild(QtWidgets.QPushButton, 'buttonGain') button.setText("Gain") button.clicked.connect(self.gain) def loadProfileBox(self): """ Load profile box :return: """ self.loadUsername() self.loadFullname() self.loadEmail() self.loadPicture() self.loadState() self.loadGainButton() # ------------------------------------------------------------------------------------------------------------------ def loadFood(self): """ Load all the user's food from instagram - depending on Yum4FIT hashtag """ self.foods = account.getAllFood(self.profile.username, self.password, self.hashtag) listView = self.w.findChild(QtWidgets.QListWidget, 'listFoods') listView.setViewMode(QListView.IconMode) listView.setIconSize(QSize(400, 400)) listView.clear() for actual in self.foods: f = actual.split(' ') url = f[1] data = urllib.request.urlopen(url).read() image = QtGui.QImage() image.loadFromData(data) map = QtGui.QPixmap(image) item = QListWidgetItem(f[0]) icon = QtGui.QIcon() icon.addPixmap(map,QtGui.QIcon.Normal, QtGui.QIcon.Off) item.setIcon(icon) listView.addItem(item) # ------------------------------------------------------------------------------------------------------------------ def loadRecipe(self): """ Load last food from recipe file """ self.lastFood = food.Food(None) self.lastFood = self.lastFood.load(CONSTANTS.RECIPE_FILE) self.loadActualName() self.loadIngredients() self.loadActualImage() self.loadGenerateButton() self.loadGuideButton() def reloadRecipe(self): """ Refresh the last food """ self.lastFood = food.Food(None) self.lastFood = self.lastFood.load(CONSTANTS.RECIPE_FILE) self.loadActualName() self.loadIngredients() self.loadActualImage() def loadActualName(self): """ Load actual name of the food to group box """ box = self.w.findChild(QtWidgets.QGroupBox, 'boxActual') box.setTitle(self.lastFood.name) def loadIngredients(self): """ Load ingredients of the last recipe to the group box of last food :return: """ text = self.w.findChild(QtWidgets.QTextBrowser, 'textIngredients') text.setText(self.lastFood.ingredients) def loadActualImage(self): """ Load the actual image of last food from recipe file to last food group box :return: """ url = self.lastFood.picture data = urllib.request.urlopen(url).read() image = QtGui.QImage() image.loadFromData(data) map = QtGui.QPixmap(image) imageLabel = self.w.findChild(QtWidgets.QLabel, 'actualImage') imageLabel.setPixmap(map.scaledToWidth(200)) imageLabel.setAlignment(Qt.AlignCenter) def loadGenerateButton(self): """ Set generate button - generates new recipes. User is able to set parameters of searching to config file and set the checkbox to use theese parameters. :return: """ button = self.w.findChild(QtWidgets.QPushButton, 'buttonGenerate') button.setText("Generate") button.clicked.connect(self.recipe) def loadGuideButton(self): """ Set guide step-by-step button. This button opens the browser and redirect to URL of food. :return: """ button = self.w.findChild(QtWidgets.QPushButton, 'buttonGuide') button.setText("Guide") button.clicked.connect(self.redirect) # ------------------------------------------------------------------------------------------------------------------ def loadShareButton(self): """ Set buton for sharing food :return: """ button = self.w.findChild(QtWidgets.QPushButton, 'buttonShare') button.setText("Share") button.clicked.connect(self.share) def loadFriendButton(self): """ Set button for adding friend. The username writes to line friend's Instagram username and click on the food in the list. Then click on this button """ button = self.w.findChild(QtWidgets.QPushButton, 'buttonFriend') button.setText("Add friend") button.clicked.connect(self.addFriend) # ------------------------------------------------------------------------------------------------------------------ def gain(self): """ Support function to gain XP from likes """ state = account.gain(self.profile.username, self.password, self.hashtag, None, CONSTANTS.FRIENDS_FILE) data = { 'likes' : str(state.likes), 'level' : str(state.level), 'xp' : str(state.xp ) } json_data = json.dumps(data) url = Parser.get(self.config, 'server', 'url') url += 'gain' connector.post(url, json_data, self.password) self.loadState() def redirect(self): """ Support function to open browser and redirect """ new = 2 url = self.lastFood.url webbrowser.open(url, new=new) def recipe(self): """ Support function to generate recipe """ api_id = Parser.get(self.config, 'yummly', 'api-id') api_key = Parser.get(self.config, 'yummly', 'api-key') server_url = Parser.get(self.config, 'server', 'url') yummer = yum.Yum(api_id, api_key, server_url) checkbox = self.w.findChild(QtWidgets.QCheckBox, 'checkConfig') file = False if checkbox.isChecked(): file = True print("choosing recipe...") result = yummer.recipe(diet=None, allergy=None, cuisine=None, exclude_cuisine=None, ingredient=None, exclude_ingredient=None, holiday=None, exclude_holiday=None, phrase=None, file=file, config=self.config) if result: print("reloading...") self.reloadRecipe() def share(self): """ Support function for sharing photos of the food. Includes opening file dialog and setting caption :return: """ file = self.open() if file != None: caption = self.setCaption() if caption == None: caption = "" hashtag = Parser.get(self.config, 'instagram', 'hashtag') server_url = Parser.get(self.config, 'server', 'url') account.upload(self.profile.username, self.password, file, caption +" "+ hashtag, server_url) self.loadFood() def open(self): """ Support function to open file dialog with filter of jpeg files """ fileName, _ = QFileDialog.getOpenFileName(caption="Choose image for uploading to Instagram", directory="",filter="Images (*.jpeg, *.jpg)") if fileName: return fileName def setCaption(self): """ Open special input dialog for setting the caption :return: """ text, okPressed = QInputDialog.getText(None,"Enther the captiong of image","Caption:", QLineEdit.Normal, "") if okPressed and text != '': return text def addFriend(self): """ Support function to add friend using the item chosen by clicking to listWidget of foods """ line = self.w.findChild(QtWidgets.QLineEdit, 'lineFriend') friend = line.text() if(friend == None or friend == ""): return else: listView = self.w.findChild(QtWidgets.QListWidget, 'listFoods') id = listView.currentItem().text() if id: data = {"username": friend, "post": id} json_data = json.dumps(data) url = Parser.get(self.config,'server','url') url += 'addfriend' Parser.updateSection(CONSTANTS.FRIENDS_FILE, friend, id, 'no') connector.post(url, json_data, self.password)
32.991826
120
0.555913
f529ccd3f630381a47bdf178b6d5f04901f084a8
24,142
py
Python
core/shell.py
happysalada/oil
11aa7b4abf93022fceada06abf23922c1c60787a
[ "Apache-2.0" ]
null
null
null
core/shell.py
happysalada/oil
11aa7b4abf93022fceada06abf23922c1c60787a
[ "Apache-2.0" ]
null
null
null
core/shell.py
happysalada/oil
11aa7b4abf93022fceada06abf23922c1c60787a
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python2 """ core/shell.py -- Entry point for the shell interpreter. """ from __future__ import print_function import errno import time from _devbuild.gen import arg_types from _devbuild.gen.option_asdl import option_i, builtin_i from _devbuild.gen.syntax_asdl import source from asdl import runtime from core import alloc from core import comp_ui from core import dev from core import error from core import executor from core import completion from core import main_loop from core import pyos from core import process from core import shell_native from core import pyutil from core.pyutil import stderr_line from core import state from core import ui from core import util from core.pyerror import log unused = log from core import vm from frontend import args from frontend import flag_def # side effect: flags are defined! _ = flag_def from frontend import flag_spec from frontend import reader from frontend import py_reader from frontend import parse_lib from oil_lang import expr_eval from oil_lang import builtin_oil from oil_lang import funcs_builtin from osh import builtin_assign from osh import builtin_comp from osh import builtin_meta from osh import builtin_misc from osh import builtin_lib from osh import builtin_printf from osh import builtin_process from osh import builtin_pure from osh import cmd_eval from osh import glob_ from osh import history from osh import prompt from osh import sh_expr_eval from osh import split from osh import word_eval from mycpp import mylib from pylib import os_path import libc import posix_ as posix from typing import List, Dict, Optional, Any, TYPE_CHECKING if TYPE_CHECKING: from _devbuild.gen.runtime_asdl import Proc def _InitDefaultCompletions(cmd_ev, complete_builtin, comp_lookup): # type: (cmd_eval.CommandEvaluator, builtin_comp.Complete, completion.Lookup) -> None # register builtins and words complete_builtin.Run(shell_native.MakeBuiltinArgv(['-E', '-A', 'command'])) # register path completion # Add -o filenames? Or should that be automatic? complete_builtin.Run(shell_native.MakeBuiltinArgv(['-D', '-A', 'file'])) # TODO: Move this into demo/slow-completion.sh if 1: # Something for fun, to show off. Also: test that you don't repeatedly hit # the file system / network / coprocess. A1 = completion.TestAction(['foo.py', 'foo', 'bar.py']) A2 = completion.TestAction(['m%d' % i for i in xrange(5)], delay=0.1) C1 = completion.UserSpec([A1, A2], [], [], lambda candidate: True) comp_lookup.RegisterName('slowc', {}, C1) def SourceStartupFile(fd_state, rc_path, lang, parse_ctx, cmd_ev): # type: (process.FdState, str, str, parse_lib.ParseContext, cmd_eval.CommandEvaluator) -> None # Right now this is called when the shell is interactive. (Maybe it should # be called on login_shel too.) # # Terms: # - interactive shell: Roughly speaking, no args or -c, and isatty() is true # for stdin and stdout. # - login shell: Started from the top level, e.g. from init or ssh. # # We're not going to copy everything bash does because it's too complex, but # for reference: # https://www.gnu.org/software/bash/manual/bash.html#Bash-Startup-Files # Bash also has --login. try: f = fd_state.Open(rc_path) except OSError as e: # TODO: Could warn about nonexistent explicit --rcfile? if e.errno != errno.ENOENT: raise # Goes to top level. Handle this better? return arena = parse_ctx.arena rc_line_reader = reader.FileLineReader(f, arena) rc_c_parser = parse_ctx.MakeOshParser(rc_line_reader) with alloc.ctx_Location(arena, source.SourcedFile(rc_path)): # TODO: handle status, e.g. 2 for ParseError status = main_loop.Batch(cmd_ev, rc_c_parser, arena) f.close() class ShellOptHook(state.OptHook): def __init__(self, line_input): # type: (Any) -> None self.line_input = line_input def OnChange(self, opt0_array, opt_name, b): # type: (List[bool], str, bool) -> bool """This method is called whenever an option is changed. Returns success or failure. """ if opt_name == 'vi' or opt_name == 'emacs': # TODO: Replace with a hook? Just like setting LANG= can have a hook. if self.line_input: self.line_input.parse_and_bind("set editing-mode " + opt_name); else: stderr_line( "Warning: Can't set option %r because Oil wasn't built with line editing (e.g. GNU readline)", opt_name) return False # Invert: they are mutually exclusive! if opt_name == 'vi': opt0_array[option_i.emacs] = not b elif opt_name == 'emacs': opt0_array[option_i.vi] = not b return True def AddProcess( b, # type: Dict[int, vm._Builtin] mem, # type: state.Mem shell_ex, # type: vm._Executor ext_prog, # type: process.ExternalProgram fd_state, # type: process.FdState job_state, # type: process.JobState waiter, # type: process.Waiter tracer, # type: dev.Tracer search_path, # type: state.SearchPath errfmt # type: ui.ErrorFormatter ): # type: (...) -> None # Process b[builtin_i.exec_] = builtin_process.Exec(mem, ext_prog, fd_state, search_path, errfmt) b[builtin_i.wait] = builtin_process.Wait(waiter, job_state, mem, tracer, errfmt) b[builtin_i.jobs] = builtin_process.Jobs(job_state) b[builtin_i.fg] = builtin_process.Fg(job_state, waiter) b[builtin_i.bg] = builtin_process.Bg(job_state) b[builtin_i.umask] = builtin_process.Umask() b[builtin_i.fork] = builtin_process.Fork(shell_ex) b[builtin_i.forkwait] = builtin_process.ForkWait(shell_ex) def AddOil(b, mem, cmd_ev, errfmt, procs, arena): # type: (Dict[int, vm._Builtin], state.Mem, cmd_eval.CommandEvaluator, ui.ErrorFormatter, Dict[str, Proc], alloc.Arena) -> None b[builtin_i.append] = builtin_oil.Append(mem, errfmt) b[builtin_i.shvar] = builtin_pure.Shvar(mem, cmd_ev) b[builtin_i.push_registers] = builtin_pure.PushRegisters(mem, cmd_ev) b[builtin_i.write] = builtin_oil.Write(mem, errfmt) b[builtin_i.pp] = builtin_oil.Pp(mem, errfmt, procs, arena) b[builtin_i.use] = builtin_pure.Use(mem, errfmt) b[builtin_i.argparse] = builtin_oil.ArgParse(mem, errfmt) def Main(lang, arg_r, environ, login_shell, loader, line_input): # type: (str, args.Reader, Dict[str, str], bool, pyutil._ResourceLoader, Any) -> int """The full shell lifecycle. Used by bin/osh and bin/oil. Args: lang: 'osh' or 'oil' argv0, arg_r: command line arguments environ: environment login_shell: Was - on the front? loader: to get help, version, grammar, etc. line_input: optional GNU readline """ # Differences between osh and oil: # - --help? I guess Oil has a SUPERSET of OSH options. # - oshrc vs oilrc # - shopt -s oil:all # - Change the prompt in the interactive shell? # osh-pure: # - no oil grammar # - no expression evaluator # - no interactive shell, or line_input # - no process.* # process.{ExternalProgram,Waiter,FdState,JobState,SignalState} -- we want # to evaluate config files without any of these # Modules not translated yet: completion, comp_ui, builtin_comp, process # - word evaluator # - shouldn't glob? set -o noglob? or hard failure? # - ~ shouldn't read from the file system # - I guess it can just be the HOME=HOME? # Builtin: # shellvm -c 'echo hi' # shellvm <<< 'echo hi' argv0 = arg_r.Peek() assert argv0 is not None arg_r.Next() assert lang in ('osh', 'oil'), lang try: attrs = flag_spec.ParseMore('main', arg_r) except error.Usage as e: stderr_line('osh usage error: %s', e.msg) return 2 flag = arg_types.main(attrs.attrs) arena = alloc.Arena() errfmt = ui.ErrorFormatter(arena) help_builtin = builtin_misc.Help(loader, errfmt) if flag.help: help_builtin.Run(shell_native.MakeBuiltinArgv(['%s-usage' % lang])) return 0 if flag.version: # OSH version is the only binary in Oil right now, so it's all one version. pyutil.ShowAppVersion('Oil', loader) return 0 no_str = None # type: str debug_stack = [] # type: List[state.DebugFrame] if arg_r.AtEnd(): dollar0 = argv0 else: dollar0 = arg_r.Peek() # the script name, or the arg after -c # Copy quirky bash behavior. frame0 = state.DebugFrame(dollar0, 'main', no_str, state.LINE_ZERO, 0, 0) debug_stack.append(frame0) # Copy quirky bash behavior. frame1 = state.DebugFrame(no_str, no_str, no_str, runtime.NO_SPID, 0, 0) debug_stack.append(frame1) script_name = arg_r.Peek() # type: Optional[str] arg_r.Next() mem = state.Mem(dollar0, arg_r.Rest(), arena, debug_stack) opt_hook = ShellOptHook(line_input) # Note: only MutableOpts needs mem, so it's not a true circular dep. parse_opts, exec_opts, mutable_opts = state.MakeOpts(mem, opt_hook) mem.exec_opts = exec_opts # circular dep mutable_opts.Init() version_str = pyutil.GetVersion(loader) state.InitMem(mem, environ, version_str) funcs_builtin.Init(mem) procs = {} # type: Dict[str, Proc] if attrs.show_options: # special case: sh -o mutable_opts.ShowOptions([]) return 0 # Set these BEFORE processing flags, so they can be overridden. if lang == 'oil': mutable_opts.SetShoptOption('oil:all', True) builtin_pure.SetShellOpts(mutable_opts, attrs.opt_changes, attrs.shopt_changes) # feedback between runtime and parser aliases = {} # type: Dict[str, str] oil_grammar = pyutil.LoadOilGrammar(loader) if flag.one_pass_parse and not exec_opts.noexec(): raise error.Usage('--one-pass-parse requires noexec (-n)') parse_ctx = parse_lib.ParseContext(arena, parse_opts, aliases, oil_grammar) parse_ctx.Init_OnePassParse(flag.one_pass_parse) # Three ParseContext instances SHARE aliases. comp_arena = alloc.Arena() comp_arena.PushSource(source.Unused('completion')) trail1 = parse_lib.Trail() # one_pass_parse needs to be turned on to complete inside backticks. TODO: # fix the issue where ` gets erased because it's not part of # set_completer_delims(). comp_ctx = parse_lib.ParseContext(comp_arena, parse_opts, aliases, oil_grammar) comp_ctx.Init_Trail(trail1) comp_ctx.Init_OnePassParse(True) hist_arena = alloc.Arena() hist_arena.PushSource(source.Unused('history')) trail2 = parse_lib.Trail() hist_ctx = parse_lib.ParseContext(hist_arena, parse_opts, aliases, oil_grammar) hist_ctx.Init_Trail(trail2) # Deps helps manages dependencies. These dependencies are circular: # - cmd_ev and word_ev, arith_ev -- for command sub, arith sub # - arith_ev and word_ev -- for $(( ${a} )) and $x$(( 1 )) # - cmd_ev and builtins (which execute code, like eval) # - prompt_ev needs word_ev for $PS1, which needs prompt_ev for @P cmd_deps = cmd_eval.Deps() cmd_deps.mutable_opts = mutable_opts # TODO: In general, cmd_deps are shared between the mutually recursive # evaluators. Some of the four below are only shared between a builtin and # the CommandEvaluator, so we could put them somewhere else. cmd_deps.traps = {} cmd_deps.trap_nodes = [] # TODO: Clear on fork() to avoid duplicates job_state = process.JobState() fd_state = process.FdState(errfmt, job_state, mem, None, None) my_pid = posix.getpid() debug_path = '' debug_dir = environ.get('OSH_DEBUG_DIR') if flag.debug_file is not None: # --debug-file takes precedence over OSH_DEBUG_DIR debug_path = flag.debug_file elif debug_dir is not None: debug_path = os_path.join(debug_dir, '%d-osh.log' % my_pid) if len(debug_path): # This will be created as an empty file if it doesn't exist, or it could be # a pipe. try: debug_f = util.DebugFile(fd_state.OpenForWrite(debug_path)) # type: util._DebugFile except OSError as e: stderr_line("osh: Couldn't open %r: %s", debug_path, posix.strerror(e.errno)) return 2 else: debug_f = util.NullDebugFile() if flag.xtrace_to_debug_file: trace_f = debug_f else: trace_f = util.DebugFile(mylib.Stderr()) tracer = dev.Tracer(parse_ctx, exec_opts, mutable_opts, mem, trace_f) fd_state.tracer = tracer # circular dep sig_state = pyos.SignalState() sig_state.InitShell() waiter = process.Waiter(job_state, exec_opts, sig_state, tracer) fd_state.waiter = waiter cmd_deps.debug_f = debug_f # Not using datetime for dependency reasons. TODO: maybe show the date at # the beginning of the log, and then only show time afterward? To save # space, and make space for microseconds. (datetime supports microseconds # but time.strftime doesn't). if mylib.PYTHON: iso_stamp = time.strftime("%Y-%m-%d %H:%M:%S") debug_f.log('%s [%d] OSH started with argv %s', iso_stamp, my_pid, arg_r.argv) if len(debug_path): debug_f.log('Writing logs to %r', debug_path) interp = environ.get('OSH_HIJACK_SHEBANG', '') search_path = state.SearchPath(mem) ext_prog = process.ExternalProgram(interp, fd_state, errfmt, debug_f) splitter = split.SplitContext(mem) # split() builtin # TODO: Accept IFS as a named arg? split('a b', IFS=' ') funcs_builtin.SetGlobalFunc( mem, 'split', lambda s, ifs=None: splitter.SplitForWordEval(s, ifs=ifs)) # glob() builtin # TODO: This is instantiation is duplicated in osh/word_eval.py globber = glob_.Globber(exec_opts) funcs_builtin.SetGlobalFunc( mem, 'glob', lambda s: globber.OilFuncCall(s)) # This could just be OSH_DEBUG_STREAMS='debug crash' ? That might be # stuffing too much into one, since a .json crash dump isn't a stream. crash_dump_dir = environ.get('OSH_CRASH_DUMP_DIR', '') cmd_deps.dumper = dev.CrashDumper(crash_dump_dir) comp_lookup = completion.Lookup() # Various Global State objects to work around readline interfaces compopt_state = completion.OptionState() comp_ui_state = comp_ui.State() prompt_state = comp_ui.PromptState() dir_stack = state.DirStack() # # Initialize builtins that don't depend on evaluators # builtins = {} # type: Dict[int, vm._Builtin] modules = {} # type: Dict[str, bool] shell_ex = executor.ShellExecutor( mem, exec_opts, mutable_opts, procs, builtins, search_path, ext_prog, waiter, tracer, job_state, fd_state, errfmt) shell_native.AddPure(builtins, mem, procs, modules, mutable_opts, aliases, search_path, errfmt) shell_native.AddIO(builtins, mem, dir_stack, exec_opts, splitter, parse_ctx, errfmt) AddProcess(builtins, mem, shell_ex, ext_prog, fd_state, job_state, waiter, tracer, search_path, errfmt) builtins[builtin_i.help] = help_builtin # Interactive, depend on line_input builtins[builtin_i.bind] = builtin_lib.Bind(line_input, errfmt) builtins[builtin_i.history] = builtin_lib.History(line_input, mylib.Stdout()) # # Initialize Evaluators # arith_ev = sh_expr_eval.ArithEvaluator(mem, exec_opts, parse_ctx, errfmt) bool_ev = sh_expr_eval.BoolEvaluator(mem, exec_opts, parse_ctx, errfmt) expr_ev = expr_eval.OilEvaluator(mem, procs, splitter, errfmt) word_ev = word_eval.NormalWordEvaluator(mem, exec_opts, mutable_opts, splitter, errfmt) assign_b = shell_native.InitAssignmentBuiltins(mem, procs, errfmt) cmd_ev = cmd_eval.CommandEvaluator(mem, exec_opts, errfmt, procs, assign_b, arena, cmd_deps) AddOil(builtins, mem, cmd_ev, errfmt, procs, arena) # PromptEvaluator rendering is needed in non-interactive shells for @P. prompt_ev = prompt.Evaluator(lang, parse_ctx, mem) # Wire up circular dependencies. vm.InitCircularDeps(arith_ev, bool_ev, expr_ev, word_ev, cmd_ev, shell_ex, prompt_ev, tracer) # # Initialize builtins that depend on evaluators # # note: 'printf -v a[i]' and 'unset a[i]' require same deps builtins[builtin_i.printf] = builtin_printf.Printf(mem, exec_opts, parse_ctx, arith_ev, errfmt) builtins[builtin_i.unset] = builtin_assign.Unset(mem, exec_opts, procs, parse_ctx, arith_ev, errfmt) builtins[builtin_i.eval] = builtin_meta.Eval(parse_ctx, exec_opts, cmd_ev, tracer) source_builtin = builtin_meta.Source(parse_ctx, search_path, cmd_ev, fd_state, tracer, errfmt) builtins[builtin_i.source] = source_builtin builtins[builtin_i.dot] = source_builtin shell_native.AddMeta(builtins, shell_ex, mutable_opts, mem, procs, aliases, search_path, errfmt) shell_native.AddBlock(builtins, mem, mutable_opts, dir_stack, cmd_ev, errfmt) # Another block builtin builtins[builtin_i.json] = builtin_oil.Json(mem, cmd_ev, errfmt) spec_builder = builtin_comp.SpecBuilder(cmd_ev, parse_ctx, word_ev, splitter, comp_lookup) complete_builtin = builtin_comp.Complete(spec_builder, comp_lookup) builtins[builtin_i.complete] = complete_builtin builtins[builtin_i.compgen] = builtin_comp.CompGen(spec_builder) builtins[builtin_i.compopt] = builtin_comp.CompOpt(compopt_state, errfmt) builtins[builtin_i.compadjust] = builtin_comp.CompAdjust(mem) builtins[builtin_i.trap] = builtin_process.Trap(sig_state, cmd_deps.traps, cmd_deps.trap_nodes, parse_ctx, tracer, errfmt) # History evaluation is a no-op if line_input is None. hist_ev = history.Evaluator(line_input, hist_ctx, debug_f) if flag.c is not None: arena.PushSource(source.CFlag()) line_reader = reader.StringLineReader(flag.c, arena) # type: reader._Reader if flag.i: # -c and -i can be combined mutable_opts.set_interactive() elif flag.i: # force interactive arena.PushSource(source.Stdin(' -i')) line_reader = py_reader.InteractiveLineReader( arena, prompt_ev, hist_ev, line_input, prompt_state) mutable_opts.set_interactive() else: if script_name is None: if flag.headless: arena.PushSource(source.Headless()) line_reader = None # unused! # Not setting '-i' flag for now. Some people's bashrc may want it? else: stdin = mylib.Stdin() if stdin.isatty(): arena.PushSource(source.Interactive()) line_reader = py_reader.InteractiveLineReader( arena, prompt_ev, hist_ev, line_input, prompt_state) mutable_opts.set_interactive() else: arena.PushSource(source.Stdin('')) line_reader = reader.FileLineReader(stdin, arena) else: arena.PushSource(source.MainFile(script_name)) try: f = fd_state.Open(script_name) except OSError as e: stderr_line("osh: Couldn't open %r: %s", script_name, posix.strerror(e.errno)) return 1 line_reader = reader.FileLineReader(f, arena) # TODO: assert arena.NumSourcePaths() == 1 # TODO: .rc file needs its own arena. c_parser = parse_ctx.MakeOshParser(line_reader) # Calculate ~/.config/oil/oshrc or oilrc. Used for both -i and --headless # We avoid cluttering the user's home directory. Some users may want to ln # -s ~/.config/oil/oshrc ~/oshrc or ~/.oshrc. # https://unix.stackexchange.com/questions/24347/why-do-some-applications-use-config-appname-for-their-config-data-while-other home_dir = pyos.GetMyHomeDir() assert home_dir is not None rc_path = flag.rcfile or os_path.join(home_dir, '.config/oil/%src' % lang) if flag.headless: mutable_opts.set_redefine_proc() mutable_opts.set_redefine_module() # This is like an interactive shell, so we copy some initialization from # below. Note: this may need to be tweaked. _InitDefaultCompletions(cmd_ev, complete_builtin, comp_lookup) # NOTE: called AFTER _InitDefaultCompletions. try: SourceStartupFile(fd_state, rc_path, lang, parse_ctx, cmd_ev) except util.UserExit as e: return e.status loop = main_loop.Headless(cmd_ev, parse_ctx, errfmt) try: # TODO: What other exceptions happen here? status = loop.Loop() except util.UserExit as e: status = e.status # Same logic as interactive shell box = [status] cmd_ev.MaybeRunExitTrap(box) status = box[0] return status if exec_opts.interactive(): # bash: 'set -o emacs' is the default only in the interactive shell mutable_opts.set_emacs() mutable_opts.set_redefine_proc() mutable_opts.set_redefine_module() if line_input: # NOTE: We're using a different WordEvaluator here. ev = word_eval.CompletionWordEvaluator(mem, exec_opts, mutable_opts, splitter, errfmt) ev.arith_ev = arith_ev ev.expr_ev = expr_ev ev.prompt_ev = prompt_ev ev.CheckCircularDeps() root_comp = completion.RootCompleter(ev, mem, comp_lookup, compopt_state, comp_ui_state, comp_ctx, debug_f) term_width = 0 if flag.completion_display == 'nice': try: term_width = libc.get_terminal_width() except IOError: # stdin not a terminal pass if term_width != 0: display = comp_ui.NiceDisplay(term_width, comp_ui_state, prompt_state, debug_f, line_input) # type: comp_ui._IDisplay else: display = comp_ui.MinimalDisplay(comp_ui_state, prompt_state, debug_f) history_filename = os_path.join(home_dir, '.config/oil/history_%s' % lang) comp_ui.InitReadline(line_input, history_filename, root_comp, display, debug_f) _InitDefaultCompletions(cmd_ev, complete_builtin, comp_lookup) else: # Without readline module display = comp_ui.MinimalDisplay(comp_ui_state, prompt_state, debug_f) sig_state.InitInteractiveShell(display) # NOTE: called AFTER _InitDefaultCompletions. try: SourceStartupFile(fd_state, rc_path, lang, parse_ctx, cmd_ev) except util.UserExit as e: return e.status line_reader.Reset() # After sourcing startup file, render $PS1 prompt_plugin = prompt.UserPlugin(mem, parse_ctx, cmd_ev) try: status = main_loop.Interactive(flag, cmd_ev, c_parser, display, prompt_plugin, errfmt) except util.UserExit as e: status = e.status box = [status] cmd_ev.MaybeRunExitTrap(box) status = box[0] return status if flag.rcfile: # bash doesn't have this warning, but it's useful stderr_line('osh warning: --rcfile ignored in non-interactive shell') if exec_opts.noexec(): status = 0 try: node = main_loop.ParseWholeFile(c_parser) except error.Parse as e: ui.PrettyPrintError(e, arena) status = 2 if status == 0 : if flag.parser_mem_dump is not None: # only valid in -n mode input_path = '/proc/%d/status' % posix.getpid() pyutil.CopyFile(input_path, flag.parser_mem_dump) ui.PrintAst(node, flag) else: if flag.parser_mem_dump is not None: raise error.Usage('--parser-mem-dump can only be used with -n') try: status = main_loop.Batch(cmd_ev, c_parser, arena, cmd_flags=cmd_eval.IsMainProgram) except util.UserExit as e: status = e.status box = [status] cmd_ev.MaybeRunExitTrap(box) status = box[0] # NOTE: 'exit 1' is ControlFlow and gets here, but subshell/commandsub # don't because they call sys.exit(). if flag.runtime_mem_dump is not None: input_path = '/proc/%d/status' % posix.getpid() pyutil.CopyFile(input_path, flag.runtime_mem_dump) # NOTE: We haven't closed the file opened with fd_state.Open return status
34.887283
129
0.68619
cc8b5733e7c2490bd66cd2444e296424fd581101
1,813
py
Python
venv/lib/python3.8/site-packages/pyqtgraph/exporters/HDF5Exporter.py
willBear/willBear-Fundamental_Analysis
bc67eb1e69dcf6765c0b77314d37f7f165a7318f
[ "MIT" ]
23
2017-09-04T13:20:38.000Z
2022-03-08T08:15:17.000Z
venv/lib/python3.8/site-packages/pyqtgraph/exporters/HDF5Exporter.py
willBear/willBear-Fundamental_Analysis
bc67eb1e69dcf6765c0b77314d37f7f165a7318f
[ "MIT" ]
102
2021-01-20T11:14:21.000Z
2021-12-12T17:34:42.000Z
venv/lib/python3.8/site-packages/pyqtgraph/exporters/HDF5Exporter.py
willBear/willBear-Fundamental_Analysis
bc67eb1e69dcf6765c0b77314d37f7f165a7318f
[ "MIT" ]
5
2017-11-26T19:40:46.000Z
2021-03-11T17:25:23.000Z
from ..Qt import QtGui, QtCore from .Exporter import Exporter from ..parametertree import Parameter from .. import PlotItem import numpy try: import h5py HAVE_HDF5 = True except ImportError: HAVE_HDF5 = False __all__ = ['HDF5Exporter'] class HDF5Exporter(Exporter): Name = "HDF5 Export: plot (x,y)" windows = [] allowCopy = False def __init__(self, item): Exporter.__init__(self, item) self.params = Parameter(name='params', type='group', children=[ {'name': 'Name', 'type': 'str', 'value': 'Export',}, {'name': 'columnMode', 'type': 'list', 'values': ['(x,y) per plot', '(x,y,y,y) for all plots']}, ]) def parameters(self): return self.params def export(self, fileName=None): if not HAVE_HDF5: raise RuntimeError("This exporter requires the h5py package, " "but it was not importable.") if not isinstance(self.item, PlotItem): raise Exception("Must have a PlotItem selected for HDF5 export.") if fileName is None: self.fileSaveDialog(filter=["*.h5", "*.hdf", "*.hd5"]) return dsname = self.params['Name'] fd = h5py.File(fileName, 'a') # forces append to file... 'w' doesn't seem to "delete/overwrite" data = [] appendAllX = self.params['columnMode'] == '(x,y) per plot' for i,c in enumerate(self.item.curves): d = c.getData() if appendAllX or i == 0: data.append(d[0]) data.append(d[1]) fdata = numpy.array(data).astype('double') dset = fd.create_dataset(dsname, data=fdata) fd.close() if HAVE_HDF5: HDF5Exporter.register()
30.728814
108
0.557639
e5f270ec96878a308026b83752557eb51b15879e
3,873
py
Python
tests/sa/test_sa_default.py
ghostebony/aiomysql
6df06f3bdd6fb7363bf3aafae8cf7fc4f2a8fbc6
[ "MIT" ]
null
null
null
tests/sa/test_sa_default.py
ghostebony/aiomysql
6df06f3bdd6fb7363bf3aafae8cf7fc4f2a8fbc6
[ "MIT" ]
11
2022-01-17T01:47:38.000Z
2022-03-31T01:42:22.000Z
tests/sa/test_sa_default.py
ghostebony/aiomysql
6df06f3bdd6fb7363bf3aafae8cf7fc4f2a8fbc6
[ "MIT" ]
null
null
null
import datetime import pytest from sqlalchemy import MetaData, Table, Column, Integer, String from sqlalchemy import func, DateTime, Boolean from aiomysql import sa meta = MetaData() table = Table('sa_tbl_default_test', meta, Column('id', Integer, nullable=False, primary_key=True), Column('string_length', Integer, default=func.length('qwerty')), Column('number', Integer, default=100, nullable=False), Column('description', String(255), nullable=False, default='default test'), Column('created_at', DateTime, default=datetime.datetime.now), Column('enabled', Boolean, default=True)) @pytest.fixture() def make_engine(mysql_params, connection): async def _make_engine(**kwargs): if "unix_socket" in mysql_params: conn_args = {"unix_socket": mysql_params["unix_socket"]} else: conn_args = { "host": mysql_params['host'], "port": mysql_params['port'], } return (await sa.create_engine(db=mysql_params['db'], user=mysql_params['user'], password=mysql_params['password'], minsize=10, **conn_args, **kwargs)) return _make_engine async def start(engine): async with engine.acquire() as conn: await conn.execute("DROP TABLE IF EXISTS sa_tbl_default_test") await conn.execute("CREATE TABLE sa_tbl_default_test " "(id integer," " string_length integer, " "number integer," " description VARCHAR(255), " "created_at DATETIME(6), " "enabled TINYINT)") @pytest.mark.run_loop async def test_default_fields(make_engine): engine = await make_engine() await start(engine) async with engine.acquire() as conn: await conn.execute(table.insert().values()) res = await conn.execute(table.select()) row = await res.fetchone() assert row.string_length == 6 assert row.number == 100 assert row.description == 'default test' assert row.enabled is True assert type(row.created_at) == datetime.datetime @pytest.mark.run_loop async def test_default_fields_isnull(make_engine): engine = await make_engine() await start(engine) async with engine.acquire() as conn: created_at = None enabled = False await conn.execute(table.insert().values( enabled=enabled, created_at=created_at, )) res = await conn.execute(table.select()) row = await res.fetchone() assert row.number == 100 assert row.string_length == 6 assert row.description == 'default test' assert row.enabled == enabled assert row.created_at == created_at async def test_default_fields_edit(make_engine): engine = await make_engine() await start(engine) async with engine.acquire() as conn: created_at = datetime.datetime.now() description = 'new descr' enabled = False number = 111 await conn.execute(table.insert().values( description=description, enabled=enabled, created_at=created_at, number=number, )) res = await conn.execute(table.select()) row = await res.fetchone() assert row.number == number assert row.string_length == 6 assert row.description == description assert row.enabled == enabled assert row.created_at == created_at
34.274336
73
0.571133
98e731fb2b350b366de1c540835480bba5858d71
831
py
Python
GPSInfo/tests/test_example.py
jgraber/Python_Scripts
ffdbf17d28521cf5c2a3f7aadfb817e7811f86b7
[ "MIT" ]
null
null
null
GPSInfo/tests/test_example.py
jgraber/Python_Scripts
ffdbf17d28521cf5c2a3f7aadfb817e7811f86b7
[ "MIT" ]
3
2021-07-01T19:36:30.000Z
2021-08-30T19:59:00.000Z
GPSInfo/tests/test_example.py
jgraber/Python_Scripts
ffdbf17d28521cf5c2a3f7aadfb817e7811f86b7
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ .. currentmodule:: test_example .. moduleauthor:: Johnny Graber <JG@JGraber.ch> This is a sample test module. """ import pytest """ This is just an example test suite. It will check the current project version numbers against the original version numbers and will start failing as soon as the current version numbers change. """ def test_import_getVersions_originalVersions(): """ Arrange: Load the primary module. Act: Retrieve the versions. Assert: Versions match the version numbers at the time of project creation. """ assert ( # fmt: off # '0.0.1' == gpsinfo.__version__, # fmt: on "This test is expected to fail when the version increments. " "It is here only as an example and you can remove it." )
25.181818
79
0.672684
d82a1e37cb637c76b0b08ec14fbd60c86127cb25
5,778
py
Python
action-baseline/nets/anchor_target_layer.py
leaderj1001/Action-Localization
04d972e6dc3c07d347c70893723d91487c1c8cbd
[ "MIT" ]
24
2019-07-10T15:13:27.000Z
2021-07-08T12:12:40.000Z
action-baseline/nets/anchor_target_layer.py
leaderj1001/Action-Localization
04d972e6dc3c07d347c70893723d91487c1c8cbd
[ "MIT" ]
7
2019-10-06T12:22:04.000Z
2020-04-15T13:14:10.000Z
action-baseline/nets/anchor_target_layer.py
leaderj1001/Action-Localization
04d972e6dc3c07d347c70893723d91487c1c8cbd
[ "MIT" ]
4
2019-10-31T09:01:15.000Z
2021-03-26T04:20:21.000Z
import os from utils.config import cfg import numpy as np import numpy.random as npr from nets.bbox_transform import bbox_overlaps, bbox_transform import torch def anchor_target_layer(rpn_cls_score, gt_boxes, im_info, _feat_stride, all_anchors, num_anchors): """Same as the anchor target layer in original Fast/er RCNN """ A = num_anchors total_anchors = all_anchors.shape[0] K = total_anchors / num_anchors # allow boxes to sit over the edge by a small amount _allowed_border = 0 # 주어진 이미지 안에 맞는 anchor만 찾음 # only keep anchors inside the image inds_inside = np.where( (all_anchors[:, 0] >= -_allowed_border) & (all_anchors[:, 1] >= -_allowed_border) & (all_anchors[:, 2] < im_info[1] + _allowed_border) & # width (all_anchors[:, 3] < im_info[0] + _allowed_border) # height )[0] # keep only inside anchors anchors = all_anchors[inds_inside, :] # label: 1 is positive, 0 is negative, -1 is dont care labels = np.empty((len(inds_inside), ), dtype=np.float32) labels.fill(-1) # overlaps between the anchors and the gt boxes overlaps (ex, gt) overlaps = bbox_overlaps(np.ascontiguousarray(anchors, dtype=np.float), np.ascontiguousarray(gt_boxes, dtype=np.float)) argmax_overlaps = overlaps.argmax(axis=1) max_overlaps = overlaps[np.arange(len(inds_inside)), argmax_overlaps] gt_argmax_overlaps = overlaps.argmax(axis=0) gt_max_overlaps = overlaps[gt_argmax_overlaps, np.arange(overlaps.shape[1])] gt_argmax_overlaps = np.where(overlaps == gt_max_overlaps)[0] if not cfg.TRAIN.RPN_CLOBBER_POSITIVES: # assign bg labels first so that positive labels can clobber them # first set the negatives labels[max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP] = 0 # fg label: for each gt, anchor with highest overlap labels[gt_argmax_overlaps] = 1 # fg label: above threshold IOU labels[max_overlaps >= cfg.TRAIN.RPN_POSITIVE_OVERLAP] = 1 if cfg.TRAIN.RPN_CLOBBER_POSITIVES: # assign bg labels last so that negative labels can clobber positives labels[max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP] = 0 # subsample positive labels if we have too many num_fg = int(cfg.TRAIN.RPN_FG_FRACTION * cfg.TRAIN.RPN_BATCHSIZE) fg_inds = np.where(labels == 1)[0] if len(fg_inds) > num_fg: disable_inds = npr.choice(fg_inds, size=(len(fg_inds) - num_fg), replace=False) labels[disable_inds] = -1 # subsample negative labels if we have too many num_bg = cfg.TRAIN.RPN_BATCHSIZE - np.sum(labels == 1) bg_inds = np.where(labels == 0)[0] if len(bg_inds) > num_bg: disable_inds = npr.choice(bg_inds, size=(len(bg_inds) - num_bg), replace=False) labels[disable_inds] = -1 bbox_targets = np.zeros((len(inds_inside), 4), dtype=np.float32) bbox_targets = _compute_targets(anchors, gt_boxes[argmax_overlaps, :]) bbox_inside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32) # only the positive ones have regression targets bbox_inside_weights[labels == 1, :] = np.array(cfg.TRAIN.RPN_BBOX_INSIDE_WEIGHTS) bbox_outside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32) if cfg.TRAIN.RPN_POSITIVE_WEIGHT < 0: # uniform weighting of examples (given non-uniform sampling) num_examples = np.sum(labels >= 0) positive_weights = np.ones((1, 4)) * 1.0 / num_examples negative_weights = np.ones((1, 4)) * 1.0 / num_examples else: assert ((cfg.TRAIN.RPN_POSITIVE_WEIGHT > 0) & (cfg.TRAIN.RPN_POSITIVE_WEIGHT < 1)) positive_weights = (cfg.TRAIN.RPN_POSITIVE_WEIGHT / np.sum(labels == 1)) negative_weights = ((1.0 - cfg.TRAIN.RPN_POSITIVE_WEIGHT) / np.sum(labels == 0)) bbox_outside_weights[labels == 1, :] = positive_weights bbox_outside_weights[labels == 0, :] = negative_weights # map up to original set of anchors labels = _unmap(labels, total_anchors, inds_inside, fill=-1) bbox_targets = _unmap(bbox_targets, total_anchors, inds_inside, fill=0) bbox_inside_weights = _unmap(bbox_inside_weights, total_anchors, inds_inside, fill=0) bbox_outside_weights = _unmap(bbox_outside_weights, total_anchors, inds_inside, fill=0) # map of shape (..., H, W) height, width = rpn_cls_score.shape[1:3] # labels labels = labels.reshape((1, height, width, A)).transpose(0, 3, 1, 2) labels = labels.reshape((1, 1, A * height, width)) rpn_labels = labels # bbox_targets bbox_targets = bbox_targets.reshape((1, height, width, A * 4)) rpn_bbox_targets = bbox_targets # bbox_inside_weights bbox_inside_weights = bbox_inside_weights.reshape((1, height, width, A * 4)) rpn_bbox_inside_weights = bbox_inside_weights # bbox_outside_weights bbox_outside_weights = bbox_outside_weights.reshape((1, height, width, A * 4)) rpn_bbox_outside_weights = bbox_outside_weights return rpn_labels, rpn_bbox_targets, rpn_bbox_inside_weights, rpn_bbox_outside_weights def _unmap(data, count, inds, fill=0): """ Unmap a subset of item (data) back to the original set of items (of size count) """ if len(data.shape) == 1: ret = np.empty((count, ), dtype=np.float32) ret.fill(fill) ret[inds] = data else: ret = np.empty((count, ) + data.shape[1:], dtype=np.float32) ret.fill(fill) ret[inds, :] = data return ret def _compute_targets(ex_rois, gt_rois): """Compute bounding-box regression targets for an image.""" assert ex_rois.shape[0] == gt_rois.shape[0] assert ex_rois.shape[1] == 4 # assert gt_rois.shape[1] == 5 return bbox_transform(torch.from_numpy(ex_rois), torch.from_numpy(gt_rois[:, :])).numpy()
40.978723
123
0.690897
4c7b06aae28834cf55e0ad57f40cf8c1394f6c17
3,091
py
Python
beers/models/drinks.py
nvembar/onehundredbeers
96af46ad946e63736f9924cb3b966b0d597254f5
[ "CC0-1.0" ]
1
2017-07-23T22:44:29.000Z
2017-07-23T22:44:29.000Z
beers/models/drinks.py
nvembar/onehundredbeers
96af46ad946e63736f9924cb3b966b0d597254f5
[ "CC0-1.0" ]
25
2017-07-23T21:04:17.000Z
2021-06-10T18:06:50.000Z
beers/models/drinks.py
nvembar/onehundredbeers
96af46ad946e63736f9924cb3b966b0d597254f5
[ "CC0-1.0" ]
1
2019-02-24T01:16:08.000Z
2019-02-24T01:16:08.000Z
"""The objects that can get a player points""" import datetime import logging from django.db import models from django.utils import timezone class BeerManager(models.Manager): """Manages beer data""" def create_beer(self, name, brewery, untappd_url='', style='', description='', brewery_url='', brewery_city='', brewery_state=''): """Creates a contest with defaults on active status, creation date, update date, beer count, and user count""" beer = self.create(name=name, brewery=brewery, style=style, description=description, untappd_url=untappd_url, brewery_city=brewery_city, brewery_state=brewery_state, brewery_url=brewery_url, last_updated=timezone.now()) return beer # Create your models here. class Beer(models.Model): "Represents a common beer - can be shared across contests" name = models.CharField(max_length=250) brewery = models.CharField(max_length=250) style = models.CharField(max_length=250, null=True, blank=True, default='') description = models.CharField(max_length=250, null=True, blank=True, default='') brewery_city = models.CharField(max_length=250, null=True, blank=True, default='') brewery_state = models.CharField(max_length=250, null=True, blank=True, default='') brewery_country = models.CharField(max_length=250, null=True, blank=True, default='') brewery_lat = models.FloatField(null=True, blank=True) brewery_lon = models.FloatField(null=True, blank=True) untappd_id = models.CharField(max_length=25, null=True, blank=True) untappd_url = models.URLField(null=True, blank=True) brewery_url = models.URLField(null=True, blank=True) last_updated = models.DateTimeField() objects = BeerManager() def __str__(self): return "Beer[{}<{}> / {}<{}>]".format(self.name, self.untappd_url, self.brewery, self.brewery_url) class Brewery_Manager(models.Manager): def create_brewery(self, name, untappd_url, location=None,): return self.create(name=name, untappd_url=untappd_url, location=location, last_updated=timezone.now()) class Brewery(models.Model): name = models.CharField(max_length=250) untappd_id = models.CharField(max_length=25, null=True, blank=True,) untappd_url = models.URLField(null=True, blank=True,) state = models.CharField(max_length=250) location = models.CharField(max_length=250, null=True, blank=True, default=None) last_updated = models.DateTimeField() objects = Brewery_Manager() def __str__(self): return "Brewery[name={}, url={}, location={}]".format(self.name, self.untappd_url, self.location)
43.535211
89
0.615011
7a343a6529e8dd24e9cc9c56ef68eebf2705efb8
11,233
py
Python
xarray/backends/rasterio_.py
visr/xarray
9e8707d2041cfa038c31fc2284c1fe40bc3368e9
[ "Apache-2.0" ]
null
null
null
xarray/backends/rasterio_.py
visr/xarray
9e8707d2041cfa038c31fc2284c1fe40bc3368e9
[ "Apache-2.0" ]
1
2018-12-05T09:21:17.000Z
2018-12-05T09:21:17.000Z
xarray/backends/rasterio_.py
visr/xarray
9e8707d2041cfa038c31fc2284c1fe40bc3368e9
[ "Apache-2.0" ]
1
2020-05-29T16:17:35.000Z
2020-05-29T16:17:35.000Z
import os import warnings from collections import OrderedDict from distutils.version import LooseVersion import numpy as np from .. import DataArray from ..core import indexing from ..core.utils import is_scalar from .common import BackendArray from .file_manager import CachingFileManager from .locks import SerializableLock # TODO: should this be GDAL_LOCK instead? RASTERIO_LOCK = SerializableLock() _ERROR_MSG = ('The kind of indexing operation you are trying to do is not ' 'valid on rasterio files. Try to load your data with ds.load()' 'first.') class RasterioArrayWrapper(BackendArray): """A wrapper around rasterio dataset objects""" def __init__(self, manager): self.manager = manager # cannot save riods as an attribute: this would break pickleability riods = manager.acquire() self._shape = (riods.count, riods.height, riods.width) dtypes = riods.dtypes if not np.all(np.asarray(dtypes) == dtypes[0]): raise ValueError('All bands should have the same dtype') self._dtype = np.dtype(dtypes[0]) @property def dtype(self): return self._dtype @property def shape(self): return self._shape def _get_indexer(self, key): """ Get indexer for rasterio array. Parameter --------- key: tuple of int Returns ------- band_key: an indexer for the 1st dimension window: two tuples. Each consists of (start, stop). squeeze_axis: axes to be squeezed np_ind: indexer for loaded numpy array See also -------- indexing.decompose_indexer """ assert len(key) == 3, 'rasterio datasets should always be 3D' # bands cannot be windowed but they can be listed band_key = key[0] np_inds = [] # bands (axis=0) cannot be windowed but they can be listed if isinstance(band_key, slice): start, stop, step = band_key.indices(self.shape[0]) band_key = np.arange(start, stop, step) # be sure we give out a list band_key = (np.asarray(band_key) + 1).tolist() if isinstance(band_key, list): # if band_key is not a scalar np_inds.append(slice(None)) # but other dims can only be windowed window = [] squeeze_axis = [] for i, (k, n) in enumerate(zip(key[1:], self.shape[1:])): if isinstance(k, slice): # step is always positive. see indexing.decompose_indexer start, stop, step = k.indices(n) np_inds.append(slice(None, None, step)) elif is_scalar(k): # windowed operations will always return an array # we will have to squeeze it later squeeze_axis.append(- (2 - i)) start = k stop = k + 1 else: start, stop = np.min(k), np.max(k) + 1 np_inds.append(k - start) window.append((start, stop)) if isinstance(key[1], np.ndarray) and isinstance(key[2], np.ndarray): # do outer-style indexing np_inds[-2:] = np.ix_(*np_inds[-2:]) return band_key, tuple(window), tuple(squeeze_axis), tuple(np_inds) def _getitem(self, key): band_key, window, squeeze_axis, np_inds = self._get_indexer(key) if not band_key or any(start == stop for (start, stop) in window): # no need to do IO shape = (len(band_key),) + tuple( stop - start for (start, stop) in window) out = np.zeros(shape, dtype=self.dtype) else: riods = self.manager.acquire() out = riods.read(band_key, window=window) if squeeze_axis: out = np.squeeze(out, axis=squeeze_axis) return out[np_inds] def __getitem__(self, key): return indexing.explicit_indexing_adapter( key, self.shape, indexing.IndexingSupport.OUTER, self._getitem) def _parse_envi(meta): """Parse ENVI metadata into Python data structures. See the link for information on the ENVI header file format: http://www.harrisgeospatial.com/docs/enviheaderfiles.html Parameters ---------- meta : dict Dictionary of keys and str values to parse, as returned by the rasterio tags(ns='ENVI') call. Returns ------- parsed_meta : dict Dictionary containing the original keys and the parsed values """ def parsevec(s): return np.fromstring(s.strip('{}'), dtype='float', sep=',') def default(s): return s.strip('{}') parse = {'wavelength': parsevec, 'fwhm': parsevec} parsed_meta = {k: parse.get(k, default)(v) for k, v in meta.items()} return parsed_meta def open_rasterio(filename, parse_coordinates=None, chunks=None, cache=None, lock=None): """Open a file with rasterio (experimental). This should work with any file that rasterio can open (most often: geoTIFF). The x and y coordinates are generated automatically from the file's geoinformation, shifted to the center of each pixel (see `"PixelIsArea" Raster Space <http://web.archive.org/web/20160326194152/http://remotesensing.org/geotiff/spec/geotiff2.5.html#2.5.2>`_ for more information). You can generate 2D coordinates from the file's attributes with:: from affine import Affine da = xr.open_rasterio('path_to_file.tif') transform = Affine.from_gdal(*da.attrs['transform']) nx, ny = da.sizes['x'], da.sizes['y'] x, y = np.meshgrid(np.arange(nx)+0.5, np.arange(ny)+0.5) * transform Parameters ---------- filename : str Path to the file to open. parse_coordinates : bool, optional Whether to parse the x and y coordinates out of the file's ``transform`` attribute or not. The default is to automatically parse the coordinates only if they are rectilinear (1D). It can be useful to set ``parse_coordinates=False`` if your files are very large or if you don't need the coordinates. chunks : int, tuple or dict, optional Chunk sizes along each dimension, e.g., ``5``, ``(5, 5)`` or ``{'x': 5, 'y': 5}``. If chunks is provided, it used to load the new DataArray into a dask array. cache : bool, optional If True, cache data loaded from the underlying datastore in memory as NumPy arrays when accessed to avoid reading from the underlying data- store multiple times. Defaults to True unless you specify the `chunks` argument to use dask, in which case it defaults to False. lock : False, True or threading.Lock, optional If chunks is provided, this argument is passed on to :py:func:`dask.array.from_array`. By default, a global lock is used to avoid issues with concurrent access to the same file when using dask's multithreaded backend. Returns ------- data : DataArray The newly created DataArray. """ import rasterio manager = CachingFileManager(rasterio.open, filename, mode='r') riods = manager.acquire() if cache is None: cache = chunks is None coords = OrderedDict() # Get bands if riods.count < 1: raise ValueError('Unknown dims') coords['band'] = np.asarray(riods.indexes) # Get coordinates if LooseVersion(rasterio.__version__) < '1.0': transform = riods.affine else: transform = riods.transform if transform.is_rectilinear: # 1d coordinates parse = True if parse_coordinates is None else parse_coordinates if parse: nx, ny = riods.width, riods.height # xarray coordinates are pixel centered x, _ = (np.arange(nx) + 0.5, np.zeros(nx) + 0.5) * transform _, y = (np.zeros(ny) + 0.5, np.arange(ny) + 0.5) * transform coords['y'] = y coords['x'] = x else: # 2d coordinates parse = False if (parse_coordinates is None) else parse_coordinates if parse: warnings.warn( "The file coordinates' transformation isn't " "rectilinear: xarray won't parse the coordinates " "in this case. Set `parse_coordinates=False` to " "suppress this warning.", RuntimeWarning, stacklevel=3) # Attributes attrs = dict() # Affine transformation matrix (always available) # This describes coefficients mapping pixel coordinates to CRS # For serialization store as tuple of 6 floats, the last row being # always (0, 0, 1) per definition (see # https://github.com/sgillies/affine) attrs['transform'] = tuple(transform)[:6] if hasattr(riods, 'crs') and riods.crs: # CRS is a dict-like object specific to rasterio # If CRS is not None, we convert it back to a PROJ4 string using # rasterio itself attrs['crs'] = riods.crs.to_string() if hasattr(riods, 'res'): # (width, height) tuple of pixels in units of CRS attrs['res'] = riods.res if hasattr(riods, 'is_tiled'): # Is the TIF tiled? (bool) # We cast it to an int for netCDF compatibility attrs['is_tiled'] = np.uint8(riods.is_tiled) if hasattr(riods, 'nodatavals'): # The nodata values for the raster bands attrs['nodatavals'] = tuple( np.nan if nodataval is None else nodataval for nodataval in riods.nodatavals) # Parse extra metadata from tags, if supported parsers = {'ENVI': _parse_envi} driver = riods.driver if driver in parsers: meta = parsers[driver](riods.tags(ns=driver)) for k, v in meta.items(): # Add values as coordinates if they match the band count, # as attributes otherwise if (isinstance(v, (list, np.ndarray)) and len(v) == riods.count): coords[k] = ('band', np.asarray(v)) else: attrs[k] = v data = indexing.LazilyOuterIndexedArray(RasterioArrayWrapper(manager)) # this lets you write arrays loaded with rasterio data = indexing.CopyOnWriteArray(data) if cache and chunks is None: data = indexing.MemoryCachedArray(data) result = DataArray(data=data, dims=('band', 'y', 'x'), coords=coords, attrs=attrs) if chunks is not None: from dask.base import tokenize # augment the token with the file modification time try: mtime = os.path.getmtime(filename) except OSError: # the filename is probably an s3 bucket rather than a regular file mtime = None token = tokenize(filename, mtime, chunks) name_prefix = 'open_rasterio-%s' % token if lock is None: lock = RASTERIO_LOCK result = result.chunk(chunks, name_prefix=name_prefix, token=token, lock=lock) # Make the file closeable result._file_obj = manager return result
35.103125
109
0.611947
12444977af2f3f16a18597bc7a7a79535fe7283e
4,330
py
Python
iot/sway/Experiments/spl_sway.py
moar82/jMetalPy
6c5c0fa50a1e16e2b477e321341c12481ab81515
[ "MIT" ]
null
null
null
iot/sway/Experiments/spl_sway.py
moar82/jMetalPy
6c5c0fa50a1e16e2b477e321341c12481ab81515
[ "MIT" ]
null
null
null
iot/sway/Experiments/spl_sway.py
moar82/jMetalPy
6c5c0fa50a1e16e2b477e321341c12481ab81515
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (C) 2016, Jianfeng Chen <jchen37@ncsu.edu> # vim: set ts=4 sts=4 sw=4 expandtab smartindent: # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from __future__ import division from Benchmarks.SPL import DimacsModel from Algorithms.sway_sampler import sway, cont_dominate from gmpy2 import popcount, mpz from functools import partial from repeats import request_new_file import random import time import copy import pycosat import pdb def count1(decint): return popcount(mpz(decint)) def split_products(pop, groupC=5): rand = random.choice(pop) center = count1(int(rand, 2)) workloads = list() dists = list() for p in pop: wl = count1(int(p, 2)) dist = count1(wl ^ center) workloads.append(wl) dists.append(dist) poptuple = [(p, i, j) for p, i, j in zip(pop, workloads, dists)] # sort by the workloads poptuple = sorted(poptuple, key=lambda i: i[1]) n = int(len(poptuple) / groupC) groups = [poptuple[i * n:i * n + n] for i in range(groupC)] west, east, westItems, eastItems = list(), list(), list(), list() for g in groups: k = sorted(g, key=lambda i: i[2]) # filling the answers west.append(k[0][0]) east.append(k[-1][0]) westItems.extend(map(lambda i: i[0], k[:len(k) // 2])) eastItems.extend(map(lambda i: i[0], k[len(k) // 2:])) return west, east, westItems, eastItems def comparing(part1, part2): onewin = 0 twowin = 0 for i, j in zip(part1, part2): if cont_dominate(i, j) > 0: onewin += 1 else: twowin += 1 return onewin >= twowin def sat_gen_valid_pop(fm, n): pops = list() cnf = copy.deepcopy(fm.cnfs) while len(pops) < n: for index, sol in enumerate(pycosat.itersolve(cnf)): new_ind = fm.Individual(''.join(['1' if i > 0 else '0' for i in sol])) pops.append(new_ind) if index > 20: break for x in cnf: random.shuffle(x) random.shuffle(cnf) random.shuffle(pops) return pops def get_sway_res(model): # load the 10k sat solutions # with open('./tse_rs/' + model.name + '.txt', 'r') as f: # candidates = list() # for l in f: # can = model.Individual(l.strip('\n')) # candidates.append(can) candidates = sat_gen_valid_pop(model, 10000) res = sway(candidates, model.eval, partial(split_products, groupC=min(15, model.featureNum // 7)), comparing) return res if __name__ == '__main__': # models = ['eshop'] #models = [ 'fiasco', 'freebsd', 'linux'] models = ['webportal'] for repeat in range(1): for name in models: print(name) model = DimacsModel(name) start_time = time.time() res = get_sway_res(model) finish_time = time.time() # save the results with open(request_new_file('./tse_rs/sway', name), 'w') as f: f.write('T:' + str(start_time) + '\n~~~\n') f.write('T:' + str(finish_time) + '\n') for i in res: f.write(' '.join(map(str, i.fitness.values))) f.write('\n')
30.928571
113
0.621478
3d538d76800ef8093488e7f84c640148d36af63f
5,015
py
Python
pyvisa/resources/usb.py
jpsecher/pyvisa
bb8fd9d21b1efa1f311e12402e21292a656a0e6a
[ "MIT" ]
null
null
null
pyvisa/resources/usb.py
jpsecher/pyvisa
bb8fd9d21b1efa1f311e12402e21292a656a0e6a
[ "MIT" ]
null
null
null
pyvisa/resources/usb.py
jpsecher/pyvisa
bb8fd9d21b1efa1f311e12402e21292a656a0e6a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """High level wrapper for USB resources. This file is part of PyVISA. :copyright: 2014-2020 by PyVISA Authors, see AUTHORS for more details. :license: MIT, see LICENSE for more details. """ from .. import attributes, constants from ..attributes import Attribute from .messagebased import ControlRenMixin, MessageBasedResource class USBCommon(MessageBasedResource): """Common class for USB resources.""" #: USB interface number used by the given session. interface_number: Attribute[int] = attributes.AttrVI_ATTR_USB_INTFC_NUM() #: USB serial number of this device. serial_number: Attribute[str] = attributes.AttrVI_ATTR_USB_SERIAL_NUM() #: USB protocol used by this USB interface. usb_protocol: Attribute[int] = attributes.AttrVI_ATTR_USB_PROTOCOL() #: Maximum size of data that will be stored by any given USB interrupt. maximum_interrupt_size: Attribute[int] = attributes.AttrVI_ATTR_USB_MAX_INTR_SIZE() #: Manufacturer name. manufacturer_name: Attribute[str] = attributes.AttrVI_ATTR_MANF_NAME() #: Manufacturer identification number of the device. manufacturer_id: Attribute[int] = attributes.AttrVI_ATTR_MANF_ID() #: Model name of the device. model_name: Attribute[str] = attributes.AttrVI_ATTR_MODEL_NAME() #: Model code for the device. model_code: Attribute[int] = attributes.AttrVI_ATTR_MODEL_CODE() @MessageBasedResource.register(constants.InterfaceType.usb, "INSTR") class USBInstrument(ControlRenMixin, USBCommon): """USB INSTR resources USB::manufacturer ID::model code::serial number More complex resource names can be specified with the following grammar: USB[board]::manufacturer ID::model code::serial number[::USB interface number][::INSTR] Do not instantiate directly, use :meth:`pyvisa.highlevel.ResourceManager.open_resource`. """ #: Whether the device is 488.2 compliant. is_4882_compliant: Attribute[bool] = attributes.AttrVI_ATTR_4882_COMPLIANT() def control_in( self, request_type_bitmap_field: int, request_id: int, request_value: int, index: int, length: int = 0, ) -> bytes: """Performs a USB control pipe transfer from the device. Parameters ---------- request_type_bitmap_field : int bmRequestType parameter of the setup stage of a USB control transfer. request_id : int bRequest parameter of the setup stage of a USB control transfer. request_value : int wValue parameter of the setup stage of a USB control transfer. index : int wIndex parameter of the setup stage of a USB control transfer. This is usually the index of the interface or endpoint. length : int wLength parameter of the setup stage of a USB control transfer. This value also specifies the size of the data buffer to receive the data from the optional data stage of the control transfer. Returns ------- bytes The data buffer that receives the data from the optional data stage of the control transfer. """ return self.visalib.usb_control_in( self.session, request_type_bitmap_field, request_id, request_value, index, length, )[0] def control_out( self, request_type_bitmap_field: int, request_id: int, request_value: int, index: int, data: bytes = b"", ): """Performs a USB control pipe transfer to the device. Parameters ---------- request_type_bitmap_field : int bmRequestType parameter of the setup stage of a USB control transfer. request_id : int bRequest parameter of the setup stage of a USB control transfer. request_value : int wValue parameter of the setup stage of a USB control transfer. index : int wIndex parameter of the setup stage of a USB control transfer. This is usually the index of the interface or endpoint. data : str The data buffer that sends the data in the optional data stage of the control transfer. """ return self.visalib.usb_control_out( self.session, request_type_bitmap_field, request_id, request_value, index, data, ) @MessageBasedResource.register(constants.InterfaceType.usb, "RAW") class USBRaw(USBCommon): """USB RAW resources: USB::manufacturer ID::model code::serial number::RAW More complex resource names can be specified with the following grammar: USB[board]::manufacturer ID::model code::serial number[::USB interface number]::RAW Do not instantiate directly, use :meth:`pyvisa.highlevel.ResourceManager.open_resource`. """
34.115646
95
0.662014
c3805ccaacc75e2dc1da23d2fbe3e6e59a1d26aa
7,656
py
Python
src/encoders/encoder.py
ligerfotis/semantic-code-search_gpt2_tf
5eff2ceda0789ee265ad08b742f0d728884e3df8
[ "MIT" ]
1
2020-09-12T04:03:12.000Z
2020-09-12T04:03:12.000Z
src/encoders/encoder.py
ligerfotis/semantic-code-search_gpt2_tf
5eff2ceda0789ee265ad08b742f0d728884e3df8
[ "MIT" ]
1
2022-03-03T17:41:25.000Z
2022-03-16T01:11:02.000Z
src/encoders/encoder.py
ligerfotis/semantic-code-search_gpt2_tf
5eff2ceda0789ee265ad08b742f0d728884e3df8
[ "MIT" ]
1
2021-12-07T06:55:41.000Z
2021-12-07T06:55:41.000Z
from abc import ABC, abstractmethod from enum import Enum from typing import List, Dict, Any, Optional, Tuple import tensorflow as tf class QueryType(Enum): DOCSTRING = 'docstring_as_query' FUNCTION_NAME = 'func_name_as_query' class Encoder(ABC): @classmethod @abstractmethod def get_default_hyperparameters(cls) -> Dict[str, Any]: """ Returns: Default set of hyperparameters for encoder. Note that at use, the hyperparameters names will be prefixed with '${label}_' for the chosen encoder label. """ return {} def __init__(self, label: str, hyperparameters: Dict[str, Any], metadata: Dict[str, Any]): """ Args: label: Label for the encoder, used in names of hyperparameters. hyperparameters: Hyperparameters used. metadata: Dictionary with metadata (e.g., vocabularies) used by this encoder. """ self.__label = label self.__hyperparameters = hyperparameters self.__metadata = metadata self.__placeholders = {} @property def label(self): return self.__label @property def hyperparameters(self): return self.__hyperparameters @property def metadata(self): return self.__metadata @property def placeholders(self): return self.__placeholders @property @abstractmethod def output_representation_size(self) -> int: raise Exception("Encoder.output_representation_size not implemented!") def get_hyper(self, hyper_name: str) -> Any: """ Retrieve hyper parameter, prefixing the given name with the label of the encoder. Args: hyper_name: Some hyperparameter name. Returns: self.hyperparameters['%s_%s' % (self.label, hyper_name)] """ return self.hyperparameters['%s_%s' % (self.label, hyper_name)] def _make_placeholders(self): """ Creates placeholders for encoders. """ self.__placeholders['dropout_keep_rate'] = \ tf.compat.v1.placeholder(tf.float32, shape=(), name='dropout_keep_rate') @abstractmethod def make_model(self, is_train: bool=False) -> tf.Tensor: """ Create the actual encoder model, including necessary placeholders and parameters. Args: is_train: Bool flag indicating if the model is used for training or inference. Returns: A tensor encoding the passed data. """ pass @classmethod @abstractmethod def init_metadata(cls) -> Dict[str, Any]: """ Called to initialise the metadata before looking at actual data (i.e., set up Counters, lists, sets, ...) Returns: A dictionary that will be used to collect the raw metadata (token counts, ...). """ return {} @classmethod @abstractmethod def load_metadata_from_sample(cls, data_to_load: Any, raw_metadata: Dict[str, Any], use_subtokens: bool=False, mark_subtoken_end: bool=False) -> None: """ Called to load metadata from a single sample. Args: data_to_load: Raw data to load; type depens on encoder. Usually comes from a data parser such as tokenize_python_from_string or tokenize_docstring_from_string. raw_metadata: A dictionary that will be used to collect the raw metadata (token counts, ...). use_subtokens: subtokenize identifiers mark_subtoken_end: add a special marker for subtoken ends. Used only if use_subtokens=True """ pass @classmethod @abstractmethod def finalise_metadata(cls, encoder_label: str, hyperparameters: Dict[str, Any], raw_metadata_list: List[Dict[str, Any]]) -> Dict[str, Any]: """ Called to finalise the metadata after looking at actual data (i.e., compute vocabularies, ...) Args: encoder_label: Label used for this encoder. hyperparameters: Hyperparameters used. raw_metadata_list: List of dictionaries used to collect the raw metadata (token counts, ...) (one per file). Returns: Finalised metadata (vocabs, ...). """ return {} @classmethod @abstractmethod def load_data_from_sample(cls, encoder_label: str, hyperparameters: Dict[str, Any], metadata: Dict[str, Any], data_to_load: Any, function_name: Optional[str], result_holder: Dict[str, Any], is_test: bool=True) -> bool: """ Called to convert a raw sample into the internal format, allowing for preprocessing. Result will eventually be fed again into the split_data_into_minibatches pipeline. Args: encoder_label: Label used for this encoder. hyperparameters: Hyperparameters used to load data. metadata: Computed metadata (e.g. vocabularies). data_to_load: Raw data to load; type depens on encoder. Usually comes from a data parser such as tokenize_python_from_string or tokenize_docstring_from_string. function_name: The name of the function. result_holder: Dictionary used to hold the prepared data. is_test: Flag marking if we are handling training data or not. Returns: Flag indicating if the example should be used (True) or dropped (False) """ return True @abstractmethod def init_minibatch(self, batch_data: Dict[str, Any]) -> None: """ Initialise a minibatch that will be constructed. Args: batch_data: The minibatch data. """ pass @abstractmethod def extend_minibatch_by_sample(self, batch_data: Dict[str, Any], sample: Dict[str, Any], is_train: bool=False, query_type: QueryType=QueryType.DOCSTRING.value) -> bool: """ Extend a minibatch under construction by one sample. This is where the data may be randomly perturbed in each epoch for data augmentation. Args: batch_data: The minibatch data. sample: The sample to add. is_train: Flag indicating if we are in train mode (which causes data augmentation) query_type: Indicates what should be used as the query, the docstring or the function name. Returns: True iff the minibatch is full after this sample. """ return True @abstractmethod def minibatch_to_feed_dict(self, batch_data: Dict[str, Any], feed_dict: Dict[tf.Tensor, Any], is_train: bool) -> None: """ Take a collected minibatch and add it to a feed dict that can be fed directly to the constructed model. Args: batch_data: The minibatch data. feed_dict: The feed dictionary that we will send to tensorflow. is_train: Flag indicating if we are in training mode. """ feed_dict[self.placeholders['dropout_keep_rate']] = self.hyperparameters['dropout_keep_rate'] if is_train else 1.0 @abstractmethod def get_token_embeddings(self) -> Tuple[tf.Tensor, List[str]]: """Returns the tensorflow embeddings tensor (VxD) along with a list (of size V) of the names of the embedded elements.""" pass
36.631579
143
0.617947
079672191f91780a7588313a2b0d673b8ffd20d2
5,622
py
Python
src/pip/_internal/vcs/mercurial.py
jameshfisher/pip
8365bc3dcc21809f2fb86c4db5e40aaf2384c897
[ "MIT" ]
1
2020-11-29T23:59:03.000Z
2020-11-29T23:59:03.000Z
src/pip/_internal/vcs/mercurial.py
jameshfisher/pip
8365bc3dcc21809f2fb86c4db5e40aaf2384c897
[ "MIT" ]
null
null
null
src/pip/_internal/vcs/mercurial.py
jameshfisher/pip
8365bc3dcc21809f2fb86c4db5e40aaf2384c897
[ "MIT" ]
null
null
null
import configparser import logging import os from typing import TYPE_CHECKING from pip._internal.exceptions import BadCommand, InstallationError from pip._internal.utils.misc import display_path from pip._internal.utils.subprocess import make_command from pip._internal.utils.temp_dir import TempDirectory from pip._internal.utils.urls import path_to_url from pip._internal.vcs.versioncontrol import ( VersionControl, find_path_to_setup_from_repo_root, vcs, ) if TYPE_CHECKING: from typing import List, Optional from pip._internal.utils.misc import HiddenText from pip._internal.vcs.versioncontrol import RevOptions logger = logging.getLogger(__name__) class Mercurial(VersionControl): name = 'hg' dirname = '.hg' repo_name = 'clone' schemes = ( 'hg+file', 'hg+http', 'hg+https', 'hg+ssh', 'hg+static-http', ) @staticmethod def get_base_rev_args(rev): # type: (str) -> List[str] return [rev] def export(self, location, url): # type: (str, HiddenText) -> None """Export the Hg repository at the url to the destination location""" with TempDirectory(kind="export") as temp_dir: self.unpack(temp_dir.path, url=url) self.run_command( ['archive', location], show_stdout=False, cwd=temp_dir.path ) def fetch_new(self, dest, url, rev_options): # type: (str, HiddenText, RevOptions) -> None rev_display = rev_options.to_display() logger.info( 'Cloning hg %s%s to %s', url, rev_display, display_path(dest), ) self.run_command(make_command('clone', '--noupdate', '-q', url, dest)) self.run_command( make_command('update', '-q', rev_options.to_args()), cwd=dest, ) def switch(self, dest, url, rev_options): # type: (str, HiddenText, RevOptions) -> None repo_config = os.path.join(dest, self.dirname, 'hgrc') config = configparser.RawConfigParser() try: config.read(repo_config) config.set('paths', 'default', url.secret) with open(repo_config, 'w') as config_file: config.write(config_file) except (OSError, configparser.NoSectionError) as exc: logger.warning( 'Could not switch Mercurial repository to %s: %s', url, exc, ) else: cmd_args = make_command('update', '-q', rev_options.to_args()) self.run_command(cmd_args, cwd=dest) def update(self, dest, url, rev_options): # type: (str, HiddenText, RevOptions) -> None self.run_command(['pull', '-q'], cwd=dest) cmd_args = make_command('update', '-q', rev_options.to_args()) self.run_command(cmd_args, cwd=dest) @classmethod def get_remote_url(cls, location): # type: (str) -> str url = cls.run_command( ['showconfig', 'paths.default'], show_stdout=False, stdout_only=True, cwd=location, ).strip() if cls._is_local_repository(url): url = path_to_url(url) return url.strip() @classmethod def get_revision(cls, location): # type: (str) -> str """ Return the repository-local changeset revision number, as an integer. """ current_revision = cls.run_command( ['parents', '--template={rev}'], show_stdout=False, stdout_only=True, cwd=location, ).strip() return current_revision @classmethod def get_requirement_revision(cls, location): # type: (str) -> str """ Return the changeset identification hash, as a 40-character hexadecimal string """ current_rev_hash = cls.run_command( ['parents', '--template={node}'], show_stdout=False, stdout_only=True, cwd=location, ).strip() return current_rev_hash @classmethod def is_commit_id_equal(cls, dest, name): # type: (str, Optional[str]) -> bool """Always assume the versions don't match""" return False @classmethod def get_subdirectory(cls, location): # type: (str) -> Optional[str] """ Return the path to setup.py, relative to the repo root. Return None if setup.py is in the repo root. """ # find the repo root repo_root = cls.run_command( ['root'], show_stdout=False, stdout_only=True, cwd=location ).strip() if not os.path.isabs(repo_root): repo_root = os.path.abspath(os.path.join(location, repo_root)) return find_path_to_setup_from_repo_root(location, repo_root) @classmethod def get_repository_root(cls, location): # type: (str) -> Optional[str] loc = super().get_repository_root(location) if loc: return loc try: r = cls.run_command( ['root'], cwd=location, show_stdout=False, stdout_only=True, on_returncode='raise', log_failed_cmd=False, ) except BadCommand: logger.debug("could not determine if %s is under hg control " "because hg is not available", location) return None except InstallationError: return None return os.path.normpath(r.rstrip('\r\n')) vcs.register(Mercurial)
31.943182
78
0.588581
ba5ece0136a21fe86c92336f4506e2736a0d985f
4,572
py
Python
clase_3/mini_desafios.py
ivigilante/curso-python-itba
57ce47a5202c3d4fe3783fea52f550cfec957331
[ "MIT" ]
null
null
null
clase_3/mini_desafios.py
ivigilante/curso-python-itba
57ce47a5202c3d4fe3783fea52f550cfec957331
[ "MIT" ]
null
null
null
clase_3/mini_desafios.py
ivigilante/curso-python-itba
57ce47a5202c3d4fe3783fea52f550cfec957331
[ "MIT" ]
null
null
null
# Leer el archivo Tabla1.xlsx que contiene los puntos de un campeonato. # El archivo tiene dos columnas, Equipo y Puntos. # Determinar de cada equipo la diferencia de gol # (goles a favor - goles en contra), y mostrar todas las diferencias de gol con print import pandas def dif_goles(): archivo = pandas.read_excel("Tabla1.xlsx", index_col = "Equipo") archivo = archivo.to_dict("index") for equipo, puntos in archivo.items(): print("{}: {}".format(equipo, puntos["Goles a favor"] - puntos["Goles en contra"])) #dif_goles() # Leer el archivo Tabla1.xlsx que contiene los puntos de un campeonato y determinar qué equipo es el campeón (1ro) y perdedor (último). El archivo tiene dos columnas, Equipo y Puntos def campeon(): archivo = pandas.read_excel("Tabla1.xlsx", index_col = "Puntos") archivo = archivo.to_dict("index") print(archivo) print(archivo.keys()) print("Ganador:",archivo[max(archivo.keys())]["Equipo"]) print("Perdedor:",archivo[min(archivo.keys())]["Equipo"]) # campeon() # Calcular el promedio de las notas de química de todos los alumnos en el archivo Datos.xlsx. def prom_materia(materia): archivo = pandas.read_excel("Datos.xlsx") archivo = archivo.to_dict("list") promedio = round(sum(archivo[materia]) / len(archivo[materia]),2) print(promedio) # prom_materia("Quimica") # Escribir una funcion que reciba como parámetros: una variable de tipo DataFrame (la tabla de alumnos) y el índice de un alumno. Luego debe devolver con return el promedio de sus notas en las diferentes materias. def notas_alumno(dataframe, idx): # Usando records y listas datos = dataframe.to_dict("records") print("Notas de: {} {}".format(datos[idx]["Nombre"], datos[idx]["Apellido"])) for materia, nota in list(datos[idx].items())[3::]: print(materia,": " ,nota) # Promedio de toda sus materias prom = round(sum([nota for materia, nota in list(datos[idx].items())[3::]]) / len (list(datos[idx].keys())[3::]),2) print(prom) def notas(dataframe, idx): # Usando dataframe print("Notas de {} {}".format(dataframe.loc[idx]["Nombre"],dataframe.loc[idx]["Apellido"])) for materia, nota in dataframe.loc[idx].drop(index = ["Nombre", "Apellido", "Legajo"]).items(): print(materia,": ",nota) notas = [nota for nota in dataframe.loc[idx][3::]] promedio = round(sum(notas) / len(notas), 2) print("Promedio total:",promedio) # archivo = pandas.read_excel("Datos.xlsx") # notas(archivo, 3) def prom_general(dataframe, idx): print("Notas de {} {}".format(dataframe.loc[idx]["Nombre"],dataframe.loc[idx]["Apellido"])) notas = [nota for nota in dataframe.loc[idx][3::]] promedio = round(sum(notas) / len(notas), 2) print("Promedio total:",promedio) # Obtener el promedio general sólo para aquellos alumnos que aprobaron Matematica. def prom_si_aprobaron(materia): datos = pandas.read_excel("Datos.xlsx") datos = datos[datos[materia] >= 4] for i in datos.index: prom_general(datos,i) # prom_si_aprobaron("Matematica") # Encontrar la cantidad de ocurrencias de la palabras "Trump" y "the" en el texto de la noticia. def encontrar_palabras(archivo, palabras_buscadas): char_no_deseados = ('\ufeff', '—', '\n', '’s', ',', '.') file = open(archivo,"r") palabras = [] contenido = file.readlines() for linea in contenido: for char in char_no_deseados: linea = linea.replace(char, "") palabras += [palabra.upper() for palabra in linea.split()] for palabra_buscada in palabras_buscadas: print("Se encontraron {} ocurrencias de la palabra \"{}\"".format(palabras.count(palabra_buscada.upper()), palabra_buscada)) # encontrar_palabras("noticia.txt", ["trump","the"]) # Encontrar la palabra con mayor numero de ocurrencias en el texto de la noticia. def encontrar_mayor_repeticiones(archivo): char_no_deseados = ('\ufeff', '—', '\n', '’s', ',', '.') file = open(archivo,"r") palabras = [] contenido = file.readlines() for linea in contenido: for char in char_no_deseados: linea = linea.replace(char, "") palabras += [palabra.upper() for palabra in linea.split()] palabras_contadas = [] mayor_repeticion = {"palabra":"", "repeticiones":0} for palabra in palabras: if palabra not in palabras_contadas: repeticiones = palabras.count(palabra) palabras_contadas.append(palabra) if repeticiones > mayor_repeticion["repeticiones"]: mayor_repeticion["palabra"] = palabra mayor_repeticion["repeticiones"] = repeticiones print("La palabra con mayor repeticiones es \"{}\" con {} repeticiones".format(mayor_repeticion["palabra"],mayor_repeticion["repeticiones"])) # encontrar_mayor_repeticiones("noticia.txt")
43.132075
213
0.716754
95879bb07bc8e4e23ae9b627ef673d90ef8aa25d
5,417
py
Python
qiskit_machine_learning/neural_networks/two_layer_qnn.py
Zoufalc/qiskit-machine-learning
aae3941214cd9667a53b643f229d11d0bff32c60
[ "Apache-2.0" ]
1
2021-07-07T21:23:38.000Z
2021-07-07T21:23:38.000Z
qiskit_machine_learning/neural_networks/two_layer_qnn.py
Zoufalc/qiskit-machine-learning
aae3941214cd9667a53b643f229d11d0bff32c60
[ "Apache-2.0" ]
null
null
null
qiskit_machine_learning/neural_networks/two_layer_qnn.py
Zoufalc/qiskit-machine-learning
aae3941214cd9667a53b643f229d11d0bff32c60
[ "Apache-2.0" ]
1
2021-04-11T14:30:32.000Z
2021-04-11T14:30:32.000Z
# This code is part of Qiskit. # # (C) Copyright IBM 2020, 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """A Two Layer Neural Network consisting of a first parametrized circuit representing a feature map to map the input data to a quantum states and a second one representing a ansatz that can be trained to solve a particular tasks.""" from typing import Optional, Union from qiskit import QuantumCircuit from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap from qiskit.opflow import PauliSumOp, StateFn, OperatorBase, ExpectationBase from qiskit.providers import BaseBackend, Backend from qiskit.utils import QuantumInstance from .opflow_qnn import OpflowQNN from ..exceptions import QiskitMachineLearningError class TwoLayerQNN(OpflowQNN): """Two Layer Quantum Neural Network consisting of a feature map, a ansatz, and an observable. """ def __init__(self, num_qubits: int = None, feature_map: QuantumCircuit = None, ansatz: QuantumCircuit = None, observable: Optional[OperatorBase] = None, exp_val: Optional[ExpectationBase] = None, quantum_instance: Optional[Union[QuantumInstance, BaseBackend, Backend]] = None): r"""Initializes the Two Layer Quantum Neural Network. Args: num_qubits: The number of qubits to represent the network, if None and neither the feature_map not the ansatz are given, raise exception. feature_map: The (parametrized) circuit to be used as feature map. If None is given, the `ZZFeatureMap` is used. ansatz: The (parametrized) circuit to be used as ansatz. If None is given, the `RealAmplitudes` circuit is used. observable: observable to be measured to determine the output of the network. If None is given, the `Z^{\otimes num_qubits}` observable is used. Raises: QiskitMachineLearningError: In case of inconsistent num_qubits, feature_map, ansatz. """ # check num_qubits, feature_map, and ansatz if num_qubits is None and feature_map is None and ansatz is None: raise QiskitMachineLearningError( 'Need at least one of num_qubits, feature_map, or ansatz!') num_qubits_: int = None feature_map_: QuantumCircuit = None ansatz_: QuantumCircuit = None if num_qubits: num_qubits_ = num_qubits if feature_map: if feature_map.num_qubits != num_qubits: raise QiskitMachineLearningError('Incompatible num_qubits and feature_map!') feature_map_ = feature_map else: feature_map_ = ZZFeatureMap(num_qubits) if ansatz: if ansatz.num_qubits != num_qubits: raise QiskitMachineLearningError('Incompatible num_qubits and ansatz!') ansatz_ = ansatz else: ansatz_ = RealAmplitudes(num_qubits) else: if feature_map and ansatz: if feature_map.num_qubits != ansatz.num_qubits: raise QiskitMachineLearningError('Incompatible feature_map and ansatz!') feature_map_ = feature_map ansatz_ = ansatz num_qubits_ = feature_map.num_qubits elif feature_map: num_qubits_ = feature_map.num_qubits feature_map_ = feature_map ansatz_ = RealAmplitudes(num_qubits_) elif ansatz: num_qubits_ = ansatz.num_qubits ansatz_ = ansatz feature_map_ = ZZFeatureMap(num_qubits_) self._feature_map = feature_map_ input_params = list(self._feature_map.parameters) self._ansatz = ansatz_ weight_params = list(self._ansatz.parameters) # construct circuit self._circuit = QuantumCircuit(num_qubits_) self._circuit.append(self._feature_map, range(num_qubits_)) self._circuit.append(self._ansatz, range(num_qubits_)) # construct observable self.observable = observable if observable else PauliSumOp.from_list([('Z'*num_qubits_, 1)]) # combine all to operator operator = ~StateFn(self.observable) @ StateFn(self._circuit) super().__init__(operator, input_params, weight_params, quantum_instance=quantum_instance) @property def feature_map(self) -> QuantumCircuit: """ Returns the used feature map.""" return self._feature_map @property def ansatz(self) -> QuantumCircuit: """ Returns the used ansatz.""" return self._ansatz @property def circuit(self) -> QuantumCircuit: """ Returns the underlying quantum circuit.""" return self._circuit @property def num_qubits(self) -> int: """ Returns the number of qubits used by ansatz and feature map.""" return self._circuit.num_qubits
41.669231
100
0.657929
7f8dfdc9f5694fe9f05d537c4bf1f600d45a8d4d
9,067
py
Python
one_fm/api/mobile/authentication.py
mohsinalimat/One-FM
ad9a5d8f785c4e69ca68ba1ef75dd26725e5c9c3
[ "MIT" ]
null
null
null
one_fm/api/mobile/authentication.py
mohsinalimat/One-FM
ad9a5d8f785c4e69ca68ba1ef75dd26725e5c9c3
[ "MIT" ]
null
null
null
one_fm/api/mobile/authentication.py
mohsinalimat/One-FM
ad9a5d8f785c4e69ca68ba1ef75dd26725e5c9c3
[ "MIT" ]
null
null
null
import frappe import pyotp from frappe.twofactor import get_otpsecret_for_, process_2fa_for_sms, confirm_otp_token,get_email_subject_for_2fa,get_email_body_for_2fa from frappe.integrations.oauth2 import get_token from frappe.utils.background_jobs import enqueue from frappe.core.doctype.sms_settings.sms_settings import send_sms from frappe.frappeclient import FrappeClient from six import iteritems from frappe import _ import requests, json from one_fm.api.mobile.roster import get_current_user_details from frappe.utils.password import update_password as _update_password from twilio.rest import Client @frappe.whitelist(allow_guest=True) def login(client_id, grant_type, employee_id, password): """ Params: Client Id: Can be found in Social Login Key doctype. Grant_type: implicit Employee Id: Employee Id of user Password: Erpnext Password Returns: Access token, refresh token, Enrollment status for checkin, Employee Id, Employee name, Employee image, Employee/Supervisor flag. """ try: site = "https://"+frappe.utils.cstr(frappe.local.site) # username = frappe.get_value("Employee", employee_id, "user_id") username = frappe.get_value("Employee", {'employee_id':employee_id}, 'user_id') if not username: return {'error': _('Employee ID is incorrect. Please check again.')} args = { 'client_id': client_id, 'grant_type': grant_type, 'username': username, 'password': password } headers = {'Accept': 'application/json'} session = requests.Session() # Login auth_api = site + "/api/method/frappe.integrations.oauth2.get_token" response = session.post( auth_api, data=args, headers=headers ) if response.status_code == 200: conn = FrappeClient(site,username=username, password=password) user, user_roles, user_employee = conn.get_api("one_fm.api.mobile.roster.get_current_user_details") res = response.json() res.update(user_employee) res.update({"roles": user_roles}) if "Operations Manager" in user_roles or "Projects Manager" in user_roles or "Site Supervisor" in user_roles: res.update({"supervisor": 1}) else: res.update({"supervisor": 0}) return res else: frappe.throw(_(response.text)) except Exception as e: return frappe.utils.response.report_error(e.http_status_code) def change_enroll_status(employee): doc = frappe.get_doc("Employee", employee) doc.enrolled = 0 doc.save(ignore_permissions=True) frappe.db.commit() @frappe.whitelist(allow_guest=True) def forgot_password(employee_id,OTP_source): """ Params: employee_id: employee ID OTP_source: SMS, Email or WhatsApp Returns: Temp Id: To be used in next api call for verifying the SMS/Email OTP. Sends an OTP to mobile number assosciated with User """ try: # employee_user_id = frappe.get_value("Employee", employee_id, "user_id") employee_user_id = frappe.get_value("Employee", {'employee_id':employee_id}, 'user_id') otp_secret = get_otpsecret_for_(employee_user_id) token = int(pyotp.TOTP(otp_secret).now()) tmp_id = frappe.generate_hash(length=8) cache_2fa_data(employee_user_id, token, otp_secret, tmp_id) if OTP_source=="SMS": verification_obj = process_2fa_for_sms(employee_user_id, token, otp_secret) return { 'message': _('Password reset instruction sms has been sent to your registered mobile number.'), 'temp_id': tmp_id } elif OTP_source=="Email": verification_obj = process_2fa_for_email(employee_user_id, token, otp_secret) return { 'message': _('Password reset instruction email has been sent to your Email Address.'), 'temp_id': tmp_id } elif OTP_source=="WhatsApp": verification_obj = process_2fa_for_whatsapp(employee_user_id, token, otp_secret) return { 'message': _('Password reset instruction message has been sent to your WhatsApp.'), 'temp_id': tmp_id } else: return ('Please Select where you want your OTP to be sent.') # Save data in local # frappe.local.response['verification'] = verification_obj # frappe.local.response['tmp_id'] = tmp_id except Exception as e: return frappe.utils.response.report_error(e.http_status_code) @frappe.whitelist(allow_guest=True) def update_password(otp, id, employee_id, new_password): """ Params: otp: OTP received via SMS id: Temp Id returned in forgot_password call response employee_id new_password : new password to update """ try: login_manager = frappe.local.login_manager if confirm_otp_token(login_manager, otp, id): user_id = frappe.get_value("Employee", {'employee_id':employee_id}, ["user_id"]) _update_password(user_id, new_password) return { 'message': _('Password Updated!') } except Exception as e: return frappe.utils.response.report_error(e.http_status_code) def cache_2fa_data(user, token, otp_secret, tmp_id): '''Cache and set expiry for data.''' # pwd = frappe.form_dict.get('pwd') #hardcode the pwd for time being. pwd = '12345' # set increased expiry time for SMS and Email expiry_time = 1800 frappe.cache().set(tmp_id + '_token', token) frappe.cache().expire(tmp_id + '_token', expiry_time) for k, v in iteritems({'_usr': user, '_pwd': pwd, '_otp_secret': otp_secret}): frappe.cache().set("{0}{1}".format(tmp_id, k), v) frappe.cache().expire("{0}{1}".format(tmp_id, k), expiry_time) #Not needed or being used def signup(employee_id): try: user = frappe.get_value("Employee", {'employee_id':employee_id}, 'user_id') if user=="Administrator": return 'not allowed' user = frappe.get_doc("User", user) if not user.enabled: return 'disabled' user.validate_reset_password() reset_password(user) return { 'message': _('Password reset instruction sms has been sent to your registered mobile number.') } except frappe.DoesNotExistError: frappe.clear_messages() return frappe.utils.response.report_error(e.http_status_code) # Not needed or being used def reset_password(user, password_expired=False): from frappe.utils import random_string, get_url key = random_string(32) user.db_set("reset_password_key", key) url = "/update-password?key=" + key if password_expired: url = "/update-password?key=" + key + '&password_expired=true' link = get_url(url) msg = """Dear {username}, Please click on the following link to reset your password: {link} """.format(username=user.full_name, link=link) send_sms([user.mobile_no], msg) def process_2fa_for_whatsapp(user, token, otp_secret): '''Process sms method for 2fa.''' phone = frappe.db.get_value('User', user, ['phone', 'mobile_no'], as_dict=1) phone = phone.mobile_no or phone.phone status = send_token_via_whatsapp(otp_secret, token=token, phone_no=phone) verification_obj = { 'token_delivery': status, 'prompt': status and 'Enter verification code sent to {}'.format(phone[:4] + '******' + phone[-3:]), 'method': 'SMS', 'setup': status } return verification_obj def send_token_via_whatsapp(otpsecret, token=None, phone_no=None): Twilio= frappe.db.get_value('Twilio Setting', filters=None, fieldname=['sid','token','t_number']) account_sid = Twilio[0] auth_token = Twilio[2] client = Client(account_sid, auth_token) From = 'whatsapp:' + Twilio[1] to = 'whatsapp:+' + phone_no hotp = pyotp.HOTP(otpsecret) body= 'Your verification code {}.'.format(hotp.at(int(token))) message = client.messages.create( from_=From, body=body, to=to ) print(message.sid) return True def process_2fa_for_email(user, token, otp_secret, method='Email'): otp_issuer = frappe.db.get_value('System Settings', 'System Settings', 'otp_issuer_name') '''Process Email method for 2fa.''' subject = None message = None status = True prompt = '' '''Sending email verification''' prompt = _('Verification code has been sent to your registered email address.') status = send_token_via_email(user, token, otp_secret, otp_issuer, subject=subject, message=message) verification_obj = { 'token_delivery': status, 'prompt': status and prompt, 'method': 'Email', 'setup': status } return verification_obj def send_token_via_email(user, token, otp_secret, otp_issuer, subject=None, message=None): '''Send token to user as email.''' user_email = frappe.db.get_value('Employee', {"user_id":user}, 'personal_email') if not user_email: return False hotp = pyotp.HOTP(otp_secret) otp = hotp.at(int(token)) template_args = {'otp': otp, 'otp_issuer': otp_issuer} if not subject: subject = get_email_subject_for_2fa(template_args) if not message: message = get_email_body_for_2fa(template_args) email_args = { 'recipients': user_email, 'sender': None, 'subject': subject, 'message': message, 'header': [_('Verfication Code'), 'blue'], 'delayed': False, 'retry':3 } enqueue(method=frappe.sendmail, queue='short', timeout=300, event=None, is_async=True, job_name=None, now=False, **email_args) return True
32.732852
136
0.717437
95822f9ebf6e0d2d116705a87dcc095aa3b4b992
22
py
Python
btd6_memory_info/generated/NinjaKiwi/LiNK/DataModels/data_models.py
56kyle/bloons_auto
419d55b51d1cddc49099593970adf1c67985b389
[ "MIT" ]
null
null
null
btd6_memory_info/generated/NinjaKiwi/LiNK/DataModels/data_models.py
56kyle/bloons_auto
419d55b51d1cddc49099593970adf1c67985b389
[ "MIT" ]
null
null
null
btd6_memory_info/generated/NinjaKiwi/LiNK/DataModels/data_models.py
56kyle/bloons_auto
419d55b51d1cddc49099593970adf1c67985b389
[ "MIT" ]
null
null
null
class DataModels: pass
22
22
0.863636
62a93f25a7f92ece47e53bc59f627688995310c4
482
py
Python
recipes/Python/577699_Linux_cat_command_backward/recipe-577699.py
tdiprima/code
61a74f5f93da087d27c70b2efe779ac6bd2a3b4f
[ "MIT" ]
2,023
2017-07-29T09:34:46.000Z
2022-03-24T08:00:45.000Z
recipes/Python/577699_Linux_cat_command_backward/recipe-577699.py
unhacker/code
73b09edc1b9850c557a79296655f140ce5e853db
[ "MIT" ]
32
2017-09-02T17:20:08.000Z
2022-02-11T17:49:37.000Z
recipes/Python/577699_Linux_cat_command_backward/recipe-577699.py
unhacker/code
73b09edc1b9850c557a79296655f140ce5e853db
[ "MIT" ]
780
2017-07-28T19:23:28.000Z
2022-03-25T20:39:41.000Z
#!/usr/bin/python import sys import os.path import os if len(sys.argv) < 2: print('Usage: %s file_name' % sys.argv[0]) fp = open(sys.argv[1],'r') #size = os.path.getsize(sys.argv[1]) fp.seek(-1, 2) try: data = '' data = fp.read(1) while True: fp.seek(-2, 1) t = fp.read(1) if t == '\n': print data data = '' else: data = t+data except Exception, e: print data sys.exit(0) print data
16.62069
46
0.508299
9bcbae400db34cdde23edc19918025358558a309
70,327
py
Python
test/install_and_test_tool_shed_repositories/base/util.py
gmauro/galaxy-central
52d50d1b6bbd7db821fffff89607b7c483779f3e
[ "CC-BY-3.0" ]
null
null
null
test/install_and_test_tool_shed_repositories/base/util.py
gmauro/galaxy-central
52d50d1b6bbd7db821fffff89607b7c483779f3e
[ "CC-BY-3.0" ]
1
2015-02-21T18:48:19.000Z
2015-02-27T15:50:32.000Z
test/install_and_test_tool_shed_repositories/base/util.py
gmauro/galaxy-central
52d50d1b6bbd7db821fffff89607b7c483779f3e
[ "CC-BY-3.0" ]
3
2015-02-22T13:34:16.000Z
2020-10-01T01:28:04.000Z
import os import sys cwd = os.getcwd() sys.path.append( cwd ) new_path = [ os.path.join( cwd, "lib" ), os.path.join( cwd, 'test' ), os.path.join( cwd, 'lib', 'tool_shed', 'scripts', 'api' ) ] new_path.extend( sys.path ) sys.path = new_path from galaxy import eggs eggs.require( 'mercurial' ) eggs.require( "nose" ) import json import logging import install_and_test_tool_shed_repositories.base.test_db_util as test_db_util import install_and_test_tool_shed_repositories.functional.test_install_repositories as test_install_repositories import nose import platform import string import time import tool_shed.repository_types.util as rt_util import tool_shed.util.shed_util_common as suc import urllib from datetime import datetime from datetime import timedelta from common import get_api_url from common import get_latest_downloadable_changeset_revision_via_api from common import get_repository_dict from common import json_from_url from common import submit from common import update from galaxy.util import asbool from galaxy.util import listify from galaxy.util import unicodify import galaxy.webapps.tool_shed.model.mapping from nose.plugins import Plugin from tool_shed.util import common_util from tool_shed.util import hg_util from tool_shed.util import tool_dependency_util from tool_shed.util.xml_util import parse_xml from mercurial import hg from mercurial import ui log = logging.getLogger(__name__) # Set up a job_conf.xml that explicitly limits jobs to 10 minutes. job_conf_xml = '''<?xml version="1.0"?> <!-- A test job config that explicitly configures job running the way it is configured by default (if there is no explicit config). --> <job_conf> <plugins> <plugin id="local" type="runner" load="galaxy.jobs.runners.local:LocalJobRunner" workers="4"/> </plugins> <handlers> <handler id="main"/> </handlers> <destinations> <destination id="local" runner="local"/> </destinations> <limits> <limit type="walltime">00:10:00</limit> </limits> </job_conf> ''' # Create a blank shed_tool_conf.xml to define the installed repositories. shed_tool_conf_xml_template = '''<?xml version="1.0"?> <toolbox tool_path="${shed_tool_path}"> </toolbox> ''' # Since we will be running functional tests we'll need the upload tool, but the rest can be omitted. tool_conf_xml = '''<?xml version="1.0"?> <toolbox> <section name="Get Data" id="getext"> <tool file="data_source/upload.xml"/> </section> </toolbox> ''' # Set up an empty shed_tool_data_table_conf.xml. tool_data_table_conf_xml_template = '''<?xml version="1.0"?> <tables> </tables> ''' # Optionally set the environment variable GALAXY_INSTALL_TEST_TOOL_SHEDS_CONF to the location of a # tool shed's configuration file that includes the tool shed from which repositories will be installed. tool_sheds_conf_xml = '''<?xml version="1.0"?> <tool_sheds> <tool_shed name="Galaxy main tool shed" url="http://toolshed.g2.bx.psu.edu/"/> <tool_shed name="Galaxy test tool shed" url="http://testtoolshed.g2.bx.psu.edu/"/> </tool_sheds> ''' # Should this serve static resources (scripts, images, styles, etc.)? STATIC_ENABLED = True # If we have a tool_data_table_conf.test.xml, set it up to be loaded when the UniverseApplication is started. # This allows one to specify a set of tool data that is used exclusively for testing, and not loaded into any # Galaxy instance. By default, this will be in the test-data-repo/location directory generated by buildbot_setup.sh. if os.path.exists( 'tool_data_table_conf.test.xml' ): additional_tool_data_tables = 'tool_data_table_conf.test.xml' additional_tool_data_path = os.environ.get( 'GALAXY_INSTALL_TEST_EXTRA_TOOL_DATA_PATH', os.path.join( 'test-data-repo', 'location' ) ) else: additional_tool_data_tables = None additional_tool_data_path = None tool_data_table_conf = None # Set up default tool data tables. If a non-sample version is in config/, use that. Otherwise iterate through lower # priority versions. for conf in [ 'tool_data_table_conf.test.xml', 'config/tool_data_table_conf.xml', 'config/tool_data_table_conf.xml.sample', 'tool_data_table_conf.xml', 'tool_data_table_conf.xml.sample' ]: if os.path.exists( conf ): tool_data_table_conf = conf break # The GALAXY_INSTALL_TEST_TOOL_SHED_URL and GALAXY_INSTALL_TEST_TOOL_SHED_API_KEY environment variables must be # set for this script to work correctly. If the value of GALAXY_INSTALL_TEST_TOOL_SHED_URL does not refer to one # of the defaults, the GALAXY_INSTALL_TEST_TOOL_SHEDS_CONF must refer to a tool shed configuration file that contains # a definition for that tool shed. galaxy_tool_shed_url = os.environ.get( 'GALAXY_INSTALL_TEST_TOOL_SHED_URL', None ) tool_shed_api_key = os.environ.get( 'GALAXY_INSTALL_TEST_TOOL_SHED_API_KEY', None ) if 'GALAXY_INSTALL_TEST_SECRET' not in os.environ: galaxy_encode_secret = 'changethisinproductiontoo' os.environ[ 'GALAXY_INSTALL_TEST_SECRET' ] = galaxy_encode_secret else: galaxy_encode_secret = os.environ[ 'GALAXY_INSTALL_TEST_SECRET' ] default_galaxy_test_port_min = 10000 default_galaxy_test_port_max = 10999 default_galaxy_test_host = '127.0.0.1' # The following should be an actual value (not None). If developers manually specify their # tests to use the API it will not work unless a master API key is specified. default_galaxy_master_api_key = '123456' testing_single_repository_dict = {} if 'repository_name' in os.environ and 'repository_owner' in os.environ: testing_single_repository_dict[ 'name' ] = str( os.environ[ 'repository_name' ] ) testing_single_repository_dict[ 'owner' ] = str( os.environ[ 'repository_owner' ] ) if 'repository_revision' in os.environ: testing_single_repository_dict[ 'changeset_revision' ] = str( os.environ[ 'repository_revision' ] ) else: testing_single_repository_dict[ 'changeset_revision' ] = None # Test frameworks that use this utility module. REPOSITORIES_WITH_TOOLS = 'repositories_with_tools' TOOL_DEPENDENCY_DEFINITIONS = 'tool_dependency_definitions' class ReportResults( Plugin ): '''Simple Nose plugin to record the IDs of all tests run, regardless of success.''' name = "reportresults" passed = {} def options( self, parser, env=os.environ ): super( ReportResults, self ).options( parser, env=env ) def configure(self, options, conf): super( ReportResults, self ).configure( options, conf ) if not self.enabled: return def addSuccess( self, test ): '''Only record test IDs that correspond to tool functional tests.''' if 'TestForTool' in test.id(): test_id = test.id() # Rearrange the test ID to match the format that is produced in test_results.failures test_id_parts = test_id.split( '.' ) fixed_test_id = '%s (%s)' % ( test_id_parts[ -1 ], '.'.join( test_id_parts[ :-1 ] ) ) test_parts = fixed_test_id.split( '/' ) owner = test_parts[ -4 ] name = test_parts[ -3 ] test_identifier = '%s/%s' % ( owner, name ) if test_identifier not in self.passed: self.passed[ test_identifier ] = [] self.passed[ test_identifier ].append( fixed_test_id ) def getTestStatus( self, test_identifier ): if test_identifier in self.passed: passed_tests = self.passed[ test_identifier ] del self.passed[ test_identifier ] return passed_tests return [] class RepositoryMetadataApplication( object ): """Application that enables updating repository_metadata table records in the Tool Shed.""" def __init__( self, config ): self.config = config if self.config.database_connection is False: self.config.database_connection = "sqlite:///%s?isolation_level=IMMEDIATE" % str( config.database ) log.debug( 'Using database connection: %s' % str( self.config.database_connection ) ) # Setup the database engine and ORM self.model = galaxy.webapps.tool_shed.model.mapping.init( self.config.file_path, self.config.database_connection, engine_options={}, create_tables=False ) self.hgweb_config_manager = self.model.hgweb_config_manager self.hgweb_config_manager.hgweb_config_dir = self.config.hgweb_config_dir log.debug( 'Using hgweb.config file: %s' % str( self.hgweb_config_manager.hgweb_config ) ) @property def sa_session( self ): """Returns a SQLAlchemy session.""" return self.model.context.current def shutdown( self ): pass def display_repositories_by_owner( repository_tups ): """Group summary display by repository owner.""" repository_tups_by_owner = {} for repository_tup in repository_tups: name, owner, changeset_revision = repository_tup if owner: if owner in repository_tups_by_owner: processed_repository_tups_by_owner = repository_tups_by_owner.get( owner, [] ) if repository_tup not in processed_repository_tups_by_owner: repository_tups_by_owner[ owner ].append( repository_tup ) else: repository_tups_by_owner[ owner ] = [ repository_tup ] # Display grouped summary. for owner, repository_tups in repository_tups_by_owner.items(): print "# " for repository_tup in repository_tups: name, owner, changeset_revision = repository_tup print "# Revision %s of repository %s owned by %s" % ( changeset_revision, name, owner ) def display_tool_dependencies_by_name( tool_dependency_tups ): """Group summary display by repository owner.""" tool_dependency_tups_by_name = {} for tool_dependency_tup in tool_dependency_tups: name, type, version = tool_dependency_tup if name: if name in tool_dependency_tups_by_name: processed_tool_dependency_tups_by_name = tool_dependency_tups_by_name.get( name, [] ) if tool_dependency_tup not in processed_tool_dependency_tups_by_name: tool_dependency_tups_by_name[ name ].append( tool_dependency_tup ) else: tool_dependency_tups_by_name[ name ] = [ tool_dependency_tup ] # Display grouped summary. for name, tool_dependency_tups in tool_dependency_tups_by_name.items(): print "# " for tool_dependency_tup in tool_dependency_tups: name, type, version = tool_dependency_tup print "# %s %s version %s" % ( type, name, version ) def get_database_version( app ): ''' This method returns the value of the version column from the migrate_version table, using the provided app's SQLAlchemy session to determine which table to get that from. This way, it's provided with an instance of a Galaxy UniverseApplication, it will return the Galaxy instance's database migration version. If a tool shed UniverseApplication is provided, it returns the tool shed's database migration version. ''' sa_session = app.model.context.current result = sa_session.execute( 'SELECT version FROM migrate_version LIMIT 1' ) # This query will return the following structure: # row = [ column 0, column 1, ..., column n ] # rows = [ row 0, row 1, ..., row n ] # The first column in the first row is the version number we want. for row in result: version = row[ 0 ] break return version def get_missing_repository_dependencies( repository, all_missing_repository_dependencies=None ): """ Return the entire list of missing repository dependencies for the received repository. The entire dependency tree will be inspected. """ if all_missing_repository_dependencies is None: all_missing_repository_dependencies = [] print 'Checking revision %s of repository %s owned by %s for missing repository dependencies.' % \ ( repository.changeset_revision, repository.name, repository.owner ) all_missing_repository_dependencies.extend( repository.missing_repository_dependencies ) for missing_required_repository in repository.missing_repository_dependencies: print 'Revision %s of required repository %s owned by %s has status %s.' % \ ( missing_required_repository.changeset_revision, missing_required_repository.name, missing_required_repository.owner, missing_required_repository.status ) for repository_dependency in repository.repository_dependencies: if repository_dependency.missing_repository_dependencies: all_missing_repository_dependencies.extend( get_missing_repository_dependencies( repository_dependency, all_missing_repository_dependencies ) ) return all_missing_repository_dependencies def get_missing_tool_dependencies( repository, all_missing_tool_dependencies=None ): """ Return the entire list of missing tool dependencies for the received repository. The entire dependency tree will be inspected. """ if all_missing_tool_dependencies is None: all_missing_tool_dependencies = [] print 'Checking revision %s of repository %s owned by %s for missing tool dependencies.' % \ ( repository.changeset_revision, repository.name, repository.owner ) all_missing_tool_dependencies.extend( repository.missing_tool_dependencies ) for missing_tool_dependency in repository.missing_tool_dependencies: print 'Tool dependency %s version %s has status %s.' % \ ( missing_tool_dependency.name, missing_tool_dependency.version, missing_tool_dependency.status ) for repository_dependency in repository.repository_dependencies: if repository_dependency.missing_tool_dependencies: all_missing_tool_dependencies.extend( get_missing_tool_dependencies( repository_dependency, all_missing_tool_dependencies ) ) return all_missing_tool_dependencies def get_repositories_to_install( tool_shed_url, test_framework ): """ Get a list of repository info dicts to install. This method expects a json list of dicts with the following structure: [{ "changeset_revision": <revision>, "encoded_repository_id": <encoded repository id from the tool shed>, "name": <name>, "owner": <owner>, "tool_shed_url": <url> }] """ error_message = '' latest_revision_only = '-check_all_revisions' not in sys.argv if latest_revision_only: print 'Testing is restricted to the latest downloadable revision in this test run.' repository_dicts = [] parts = [ 'repository_revisions' ] # We'll filter out deprecated repositories from testing since testing them is necessary only if reproducibility # is guaranteed and we currently do not guarantee reproducibility. if test_framework == REPOSITORIES_WITH_TOOLS: params = dict( do_not_test='false', downloadable='true', includes_tools='true', malicious='false', missing_test_components='false', skip_tool_test='false' ) elif test_framework == TOOL_DEPENDENCY_DEFINITIONS: params = dict( do_not_test='false', downloadable='true', malicious='false', skip_tool_test='false' ) api_url = get_api_url( base=tool_shed_url, parts=parts, params=params ) baseline_repository_dicts, error_message = json_from_url( api_url ) if error_message: return None, error_message for baseline_repository_dict in baseline_repository_dicts: # We need to get some details from the tool shed API, such as repository name and owner, to pass on to the # module that will generate the install methods. repository_dict, error_message = get_repository_dict( galaxy_tool_shed_url, baseline_repository_dict ) if error_message: print 'Error getting additional details from the API: %s' % error_message else: deprecated = asbool( repository_dict.get( 'deprecated', False ) ) # Filter deprecated repositories in the initial query. Repositories included in the query may have # repository dependencies that are deprecated though. if not deprecated: changeset_revision = baseline_repository_dict.get( 'changeset_revision', hg_util.INITIAL_CHANGELOG_HASH ) if changeset_revision != hg_util.INITIAL_CHANGELOG_HASH: # If testing repositories of type tool_dependency_definition, filter accordingly. if test_framework == TOOL_DEPENDENCY_DEFINITIONS and \ repository_dict.get( 'type', None ) != rt_util.TOOL_DEPENDENCY_DEFINITION: continue # Merge the dictionary returned from /api/repository_revisions with the detailed repository_dict and # append it to the list of repository_dicts to install and test. if latest_revision_only: latest_revision = repository_dict.get( 'latest_revision', None ) if changeset_revision == latest_revision: repository_dicts.append( dict( repository_dict.items() + baseline_repository_dict.items() ) ) else: repository_dicts.append( dict( repository_dict.items() + baseline_repository_dict.items() ) ) if testing_single_repository_dict: tsr_name = testing_single_repository_dict.get( 'name', None ) tsr_owner = testing_single_repository_dict.get( 'owner', None ) tsr_changeset_revision = testing_single_repository_dict.get( 'changeset_revision', None ) print 'Testing single repository with name %s and owner %s.' % ( tsr_name, tsr_owner ) for repository_to_install in repository_dicts: rti_name = repository_to_install.get( 'name', None ) rti_owner = repository_to_install.get( 'owner', None ) rti_changeset_revision = repository_to_install.get( 'changeset_revision', None ) if rti_name == tsr_name and rti_owner == tsr_owner: if tsr_changeset_revision is None: return [ repository_to_install ], error_message else: if tsr_changeset_revision == rti_changeset_revision: return repository_dicts, error_message return repository_dicts, error_message # Get a list of repositories to test from the tool shed specified in the GALAXY_INSTALL_TEST_TOOL_SHED_URL # environment variable. print "The Tool Shed's API url...\n%s" % api_url print "...retrieved %d repository revisions for installation and possible testing." % len( repository_dicts ) print "Repository revisions for testing:" for repository_dict in repository_dicts: repository_id = str( repository_dict.get( 'repository_id', None ) ) repository_metadata_id = str( repository_dict.get( 'id', None ) ) name = str( repository_dict.get( 'name', None ) ) owner = str( repository_dict.get( 'owner', None ) ) changeset_revision = str( repository_dict.get( 'changeset_revision', None ) ) print "Revision %s of repository %s owned by %s with repository_id %s, (repository_metadata) id %s" % \ ( changeset_revision, name, owner, repository_id, repository_metadata_id ) return repository_dicts, error_message def get_repository( name, owner, changeset_revision ): """Return a repository record associated with the received name, owner, changeset_revision if one exists.""" repository = None try: repository = test_db_util.get_installed_repository_by_name_owner_changeset_revision( name, owner, changeset_revision ) except: # The repository may not have been installed in a previous test. pass return repository def get_repository_current_revision( repo_path ): """This method uses the python mercurial API to get the current working directory's mercurial changeset hash.""" # Initialize a mercurial repo object from the provided path. repo = hg.repository( ui.ui(), repo_path ) # Get the working directory's change context. ctx = repo[ None ] # Extract the changeset hash of the first parent of that change context (the most recent changeset to which the # working directory was updated). changectx = ctx.parents()[ 0 ] # Also get the numeric revision, so we can return the customary id:hash changeset identifiers. ctx_rev = changectx.rev() hg_id = '%d:%s' % ( ctx_rev, str( changectx ) ) return hg_id def get_repository_dependencies_dicts( tool_shed_url, encoded_repository_metadata_id ): """ Return the list of dictionaries that define all repository dependencies of the repository_metadata record associated with the received encoded_repository_metadata_id via the Tool Shed API. """ error_message = '' parts = [ 'api', 'repository_revisions', encoded_repository_metadata_id, 'repository_dependencies' ] api_url = get_api_url( base=tool_shed_url, parts=parts ) repository_dependencies_dicts, error_message = json_from_url( api_url ) if error_message: return None, error_message return repository_dependencies_dicts, error_message def get_repository_tuple_from_elem( elem ): attributes = elem.attrib name = attributes.get( 'name', None ) owner = attributes.get( 'owner', None ) changeset_revision = attributes.get( 'changeset_revision', None ) return ( name, owner, changeset_revision ) def get_static_settings(): """ Return a dictionary of the settings necessary for a Galaxy application to be wrapped in the static middleware. This mainly consists of the file system locations of url-mapped static resources. """ cwd = os.getcwd() static_dir = os.path.join( cwd, 'static' ) #TODO: these should be copied from galaxy.ini #TODO: static_enabled needed here? return dict( static_enabled = True, static_cache_time = 360, static_dir = static_dir, static_images_dir = os.path.join( static_dir, 'images', '' ), static_favicon_dir = os.path.join( static_dir, 'favicon.ico' ), static_scripts_dir = os.path.join( static_dir, 'scripts', '' ), static_style_dir = os.path.join( static_dir, 'june_2007_style', 'blue' ), static_robots_txt = os.path.join( static_dir, 'robots.txt' ) ) def get_time_last_tested( tool_shed_url, encoded_repository_metadata_id ): """ Return the datetime value stored in the Tool Shed's repository_metadata.time_last_tested column via the Tool Shed API. """ error_message = '' parts = [ 'api', 'repository_revisions', encoded_repository_metadata_id ] api_url = get_api_url( base=tool_shed_url, parts=parts ) repository_metadata_dict, error_message = json_from_url( api_url ) if error_message: return None, error_message if isinstance( repository_metadata_dict, dict ): # The tool_test_results used to be stored as a single dictionary rather than a list, but we currently # return a list. time_last_tested = repository_metadata_dict.get( 'time_last_tested', None ) return time_last_tested, error_message else: error_message = 'The url %s returned the invalid repository_metadata_dict %s' % ( str( api_url ), str( repository_metadata_dict ) ) return None, error_message def get_tool_test_results_dict( tool_test_results_dicts ): if tool_test_results_dicts: # Inspect the tool_test_results_dict for the last test run to make sure it contains only a test_environment # entry. If it contains more entries, then the script ~/tool_shed/api/check_repositories_for_functional_tests.py # was not executed in preparation for this script's execution, so we'll just create an empty dictionary. tool_test_results_dict = tool_test_results_dicts[ 0 ] if len( tool_test_results_dict ) <= 1: # We can re-use the mostly empty tool_test_results_dict for this run because it is either empty or it contains only # a test_environment entry. If we use it we need to temporarily eliminate it from the list of tool_test_results_dicts # since it will be re-inserted later. tool_test_results_dict = tool_test_results_dicts.pop( 0 ) elif len( tool_test_results_dict ) == 2 and \ 'test_environment' in tool_test_results_dict and 'missing_test_components' in tool_test_results_dict: # We can re-use tool_test_results_dict if its only entries are "test_environment" and "missing_test_components". # In this case, some tools are missing tests components while others are not. tool_test_results_dict = tool_test_results_dicts.pop( 0 ) else: # The latest tool_test_results_dict has been populated with the results of a test run, so it cannot be used. tool_test_results_dict = {} else: # Create a new dictionary for this test test run, tool_test_results_dict = {} return tool_test_results_dict def get_tool_test_results_dicts( tool_shed_url, encoded_repository_metadata_id ): """ Return the list of dictionaries contained in the Tool Shed's repository_metadata.tool_test_results column via the Tool Shed API. """ error_message = '' parts = [ 'api', 'repository_revisions', encoded_repository_metadata_id ] api_url = get_api_url( base=tool_shed_url, parts=parts ) repository_metadata_dict, error_message = json_from_url( api_url ) if error_message: return None, error_message if isinstance( repository_metadata_dict, dict ): # The tool_test_results used to be stored as a single dictionary rather than a list, but we currently # return a list. tool_test_results = listify( repository_metadata_dict.get( 'tool_test_results', [] ) ) return tool_test_results, error_message else: error_message = 'The url %s returned the invalid repository_metadata_dict %s' % ( str( api_url ), str( repository_metadata_dict ) ) return None, error_message def get_webapp_global_conf(): """Return the global_conf dictionary sent as the first argument to app_factory.""" global_conf = {} if STATIC_ENABLED: global_conf.update( get_static_settings() ) return global_conf def initialize_install_and_test_statistics_dict(): # Initialize a dictionary for the summary that will be printed to stdout. install_and_test_statistics_dict = {} install_and_test_statistics_dict[ 'total_repositories_processed' ] = 0 install_and_test_statistics_dict[ 'successful_repository_installations' ] = [] install_and_test_statistics_dict[ 'successful_tool_dependency_installations' ] = [] install_and_test_statistics_dict[ 'repositories_with_installation_error' ] = [] install_and_test_statistics_dict[ 'tool_dependencies_with_installation_error' ] = [] install_and_test_statistics_dict[ 'all_tests_passed' ] = [] install_and_test_statistics_dict[ 'at_least_one_test_failed' ] = [] return install_and_test_statistics_dict def initialize_tool_tests_results_dict( app, tool_test_results_dict ): test_environment_dict = tool_test_results_dict.get( 'test_environment', {} ) if len( test_environment_dict ) == 0: # Set information about the tool shed to nothing since we cannot currently determine it from here. # We could eventually add an API method... test_environment_dict = dict( tool_shed_database_version='', tool_shed_mercurial_version='', tool_shed_revision='' ) # Add the current time as the approximate time that this test run occurs. A similar value will also be # set to the repository_metadata.time_last_tested column, but we also store it here because the Tool Shed # may be configured to store multiple test run results, so each must be associated with a time stamp. now = time.strftime( "%Y-%m-%d %H:%M:%S" ) # Add information about the current platform. test_environment_dict[ 'time_tested' ] = now test_environment_dict[ 'python_version' ] = platform.python_version() test_environment_dict[ 'architecture' ] = platform.machine() operating_system, hostname, operating_system_version, uname, arch, processor = platform.uname() test_environment_dict[ 'system' ] = '%s %s' % ( operating_system, operating_system_version ) # Add information about the current Galaxy environment. test_environment_dict[ 'galaxy_database_version' ] = get_database_version( app ) test_environment_dict[ 'galaxy_revision' ] = get_repository_current_revision( os.getcwd() ) # Initialize and populate the tool_test_results_dict. tool_test_results_dict[ 'test_environment' ] = test_environment_dict tool_test_results_dict[ 'passed_tests' ] = [] tool_test_results_dict[ 'failed_tests' ] = [] tool_test_results_dict[ 'installation_errors' ] = dict( current_repository=[], repository_dependencies=[], tool_dependencies=[] ) tool_test_results_dict[ 'successful_installations' ] = dict( current_repository=[], repository_dependencies=[], tool_dependencies=[] ) return tool_test_results_dict def install_repository( app, repository_dict ): """Install a repository defined by the received repository_dict from the tool shed into Galaxy.""" name = str( repository_dict.get( 'name', None ) ) owner = str( repository_dict.get( 'owner', None ) ) changeset_revision = str( repository_dict.get( 'changeset_revision', None ) ) error_message = '' repository = None print "Installing revision %s of repository %s owned by %s." % ( changeset_revision, name, owner ) # Use the repository information dictionary to generate an install method that will install the repository into the # embedded Galaxy application, with tool dependencies and repository dependencies, if any. test_install_repositories.generate_install_method( repository_dict ) # Configure nose to run the install method as a test. test_config = nose.config.Config( env=os.environ, plugins=nose.plugins.manager.DefaultPluginManager() ) test_config.configure( sys.argv ) # Run the configured install method as a test. This method uses the embedded Galaxy application's web interface to # install the specified repository with tool and repository dependencies also selected for installation. result, _ = run_tests( test_config ) # Get the repository record now that the tests that install it have completed. repository = get_repository( name, owner, changeset_revision ) if repository is None: error_message = 'Error getting revision %s of repository %s owned by %s: An entry for the repository was not found in the database.' % ( changeset_revision, name, owner ) log.error( error_message ) return repository, error_message def is_excluded( exclude_list_dicts, name, owner, changeset_revision, encoded_repository_metadata_id ): """ Return True if the repository defined by the received name, owner, changeset_revision should be excluded from testing for any reason. """ for exclude_dict in exclude_list_dicts: reason = exclude_dict.get( 'reason', '' ) exclude_repositories = exclude_dict.get( 'repositories', None ) # 'repositories': # [( name, owner, changeset_revision if changeset_revision else None ), # ( name, owner, changeset_revision if changeset_revision else None )] if ( name, owner, changeset_revision ) in exclude_repositories or ( name, owner, None ) in exclude_repositories: print 'Revision %s of repository %s owned by %s is excluded from testing because:\n%s' % \ ( changeset_revision, name, owner, reason ) return True, reason # Skip this repository if it has a repository dependency that is in the exclude list. repository_dependency_dicts, error_message = \ get_repository_dependencies_dicts( galaxy_tool_shed_url, encoded_repository_metadata_id ) if error_message: print 'Error getting repository dependencies for revision %s of repository %s owned by %s:' % \ ( changeset_revision, name, owner ) print error_message else: for repository_dependency_dict in repository_dependency_dicts: rd_name = repository_dependency_dict.get( 'name', '' ) rd_owner = repository_dependency_dict.get( 'owner', '' ) rd_changeset_revision = repository_dependency_dict.get( 'changeset_revision', '' ) if ( rd_name, rd_owner, rd_changeset_revision ) in exclude_repositories or \ ( rd_name, rd_owner, None ) in exclude_repositories: print 'Revision %s of repository %s owned by %s is excluded from testing because ' % \ ( changeset_revision, name, owner, reason ) print 'it requires revision %s of repository %s owned by %s (which is excluded from testing).' % \ ( rd_changeset_revision, rd_name, rd_owner ) reason = 'This repository requires revision %s of repository %s owned by %s which is excluded from testing.' % \ ( rd_changeset_revision, rd_name, rd_owner ) return True, reason break return False, None def is_latest_downloadable_revision( url, repository_dict ): """ Return True if the changeset_revision defined in the received repository_dict is the latest installable revision for the repository. """ error_message = '' name = repository_dict.get( 'name', None ) owner = repository_dict.get( 'owner', None ) changeset_revision = repository_dict.get( 'changeset_revision', None ) if name is not None and owner is not None and changeset_revision is not None: name = str( name ) owner = str( owner ) changeset_revision = str( changeset_revision ) latest_revision, error_message = get_latest_downloadable_changeset_revision_via_api( url, name=name, owner=owner ) if latest_revision is None or error_message: return None, error_message is_latest_downloadable = changeset_revision == str( latest_revision ) return is_latest_downloadable, error_message def parse_exclude_list( xml_filename ): """Return a list of repositories to exclude from testing.""" # This method expects an xml document that looks something like this: # <?xml version="1.0"?> # <blacklist> # <repositories tool_shed="http://testtoolshed.g2.bx.psu.edu"> # <reason> # <text>Some reason</text> # <repository name="some_name" owner="some_owner" /> # </reason> # </repositories> # </blacklist> # A list is returned with the following structure: # [{ 'reason': The default reason or the reason specified in this section, # 'repositories': [( name, owner, changeset_revision if changeset_revision else None ), # ( name, owner, changeset_revision if changeset_revision else None )]}] exclude_list = [] exclude_tups = [] xml_tree, error_message = parse_xml( xml_filename ) if error_message: print 'The exclude file %s is invalid, so no repositories will be excluded from testing: %s' % ( xml_filename, error_message ) return exclude_list tool_sheds = xml_tree.findall( 'repositories' ) xml_element = [] exclude_count = 0 for tool_shed in tool_sheds: if galaxy_tool_shed_url != tool_shed.attrib[ 'tool_shed' ]: continue else: xml_element = tool_shed for reason_section in xml_element: reason_text = reason_section.find( 'text', None ) if reason_text is not None: reason = str( reason_text.text ) else: reason = 'No reason provided.' repositories = reason_section.findall( 'repository' ) exclude_dict = dict( reason=reason, repositories=[] ) for repository in repositories: repository_tuple = get_repository_tuple_from_elem( repository ) if repository_tuple not in exclude_dict[ 'repositories' ]: exclude_tups.append( repository_tuple ) exclude_count += 1 exclude_dict[ 'repositories' ].append( repository_tuple ) exclude_list.append( exclude_dict ) if exclude_tups: print 'The exclude file %s defines the following %d repositories to be excluded from testing:' % ( xml_filename, exclude_count ) for name, owner, changeset_revision in exclude_tups: if changeset_revision: print 'Revision %s of repository %s owned by %s.' % ( changeset_revision, name, owner ) else: print 'All revisions of repository %s owned by %s.' % ( name, owner ) else: print 'The exclude file %s defines no repositories to be excluded from testing.' % xml_filename return exclude_list def populate_dependency_install_containers( app, repository, repository_identifier_tup, install_and_test_statistics_dict, tool_test_results_dict ): """ Populate the installation containers (successful or errors) for the received repository's (which itself was successfully installed) immediate repository and tool dependencies. The entire dependency tree is not handled here. """ repository_name = str( repository.name ) repository_owner = str( repository.owner ) repository_changeset_revision = str( repository.changeset_revision ) print 'Populating dependency install containers for revision %s of repository %s owned by %s.' % \ ( repository_changeset_revision, repository_name, repository_owner ) processed_successful_repository_installations = install_and_test_statistics_dict.get( 'successful_repository_installations', [] ) if repository_identifier_tup not in processed_successful_repository_installations: install_and_test_statistics_dict[ 'successful_repository_installations' ].append( repository_identifier_tup ) repository_identifier_dict = dict( name=repository_name, owner=repository_owner, changeset_revision=repository_changeset_revision ) tool_test_results_dict[ 'successful_installations' ][ 'current_repository' ].append( repository_identifier_dict ) params = dict( test_install_error=False, do_not_test=False ) if repository.missing_repository_dependencies: print 'The following repository dependencies for revision %s of repository %s owned by %s have installation errors:' % \ ( repository_changeset_revision, repository_name, repository_owner ) params[ 'test_install_error' ] = True # Keep statistics for this repository's repository dependencies that resulted in installation errors. for missing_repository_dependency in repository.missing_repository_dependencies: tool_shed = str( missing_repository_dependency.tool_shed ) name = str( missing_repository_dependency.name ) owner = str( missing_repository_dependency.owner ) changeset_revision = str( missing_repository_dependency.changeset_revision ) error_message = unicodify( missing_repository_dependency.error_message ) print 'Revision %s of repository %s owned by %s has the following installation error:' % ( changeset_revision, name, owner ) # Use log.debug here instead of print because print will throw UnicodeEncodeError exceptions. log.debug( '%s' % error_message ) identity_tup = ( name, owner, changeset_revision ) processed_repositories_with_installation_error = \ install_and_test_statistics_dict.get( 'repositories_with_installation_error', [] ) if identity_tup not in processed_repositories_with_installation_error: install_and_test_statistics_dict[ 'repositories_with_installation_error' ].append( identity_tup ) missing_repository_dependency_info_dict = dict( tool_shed=tool_shed, name=name, owner=owner, changeset_revision=changeset_revision, error_message=error_message ) tool_test_results_dict[ 'installation_errors' ][ 'repository_dependencies' ].append( missing_repository_dependency_info_dict ) if repository.missing_tool_dependencies: print 'The following tool dependencies for revision %s of repository %s owned by %s have installation errors:' % \ ( repository_changeset_revision, repository_name, repository_owner ) params[ 'test_install_error' ] = True # Keep statistics for this repository's tool dependencies that resulted in installation errors. for missing_tool_dependency in repository.missing_tool_dependencies: name = str( missing_tool_dependency.name ) type = str( missing_tool_dependency.type ) version = str( missing_tool_dependency.version ) error_message = unicodify( missing_tool_dependency.error_message ) print 'Version %s of tool dependency %s %s has the following installation error:' % ( version, type, name ) # Use log.debug here instead of print because print will throw UnicodeEncodeError exceptions. log.debug( '%s' % error_message ) identity_tup = ( name, type, version ) processed_tool_dependencies_with_installation_error = \ install_and_test_statistics_dict.get( 'tool_dependencies_with_installation_error', [] ) if identity_tup not in processed_tool_dependencies_with_installation_error: install_and_test_statistics_dict[ 'tool_dependencies_with_installation_error' ].append( identity_tup ) missing_tool_dependency_info_dict = dict( type=type, name=name, version=version, error_message=error_message ) tool_test_results_dict[ 'installation_errors' ][ 'tool_dependencies' ].append( missing_tool_dependency_info_dict ) if repository.installed_repository_dependencies: print 'The following repository dependencies for revision %s of repository %s owned by %s are installed:' % \ ( repository_changeset_revision, repository_name, repository_owner ) # Keep statistics for this repository's tool dependencies that resulted in successful installations. for repository_dependency in repository.installed_repository_dependencies: tool_shed = str( repository_dependency.tool_shed ) name = str( repository_dependency.name ) owner = str( repository_dependency.owner ) changeset_revision = str( repository_dependency.changeset_revision ) print 'Revision %s of repository %s owned by %s.' % ( changeset_revision, name, owner ) identifier_tup = ( name, owner, changeset_revision ) processed_successful_repository_installations = install_and_test_statistics_dict.get( 'successful_repository_installations', [] ) if identifier_tup not in processed_successful_repository_installations: install_and_test_statistics_dict[ 'successful_repository_installations' ].append( identifier_tup ) repository_dependency_info_dict = dict( tool_shed=tool_shed, name=name, owner=owner, changeset_revision=changeset_revision ) tool_test_results_dict[ 'successful_installations' ][ 'repository_dependencies' ].append( repository_dependency_info_dict ) if repository.installed_tool_dependencies: print 'The following tool dependencies for revision %s of repository %s owned by %s are installed:' % \ ( repository_changeset_revision, repository_name, repository_owner ) # Keep statistics for this repository's tool dependencies that resulted in successful installations. for tool_dependency in repository.installed_tool_dependencies: name = str( tool_dependency.name ) type = str( tool_dependency.type ) version = str( tool_dependency.version ) installation_directory = tool_dependency.installation_directory( app ) print 'Version %s of tool dependency %s %s is installed in: %s' % ( version, type, name, installation_directory ) identity_tup = ( name, type, version ) processed_successful_tool_dependency_installations = \ install_and_test_statistics_dict.get( 'successful_tool_dependency_installations', [] ) if identity_tup not in processed_successful_tool_dependency_installations: install_and_test_statistics_dict[ 'successful_tool_dependency_installations' ].append( identity_tup ) tool_dependency_info_dict = dict( type=type, name=name, version=version, installation_directory=installation_directory ) tool_test_results_dict[ 'successful_installations' ][ 'tool_dependencies' ].append( tool_dependency_info_dict ) return params, install_and_test_statistics_dict, tool_test_results_dict def populate_install_containers_for_repository_dependencies( app, repository, repository_metadata_id, install_and_test_statistics_dict, can_update_tool_shed ): """ The handle_repository_dependencies check box is always checked when a repository is installed, so the tool_test_results dictionary must be inspected for each dependency to make sure installation containers (success or errors) have been populated. Since multiple repositories can depend on the same repository, some of the containers may have been populated during a previous installation. """ # Get the list of dictionaries that define the received repository's repository dependencies # via the Tool Shed API. repository_name = str( repository.name ) repository_owner = str( repository.owner ) repository_changeset_revision = str( repository.changeset_revision ) print 'Potentially populating install containers for repository dependencies of revision %s of repository %s owned by %s.' % \ ( repository_changeset_revision, repository_name, repository_owner ) repository_dependencies_dicts, error_message = get_repository_dependencies_dicts( galaxy_tool_shed_url, repository_metadata_id ) if error_message: print 'Cannot check or populate repository dependency install containers for revision %s of repository %s owned by %s ' % \ ( repository_changeset_revision, repository_name, repository_owner ) print 'due to the following error getting repository_dependencies_dicts:\n%s' % str( error_message ) else: if not repository_dependencies_dicts: print 'Revision %s of repository %s owned by %s has no repository dependencies.' % \ ( repository_changeset_revision, repository_name, repository_owner ) for repository_dependencies_dict in repository_dependencies_dicts: if not isinstance( repository_dependencies_dict, dict ): print 'Skipping invalid repository_dependencies_dict: %s' % str( repository_dependencies_dict ) continue name = repository_dependencies_dict.get( 'name', None ) owner = repository_dependencies_dict.get( 'owner', None ) changeset_revision = repository_dependencies_dict.get( 'changeset_revision', None ) if name is None or owner is None or changeset_revision is None: print 'Skipping invalid repository_dependencies_dict due to missing name, owner or changeset_revision: %s' % \ str( repository_dependencies_dict ) continue name = str( name ) owner = str( owner ) changeset_revision = str( changeset_revision ) print 'Checking installation containers for revision %s of repository dependency %s owned by %s' % \ ( changeset_revision, name, owner ) required_repository_metadata_id = repository_dependencies_dict[ 'id' ] # Get the current list of tool_test_results dictionaries associated with the repository_metadata # record in the tool shed. tool_test_results_dicts, error_message = get_tool_test_results_dicts( galaxy_tool_shed_url, required_repository_metadata_id ) if error_message: print 'Cannot check install container for version %s of repository dependency %s owned by %s ' % \ ( changeset_revision, name, owner ) print 'due to the following error getting tool_test_results:\n%s' % str( error_message ) else: # The assumption is that the Tool Shed's install and test framework is executed no more than once per 24 hour # period, so check the required repository's time_last_tested value to see if its tool_test_results column # has been updated within the past 20 hours to allow for differing test run times (some may be slower than # others). The RepositoryMetadata class's to_dict() method returns the value of time_last_tested in # datetime.isoformat(). time_last_tested, error_message = get_time_last_tested( galaxy_tool_shed_url, required_repository_metadata_id ) print 'Value of time_last_tested: %s' % str( time_last_tested ) if time_last_tested is None: print 'The time_last_tested column value is None for version %s of repository dependency %s owned by %s.' % \ ( changeset_revision, name, owner ) else: twenty_hours_ago = ( datetime.utcnow() - timedelta( hours=20 ) ).isoformat() print 'Value of twenty_hours_ago: %s' % str( twenty_hours_ago ) # This is counter intuitive because the following check is on strings like this: '2014-01-21T19:46:06.953741', # so if "time_last_tested > twenty_hours_ago" is True, then it implies that the time_last_tested column # was actually updated less than 20 hours ago, and should not be updated again because we're likely processing # another dependent repository, many of which can have the same repository dependency. try: # Be very conservative here. Our default behavior will be to assume containers have not been populated # during the current test run. already_populated = time_last_tested > twenty_hours_ago except Exception, e: log.exception( 'Error attempting to set already_populated: %s' % str( e ) ) already_populated = False print 'Value of already_populated: %s' % str( already_populated ) if already_populated: print 'The install containers for version %s of repository dependency %s owned by %s have been ' % \ ( changeset_revision, name, owner ) print 'populated within the past 20 hours (likely in this test run), so skipping this check.' continue else: print 'Version %s of repository dependency %s owned by %s was last tested more than 20 hours ago.' % \ ( changeset_revision, name, owner ) # Inspect the tool_test_results_dict for the last test run to see if it has not yet been populated. if len( tool_test_results_dicts ) == 0: tool_test_results_dict = {} else: tool_test_results_dict = tool_test_results_dicts[ 0 ] if len( tool_test_results_dict ) <= 1: tool_test_results_dict = tool_test_results_dicts.pop( 0 ) elif len( tool_test_results_dict ) == 2 and \ 'test_environment' in tool_test_results_dict and \ 'missing_test_components' in tool_test_results_dict: tool_test_results_dict = tool_test_results_dicts.pop( 0 ) else: tool_test_results_dict = {} # Make sure all expected entries are available in the tool_test_results_dict. tool_test_results_dict = initialize_tool_tests_results_dict( app, tool_test_results_dict ) # Get the installed repository record from the Galaxy database. cleaned_tool_shed_url = remove_protocol_from_tool_shed_url( galaxy_tool_shed_url ) required_repository = \ suc.get_tool_shed_repository_by_shed_name_owner_changeset_revision( app, cleaned_tool_shed_url, name, owner, changeset_revision ) if required_repository is not None: repository_identifier_tup = ( name, owner, changeset_revision ) if required_repository.is_installed: # The required_repository was successfully installed, so populate the installation # containers (success and error) for the repository's immediate dependencies. params, install_and_test_statistics_dict, tool_test_results_dict = \ populate_dependency_install_containers( app, required_repository, repository_identifier_tup, install_and_test_statistics_dict, tool_test_results_dict ) save_test_results_for_changeset_revision( galaxy_tool_shed_url, tool_test_results_dicts, tool_test_results_dict, repository_dependencies_dict, params, can_update_tool_shed ) else: # The required repository's installation failed. required_repository_installation_error_dict = dict( tool_shed=galaxy_tool_shed_url, name=name, owner=owner, changeset_revision=changeset_revision, error_message=required_repository.error_message ) tool_test_results_dict[ 'installation_errors' ][ 'repository_dependencies' ].append( required_repository_installation_error_dict ) params = dict( test_install_error=True, do_not_test=False ) save_test_results_for_changeset_revision( galaxy_tool_shed_url, tool_test_results_dicts, tool_test_results_dict, repository_dependencies_dict, params, can_update_tool_shed ) else: print 'Cannot retrieve revision %s of required repository %s owned by %s from the database ' % \ ( changeset_revision, name, owner ) print 'so tool_test_results cannot be saved at this time.' print 'The attributes used to retrieve the record are:' print 'tool_shed: %s name: %s owner: %s changeset_revision: %s' % \ ( cleaned_tool_shed_url, name, owner, changeset_revision ) def populate_shed_conf_file( shed_conf_file, tool_path, xml_elems=None ): """Populate the file defined by shed_conf_file with xml_elems or initialize it with a template string.""" if xml_elems is None: tool_conf_template_parser = string.Template( shed_tool_conf_xml_template ) xml_elems = tool_conf_template_parser.safe_substitute( shed_tool_path=tool_path ) file( shed_conf_file, 'w' ).write( xml_elems ) def populate_galaxy_shed_tools_dict_file( galaxy_shed_tools_dict_file, shed_tools_dict=None ): """ Populate the file defined by galaxy_shed_tools_dict_file with the contents of the shed_tools_dict dictionary. """ if shed_tools_dict is None: shed_tools_dict = {} file( galaxy_shed_tools_dict_file, 'w' ).write( json.dumps( shed_tools_dict ) ) def print_install_and_test_results( install_stage_type, install_and_test_statistics_dict, error_message ): "Print statistics for the current test run." if error_message: print "Error returned from install_and_test_repositories:" print error_message elif isinstance ( install_and_test_statistics_dict, dict ): all_tests_passed = install_and_test_statistics_dict.get( 'all_tests_passed', None ) at_least_one_test_failed = install_and_test_statistics_dict.get( 'at_least_one_test_failed', None ) repositories_with_installation_error = \ install_and_test_statistics_dict.get( 'repositories_with_installation_error', None ) successful_repository_installations = \ install_and_test_statistics_dict.get( 'successful_repository_installations', None ) successful_tool_dependency_installations = \ install_and_test_statistics_dict.get( 'successful_tool_dependency_installations', None ) tool_dependencies_with_installation_error = \ install_and_test_statistics_dict.get( 'tool_dependencies_with_installation_error', None ) total_repositories_processed = install_and_test_statistics_dict.get( 'total_repositories_processed', None ) now = time.strftime( "%Y-%m-%d %H:%M:%S" ) print "####################################################################################" print "# %s - installation script for %s completed." % ( now, install_stage_type ) print "# Repository revisions processed: %s" % str( total_repositories_processed ) if successful_repository_installations: print "# ----------------------------------------------------------------------------------" print "# The following %d revisions were successfully installed:" % len( successful_repository_installations ) display_repositories_by_owner( successful_repository_installations ) if repositories_with_installation_error: print "# ----------------------------------------------------------------------------------" print "# The following %d revisions have installation errors:" % len( repositories_with_installation_error ) display_repositories_by_owner( repositories_with_installation_error ) if successful_tool_dependency_installations: print "# ----------------------------------------------------------------------------------" print "# The following %d tool dependencies were successfully installed:" % len( successful_tool_dependency_installations ) display_tool_dependencies_by_name( successful_tool_dependency_installations ) if tool_dependencies_with_installation_error: print "# ----------------------------------------------------------------------------------" print "# The following %d tool dependencies have installation errors:" % len( tool_dependencies_with_installation_error ) display_tool_dependencies_by_name( tool_dependencies_with_installation_error ) if all_tests_passed: print '# ----------------------------------------------------------------------------------' print "# The following %d revisions successfully passed all functional tests:" % len( all_tests_passed ) display_repositories_by_owner( all_tests_passed ) if at_least_one_test_failed: print '# ----------------------------------------------------------------------------------' print "# The following %d revisions failed at least 1 functional test:" % len( at_least_one_test_failed ) display_repositories_by_owner( at_least_one_test_failed ) print "####################################################################################" def remove_protocol_from_tool_shed_url( base_url ): """Eliminate the protocol from the received base_url and return the possibly altered url.""" # The tool_shed value stored in the tool_shed_repository record does not include the protocol, but does # include the port if one exists. if base_url: if base_url.find( '://' ) > -1: try: protocol, base = base_url.split( '://' ) except ValueError, e: # The received base_url must be an invalid url. log.debug( "Returning unchanged invalid base_url from remove_protocol_from_tool_shed_url: %s" % str( base_url ) ) return base_url return base.rstrip( '/' ) return base_url.rstrip( '/' ) log.debug( "Returning base_url from remove_protocol_from_tool_shed_url: %s" % str( base_url ) ) return base_url def run_tests( test_config ): ## TODO: replace whole method with... # from base import nose_util # result = nose_util.run( test_config, plugins=[ new ReportResults() ] ) # return result, test_config.plugins._plugins loader = nose.loader.TestLoader( config=test_config ) test_config.plugins.addPlugin( ReportResults() ) plug_loader = test_config.plugins.prepareTestLoader( loader ) if plug_loader is not None: loader = plug_loader tests = loader.loadTestsFromNames( test_config.testNames ) test_runner = nose.core.TextTestRunner( stream=test_config.stream, verbosity=test_config.verbosity, config=test_config ) plug_runner = test_config.plugins.prepareTestRunner( test_runner ) if plug_runner is not None: test_runner = plug_runner result = test_runner.run( tests ) return result, test_config.plugins._plugins def save_test_results_for_changeset_revision( url, tool_test_results_dicts, tool_test_results_dict, repository_dict, params, can_update_tool_shed ): """ Update the repository metadata tool_test_results and appropriate flags using the Tool Shed API. This method updates tool_test_results with the received tool_test_results_dict, sets the do_not_test and tools_functionally correct flags to the appropriate values and updates the time_last_tested field. """ if can_update_tool_shed: metadata_revision_id = repository_dict.get( 'id', None ) if metadata_revision_id is not None: name = repository_dict.get( 'name', None ) owner = repository_dict.get( 'owner', None ) changeset_revision = repository_dict.get( 'changeset_revision', None ) if name is None or owner is None or changeset_revision is None: print 'Entries for name: ', name, ' owner: ', owner, ' or changeset_revision: ', changeset_revision, \ ' missing from repository_dict:' % repository_dict else: name = str( name ) owner = str( owner ) changeset_revision = str( changeset_revision ) # With regard to certification level one, the status of this repository may or may not have changed between # this install and test run and the previous install and test run. Rather than attempting to determine if # anything has changed here, we'll let the Tool Shed's repository registry handle the process of proper # categorization. To enable this, we'll just remove entries from the Tool Shed's repository registry and # then add them back. This will ensure proper categorization for this repository. registry_params = dict( tool_shed_url=galaxy_tool_shed_url, name=name, owner=owner ) print "Removing entries for repository ", name, " owned by ", owner, "from the Tool Shed's repository registry." url = '%s' % ( common_util.url_join( galaxy_tool_shed_url, 'api', 'repositories', 'remove_repository_registry_entry' ) ) response_dict = submit( url, registry_params, api_key=tool_shed_api_key, return_formatted=False ) status = response_dict.get( 'status', 'ok' ) if status == 'error': default_message = 'An unknown error occurred attempting to remove entries from the repository registry.' error_message = response_dict.get( 'message', default_message ) print error_message print "Adding entries for repository ", name, " owned by ", owner, "into the Tool Shed's repository registry." url = '%s' % ( common_util.url_join( galaxy_tool_shed_url, 'api', 'repositories', 'add_repository_registry_entry' ) ) response_dict = submit( url, registry_params, api_key=tool_shed_api_key, return_formatted=False ) status = response_dict.get( 'status', 'ok' ) if status == 'error': default_message = 'An unknown error occurred attempting to add entries into the repository registry.' error_message = response_dict.get( 'message', default_message ) print error_message print '\n=============================================================\n' print 'Inserting the following into tool_test_results for revision %s of repository %s owned by %s:\n%s' % \ ( changeset_revision, name, owner, str( tool_test_results_dict ) ) print 'Updating tool_test_results for repository_metadata id %s.' % metadata_revision_id tool_test_results_dicts.insert( 0, tool_test_results_dict ) params[ 'tool_test_results' ] = tool_test_results_dicts # Set the time_last_tested entry so that the repository_metadata.time_last_tested will be set in the tool shed. params[ 'time_last_tested' ] = 'This entry will result in this value being set via the Tool Shed API.' url = '%s' % ( common_util.url_join( galaxy_tool_shed_url, 'api', 'repository_revisions', str( metadata_revision_id ) ) ) print 'url: ', url print 'params: ', params try: response_from_update = update( tool_shed_api_key, url, params, return_formatted=False ) print 'Result of inserting tool_test_results for revision %s of repository %s owned by %s:\n%s' % \ ( changeset_revision, name, owner, str( response_from_update ) ) print '\n=============================================================\n' except Exception, e: log.exception( 'Error updating tool_test_results for repository_metadata id %s:\n%s' % \ ( str( metadata_revision_id ), str( e ) ) )
61.207137
178
0.656846
ebcefe9914a7337dd41cbae7c274e6f6b49bc68d
341
py
Python
schedules/templatetags/calendar_month.py
dvek/scyp
0f70d6a9071edbf9e26b7cb3cfaea38905e192d1
[ "MIT" ]
null
null
null
schedules/templatetags/calendar_month.py
dvek/scyp
0f70d6a9071edbf9e26b7cb3cfaea38905e192d1
[ "MIT" ]
4
2020-06-05T18:27:22.000Z
2021-09-07T23:55:27.000Z
schedules/templatetags/calendar_month.py
dvek/scyp
0f70d6a9071edbf9e26b7cb3cfaea38905e192d1
[ "MIT" ]
null
null
null
from django import template from django.utils import timezone from schedules.services import get_times_from_day from schedules.models import TimeOfDay register = template.Library() @register.inclusion_tag('templatetags/calendar_month.html') def calendar_month(): variable = None print(">>>>>>") return {'variable': variable}
22.733333
59
0.768328
ed0183a4a8a374589658494b7e71585e5c52685b
1,896
py
Python
TimeFreeze/utils.py
Ashish013/Image-Filters
c49d98232d0b44c0a77a11693658d689dcf89457
[ "MIT" ]
null
null
null
TimeFreeze/utils.py
Ashish013/Image-Filters
c49d98232d0b44c0a77a11693658d689dcf89457
[ "MIT" ]
null
null
null
TimeFreeze/utils.py
Ashish013/Image-Filters
c49d98232d0b44c0a77a11693658d689dcf89457
[ "MIT" ]
null
null
null
import os,requests,cv2,shutil def files_downloader(filename = "rcnn_files"): print("Downloading files for Mask-Rcnn.....") file_url = "http://download.tensorflow.org/models/object_detection/mask_rcnn_inception_v2_coco_2018_01_28.tar.gz" response = requests.get(file_url,stream = True) if (os.path.exists("file.tar.gz") == False and os.path.exists(f"{filename}") == False): with open("file.tar.gz","wb") as file: for chunk in response.iter_content(chunk_size = 1024): if chunk: file.write(chunk) shutil.unpack_archive(os.getcwd() + "\\file.tar.gz") os.rename("mask_rcnn_inception_v2_coco_2018_01_28",f"{filename}") os.remove('file.tar.gz') text_file_url = "https://raw.githubusercontent.com/amikelive/coco-labels/master/coco-labels-2014_2017.txt" response = requests.get(text_file_url,stream = True) if(os.path.exists(f"{filename}/mscoco_labels_names.txt") == False): with open(f"{filename}/mscoco_labels_names.txt","wb") as file: for chunk in response.iter_content(chunk_size = 128): if chunk: file.write(chunk) file_url = "https://raw.githubusercontent.com/opencv/opencv_extra/master/testdata/dnn/mask_rcnn_inception_v2_coco_2018_01_28.pbtxt" response = requests.get(file_url) if(os.path.exists(f"{filename}/mask_rcnn_inception_v2_coco_2018_01_28.pbtxt") == False): with open(f"{filename}/mask_rcnn_inception_v2_coco_2018_01_28.pbtxt","wb") as file: for chunk in response.iter_content(chunk_size = 10): if chunk: file.write(chunk) print("Download Completed !") return filename def bgr2rgb(frame): return cv2.cvtColor(frame,cv2.COLOR_BGR2RGB) def bgr2gray(frame): return cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
46.243902
135
0.666139
ee7aecf1758c14298a1c9f085484f971507cbee1
1,189
py
Python
ERAutomation/steps/manager_form_steps.py
dboudreau4/ReimbursementSystemAutomation
57d8c322ac80dd26679000f8d9d67e16fd865804
[ "MIT" ]
null
null
null
ERAutomation/steps/manager_form_steps.py
dboudreau4/ReimbursementSystemAutomation
57d8c322ac80dd26679000f8d9d67e16fd865804
[ "MIT" ]
null
null
null
ERAutomation/steps/manager_form_steps.py
dboudreau4/ReimbursementSystemAutomation
57d8c322ac80dd26679000f8d9d67e16fd865804
[ "MIT" ]
null
null
null
from behave import given, when, then from selenium.webdriver.support.ui import Select @given('The Manager is on the View Request page') def open_view_request(context): context.driver.get("C:\\Users\\david\\Documents\\ExpenseReimbursementFrontend\\viewrequest.html") @given('The Manager has clicked the view request button') def view_click(context): context.manager_portal.view_request_button().click() @when('The Manager selects {status} from the status selector') def select_status(context, status: str): sel: Select = context.manager_form.select() sel.select_by_value(status) @when('The Manager types {manager_id} into the reviewed by box') def manager_input(context, manager_id: str): context.manager_form.manager_id().send_keys(int(manager_id)) @when('The Manager types {message} into the message box') def message_input(context, message: str): context.manager_form.message().send_keys(message) @when('The Manager clicks the submit button') def submit_edited(context): context.manager_form.save().click() @when('The Manager clicks the return to home page button') def back_to_home(context): context.manager_form.return_to_portal().click()
30.487179
101
0.764508
39957cdbca8b485f2049f76cecf9118988ad09cd
2,750
py
Python
homeassistant/components/epson_monitor/config_flow.py
samsunga3888/core
e2785d4807bdd216982c452ceabe2e6f038cc321
[ "Apache-2.0" ]
null
null
null
homeassistant/components/epson_monitor/config_flow.py
samsunga3888/core
e2785d4807bdd216982c452ceabe2e6f038cc321
[ "Apache-2.0" ]
null
null
null
homeassistant/components/epson_monitor/config_flow.py
samsunga3888/core
e2785d4807bdd216982c452ceabe2e6f038cc321
[ "Apache-2.0" ]
null
null
null
"""Config flow for epson integration.""" import logging import random import voluptuous as vol from homeassistant import config_entries from homeassistant.const import CONF_HOST, CONF_NAME, CONF_PORT,CONF_PASSWORD from . import validate_projector from .const import DOMAIN from .exceptions import CannotConnect, PoweredOff, PasswordInvaid, AuthenticationRequired DATA_SCHEMA = vol.Schema( { vol.Required(CONF_HOST): str, vol.Required(CONF_NAME, default=DOMAIN): str, vol.Required(CONF_PASSWORD): str, } ) _LOGGER = logging.getLogger(__name__) class ConfigFlow(config_entries.ConfigFlow, domain=DOMAIN): """Handle a config flow for epson.""" async def async_step_user(self, user_input=None): """Handle the initial step.""" errors = {} _LOGGER.debug(f"validate_projector -> {user_input}") if user_input is not None: _LOGGER.debug(f"validate_projector1 -> {user_input}") try: projector = await validate_projector( hass=self.hass, host=user_input[CONF_HOST], password=user_input[CONF_PASSWORD] ) _LOGGER.debug(f"validate_projector2 -> {projector}") except PasswordInvaid: _LOGGER.debug(f"validate_projectorPasswordInvaid -> {PasswordInvaid}") _LOGGER.warning( "You need to check projector password for initial configuration" ) errors["base"] = "password_invaid" except AuthenticationRequired: _LOGGER.debug(f"validate_projectorAuthenticateInvaid -> {AuthenticationRequired}") _LOGGER.warning( "You need to enable projector Authenticate for initial configuration" ) errors["base"] = "authenticate_invaid" except CannotConnect: errors["base"] = "cannot_connect" except PoweredOff: _LOGGER.debug(f"validate_projectorPoweredOff -> {PoweredOff}") _LOGGER.warning( "You need to turn ON projector power for initial configuration" ) errors["base"] = "powered_off" else: serial_no = random.random() await self.async_set_unique_id(serial_no) self._abort_if_unique_id_configured() user_input.pop(CONF_PORT, None) return self.async_create_entry( title=user_input.pop(CONF_NAME), data=user_input ) return self.async_show_form( step_id="user", data_schema=DATA_SCHEMA, errors=errors )
38.732394
98
0.605455
97331a116d060312acbc78e63b3298ea7c54bca5
290
py
Python
api/user/urls.py
depromeet/octo-palm-server
95028764cda0dbecdda2d24f4e38de853e67e634
[ "MIT" ]
null
null
null
api/user/urls.py
depromeet/octo-palm-server
95028764cda0dbecdda2d24f4e38de853e67e634
[ "MIT" ]
null
null
null
api/user/urls.py
depromeet/octo-palm-server
95028764cda0dbecdda2d24f4e38de853e67e634
[ "MIT" ]
2
2019-01-12T07:14:34.000Z
2019-08-29T02:55:23.000Z
from django.urls import path from . import views urlpatterns = [ path('social/login/', views.SocialUserLoginAPIView.as_view(), name='social_login' ), path('guest/login/', views.GuestUserLoginAPIView.as_view(), name='guest_login' ), ]
19.333333
49
0.610345
5dcbee4c5eeb1173fa44fc3112a7dc6123b59169
77,422
py
Python
tests/components/zwave_js/test_config_flow.py
DoctorU/core
5b218d7e1c4164e32d41473977459cbaf23adf42
[ "Apache-2.0" ]
1
2021-10-01T10:38:31.000Z
2021-10-01T10:38:31.000Z
tests/components/zwave_js/test_config_flow.py
DoctorU/core
5b218d7e1c4164e32d41473977459cbaf23adf42
[ "Apache-2.0" ]
66
2020-10-15T06:45:11.000Z
2022-03-30T23:05:28.000Z
tests/components/zwave_js/test_config_flow.py
DoctorU/core
5b218d7e1c4164e32d41473977459cbaf23adf42
[ "Apache-2.0" ]
1
2022-02-01T13:19:32.000Z
2022-02-01T13:19:32.000Z
"""Test the Z-Wave JS config flow.""" import asyncio from unittest.mock import DEFAULT, call, patch import aiohttp import pytest from zwave_js_server.version import VersionInfo from homeassistant import config_entries, setup from homeassistant.components.hassio.handler import HassioAPIError from homeassistant.components.zwave_js.config_flow import SERVER_VERSION_TIMEOUT, TITLE from homeassistant.components.zwave_js.const import DOMAIN from tests.common import MockConfigEntry ADDON_DISCOVERY_INFO = { "addon": "Z-Wave JS", "host": "host1", "port": 3001, } USB_DISCOVERY_INFO = { "device": "/dev/zwave", "pid": "AAAA", "vid": "AAAA", "serial_number": "1234", "description": "zwave radio", "manufacturer": "test", } NORTEK_ZIGBEE_DISCOVERY_INFO = { "device": "/dev/zigbee", "pid": "8A2A", "vid": "10C4", "serial_number": "1234", "description": "nortek zigbee radio", "manufacturer": "nortek", } CP2652_ZIGBEE_DISCOVERY_INFO = { "device": "/dev/zigbee", "pid": "EA60", "vid": "10C4", "serial_number": "", "description": "cp2652", "manufacturer": "generic", } @pytest.fixture(name="persistent_notification", autouse=True) async def setup_persistent_notification(hass): """Set up persistent notification integration.""" await setup.async_setup_component(hass, "persistent_notification", {}) @pytest.fixture(name="setup_entry") def setup_entry_fixture(): """Mock entry setup.""" with patch( "homeassistant.components.zwave_js.async_setup_entry", return_value=True ) as mock_setup_entry: yield mock_setup_entry @pytest.fixture(name="supervisor") def mock_supervisor_fixture(): """Mock Supervisor.""" with patch( "homeassistant.components.zwave_js.config_flow.is_hassio", return_value=True ): yield @pytest.fixture(name="discovery_info") def discovery_info_fixture(): """Return the discovery info from the supervisor.""" return DEFAULT @pytest.fixture(name="discovery_info_side_effect") def discovery_info_side_effect_fixture(): """Return the discovery info from the supervisor.""" return None @pytest.fixture(name="get_addon_discovery_info") def mock_get_addon_discovery_info(discovery_info, discovery_info_side_effect): """Mock get add-on discovery info.""" with patch( "homeassistant.components.zwave_js.addon.async_get_addon_discovery_info", side_effect=discovery_info_side_effect, return_value=discovery_info, ) as get_addon_discovery_info: yield get_addon_discovery_info @pytest.fixture(name="server_version_side_effect") def server_version_side_effect_fixture(): """Return the server version side effect.""" return None @pytest.fixture(name="get_server_version", autouse=True) def mock_get_server_version(server_version_side_effect, server_version_timeout): """Mock server version.""" version_info = VersionInfo( driver_version="mock-driver-version", server_version="mock-server-version", home_id=1234, min_schema_version=0, max_schema_version=1, ) with patch( "homeassistant.components.zwave_js.config_flow.get_server_version", side_effect=server_version_side_effect, return_value=version_info, ) as mock_version, patch( "homeassistant.components.zwave_js.config_flow.SERVER_VERSION_TIMEOUT", new=server_version_timeout, ): yield mock_version @pytest.fixture(name="server_version_timeout") def mock_server_version_timeout(): """Patch the timeout for getting server version.""" return SERVER_VERSION_TIMEOUT @pytest.fixture(name="addon_setup_time", autouse=True) def mock_addon_setup_time(): """Mock add-on setup sleep time.""" with patch( "homeassistant.components.zwave_js.config_flow.ADDON_SETUP_TIMEOUT", new=0 ) as addon_setup_time: yield addon_setup_time async def test_manual(hass): """Test we create an entry with manual step.""" await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" with patch( "homeassistant.components.zwave_js.async_setup", return_value=True ) as mock_setup, patch( "homeassistant.components.zwave_js.async_setup_entry", return_value=True, ) as mock_setup_entry: result2 = await hass.config_entries.flow.async_configure( result["flow_id"], { "url": "ws://localhost:3000", }, ) await hass.async_block_till_done() assert result2["type"] == "create_entry" assert result2["title"] == "Z-Wave JS" assert result2["data"] == { "url": "ws://localhost:3000", "usb_path": None, "s0_legacy_key": None, "s2_access_control_key": None, "s2_authenticated_key": None, "s2_unauthenticated_key": None, "use_addon": False, "integration_created_addon": False, } assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 assert result2["result"].unique_id == 1234 async def slow_server_version(*args): """Simulate a slow server version.""" await asyncio.sleep(0.1) @pytest.mark.parametrize( "flow, flow_params", [ ( "flow", lambda entry: { "handler": DOMAIN, "context": {"source": config_entries.SOURCE_USER}, }, ), ("options", lambda entry: {"handler": entry.entry_id}), ], ) @pytest.mark.parametrize( "url, server_version_side_effect, server_version_timeout, error", [ ( "not-ws-url", None, SERVER_VERSION_TIMEOUT, "invalid_ws_url", ), ( "ws://localhost:3000", slow_server_version, 0, "cannot_connect", ), ( "ws://localhost:3000", Exception("Boom"), SERVER_VERSION_TIMEOUT, "unknown", ), ], ) async def test_manual_errors(hass, integration, url, error, flow, flow_params): """Test all errors with a manual set up.""" entry = integration result = await getattr(hass.config_entries, flow).async_init(**flow_params(entry)) assert result["type"] == "form" assert result["step_id"] == "manual" result = await getattr(hass.config_entries, flow).async_configure( result["flow_id"], { "url": url, }, ) assert result["type"] == "form" assert result["step_id"] == "manual" assert result["errors"] == {"base": error} async def test_manual_already_configured(hass): """Test that only one unique instance is allowed.""" entry = MockConfigEntry( domain=DOMAIN, data={ "url": "ws://localhost:3000", "use_addon": True, "integration_created_addon": True, }, title=TITLE, unique_id=1234, ) entry.add_to_hass(hass) await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "manual" result = await hass.config_entries.flow.async_configure( result["flow_id"], { "url": "ws://1.1.1.1:3001", }, ) assert result["type"] == "abort" assert result["reason"] == "already_configured" assert entry.data["url"] == "ws://1.1.1.1:3001" assert entry.data["use_addon"] is False assert entry.data["integration_created_addon"] is False @pytest.mark.parametrize("discovery_info", [{"config": ADDON_DISCOVERY_INFO}]) async def test_supervisor_discovery( hass, supervisor, addon_running, addon_options, get_addon_discovery_info ): """Test flow started from Supervisor discovery.""" await setup.async_setup_component(hass, "persistent_notification", {}) addon_options["device"] = "/test" addon_options["s0_legacy_key"] = "new123" addon_options["s2_access_control_key"] = "new456" addon_options["s2_authenticated_key"] = "new789" addon_options["s2_unauthenticated_key"] = "new987" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_HASSIO}, data=ADDON_DISCOVERY_INFO, ) with patch( "homeassistant.components.zwave_js.async_setup", return_value=True ) as mock_setup, patch( "homeassistant.components.zwave_js.async_setup_entry", return_value=True, ) as mock_setup_entry: result = await hass.config_entries.flow.async_configure(result["flow_id"], {}) await hass.async_block_till_done() assert result["type"] == "create_entry" assert result["title"] == TITLE assert result["data"] == { "url": "ws://host1:3001", "usb_path": "/test", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", "use_addon": True, "integration_created_addon": False, } assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 @pytest.mark.parametrize( "discovery_info, server_version_side_effect", [({"config": ADDON_DISCOVERY_INFO}, asyncio.TimeoutError())], ) async def test_supervisor_discovery_cannot_connect( hass, supervisor, get_addon_discovery_info ): """Test Supervisor discovery and cannot connect.""" await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_HASSIO}, data=ADDON_DISCOVERY_INFO, ) assert result["type"] == "abort" assert result["reason"] == "cannot_connect" @pytest.mark.parametrize("discovery_info", [{"config": ADDON_DISCOVERY_INFO}]) async def test_clean_discovery_on_user_create( hass, supervisor, addon_running, addon_options, get_addon_discovery_info ): """Test discovery flow is cleaned up when a user flow is finished.""" await setup.async_setup_component(hass, "persistent_notification", {}) addon_options["device"] = "/test" addon_options["s0_legacy_key"] = "new123" addon_options["s2_access_control_key"] = "new456" addon_options["s2_authenticated_key"] = "new789" addon_options["s2_unauthenticated_key"] = "new987" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_HASSIO}, data=ADDON_DISCOVERY_INFO, ) assert result["type"] == "form" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "on_supervisor" result = await hass.config_entries.flow.async_configure( result["flow_id"], {"use_addon": False} ) assert result["type"] == "form" assert result["step_id"] == "manual" with patch( "homeassistant.components.zwave_js.async_setup", return_value=True ) as mock_setup, patch( "homeassistant.components.zwave_js.async_setup_entry", return_value=True, ) as mock_setup_entry: result = await hass.config_entries.flow.async_configure( result["flow_id"], { "url": "ws://localhost:3000", }, ) await hass.async_block_till_done() assert len(hass.config_entries.flow.async_progress()) == 0 assert result["type"] == "create_entry" assert result["title"] == TITLE assert result["data"] == { "url": "ws://localhost:3000", "usb_path": None, "s0_legacy_key": None, "s2_access_control_key": None, "s2_authenticated_key": None, "s2_unauthenticated_key": None, "use_addon": False, "integration_created_addon": False, } assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 async def test_abort_discovery_with_existing_entry( hass, supervisor, addon_running, addon_options ): """Test discovery flow is aborted if an entry already exists.""" await setup.async_setup_component(hass, "persistent_notification", {}) entry = MockConfigEntry( domain=DOMAIN, data={"url": "ws://localhost:3000"}, title=TITLE, unique_id=1234 ) entry.add_to_hass(hass) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_HASSIO}, data=ADDON_DISCOVERY_INFO, ) assert result["type"] == "abort" assert result["reason"] == "already_configured" # Assert that the entry data is updated with discovery info. assert entry.data["url"] == "ws://host1:3001" async def test_abort_hassio_discovery_with_existing_flow( hass, supervisor, addon_options ): """Test hassio discovery flow is aborted when another discovery has happened.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USB}, data=USB_DISCOVERY_INFO, ) assert result["type"] == "form" assert result["step_id"] == "usb_confirm" result2 = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_HASSIO}, data=ADDON_DISCOVERY_INFO, ) assert result2["type"] == "abort" assert result2["reason"] == "already_in_progress" @pytest.mark.parametrize("discovery_info", [{"config": ADDON_DISCOVERY_INFO}]) async def test_usb_discovery( hass, supervisor, install_addon, addon_options, get_addon_discovery_info, set_addon_options, start_addon, ): """Test usb discovery success path.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USB}, data=USB_DISCOVERY_INFO, ) assert result["type"] == "form" assert result["step_id"] == "usb_confirm" result = await hass.config_entries.flow.async_configure(result["flow_id"], {}) assert result["type"] == "progress" assert result["step_id"] == "install_addon" # Make sure the flow continues when the progress task is done. await hass.async_block_till_done() result = await hass.config_entries.flow.async_configure(result["flow_id"]) assert install_addon.call_args == call(hass, "core_zwave_js") assert result["type"] == "form" assert result["step_id"] == "configure_addon" result = await hass.config_entries.flow.async_configure( result["flow_id"], { "usb_path": "/test", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", }, ) assert set_addon_options.call_args == call( hass, "core_zwave_js", { "options": { "device": "/test", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", } }, ) assert result["type"] == "progress" assert result["step_id"] == "start_addon" with patch( "homeassistant.components.zwave_js.async_setup", return_value=True ) as mock_setup, patch( "homeassistant.components.zwave_js.async_setup_entry", return_value=True, ) as mock_setup_entry: await hass.async_block_till_done() result = await hass.config_entries.flow.async_configure(result["flow_id"]) await hass.async_block_till_done() assert start_addon.call_args == call(hass, "core_zwave_js") assert result["type"] == "create_entry" assert result["title"] == TITLE assert result["data"] == { "url": "ws://host1:3001", "usb_path": "/test", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", "use_addon": True, "integration_created_addon": True, } assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 @pytest.mark.parametrize("discovery_info", [{"config": ADDON_DISCOVERY_INFO}]) async def test_usb_discovery_addon_not_running( hass, supervisor, addon_installed, addon_options, set_addon_options, start_addon, get_addon_discovery_info, ): """Test usb discovery when add-on is installed but not running.""" addon_options["device"] = "/dev/incorrect_device" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USB}, data=USB_DISCOVERY_INFO, ) assert result["type"] == "form" assert result["step_id"] == "usb_confirm" result = await hass.config_entries.flow.async_configure(result["flow_id"], {}) assert result["type"] == "form" assert result["step_id"] == "configure_addon" # Make sure the discovered usb device is preferred. data_schema = result["data_schema"] assert data_schema({}) == { "usb_path": USB_DISCOVERY_INFO["device"], "s0_legacy_key": "", "s2_access_control_key": "", "s2_authenticated_key": "", "s2_unauthenticated_key": "", } result = await hass.config_entries.flow.async_configure( result["flow_id"], { "usb_path": USB_DISCOVERY_INFO["device"], "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", }, ) assert set_addon_options.call_args == call( hass, "core_zwave_js", { "options": { "device": USB_DISCOVERY_INFO["device"], "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", } }, ) assert result["type"] == "progress" assert result["step_id"] == "start_addon" with patch( "homeassistant.components.zwave_js.async_setup", return_value=True ) as mock_setup, patch( "homeassistant.components.zwave_js.async_setup_entry", return_value=True, ) as mock_setup_entry: await hass.async_block_till_done() result = await hass.config_entries.flow.async_configure(result["flow_id"]) await hass.async_block_till_done() assert start_addon.call_args == call(hass, "core_zwave_js") assert result["type"] == "create_entry" assert result["title"] == TITLE assert result["data"] == { "url": "ws://host1:3001", "usb_path": USB_DISCOVERY_INFO["device"], "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", "use_addon": True, "integration_created_addon": False, } assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 async def test_discovery_addon_not_running( hass, supervisor, addon_installed, addon_options, set_addon_options, start_addon ): """Test discovery with add-on already installed but not running.""" addon_options["device"] = None await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_HASSIO}, data=ADDON_DISCOVERY_INFO, ) assert result["step_id"] == "hassio_confirm" assert result["type"] == "form" result = await hass.config_entries.flow.async_configure(result["flow_id"], {}) assert result["type"] == "form" assert result["step_id"] == "configure_addon" result = await hass.config_entries.flow.async_configure( result["flow_id"], { "usb_path": "/test", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", }, ) assert set_addon_options.call_args == call( hass, "core_zwave_js", { "options": { "device": "/test", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", } }, ) assert result["type"] == "progress" assert result["step_id"] == "start_addon" with patch( "homeassistant.components.zwave_js.async_setup", return_value=True ) as mock_setup, patch( "homeassistant.components.zwave_js.async_setup_entry", return_value=True, ) as mock_setup_entry: await hass.async_block_till_done() result = await hass.config_entries.flow.async_configure(result["flow_id"]) await hass.async_block_till_done() assert start_addon.call_args == call(hass, "core_zwave_js") assert result["type"] == "create_entry" assert result["title"] == TITLE assert result["data"] == { "url": "ws://host1:3001", "usb_path": "/test", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", "use_addon": True, "integration_created_addon": False, } assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 async def test_discovery_addon_not_installed( hass, supervisor, addon_installed, install_addon, addon_options, set_addon_options, start_addon, ): """Test discovery with add-on not installed.""" addon_installed.return_value["version"] = None await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_HASSIO}, data=ADDON_DISCOVERY_INFO, ) assert result["step_id"] == "hassio_confirm" assert result["type"] == "form" result = await hass.config_entries.flow.async_configure(result["flow_id"], {}) assert result["step_id"] == "install_addon" assert result["type"] == "progress" await hass.async_block_till_done() result = await hass.config_entries.flow.async_configure(result["flow_id"]) assert install_addon.call_args == call(hass, "core_zwave_js") assert result["type"] == "form" assert result["step_id"] == "configure_addon" result = await hass.config_entries.flow.async_configure( result["flow_id"], { "usb_path": "/test", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", }, ) assert set_addon_options.call_args == call( hass, "core_zwave_js", { "options": { "device": "/test", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", } }, ) assert result["type"] == "progress" assert result["step_id"] == "start_addon" with patch( "homeassistant.components.zwave_js.async_setup", return_value=True ) as mock_setup, patch( "homeassistant.components.zwave_js.async_setup_entry", return_value=True, ) as mock_setup_entry: await hass.async_block_till_done() result = await hass.config_entries.flow.async_configure(result["flow_id"]) await hass.async_block_till_done() assert start_addon.call_args == call(hass, "core_zwave_js") assert result["type"] == "create_entry" assert result["title"] == TITLE assert result["data"] == { "url": "ws://host1:3001", "usb_path": "/test", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", "use_addon": True, "integration_created_addon": True, } assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 async def test_abort_usb_discovery_with_existing_flow(hass, supervisor, addon_options): """Test usb discovery flow is aborted when another discovery has happened.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_HASSIO}, data=ADDON_DISCOVERY_INFO, ) assert result["type"] == "form" assert result["step_id"] == "hassio_confirm" result2 = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USB}, data=USB_DISCOVERY_INFO, ) assert result2["type"] == "abort" assert result2["reason"] == "already_in_progress" async def test_abort_usb_discovery_already_configured(hass, supervisor, addon_options): """Test usb discovery flow is aborted when there is an existing entry.""" entry = MockConfigEntry( domain=DOMAIN, data={"url": "ws://localhost:3000"}, title=TITLE, unique_id=1234 ) entry.add_to_hass(hass) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USB}, data=USB_DISCOVERY_INFO, ) assert result["type"] == "abort" assert result["reason"] == "already_configured" async def test_usb_discovery_requires_supervisor(hass): """Test usb discovery flow is aborted when there is no supervisor.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USB}, data=USB_DISCOVERY_INFO, ) assert result["type"] == "abort" assert result["reason"] == "discovery_requires_supervisor" async def test_usb_discovery_already_running(hass, supervisor, addon_running): """Test usb discovery flow is aborted when the addon is running.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USB}, data=USB_DISCOVERY_INFO, ) assert result["type"] == "abort" assert result["reason"] == "already_configured" @pytest.mark.parametrize( "discovery_info", [CP2652_ZIGBEE_DISCOVERY_INFO], ) async def test_abort_usb_discovery_aborts_specific_devices( hass, supervisor, addon_options, discovery_info ): """Test usb discovery flow is aborted on specific devices.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USB}, data=discovery_info, ) assert result["type"] == "abort" assert result["reason"] == "not_zwave_device" async def test_not_addon(hass, supervisor): """Test opting out of add-on on Supervisor.""" await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "on_supervisor" result = await hass.config_entries.flow.async_configure( result["flow_id"], {"use_addon": False} ) assert result["type"] == "form" assert result["step_id"] == "manual" with patch( "homeassistant.components.zwave_js.async_setup", return_value=True ) as mock_setup, patch( "homeassistant.components.zwave_js.async_setup_entry", return_value=True, ) as mock_setup_entry: result = await hass.config_entries.flow.async_configure( result["flow_id"], { "url": "ws://localhost:3000", }, ) await hass.async_block_till_done() assert result["type"] == "create_entry" assert result["title"] == TITLE assert result["data"] == { "url": "ws://localhost:3000", "usb_path": None, "s0_legacy_key": None, "s2_access_control_key": None, "s2_authenticated_key": None, "s2_unauthenticated_key": None, "use_addon": False, "integration_created_addon": False, } assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 @pytest.mark.parametrize("discovery_info", [{"config": ADDON_DISCOVERY_INFO}]) async def test_addon_running( hass, supervisor, addon_running, addon_options, get_addon_discovery_info, ): """Test add-on already running on Supervisor.""" addon_options["device"] = "/test" addon_options["s0_legacy_key"] = "new123" addon_options["s2_access_control_key"] = "new456" addon_options["s2_authenticated_key"] = "new789" addon_options["s2_unauthenticated_key"] = "new987" await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "on_supervisor" with patch( "homeassistant.components.zwave_js.async_setup", return_value=True ) as mock_setup, patch( "homeassistant.components.zwave_js.async_setup_entry", return_value=True, ) as mock_setup_entry: result = await hass.config_entries.flow.async_configure( result["flow_id"], {"use_addon": True} ) await hass.async_block_till_done() assert result["type"] == "create_entry" assert result["title"] == TITLE assert result["data"] == { "url": "ws://host1:3001", "usb_path": "/test", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", "use_addon": True, "integration_created_addon": False, } assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 @pytest.mark.parametrize( "discovery_info, discovery_info_side_effect, server_version_side_effect, " "addon_info_side_effect, abort_reason", [ ( {"config": ADDON_DISCOVERY_INFO}, HassioAPIError(), None, None, "addon_get_discovery_info_failed", ), ( {"config": ADDON_DISCOVERY_INFO}, None, asyncio.TimeoutError, None, "cannot_connect", ), ( None, None, None, None, "addon_get_discovery_info_failed", ), ( {"config": ADDON_DISCOVERY_INFO}, None, None, HassioAPIError(), "addon_info_failed", ), ], ) async def test_addon_running_failures( hass, supervisor, addon_running, addon_options, get_addon_discovery_info, abort_reason, ): """Test all failures when add-on is running.""" addon_options["device"] = "/test" addon_options["network_key"] = "abc123" await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "on_supervisor" result = await hass.config_entries.flow.async_configure( result["flow_id"], {"use_addon": True} ) assert result["type"] == "abort" assert result["reason"] == abort_reason @pytest.mark.parametrize("discovery_info", [{"config": ADDON_DISCOVERY_INFO}]) async def test_addon_running_already_configured( hass, supervisor, addon_running, addon_options, get_addon_discovery_info ): """Test that only one unique instance is allowed when add-on is running.""" addon_options["device"] = "/test_new" addon_options["s0_legacy_key"] = "new123" addon_options["s2_access_control_key"] = "new456" addon_options["s2_authenticated_key"] = "new789" addon_options["s2_unauthenticated_key"] = "new987" entry = MockConfigEntry( domain=DOMAIN, data={ "url": "ws://localhost:3000", "usb_path": "/test", "network_key": "old123", "s0_legacy_key": "old123", "s2_access_control_key": "old456", "s2_authenticated_key": "old789", "s2_unauthenticated_key": "old987", }, title=TITLE, unique_id=1234, ) entry.add_to_hass(hass) await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "on_supervisor" result = await hass.config_entries.flow.async_configure( result["flow_id"], {"use_addon": True} ) assert result["type"] == "abort" assert result["reason"] == "already_configured" assert entry.data["url"] == "ws://host1:3001" assert entry.data["usb_path"] == "/test_new" assert entry.data["s0_legacy_key"] == "new123" assert entry.data["s2_access_control_key"] == "new456" assert entry.data["s2_authenticated_key"] == "new789" assert entry.data["s2_unauthenticated_key"] == "new987" @pytest.mark.parametrize("discovery_info", [{"config": ADDON_DISCOVERY_INFO}]) async def test_addon_installed( hass, supervisor, addon_installed, addon_options, set_addon_options, start_addon, get_addon_discovery_info, ): """Test add-on already installed but not running on Supervisor.""" await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "on_supervisor" result = await hass.config_entries.flow.async_configure( result["flow_id"], {"use_addon": True} ) assert result["type"] == "form" assert result["step_id"] == "configure_addon" result = await hass.config_entries.flow.async_configure( result["flow_id"], { "usb_path": "/test", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", }, ) assert set_addon_options.call_args == call( hass, "core_zwave_js", { "options": { "device": "/test", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", } }, ) assert result["type"] == "progress" assert result["step_id"] == "start_addon" with patch( "homeassistant.components.zwave_js.async_setup", return_value=True ) as mock_setup, patch( "homeassistant.components.zwave_js.async_setup_entry", return_value=True, ) as mock_setup_entry: await hass.async_block_till_done() result = await hass.config_entries.flow.async_configure(result["flow_id"]) await hass.async_block_till_done() assert start_addon.call_args == call(hass, "core_zwave_js") assert result["type"] == "create_entry" assert result["title"] == TITLE assert result["data"] == { "url": "ws://host1:3001", "usb_path": "/test", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", "use_addon": True, "integration_created_addon": False, } assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 @pytest.mark.parametrize( "discovery_info, start_addon_side_effect", [({"config": ADDON_DISCOVERY_INFO}, HassioAPIError())], ) async def test_addon_installed_start_failure( hass, supervisor, addon_installed, addon_options, set_addon_options, start_addon, get_addon_discovery_info, ): """Test add-on start failure when add-on is installed.""" await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "on_supervisor" result = await hass.config_entries.flow.async_configure( result["flow_id"], {"use_addon": True} ) assert result["type"] == "form" assert result["step_id"] == "configure_addon" result = await hass.config_entries.flow.async_configure( result["flow_id"], { "usb_path": "/test", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", }, ) assert set_addon_options.call_args == call( hass, "core_zwave_js", { "options": { "device": "/test", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", } }, ) assert result["type"] == "progress" assert result["step_id"] == "start_addon" await hass.async_block_till_done() result = await hass.config_entries.flow.async_configure(result["flow_id"]) assert start_addon.call_args == call(hass, "core_zwave_js") assert result["type"] == "abort" assert result["reason"] == "addon_start_failed" @pytest.mark.parametrize( "discovery_info, server_version_side_effect", [ ( {"config": ADDON_DISCOVERY_INFO}, asyncio.TimeoutError, ), ( None, None, ), ], ) async def test_addon_installed_failures( hass, supervisor, addon_installed, addon_options, set_addon_options, start_addon, get_addon_discovery_info, ): """Test all failures when add-on is installed.""" await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "on_supervisor" result = await hass.config_entries.flow.async_configure( result["flow_id"], {"use_addon": True} ) assert result["type"] == "form" assert result["step_id"] == "configure_addon" result = await hass.config_entries.flow.async_configure( result["flow_id"], { "usb_path": "/test", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", }, ) assert set_addon_options.call_args == call( hass, "core_zwave_js", { "options": { "device": "/test", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", } }, ) assert result["type"] == "progress" assert result["step_id"] == "start_addon" await hass.async_block_till_done() result = await hass.config_entries.flow.async_configure(result["flow_id"]) assert start_addon.call_args == call(hass, "core_zwave_js") assert result["type"] == "abort" assert result["reason"] == "addon_start_failed" @pytest.mark.parametrize( "set_addon_options_side_effect, discovery_info", [(HassioAPIError(), {"config": ADDON_DISCOVERY_INFO})], ) async def test_addon_installed_set_options_failure( hass, supervisor, addon_installed, addon_options, set_addon_options, start_addon, get_addon_discovery_info, ): """Test all failures when add-on is installed.""" await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "on_supervisor" result = await hass.config_entries.flow.async_configure( result["flow_id"], {"use_addon": True} ) assert result["type"] == "form" assert result["step_id"] == "configure_addon" result = await hass.config_entries.flow.async_configure( result["flow_id"], { "usb_path": "/test", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", }, ) assert set_addon_options.call_args == call( hass, "core_zwave_js", { "options": { "device": "/test", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", } }, ) assert result["type"] == "abort" assert result["reason"] == "addon_set_config_failed" assert start_addon.call_count == 0 @pytest.mark.parametrize("discovery_info", [{"config": ADDON_DISCOVERY_INFO}]) async def test_addon_installed_already_configured( hass, supervisor, addon_installed, addon_options, set_addon_options, start_addon, get_addon_discovery_info, ): """Test that only one unique instance is allowed when add-on is installed.""" entry = MockConfigEntry( domain=DOMAIN, data={ "url": "ws://localhost:3000", "usb_path": "/test", "network_key": "old123", "s0_legacy_key": "old123", "s2_access_control_key": "old456", "s2_authenticated_key": "old789", "s2_unauthenticated_key": "old987", }, title=TITLE, unique_id=1234, ) entry.add_to_hass(hass) await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "on_supervisor" result = await hass.config_entries.flow.async_configure( result["flow_id"], {"use_addon": True} ) assert result["type"] == "form" assert result["step_id"] == "configure_addon" result = await hass.config_entries.flow.async_configure( result["flow_id"], { "usb_path": "/test_new", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", }, ) assert set_addon_options.call_args == call( hass, "core_zwave_js", { "options": { "device": "/test_new", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", } }, ) assert result["type"] == "progress" assert result["step_id"] == "start_addon" await hass.async_block_till_done() result = await hass.config_entries.flow.async_configure(result["flow_id"]) assert start_addon.call_args == call(hass, "core_zwave_js") assert result["type"] == "abort" assert result["reason"] == "already_configured" assert entry.data["url"] == "ws://host1:3001" assert entry.data["usb_path"] == "/test_new" assert entry.data["s0_legacy_key"] == "new123" assert entry.data["s2_access_control_key"] == "new456" assert entry.data["s2_authenticated_key"] == "new789" assert entry.data["s2_unauthenticated_key"] == "new987" @pytest.mark.parametrize("discovery_info", [{"config": ADDON_DISCOVERY_INFO}]) async def test_addon_not_installed( hass, supervisor, addon_installed, install_addon, addon_options, set_addon_options, start_addon, get_addon_discovery_info, ): """Test add-on not installed.""" addon_installed.return_value["version"] = None await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "on_supervisor" result = await hass.config_entries.flow.async_configure( result["flow_id"], {"use_addon": True} ) assert result["type"] == "progress" assert result["step_id"] == "install_addon" # Make sure the flow continues when the progress task is done. await hass.async_block_till_done() result = await hass.config_entries.flow.async_configure(result["flow_id"]) assert install_addon.call_args == call(hass, "core_zwave_js") assert result["type"] == "form" assert result["step_id"] == "configure_addon" result = await hass.config_entries.flow.async_configure( result["flow_id"], { "usb_path": "/test", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", }, ) assert set_addon_options.call_args == call( hass, "core_zwave_js", { "options": { "device": "/test", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", } }, ) assert result["type"] == "progress" assert result["step_id"] == "start_addon" with patch( "homeassistant.components.zwave_js.async_setup", return_value=True ) as mock_setup, patch( "homeassistant.components.zwave_js.async_setup_entry", return_value=True, ) as mock_setup_entry: await hass.async_block_till_done() result = await hass.config_entries.flow.async_configure(result["flow_id"]) await hass.async_block_till_done() assert start_addon.call_args == call(hass, "core_zwave_js") assert result["type"] == "create_entry" assert result["title"] == TITLE assert result["data"] == { "url": "ws://host1:3001", "usb_path": "/test", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", "use_addon": True, "integration_created_addon": True, } assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 async def test_install_addon_failure(hass, supervisor, addon_installed, install_addon): """Test add-on install failure.""" addon_installed.return_value["version"] = None install_addon.side_effect = HassioAPIError() await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "on_supervisor" result = await hass.config_entries.flow.async_configure( result["flow_id"], {"use_addon": True} ) assert result["type"] == "progress" # Make sure the flow continues when the progress task is done. await hass.async_block_till_done() result = await hass.config_entries.flow.async_configure(result["flow_id"]) assert install_addon.call_args == call(hass, "core_zwave_js") assert result["type"] == "abort" assert result["reason"] == "addon_install_failed" async def test_options_manual(hass, client, integration): """Test manual settings in options flow.""" entry = integration entry.unique_id = 1234 assert client.connect.call_count == 1 assert client.disconnect.call_count == 0 result = await hass.config_entries.options.async_init(entry.entry_id) assert result["type"] == "form" assert result["step_id"] == "manual" result = await hass.config_entries.options.async_configure( result["flow_id"], {"url": "ws://1.1.1.1:3001"} ) await hass.async_block_till_done() assert result["type"] == "create_entry" assert entry.data["url"] == "ws://1.1.1.1:3001" assert entry.data["use_addon"] is False assert entry.data["integration_created_addon"] is False assert client.connect.call_count == 2 assert client.disconnect.call_count == 1 async def test_options_manual_different_device(hass, integration): """Test options flow manual step connecting to different device.""" entry = integration entry.unique_id = 5678 result = await hass.config_entries.options.async_init(entry.entry_id) assert result["type"] == "form" assert result["step_id"] == "manual" result = await hass.config_entries.options.async_configure( result["flow_id"], {"url": "ws://1.1.1.1:3001"} ) await hass.async_block_till_done() assert result["type"] == "abort" assert result["reason"] == "different_device" async def test_options_not_addon(hass, client, supervisor, integration): """Test options flow and opting out of add-on on Supervisor.""" entry = integration entry.unique_id = 1234 assert client.connect.call_count == 1 assert client.disconnect.call_count == 0 result = await hass.config_entries.options.async_init(entry.entry_id) assert result["type"] == "form" assert result["step_id"] == "on_supervisor" result = await hass.config_entries.options.async_configure( result["flow_id"], {"use_addon": False} ) assert result["type"] == "form" assert result["step_id"] == "manual" result = await hass.config_entries.options.async_configure( result["flow_id"], { "url": "ws://localhost:3000", }, ) await hass.async_block_till_done() assert result["type"] == "create_entry" assert entry.data["url"] == "ws://localhost:3000" assert entry.data["use_addon"] is False assert entry.data["integration_created_addon"] is False assert client.connect.call_count == 2 assert client.disconnect.call_count == 1 @pytest.mark.parametrize( "discovery_info, entry_data, old_addon_options, new_addon_options, disconnect_calls", [ ( {"config": ADDON_DISCOVERY_INFO}, {}, { "device": "/test", "network_key": "old123", "s0_legacy_key": "old123", "s2_access_control_key": "old456", "s2_authenticated_key": "old789", "s2_unauthenticated_key": "old987", }, { "usb_path": "/new", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", "log_level": "info", "emulate_hardware": False, }, 0, ), ( {"config": ADDON_DISCOVERY_INFO}, {"use_addon": True}, { "device": "/test", "network_key": "old123", "s0_legacy_key": "old123", "s2_access_control_key": "old456", "s2_authenticated_key": "old789", "s2_unauthenticated_key": "old987", }, { "usb_path": "/new", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", "log_level": "info", "emulate_hardware": False, }, 1, ), ], ) async def test_options_addon_running( hass, client, supervisor, integration, addon_running, addon_options, set_addon_options, restart_addon, get_addon_discovery_info, discovery_info, entry_data, old_addon_options, new_addon_options, disconnect_calls, ): """Test options flow and add-on already running on Supervisor.""" addon_options.update(old_addon_options) entry = integration entry.unique_id = 1234 data = {**entry.data, **entry_data} hass.config_entries.async_update_entry(entry, data=data) assert entry.data["url"] == "ws://test.org" assert client.connect.call_count == 1 assert client.disconnect.call_count == 0 result = await hass.config_entries.options.async_init(entry.entry_id) assert result["type"] == "form" assert result["step_id"] == "on_supervisor" result = await hass.config_entries.options.async_configure( result["flow_id"], {"use_addon": True} ) assert result["type"] == "form" assert result["step_id"] == "configure_addon" result = await hass.config_entries.options.async_configure( result["flow_id"], new_addon_options, ) new_addon_options["device"] = new_addon_options.pop("usb_path") assert set_addon_options.call_args == call( hass, "core_zwave_js", {"options": new_addon_options}, ) assert client.disconnect.call_count == disconnect_calls assert result["type"] == "progress" assert result["step_id"] == "start_addon" await hass.async_block_till_done() result = await hass.config_entries.options.async_configure(result["flow_id"]) await hass.async_block_till_done() assert restart_addon.call_args == call(hass, "core_zwave_js") assert result["type"] == "create_entry" assert entry.data["url"] == "ws://host1:3001" assert entry.data["usb_path"] == new_addon_options["device"] assert entry.data["s0_legacy_key"] == new_addon_options["s0_legacy_key"] assert ( entry.data["s2_access_control_key"] == new_addon_options["s2_access_control_key"] ) assert ( entry.data["s2_authenticated_key"] == new_addon_options["s2_authenticated_key"] ) assert ( entry.data["s2_unauthenticated_key"] == new_addon_options["s2_unauthenticated_key"] ) assert entry.data["use_addon"] is True assert entry.data["integration_created_addon"] is False assert client.connect.call_count == 2 assert client.disconnect.call_count == 1 @pytest.mark.parametrize( "discovery_info, entry_data, old_addon_options, new_addon_options", [ ( {"config": ADDON_DISCOVERY_INFO}, {}, { "device": "/test", "network_key": "old123", "s0_legacy_key": "old123", "s2_access_control_key": "old456", "s2_authenticated_key": "old789", "s2_unauthenticated_key": "old987", "log_level": "info", "emulate_hardware": False, }, { "usb_path": "/test", "s0_legacy_key": "old123", "s2_access_control_key": "old456", "s2_authenticated_key": "old789", "s2_unauthenticated_key": "old987", "log_level": "info", "emulate_hardware": False, }, ), ], ) async def test_options_addon_running_no_changes( hass, client, supervisor, integration, addon_running, addon_options, set_addon_options, restart_addon, get_addon_discovery_info, discovery_info, entry_data, old_addon_options, new_addon_options, ): """Test options flow without changes, and add-on already running on Supervisor.""" addon_options.update(old_addon_options) entry = integration entry.unique_id = 1234 data = {**entry.data, **entry_data} hass.config_entries.async_update_entry(entry, data=data) assert entry.data["url"] == "ws://test.org" assert client.connect.call_count == 1 assert client.disconnect.call_count == 0 result = await hass.config_entries.options.async_init(entry.entry_id) assert result["type"] == "form" assert result["step_id"] == "on_supervisor" result = await hass.config_entries.options.async_configure( result["flow_id"], {"use_addon": True} ) assert result["type"] == "form" assert result["step_id"] == "configure_addon" result = await hass.config_entries.options.async_configure( result["flow_id"], new_addon_options, ) await hass.async_block_till_done() new_addon_options["device"] = new_addon_options.pop("usb_path") assert set_addon_options.call_count == 0 assert restart_addon.call_count == 0 assert result["type"] == "create_entry" assert entry.data["url"] == "ws://host1:3001" assert entry.data["usb_path"] == new_addon_options["device"] assert entry.data["s0_legacy_key"] == new_addon_options["s0_legacy_key"] assert ( entry.data["s2_access_control_key"] == new_addon_options["s2_access_control_key"] ) assert ( entry.data["s2_authenticated_key"] == new_addon_options["s2_authenticated_key"] ) assert ( entry.data["s2_unauthenticated_key"] == new_addon_options["s2_unauthenticated_key"] ) assert entry.data["use_addon"] is True assert entry.data["integration_created_addon"] is False assert client.connect.call_count == 2 assert client.disconnect.call_count == 1 async def different_device_server_version(*args): """Return server version for a device with different home id.""" return VersionInfo( driver_version="mock-driver-version", server_version="mock-server-version", home_id=5678, min_schema_version=0, max_schema_version=1, ) @pytest.mark.parametrize( "discovery_info, entry_data, old_addon_options, new_addon_options, disconnect_calls, server_version_side_effect", [ ( {"config": ADDON_DISCOVERY_INFO}, {}, { "device": "/test", "network_key": "old123", "s0_legacy_key": "old123", "s2_access_control_key": "old456", "s2_authenticated_key": "old789", "s2_unauthenticated_key": "old987", "log_level": "info", "emulate_hardware": False, }, { "usb_path": "/new", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", "log_level": "info", "emulate_hardware": False, }, 0, different_device_server_version, ), ], ) async def test_options_different_device( hass, client, supervisor, integration, addon_running, addon_options, set_addon_options, restart_addon, get_addon_discovery_info, discovery_info, entry_data, old_addon_options, new_addon_options, disconnect_calls, server_version_side_effect, ): """Test options flow and configuring a different device.""" addon_options.update(old_addon_options) entry = integration entry.unique_id = 1234 data = {**entry.data, **entry_data} hass.config_entries.async_update_entry(entry, data=data) assert entry.data["url"] == "ws://test.org" assert client.connect.call_count == 1 assert client.disconnect.call_count == 0 result = await hass.config_entries.options.async_init(entry.entry_id) assert result["type"] == "form" assert result["step_id"] == "on_supervisor" result = await hass.config_entries.options.async_configure( result["flow_id"], {"use_addon": True} ) assert result["type"] == "form" assert result["step_id"] == "configure_addon" result = await hass.config_entries.options.async_configure( result["flow_id"], new_addon_options, ) assert set_addon_options.call_count == 1 new_addon_options["device"] = new_addon_options.pop("usb_path") assert set_addon_options.call_args == call( hass, "core_zwave_js", {"options": new_addon_options}, ) assert client.disconnect.call_count == disconnect_calls assert result["type"] == "progress" assert result["step_id"] == "start_addon" await hass.async_block_till_done() assert restart_addon.call_count == 1 assert restart_addon.call_args == call(hass, "core_zwave_js") result = await hass.config_entries.options.async_configure(result["flow_id"]) await hass.async_block_till_done() # Legacy network key is not reset. old_addon_options.pop("network_key") assert set_addon_options.call_count == 2 assert set_addon_options.call_args == call( hass, "core_zwave_js", {"options": old_addon_options}, ) assert result["type"] == "progress" assert result["step_id"] == "start_addon" await hass.async_block_till_done() assert restart_addon.call_count == 2 assert restart_addon.call_args == call(hass, "core_zwave_js") result = await hass.config_entries.options.async_configure(result["flow_id"]) await hass.async_block_till_done() assert result["type"] == "abort" assert result["reason"] == "different_device" assert entry.data == data assert client.connect.call_count == 2 assert client.disconnect.call_count == 1 @pytest.mark.parametrize( "discovery_info, entry_data, old_addon_options, new_addon_options, disconnect_calls, restart_addon_side_effect", [ ( {"config": ADDON_DISCOVERY_INFO}, {}, { "device": "/test", "network_key": "old123", "s0_legacy_key": "old123", "s2_access_control_key": "old456", "s2_authenticated_key": "old789", "s2_unauthenticated_key": "old987", "log_level": "info", "emulate_hardware": False, }, { "usb_path": "/new", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", "log_level": "info", "emulate_hardware": False, }, 0, [HassioAPIError(), None], ), ( {"config": ADDON_DISCOVERY_INFO}, {}, { "device": "/test", "network_key": "old123", "s0_legacy_key": "old123", "s2_access_control_key": "old456", "s2_authenticated_key": "old789", "s2_unauthenticated_key": "old987", "log_level": "info", "emulate_hardware": False, }, { "usb_path": "/new", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", "log_level": "info", "emulate_hardware": False, }, 0, [ HassioAPIError(), HassioAPIError(), ], ), ], ) async def test_options_addon_restart_failed( hass, client, supervisor, integration, addon_running, addon_options, set_addon_options, restart_addon, get_addon_discovery_info, discovery_info, entry_data, old_addon_options, new_addon_options, disconnect_calls, restart_addon_side_effect, ): """Test options flow and add-on restart failure.""" addon_options.update(old_addon_options) entry = integration entry.unique_id = 1234 data = {**entry.data, **entry_data} hass.config_entries.async_update_entry(entry, data=data) assert entry.data["url"] == "ws://test.org" assert client.connect.call_count == 1 assert client.disconnect.call_count == 0 result = await hass.config_entries.options.async_init(entry.entry_id) assert result["type"] == "form" assert result["step_id"] == "on_supervisor" result = await hass.config_entries.options.async_configure( result["flow_id"], {"use_addon": True} ) assert result["type"] == "form" assert result["step_id"] == "configure_addon" result = await hass.config_entries.options.async_configure( result["flow_id"], new_addon_options, ) assert set_addon_options.call_count == 1 new_addon_options["device"] = new_addon_options.pop("usb_path") assert set_addon_options.call_args == call( hass, "core_zwave_js", {"options": new_addon_options}, ) assert client.disconnect.call_count == disconnect_calls assert result["type"] == "progress" assert result["step_id"] == "start_addon" await hass.async_block_till_done() assert restart_addon.call_count == 1 assert restart_addon.call_args == call(hass, "core_zwave_js") result = await hass.config_entries.options.async_configure(result["flow_id"]) await hass.async_block_till_done() # The legacy network key should not be reset. old_addon_options.pop("network_key") assert set_addon_options.call_count == 2 assert set_addon_options.call_args == call( hass, "core_zwave_js", {"options": old_addon_options}, ) assert result["type"] == "progress" assert result["step_id"] == "start_addon" await hass.async_block_till_done() assert restart_addon.call_count == 2 assert restart_addon.call_args == call(hass, "core_zwave_js") result = await hass.config_entries.options.async_configure(result["flow_id"]) await hass.async_block_till_done() assert result["type"] == "abort" assert result["reason"] == "addon_start_failed" assert entry.data == data assert client.connect.call_count == 2 assert client.disconnect.call_count == 1 @pytest.mark.parametrize( "discovery_info, entry_data, old_addon_options, new_addon_options, disconnect_calls, server_version_side_effect", [ ( {"config": ADDON_DISCOVERY_INFO}, {}, { "device": "/test", "network_key": "abc123", "s0_legacy_key": "abc123", "s2_access_control_key": "old456", "s2_authenticated_key": "old789", "s2_unauthenticated_key": "old987", "log_level": "info", "emulate_hardware": False, }, { "usb_path": "/test", "s0_legacy_key": "abc123", "s2_access_control_key": "old456", "s2_authenticated_key": "old789", "s2_unauthenticated_key": "old987", "log_level": "info", "emulate_hardware": False, }, 0, aiohttp.ClientError("Boom"), ), ], ) async def test_options_addon_running_server_info_failure( hass, client, supervisor, integration, addon_running, addon_options, set_addon_options, restart_addon, get_addon_discovery_info, discovery_info, entry_data, old_addon_options, new_addon_options, disconnect_calls, server_version_side_effect, ): """Test options flow and add-on already running with server info failure.""" addon_options.update(old_addon_options) entry = integration entry.unique_id = 1234 data = {**entry.data, **entry_data} hass.config_entries.async_update_entry(entry, data=data) assert entry.data["url"] == "ws://test.org" assert client.connect.call_count == 1 assert client.disconnect.call_count == 0 result = await hass.config_entries.options.async_init(entry.entry_id) assert result["type"] == "form" assert result["step_id"] == "on_supervisor" result = await hass.config_entries.options.async_configure( result["flow_id"], {"use_addon": True} ) assert result["type"] == "form" assert result["step_id"] == "configure_addon" result = await hass.config_entries.options.async_configure( result["flow_id"], new_addon_options, ) await hass.async_block_till_done() assert result["type"] == "abort" assert result["reason"] == "cannot_connect" assert entry.data == data assert client.connect.call_count == 2 assert client.disconnect.call_count == 1 @pytest.mark.parametrize( "discovery_info, entry_data, old_addon_options, new_addon_options, disconnect_calls", [ ( {"config": ADDON_DISCOVERY_INFO}, {}, { "device": "/test", "network_key": "abc123", "s0_legacy_key": "abc123", "s2_access_control_key": "old456", "s2_authenticated_key": "old789", "s2_unauthenticated_key": "old987", }, { "usb_path": "/new", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", "log_level": "info", "emulate_hardware": False, }, 0, ), ( {"config": ADDON_DISCOVERY_INFO}, {"use_addon": True}, { "device": "/test", "network_key": "abc123", "s0_legacy_key": "abc123", "s2_access_control_key": "old456", "s2_authenticated_key": "old789", "s2_unauthenticated_key": "old987", }, { "usb_path": "/new", "s0_legacy_key": "new123", "s2_access_control_key": "new456", "s2_authenticated_key": "new789", "s2_unauthenticated_key": "new987", "log_level": "info", "emulate_hardware": False, }, 1, ), ], ) async def test_options_addon_not_installed( hass, client, supervisor, addon_installed, install_addon, integration, addon_options, set_addon_options, start_addon, get_addon_discovery_info, discovery_info, entry_data, old_addon_options, new_addon_options, disconnect_calls, ): """Test options flow and add-on not installed on Supervisor.""" addon_installed.return_value["version"] = None addon_options.update(old_addon_options) entry = integration entry.unique_id = 1234 data = {**entry.data, **entry_data} hass.config_entries.async_update_entry(entry, data=data) assert entry.data["url"] == "ws://test.org" assert client.connect.call_count == 1 assert client.disconnect.call_count == 0 result = await hass.config_entries.options.async_init(entry.entry_id) assert result["type"] == "form" assert result["step_id"] == "on_supervisor" result = await hass.config_entries.options.async_configure( result["flow_id"], {"use_addon": True} ) assert result["type"] == "progress" assert result["step_id"] == "install_addon" # Make sure the flow continues when the progress task is done. await hass.async_block_till_done() result = await hass.config_entries.options.async_configure(result["flow_id"]) assert install_addon.call_args == call(hass, "core_zwave_js") assert result["type"] == "form" assert result["step_id"] == "configure_addon" result = await hass.config_entries.options.async_configure( result["flow_id"], new_addon_options, ) new_addon_options["device"] = new_addon_options.pop("usb_path") assert set_addon_options.call_args == call( hass, "core_zwave_js", {"options": new_addon_options}, ) assert client.disconnect.call_count == disconnect_calls assert result["type"] == "progress" assert result["step_id"] == "start_addon" await hass.async_block_till_done() assert start_addon.call_count == 1 assert start_addon.call_args == call(hass, "core_zwave_js") result = await hass.config_entries.options.async_configure(result["flow_id"]) await hass.async_block_till_done() await hass.async_block_till_done() assert result["type"] == "create_entry" assert entry.data["url"] == "ws://host1:3001" assert entry.data["usb_path"] == new_addon_options["device"] assert entry.data["s0_legacy_key"] == new_addon_options["s0_legacy_key"] assert entry.data["use_addon"] is True assert entry.data["integration_created_addon"] is True assert client.connect.call_count == 2 assert client.disconnect.call_count == 1 @pytest.mark.parametrize("discovery_info", [{"config": ADDON_DISCOVERY_INFO}]) async def test_import_addon_installed( hass, supervisor, addon_installed, addon_options, set_addon_options, start_addon, get_addon_discovery_info, ): """Test import step while add-on already installed on Supervisor.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_IMPORT}, data={"usb_path": "/test/imported", "network_key": "imported123"}, ) assert result["type"] == "form" assert result["step_id"] == "on_supervisor" result = await hass.config_entries.flow.async_configure( result["flow_id"], {"use_addon": True} ) assert result["type"] == "form" assert result["step_id"] == "configure_addon" # the default input should be the imported data default_input = result["data_schema"]({}) assert default_input == { "usb_path": "/test/imported", "s0_legacy_key": "imported123", "s2_access_control_key": "", "s2_authenticated_key": "", "s2_unauthenticated_key": "", } result = await hass.config_entries.flow.async_configure( result["flow_id"], default_input ) assert set_addon_options.call_args == call( hass, "core_zwave_js", { "options": { "device": "/test/imported", "s0_legacy_key": "imported123", "s2_access_control_key": "", "s2_authenticated_key": "", "s2_unauthenticated_key": "", } }, ) assert result["type"] == "progress" assert result["step_id"] == "start_addon" with patch( "homeassistant.components.zwave_js.async_setup", return_value=True ) as mock_setup, patch( "homeassistant.components.zwave_js.async_setup_entry", return_value=True, ) as mock_setup_entry: await hass.async_block_till_done() result = await hass.config_entries.flow.async_configure(result["flow_id"]) await hass.async_block_till_done() assert start_addon.call_args == call(hass, "core_zwave_js") assert result["type"] == "create_entry" assert result["title"] == TITLE assert result["data"] == { "url": "ws://host1:3001", "usb_path": "/test/imported", "s0_legacy_key": "imported123", "s2_access_control_key": "", "s2_authenticated_key": "", "s2_unauthenticated_key": "", "use_addon": True, "integration_created_addon": False, } assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1
31.218548
117
0.626127
e43ba1e7353c26535170cef8c1aa351a3a1b4bb8
6,901
py
Python
nncf/torch/sparsity/rb/algo.py
MaximProshin/nncf
2290d2f4cebcf6749e419dc76850e7bd8b7d8da1
[ "Apache-2.0" ]
136
2020-06-01T14:03:31.000Z
2020-10-28T06:10:50.000Z
nncf/torch/sparsity/rb/algo.py
MaximProshin/nncf
2290d2f4cebcf6749e419dc76850e7bd8b7d8da1
[ "Apache-2.0" ]
133
2020-05-26T13:48:04.000Z
2020-10-28T05:25:55.000Z
nncf/torch/sparsity/rb/algo.py
MaximProshin/nncf
2290d2f4cebcf6749e419dc76850e7bd8b7d8da1
[ "Apache-2.0" ]
36
2020-05-28T08:18:39.000Z
2020-10-27T14:46:58.000Z
""" Copyright (c) 2019-2022 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from copy import deepcopy from typing import List import torch import torch.distributed as dist from nncf import NNCFConfig from nncf.config.extractors import extract_algo_specific_config from nncf.torch.algo_selector import PT_COMPRESSION_ALGORITHMS from nncf.api.compression import CompressionStage from nncf.common.graph import NNCFNode from nncf.torch.compression_method_api import PTCompressionAlgorithmController from nncf.torch.nncf_network import NNCFNetwork from nncf.torch.sparsity.base_algo import BaseSparsityAlgoBuilder, BaseSparsityAlgoController, SparseModuleInfo from nncf.torch.sparsity.rb.layers import RBSparsifyingWeight from nncf.torch.sparsity.rb.loss import SparseLoss, SparseLossForPerLayerSparsity from nncf.torch.utils import get_model_device from nncf.torch.utils import get_world_size from nncf.common.accuracy_aware_training.training_loop import ADAPTIVE_COMPRESSION_CONTROLLERS from nncf.torch.sparsity.collector import PTSparseModelStatisticsCollector from nncf.common.sparsity.schedulers import SPARSITY_SCHEDULERS from nncf.common.schedulers import StubCompressionScheduler from nncf.common.sparsity.statistics import RBSparsityStatistics from nncf.common.statistics import NNCFStatistics @PT_COMPRESSION_ALGORITHMS.register('rb_sparsity') class RBSparsityBuilder(BaseSparsityAlgoBuilder): def create_weight_sparsifying_operation(self, target_module_node: NNCFNode, compression_lr_multiplier: float): return RBSparsifyingWeight(target_module_node.layer_attributes.get_weight_shape(), frozen=False, compression_lr_multiplier=compression_lr_multiplier) def _build_controller(self, model: NNCFNetwork) -> PTCompressionAlgorithmController: return RBSparsityController(model, self._sparsified_module_info, self.config) @ADAPTIVE_COMPRESSION_CONTROLLERS.register('pt_rb_sparsity') class RBSparsityController(BaseSparsityAlgoController): def __init__(self, target_model: NNCFNetwork, sparsified_module_info: List[SparseModuleInfo], config: NNCFConfig): super().__init__(target_model, sparsified_module_info) algo_config = extract_algo_specific_config(config, 'rb_sparsity') params = deepcopy(algo_config.get('params', {})) self._distributed = False self._mode = params.get('sparsity_level_setting_mode', 'global') self._check_sparsity_masks = params.get('check_sparsity_masks', False) sparsify_operations = [m.operand for m in self.sparsified_module_info] if self._mode == 'local': self._loss = SparseLossForPerLayerSparsity(sparsify_operations) self._scheduler = StubCompressionScheduler() else: self._loss = SparseLoss(sparsify_operations) sparsity_init = algo_config.get('sparsity_init', 0) params['sparsity_init'] = sparsity_init scheduler_cls = SPARSITY_SCHEDULERS.get(params.get('schedule', 'exponential')) self._scheduler = scheduler_cls(self, params) self.set_sparsity_level(sparsity_init) def set_sparsity_level(self, sparsity_level, target_sparsified_module_info: SparseModuleInfo = None): if target_sparsified_module_info is None: #pylint:disable=no-value-for-parameter self._loss.set_target_sparsity_loss(sparsity_level) else: sparse_op = target_sparsified_module_info.operand self._loss.set_target_sparsity_loss(sparsity_level, sparse_op) def compression_stage(self) -> CompressionStage: if self._mode == 'local': return CompressionStage.FULLY_COMPRESSED if self.scheduler.current_sparsity_level == 0: return CompressionStage.UNCOMPRESSED if self.scheduler.current_sparsity_level >= self.scheduler.target_level: return CompressionStage.FULLY_COMPRESSED return CompressionStage.PARTIALLY_COMPRESSED def freeze(self): self._loss.disable() def distributed(self): if not dist.is_initialized(): raise KeyError('Could not set distributed mode for the compression algorithm ' 'because the default process group has not been initialized.') if 'cuda' in get_model_device(self._model).type: state = torch.cuda.get_rng_state() if dist.get_backend() == dist.Backend.NCCL: state = state.cuda() torch.distributed.broadcast(state, src=0) torch.cuda.set_rng_state(state.cpu()) else: state = torch.get_rng_state() torch.distributed.broadcast(state, src=0) torch.set_rng_state(state) self._distributed = True def _check_distributed_masks(self): if not self._distributed or get_world_size() == 1: return 1 nvalues = 0 ncor_values = 0 eps = 1e-4 for minfo in self.sparsified_module_info: mask = minfo.operand.mask mask_list = [torch.empty_like(mask) for _ in range(get_world_size())] # nccl does not support gather, send, recv operations dist.all_gather(mask_list, mask) for i in range(1, len(mask_list)): rel_error = (mask_list[0] - mask_list[i]) / mask_list[0] ncor_values = ncor_values + (rel_error.abs() < eps).sum(dtype=mask.dtype) nvalues = nvalues + mask_list[i].numel() return ncor_values / nvalues def statistics(self, quickly_collected_only=False) -> NNCFStatistics: collector = PTSparseModelStatisticsCollector(self.model, self.sparsified_module_info) model_statistics = collector.collect() target_sparsity_level = self.scheduler.current_sparsity_level if self._mode == 'global' else None mean_sparse_prob = 1.0 - self.loss.mean_sparse_prob stats = RBSparsityStatistics(model_statistics, target_sparsity_level, mean_sparse_prob) nncf_stats = NNCFStatistics() nncf_stats.register('rb_sparsity', stats) return nncf_stats @property def compression_rate(self): return self._loss.target_sparsity_rate @compression_rate.setter def compression_rate(self, sparsity_level: float): self.set_sparsity_level(sparsity_level)
44.522581
114
0.7283
a72e1bb9491da0eb1b00b821f46182c9de7ec2fc
1,106
py
Python
backend/us_covid_stats/etl/load.py
dashmug/us-covid-stats
321f015cb763f0e8d62bddd866020676da732ef8
[ "MIT" ]
2
2020-11-18T19:01:01.000Z
2020-11-25T02:07:22.000Z
backend/us_covid_stats/etl/load.py
dashmug/us-covid-stats
321f015cb763f0e8d62bddd866020676da732ef8
[ "MIT" ]
565
2020-10-10T20:57:05.000Z
2021-08-04T18:05:26.000Z
backend/us_covid_stats/etl/load.py
dashmug/us-covid-stats
321f015cb763f0e8d62bddd866020676da732ef8
[ "MIT" ]
1
2021-03-24T16:08:23.000Z
2021-03-24T16:08:23.000Z
from pandas import DataFrame from us_covid_stats.infrastructure.s3 import MissingFileError from us_covid_stats.repositories.cases import CaseData, save_cases from us_covid_stats.repositories.csv import s3_csv_to_dataframe, dataframe_to_s3_csv def load_data_to_database(latest_data: DataFrame) -> str: try: old_data: DataFrame = s3_csv_to_dataframe() except MissingFileError: df = latest_data else: df = ( old_data.merge( latest_data, how="outer", on=["date", "cases", "deaths", "recoveries"], indicator=True, ) .loc[lambda x: x["_merge"] == "right_only"] .drop("_merge", axis=1) ) new_cases = ( CaseData( date=row.Index.strftime("%Y-%m-%d"), cases=row.cases, deaths=row.deaths, recoveries=row.recoveries, ) for row in df.itertuples() ) save_cases(new_cases) dataframe_to_s3_csv(latest_data) return f"Update successful. {len(df.index)} row(s) updated."
28.358974
84
0.598553
97c0eb90b923781478cd44a80b76f32947b4dd26
13,730
py
Python
src/paramiko-master/tests/test_sftp_big.py
zhanggen3714/zhanggen_audit
3913d4c0179472b5a0903ecff57ddd45a682ac20
[ "Apache-2.0" ]
1
2020-04-19T14:13:35.000Z
2020-04-19T14:13:35.000Z
src/paramiko-master/tests/test_sftp_big.py
zhanggen3714/zhanggen_audit
3913d4c0179472b5a0903ecff57ddd45a682ac20
[ "Apache-2.0" ]
null
null
null
src/paramiko-master/tests/test_sftp_big.py
zhanggen3714/zhanggen_audit
3913d4c0179472b5a0903ecff57ddd45a682ac20
[ "Apache-2.0" ]
null
null
null
# Copyright (C) 2003-2009 Robey Pointer <robeypointer@gmail.com> # # This file is part of paramiko. # # Paramiko is free software; you can redistribute it and/or modify it under the # terms of the GNU Lesser General Public License as published by the Free # Software Foundation; either version 2.1 of the License, or (at your option) # any later version. # # Paramiko is distributed in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # details. # # You should have received a copy of the GNU Lesser General Public License # along with Paramiko; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. """ some unit tests to make sure sftp works well with large files. a real actual sftp server is contacted, and a new folder is created there to do test file operations in (so no existing files will be harmed). """ import os import random import struct import sys import time import unittest from paramiko.common import o660 from .util import slow @slow class TestBigSFTP(object): def test_1_lots_of_files(self, sftp): """ create a bunch of files over the same session. """ numfiles = 100 try: for i in range(numfiles): with sftp.open( "%s/file%d.txt" % (sftp.FOLDER, i), "w", 1 ) as f: f.write("this is file #%d.\n" % i) sftp.chmod("%s/file%d.txt" % (sftp.FOLDER, i), o660) # now make sure every file is there, by creating a list of filenmes # and reading them in random order. numlist = list(range(numfiles)) while len(numlist) > 0: r = numlist[random.randint(0, len(numlist) - 1)] with sftp.open("%s/file%d.txt" % (sftp.FOLDER, r)) as f: assert f.readline() == "this is file #%d.\n" % r numlist.remove(r) finally: for i in range(numfiles): try: sftp.remove("%s/file%d.txt" % (sftp.FOLDER, i)) except: pass def test_2_big_file(self, sftp): """ write a 1MB file with no buffering. """ kblob = 1024 * b"x" start = time.time() try: with sftp.open("%s/hongry.txt" % sftp.FOLDER, "w") as f: for n in range(1024): f.write(kblob) if n % 128 == 0: sys.stderr.write(".") sys.stderr.write(" ") assert ( sftp.stat("%s/hongry.txt" % sftp.FOLDER).st_size == 1024 * 1024 ) end = time.time() sys.stderr.write("%ds " % round(end - start)) start = time.time() with sftp.open("%s/hongry.txt" % sftp.FOLDER, "r") as f: for n in range(1024): data = f.read(1024) assert data == kblob end = time.time() sys.stderr.write("%ds " % round(end - start)) finally: sftp.remove("%s/hongry.txt" % sftp.FOLDER) def test_3_big_file_pipelined(self, sftp): """ write a 1MB file, with no linefeeds, using pipelining. """ kblob = bytes().join([struct.pack(">H", n) for n in range(512)]) start = time.time() try: with sftp.open("%s/hongry.txt" % sftp.FOLDER, "wb") as f: f.set_pipelined(True) for n in range(1024): f.write(kblob) if n % 128 == 0: sys.stderr.write(".") sys.stderr.write(" ") assert ( sftp.stat("%s/hongry.txt" % sftp.FOLDER).st_size == 1024 * 1024 ) end = time.time() sys.stderr.write("%ds " % round(end - start)) start = time.time() with sftp.open("%s/hongry.txt" % sftp.FOLDER, "rb") as f: file_size = f.stat().st_size f.prefetch(file_size) # read on odd boundaries to make sure the bytes aren't getting scrambled n = 0 k2blob = kblob + kblob chunk = 629 size = 1024 * 1024 while n < size: if n + chunk > size: chunk = size - n data = f.read(chunk) offset = n % 1024 assert data == k2blob[offset : offset + chunk] n += chunk end = time.time() sys.stderr.write("%ds " % round(end - start)) finally: sftp.remove("%s/hongry.txt" % sftp.FOLDER) def test_4_prefetch_seek(self, sftp): kblob = bytes().join([struct.pack(">H", n) for n in range(512)]) try: with sftp.open("%s/hongry.txt" % sftp.FOLDER, "wb") as f: f.set_pipelined(True) for n in range(1024): f.write(kblob) if n % 128 == 0: sys.stderr.write(".") sys.stderr.write(" ") assert ( sftp.stat("%s/hongry.txt" % sftp.FOLDER).st_size == 1024 * 1024 ) start = time.time() k2blob = kblob + kblob chunk = 793 for i in range(10): with sftp.open("%s/hongry.txt" % sftp.FOLDER, "rb") as f: file_size = f.stat().st_size f.prefetch(file_size) base_offset = (512 * 1024) + 17 * random.randint( 1000, 2000 ) offsets = [base_offset + j * chunk for j in range(100)] # randomly seek around and read them out for j in range(100): offset = offsets[random.randint(0, len(offsets) - 1)] offsets.remove(offset) f.seek(offset) data = f.read(chunk) n_offset = offset % 1024 assert data == k2blob[n_offset : n_offset + chunk] offset += chunk end = time.time() sys.stderr.write("%ds " % round(end - start)) finally: sftp.remove("%s/hongry.txt" % sftp.FOLDER) def test_5_readv_seek(self, sftp): kblob = bytes().join([struct.pack(">H", n) for n in range(512)]) try: with sftp.open("%s/hongry.txt" % sftp.FOLDER, "wb") as f: f.set_pipelined(True) for n in range(1024): f.write(kblob) if n % 128 == 0: sys.stderr.write(".") sys.stderr.write(" ") assert ( sftp.stat("%s/hongry.txt" % sftp.FOLDER).st_size == 1024 * 1024 ) start = time.time() k2blob = kblob + kblob chunk = 793 for i in range(10): with sftp.open("%s/hongry.txt" % sftp.FOLDER, "rb") as f: base_offset = (512 * 1024) + 17 * random.randint( 1000, 2000 ) # make a bunch of offsets and put them in random order offsets = [base_offset + j * chunk for j in range(100)] readv_list = [] for j in range(100): o = offsets[random.randint(0, len(offsets) - 1)] offsets.remove(o) readv_list.append((o, chunk)) ret = f.readv(readv_list) for i in range(len(readv_list)): offset = readv_list[i][0] n_offset = offset % 1024 assert next(ret) == k2blob[n_offset : n_offset + chunk] end = time.time() sys.stderr.write("%ds " % round(end - start)) finally: sftp.remove("%s/hongry.txt" % sftp.FOLDER) def test_6_lots_of_prefetching(self, sftp): """ prefetch a 1MB file a bunch of times, discarding the file object without using it, to verify that paramiko doesn't get confused. """ kblob = 1024 * b"x" try: with sftp.open("%s/hongry.txt" % sftp.FOLDER, "w") as f: f.set_pipelined(True) for n in range(1024): f.write(kblob) if n % 128 == 0: sys.stderr.write(".") sys.stderr.write(" ") assert ( sftp.stat("%s/hongry.txt" % sftp.FOLDER).st_size == 1024 * 1024 ) for i in range(10): with sftp.open("%s/hongry.txt" % sftp.FOLDER, "r") as f: file_size = f.stat().st_size f.prefetch(file_size) with sftp.open("%s/hongry.txt" % sftp.FOLDER, "r") as f: file_size = f.stat().st_size f.prefetch(file_size) for n in range(1024): data = f.read(1024) assert data == kblob if n % 128 == 0: sys.stderr.write(".") sys.stderr.write(" ") finally: sftp.remove("%s/hongry.txt" % sftp.FOLDER) def test_7_prefetch_readv(self, sftp): """ verify that prefetch and readv don't conflict with each other. """ kblob = bytes().join([struct.pack(">H", n) for n in range(512)]) try: with sftp.open("%s/hongry.txt" % sftp.FOLDER, "wb") as f: f.set_pipelined(True) for n in range(1024): f.write(kblob) if n % 128 == 0: sys.stderr.write(".") sys.stderr.write(" ") assert ( sftp.stat("%s/hongry.txt" % sftp.FOLDER).st_size == 1024 * 1024 ) with sftp.open("%s/hongry.txt" % sftp.FOLDER, "rb") as f: file_size = f.stat().st_size f.prefetch(file_size) data = f.read(1024) assert data == kblob chunk_size = 793 base_offset = 512 * 1024 k2blob = kblob + kblob chunks = [ (base_offset + (chunk_size * i), chunk_size) for i in range(20) ] for data in f.readv(chunks): offset = base_offset % 1024 assert chunk_size == len(data) assert k2blob[offset : offset + chunk_size] == data base_offset += chunk_size sys.stderr.write(" ") finally: sftp.remove("%s/hongry.txt" % sftp.FOLDER) def test_8_large_readv(self, sftp): """ verify that a very large readv is broken up correctly and still returned as a single blob. """ kblob = bytes().join([struct.pack(">H", n) for n in range(512)]) try: with sftp.open("%s/hongry.txt" % sftp.FOLDER, "wb") as f: f.set_pipelined(True) for n in range(1024): f.write(kblob) if n % 128 == 0: sys.stderr.write(".") sys.stderr.write(" ") assert ( sftp.stat("%s/hongry.txt" % sftp.FOLDER).st_size == 1024 * 1024 ) with sftp.open("%s/hongry.txt" % sftp.FOLDER, "rb") as f: data = list(f.readv([(23 * 1024, 128 * 1024)])) assert len(data) == 1 data = data[0] assert len(data) == 128 * 1024 sys.stderr.write(" ") finally: sftp.remove("%s/hongry.txt" % sftp.FOLDER) def test_9_big_file_big_buffer(self, sftp): """ write a 1MB file, with no linefeeds, and a big buffer. """ mblob = 1024 * 1024 * "x" try: with sftp.open( "%s/hongry.txt" % sftp.FOLDER, "w", 128 * 1024 ) as f: f.write(mblob) assert ( sftp.stat("%s/hongry.txt" % sftp.FOLDER).st_size == 1024 * 1024 ) finally: sftp.remove("%s/hongry.txt" % sftp.FOLDER) def test_A_big_file_renegotiate(self, sftp): """ write a 1MB file, forcing key renegotiation in the middle. """ t = sftp.sock.get_transport() t.packetizer.REKEY_BYTES = 512 * 1024 k32blob = 32 * 1024 * "x" try: with sftp.open( "%s/hongry.txt" % sftp.FOLDER, "w", 128 * 1024 ) as f: for i in range(32): f.write(k32blob) assert ( sftp.stat("%s/hongry.txt" % sftp.FOLDER).st_size == 1024 * 1024 ) assert t.H != t.session_id # try to read it too. with sftp.open( "%s/hongry.txt" % sftp.FOLDER, "r", 128 * 1024 ) as f: file_size = f.stat().st_size f.prefetch(file_size) total = 0 while total < 1024 * 1024: total += len(f.read(32 * 1024)) finally: sftp.remove("%s/hongry.txt" % sftp.FOLDER) t.packetizer.REKEY_BYTES = pow(2, 30)
36.419098
88
0.46992
c70f29ef60251f0c0efd6ef145b03ad87d0b39f1
1,704
py
Python
enterprise_extensions/frequentist/chi_squared.py
achalumeau/enterprise_extensions
1b12f97c1be0edbc4c8431e6fa4d893970145cbf
[ "MIT" ]
null
null
null
enterprise_extensions/frequentist/chi_squared.py
achalumeau/enterprise_extensions
1b12f97c1be0edbc4c8431e6fa4d893970145cbf
[ "MIT" ]
null
null
null
enterprise_extensions/frequentist/chi_squared.py
achalumeau/enterprise_extensions
1b12f97c1be0edbc4c8431e6fa4d893970145cbf
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import numpy as np import scipy.linalg as sl def get_chi2(pta, xs): """Compute generalize chisq for pta: chisq = y^T (N + F phi F^T)^-1 y = y^T N^-1 y - y^T N^-1 F (F^T N^-1 F + phi^-1)^-1 F^T N^-1 y """ params = xs if isinstance(xs, dict) else pta.map_params(xs) # chisq = y^T (N + F phi F^T)^-1 y # = y^T N^-1 y - y^T N^-1 F (F^T N^-1 F + phi^-1)^-1 F^T N^-1 y TNrs = pta.get_TNr(params) TNTs = pta.get_TNT(params) phiinvs = pta.get_phiinv(params, logdet=True, method='cliques') chi2 = np.sum(ell[0] for ell in pta.get_rNr_logdet(params)) if pta._commonsignals: raise NotImplementedError("get_chi2 does not support correlated signals") else: for TNr, TNT, pl in zip(TNrs, TNTs, phiinvs): if TNr is None: continue phiinv, _ = pl Sigma = TNT + (np.diag(phiinv) if phiinv.ndim == 1 else phiinv) try: cf = sl.cho_factor(Sigma) expval = sl.cho_solve(cf, TNr) except sl.LinAlgError: # pragma: no cover return -np.inf chi2 = chi2 - np.dot(TNr, expval) return chi2 def get_reduced_chi2(pta, xs): """ Compute Generalized Reduced Chi Square for PTA using degrees of freedom (DOF), defined by dof= NTOAs - N Timing Parameters - N Model Params. """ keys = [ky for ky in pta._signal_dict.keys() if 'timing_model' in ky] chi2 = get_chi2(pta, xs) degs = np.array([pta._signal_dict[ky].get_basis().shape for ky in keys]) dof = np.sum(degs[:, 0]) - np.sum(degs[:, 1]) dof -= len(pta.param_names) return chi2/dof
30.428571
81
0.567488
59f45df39cb05ca14445af9767a5be7c4128e067
5,544
py
Python
whirlybird/server/devices/battery_monitor.py
levisaya/whirlybird
9d65933f0e978aa9c907bc6dfa338afd28c4b972
[ "MIT" ]
null
null
null
whirlybird/server/devices/battery_monitor.py
levisaya/whirlybird
9d65933f0e978aa9c907bc6dfa338afd28c4b972
[ "MIT" ]
null
null
null
whirlybird/server/devices/battery_monitor.py
levisaya/whirlybird
9d65933f0e978aa9c907bc6dfa338afd28c4b972
[ "MIT" ]
null
null
null
import time import RPi.GPIO as GPIO class BatteryMonitor(object): """ Device to read the voltage off an ADC. Specifically used to monitor the lipo voltage. """ def __init__(self, vin_max, vin_min, r1, r2, chip_select_pin=25, clock_pin=8, mosi_pin=24, miso_pin=23): """ :param vin_max: The maximum input voltage. This voltage will be interpreted as 100%. :param vin_min: The minimum input voltage. This voltage will be interpreted as 0%. :param r1: The value of the vin to vout resistor, in ohms. :param r2: The value of the vout to ground resistor, in ohms. :param chip_select_pin: Chip enable pin number on the Pi (25 or 26) :param clock_pin: Spi clock pin number on the Pi. :param mosi_pin: MOSI pin number on the Pi. :param miso_pin: MISO pin number on the Pi. :return: """ self.chip_select_pin = chip_select_pin self.clock_pin = clock_pin self.mosi_pin = mosi_pin self.miso_pin = miso_pin self.r1 = r1 self.r2 = r2 # Setup the SPI GPIO pins. GPIO.setmode(GPIO.BCM) GPIO.setup(mosi_pin, GPIO.OUT) GPIO.setup(miso_pin, GPIO.IN) GPIO.setup(clock_pin, GPIO.OUT) GPIO.setup(chip_select_pin, GPIO.OUT) # Calculate the max and min voltages we should be seeing over the voltage drop. # These values become 100% charge and 0% charge. self.vout_max = (vin_max * r1) / (r1 + r2) self.vout_min = (vin_min * r1) / (r1 + r2) def _read_adc_bits(self, num_bits=12): """ Generator to pulse the clock and read a bit. :param num_bits: The number of bits to read. :return: Generator over the bits read. """ for _ in range(num_bits): GPIO.output(self.clock_pin, True) GPIO.output(self.clock_pin, False) yield GPIO.input(self.miso_pin) def read_adc(self, percentage=True): """ :param percentage: If true, the battery percentage is also returned. :return: If percentage was False, a float representing the voltage in volts. If True, a tuple containing the voltage and the percentage. """ # Initialize the clock to low, set the chip select low to select the ADC. GPIO.output(self.chip_select_pin, True) GPIO.output(self.clock_pin, False) GPIO.output(self.chip_select_pin, False) adc_command = ([1, 1, 0] if self.chip_select_pin == 25 else [1, 1, 1]) for bit in adc_command: GPIO.output(self.mosi_pin, bit) GPIO.output(self.clock_pin, True) GPIO.output(self.clock_pin, False) # Read 12 bits off the ADC. adc_bits = [bit for bit in self._read_adc_bits()] # Sum the bit values to get the read voltage. # Note that we iterate up until the last bit, which is the null bit that isn't included in the value. # The exponent is adjusted to match. adc_voltage = sum([2**(len(adc_bits) - i - 2) * bit for i, bit in enumerate(adc_bits[:-1])]) # All done reading, flip chip select back high. GPIO.output(self.chip_select_pin, True) # Right now we adc_voltage is a integer ranging from 0 to 1023, mapping to the 0 to 3.3V output of the # voltage divider. Convert back to a voltage. read_voltage = adc_voltage * (3.3 / 1024.0) # Reverse the voltage drop to determine vin from vout. real_voltage = read_voltage * (self.r1 + self.r2) / self.r1 if percentage: # Calculate the percentage with respect to the range vout_min to vout_max. percentage = (read_voltage - self.vout_min) / (self.vout_max - self.vout_min) * 100 # Trim the percentage to 100 if we were over slightly. if percentage > 100: percentage = 100.0 return real_voltage, percentage else: return real_voltage if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='Battery monitoring loop') parser.add_argument('--vin-max', dest='vin_max', type=float, help='Maximum input voltage in volts.', required=True) parser.add_argument('--vin-min', dest='vin_min', type=float, help='Minimum input voltage in volts.', required=True) parser.add_argument('--r1', dest='r1', type=int, help='Resistor R1 value in ohms.', required=True) parser.add_argument('--r2', dest='r2', type=int, help='Resistor R2 value in ohms.', required=True) parser.add_argument('--chip-select-pin', dest='chip_select_pin', type=int, help='Pi chip select pin.', required=True, choices=[25, 26]) parser.add_argument('--polling-period', dest='polling_period', type=float, help='Time between readings, in seconds.', default=2.0) args = parser.parse_args() monitor = BatteryMonitor(args.vin_max, args.vin_min, args.r1, args.r2, args.chip_select_pin) try: while True: # read the analog pin read_adc = monitor.read_adc() print(read_adc) time.sleep(args.polling_period) except KeyboardInterrupt: pass finally: GPIO.cleanup()
39.6
119
0.602633
d128a2f96f1afa225c64d5a14414ef590a7b2500
6,220
py
Python
pbt/members.py
SamuelMarks/pbt-keras
86506e9b7f01c73636cdc0cf442d6c2c1141dae1
[ "MIT" ]
31
2019-07-29T09:20:41.000Z
2022-02-16T19:10:24.000Z
pbt/members.py
SamuelMarks/pbt-keras
86506e9b7f01c73636cdc0cf442d6c2c1141dae1
[ "MIT" ]
7
2019-09-20T07:43:47.000Z
2022-02-10T00:33:12.000Z
pbt/members.py
SamuelMarks/pbt-keras
86506e9b7f01c73636cdc0cf442d6c2c1141dae1
[ "MIT" ]
4
2019-10-05T17:27:58.000Z
2020-05-11T08:34:55.000Z
from collections import deque import numpy as np from pbt.hyperparameters import find_hyperparameters_layer, \ find_hyperparameters_model, Hyperparameter, FloatHyperparameter class Member: """Population member. Each member wraps an instance of a Keras model to tune. The member holds references to the hyperparameters of this model, allowing it to change them. Members of the same population are characterized by the behaviour of the following methods: step, eval, ready, exploit and explore. If you think the current implementation of these methods does not work for your problem, just create a subclass and override them. """ def __init__(self, build_fn, steps_ready=None, tune_lr=False): """Creates a new population member. Args: build_fn (callable): a function that should construct, compile and return a Keras model. At least one layer of the model should hold a reference to a pbt.hyperparameters.Hyperparameter. steps_ready: number of steps before the member is considered ready to go through the exploit-and-explore process. Or 'None' if the member should not explore new hyperparameters. Raises: ValueError: if the given model does not have at least one layer holding a reference to a pbt.hyperparameters.Hyperparameter. """ self.model = build_fn() self.steps_cycle = 0 self.step_ready = steps_ready self.eval_loss = np.Inf self.eval_metrics = [(metric.name, 0) for metric in self.model.metrics] self.recent_losses = deque(maxlen=10) self.hyperparameters = find_hyperparameters_model(self.model) if tune_lr: lr = FloatHyperparameter('lr', self.model.optimizer.lr) self.hyperparameters.append(lr) if not self.hyperparameters: raise ValueError('The model has no hyperparameters to tune') def loss_smoothed(self): return sum(self.recent_losses) / len(self.recent_losses) def step_on_batch(self, x, y): """Gradient descent update on a single batch of data. Args: x (numpy.ndarray): numpy array of training data. y (numpy.ndarray): numpy array of target data. Returns: double: scalar train loss. """ scalars = self.model.train_on_batch(x, y) train_loss, _ = scalars[0], scalars[1:] self.steps_cycle += 1 return train_loss def eval_on_batch(self, x, y): """Evaluates the model on a single batch of samples. Args: x (numpy.ndarray): numpy array of evaluation data. y (numpy.ndarray): numpy array of target data. Returns: double: scalar evaluation loss. """ scalars = self.model.test_on_batch(x, y) eval_loss, eval_metrics = scalars[0], scalars[1:] self.eval_loss = eval_loss for i, (metric, _) in enumerate(self.eval_metrics): self.eval_metrics[i] = (metric, eval_metrics[i]) self.recent_losses.append(self.eval_loss) self.steps_cycle += 1 return self.eval_loss def test_on_batch(self, x, y): return self.model.test_on_batch(x, y) def ready(self): """Returns if the member of the population is considered ready to go through the exploit-and-explore process. Returns: bool: True if this member is ready, False otherwise. """ if not self.step_ready or self.steps_cycle < self.step_ready: return False else: self.steps_cycle = 0 return True pass def explore(self): """Randomly perturbs hyperparameters by a factor of 0.8 or 1.2. """ for h in self.hyperparameters: h.perturb(None) def exploit(self, population): """Truncation selection. Ranks all the agents in the population by loss. If the current agent is in the bottom 20% of the population, it samples another agent uniformly from the top 20% of the population, and copies its weights and hyperparameters. Args: population (List[Member]): entire population. Returns: True if the member was altered, False otherwise. """ losses = np.array([m.eval_loss for m in population]) # Lower is better. Top 20% means percentile 20 in losses threshold_best, threshold_worst = np.percentile(losses, (20, 80)) if self.eval_loss > threshold_worst: top_performers = [m for m in population if m.eval_loss < threshold_best] if top_performers: self.replace_with(np.random.choice(top_performers)) return True else: return False def replace_with(self, member): """Replaces the hyperparameters and weights of this member with the hyperparameters and the weights of the given member. Args: member (Member): member to copy. """ assert len(self.hyperparameters) == len(member.hyperparameters), \ 'Members do not belong to the same population!' self.model.set_weights(member.model.get_weights()) for i, hyperparameter in enumerate(self.hyperparameters): hyperparameter.replace_with(member.hyperparameters[i]) def get_hyperparameter_config(self): config = {} for idx, layer in enumerate(self.model.layers): # layer_name = layer.get_config().get('name') if isinstance(layer, Hyperparameter): hyperparameters = [layer] else: hyperparameters = find_hyperparameters_layer(layer) for h in hyperparameters: for k, v in h.get_config().items(): config['{}:{}'.format(k, idx)] = v for h in self.hyperparameters: if isinstance(h, FloatHyperparameter): config.update(h.get_config()) return config def __str__(self): return str(id(self))
34.555556
80
0.623151
19dbe065aba5f910940f9497d317b24c35de905f
1,588
py
Python
api/pokeme/commands.py
bahattincinic/pokeme
ec8b63842fbe6aa4512704f304af91cd16c97ea8
[ "MIT" ]
1
2020-10-12T07:14:28.000Z
2020-10-12T07:14:28.000Z
api/pokeme/commands.py
bahattincinic/pokeme
ec8b63842fbe6aa4512704f304af91cd16c97ea8
[ "MIT" ]
null
null
null
api/pokeme/commands.py
bahattincinic/pokeme
ec8b63842fbe6aa4512704f304af91cd16c97ea8
[ "MIT" ]
null
null
null
import datetime import schedule import time import pytz from functools import partial from apistar import Command from apistar.backends.sqlalchemy_backend import ( create_tables, drop_tables, SQLAlchemyBackend ) from .models import Note, User from .utils import send_push_notification from .settings import settings def check_notification(session): print("Check Notification Schedule...") now = datetime.datetime.now( pytz.timezone(settings['TIMEZONE']) ).strftime('%Y-%m-%d %H:%M:%S') notes = session.query(Note).join(User, User.id == Note.user_id).filter( Note.is_notification_send is False, Note.reminder_date.isnot(None), Note.reminder_date < now ) for note in notes.all(): status = send_push_notification( title=note.title, text=f"Pokeme {note.title} notification", device_token=note.device_token, credential=settings['FIREBASE_TOKEN'] ) if status: note.is_notification_send = True session.commit() print("%s note notification was sent" % note.id) def check_schedule(backend: SQLAlchemyBackend): session = backend.Session() try: schedule.every(1).minutes.do(partial( check_notification, session=session )) while True: schedule.run_pending() time.sleep(1) finally: session.close() commands = [ Command('schedule', check_schedule), Command('create_tables', create_tables), Command('drop_tables', drop_tables) ]
24.8125
75
0.653652
9df5a0d44f0918c075c982605d430047f4b9a6ca
25,881
py
Python
trackintel_modified.py
dlaumer/ipa2020
ca71bc5c38d4a08543b12715968b31eb067948e9
[ "MIT" ]
null
null
null
trackintel_modified.py
dlaumer/ipa2020
ca71bc5c38d4a08543b12715968b31eb067948e9
[ "MIT" ]
null
null
null
trackintel_modified.py
dlaumer/ipa2020
ca71bc5c38d4a08543b12715968b31eb067948e9
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Trackintel This file is mostly refered to the trackintel package of MIE lab except 1 - a maximum time threshold is added to detect stay points in extract_staypoints_ipa 2 - the final stay point is treated as the stay point if it meets the minimum time threshold in extract_staypoints_ipa """ import numpy as np import pandas as pd import geopandas as gpd from shapely.geometry import LineString from shapely.geometry import Point from sklearn.cluster import DBSCAN from trackintel.geogr.distances import haversine_dist def extract_staypoints_ipa(positionfixes, method='sliding', dist_threshold=50, time_threshold=5 * 60, timemax_threshold=12 * 3600, epsilon=100, dist_func=haversine_dist, eps=None, num_samples=None): """Extract staypoints from positionfixes. This function modifies the positionfixes and adds staypoint_ids. Parameters ---------- num_samples eps positionfixes : GeoDataFrame The positionfixes have to follow the standard definition for positionfixes DataFrames. method : {'sliding' or 'dbscan'} The following methods are available to extract staypoints from positionfixes: 'sliding' : Applies a sliding window over the data. 'dbscan' : Uses the DBSCAN algorithm to find clusters of staypoints. dist_threshold : float The distance threshold for the 'sliding' method, i.e., how far someone has to travel to generate a new staypoint. time_threshold : float The time threshold for the 'sliding' method in seconds, i.e., how long someone has to stay within an area to consider it as a staypoint. epsilon : float The epsilon for the 'dbscan' method. dist_func : function A function that expects (lon_1, lat_1, lon_2, lat_2) and computes a distance in meters. Returns ------- GeoDataFrame A new GeoDataFrame containing points where a person spent some time. Examples -------- >>> psfs.as_positionfixes.extract_staypoints('sliding', dist_threshold=100) References ---------- Zheng, Y. (2015). Trajectory data mining: an overview. ACM Transactions on Intelligent Systems and Technology (TIST), 6(3), 29. Li, Q., Zheng, Y., Xie, X., Chen, Y., Liu, W., & Ma, W. Y. (2008, November). Mining user similarity based on location history. In Proceedings of the 16th ACM SIGSPATIAL international conference on Advances in geographic information systems (p. 34). ACM. """ if 'id' not in positionfixes.columns: positionfixes['id'] = positionfixes.index ret_staypoints = pd.DataFrame(columns=['started_at', 'finished_at', 'geom', 'id']) if method == 'sliding': # Algorithm from Li et al. (2008). For details, please refer to the paper. staypoint_id_counter = 0 positionfixes['staypoint_id'] = -1 # this marks all that are not part of a SP for user_id_this in positionfixes['user_id'].unique(): positionfixes_user_this = positionfixes.loc[ positionfixes['user_id'] == user_id_this] # this is no copy pfs = positionfixes_user_this.sort_values('tracked_at').to_dict('records') num_pfs = len(pfs) posfix_staypoint_matching = {} i = 0 j = 0 # is zero because it gets incremented in the beginning while i < num_pfs: if j == num_pfs: # We're at the end, this can happen if in the last "bin", # the dist_threshold is never crossed anymore. break else: j = i + 1 while j < num_pfs: dist = haversine_dist(pfs[i]['geom'].x, pfs[i]['geom'].y, pfs[j]['geom'].x, pfs[j]['geom'].y) if (dist > dist_threshold): delta_t = (pfs[j]['tracked_at'] - pfs[i]['tracked_at']).total_seconds() # Compare with the maximum time threshold if (delta_t > time_threshold): if (delta_t > timemax_threshold): hrdiff = [] hrsum = 0 for x in range(i,j): hrdiff.append((pfs[x+1]['tracked_at']-pfs[x]['tracked_at']).total_seconds()) i0 = i for mid in range(0,j-i0): hrsum += hrdiff[mid] if(hrsum > timemax_threshold or mid == j-i0-1): staypoint = {} staypoint['user_id'] = pfs[i]['user_id'] staypoint['geom'] = Point(np.mean([pfs[k]['geom'].x for k in range(i, i0+mid+1)]), np.mean([pfs[k]['geom'].y for k in range(i, i0+mid+1)])) if 'elevation' in pfs[i].keys(): staypoint['elevation'] = np.mean([pfs[k]['elevation'] for k in range(i, i0+mid+1)]) if 'velocity' in pfs[i].keys(): staypoint['velocity'] = np.mean([pfs[k]['velocity'] for k in range(i, i0+mid+1)]) staypoint['started_at'] = pfs[i]['tracked_at'] staypoint['finished_at'] = pfs[i0+mid+1]['tracked_at'] # TODO: should this not be j-1? because j is not part of the staypoint. DB: Changed staypoint['id'] = staypoint_id_counter # store matching posfix_staypoint_matching[staypoint_id_counter] = [pfs[k]['id'] for k in range(i, i0+mid+1)] staypoint_id_counter += 1 # add staypoint ret_staypoints = ret_staypoints.append(staypoint, ignore_index=True) i = i0+mid+1 hrsum = 0 else: staypoint = {} staypoint['user_id'] = pfs[i]['user_id'] staypoint['geom'] = Point(np.mean([pfs[k]['geom'].x for k in range(i, j)]), np.mean([pfs[k]['geom'].y for k in range(i, j)])) if 'elevation' in pfs[i].keys(): staypoint['elevation'] = np.mean([pfs[k]['elevation'] for k in range(i, j)]) if 'velocity' in pfs[i].keys(): staypoint['velocity'] = np.mean([pfs[k]['velocity'] for k in range(i, j)]) staypoint['started_at'] = pfs[i]['tracked_at'] staypoint['finished_at'] = pfs[j]['tracked_at'] # TODO: should this not be j-1? because j is not part of the staypoint. DB: Changed staypoint['id'] = staypoint_id_counter # store matching posfix_staypoint_matching[staypoint_id_counter] = [pfs[k]['id'] for k in range(i, j)] staypoint_id_counter += 1 # add staypoint ret_staypoints = ret_staypoints.append(staypoint, ignore_index=True) # TODO Discussion: Is this last point really a staypoint? As we don't know if the # person "moves on" afterwards... i = j break # If the last point meets the minimum time threshold, then it is added to the stay point if (j == num_pfs - 1): delta_t = (pfs[j]['tracked_at'] - pfs[i]['tracked_at']).total_seconds() if (delta_t > time_threshold): if (delta_t > timemax_threshold): hrdiff = [] hrsum = 0 for x in range(i,j): hrdiff.append((pfs[x+1]['tracked_at']-pfs[x]['tracked_at']).total_seconds()) i0 = i for mid in range(0,j-i0): hrsum += hrdiff[mid] if(hrsum > timemax_threshold or mid == j-i0-1): staypoint = {} staypoint['user_id'] = pfs[i]['user_id'] staypoint['geom'] = Point(np.mean([pfs[k]['geom'].x for k in range(i, i0+mid+1)]), np.mean([pfs[k]['geom'].y for k in range(i, i0+mid+1)])) if 'elevation' in pfs[i].keys(): staypoint['elevation'] = np.mean([pfs[k]['elevation'] for k in range(i, i0+mid+1)]) if 'velocity' in pfs[i].keys(): staypoint['velocity'] = np.mean([pfs[k]['velocity'] for k in range(i, i0+mid+1)]) staypoint['started_at'] = pfs[i]['tracked_at'] staypoint['finished_at'] = pfs[i0+mid+1]['tracked_at'] # TODO: should this not be j-1? because j is not part of the staypoint. DB: Changed staypoint['id'] = staypoint_id_counter # store matching posfix_staypoint_matching[staypoint_id_counter] = [pfs[k]['id'] for k in range(i, i0+mid+1)] staypoint_id_counter += 1 # add staypoint ret_staypoints = ret_staypoints.append(staypoint, ignore_index=True) i = i0+mid+1 hrsum = 0 else: staypoint = {} staypoint['user_id'] = pfs[i]['user_id'] staypoint['geom'] = Point(np.mean([pfs[k]['geom'].x for k in range(i, j+1)]), np.mean([pfs[k]['geom'].y for k in range(i, j+1)])) if 'elevation' in pfs[i].keys(): staypoint['elevation'] = np.mean([pfs[k]['elevation'] for k in range(i, j+1)]) if 'velocity' in pfs[i].keys(): staypoint['velocity'] = np.mean([pfs[k]['velocity'] for k in range(i, j+1)]) staypoint['started_at'] = pfs[i]['tracked_at'] staypoint['finished_at'] = pfs[j]['tracked_at'] # TODO: should this not be j-1? because j is not part of the staypoint. DB: Changed. staypoint['id'] = staypoint_id_counter # store matching posfix_staypoint_matching[staypoint_id_counter] = [pfs[k]['id'] for k in range(i, j+1)] # posfix_staypoint_matching[staypoint_id_counter] = [ # j] # rather [k for k in range(i, j)]? staypoint_id_counter += 1 ret_staypoints = ret_staypoints.append(staypoint, ignore_index=True) j = j + 1 # add matching to original positionfixes (for every user) for staypoints_id, posfix_idlist in posfix_staypoint_matching.items(): # note that we use .loc because above we have saved the id # of the positionfixes not thier absolut position positionfixes.loc[posfix_idlist, 'staypoint_id'] = staypoints_id elif method == 'dbscan': # TODO: Make sure time information is included in the clustering! # time information is in the column 'started at', however the user should be able to # adjust the distance metric e.g. chebychev db = DBSCAN(eps=epsilon, min_samples=num_samples) for user_id_this in positionfixes['user_id'].unique(): user_positionfixes = positionfixes[positionfixes['user_id'] == user_id_this] # this is not a copy! # TODO: enable transformations to temporary (metric) system transform_crs = None if transform_crs is not None: pass # get staypoint matching coordinates = np.array([[g.x, g.y] for g in user_positionfixes['geom']]) labels = db.fit_predict(coordinates) # add positionfixes - staypoint matching to original positionfixes positionfixes.loc[user_positionfixes.index, 'staypoint_id'] = labels # create staypoints as the center of the grouped positionfixes grouped_df = positionfixes.groupby(['user_id', 'staypoint_id']) for combined_id, group in grouped_df: user_id, staypoint_id = combined_id if int(staypoint_id) != -1: staypoint = {} staypoint['user_id'] = user_id staypoint['id'] = staypoint_id # point geometry of staypoint staypoint['geom'] = Point(group.geometry.x.mean(), group.geometry.y.mean()) ret_staypoints = ret_staypoints.append(staypoint, ignore_index=True) ret_staypoints = gpd.GeoDataFrame(ret_staypoints, geometry='geom', crs=positionfixes.crs) ret_staypoints['id'] = ret_staypoints['id'].astype('int') return ret_staypoints def extract_triplegs_ipa(positionfixes, staypoints=None, *args, **kwargs): """Extract triplegs from positionfixes. A tripleg is (for now) defined as anything that happens between two consecutive staypoints. **Attention**: This function requires either a column ``staypoint_id`` on the positionfixes or passing some staypoints that correspond to the positionfixes! This means you usually should call ``extract_staypoints()`` first. This function modifies the positionfixes and adds a ``tripleg_id``. Parameters ---------- positionfixes : GeoDataFrame The positionfixes have to follow the standard definition for positionfixes DataFrames. staypoints : GeoDataFrame, optional The staypoints (corresponding to the positionfixes). If this is not passed, the positionfixes need staypoint_ids associated with them. Returns ------- GeoDataFrame A new GeoDataFrame containing triplegs. Examples -------- >>> psfs.as_positionfixes.extract_triplegs(staypoints) """ # Check that data adheres to contract. if staypoints is None and len(positionfixes['staypoint_id'].unique()) < 2: raise ValueError("If staypoints is not defined, positionfixes must have more than 1 staypoint_id.") # if staypoints is not None: # raise NotImplementedError("Splitting up positionfixes by timestamp is not available yet. " + \ # "Use extract_staypoints and the thus generated staypoint_ids.") ret_triplegs = pd.DataFrame(columns=['id', 'user_id', 'started_at', 'finished_at', 'geom']) curr_tripleg_id = 0 # Do this for each user. for user_id_this in positionfixes['user_id'].unique(): positionfixes_user_this = positionfixes.loc[ positionfixes['user_id'] == user_id_this] # this is no copy pfs = positionfixes_user_this.sort_values('tracked_at') generated_triplegs = [] # Case 1: Staypoints exist and are connected to positionfixes by user id if staypoints is not None and "staypoint_id" in pfs: stps = staypoints.loc[staypoints['user_id'] == user_id_this].sort_values('started_at') stps = stps.to_dict('records') for stp1, stp2 in zip(list(stps), list(stps)[1:]): # Get all positionfixes that lie between these two staypoints. # get the last posfix of the first staypoint index_first_posfix_tl = pfs[pfs.staypoint_id == stp1['id']].index[-1] position_first_posfix_tl = pfs.index.get_loc(index_first_posfix_tl) # get first posfix of the second staypoint index_last_posfix_tl = pfs[pfs.staypoint_id == stp2['id']].index[0] position_last_posfix_tl = pfs.index.get_loc(index_last_posfix_tl) pfs_tripleg = pfs.iloc[position_first_posfix_tl:position_last_posfix_tl + 1] # include every positionfix that brings you closer to the center # of the staypoint posfix_before, started_at = propagate_tripleg(pfs, stp1, position_first_posfix_tl, direction=-1) posfix_before = posfix_before[::-1] # add geometry of staypoint and correct the direction posfix_after, finished_at = propagate_tripleg(pfs, stp2, position_last_posfix_tl, direction=1) coords = list(pfs_tripleg['geom'].apply(lambda r: (r.x, r.y))) coords = posfix_before + coords + posfix_after if len(coords) > 1: generated_triplegs.append({ 'id': curr_tripleg_id, 'user_id': user_id_this, 'started_at': started_at, # pfs_tripleg['tracked_at'].iloc[0], 'finished_at': finished_at, # pfs_tripleg['tracked_at'].iloc[-1], 'geom': LineString(coords), 'start_stp': stp1['id'], 'end_stp': stp2['id'] }) curr_tripleg_id += 1 # Case 2: Staypoints exist but there is no user_id given # TODO Not so efficient, always matching on the time (as things are sorted anyways). elif staypoints is not None: stps = staypoints.loc[staypoints['user_id'] == user_id_this].sort_values('started_at') stps = stps.to_dict('records') for stp1, stp2 in zip(list(stps), list(stps)[1:]): # Get all positionfixes that lie between these two staypoints. pfs_tripleg = pfs[(stp1['finished_at'] <= pfs['tracked_at']) & \ (pfs['tracked_at'] <= stp2['started_at'])].sort_values('tracked_at') coords = list(pfs_tripleg['geom'].apply(lambda r: (r.x, r.y))) if len(coords) > 1: generated_triplegs.append({ 'id': curr_tripleg_id, 'user_id': user_id_this, 'started_at': pfs_tripleg['tracked_at'].iloc[0], 'finished_at': pfs_tripleg['tracked_at'].iloc[-1], 'geom': LineString(list(pfs_tripleg['geom'].apply(lambda r: (r.x, r.y)))) }) curr_tripleg_id += 1 # case 3: Only positionfixes with staypoint id for tripleg generation else: prev_pf = None curr_tripleg = { 'id': curr_tripleg_id, 'user_id': user_id_this, 'started_at': pfs['tracked_at'].iloc[0], 'finished_at': None, 'coords': [] } for idx, pf in pfs.iterrows(): if prev_pf is not None and prev_pf['staypoint_id'] == -1 and pf['staypoint_id'] != -1: # This tripleg ends. pfs.loc[idx, 'tripleg_id'] = curr_tripleg_id curr_tripleg['finished_at'] = pf['tracked_at'] curr_tripleg['coords'].append((pf['geom'].x, pf['geom'].y)) elif (prev_pf is not None and prev_pf['staypoint_id'] != -1 and pf['staypoint_id'] == -1): # A new tripleg starts (due to a staypoint_id switch from -1 to x). if len(curr_tripleg['coords']) > 1: curr_tripleg['geom'] = LineString(curr_tripleg['coords']) del curr_tripleg['coords'] generated_triplegs.append(curr_tripleg) curr_tripleg_id += 1 curr_tripleg = {'id': curr_tripleg_id, 'user_id': user_id_this, 'started_at': None, 'finished_at': None, 'coords': []} prev_pf['tripleg_id'] = curr_tripleg_id pfs.loc[idx, 'tripleg_id'] = curr_tripleg_id curr_tripleg['started_at'] = pf['tracked_at'] curr_tripleg['coords'].append((pf['geom'].x, pf['geom'].y)) elif prev_pf is not None and prev_pf['staypoint_id'] != -1 and \ pf['staypoint_id'] != -1 and prev_pf['staypoint_id'] != pf['staypoint_id']: # A new tripleg starts (due to a staypoint_id switch from x to y). pfs.loc[idx, 'tripleg_id'] = curr_tripleg_id curr_tripleg['finished_at'] = pf['tracked_at'] curr_tripleg['coords'].append((pf['geom'].x, pf['geom'].y)) if len(curr_tripleg['coords']) > 1: curr_tripleg['geom'] = LineString(curr_tripleg['coords']) del curr_tripleg['coords'] generated_triplegs.append(curr_tripleg) curr_tripleg_id += 1 curr_tripleg = { 'id': curr_tripleg_id, 'user_id': user_id_this, 'started_at': None, 'finished_at': None, 'coords': [] } prev_pf['tripleg_id'] = curr_tripleg_id pfs.loc[idx, 'tripleg_id'] = curr_tripleg_id curr_tripleg['started_at'] = pf['tracked_at'] curr_tripleg['coords'].append((pf['geom'].x, pf['geom'].y)) elif prev_pf is not None and prev_pf['staypoint_id'] != -1 and \ prev_pf['staypoint_id'] == pf['staypoint_id']: # This is still "at the same staypoint". Do nothing. pass else: pfs.loc[idx, 'tripleg_id'] = curr_tripleg_id curr_tripleg['coords'].append((pf['geom'].x, pf['geom'].y)) prev_pf = pf ret_triplegs = ret_triplegs.append(generated_triplegs) ret_triplegs = gpd.GeoDataFrame(ret_triplegs, geometry='geom', crs=positionfixes.crs) ret_triplegs['id'] = ret_triplegs['id'].astype('int') return ret_triplegs def propagate_tripleg(pfs, stp, position_edge_posfix_tl, direction=1): # propagate backwards at start posfix_to_add = [] i = direction if (position_edge_posfix_tl + i) >= len(pfs) or (position_edge_posfix_tl + i) < 0: return posfix_to_add, pfs.iloc[position_edge_posfix_tl].tracked_at geom_stp = stp['geom'] geom_edge_posfix_tl = pfs.iloc[position_edge_posfix_tl].geom geom_candidate_posfix = pfs.iloc[position_edge_posfix_tl + i].geom dist_edge_psf_stp = geom_stp.distance(geom_edge_posfix_tl) # new posfix must be closer to the center of the staypoint then the current one cond1 = (geom_stp.distance(geom_candidate_posfix) < dist_edge_psf_stp) # new posfix must be closer then the center of the staypoint to qualify cond2 = (geom_edge_posfix_tl.distance(geom_candidate_posfix) < dist_edge_psf_stp) closer = cond1 and cond2 while (closer): if (position_edge_posfix_tl + i + direction) > len(pfs) or (position_edge_posfix_tl + i + direction) < 0: break # insert new posfix posfix_to_add.append((geom_candidate_posfix.x, geom_candidate_posfix.y)) # update variables geom_edge_posfix_tl = pfs.iloc[position_edge_posfix_tl + i,:].geom i = i + direction geom_candidate_posfix = pfs.iloc[position_edge_posfix_tl + i,:].geom # update closer dist_edge_psf_stp = geom_stp.distance(geom_edge_posfix_tl) cond1 = (geom_stp.distance(geom_candidate_posfix) < dist_edge_psf_stp) cond2 = (geom_edge_posfix_tl.distance(geom_candidate_posfix) < dist_edge_psf_stp) closer = cond1 and cond2 tracked_at = pfs.iloc[position_edge_posfix_tl + i].tracked_at # posfix_to_add.append((geom_stp.x, geom_stp.y)) return posfix_to_add, tracked_at
53.583851
198
0.520575
abd466032857caa3c62309be4570b75b23f3e595
1,829
py
Python
test/data/statshelp.py
jackscott/python-statlib
168d5b9c879cf64ce93862aadff4c9e0253f007c
[ "MIT" ]
null
null
null
test/data/statshelp.py
jackscott/python-statlib
168d5b9c879cf64ce93862aadff4c9e0253f007c
[ "MIT" ]
null
null
null
test/data/statshelp.py
jackscott/python-statlib
168d5b9c879cf64ce93862aadff4c9e0253f007c
[ "MIT" ]
1
2019-12-19T14:31:52.000Z
2019-12-19T14:31:52.000Z
from statlib.stats import * from statlib import pstat def dopaired(x,y): """\nRuns all paired stats that are possible to run on the data provided. Assumes 2 columns to the input data. Format: dopaired(x,y) Returns: appropriate statistcs\n""" t,p = ttest_ind(x,y) print '\nAssuming 2 independent samples ...' print 'Independent samples t-test: ', round(t,3),round(p,3) if len(x)>20 or len(y)>20: z,p = ranksums(x,y) print '\nAssuming 2 independent samples, NONPARAMETRIC, n>20 ...' print 'Rank Sums test: ', round(z,3),round(p,3) else: u,p = mannwhitneyu(x,y) print '\nAssuming 2 independent samples, NONPARAMETRIC, ns<20 ...' print 'Mann-Whitney U-test: ', round(u,3),round(p,3) if len(pstat.unique(x))==2: r,p = pointbiserialr(x,y) print '\nIf x contains a dichotomous variable ...' print 'Point Biserial r: ',round(r,3),round(p,3) if len(x) == len(y): t, p = ttest_rel(x,y) print '\nAssuming 2 related samples ...' print 'Related samples t-test: ', round(t,3),round(p,3) t, p = wilcoxont(x,y) print '\nAssuming 2 related samples, NONPARAMETRIC ...' print 'Wilcoxon T-test: ', round(t,3),round(p,3) m,b,r,p,see = linregress(x,y) print '\nLinear regression for continuous variables ...' print 'Slope,intercept,r,prob,stderr estimate: ',round(m,3),round(b,3),round(r,3),round(p,3),round(see,3) r,p = pearsonr(x,y) print '\nCorrelation for continuous variables ...' print "Pearson's r: ",round(r,3),round(p,3) r,p = spearmanr(x,y) print '\nCorrelation for ranked variables ...' print "Spearman's r: ", round(r,3), round(p,3)
36.58
114
0.581739
03b34cf4e36df6fa5c2fba716aff62516f5928a2
2,618
py
Python
Tools/LyTestTools/tests/unit/test_launcher_mac.py
BreakerOfThings/o3de
f4c59f868c726470ec910623facd836047d059c3
[ "Apache-2.0", "MIT" ]
1
2022-03-28T08:06:58.000Z
2022-03-28T08:06:58.000Z
Tools/LyTestTools/tests/unit/test_launcher_mac.py
BreakerOfThings/o3de
f4c59f868c726470ec910623facd836047d059c3
[ "Apache-2.0", "MIT" ]
null
null
null
Tools/LyTestTools/tests/unit/test_launcher_mac.py
BreakerOfThings/o3de
f4c59f868c726470ec910623facd836047d059c3
[ "Apache-2.0", "MIT" ]
null
null
null
""" Copyright (c) Contributors to the Open 3D Engine Project. For complete copyright and license terms please see the LICENSE at the root of this distribution. SPDX-License-Identifier: Apache-2.0 OR MIT Unit Tests for mac launcher-wrappers: all are sanity code-path tests, since no interprocess actions should be taken """ import os import pytest import unittest.mock as mock import ly_test_tools.launchers pytestmark = pytest.mark.SUITE_smoke class TestMacLauncher(object): def test_Construct_TestDoubles_MacLauncherCreated(self): under_test = ly_test_tools.launchers.MacLauncher(mock.MagicMock(), ["some_args"]) assert isinstance(under_test, ly_test_tools.launchers.Launcher) assert isinstance(under_test, ly_test_tools.launchers.MacLauncher) def test_BinaryPath_DummyPath_AddPathToApp(self): dummy_path = "dummy_workspace_path" dummy_project = "dummy_project" mock_workspace = mock.MagicMock() mock_workspace.paths.build_directory.return_value = dummy_path mock_workspace.project = dummy_project launcher = ly_test_tools.launchers.MacLauncher(mock_workspace, ["some_args"]) under_test = launcher.binary_path() expected = os.path.join(f'{dummy_path}', f"{dummy_project}.GameLauncher.app", "Contents", "MacOS", f"{dummy_project}.GameLauncher") assert under_test == expected @mock.patch('ly_test_tools.launchers.MacLauncher.binary_path', mock.MagicMock) @mock.patch('subprocess.Popen') def test_Launch_DummyArgs_ArgsPassedToPopen(self, mock_subprocess): dummy_args = ["some_args"] launcher = ly_test_tools.launchers.MacLauncher(mock.MagicMock(), dummy_args) launcher.launch() mock_subprocess.assert_called_once() name, args, kwargs = mock_subprocess.mock_calls[0] unpacked_args = args[0] # args is a list inside a tuple assert len(dummy_args) > 0, "accidentally removed dummy_args" for expected_arg in dummy_args: assert expected_arg in unpacked_args @mock.patch('ly_test_tools.launchers.MacLauncher.is_alive') def test_Kill_MockAliveFalse_SilentSuccess(self, mock_alive): mock_alive.return_value = False mock_proc = mock.MagicMock() launcher = ly_test_tools.launchers.MacLauncher(mock.MagicMock(), ["dummy"]) launcher._proc = mock_proc launcher.stop() mock_proc.kill.assert_called_once() mock_alive.assert_called()
37.942029
115
0.695569
aa00cf234d9ee69b9ec95ab6020b59348f174aa4
94,602
py
Python
pandas/tests/frame/test_constructors.py
big-o/pandas
a2178065fd5eecc2562f8c3725ac09573b687022
[ "BSD-3-Clause" ]
2
2019-11-13T18:20:29.000Z
2020-04-18T02:58:39.000Z
pandas/tests/frame/test_constructors.py
big-o/pandas
a2178065fd5eecc2562f8c3725ac09573b687022
[ "BSD-3-Clause" ]
null
null
null
pandas/tests/frame/test_constructors.py
big-o/pandas
a2178065fd5eecc2562f8c3725ac09573b687022
[ "BSD-3-Clause" ]
1
2020-01-31T14:26:04.000Z
2020-01-31T14:26:04.000Z
from collections import OrderedDict, abc from datetime import datetime, timedelta import functools import itertools import numpy as np import numpy.ma as ma import numpy.ma.mrecords as mrecords import pytest from pandas.compat import PY36, is_platform_little_endian from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas.core.dtypes.common import is_integer_dtype import pandas as pd from pandas import ( Categorical, DataFrame, Index, MultiIndex, RangeIndex, Series, Timedelta, Timestamp, date_range, isna, ) import pandas.util.testing as tm MIXED_FLOAT_DTYPES = ["float16", "float32", "float64"] MIXED_INT_DTYPES = [ "uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64", ] class TestDataFrameConstructors: @pytest.mark.parametrize( "constructor", [ lambda: DataFrame(), lambda: DataFrame(None), lambda: DataFrame({}), lambda: DataFrame(()), lambda: DataFrame([]), lambda: DataFrame((_ for _ in [])), lambda: DataFrame(range(0)), lambda: DataFrame(data=None), lambda: DataFrame(data={}), lambda: DataFrame(data=()), lambda: DataFrame(data=[]), lambda: DataFrame(data=(_ for _ in [])), lambda: DataFrame(data=range(0)), ], ) def test_empty_constructor(self, constructor): expected = DataFrame() result = constructor() assert len(result.index) == 0 assert len(result.columns) == 0 tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "emptylike,expected_index,expected_columns", [ ([[]], RangeIndex(1), RangeIndex(0)), ([[], []], RangeIndex(2), RangeIndex(0)), ([(_ for _ in [])], RangeIndex(1), RangeIndex(0)), ], ) def test_emptylike_constructor(self, emptylike, expected_index, expected_columns): expected = DataFrame(index=expected_index, columns=expected_columns) result = DataFrame(emptylike) tm.assert_frame_equal(result, expected) def test_constructor_mixed(self, float_string_frame): index, data = tm.getMixedTypeDict() # TODO(wesm), incomplete test? indexed_frame = DataFrame(data, index=index) # noqa unindexed_frame = DataFrame(data) # noqa assert float_string_frame["foo"].dtype == np.object_ def test_constructor_cast_failure(self): foo = DataFrame({"a": ["a", "b", "c"]}, dtype=np.float64) assert foo["a"].dtype == object # GH 3010, constructing with odd arrays df = DataFrame(np.ones((4, 2))) # this is ok df["foo"] = np.ones((4, 2)).tolist() # this is not ok msg = "Wrong number of items passed 2, placement implies 1" with pytest.raises(ValueError, match=msg): df["test"] = np.ones((4, 2)) # this is ok df["foo2"] = np.ones((4, 2)).tolist() def test_constructor_dtype_copy(self): orig_df = DataFrame({"col1": [1.0], "col2": [2.0], "col3": [3.0]}) new_df = pd.DataFrame(orig_df, dtype=float, copy=True) new_df["col1"] = 200.0 assert orig_df["col1"][0] == 1.0 def test_constructor_dtype_nocast_view(self): df = DataFrame([[1, 2]]) should_be_view = DataFrame(df, dtype=df[0].dtype) should_be_view[0][0] = 99 assert df.values[0, 0] == 99 should_be_view = DataFrame(df.values, dtype=df[0].dtype) should_be_view[0][0] = 97 assert df.values[0, 0] == 97 def test_constructor_dtype_list_data(self): df = DataFrame([[1, "2"], [None, "a"]], dtype=object) assert df.loc[1, 0] is None assert df.loc[0, 1] == "2" def test_constructor_list_frames(self): # see gh-3243 result = DataFrame([DataFrame()]) assert result.shape == (1, 0) result = DataFrame([DataFrame(dict(A=np.arange(5)))]) assert isinstance(result.iloc[0, 0], DataFrame) def test_constructor_mixed_dtypes(self): def _make_mixed_dtypes_df(typ, ad=None): if typ == "int": dtypes = MIXED_INT_DTYPES arrays = [np.array(np.random.rand(10), dtype=d) for d in dtypes] elif typ == "float": dtypes = MIXED_FLOAT_DTYPES arrays = [ np.array(np.random.randint(10, size=10), dtype=d) for d in dtypes ] for d, a in zip(dtypes, arrays): assert a.dtype == d if ad is None: ad = dict() ad.update({d: a for d, a in zip(dtypes, arrays)}) return DataFrame(ad) def _check_mixed_dtypes(df, dtypes=None): if dtypes is None: dtypes = MIXED_FLOAT_DTYPES + MIXED_INT_DTYPES for d in dtypes: if d in df: assert df.dtypes[d] == d # mixed floating and integer coexist in the same frame df = _make_mixed_dtypes_df("float") _check_mixed_dtypes(df) # add lots of types df = _make_mixed_dtypes_df("float", dict(A=1, B="foo", C="bar")) _check_mixed_dtypes(df) # GH 622 df = _make_mixed_dtypes_df("int") _check_mixed_dtypes(df) def test_constructor_complex_dtypes(self): # GH10952 a = np.random.rand(10).astype(np.complex64) b = np.random.rand(10).astype(np.complex128) df = DataFrame({"a": a, "b": b}) assert a.dtype == df.a.dtype assert b.dtype == df.b.dtype def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 df = DataFrame({"A": ["x", None]}, dtype=string_dtype) result = df.isna() expected = DataFrame({"A": [False, True]}) tm.assert_frame_equal(result, expected) assert df.iloc[1, 0] is None df = DataFrame({"A": ["x", np.nan]}, dtype=string_dtype) assert np.isnan(df.iloc[1, 0]) def test_constructor_rec(self, float_frame): rec = float_frame.to_records(index=False) rec.dtype.names = list(rec.dtype.names)[::-1] index = float_frame.index df = DataFrame(rec) tm.assert_index_equal(df.columns, pd.Index(rec.dtype.names)) df2 = DataFrame(rec, index=index) tm.assert_index_equal(df2.columns, pd.Index(rec.dtype.names)) tm.assert_index_equal(df2.index, index) rng = np.arange(len(rec))[::-1] df3 = DataFrame(rec, index=rng, columns=["C", "B"]) expected = DataFrame(rec, index=rng).reindex(columns=["C", "B"]) tm.assert_frame_equal(df3, expected) def test_constructor_bool(self): df = DataFrame({0: np.ones(10, dtype=bool), 1: np.zeros(10, dtype=bool)}) assert df.values.dtype == np.bool_ def test_constructor_overflow_int64(self): # see gh-14881 values = np.array([2 ** 64 - i for i in range(1, 10)], dtype=np.uint64) result = DataFrame({"a": values}) assert result["a"].dtype == np.uint64 # see gh-2355 data_scores = [ (6311132704823138710, 273), (2685045978526272070, 23), (8921811264899370420, 45), (17019687244989530680, 270), (9930107427299601010, 273), ] dtype = [("uid", "u8"), ("score", "u8")] data = np.zeros((len(data_scores),), dtype=dtype) data[:] = data_scores df_crawls = DataFrame(data) assert df_crawls["uid"].dtype == np.uint64 @pytest.mark.parametrize( "values", [ np.array([2 ** 64], dtype=object), np.array([2 ** 65]), [2 ** 64 + 1], np.array([-2 ** 63 - 4], dtype=object), np.array([-2 ** 64 - 1]), [-2 ** 65 - 2], ], ) def test_constructor_int_overflow(self, values): # see gh-18584 value = values[0] result = DataFrame(values) assert result[0].dtype == object assert result[0][0] == value def test_constructor_ordereddict(self): import random nitems = 100 nums = list(range(nitems)) random.shuffle(nums) expected = ["A{i:d}".format(i=i) for i in nums] df = DataFrame(OrderedDict(zip(expected, [[0]] * nitems))) assert expected == list(df.columns) def test_constructor_dict(self): datetime_series = tm.makeTimeSeries(nper=30) # test expects index shifted by 5 datetime_series_short = tm.makeTimeSeries(nper=30)[5:] frame = DataFrame({"col1": datetime_series, "col2": datetime_series_short}) # col2 is padded with NaN assert len(datetime_series) == 30 assert len(datetime_series_short) == 25 tm.assert_series_equal(frame["col1"], datetime_series.rename("col1")) exp = pd.Series( np.concatenate([[np.nan] * 5, datetime_series_short.values]), index=datetime_series.index, name="col2", ) tm.assert_series_equal(exp, frame["col2"]) frame = DataFrame( {"col1": datetime_series, "col2": datetime_series_short}, columns=["col2", "col3", "col4"], ) assert len(frame) == len(datetime_series_short) assert "col1" not in frame assert isna(frame["col3"]).all() # Corner cases assert len(DataFrame()) == 0 # mix dict and array, wrong size - no spec for which error should raise # first with pytest.raises(ValueError): DataFrame({"A": {"a": "a", "b": "b"}, "B": ["a", "b", "c"]}) # Length-one dict micro-optimization frame = DataFrame({"A": {"1": 1, "2": 2}}) tm.assert_index_equal(frame.index, pd.Index(["1", "2"])) # empty dict plus index idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx) assert frame.index is idx # empty dict with index and columns idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx, columns=idx) assert frame.index is idx assert frame.columns is idx assert len(frame._series) == 3 # with dict of empty list and Series frame = DataFrame({"A": [], "B": []}, columns=["A", "B"]) tm.assert_index_equal(frame.index, Index([], dtype=np.int64)) # GH 14381 # Dict with None value frame_none = DataFrame(dict(a=None), index=[0]) frame_none_list = DataFrame(dict(a=[None]), index=[0]) assert frame_none._get_value(0, "a") is None assert frame_none_list._get_value(0, "a") is None tm.assert_frame_equal(frame_none, frame_none_list) # GH10856 # dict with scalar values should raise error, even if columns passed msg = "If using all scalar values, you must pass an index" with pytest.raises(ValueError, match=msg): DataFrame({"a": 0.7}) with pytest.raises(ValueError, match=msg): DataFrame({"a": 0.7}, columns=["a"]) @pytest.mark.parametrize("scalar", [2, np.nan, None, "D"]) def test_constructor_invalid_items_unused(self, scalar): # No error if invalid (scalar) value is in fact not used: result = DataFrame({"a": scalar}, columns=["b"]) expected = DataFrame(columns=["b"]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [2, np.nan, None, float("nan")]) def test_constructor_dict_nan_key(self, value): # GH 18455 cols = [1, value, 3] idx = ["a", value] values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = DataFrame(data).sort_values(1).sort_values("a", axis=1) expected = DataFrame( np.arange(6, dtype="int64").reshape(2, 3), index=idx, columns=cols ) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values("a", axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [np.nan, None, float("nan")]) def test_constructor_dict_nan_tuple_key(self, value): # GH 18455 cols = Index([(11, 21), (value, 22), (13, value)]) idx = Index([("a", value), (value, 2)]) values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = DataFrame(data).sort_values((11, 21)).sort_values(("a", value), axis=1) expected = DataFrame( np.arange(6, dtype="int64").reshape(2, 3), index=idx, columns=cols ) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values(("a", value), axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.skipif(not PY36, reason="Insertion order for Python>=3.6") def test_constructor_dict_order_insertion(self): datetime_series = tm.makeTimeSeries(nper=30) datetime_series_short = tm.makeTimeSeries(nper=25) # GH19018 # initialization ordering: by insertion order if python>= 3.6 d = {"b": datetime_series_short, "a": datetime_series} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list("ba")) tm.assert_frame_equal(frame, expected) @pytest.mark.skipif(PY36, reason="order by value for Python<3.6") def test_constructor_dict_order_by_values(self): datetime_series = tm.makeTimeSeries(nper=30) datetime_series_short = tm.makeTimeSeries(nper=25) # GH19018 # initialization ordering: by value if python<3.6 d = {"b": datetime_series_short, "a": datetime_series} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list("ab")) tm.assert_frame_equal(frame, expected) def test_constructor_multi_index(self): # GH 4078 # construction error with mi and all-nan frame tuples = [(2, 3), (3, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() tuples = [(3, 3), (2, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() def test_constructor_2d_index(self): # GH 25416 # handling of 2d index in construction df = pd.DataFrame([[1]], columns=[[1]], index=[1, 2]) expected = pd.DataFrame( [1, 1], index=pd.Int64Index([1, 2], dtype="int64"), columns=pd.MultiIndex(levels=[[1]], codes=[[0]]), ) tm.assert_frame_equal(df, expected) df = pd.DataFrame([[1]], columns=[[1]], index=[[1, 2]]) expected = pd.DataFrame( [1, 1], index=pd.MultiIndex(levels=[[1, 2]], codes=[[0, 1]]), columns=pd.MultiIndex(levels=[[1]], codes=[[0]]), ) tm.assert_frame_equal(df, expected) def test_constructor_error_msgs(self): msg = "Empty data passed with indices specified." # passing an empty array with columns specified. with pytest.raises(ValueError, match=msg): DataFrame(np.empty(0), columns=list("abc")) msg = "Mixing dicts with non-Series may lead to ambiguous ordering." # mix dict and array, wrong size with pytest.raises(ValueError, match=msg): DataFrame({"A": {"a": "a", "b": "b"}, "B": ["a", "b", "c"]}) # wrong size ndarray, GH 3105 msg = r"Shape of passed values is \(4, 3\), indices imply \(3, 3\)" with pytest.raises(ValueError, match=msg): DataFrame( np.arange(12).reshape((4, 3)), columns=["foo", "bar", "baz"], index=pd.date_range("2000-01-01", periods=3), ) arr = np.array([[4, 5, 6]]) msg = r"Shape of passed values is \(1, 3\), indices imply \(1, 4\)" with pytest.raises(ValueError, match=msg): DataFrame(index=[0], columns=range(0, 4), data=arr) arr = np.array([4, 5, 6]) msg = r"Shape of passed values is \(3, 1\), indices imply \(1, 4\)" with pytest.raises(ValueError, match=msg): DataFrame(index=[0], columns=range(0, 4), data=arr) # higher dim raise exception with pytest.raises(ValueError, match="Must pass 2-d input"): DataFrame(np.zeros((3, 3, 3)), columns=["A", "B", "C"], index=[1]) # wrong size axis labels msg = "Shape of passed values " r"is \(2, 3\), indices " r"imply \(1, 3\)" with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=["A", "B", "C"], index=[1]) msg = "Shape of passed values " r"is \(2, 3\), indices " r"imply \(2, 2\)" with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=["A", "B"], index=[1, 2]) # gh-26429 msg = "2 columns passed, passed data had 10 columns" with pytest.raises(ValueError, match=msg): DataFrame((range(10), range(10, 20)), columns=("ones", "twos")) msg = "If using all scalar values, you must pass an index" with pytest.raises(ValueError, match=msg): DataFrame({"a": False, "b": True}) def test_constructor_with_embedded_frames(self): # embedded data frames df1 = DataFrame({"a": [1, 2, 3], "b": [3, 4, 5]}) df2 = DataFrame([df1, df1 + 10]) df2.dtypes str(df2) result = df2.loc[0, 0] tm.assert_frame_equal(result, df1) result = df2.loc[1, 0] tm.assert_frame_equal(result, df1 + 10) def test_constructor_subclass_dict(self, float_frame): # Test for passing dict subclass to constructor data = { "col1": tm.TestSubDict((x, 10.0 * x) for x in range(10)), "col2": tm.TestSubDict((x, 20.0 * x) for x in range(10)), } df = DataFrame(data) refdf = DataFrame({col: dict(val.items()) for col, val in data.items()}) tm.assert_frame_equal(refdf, df) data = tm.TestSubDict(data.items()) df = DataFrame(data) tm.assert_frame_equal(refdf, df) # try with defaultdict from collections import defaultdict data = {} float_frame["B"][:10] = np.nan for k, v in float_frame.items(): dct = defaultdict(dict) dct.update(v.to_dict()) data[k] = dct frame = DataFrame(data) expected = frame.reindex(index=float_frame.index) tm.assert_frame_equal(float_frame, expected) def test_constructor_dict_block(self): expected = np.array([[4.0, 3.0, 2.0, 1.0]]) df = DataFrame( {"d": [4.0], "c": [3.0], "b": [2.0], "a": [1.0]}, columns=["d", "c", "b", "a"], ) tm.assert_numpy_array_equal(df.values, expected) def test_constructor_dict_cast(self): # cast float tests test_data = {"A": {"1": 1, "2": 2}, "B": {"1": "1", "2": "2", "3": "3"}} frame = DataFrame(test_data, dtype=float) assert len(frame) == 3 assert frame["B"].dtype == np.float64 assert frame["A"].dtype == np.float64 frame = DataFrame(test_data) assert len(frame) == 3 assert frame["B"].dtype == np.object_ assert frame["A"].dtype == np.float64 # can't cast to float test_data = { "A": dict(zip(range(20), tm.makeStringIndex(20))), "B": dict(zip(range(15), np.random.randn(15))), } frame = DataFrame(test_data, dtype=float) assert len(frame) == 20 assert frame["A"].dtype == np.object_ assert frame["B"].dtype == np.float64 def test_constructor_dict_dont_upcast(self): d = {"Col1": {"Row1": "A String", "Row2": np.nan}} df = DataFrame(d) assert isinstance(df["Col1"]["Row2"], float) dm = DataFrame([[1, 2], ["a", "b"]], index=[1, 2], columns=[1, 2]) assert isinstance(dm[1][1], int) def test_constructor_dict_of_tuples(self): # GH #1491 data = {"a": (1, 2, 3), "b": (4, 5, 6)} result = DataFrame(data) expected = DataFrame({k: list(v) for k, v in data.items()}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_dict_of_ranges(self): # GH 26356 data = {"a": range(3), "b": range(3, 6)} result = DataFrame(data) expected = DataFrame({"a": [0, 1, 2], "b": [3, 4, 5]}) tm.assert_frame_equal(result, expected) def test_constructor_dict_of_iterators(self): # GH 26349 data = {"a": iter(range(3)), "b": reversed(range(3))} result = DataFrame(data) expected = DataFrame({"a": [0, 1, 2], "b": [2, 1, 0]}) tm.assert_frame_equal(result, expected) def test_constructor_dict_of_generators(self): # GH 26349 data = {"a": (i for i in (range(3))), "b": (i for i in reversed(range(3)))} result = DataFrame(data) expected = DataFrame({"a": [0, 1, 2], "b": [2, 1, 0]}) tm.assert_frame_equal(result, expected) def test_constructor_dict_multiindex(self): def check(result, expected): return tm.assert_frame_equal( result, expected, check_dtype=True, check_index_type=True, check_column_type=True, check_names=True, ) d = { ("a", "a"): {("i", "i"): 0, ("i", "j"): 1, ("j", "i"): 2}, ("b", "a"): {("i", "i"): 6, ("i", "j"): 5, ("j", "i"): 4}, ("b", "c"): {("i", "i"): 7, ("i", "j"): 8, ("j", "i"): 9}, } _d = sorted(d.items()) df = DataFrame(d) expected = DataFrame( [x[1] for x in _d], index=MultiIndex.from_tuples([x[0] for x in _d]) ).T expected.index = MultiIndex.from_tuples(expected.index) check(df, expected) d["z"] = {"y": 123.0, ("i", "i"): 111, ("i", "j"): 111, ("j", "i"): 111} _d.insert(0, ("z", d["z"])) expected = DataFrame( [x[1] for x in _d], index=Index([x[0] for x in _d], tupleize_cols=False) ).T expected.index = Index(expected.index, tupleize_cols=False) df = DataFrame(d) df = df.reindex(columns=expected.columns, index=expected.index) check(df, expected) def test_constructor_dict_datetime64_index(self): # GH 10160 dates_as_str = ["1984-02-19", "1988-11-06", "1989-12-03", "1990-03-15"] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(dates_as_str)} data_datetime64 = create_data(np.datetime64) data_datetime = create_data(lambda x: datetime.strptime(x, "%Y-%m-%d")) data_Timestamp = create_data(Timestamp) expected = DataFrame( [ {0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}, ], index=[Timestamp(dt) for dt in dates_as_str], ) result_datetime64 = DataFrame(data_datetime64) result_datetime = DataFrame(data_datetime) result_Timestamp = DataFrame(data_Timestamp) tm.assert_frame_equal(result_datetime64, expected) tm.assert_frame_equal(result_datetime, expected) tm.assert_frame_equal(result_Timestamp, expected) def test_constructor_dict_timedelta64_index(self): # GH 10160 td_as_int = [1, 2, 3, 4] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(td_as_int)} data_timedelta64 = create_data(lambda x: np.timedelta64(x, "D")) data_timedelta = create_data(lambda x: timedelta(days=x)) data_Timedelta = create_data(lambda x: Timedelta(x, "D")) expected = DataFrame( [ {0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}, ], index=[Timedelta(td, "D") for td in td_as_int], ) result_timedelta64 = DataFrame(data_timedelta64) result_timedelta = DataFrame(data_timedelta) result_Timedelta = DataFrame(data_Timedelta) tm.assert_frame_equal(result_timedelta64, expected) tm.assert_frame_equal(result_timedelta, expected) tm.assert_frame_equal(result_Timedelta, expected) def test_constructor_period(self): # PeriodIndex a = pd.PeriodIndex(["2012-01", "NaT", "2012-04"], freq="M") b = pd.PeriodIndex(["2012-02-01", "2012-03-01", "NaT"], freq="D") df = pd.DataFrame({"a": a, "b": b}) assert df["a"].dtype == a.dtype assert df["b"].dtype == b.dtype # list of periods df = pd.DataFrame( {"a": a.astype(object).tolist(), "b": b.astype(object).tolist()} ) assert df["a"].dtype == a.dtype assert df["b"].dtype == b.dtype def test_nested_dict_frame_constructor(self): rng = pd.period_range("1/1/2000", periods=5) df = DataFrame(np.random.randn(10, 5), columns=rng) data = {} for col in df.columns: for row in df.index: data.setdefault(col, {})[row] = df._get_value(row, col) result = DataFrame(data, columns=rng) tm.assert_frame_equal(result, df) data = {} for col in df.columns: for row in df.index: data.setdefault(row, {})[col] = df._get_value(row, col) result = DataFrame(data, index=rng).T tm.assert_frame_equal(result, df) def _check_basic_constructor(self, empty): # mat: 2d matrix with shape (3, 2) to input. empty - makes sized # objects mat = empty((2, 3), dtype=float) # 2-D input frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 # 1-D input frame = DataFrame(empty((3,)), columns=["A"], index=[1, 2, 3]) assert len(frame.index) == 3 assert len(frame.columns) == 1 # cast type frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # wrong size axis labels msg = r"Shape of passed values is \(2, 3\), indices imply \(1, 3\)" with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=["A", "B", "C"], index=[1]) msg = r"Shape of passed values is \(2, 3\), indices imply \(2, 2\)" with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=["A", "B"], index=[1, 2]) # higher dim raise exception with pytest.raises(ValueError, match="Must pass 2-d input"): DataFrame(empty((3, 3, 3)), columns=["A", "B", "C"], index=[1]) # automatic labeling frame = DataFrame(mat) tm.assert_index_equal(frame.index, pd.Int64Index(range(2))) tm.assert_index_equal(frame.columns, pd.Int64Index(range(3))) frame = DataFrame(mat, index=[1, 2]) tm.assert_index_equal(frame.columns, pd.Int64Index(range(3))) frame = DataFrame(mat, columns=["A", "B", "C"]) tm.assert_index_equal(frame.index, pd.Int64Index(range(2))) # 0-length axis frame = DataFrame(empty((0, 3))) assert len(frame.index) == 0 frame = DataFrame(empty((3, 0))) assert len(frame.columns) == 0 def test_constructor_ndarray(self): self._check_basic_constructor(np.ones) frame = DataFrame(["foo", "bar"], index=[0, 1], columns=["A"]) assert len(frame) == 2 def test_constructor_maskedarray(self): self._check_basic_constructor(ma.masked_all) # Check non-masked values mat = ma.masked_all((2, 3), dtype=float) mat[0, 0] = 1.0 mat[1, 2] = 2.0 frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2]) assert 1.0 == frame["A"][1] assert 2.0 == frame["C"][2] # what is this even checking?? mat = ma.masked_all((2, 3), dtype=float) frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2]) assert np.all(~np.asarray(frame == frame)) def test_constructor_maskedarray_nonfloat(self): # masked int promoted to float mat = ma.masked_all((2, 3), dtype=int) # 2-D input frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2], dtype=np.float64) assert frame.values.dtype == np.float64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=["A", "B", "C"], index=[1, 2]) assert 1 == frame["A"][1] assert 2 == frame["C"][2] # masked np.datetime64 stays (use NaT as null) mat = ma.masked_all((2, 3), dtype="M8[ns]") # 2-D input frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert isna(frame).values.all() # cast type frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=["A", "B", "C"], index=[1, 2]) assert 1 == frame["A"].view("i8")[1] assert 2 == frame["C"].view("i8")[2] # masked bool promoted to object mat = ma.masked_all((2, 3), dtype=bool) # 2-D input frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2], dtype=object) assert frame.values.dtype == object # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = True mat2[1, 2] = False frame = DataFrame(mat2, columns=["A", "B", "C"], index=[1, 2]) assert frame["A"][1] is True assert frame["C"][2] is False def test_constructor_maskedarray_hardened(self): # Check numpy masked arrays with hard masks -- from GH24574 mat_hard = ma.masked_all((2, 2), dtype=float).harden_mask() result = pd.DataFrame(mat_hard, columns=["A", "B"], index=[1, 2]) expected = pd.DataFrame( {"A": [np.nan, np.nan], "B": [np.nan, np.nan]}, columns=["A", "B"], index=[1, 2], dtype=float, ) tm.assert_frame_equal(result, expected) # Check case where mask is hard but no data are masked mat_hard = ma.ones((2, 2), dtype=float).harden_mask() result = pd.DataFrame(mat_hard, columns=["A", "B"], index=[1, 2]) expected = pd.DataFrame( {"A": [1.0, 1.0], "B": [1.0, 1.0]}, columns=["A", "B"], index=[1, 2], dtype=float, ) tm.assert_frame_equal(result, expected) def test_constructor_maskedrecarray_dtype(self): # Ensure constructor honors dtype data = np.ma.array( np.ma.zeros(5, dtype=[("date", "<f8"), ("price", "<f8")]), mask=[False] * 5 ) data = data.view(mrecords.mrecarray) result = pd.DataFrame(data, dtype=int) expected = pd.DataFrame(np.zeros((5, 2), dtype=int), columns=["date", "price"]) tm.assert_frame_equal(result, expected) def test_constructor_mrecarray(self): # Ensure mrecarray produces frame identical to dict of masked arrays # from GH3479 assert_fr_equal = functools.partial( tm.assert_frame_equal, check_index_type=True, check_column_type=True, check_frame_type=True, ) arrays = [ ("float", np.array([1.5, 2.0])), ("int", np.array([1, 2])), ("str", np.array(["abc", "def"])), ] for name, arr in arrays[:]: arrays.append( ("masked1_" + name, np.ma.masked_array(arr, mask=[False, True])) ) arrays.append(("masked_all", np.ma.masked_all((2,)))) arrays.append(("masked_none", np.ma.masked_array([1.0, 2.5], mask=False))) # call assert_frame_equal for all selections of 3 arrays for comb in itertools.combinations(arrays, 3): names, data = zip(*comb) mrecs = mrecords.fromarrays(data, names=names) # fill the comb comb = {k: (v.filled() if hasattr(v, "filled") else v) for k, v in comb} expected = DataFrame(comb, columns=names) result = DataFrame(mrecs) assert_fr_equal(result, expected) # specify columns expected = DataFrame(comb, columns=names[::-1]) result = DataFrame(mrecs, columns=names[::-1]) assert_fr_equal(result, expected) # specify index expected = DataFrame(comb, columns=names, index=[1, 2]) result = DataFrame(mrecs, index=[1, 2]) assert_fr_equal(result, expected) def test_constructor_corner_shape(self): df = DataFrame(index=[]) assert df.values.shape == (0, 0) @pytest.mark.parametrize( "data, index, columns, dtype, expected", [ (None, list(range(10)), ["a", "b"], object, np.object_), (None, None, ["a", "b"], "int64", np.dtype("int64")), (None, list(range(10)), ["a", "b"], int, np.dtype("float64")), ({}, None, ["foo", "bar"], None, np.object_), ({"b": 1}, list(range(10)), list("abc"), int, np.dtype("float64")), ], ) def test_constructor_dtype(self, data, index, columns, dtype, expected): df = DataFrame(data, index, columns, dtype) assert df.values.dtype == expected def test_constructor_scalar_inference(self): data = {"int": 1, "bool": True, "float": 3.0, "complex": 4j, "object": "foo"} df = DataFrame(data, index=np.arange(10)) assert df["int"].dtype == np.int64 assert df["bool"].dtype == np.bool_ assert df["float"].dtype == np.float64 assert df["complex"].dtype == np.complex128 assert df["object"].dtype == np.object_ def test_constructor_arrays_and_scalars(self): df = DataFrame({"a": np.random.randn(10), "b": True}) exp = DataFrame({"a": df["a"].values, "b": [True] * 10}) tm.assert_frame_equal(df, exp) with pytest.raises(ValueError, match="must pass an index"): DataFrame({"a": False, "b": True}) def test_constructor_DataFrame(self, float_frame): df = DataFrame(float_frame) tm.assert_frame_equal(df, float_frame) df_casted = DataFrame(float_frame, dtype=np.int64) assert df_casted.values.dtype == np.int64 def test_constructor_more(self, float_frame): # used to be in test_matrix.py arr = np.random.randn(10) dm = DataFrame(arr, columns=["A"], index=np.arange(10)) assert dm.values.ndim == 2 arr = np.random.randn(0) dm = DataFrame(arr) assert dm.values.ndim == 2 assert dm.values.ndim == 2 # no data specified dm = DataFrame(columns=["A", "B"], index=np.arange(10)) assert dm.values.shape == (10, 2) dm = DataFrame(columns=["A", "B"]) assert dm.values.shape == (0, 2) dm = DataFrame(index=np.arange(10)) assert dm.values.shape == (10, 0) # can't cast mat = np.array(["foo", "bar"], dtype=object).reshape(2, 1) with pytest.raises(ValueError, match="cast"): DataFrame(mat, index=[0, 1], columns=[0], dtype=float) dm = DataFrame(DataFrame(float_frame._series)) tm.assert_frame_equal(dm, float_frame) # int cast dm = DataFrame( {"A": np.ones(10, dtype=int), "B": np.ones(10, dtype=np.float64)}, index=np.arange(10), ) assert len(dm.columns) == 2 assert dm.values.dtype == np.float64 def test_constructor_empty_list(self): df = DataFrame([], index=[]) expected = DataFrame(index=[]) tm.assert_frame_equal(df, expected) # GH 9939 df = DataFrame([], columns=["A", "B"]) expected = DataFrame({}, columns=["A", "B"]) tm.assert_frame_equal(df, expected) # Empty generator: list(empty_gen()) == [] def empty_gen(): return yield df = DataFrame(empty_gen(), columns=["A", "B"]) tm.assert_frame_equal(df, expected) def test_constructor_list_of_lists(self): # GH #484 df = DataFrame(data=[[1, "a"], [2, "b"]], columns=["num", "str"]) assert is_integer_dtype(df["num"]) assert df["str"].dtype == np.object_ # GH 4851 # list of 0-dim ndarrays expected = DataFrame({0: np.arange(10)}) data = [np.array(x) for x in range(10)] result = DataFrame(data) tm.assert_frame_equal(result, expected) def test_constructor_sequence_like(self): # GH 3783 # collections.Squence like class DummyContainer(abc.Sequence): def __init__(self, lst): self._lst = lst def __getitem__(self, n): return self._lst.__getitem__(n) def __len__(self, n): return self._lst.__len__() lst_containers = [DummyContainer([1, "a"]), DummyContainer([2, "b"])] columns = ["num", "str"] result = DataFrame(lst_containers, columns=columns) expected = DataFrame([[1, "a"], [2, "b"]], columns=columns) tm.assert_frame_equal(result, expected, check_dtype=False) # GH 4297 # support Array import array result = DataFrame({"A": array.array("i", range(10))}) expected = DataFrame({"A": list(range(10))}) tm.assert_frame_equal(result, expected, check_dtype=False) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([array.array("i", range(10)), array.array("i", range(10))]) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_range(self): # GH26342 result = DataFrame(range(10)) expected = DataFrame(list(range(10))) tm.assert_frame_equal(result, expected) def test_constructor_list_of_ranges(self): result = DataFrame([range(10), range(10)]) expected = DataFrame([list(range(10)), list(range(10))]) tm.assert_frame_equal(result, expected) def test_constructor_iterable(self): # GH 21987 class Iter: def __iter__(self): for i in range(10): yield [1, 2, 3] expected = DataFrame([[1, 2, 3]] * 10) result = DataFrame(Iter()) tm.assert_frame_equal(result, expected) def test_constructor_iterator(self): result = DataFrame(iter(range(10))) expected = DataFrame(list(range(10))) tm.assert_frame_equal(result, expected) def test_constructor_list_of_iterators(self): result = DataFrame([iter(range(10)), iter(range(10))]) expected = DataFrame([list(range(10)), list(range(10))]) tm.assert_frame_equal(result, expected) def test_constructor_generator(self): # related #2305 gen1 = (i for i in range(10)) gen2 = (i for i in range(10)) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([gen1, gen2]) tm.assert_frame_equal(result, expected) gen = ([i, "a"] for i in range(10)) result = DataFrame(gen) expected = DataFrame({0: range(10), 1: "a"}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_list_of_odicts(self): data = [ OrderedDict([["a", 1.5], ["b", 3], ["c", 4], ["d", 6]]), OrderedDict([["a", 1.5], ["b", 3], ["d", 6]]), OrderedDict([["a", 1.5], ["d", 6]]), OrderedDict(), OrderedDict([["a", 1.5], ["b", 3], ["c", 4]]), OrderedDict([["b", 3], ["c", 4], ["d", 6]]), ] result = DataFrame(data) expected = DataFrame.from_dict( dict(zip(range(len(data)), data)), orient="index" ) tm.assert_frame_equal(result, expected.reindex(result.index)) result = DataFrame([{}]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_preserve_order(self): # see gh-13304 expected = DataFrame([[2, 1]], columns=["b", "a"]) data = OrderedDict() data["b"] = [2] data["a"] = [1] result = DataFrame(data) tm.assert_frame_equal(result, expected) data = OrderedDict() data["b"] = 2 data["a"] = 1 result = DataFrame([data]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_conflicting_orders(self): # the first dict element sets the ordering for the DataFrame, # even if there are conflicting orders from subsequent ones row_one = OrderedDict() row_one["b"] = 2 row_one["a"] = 1 row_two = OrderedDict() row_two["a"] = 1 row_two["b"] = 2 row_three = {"b": 2, "a": 1} expected = DataFrame([[2, 1], [2, 1]], columns=["b", "a"]) result = DataFrame([row_one, row_two]) tm.assert_frame_equal(result, expected) expected = DataFrame([[2, 1], [2, 1], [2, 1]], columns=["b", "a"]) result = DataFrame([row_one, row_two, row_three]) tm.assert_frame_equal(result, expected) def test_constructor_list_of_series(self): data = [ OrderedDict([["a", 1.5], ["b", 3.0], ["c", 4.0]]), OrderedDict([["a", 1.5], ["b", 3.0], ["c", 6.0]]), ] sdict = OrderedDict(zip(["x", "y"], data)) idx = Index(["a", "b", "c"]) # all named data2 = [ Series([1.5, 3, 4], idx, dtype="O", name="x"), Series([1.5, 3, 6], idx, name="y"), ] result = DataFrame(data2) expected = DataFrame.from_dict(sdict, orient="index") tm.assert_frame_equal(result, expected) # some unnamed data2 = [ Series([1.5, 3, 4], idx, dtype="O", name="x"), Series([1.5, 3, 6], idx), ] result = DataFrame(data2) sdict = OrderedDict(zip(["x", "Unnamed 0"], data)) expected = DataFrame.from_dict(sdict, orient="index") tm.assert_frame_equal(result, expected) # none named data = [ OrderedDict([["a", 1.5], ["b", 3], ["c", 4], ["d", 6]]), OrderedDict([["a", 1.5], ["b", 3], ["d", 6]]), OrderedDict([["a", 1.5], ["d", 6]]), OrderedDict(), OrderedDict([["a", 1.5], ["b", 3], ["c", 4]]), OrderedDict([["b", 3], ["c", 4], ["d", 6]]), ] data = [Series(d) for d in data] result = DataFrame(data) sdict = OrderedDict(zip(range(len(data)), data)) expected = DataFrame.from_dict(sdict, orient="index") tm.assert_frame_equal(result, expected.reindex(result.index)) result2 = DataFrame(data, index=np.arange(6)) tm.assert_frame_equal(result, result2) result = DataFrame([Series()]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) data = [ OrderedDict([["a", 1.5], ["b", 3.0], ["c", 4.0]]), OrderedDict([["a", 1.5], ["b", 3.0], ["c", 6.0]]), ] sdict = OrderedDict(zip(range(len(data)), data)) idx = Index(["a", "b", "c"]) data2 = [Series([1.5, 3, 4], idx, dtype="O"), Series([1.5, 3, 6], idx)] result = DataFrame(data2) expected = DataFrame.from_dict(sdict, orient="index") tm.assert_frame_equal(result, expected) def test_constructor_list_of_series_aligned_index(self): series = [pd.Series(i, index=["b", "a", "c"], name=str(i)) for i in range(3)] result = pd.DataFrame(series) expected = pd.DataFrame( {"b": [0, 1, 2], "a": [0, 1, 2], "c": [0, 1, 2]}, columns=["b", "a", "c"], index=["0", "1", "2"], ) tm.assert_frame_equal(result, expected) def test_constructor_list_of_derived_dicts(self): class CustomDict(dict): pass d = {"a": 1.5, "b": 3} data_custom = [CustomDict(d)] data = [d] result_custom = DataFrame(data_custom) result = DataFrame(data) tm.assert_frame_equal(result, result_custom) def test_constructor_ragged(self): data = {"A": np.random.randn(10), "B": np.random.randn(8)} with pytest.raises(ValueError, match="arrays must all be same length"): DataFrame(data) def test_constructor_scalar(self): idx = Index(range(3)) df = DataFrame({"a": 0}, index=idx) expected = DataFrame({"a": [0, 0, 0]}, index=idx) tm.assert_frame_equal(df, expected, check_dtype=False) def test_constructor_Series_copy_bug(self, float_frame): df = DataFrame(float_frame["A"], index=float_frame.index, columns=["A"]) df.copy() def test_constructor_mixed_dict_and_Series(self): data = {} data["A"] = {"foo": 1, "bar": 2, "baz": 3} data["B"] = Series([4, 3, 2, 1], index=["bar", "qux", "baz", "foo"]) result = DataFrame(data) assert result.index.is_monotonic # ordering ambiguous, raise exception with pytest.raises(ValueError, match="ambiguous ordering"): DataFrame({"A": ["a", "b"], "B": {"a": "a", "b": "b"}}) # this is OK though result = DataFrame({"A": ["a", "b"], "B": Series(["a", "b"], index=["a", "b"])}) expected = DataFrame({"A": ["a", "b"], "B": ["a", "b"]}, index=["a", "b"]) tm.assert_frame_equal(result, expected) def test_constructor_mixed_type_rows(self): # Issue 25075 data = [[1, 2], (3, 4)] result = DataFrame(data) expected = DataFrame([[1, 2], [3, 4]]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "tuples,lists", [ ((), []), ((()), []), (((), ()), [(), ()]), (((), ()), [[], []]), (([], []), [[], []]), (([1, 2, 3], [4, 5, 6]), [[1, 2, 3], [4, 5, 6]]), ], ) def test_constructor_tuple(self, tuples, lists): # GH 25691 result = DataFrame(tuples) expected = DataFrame(lists) tm.assert_frame_equal(result, expected) def test_constructor_list_of_tuples(self): result = DataFrame({"A": [(1, 2), (3, 4)]}) expected = DataFrame({"A": Series([(1, 2), (3, 4)])}) tm.assert_frame_equal(result, expected) def test_constructor_list_of_namedtuples(self): # GH11181 from collections import namedtuple named_tuple = namedtuple("Pandas", list("ab")) tuples = [named_tuple(1, 3), named_tuple(2, 4)] expected = DataFrame({"a": [1, 2], "b": [3, 4]}) result = DataFrame(tuples) tm.assert_frame_equal(result, expected) # with columns expected = DataFrame({"y": [1, 2], "z": [3, 4]}) result = DataFrame(tuples, columns=["y", "z"]) tm.assert_frame_equal(result, expected) def test_constructor_list_of_dict_order(self): # GH10056 data = [ {"First": 1, "Second": 4, "Third": 7, "Fourth": 10}, {"Second": 5, "First": 2, "Fourth": 11, "Third": 8}, {"Second": 6, "First": 3, "Fourth": 12, "Third": 9, "YYY": 14, "XXX": 13}, ] expected = DataFrame( { "First": [1, 2, 3], "Second": [4, 5, 6], "Third": [7, 8, 9], "Fourth": [10, 11, 12], "YYY": [None, None, 14], "XXX": [None, None, 13], } ) result = DataFrame(data) tm.assert_frame_equal(result, expected, check_like=not PY36) def test_constructor_orient(self, float_string_frame): data_dict = float_string_frame.T._series recons = DataFrame.from_dict(data_dict, orient="index") expected = float_string_frame.reindex(index=recons.index) tm.assert_frame_equal(recons, expected) # dict of sequence a = {"hi": [32, 3, 3], "there": [3, 5, 3]} rs = DataFrame.from_dict(a, orient="index") xp = DataFrame.from_dict(a).T.reindex(list(a.keys())) tm.assert_frame_equal(rs, xp) def test_constructor_from_ordered_dict(self): # GH8425 a = OrderedDict( [ ("one", OrderedDict([("col_a", "foo1"), ("col_b", "bar1")])), ("two", OrderedDict([("col_a", "foo2"), ("col_b", "bar2")])), ("three", OrderedDict([("col_a", "foo3"), ("col_b", "bar3")])), ] ) expected = DataFrame.from_dict(a, orient="columns").T result = DataFrame.from_dict(a, orient="index") tm.assert_frame_equal(result, expected) def test_from_dict_columns_parameter(self): # GH 18529 # Test new columns parameter for from_dict that was added to make # from_items(..., orient='index', columns=[...]) easier to replicate result = DataFrame.from_dict( OrderedDict([("A", [1, 2]), ("B", [4, 5])]), orient="index", columns=["one", "two"], ) expected = DataFrame([[1, 2], [4, 5]], index=["A", "B"], columns=["one", "two"]) tm.assert_frame_equal(result, expected) msg = "cannot use columns parameter with orient='columns'" with pytest.raises(ValueError, match=msg): DataFrame.from_dict( dict([("A", [1, 2]), ("B", [4, 5])]), orient="columns", columns=["one", "two"], ) with pytest.raises(ValueError, match=msg): DataFrame.from_dict( dict([("A", [1, 2]), ("B", [4, 5])]), columns=["one", "two"] ) def test_constructor_Series_named(self): a = Series([1, 2, 3], index=["a", "b", "c"], name="x") df = DataFrame(a) assert df.columns[0] == "x" tm.assert_index_equal(df.index, a.index) # ndarray like arr = np.random.randn(10) s = Series(arr, name="x") df = DataFrame(s) expected = DataFrame(dict(x=s)) tm.assert_frame_equal(df, expected) s = Series(arr, index=range(3, 13)) df = DataFrame(s) expected = DataFrame({0: s}) tm.assert_frame_equal(df, expected) msg = r"Shape of passed values is \(10, 1\), indices imply \(10, 2\)" with pytest.raises(ValueError, match=msg): DataFrame(s, columns=[1, 2]) # #2234 a = Series([], name="x") df = DataFrame(a) assert df.columns[0] == "x" # series with name and w/o s1 = Series(arr, name="x") df = DataFrame([s1, arr]).T expected = DataFrame({"x": s1, "Unnamed 0": arr}, columns=["x", "Unnamed 0"]) tm.assert_frame_equal(df, expected) # this is a bit non-intuitive here; the series collapse down to arrays df = DataFrame([arr, s1]).T expected = DataFrame({1: s1, 0: arr}, columns=[0, 1]) tm.assert_frame_equal(df, expected) def test_constructor_Series_named_and_columns(self): # GH 9232 validation s0 = Series(range(5), name=0) s1 = Series(range(5), name=1) # matching name and column gives standard frame tm.assert_frame_equal(pd.DataFrame(s0, columns=[0]), s0.to_frame()) tm.assert_frame_equal(pd.DataFrame(s1, columns=[1]), s1.to_frame()) # non-matching produces empty frame assert pd.DataFrame(s0, columns=[1]).empty assert pd.DataFrame(s1, columns=[0]).empty def test_constructor_Series_differently_indexed(self): # name s1 = Series([1, 2, 3], index=["a", "b", "c"], name="x") # no name s2 = Series([1, 2, 3], index=["a", "b", "c"]) other_index = Index(["a", "b"]) df1 = DataFrame(s1, index=other_index) exp1 = DataFrame(s1.reindex(other_index)) assert df1.columns[0] == "x" tm.assert_frame_equal(df1, exp1) df2 = DataFrame(s2, index=other_index) exp2 = DataFrame(s2.reindex(other_index)) assert df2.columns[0] == 0 tm.assert_index_equal(df2.index, other_index) tm.assert_frame_equal(df2, exp2) def test_constructor_manager_resize(self, float_frame): index = list(float_frame.index[:5]) columns = list(float_frame.columns[:3]) result = DataFrame(float_frame._data, index=index, columns=columns) tm.assert_index_equal(result.index, Index(index)) tm.assert_index_equal(result.columns, Index(columns)) def test_constructor_from_items(self, float_frame, float_string_frame): items = [(c, float_frame[c]) for c in float_frame.columns] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): recons = DataFrame.from_items(items) tm.assert_frame_equal(recons, float_frame) # pass some columns with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): recons = DataFrame.from_items(items, columns=["C", "B", "A"]) tm.assert_frame_equal(recons, float_frame.loc[:, ["C", "B", "A"]]) # orient='index' row_items = [ (idx, float_string_frame.xs(idx)) for idx in float_string_frame.index ] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): recons = DataFrame.from_items( row_items, columns=float_string_frame.columns, orient="index" ) tm.assert_frame_equal(recons, float_string_frame) assert recons["A"].dtype == np.float64 msg = "Must pass columns with orient='index'" with pytest.raises(TypeError, match=msg): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items(row_items, orient="index") # orient='index', but thar be tuples arr = construct_1d_object_array_from_listlike( [("bar", "baz")] * len(float_string_frame) ) float_string_frame["foo"] = arr row_items = [ (idx, list(float_string_frame.xs(idx))) for idx in float_string_frame.index ] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): recons = DataFrame.from_items( row_items, columns=float_string_frame.columns, orient="index" ) tm.assert_frame_equal(recons, float_string_frame) assert isinstance(recons["foo"][0], tuple) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): rs = DataFrame.from_items( [("A", [1, 2, 3]), ("B", [4, 5, 6])], orient="index", columns=["one", "two", "three"], ) xp = DataFrame( [[1, 2, 3], [4, 5, 6]], index=["A", "B"], columns=["one", "two", "three"] ) tm.assert_frame_equal(rs, xp) def test_constructor_from_items_scalars(self): # GH 17312 msg = ( r"The value in each \(key, value\) " "pair must be an array, Series, or dict" ) with pytest.raises(ValueError, match=msg): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items([("A", 1), ("B", 4)]) msg = ( r"The value in each \(key, value\) " "pair must be an array, Series, or dict" ) with pytest.raises(ValueError, match=msg): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items( [("A", 1), ("B", 2)], columns=["col1"], orient="index" ) def test_from_items_deprecation(self): # GH 17320 with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items([("A", [1, 2, 3]), ("B", [4, 5, 6])]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items( [("A", [1, 2, 3]), ("B", [4, 5, 6])], columns=["col1", "col2", "col3"], orient="index", ) def test_constructor_mix_series_nonseries(self, float_frame): df = DataFrame( {"A": float_frame["A"], "B": list(float_frame["B"])}, columns=["A", "B"] ) tm.assert_frame_equal(df, float_frame.loc[:, ["A", "B"]]) msg = "does not match index length" with pytest.raises(ValueError, match=msg): DataFrame({"A": float_frame["A"], "B": list(float_frame["B"])[:-2]}) def test_constructor_miscast_na_int_dtype(self): df = DataFrame([[np.nan, 1], [1, 0]], dtype=np.int64) expected = DataFrame([[np.nan, 1], [1, 0]]) tm.assert_frame_equal(df, expected) def test_constructor_column_duplicates(self): # it works! #2079 df = DataFrame([[8, 5]], columns=["a", "a"]) edf = DataFrame([[8, 5]]) edf.columns = ["a", "a"] tm.assert_frame_equal(df, edf) idf = DataFrame.from_records([(8, 5)], columns=["a", "a"]) tm.assert_frame_equal(idf, edf) msg = "If using all scalar values, you must pass an index" with pytest.raises(ValueError, match=msg): DataFrame.from_dict(OrderedDict([("b", 8), ("a", 5), ("a", 6)])) def test_constructor_empty_with_string_dtype(self): # GH 9428 expected = DataFrame(index=[0, 1], columns=[0, 1], dtype=object) df = DataFrame(index=[0, 1], columns=[0, 1], dtype=str) tm.assert_frame_equal(df, expected) df = DataFrame(index=[0, 1], columns=[0, 1], dtype=np.str_) tm.assert_frame_equal(df, expected) df = DataFrame(index=[0, 1], columns=[0, 1], dtype=np.unicode_) tm.assert_frame_equal(df, expected) df = DataFrame(index=[0, 1], columns=[0, 1], dtype="U5") tm.assert_frame_equal(df, expected) def test_constructor_single_value(self): # expecting single value upcasting here df = DataFrame(0.0, index=[1, 2, 3], columns=["a", "b", "c"]) tm.assert_frame_equal( df, DataFrame(np.zeros(df.shape).astype("float64"), df.index, df.columns) ) df = DataFrame(0, index=[1, 2, 3], columns=["a", "b", "c"]) tm.assert_frame_equal( df, DataFrame(np.zeros(df.shape).astype("int64"), df.index, df.columns) ) df = DataFrame("a", index=[1, 2], columns=["a", "c"]) tm.assert_frame_equal( df, DataFrame( np.array([["a", "a"], ["a", "a"]], dtype=object), index=[1, 2], columns=["a", "c"], ), ) msg = "DataFrame constructor not properly called!" with pytest.raises(ValueError, match=msg): DataFrame("a", [1, 2]) with pytest.raises(ValueError, match=msg): DataFrame("a", columns=["a", "c"]) msg = "incompatible data and dtype" with pytest.raises(TypeError, match=msg): DataFrame("a", [1, 2], ["a", "c"], float) def test_constructor_with_datetimes(self): intname = np.dtype(np.int_).name floatname = np.dtype(np.float_).name datetime64name = np.dtype("M8[ns]").name objectname = np.dtype(np.object_).name # single item df = DataFrame( { "A": 1, "B": "foo", "C": "bar", "D": Timestamp("20010101"), "E": datetime(2001, 1, 2, 0, 0), }, index=np.arange(10), ) result = df.dtypes expected = Series( [np.dtype("int64")] + [np.dtype(objectname)] * 2 + [np.dtype(datetime64name)] * 2, index=list("ABCDE"), ) tm.assert_series_equal(result, expected) # check with ndarray construction ndim==0 (e.g. we are passing a ndim 0 # ndarray with a dtype specified) df = DataFrame( { "a": 1.0, "b": 2, "c": "foo", floatname: np.array(1.0, dtype=floatname), intname: np.array(1, dtype=intname), }, index=np.arange(10), ) result = df.dtypes expected = Series( [np.dtype("float64")] + [np.dtype("int64")] + [np.dtype("object")] + [np.dtype("float64")] + [np.dtype(intname)], index=["a", "b", "c", floatname, intname], ) tm.assert_series_equal(result, expected) # check with ndarray construction ndim>0 df = DataFrame( { "a": 1.0, "b": 2, "c": "foo", floatname: np.array([1.0] * 10, dtype=floatname), intname: np.array([1] * 10, dtype=intname), }, index=np.arange(10), ) result = df.dtypes expected = Series( [np.dtype("float64")] + [np.dtype("int64")] + [np.dtype("object")] + [np.dtype("float64")] + [np.dtype(intname)], index=["a", "b", "c", floatname, intname], ) tm.assert_series_equal(result, expected) # GH 2809 ind = date_range(start="2000-01-01", freq="D", periods=10) datetimes = [ts.to_pydatetime() for ts in ind] datetime_s = Series(datetimes) assert datetime_s.dtype == "M8[ns]" # GH 2810 ind = date_range(start="2000-01-01", freq="D", periods=10) datetimes = [ts.to_pydatetime() for ts in ind] dates = [ts.date() for ts in ind] df = DataFrame(datetimes, columns=["datetimes"]) df["dates"] = dates result = df.dtypes expected = Series( [np.dtype("datetime64[ns]"), np.dtype("object")], index=["datetimes", "dates"], ) tm.assert_series_equal(result, expected) # GH 7594 # don't coerce tz-aware import pytz tz = pytz.timezone("US/Eastern") dt = tz.localize(datetime(2012, 1, 1)) df = DataFrame({"End Date": dt}, index=[0]) assert df.iat[0, 0] == dt tm.assert_series_equal( df.dtypes, Series({"End Date": "datetime64[ns, US/Eastern]"}) ) df = DataFrame([{"End Date": dt}]) assert df.iat[0, 0] == dt tm.assert_series_equal( df.dtypes, Series({"End Date": "datetime64[ns, US/Eastern]"}) ) # tz-aware (UTC and other tz's) # GH 8411 dr = date_range("20130101", periods=3) df = DataFrame({"value": dr}) assert df.iat[0, 0].tz is None dr = date_range("20130101", periods=3, tz="UTC") df = DataFrame({"value": dr}) assert str(df.iat[0, 0].tz) == "UTC" dr = date_range("20130101", periods=3, tz="US/Eastern") df = DataFrame({"value": dr}) assert str(df.iat[0, 0].tz) == "US/Eastern" # GH 7822 # preserver an index with a tz on dict construction i = date_range("1/1/2011", periods=5, freq="10s", tz="US/Eastern") expected = DataFrame({"a": i.to_series(keep_tz=True).reset_index(drop=True)}) df = DataFrame() df["a"] = i tm.assert_frame_equal(df, expected) df = DataFrame({"a": i}) tm.assert_frame_equal(df, expected) # multiples i_no_tz = date_range("1/1/2011", periods=5, freq="10s") df = DataFrame({"a": i, "b": i_no_tz}) expected = DataFrame( {"a": i.to_series(keep_tz=True).reset_index(drop=True), "b": i_no_tz} ) tm.assert_frame_equal(df, expected) def test_constructor_datetimes_with_nulls(self): # gh-15869 for arr in [ np.array([None, None, None, None, datetime.now(), None]), np.array([None, None, datetime.now(), None]), ]: result = DataFrame(arr).dtypes expected = Series([np.dtype("datetime64[ns]")]) tm.assert_series_equal(result, expected) def test_constructor_for_list_with_dtypes(self): # test list of lists/ndarrays df = DataFrame([np.arange(5) for x in range(5)]) result = df.dtypes expected = Series([np.dtype("int64")] * 5) tm.assert_series_equal(result, expected) df = DataFrame([np.array(np.arange(5), dtype="int32") for x in range(5)]) result = df.dtypes expected = Series([np.dtype("int64")] * 5) tm.assert_series_equal(result, expected) # overflow issue? (we always expecte int64 upcasting here) df = DataFrame({"a": [2 ** 31, 2 ** 31 + 1]}) assert df.dtypes.iloc[0] == np.dtype("int64") # GH #2751 (construction with no index specified), make sure we cast to # platform values df = DataFrame([1, 2]) assert df.dtypes.iloc[0] == np.dtype("int64") df = DataFrame([1.0, 2.0]) assert df.dtypes.iloc[0] == np.dtype("float64") df = DataFrame({"a": [1, 2]}) assert df.dtypes.iloc[0] == np.dtype("int64") df = DataFrame({"a": [1.0, 2.0]}) assert df.dtypes.iloc[0] == np.dtype("float64") df = DataFrame({"a": 1}, index=range(3)) assert df.dtypes.iloc[0] == np.dtype("int64") df = DataFrame({"a": 1.0}, index=range(3)) assert df.dtypes.iloc[0] == np.dtype("float64") # with object list df = DataFrame( { "a": [1, 2, 4, 7], "b": [1.2, 2.3, 5.1, 6.3], "c": list("abcd"), "d": [datetime(2000, 1, 1) for i in range(4)], "e": [1.0, 2, 4.0, 7], } ) result = df.dtypes expected = Series( [ np.dtype("int64"), np.dtype("float64"), np.dtype("object"), np.dtype("datetime64[ns]"), np.dtype("float64"), ], index=list("abcde"), ) tm.assert_series_equal(result, expected) def test_constructor_frame_copy(self, float_frame): cop = DataFrame(float_frame, copy=True) cop["A"] = 5 assert (cop["A"] == 5).all() assert not (float_frame["A"] == 5).all() def test_constructor_ndarray_copy(self, float_frame): df = DataFrame(float_frame.values) float_frame.values[5] = 5 assert (df.values[5] == 5).all() df = DataFrame(float_frame.values, copy=True) float_frame.values[6] = 6 assert not (df.values[6] == 6).all() def test_constructor_series_copy(self, float_frame): series = float_frame._series df = DataFrame({"A": series["A"]}) df["A"][:] = 5 assert not (series["A"] == 5).all() def test_constructor_with_nas(self): # GH 5016 # na's in indices def check(df): for i in range(len(df.columns)): df.iloc[:, i] indexer = np.arange(len(df.columns))[isna(df.columns)] # No NaN found -> error if len(indexer) == 0: msg = ( "cannot do label indexing on" r" <class 'pandas\.core\.indexes\.range\.RangeIndex'>" r" with these indexers \[nan\] of <class 'float'>" ) with pytest.raises(TypeError, match=msg): df.loc[:, np.nan] # single nan should result in Series elif len(indexer) == 1: tm.assert_series_equal(df.iloc[:, indexer[0]], df.loc[:, np.nan]) # multiple nans should result in DataFrame else: tm.assert_frame_equal(df.iloc[:, indexer], df.loc[:, np.nan]) df = DataFrame([[1, 2, 3], [4, 5, 6]], index=[1, np.nan]) check(df) df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=[1.1, 2.2, np.nan]) check(df) df = DataFrame([[0, 1, 2, 3], [4, 5, 6, 7]], columns=[np.nan, 1.1, 2.2, np.nan]) check(df) df = DataFrame( [[0.0, 1, 2, 3.0], [4, 5, 6, 7]], columns=[np.nan, 1.1, 2.2, np.nan] ) check(df) # GH 21428 (non-unique columns) df = DataFrame([[0.0, 1, 2, 3.0], [4, 5, 6, 7]], columns=[np.nan, 1, 2, 2]) check(df) def test_constructor_lists_to_object_dtype(self): # from #1074 d = DataFrame({"a": [np.nan, False]}) assert d["a"].dtype == np.object_ assert not d["a"][1] def test_constructor_categorical(self): # GH8626 # dict creation df = DataFrame({"A": list("abc")}, dtype="category") expected = Series(list("abc"), dtype="category", name="A") tm.assert_series_equal(df["A"], expected) # to_frame s = Series(list("abc"), dtype="category") result = s.to_frame() expected = Series(list("abc"), dtype="category", name=0) tm.assert_series_equal(result[0], expected) result = s.to_frame(name="foo") expected = Series(list("abc"), dtype="category", name="foo") tm.assert_series_equal(result["foo"], expected) # list-like creation df = DataFrame(list("abc"), dtype="category") expected = Series(list("abc"), dtype="category", name=0) tm.assert_series_equal(df[0], expected) # ndim != 1 df = DataFrame([Categorical(list("abc"))]) expected = DataFrame({0: Series(list("abc"), dtype="category")}) tm.assert_frame_equal(df, expected) df = DataFrame([Categorical(list("abc")), Categorical(list("abd"))]) expected = DataFrame( { 0: Series(list("abc"), dtype="category"), 1: Series(list("abd"), dtype="category"), }, columns=[0, 1], ) tm.assert_frame_equal(df, expected) # mixed df = DataFrame([Categorical(list("abc")), list("def")]) expected = DataFrame( {0: Series(list("abc"), dtype="category"), 1: list("def")}, columns=[0, 1] ) tm.assert_frame_equal(df, expected) # invalid (shape) msg = r"Shape of passed values is \(6, 2\), indices imply \(3, 2\)" with pytest.raises(ValueError, match=msg): DataFrame([Categorical(list("abc")), Categorical(list("abdefg"))]) # ndim > 1 msg = "> 1 ndim Categorical are not supported at this time" with pytest.raises(NotImplementedError, match=msg): Categorical(np.array([list("abcd")])) def test_constructor_categorical_series(self): items = [1, 2, 3, 1] exp = Series(items).astype("category") res = Series(items, dtype="category") tm.assert_series_equal(res, exp) items = ["a", "b", "c", "a"] exp = Series(items).astype("category") res = Series(items, dtype="category") tm.assert_series_equal(res, exp) # insert into frame with different index # GH 8076 index = date_range("20000101", periods=3) expected = Series( Categorical(values=[np.nan, np.nan, np.nan], categories=["a", "b", "c"]) ) expected.index = index expected = DataFrame({"x": expected}) df = DataFrame({"x": Series(["a", "b", "c"], dtype="category")}, index=index) tm.assert_frame_equal(df, expected) def test_from_records_to_records(self): # from numpy documentation arr = np.zeros((2,), dtype=("i4,f4,a10")) arr[:] = [(1, 2.0, "Hello"), (2, 3.0, "World")] # TODO(wesm): unused frame = DataFrame.from_records(arr) # noqa index = pd.Index(np.arange(len(arr))[::-1]) indexed_frame = DataFrame.from_records(arr, index=index) tm.assert_index_equal(indexed_frame.index, index) # without names, it should go to last ditch arr2 = np.zeros((2, 3)) tm.assert_frame_equal(DataFrame.from_records(arr2), DataFrame(arr2)) # wrong length msg = r"Shape of passed values is \(2, 3\), indices imply \(1, 3\)" with pytest.raises(ValueError, match=msg): DataFrame.from_records(arr, index=index[:-1]) indexed_frame = DataFrame.from_records(arr, index="f1") # what to do? records = indexed_frame.to_records() assert len(records.dtype.names) == 3 records = indexed_frame.to_records(index=False) assert len(records.dtype.names) == 2 assert "index" not in records.dtype.names def test_from_records_nones(self): tuples = [(1, 2, None, 3), (1, 2, None, 3), (None, 2, 5, 3)] df = DataFrame.from_records(tuples, columns=["a", "b", "c", "d"]) assert np.isnan(df["c"][0]) def test_from_records_iterator(self): arr = np.array( [(1.0, 1.0, 2, 2), (3.0, 3.0, 4, 4), (5.0, 5.0, 6, 6), (7.0, 7.0, 8, 8)], dtype=[ ("x", np.float64), ("u", np.float32), ("y", np.int64), ("z", np.int32), ], ) df = DataFrame.from_records(iter(arr), nrows=2) xp = DataFrame( { "x": np.array([1.0, 3.0], dtype=np.float64), "u": np.array([1.0, 3.0], dtype=np.float32), "y": np.array([2, 4], dtype=np.int64), "z": np.array([2, 4], dtype=np.int32), } ) tm.assert_frame_equal(df.reindex_like(xp), xp) # no dtypes specified here, so just compare with the default arr = [(1.0, 2), (3.0, 4), (5.0, 6), (7.0, 8)] df = DataFrame.from_records(iter(arr), columns=["x", "y"], nrows=2) tm.assert_frame_equal(df, xp.reindex(columns=["x", "y"]), check_dtype=False) def test_from_records_tuples_generator(self): def tuple_generator(length): for i in range(length): letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" yield (i, letters[i % len(letters)], i / length) columns_names = ["Integer", "String", "Float"] columns = [ [i[j] for i in tuple_generator(10)] for j in range(len(columns_names)) ] data = {"Integer": columns[0], "String": columns[1], "Float": columns[2]} expected = DataFrame(data, columns=columns_names) generator = tuple_generator(10) result = DataFrame.from_records(generator, columns=columns_names) tm.assert_frame_equal(result, expected) def test_from_records_lists_generator(self): def list_generator(length): for i in range(length): letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" yield [i, letters[i % len(letters)], i / length] columns_names = ["Integer", "String", "Float"] columns = [ [i[j] for i in list_generator(10)] for j in range(len(columns_names)) ] data = {"Integer": columns[0], "String": columns[1], "Float": columns[2]} expected = DataFrame(data, columns=columns_names) generator = list_generator(10) result = DataFrame.from_records(generator, columns=columns_names) tm.assert_frame_equal(result, expected) def test_from_records_columns_not_modified(self): tuples = [(1, 2, 3), (1, 2, 3), (2, 5, 3)] columns = ["a", "b", "c"] original_columns = list(columns) df = DataFrame.from_records(tuples, columns=columns, index="a") # noqa assert columns == original_columns def test_from_records_decimal(self): from decimal import Decimal tuples = [(Decimal("1.5"),), (Decimal("2.5"),), (None,)] df = DataFrame.from_records(tuples, columns=["a"]) assert df["a"].dtype == object df = DataFrame.from_records(tuples, columns=["a"], coerce_float=True) assert df["a"].dtype == np.float64 assert np.isnan(df["a"].values[-1]) def test_from_records_duplicates(self): result = DataFrame.from_records([(1, 2, 3), (4, 5, 6)], columns=["a", "b", "a"]) expected = DataFrame([(1, 2, 3), (4, 5, 6)], columns=["a", "b", "a"]) tm.assert_frame_equal(result, expected) def test_from_records_set_index_name(self): def create_dict(order_id): return { "order_id": order_id, "quantity": np.random.randint(1, 10), "price": np.random.randint(1, 10), } documents = [create_dict(i) for i in range(10)] # demo missing data documents.append({"order_id": 10, "quantity": 5}) result = DataFrame.from_records(documents, index="order_id") assert result.index.name == "order_id" # MultiIndex result = DataFrame.from_records(documents, index=["order_id", "quantity"]) assert result.index.names == ("order_id", "quantity") def test_from_records_misc_brokenness(self): # #2179 data = {1: ["foo"], 2: ["bar"]} result = DataFrame.from_records(data, columns=["a", "b"]) exp = DataFrame(data, columns=["a", "b"]) tm.assert_frame_equal(result, exp) # overlap in index/index_names data = {"a": [1, 2, 3], "b": [4, 5, 6]} result = DataFrame.from_records(data, index=["a", "b", "c"]) exp = DataFrame(data, index=["a", "b", "c"]) tm.assert_frame_equal(result, exp) # GH 2623 rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), "hi"]) # test col upconverts to obj df2_obj = DataFrame.from_records(rows, columns=["date", "test"]) result = df2_obj.dtypes expected = Series( [np.dtype("datetime64[ns]"), np.dtype("object")], index=["date", "test"] ) tm.assert_series_equal(result, expected) rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), 1]) df2_obj = DataFrame.from_records(rows, columns=["date", "test"]) result = df2_obj.dtypes expected = Series( [np.dtype("datetime64[ns]"), np.dtype("int64")], index=["date", "test"] ) tm.assert_series_equal(result, expected) def test_from_records_empty(self): # 3562 result = DataFrame.from_records([], columns=["a", "b", "c"]) expected = DataFrame(columns=["a", "b", "c"]) tm.assert_frame_equal(result, expected) result = DataFrame.from_records([], columns=["a", "b", "b"]) expected = DataFrame(columns=["a", "b", "b"]) tm.assert_frame_equal(result, expected) def test_from_records_empty_with_nonempty_fields_gh3682(self): a = np.array([(1, 2)], dtype=[("id", np.int64), ("value", np.int64)]) df = DataFrame.from_records(a, index="id") tm.assert_index_equal(df.index, Index([1], name="id")) assert df.index.name == "id" tm.assert_index_equal(df.columns, Index(["value"])) b = np.array([], dtype=[("id", np.int64), ("value", np.int64)]) df = DataFrame.from_records(b, index="id") tm.assert_index_equal(df.index, Index([], name="id")) assert df.index.name == "id" def test_from_records_with_datetimes(self): # this may fail on certain platforms because of a numpy issue # related GH6140 if not is_platform_little_endian(): pytest.skip("known failure of test on non-little endian") # construction with a null in a recarray # GH 6140 expected = DataFrame({"EXPIRY": [datetime(2005, 3, 1, 0, 0), None]}) arrdata = [np.array([datetime(2005, 3, 1, 0, 0), None])] dtypes = [("EXPIRY", "<M8[ns]")] try: recarray = np.core.records.fromarrays(arrdata, dtype=dtypes) except (ValueError): pytest.skip("known failure of numpy rec array creation") result = DataFrame.from_records(recarray) tm.assert_frame_equal(result, expected) # coercion should work too arrdata = [np.array([datetime(2005, 3, 1, 0, 0), None])] dtypes = [("EXPIRY", "<M8[m]")] recarray = np.core.records.fromarrays(arrdata, dtype=dtypes) result = DataFrame.from_records(recarray) tm.assert_frame_equal(result, expected) def test_from_records_sequencelike(self): df = DataFrame( { "A": np.array(np.random.randn(6), dtype=np.float64), "A1": np.array(np.random.randn(6), dtype=np.float64), "B": np.array(np.arange(6), dtype=np.int64), "C": ["foo"] * 6, "D": np.array([True, False] * 3, dtype=bool), "E": np.array(np.random.randn(6), dtype=np.float32), "E1": np.array(np.random.randn(6), dtype=np.float32), "F": np.array(np.arange(6), dtype=np.int32), } ) # this is actually tricky to create the recordlike arrays and # have the dtypes be intact blocks = df._to_dict_of_blocks() tuples = [] columns = [] dtypes = [] for dtype, b in blocks.items(): columns.extend(b.columns) dtypes.extend([(c, np.dtype(dtype).descr[0][1]) for c in b.columns]) for i in range(len(df.index)): tup = [] for _, b in blocks.items(): tup.extend(b.iloc[i].values) tuples.append(tuple(tup)) recarray = np.array(tuples, dtype=dtypes).view(np.recarray) recarray2 = df.to_records() lists = [list(x) for x in tuples] # tuples (lose the dtype info) result = DataFrame.from_records(tuples, columns=columns).reindex( columns=df.columns ) # created recarray and with to_records recarray (have dtype info) result2 = DataFrame.from_records(recarray, columns=columns).reindex( columns=df.columns ) result3 = DataFrame.from_records(recarray2, columns=columns).reindex( columns=df.columns ) # list of tupels (no dtype info) result4 = DataFrame.from_records(lists, columns=columns).reindex( columns=df.columns ) tm.assert_frame_equal(result, df, check_dtype=False) tm.assert_frame_equal(result2, df) tm.assert_frame_equal(result3, df) tm.assert_frame_equal(result4, df, check_dtype=False) # tuples is in the order of the columns result = DataFrame.from_records(tuples) tm.assert_index_equal(result.columns, pd.RangeIndex(8)) # test exclude parameter & we are casting the results here (as we don't # have dtype info to recover) columns_to_test = [columns.index("C"), columns.index("E1")] exclude = list(set(range(8)) - set(columns_to_test)) result = DataFrame.from_records(tuples, exclude=exclude) result.columns = [columns[i] for i in sorted(columns_to_test)] tm.assert_series_equal(result["C"], df["C"]) tm.assert_series_equal(result["E1"], df["E1"].astype("float64")) # empty case result = DataFrame.from_records([], columns=["foo", "bar", "baz"]) assert len(result) == 0 tm.assert_index_equal(result.columns, pd.Index(["foo", "bar", "baz"])) result = DataFrame.from_records([]) assert len(result) == 0 assert len(result.columns) == 0 def test_from_records_dictlike(self): # test the dict methods df = DataFrame( { "A": np.array(np.random.randn(6), dtype=np.float64), "A1": np.array(np.random.randn(6), dtype=np.float64), "B": np.array(np.arange(6), dtype=np.int64), "C": ["foo"] * 6, "D": np.array([True, False] * 3, dtype=bool), "E": np.array(np.random.randn(6), dtype=np.float32), "E1": np.array(np.random.randn(6), dtype=np.float32), "F": np.array(np.arange(6), dtype=np.int32), } ) # columns is in a different order here than the actual items iterated # from the dict blocks = df._to_dict_of_blocks() columns = [] for dtype, b in blocks.items(): columns.extend(b.columns) asdict = {x: y for x, y in df.items()} asdict2 = {x: y.values for x, y in df.items()} # dict of series & dict of ndarrays (have dtype info) results = [] results.append(DataFrame.from_records(asdict).reindex(columns=df.columns)) results.append( DataFrame.from_records(asdict, columns=columns).reindex(columns=df.columns) ) results.append( DataFrame.from_records(asdict2, columns=columns).reindex(columns=df.columns) ) for r in results: tm.assert_frame_equal(r, df) def test_from_records_with_index_data(self): df = DataFrame(np.random.randn(10, 3), columns=["A", "B", "C"]) data = np.random.randn(10) df1 = DataFrame.from_records(df, index=data) tm.assert_index_equal(df1.index, Index(data)) def test_from_records_bad_index_column(self): df = DataFrame(np.random.randn(10, 3), columns=["A", "B", "C"]) # should pass df1 = DataFrame.from_records(df, index=["C"]) tm.assert_index_equal(df1.index, Index(df.C)) df1 = DataFrame.from_records(df, index="C") tm.assert_index_equal(df1.index, Index(df.C)) # should fail msg = r"Shape of passed values is \(10, 3\), indices imply \(1, 3\)" with pytest.raises(ValueError, match=msg): DataFrame.from_records(df, index=[2]) with pytest.raises(KeyError, match=r"^2$"): DataFrame.from_records(df, index=2) def test_from_records_non_tuple(self): class Record: def __init__(self, *args): self.args = args def __getitem__(self, i): return self.args[i] def __iter__(self): return iter(self.args) recs = [Record(1, 2, 3), Record(4, 5, 6), Record(7, 8, 9)] tups = [tuple(rec) for rec in recs] result = DataFrame.from_records(recs) expected = DataFrame.from_records(tups) tm.assert_frame_equal(result, expected) def test_from_records_len0_with_columns(self): # #2633 result = DataFrame.from_records([], index="foo", columns=["foo", "bar"]) expected = Index(["bar"]) assert len(result) == 0 assert result.index.name == "foo" tm.assert_index_equal(result.columns, expected) def test_from_records_series_list_dict(self): # GH27358 expected = DataFrame([[{"a": 1, "b": 2}, {"a": 3, "b": 4}]]).T data = Series([[{"a": 1, "b": 2}], [{"a": 3, "b": 4}]]) result = DataFrame.from_records(data) tm.assert_frame_equal(result, expected) def test_to_frame_with_falsey_names(self): # GH 16114 result = Series(name=0).to_frame().dtypes expected = Series({0: np.float64}) tm.assert_series_equal(result, expected) result = DataFrame(Series(name=0)).dtypes tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", [None, "uint8", "category"]) def test_constructor_range_dtype(self, dtype): expected = DataFrame({"A": [0, 1, 2, 3, 4]}, dtype=dtype or "int64") # GH 26342 result = DataFrame(range(5), columns=["A"], dtype=dtype) tm.assert_frame_equal(result, expected) # GH 16804 result = DataFrame({"A": range(5)}, dtype=dtype) tm.assert_frame_equal(result, expected) def test_frame_from_list_subclass(self): # GH21226 class List(list): pass expected = DataFrame([[1, 2, 3], [4, 5, 6]]) result = DataFrame(List([List([1, 2, 3]), List([4, 5, 6])])) tm.assert_frame_equal(result, expected) class TestDataFrameConstructorWithDatetimeTZ: def test_from_dict(self): # 8260 # support datetime64 with tz idx = Index(date_range("20130101", periods=3, tz="US/Eastern"), name="foo") dr = date_range("20130110", periods=3) # construction df = DataFrame({"A": idx, "B": dr}) assert df["A"].dtype, "M8[ns, US/Eastern" assert df["A"].name == "A" tm.assert_series_equal(df["A"], Series(idx, name="A")) tm.assert_series_equal(df["B"], Series(dr, name="B")) def test_from_index(self): # from index idx2 = date_range("20130101", periods=3, tz="US/Eastern", name="foo") df2 = DataFrame(idx2) tm.assert_series_equal(df2["foo"], Series(idx2, name="foo")) df2 = DataFrame(Series(idx2)) tm.assert_series_equal(df2["foo"], Series(idx2, name="foo")) idx2 = date_range("20130101", periods=3, tz="US/Eastern") df2 = DataFrame(idx2) tm.assert_series_equal(df2[0], Series(idx2, name=0)) df2 = DataFrame(Series(idx2)) tm.assert_series_equal(df2[0], Series(idx2, name=0)) def test_frame_dict_constructor_datetime64_1680(self): dr = date_range("1/1/2012", periods=10) s = Series(dr, index=dr) # it works! DataFrame({"a": "foo", "b": s}, index=dr) DataFrame({"a": "foo", "b": s.values}, index=dr) def test_frame_datetime64_mixed_index_ctor_1681(self): dr = date_range("2011/1/1", "2012/1/1", freq="W-FRI") ts = Series(dr) # it works! d = DataFrame({"A": "foo", "B": ts}, index=dr) assert d["B"].isna().all() def test_frame_timeseries_to_records(self): index = date_range("1/1/2000", periods=10) df = DataFrame(np.random.randn(10, 3), index=index, columns=["a", "b", "c"]) result = df.to_records() result["index"].dtype == "M8[ns]" result = df.to_records(index=False) def test_frame_timeseries_column(self): # GH19157 dr = date_range(start="20130101T10:00:00", periods=3, freq="T", tz="US/Eastern") result = DataFrame(dr, columns=["timestamps"]) expected = DataFrame( { "timestamps": [ Timestamp("20130101T10:00:00", tz="US/Eastern"), Timestamp("20130101T10:01:00", tz="US/Eastern"), Timestamp("20130101T10:02:00", tz="US/Eastern"), ] } ) tm.assert_frame_equal(result, expected) def test_nested_dict_construction(self): # GH22227 columns = ["Nevada", "Ohio"] pop = { "Nevada": {2001: 2.4, 2002: 2.9}, "Ohio": {2000: 1.5, 2001: 1.7, 2002: 3.6}, } result = pd.DataFrame(pop, index=[2001, 2002, 2003], columns=columns) expected = pd.DataFrame( [(2.4, 1.7), (2.9, 3.6), (np.nan, np.nan)], columns=columns, index=pd.Index([2001, 2002, 2003]), ) tm.assert_frame_equal(result, expected) def test_from_tzaware_object_array(self): # GH#26825 2D object array of tzaware timestamps should not raise dti = pd.date_range("2016-04-05 04:30", periods=3, tz="UTC") data = dti._data.astype(object).reshape(1, -1) df = pd.DataFrame(data) assert df.shape == (1, 3) assert (df.dtypes == dti.dtype).all() assert (df == dti).all().all() def test_from_tzaware_mixed_object_array(self): # GH#26825 arr = np.array( [ [ Timestamp("2013-01-01 00:00:00"), Timestamp("2013-01-02 00:00:00"), Timestamp("2013-01-03 00:00:00"), ], [ Timestamp("2013-01-01 00:00:00-0500", tz="US/Eastern"), pd.NaT, Timestamp("2013-01-03 00:00:00-0500", tz="US/Eastern"), ], [ Timestamp("2013-01-01 00:00:00+0100", tz="CET"), pd.NaT, Timestamp("2013-01-03 00:00:00+0100", tz="CET"), ], ], dtype=object, ).T res = DataFrame(arr, columns=["A", "B", "C"]) expected_dtypes = [ "datetime64[ns]", "datetime64[ns, US/Eastern]", "datetime64[ns, CET]", ] assert (res.dtypes == expected_dtypes).all()
36.413395
88
0.552155
7036966b1cecbdc9588c3a671250a530156ad61c
117
py
Python
addons/payment_stripe_sca/controllers/__init__.py
jjiege/odoo
fd5b8ad387c1881f349d125cbd56433f4d49398f
[ "MIT" ]
null
null
null
addons/payment_stripe_sca/controllers/__init__.py
jjiege/odoo
fd5b8ad387c1881f349d125cbd56433f4d49398f
[ "MIT" ]
null
null
null
addons/payment_stripe_sca/controllers/__init__.py
jjiege/odoo
fd5b8ad387c1881f349d125cbd56433f4d49398f
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from . import main
39
74
0.709402
a1101850dd613fc30ec3216ba7c389f21ed8a565
1,420
py
Python
src/sentry/api/endpoints/internal_mail.py
xiaotian45123/sentry
93428feeaa495cc36c5dcab90f3bb2bb967dd311
[ "BSD-3-Clause" ]
1
2020-02-27T02:46:25.000Z
2020-02-27T02:46:25.000Z
src/sentry/api/endpoints/internal_mail.py
xiaotian45123/sentry
93428feeaa495cc36c5dcab90f3bb2bb967dd311
[ "BSD-3-Clause" ]
1
2020-11-05T14:54:44.000Z
2020-11-19T21:54:19.000Z
src/sentry/api/endpoints/internal_mail.py
xiaotian45123/sentry
93428feeaa495cc36c5dcab90f3bb2bb967dd311
[ "BSD-3-Clause" ]
1
2017-02-09T06:36:57.000Z
2017-02-09T06:36:57.000Z
from __future__ import absolute_import import six from rest_framework.response import Response from sentry import options from sentry.utils.email import send_mail from sentry.api.base import Endpoint from sentry.api.permissions import SuperuserPermission class InternalMailEndpoint(Endpoint): permission_classes = (SuperuserPermission, ) def get(self, request): data = { 'mailHost': options.get('mail.host'), 'mailPassword': bool(options.get('mail.password')), 'mailUsername': options.get('mail.username'), 'mailPort': options.get('mail.port'), 'mailUseTls': options.get('mail.use-tls'), 'mailFrom': options.get('mail.from'), 'mailListNamespace': options.get('mail.list-namespace'), 'testMailEmail': request.user.email, } return Response(data) def post(self, request): error = None body = """This email was sent as a request to test the Sentry outbound email configuration.""" try: send_mail( '%s Test Email' % (options.get('mail.subject-prefix'), ), body, options.get('mail.from'), [request.user.email], fail_silently=False ) except Exception as e: error = six.text_type(e) return Response({'error': error}, status=500 if error else 200)
32.272727
102
0.612676
fa1ad641893aed158a086c101410888a31cc2fa2
9,904
py
Python
train.py
winterest/mot-transform
92cd7d55b273d603572a62173c6b5dc75156734f
[ "MIT" ]
null
null
null
train.py
winterest/mot-transform
92cd7d55b273d603572a62173c6b5dc75156734f
[ "MIT" ]
null
null
null
train.py
winterest/mot-transform
92cd7d55b273d603572a62173c6b5dc75156734f
[ "MIT" ]
null
null
null
import argparse import json import time from time import gmtime, strftime import test import torch from models import Darknet, load_darknet_weights from shutil import copyfile from utils.datasets import JointDataset, collate_fn from utils.utils import mkdir_if_missing, init_seeds from utils.log import logger from torchvision.transforms import transforms as T import os.path as osp from collections import defaultdict from detr_models import build_model def build_detr(args): #from config import #### args: #### dataset_file, device, num_queries, aux_loss, masks, frozen_weights, #### bbox_loss_coef, giou_loss_coef, mask_loss_coef, dice_loss_coef, #### dec_layers, eos_coef, model, criterion, postprocessors = build_model(args) return model, criterion, postprocessors def train( cfg, data_cfg, weights_from="", weights_to="", save_every=10, img_size=(1088, 608), resume=False, epochs=100, batch_size=16, accumulated_batches=1, freeze_backbone=False, opt=None, ): # The function starts NUM_WORKERS = opt.num_workers timme = strftime("%Y-%d-%m %H:%M:%S", gmtime()) timme = timme[5:-3].replace('-', '_') timme = timme.replace(' ', '_') timme = timme.replace(':', '_') weights_to = osp.join(weights_to, 'run' + timme) mkdir_if_missing(weights_to) mkdir_if_missing(weights_to + '/cfg/') if resume: latest_resume = osp.join(weights_from, 'latest.pt') torch.backends.cudnn.benchmark = True # unsuitable for multiscale # Configure run f = open(data_cfg) data_config = json.load(f) trainset_paths = data_config['train'] dataset_root = data_config['root'] f.close() transforms = T.Compose([T.ToTensor()]) # Get dataloader dataset = JointDataset(dataset_root, trainset_paths, img_size, augment=True, transforms=transforms) dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=NUM_WORKERS, pin_memory=True, drop_last=True, collate_fn=collate_fn) # Initialize model model = Darknet(cfg, dataset.nID) cutoff = -1 # backbone reaches to cutoff layer start_epoch = 0 if resume: checkpoint = torch.load(latest_resume, map_location='cpu') # Load weights to resume from model.load_state_dict(checkpoint['model']) model.cuda().train() # Set optimizer optimizer = torch.optim.SGD(filter(lambda x: x.requires_grad, model.parameters()), lr=opt.lr, momentum=.9) start_epoch = checkpoint['epoch'] + 1 if checkpoint['optimizer'] is not None: optimizer.load_state_dict(checkpoint['optimizer']) del checkpoint # current, saved else: # Initialize model with backbone (optional) if cfg.endswith('yolov3.cfg'): load_darknet_weights(model, osp.join(weights_from, 'darknet53.conv.74')) cutoff = 75 elif cfg.endswith('yolov3-tiny.cfg'): load_darknet_weights(model, osp.join(weights_from, 'yolov3-tiny.conv.15')) cutoff = 15 model.cuda().train() # Set optimizer optimizer = torch.optim.SGD(filter(lambda x: x.requires_grad, model.parameters()), lr=opt.lr, momentum=.9, weight_decay=1e-4) model = torch.nn.DataParallel(model) # Set scheduler scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[int(0.5 * opt.epochs), int(0.75 * opt.epochs)], gamma=0.1) # An important trick for detection: freeze bn during fine-tuning if not opt.unfreeze_bn: for i, (name, p) in enumerate(model.named_parameters()): p.requires_grad = False if 'batch_norm' in name else True # model_info(model) t0 = time.time() for epoch in range(epochs): epoch += start_epoch logger.info(('%8s%12s' + '%10s' * 6) % ( 'Epoch', 'Batch', 'box', 'conf', 'id', 'total', 'nTargets', 'time')) # Freeze darknet53.conv.74 for first epoch if freeze_backbone and (epoch < 2): for i, (name, p) in enumerate(model.named_parameters()): if int(name.split('.')[2]) < cutoff: # if layer < 75 p.requires_grad = False if (epoch == 0) else True ui = -1 rloss = defaultdict(float) # running loss ## training schedule optimizer.zero_grad() for i, (imgs, targets, _, _, targets_len) in enumerate(dataloader): if sum([len(x) for x in targets]) < 1: # if no targets continue continue # SGD burn-in burnin = min(1000, len(dataloader)) if (epoch == 0) & (i <= burnin): lr = opt.lr * (i / burnin) ** 4 for g in optimizer.param_groups: g['lr'] = lr # Compute loss, compute gradient, update parameters loss, components = model(imgs.cuda(), targets.cuda(), targets_len.cuda()) components = torch.mean(components.view(-1, 5), dim=0) loss = torch.mean(loss) loss.backward() # accumulate gradient for x batches before optimizing if ((i + 1) % accumulated_batches == 0) or (i == len(dataloader) - 1): optimizer.step() optimizer.zero_grad() # Running epoch-means of tracked metrics ui += 1 for ii, key in enumerate(model.module.loss_names): rloss[key] = (rloss[key] * ui + components[ii]) / (ui + 1) # rloss indicates running loss values with mean updated at every epoch s = ('%8s%12s' + '%10.3g' * 6) % ( '%g/%g' % (epoch, epochs - 1), '%g/%g' % (i, len(dataloader) - 1), rloss['box'], rloss['conf'], rloss['id'], rloss['loss'], rloss['nT'], time.time() - t0) t0 = time.time() if i % opt.print_interval == 0: logger.info(s) # Save latest checkpoint checkpoint = {'epoch': epoch, 'model': model.module.state_dict(), 'optimizer': optimizer.state_dict()} copyfile(cfg, weights_to + '/cfg/yolo3.cfg') copyfile(data_cfg, weights_to + '/cfg/ccmcpe.json') latest = osp.join(weights_to, 'latest.pt') torch.save(checkpoint, latest) if epoch % save_every == 0 and epoch != 0: # making the checkpoint lite checkpoint["optimizer"] = [] torch.save(checkpoint, osp.join(weights_to, "weights_epoch_" + str(epoch) + ".pt")) # Calculate mAP ''' if epoch % opt.test_interval == 0: with torch.no_grad(): mAP, R, P = test.test(cfg, data_cfg, weights=latest, batch_size=batch_size, img_size=img_size, print_interval=40, nID=dataset.nID) test.test_emb(cfg, data_cfg, weights=latest, batch_size=batch_size, img_size=img_size, print_interval=40, nID=dataset.nID) ''' # Call scheduler.step() after opimizer.step() with pytorch > 1.1.0 scheduler.step() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--epochs', type=int, default=30, help='number of epochs') parser.add_argument('--num-workers', type=int, default=0, help='number of workers') parser.add_argument('--batch-size', type=int, default=1, help='size of each image batch') parser.add_argument('--accumulated-batches', type=int, default=1, help='number of batches before optimizer step') parser.add_argument('--cfg', type=str, default='cfg/yolov3_576x320.cfg', help='cfg file path') parser.add_argument('--weights-from', type=str, default='weights/', help='Path for getting the trained model for resuming training (Should only be used with ' '--resume)') parser.add_argument('--weights-to', type=str, default='weights/', help='Store the trained weights after resuming training session. It will create a new folder ' 'with timestamp in the given path') parser.add_argument('--save-model-after', type=int, default=10, help='Save a checkpoint of model at given interval of epochs') parser.add_argument('--data-cfg', type=str, default='cfg/ccmcpe.json', help='coco.data file path') parser.add_argument('--img-size', type=int, default=[576, 320], nargs='+', help='pixels') parser.add_argument('--resume', action='store_true', help='resume training flag') parser.add_argument('--print-interval', type=int, default=40, help='print interval') parser.add_argument('--test-interval', type=int, default=9, help='test interval') parser.add_argument('--lr', type=float, default=1e-3, help='init lr') parser.add_argument('--unfreeze-bn', action='store_true', help='unfreeze bn') opt = parser.parse_args() init_seeds() train( opt.cfg, opt.data_cfg, weights_from=opt.weights_from, weights_to=opt.weights_to, save_every=opt.save_model_after, img_size=opt.img_size, resume=opt.resume, epochs=opt.epochs, batch_size=opt.batch_size, accumulated_batches=opt.accumulated_batches, opt=opt, )
40.757202
126
0.5833
ac1a8ac3619065a311acab1a40daf00638474ee1
1,838
py
Python
leetcode/100.py
GihwanKim/Baekjoon
52eb2bf80bb1243697858445e5b5e2d50d78be4e
[ "MIT" ]
null
null
null
leetcode/100.py
GihwanKim/Baekjoon
52eb2bf80bb1243697858445e5b5e2d50d78be4e
[ "MIT" ]
null
null
null
leetcode/100.py
GihwanKim/Baekjoon
52eb2bf80bb1243697858445e5b5e2d50d78be4e
[ "MIT" ]
null
null
null
""" File: 100.py Title: Same Tree Difficulty: Easy URL: https://leetcode.com/problems/same-tree/ """ import unittest from typing import List class TreeNode: def __init__(self, val: int = 0, left: "TreeNode" = None, right: "TreeNode" = None): self.val = val self.left = left self.right = right class Solution: def isSameTree(self, p: TreeNode, q: TreeNode) -> bool: return self.get_nodes(p) == self.get_nodes(q) def get_nodes(self, root: TreeNode) -> List[int]: if root is None: return [] nodes = [root.val] if root.left is not None: nodes += self.get_nodes(root.left) else: nodes.append(None) if root.right is not None: nodes += self.get_nodes(root.right) else: nodes.append(None) return nodes class SolutionTestCase(unittest.TestCase): def test_example1(self): # Input p = TreeNode(1, TreeNode(2), TreeNode(3)) q = TreeNode(1, TreeNode(2), TreeNode(3)) # Output output = True solution = Solution() self.assertEqual(solution.isSameTree(p, q), output) def test_example2(self): # Input p = TreeNode(1, TreeNode(2), None) q = TreeNode(1, None, TreeNode(2)) # Output output = False solution = Solution() self.assertEqual(solution.isSameTree(p, q), output) def test_example3(self): # Input p = TreeNode(1, TreeNode(2), TreeNode(1)) q = TreeNode(1, TreeNode(1), TreeNode(2)) # Output output = False solution = Solution() self.assertEqual(solution.isSameTree(p, q), output) if __name__ == "__main__": unittest.main()
23.87013
59
0.556039
73511231acaa6a4ba905680b1a0bc2ec7cbc3701
1,240
py
Python
userbot/plugins/weebify.py
justteen/BUZZ-USERBOT
55651cce150e1d04d2c61efb2565ef9f46b42933
[ "BSL-1.0" ]
null
null
null
userbot/plugins/weebify.py
justteen/BUZZ-USERBOT
55651cce150e1d04d2c61efb2565ef9f46b42933
[ "BSL-1.0" ]
null
null
null
userbot/plugins/weebify.py
justteen/BUZZ-USERBOT
55651cce150e1d04d2c61efb2565ef9f46b42933
[ "BSL-1.0" ]
null
null
null
""" Weebify a text, Ported from Saitama Bot. By :- @PhycoNinja13b Modified by :- @kirito6969 .weeb <text> """ from uniborg.util import lightning_cmd normiefont = [ "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", ] weebyfont = [ "卂", "乃", "匚", "刀", "乇", "下", "厶", "卄", "工", "丁", "长", "乚", "从", "𠘨", "口", "尸", "㔿", "尺", "丂", "丅", "凵", "リ", "山", "乂", "丫", "乙", ] @borg.on(lightning_cmd(pattern="weeb ?(.*)")) async def weebify(event): args = event.pattern_match.group(1) if not args: get = await event.get_reply_message() args = get.text if not args: await event.edit("`What I am Supposed to Weebify U Dumb`") return string = " ".join(args).lower() for normiecharacter in string: if normiecharacter in normiefont: weebycharacter = weebyfont[normiefont.index(normiecharacter)] string = string.replace(normiecharacter, weebycharacter) await event.edit(string)
14.939759
73
0.452419
a862ec5679723325232f56b567b5f351b126f391
3,628
py
Python
mesonbuild/scripts/meson_exe.py
ueno/meson
5a0fec13b6463f45f88860d67e8fb50f34c8d739
[ "Apache-2.0" ]
1
2019-05-02T17:44:19.000Z
2019-05-02T17:44:19.000Z
mesonbuild/scripts/meson_exe.py
ueno/meson
5a0fec13b6463f45f88860d67e8fb50f34c8d739
[ "Apache-2.0" ]
null
null
null
mesonbuild/scripts/meson_exe.py
ueno/meson
5a0fec13b6463f45f88860d67e8fb50f34c8d739
[ "Apache-2.0" ]
null
null
null
# Copyright 2013-2016 The Meson development team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import argparse import pickle import platform import subprocess from .. import mesonlib options = None def buildparser(): parser = argparse.ArgumentParser() parser.add_argument('args', nargs='+') return parser def is_windows(): platname = platform.system().lower() return platname == 'windows' or 'mingw' in platname def is_cygwin(): platname = platform.system().lower() return 'cygwin' in platname def run_with_mono(fname): if fname.endswith('.exe') and not (is_windows() or is_cygwin()): return True return False def run_exe(exe): if exe.fname[0].endswith('.jar'): cmd = ['java', '-jar'] + exe.fname elif not exe.is_cross and run_with_mono(exe.fname[0]): cmd = ['mono'] + exe.fname else: if exe.is_cross: if exe.exe_runner is None: raise AssertionError('BUG: Can\'t run cross-compiled exe {!r}' 'with no wrapper'.format(exe.name)) elif not exe.exe_runner.found(): raise AssertionError('BUG: Can\'t run cross-compiled exe {!r} with not-found' 'wrapper {!r}'.format(exe.name, exe.exe_runner.get_path())) else: cmd = exe.exe_runner.get_command() + exe.fname else: cmd = exe.fname child_env = os.environ.copy() child_env.update(exe.env) if exe.extra_paths: child_env['PATH'] = (os.pathsep.join(exe.extra_paths + ['']) + child_env['PATH']) if exe.exe_runner and mesonlib.substring_is_in_list('wine', exe.exe_runner.get_command()): wine_paths = ['Z:' + p for p in exe.extra_paths] wine_path = ';'.join(wine_paths) # Don't accidentally end with an `;` because that will add the # current directory and might cause unexpected behaviour if 'WINEPATH' in child_env: child_env['WINEPATH'] = wine_path + ';' + child_env['WINEPATH'] else: child_env['WINEPATH'] = wine_path p = subprocess.Popen(cmd + exe.cmd_args, env=child_env, cwd=exe.workdir, close_fds=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = p.communicate() if exe.capture and p.returncode == 0: with open(exe.capture, 'wb') as output: output.write(stdout) else: sys.stdout.buffer.write(stdout) if stderr: sys.stderr.buffer.write(stderr) return p.returncode def run(args): global options options = buildparser().parse_args(args) if len(options.args) != 1: print('Test runner for Meson. Do not run on your own, mmm\'kay?') print(sys.argv[0] + ' [data file]') exe_data_file = options.args[0] with open(exe_data_file, 'rb') as f: exe = pickle.load(f) return run_exe(exe) if __name__ == '__main__': sys.exit(run(sys.argv[1:]))
35.223301
98
0.616318
2ebee1fad349339bc3b68c3e66c6e95cfc49b165
1,247
py
Python
fn_sentinelone/fn_sentinelone/components/funct_sentinelone_abort_disk_scan.py
nickpartner-goahead/resilient-community-apps
097c0dbefddbd221b31149d82af9809420498134
[ "MIT" ]
null
null
null
fn_sentinelone/fn_sentinelone/components/funct_sentinelone_abort_disk_scan.py
nickpartner-goahead/resilient-community-apps
097c0dbefddbd221b31149d82af9809420498134
[ "MIT" ]
null
null
null
fn_sentinelone/fn_sentinelone/components/funct_sentinelone_abort_disk_scan.py
nickpartner-goahead/resilient-community-apps
097c0dbefddbd221b31149d82af9809420498134
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # pragma pylint: disable=unused-argument, no-self-use # (c) Copyright IBM Corp. 2010, 2022. All Rights Reserved. """AppFunction implementation""" from resilient_circuits import AppFunctionComponent, app_function, FunctionResult from fn_sentinelone.lib.sentinelone_common import SentinelOneClient PACKAGE_NAME = "fn_sentinelone" FN_NAME = "sentinelone_abort_disk_scan" class FunctionComponent(AppFunctionComponent): """Component that implements function 'sentinelone_abort_disk_scan'""" def __init__(self, opts): super(FunctionComponent, self).__init__(opts, PACKAGE_NAME) @app_function(FN_NAME) def _app_function(self, fn_inputs): """ Function: Initiate a Full Disk Scan on an agent managed by SentinelOne. Inputs: - fn_inputs.sentinelone_agent_id """ yield self.status_message("Starting App Function: '{0}'".format(FN_NAME)) sentinelone_client = SentinelOneClient(self.opts, self.options) agent_id = fn_inputs.sentinelone_agent_id results = sentinelone_client.abort_scan(agent_id) yield self.status_message("Finished running App Function: '{0}'".format(FN_NAME)) yield FunctionResult(results)
33.702703
89
0.72494
9d686239047a7c9f88df45568ba70a7aec7f9be7
9,725
py
Python
octoprint_octolabel/__init__.py
LowieGoossens/octolabel
5de688da7f32e73fa9daeffb0e1f12257a61d779
[ "MIT" ]
7
2021-03-22T09:27:50.000Z
2021-10-03T16:08:02.000Z
octoprint_octolabel/__init__.py
LowieGoossens/octolabel
5de688da7f32e73fa9daeffb0e1f12257a61d779
[ "MIT" ]
4
2021-03-21T18:09:34.000Z
2021-10-06T10:16:20.000Z
octoprint_octolabel/__init__.py
LowieGoossens/octolabel
5de688da7f32e73fa9daeffb0e1f12257a61d779
[ "MIT" ]
2
2021-03-21T04:19:54.000Z
2021-03-21T19:56:24.000Z
# coding=utf-8 from __future__ import absolute_import import os import subprocess from datetime import timedelta import octoprint.filemanager # from .discord import Hook import octoprint.plugin import octoprint.settings import requests class OctolabelPlugin(octoprint.plugin.EventHandlerPlugin, octoprint.plugin.StartupPlugin, octoprint.plugin.SettingsPlugin, octoprint.plugin.AssetPlugin, octoprint.plugin.TemplatePlugin, octoprint.plugin.ProgressPlugin): def __init__(self): # Events definition here (better for intellisense in IDE) # referenced in the settings too. super().__init__() self.events = { "startup": { "name": "Octoprint Startup", "enabled": False, "message": "{name}" }, "shutdown": { "name": "Octoprint Shutdown", "enabled": False, "message": "{name}" }, "printer_state_operational": { "name": "Printer state : operational", "enabled": False, "message": "{name}" }, "printer_state_error": { "name": "Printer state : error", "enabled": False, "message": "{name}" }, "printer_state_unknown": { "name": "Printer state : unknown", "enabled": False, "message": "{name}" }, "printing_started": { "name": "Printing process : started", "enabled": False, "message": "{name}" }, "printing_paused": { "name": "Printing process : paused", "enabled": False, "message": "{name}" }, "printing_resumed": { "name": "Printing process : resumed", "enabled": False, "message": "{name}" }, "printing_cancelled": { "name": "Printing process : cancelled", "enabled": False, "message": "{name}" }, "printing_done": { "name": "Printing process : done", "enabled": True, "message": "{name}" }, "printing_failed": { "name": "Printing process : failed", "enabled": False, "message": "{name}" }, "printing_progress": { "name": "Printing progress", "enabled": False, "message": "{name}", "step": 10 }, "test": { # Not a real message, but we will treat it as one "enabled": False, "message": "{name}" }, } def on_after_startup(self): self._logger.info("Octolabel is started !") # ~~ SettingsPlugin mixin def get_settings_defaults(self): return { 'consumer_key': "", 'consumer_secret': "", 'access_token': "", 'access_token_secret': "", 'username': "", 'events': self.events, 'allow_scripts': False, 'script_before': '', 'script_after': '' } # Restricts some paths to some roles only def get_settings_restricted_paths(self): # settings.events.tests is a false message, so we should never see it as configurable. # settings.url, username and avatar are admin only. return dict(never=[["events", "test"]], admin=[["consumer_key"], ["consumer_secret"], ["access_token"], ["access_token_secret"], ['script_before'], ['script_after']]) # ~~ AssetPlugin mixin def get_assets(self): # Define your plugin's asset files to automatically include in the # core UI here. return dict( js=["js/octolabel.js"], css=["css/octolabel.css"] ) # ~~ TemplatePlugin mixin def get_template_configs(self): return [ dict(type="settings", custom_bindings=False) ] # ~~ Softwareupdate hook def get_update_information(self): # Define the configuration for your plugin to use with the Software Update # Plugin here. See https://github.com/foosel/OctoPrint/wiki/Plugin:-Software-Update # for details. return dict( octolabel=dict( displayName="Octolabel plugin", displayVersion=self._plugin_version, # version check: github repository type="github_release", user="LowieGoossens", repo="octolabel", current=self._plugin_version, # update method: pip pip="https://github.com/LowieGoossens/octolabel/archive/{target_version}.zip" ) ) # ~~ EventHandlerPlugin hook def on_event(self, event, payload): if event == "Startup": return self.notify_event("startup") if event == "Shutdown": return self.notify_event("shutdown") if event == "PrinterStateChanged": if payload["state_id"] == "OPERATIONAL": return self.notify_event("printer_state_operational") elif payload["state_id"] == "ERROR": return self.notify_event("printer_state_error") elif payload["state_id"] == "UNKNOWN": return self.notify_event("printer_state_unknown") if event == "PrintStarted": return self.notify_event("printing_started", payload) if event == "PrintPaused": return self.notify_event("printing_paused", payload) if event == "PrintResumed": return self.notify_event("printing_resumed", payload) if event == "PrintCancelled": return self.notify_event("printing_cancelled", payload) if event == "PrintDone": payload['time_formatted'] = str( timedelta(seconds=int(payload["time"]))) return self.notify_event("printing_done", payload) return True def on_print_progress(self, location, path, progress): self.notify_event("printing_progress", {"progress": progress}) def on_settings_save(self, data): old_bot_settings = '{}{}{}'.format( self._settings.get(['url'], merged=True), self._settings.get(['avatar'], merged=True), self._settings.get(['username'], merged=True) ) octoprint.plugin.SettingsPlugin.on_settings_save(self, data) new_bot_settings = '{}{}{}'.format( self._settings.get(['url'], merged=True), self._settings.get(['avatar'], merged=True), self._settings.get(['username'], merged=True) ) if (old_bot_settings != new_bot_settings): self._logger.info("Settings have changed. Send a test message...") self.notify_event("test") def notify_event(self, eventID, data=None): if data is None: data = {} if (eventID not in self.events): self._logger.error( "Tried to notifiy on inexistant eventID : ", eventID) return False tmpConfig = self._settings.get(["events", eventID], merged=True) if tmpConfig["enabled"] != True: self._logger.debug( "Event {} is not enabled. Returning gracefully".format(eventID)) return False # Special case for progress eventID : we check for progress and steps if eventID == 'printing_progress' and ( int(tmpConfig["step"]) == 0 or int(data["progress"]) == 0 or int(data["progress"]) % int(tmpConfig["step"]) != 0 or (int(data["progress"]) == 100) ): return False tmpDataFromPrinter = self._printer.get_current_data() if tmpDataFromPrinter["progress"] is not None and tmpDataFromPrinter["progress"]["printTimeLeft"] is not None: data["remaining"] = int( tmpDataFromPrinter["progress"]["printTimeLeft"]) data["remaining_formatted"] = str( timedelta(seconds=data["remaining"])) if tmpDataFromPrinter["progress"] is not None and tmpDataFromPrinter["progress"]["printTime"] is not None: data["spent"] = int(tmpDataFromPrinter["progress"]["printTime"]) data["spent_formatted"] = str(timedelta(seconds=data["spent"])) self._logger.debug("Available variables for event " + eventID + ": " + ", ".join(list(data))) message = '' try: message = tmpConfig["message"].format(**data) except KeyError as error: message = tmpConfig["message"] + \ """\r\n:sos: **Octotweet Warning**""" + \ """\r\n The variable `{""" + error.args[0] + """}` is invalid for this message: """ + \ """\r\n Available variables: `{""" + \ '}`, `{'.join(list(data)) + "}`" finally: return self.send_message(eventID, message) def exec_script(self, eventName, which=""): # I want to be sure that the scripts are allowed by the special configuration flag scripts_allowed = self._settings.get(["allow_scripts"], merged=True) if scripts_allowed is None or scripts_allowed == False: return "" # Finding which one should be used. script_to_exec = None if which == "before": script_to_exec = self._settings.get(["script_before"], merged=True) elif which == "after": script_to_exec = self._settings.get(["script_after"], merged=True) # Finally exec the script out = "" self._logger.debug("{}:{} File to start: '{}'".format( eventName, which, script_to_exec)) try: if script_to_exec is not None and len(script_to_exec) > 0 and os.path.exists(script_to_exec): out = subprocess.check_output(script_to_exec) except (OSError, subprocess.CalledProcessError) as err: out = err finally: self._logger.debug( "{}:{} > Output: '{}'".format(eventName, which, out)) return out def send_message(self, eventID, message): # return false if no URL is provided # if "http" not in self._settings.get(["url"],merged=True): # return False # exec "before" script if any self.exec_script(eventID, "before") post_result ="ok" url = 'http://' + self._settings.get(["printerip"], merged=True) + ':8765/api/print/namebadge' myobj = {'first': self._settings.get(["username"], merged=True), 'last': message, 'company': ''} # sending post request requests.get(url, data=myobj) return post_result # If you want your plugin to be registered within OctoPrint under a different name than what you defined in setup.py # ("OctoPrint-PluginSkeleton"), you may define that here. Same goes for the other metadata derived from setup.py that # can be overwritten via __plugin_xyz__ control properties. See the documentation for that. __plugin_name__ = "octolabel" __plugin_pythoncompat__ = ">=2.7,<4" def __plugin_load__(): global __plugin_implementation__ __plugin_implementation__ = OctolabelPlugin() global __plugin_hooks__ __plugin_hooks__ = { "octoprint.plugin.softwareupdate.check_config": __plugin_implementation__.get_update_information }
29.64939
117
0.673111