contestId
int64
0
1.01k
index
stringclasses
57 values
name
stringlengths
2
58
type
stringclasses
2 values
rating
int64
0
3.5k
tags
listlengths
0
11
title
stringclasses
522 values
time-limit
stringclasses
8 values
memory-limit
stringclasses
8 values
problem-description
stringlengths
0
7.15k
input-specification
stringlengths
0
2.05k
output-specification
stringlengths
0
1.5k
demo-input
listlengths
0
7
demo-output
listlengths
0
7
note
stringlengths
0
5.24k
points
float64
0
425k
test_cases
listlengths
0
402
creationTimeSeconds
int64
1.37B
1.7B
relativeTimeSeconds
int64
8
2.15B
programmingLanguage
stringclasses
3 values
verdict
stringclasses
14 values
testset
stringclasses
12 values
passedTestCount
int64
0
1k
timeConsumedMillis
int64
0
15k
memoryConsumedBytes
int64
0
805M
code
stringlengths
3
65.5k
prompt
stringlengths
262
8.2k
response
stringlengths
17
65.5k
score
float64
-1
3.99
998
B
Cutting
PROGRAMMING
1,200
[ "dp", "greedy", "sortings" ]
null
null
There are a lot of things which could be cut — trees, paper, "the rope". In this problem you are going to cut a sequence of integers. There is a sequence of integers, which contains the equal number of even and odd numbers. Given a limited budget, you need to make maximum possible number of cuts such that each resulting segment will have the same number of odd and even integers. Cuts separate a sequence to continuous (contiguous) segments. You may think about each cut as a break between two adjacent elements in a sequence. So after cutting each element belongs to exactly one segment. Say, $[4, 1, 2, 3, 4, 5, 4, 4, 5, 5]$ $\to$ two cuts $\to$ $[4, 1 | 2, 3, 4, 5 | 4, 4, 5, 5]$. On each segment the number of even elements should be equal to the number of odd elements. The cost of the cut between $x$ and $y$ numbers is $|x - y|$ bitcoins. Find the maximum possible number of cuts that can be made while spending no more than $B$ bitcoins.
First line of the input contains an integer $n$ ($2 \le n \le 100$) and an integer $B$ ($1 \le B \le 100$) — the number of elements in the sequence and the number of bitcoins you have. Second line contains $n$ integers: $a_1$, $a_2$, ..., $a_n$ ($1 \le a_i \le 100$) — elements of the sequence, which contains the equal number of even and odd numbers
Print the maximum possible number of cuts which can be made while spending no more than $B$ bitcoins.
[ "6 4\n1 2 5 10 15 20\n", "4 10\n1 3 2 4\n", "6 100\n1 2 3 4 5 6\n" ]
[ "1\n", "0\n", "2\n" ]
In the first sample the optimal answer is to split sequence between $2$ and $5$. Price of this cut is equal to $3$ bitcoins. In the second sample it is not possible to make even one cut even with unlimited number of bitcoins. In the third sample the sequence should be cut between $2$ and $3$, and between $4$ and $5$. The total price of the cuts is $1 + 1 = 2$ bitcoins.
1,000
[ { "input": "6 4\n1 2 5 10 15 20", "output": "1" }, { "input": "4 10\n1 3 2 4", "output": "0" }, { "input": "6 100\n1 2 3 4 5 6", "output": "2" }, { "input": "2 100\n13 78", "output": "0" }, { "input": "10 1\n56 56 98 2 11 64 97 41 95 53", "output": "0" }, { "input": "10 100\n94 65 24 47 29 98 20 65 6 17", "output": "2" }, { "input": "100 1\n35 6 19 84 49 64 36 91 50 65 21 86 20 89 10 52 50 24 98 74 11 48 58 98 51 85 1 29 44 83 9 97 68 41 83 57 1 57 46 42 87 2 32 50 3 57 17 77 22 100 36 27 3 34 55 8 90 61 34 20 15 39 43 46 60 60 14 23 4 22 75 51 98 23 69 22 99 57 63 30 79 7 16 8 34 84 13 47 93 40 48 25 93 1 80 6 82 93 6 21", "output": "0" }, { "input": "100 10\n3 20 3 29 90 69 2 30 70 28 71 99 22 99 34 70 87 48 3 92 71 61 26 90 14 38 51 81 16 33 49 71 14 52 50 95 65 16 80 57 87 47 29 14 40 31 74 15 87 76 71 61 30 91 44 10 87 48 84 12 77 51 25 68 49 38 79 8 7 9 39 19 48 40 15 53 29 4 60 86 76 84 6 37 45 71 46 38 80 68 94 71 64 72 41 51 71 60 79 7", "output": "2" }, { "input": "100 100\n60 83 82 16 17 7 89 6 83 100 85 41 72 44 23 28 64 84 3 23 33 52 93 30 81 38 67 25 26 97 94 78 41 74 74 17 53 51 54 17 20 81 95 76 42 16 16 56 74 69 30 9 82 91 32 13 47 45 97 40 56 57 27 28 84 98 91 5 61 20 3 43 42 26 83 40 34 100 5 63 62 61 72 5 32 58 93 79 7 18 50 43 17 24 77 73 87 74 98 2", "output": "11" }, { "input": "100 100\n70 54 10 72 81 84 56 15 27 19 43 100 49 44 52 33 63 40 95 17 58 2 51 39 22 18 82 1 16 99 32 29 24 94 9 98 5 37 47 14 42 73 41 31 79 64 12 6 53 26 68 67 89 13 90 4 21 93 46 74 75 88 66 57 23 7 25 48 92 62 30 8 50 61 38 87 71 34 97 28 80 11 60 91 3 35 86 96 36 20 59 65 83 45 76 77 78 69 85 55", "output": "3" }, { "input": "100 100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "49" }, { "input": "10 10\n94 32 87 13 4 22 85 81 18 95", "output": "1" }, { "input": "10 50\n40 40 9 3 64 96 67 19 21 30", "output": "1" }, { "input": "100 50\n13 31 29 86 46 10 2 87 94 2 28 31 29 15 64 3 94 71 37 76 9 91 89 38 12 46 53 33 58 11 98 4 37 72 30 52 6 86 40 98 28 6 34 80 61 47 45 69 100 47 91 64 87 41 67 58 88 75 13 81 36 58 66 29 10 27 54 83 44 15 11 33 49 36 61 18 89 26 87 1 99 19 57 21 55 84 20 74 14 43 15 51 2 76 22 92 43 14 72 77", "output": "3" }, { "input": "100 1\n78 52 95 76 96 49 53 59 77 100 64 11 9 48 15 17 44 46 21 54 39 68 43 4 32 28 73 6 16 62 72 84 65 86 98 75 33 45 25 3 91 82 2 92 63 88 7 50 97 93 14 22 20 42 60 55 80 85 29 34 56 71 83 38 26 47 90 70 51 41 40 31 37 12 35 99 67 94 1 87 57 8 61 19 23 79 36 18 66 74 5 27 81 69 24 58 13 10 89 30", "output": "0" }, { "input": "100 10\n19 55 91 50 31 23 60 84 38 1 22 51 27 76 28 98 11 44 61 63 15 93 52 3 66 16 53 36 18 62 35 85 78 37 73 64 87 74 46 26 82 69 49 33 83 89 56 67 71 25 39 94 96 17 21 6 47 68 34 42 57 81 13 10 54 2 48 80 20 77 4 5 59 30 90 95 45 75 8 88 24 41 40 14 97 32 7 9 65 70 100 99 72 58 92 29 79 12 86 43", "output": "0" }, { "input": "100 50\n2 4 82 12 47 63 52 91 87 45 53 1 17 25 64 50 9 13 22 54 21 30 43 24 38 33 68 11 41 78 99 23 28 18 58 67 79 10 71 56 49 61 26 29 59 20 90 74 5 75 89 8 39 95 72 42 66 98 44 32 88 35 92 3 97 55 65 51 77 27 81 76 84 69 73 85 19 46 62 100 60 37 7 36 57 6 14 83 40 48 16 70 96 15 31 93 80 86 94 34", "output": "1" }, { "input": "100 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "1" }, { "input": "100 10\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "10" }, { "input": "100 50\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "49" }, { "input": "100 30\n2 1 2 2 2 2 1 1 1 2 1 1 2 2 1 2 1 2 2 2 2 1 2 1 2 1 1 2 1 1 2 2 2 1 1 2 1 2 2 2 1 1 1 1 1 2 1 1 1 1 1 2 2 2 2 1 2 1 1 1 2 2 2 2 1 2 2 1 1 1 1 2 2 2 1 2 2 1 2 1 1 2 2 2 1 2 2 1 2 1 1 2 1 1 1 1 2 1 1 2", "output": "11" }, { "input": "100 80\n1 1 1 2 2 1 1 2 1 1 1 1 2 2 2 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 2 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2 1 1 1 1 2 2 1 2 2 1 2 2 2 2 2 1 1 2 2 2 2 2 2 1 1 2 1 1 1 2 1 1 2 1 2 1 2 2 1 1 2 1 1 1 1 2 2 2 1 2 2 1 2", "output": "12" }, { "input": "100 30\n100 99 100 99 99 100 100 99 100 99 99 100 100 100 99 99 99 100 99 99 99 99 100 99 99 100 100 99 100 99 99 99 100 99 100 100 99 100 100 100 100 100 99 99 100 99 99 100 99 100 99 99 100 100 99 100 99 99 100 99 100 100 100 100 99 99 99 100 99 100 99 100 100 100 99 100 100 100 99 100 99 99 100 100 100 100 99 99 99 100 99 100 100 99 99 99 100 100 99 99", "output": "14" }, { "input": "100 80\n99 100 100 100 99 99 99 99 100 99 99 99 99 99 99 99 99 100 100 99 99 99 99 99 100 99 100 99 100 100 100 100 100 99 100 100 99 99 100 100 100 100 100 99 100 99 100 99 99 99 100 99 99 99 99 99 99 99 99 100 99 100 100 99 99 99 99 100 100 100 99 100 100 100 100 100 99 100 100 100 100 100 100 100 100 99 99 99 99 100 99 100 100 100 100 100 99 100 99 100", "output": "4" }, { "input": "100 30\n100 100 39 39 39 100 100 39 39 100 39 39 100 39 100 39 100 100 100 100 100 39 100 100 100 39 39 39 100 39 100 100 39 39 100 39 39 39 100 100 39 100 39 100 39 39 100 100 39 100 39 100 39 39 39 100 39 100 39 39 39 100 39 39 100 100 39 39 39 100 100 39 39 39 100 100 100 100 39 100 100 100 39 39 100 39 100 100 39 100 39 100 39 39 100 39 39 100 100 100", "output": "5" }, { "input": "100 80\n39 100 39 100 100 100 100 39 39 100 100 39 39 100 39 39 39 39 100 39 39 39 39 100 100 100 100 39 100 39 39 100 100 39 39 100 39 100 39 100 100 39 39 100 39 39 39 100 39 100 39 100 100 100 100 100 100 100 39 100 39 100 100 100 39 39 39 39 39 100 100 100 39 100 100 100 100 39 100 100 39 39 100 39 39 39 100 39 100 39 39 100 100 39 100 39 39 39 100 39", "output": "6" }, { "input": "4 1\n1 2 3 4", "output": "1" }, { "input": "4 1\n1 2 1 2", "output": "1" }, { "input": "4 4\n1 2 6 7", "output": "1" }, { "input": "4 8\n1 2 10 11", "output": "1" }, { "input": "6 2\n1 2 3 4 5 6", "output": "2" }, { "input": "6 1\n1 2 1 2 1 2", "output": "1" }, { "input": "6 4\n1 2 4 5 7 8", "output": "2" }, { "input": "6 3\n1 2 5 10 15 20", "output": "1" } ]
1,659,289,994
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
5
46
0
from math import fabs n, b = map(int, input().split(' ')) A = list(map(int, input().split(' '))) B = [] p,i = 0,0 for j in range(n-1): p += not (A[j]%2) i += A[j]%2 if p==i: B.append(fabs(A[j]-A[j-1])) B.sort() r = 0 c = 0 for i in B: if r+i < b: c+=1 r+=i else: break print(c)
Title: Cutting Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are a lot of things which could be cut — trees, paper, "the rope". In this problem you are going to cut a sequence of integers. There is a sequence of integers, which contains the equal number of even and odd numbers. Given a limited budget, you need to make maximum possible number of cuts such that each resulting segment will have the same number of odd and even integers. Cuts separate a sequence to continuous (contiguous) segments. You may think about each cut as a break between two adjacent elements in a sequence. So after cutting each element belongs to exactly one segment. Say, $[4, 1, 2, 3, 4, 5, 4, 4, 5, 5]$ $\to$ two cuts $\to$ $[4, 1 | 2, 3, 4, 5 | 4, 4, 5, 5]$. On each segment the number of even elements should be equal to the number of odd elements. The cost of the cut between $x$ and $y$ numbers is $|x - y|$ bitcoins. Find the maximum possible number of cuts that can be made while spending no more than $B$ bitcoins. Input Specification: First line of the input contains an integer $n$ ($2 \le n \le 100$) and an integer $B$ ($1 \le B \le 100$) — the number of elements in the sequence and the number of bitcoins you have. Second line contains $n$ integers: $a_1$, $a_2$, ..., $a_n$ ($1 \le a_i \le 100$) — elements of the sequence, which contains the equal number of even and odd numbers Output Specification: Print the maximum possible number of cuts which can be made while spending no more than $B$ bitcoins. Demo Input: ['6 4\n1 2 5 10 15 20\n', '4 10\n1 3 2 4\n', '6 100\n1 2 3 4 5 6\n'] Demo Output: ['1\n', '0\n', '2\n'] Note: In the first sample the optimal answer is to split sequence between $2$ and $5$. Price of this cut is equal to $3$ bitcoins. In the second sample it is not possible to make even one cut even with unlimited number of bitcoins. In the third sample the sequence should be cut between $2$ and $3$, and between $4$ and $5$. The total price of the cuts is $1 + 1 = 2$ bitcoins.
```python from math import fabs n, b = map(int, input().split(' ')) A = list(map(int, input().split(' '))) B = [] p,i = 0,0 for j in range(n-1): p += not (A[j]%2) i += A[j]%2 if p==i: B.append(fabs(A[j]-A[j-1])) B.sort() r = 0 c = 0 for i in B: if r+i < b: c+=1 r+=i else: break print(c) ```
0
245
A
System Administrator
PROGRAMMING
800
[ "implementation" ]
null
null
Polycarpus is a system administrator. There are two servers under his strict guidance — *a* and *b*. To stay informed about the servers' performance, Polycarpus executes commands "ping a" and "ping b". Each ping command sends exactly ten packets to the server specified in the argument of the command. Executing a program results in two integers *x* and *y* (*x*<=+<=*y*<==<=10; *x*,<=*y*<=≥<=0). These numbers mean that *x* packets successfully reached the corresponding server through the network and *y* packets were lost. Today Polycarpus has performed overall *n* ping commands during his workday. Now for each server Polycarpus wants to know whether the server is "alive" or not. Polycarpus thinks that the server is "alive", if at least half of the packets that we send to this server reached it successfully along the network. Help Polycarpus, determine for each server, whether it is "alive" or not by the given commands and their results.
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=1000) — the number of commands Polycarpus has fulfilled. Each of the following *n* lines contains three integers — the description of the commands. The *i*-th of these lines contains three space-separated integers *t**i*, *x**i*, *y**i* (1<=≤<=*t**i*<=≤<=2; *x**i*,<=*y**i*<=≥<=0; *x**i*<=+<=*y**i*<==<=10). If *t**i*<==<=1, then the *i*-th command is "ping a", otherwise the *i*-th command is "ping b". Numbers *x**i*, *y**i* represent the result of executing this command, that is, *x**i* packets reached the corresponding server successfully and *y**i* packets were lost. It is guaranteed that the input has at least one "ping a" command and at least one "ping b" command.
In the first line print string "LIVE" (without the quotes) if server *a* is "alive", otherwise print "DEAD" (without the quotes). In the second line print the state of server *b* in the similar format.
[ "2\n1 5 5\n2 6 4\n", "3\n1 0 10\n2 0 10\n1 10 0\n" ]
[ "LIVE\nLIVE\n", "LIVE\nDEAD\n" ]
Consider the first test case. There 10 packets were sent to server *a*, 5 of them reached it. Therefore, at least half of all packets sent to this server successfully reached it through the network. Overall there were 10 packets sent to server *b*, 6 of them reached it. Therefore, at least half of all packets sent to this server successfully reached it through the network. Consider the second test case. There were overall 20 packages sent to server *a*, 10 of them reached it. Therefore, at least half of all packets sent to this server successfully reached it through the network. Overall 10 packets were sent to server *b*, 0 of them reached it. Therefore, less than half of all packets sent to this server successfully reached it through the network.
0
[ { "input": "2\n1 5 5\n2 6 4", "output": "LIVE\nLIVE" }, { "input": "3\n1 0 10\n2 0 10\n1 10 0", "output": "LIVE\nDEAD" }, { "input": "10\n1 3 7\n2 4 6\n1 2 8\n2 5 5\n2 10 0\n2 10 0\n1 8 2\n2 2 8\n2 10 0\n1 1 9", "output": "DEAD\nLIVE" }, { "input": "11\n1 8 2\n1 6 4\n1 9 1\n1 7 3\n2 0 10\n2 0 10\n1 8 2\n2 2 8\n2 6 4\n2 7 3\n2 9 1", "output": "LIVE\nDEAD" }, { "input": "12\n1 5 5\n1 0 10\n1 4 6\n1 2 8\n1 2 8\n1 5 5\n1 9 1\n2 9 1\n1 5 5\n1 1 9\n2 9 1\n2 7 3", "output": "DEAD\nLIVE" }, { "input": "13\n1 8 2\n1 4 6\n1 5 5\n1 5 5\n2 10 0\n2 9 1\n1 3 7\n2 6 4\n2 6 4\n2 5 5\n1 7 3\n2 3 7\n2 9 1", "output": "LIVE\nLIVE" }, { "input": "14\n1 7 3\n1 0 10\n1 7 3\n1 1 9\n2 2 8\n2 0 10\n1 1 9\n2 8 2\n2 6 4\n1 3 7\n1 3 7\n2 6 4\n2 1 9\n2 7 3", "output": "DEAD\nDEAD" } ]
1,574,133,167
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
3
248
0
class Server: def __init__(self, a, b): self.a=a self.b=b def add(self, s=0): #self.add = self.a - self.b self.s = (self.a + self.b) return int(self.s) def np(self): #self.a+=self.a return int(self.a) def nd(self): #self.b+=self.b return int(self.b) n = int(input()) pd = list() pd1 = list() s1=0 s2=0 s3=0 s4=0 #server1 = Server() #server2 = Server() for i in range(n): t, x, y = map(int, input().split()) if t==1: server1 = Server(x,y) s1=server1.np() s2 = server1.nd() #pd.append([s1, s2]) else: server2 = Server(x,y) s3=server2.np() s4 = server2.nd() #pd1.append([s3, s4]) #pd1.append(server(x, y)) pd.append([s1, s2]) pd1.append([s3, s4]) #print(pd) #print (pd1) #print(pd[0][0]) if pd[0][0]>= pd[0][1]: print("LIVE") else: print("DEAD") if pd1[0][0]>= pd1[0][1]: print("LIVE") else: print("DEAD") '''for sum in range(len(pd1)): if pd1[0] >= pd1[1]: print("LIVE") else: print("DEAD")'''
Title: System Administrator Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarpus is a system administrator. There are two servers under his strict guidance — *a* and *b*. To stay informed about the servers' performance, Polycarpus executes commands "ping a" and "ping b". Each ping command sends exactly ten packets to the server specified in the argument of the command. Executing a program results in two integers *x* and *y* (*x*<=+<=*y*<==<=10; *x*,<=*y*<=≥<=0). These numbers mean that *x* packets successfully reached the corresponding server through the network and *y* packets were lost. Today Polycarpus has performed overall *n* ping commands during his workday. Now for each server Polycarpus wants to know whether the server is "alive" or not. Polycarpus thinks that the server is "alive", if at least half of the packets that we send to this server reached it successfully along the network. Help Polycarpus, determine for each server, whether it is "alive" or not by the given commands and their results. Input Specification: The first line contains a single integer *n* (2<=≤<=*n*<=≤<=1000) — the number of commands Polycarpus has fulfilled. Each of the following *n* lines contains three integers — the description of the commands. The *i*-th of these lines contains three space-separated integers *t**i*, *x**i*, *y**i* (1<=≤<=*t**i*<=≤<=2; *x**i*,<=*y**i*<=≥<=0; *x**i*<=+<=*y**i*<==<=10). If *t**i*<==<=1, then the *i*-th command is "ping a", otherwise the *i*-th command is "ping b". Numbers *x**i*, *y**i* represent the result of executing this command, that is, *x**i* packets reached the corresponding server successfully and *y**i* packets were lost. It is guaranteed that the input has at least one "ping a" command and at least one "ping b" command. Output Specification: In the first line print string "LIVE" (without the quotes) if server *a* is "alive", otherwise print "DEAD" (without the quotes). In the second line print the state of server *b* in the similar format. Demo Input: ['2\n1 5 5\n2 6 4\n', '3\n1 0 10\n2 0 10\n1 10 0\n'] Demo Output: ['LIVE\nLIVE\n', 'LIVE\nDEAD\n'] Note: Consider the first test case. There 10 packets were sent to server *a*, 5 of them reached it. Therefore, at least half of all packets sent to this server successfully reached it through the network. Overall there were 10 packets sent to server *b*, 6 of them reached it. Therefore, at least half of all packets sent to this server successfully reached it through the network. Consider the second test case. There were overall 20 packages sent to server *a*, 10 of them reached it. Therefore, at least half of all packets sent to this server successfully reached it through the network. Overall 10 packets were sent to server *b*, 0 of them reached it. Therefore, less than half of all packets sent to this server successfully reached it through the network.
```python class Server: def __init__(self, a, b): self.a=a self.b=b def add(self, s=0): #self.add = self.a - self.b self.s = (self.a + self.b) return int(self.s) def np(self): #self.a+=self.a return int(self.a) def nd(self): #self.b+=self.b return int(self.b) n = int(input()) pd = list() pd1 = list() s1=0 s2=0 s3=0 s4=0 #server1 = Server() #server2 = Server() for i in range(n): t, x, y = map(int, input().split()) if t==1: server1 = Server(x,y) s1=server1.np() s2 = server1.nd() #pd.append([s1, s2]) else: server2 = Server(x,y) s3=server2.np() s4 = server2.nd() #pd1.append([s3, s4]) #pd1.append(server(x, y)) pd.append([s1, s2]) pd1.append([s3, s4]) #print(pd) #print (pd1) #print(pd[0][0]) if pd[0][0]>= pd[0][1]: print("LIVE") else: print("DEAD") if pd1[0][0]>= pd1[0][1]: print("LIVE") else: print("DEAD") '''for sum in range(len(pd1)): if pd1[0] >= pd1[1]: print("LIVE") else: print("DEAD")''' ```
0
716
B
Complete the Word
PROGRAMMING
1,300
[ "greedy", "two pointers" ]
null
null
ZS the Coder loves to read the dictionary. He thinks that a word is nice if there exists a substring (contiguous segment of letters) of it of length 26 where each letter of English alphabet appears exactly once. In particular, if the string has length strictly less than 26, no such substring exists and thus it is not nice. Now, ZS the Coder tells you a word, where some of its letters are missing as he forgot them. He wants to determine if it is possible to fill in the missing letters so that the resulting word is nice. If it is possible, he needs you to find an example of such a word as well. Can you help him?
The first and only line of the input contains a single string *s* (1<=≤<=|*s*|<=≤<=50<=000), the word that ZS the Coder remembers. Each character of the string is the uppercase letter of English alphabet ('A'-'Z') or is a question mark ('?'), where the question marks denotes the letters that ZS the Coder can't remember.
If there is no way to replace all the question marks with uppercase letters such that the resulting word is nice, then print <=-<=1 in the only line. Otherwise, print a string which denotes a possible nice word that ZS the Coder learned. This string should match the string from the input, except for the question marks replaced with uppercase English letters. If there are multiple solutions, you may print any of them.
[ "ABC??FGHIJK???OPQR?TUVWXY?\n", "WELCOMETOCODEFORCESROUNDTHREEHUNDREDANDSEVENTYTWO\n", "??????????????????????????\n", "AABCDEFGHIJKLMNOPQRSTUVW??M\n" ]
[ "ABCDEFGHIJKLMNOPQRZTUVWXYS", "-1", "MNBVCXZLKJHGFDSAQPWOEIRUYT", "-1" ]
In the first sample case, ABCDEFGHIJKLMNOPQRZTUVWXYS is a valid answer beacuse it contains a substring of length 26 (the whole string in this case) which contains all the letters of the English alphabet exactly once. Note that there are many possible solutions, such as ABCDEFGHIJKLMNOPQRSTUVWXYZ or ABCEDFGHIJKLMNOPQRZTUVWXYS. In the second sample case, there are no missing letters. In addition, the given string does not have a substring of length 26 that contains all the letters of the alphabet, so the answer is  - 1. In the third sample case, any string of length 26 that contains all letters of the English alphabet fits as an answer.
1,000
[ { "input": "ABC??FGHIJK???OPQR?TUVWXY?", "output": "ABCDEFGHIJKLMNOPQRSTUVWXYZ" }, { "input": "WELCOMETOCODEFORCESROUNDTHREEHUNDREDANDSEVENTYTWO", "output": "-1" }, { "input": "??????????????????????????", "output": "ABCDEFGHIJKLMNOPQRSTUVWXYZ" }, { "input": "AABCDEFGHIJKLMNOPQRSTUVW??M", "output": "-1" }, { "input": "QWERTYUIOPASDFGHJKL???????", "output": "QWERTYUIOPASDFGHJKLBCMNVXZ" }, { "input": "ABABABBAB????????????ABABABABA???????????ABABABABA?????????KLCSJB?????????Z", "output": "ABABABBABAAAAAAAAAAAAABABABABAAAAAAAAAAAAABABABABADEFGHIMNOKLCSJBPQRTUVWXYZ" }, { "input": "Q?E?T?U?O?A?D?G?J?L?X?V?MMQ?E?T?U?O?A?D?G?J?L?X?V?N", "output": "QAEATAUAOAAADAGAJALAXAVAMMQBECTFUHOIAKDPGRJSLWXYVZN" }, { "input": "???????????????????????????", "output": "ABCDEFGHIJKLMNOPQRSTUVWXYZA" }, { "input": "EJMGJAXCHXYIKZSQKUGRCLSTWDLNCVZIGXGWILAVFBEIGOHWGVEPRJTHWEDQRPOVZUQOSRVTIHFFHJMCLOWGHCIGJBCAAVBJFMJEFTEGFXZFVRZOXAFOFVXRAIZEWIKILFLYDZVDADYWYWYJXAGDFGNZBQKKKTGWPINLCDBZVULROGAKEKXXTWNYKQBMLQMQRUYOWUTWMNTJVGUXENHXWMFWMSBKVNGXSNFFTRTTGEGBBHMFZTKNJQDYUQOXVDWTDHZCCQNYYIOFPMKYQIGEEYBCKBAYVCTWARVMHIENKXKFXNXEFUHUNRQPEDFUBMKNQOYCQHGTLRHLWUAVZJDRBRTSVQHBKRDJFKKYEZAJWJKATRFZLNELPYGFUIWBXLIWVTHUILJHTQKDGRNCFTFELCOQPJDBYSPYJOUDKIFRCKEMJPUXTTAMHVENEVMNTZLUYSUALQOUPPRLZHCYICXAQFFRQZAAJNFKVRJDMDXFTBRJSAAHTSVG", "output": "-1" }, { "input": "SVBWLLLPMPJUQVIGVXPCKMPEBPWMYORVTYELJOQGKEOJVCRBUJOOKQZQBYJIBCSHGSDBTIIMNGAXAQJRHHKQFAJSOJLAYRKWBASMLBQVUPPQWDGAVKDLFHEHVVWGSYQHYCPDIECHBTOIFYUFGKWIIMCKEBLECHCETBQMJPBPPGDHRLJIIMVJBZDRSDWWEJASQFRSCLOBAOLZQDPEZWDLMYTGDLUHCJMTXVURWQFCFDIGSUADTFMNGVHRYHQKWBGWWLQJQSFSWXGWIYUTSBUNZFDONBCFTGWTTQIISXJZUWSZWXXFMNB?UWPOWVWIWMBAPXYMGTRSGWMQRXULCMDTUKZS?CNMBRIYDZCUQWAKYQLLJLTXSVMUAYZHVBZFYBABBECIADQPUPZVVYHTGKOWKDNEUYPBTNUSQLLQRODUXFMSYUYIQGERINAPZWL?VKBVQJQLUJGDPFHNVXXSNOWHBZPMLOXVC?IEUMVLIBYLEATFUTILPPTP", "output": "-1" }, { "input": "DMWSBHPGSJJD?EEV?CYAXQCCGNNQWNN?OMEDD?VC?CTKNQQPYXKKJFAYMJ?FMPXXCLKOL?OTRCE", "output": "-1" }, { "input": "EOYJRKFABJIUOZILSHHCXIFQTXAVXJOVTQCDHXPNYPW?RVRKTB?OVXEL?NQHMZZXJLGSA?OTFSZQBV?SBHGKPJPCIQMLRSYDCFPYMEMXUEVHANXELHKSKNLGHGDCYMURXQRWMHEYXXCMGMUFZIPVOZQQBJGVKESTCDZCWFUCSGGIRWMXYXJLFLGUXQAWLZIKFUTVYDGKBVKBKXTICIKHXWFVJRHNMYRJZYNNYXMUOFERZPY?AJKSMUCTLOFH?LV?EHHCHKBHOJZAHFKJHHZJKZIEYAOAPDQRIUWDBMJGOOSNWN?CBKUXJCTEWVTRBDCNFMGBJUAODCCZVPZBQJNIRJVVF?QBWBV?AXOVOYNAWSKUVPHWJK?YPYOKTVFBWAGCC?JOWPPCAZDOYETAYYECWWURYHY?SJHMSJXDIMXFOTUWJLYDKCHOAPLFYPMFYFRNRKWY?CBPLQJJJ?BJYGBJT?FV?VDQEQAUFWZSOJHZFBVEALMMT?XP", "output": "-1" }, { "input": "E?BIVQUPQQEJNMINFD?NKV?IROHPTGUIPMEVYPII?LZJMRI?FTKKKBHPOVQZZSAPDDWVSPVHOBT", "output": "-1" }, { "input": "FDQHJSNDDXHJLWVZVXJZUGKVHWCZVRWVZTIURLMJNGAMCUBDGVSIDEYRJZOLDISDNTOEKLSNLBSOQZLJVPAMLEBAVUNBXNKMLZBGJJQCGCSKBFSEEDXEVSWGZHFJIZJESPZIKIONJWTFFYYZKIDBSDNPJVAUHQMRFKIJWCEGTBVZHWZEKLPHGZVKZFAFAQRNKHGACNRTSXQKKCYBMEMKNKKSURKHOSMEVUXNGOCVCLVVSKULGBKFPCEKVRAJMBWCFFFSCCNDOSEKXEFFZETTUZHMQETWCVZASTTULYOPBNMOMXMVUEEEYZHSMRPAEIHUKNPNJTARJKQKIOXDJASSQPQQHEQIQJQLVPIJRCFVOVECHBOCRYWQEDXZLJXUDZUBFTRWEWNYTSKGDBEBWFFLMUYWELNVAAXSMKYEZXQFKKHJTZKMKMYOBTVXAOVBRMAMHTBDDYMDGQYEEBYZUBMUCKLKXCZGTWVZAYJOXZVGUYNXOVAPXQVE", "output": "-1" }, { "input": "KMNTIOJTLEKZW?JALAZYWYMKWRXTLAKNMDJLICZMETAKHVPTDOLAPCGHOEYSNIUJZVLPBTZ?YSR", "output": "-1" }, { "input": "?MNURVAKIVSOGITVJZEZCAOZEFVNZERAHVNCVCYKTJVEHK?ZMDL?CROLIDFSG?EIFHYKELMQRBVLE?CERELHDVFODJ?LBGJVFPO?CVMPBW?DPGZMVA?BKPXQQCRMKHJWDNAJSGOTGLBNSWMXMKAQ?MWMXCNRSGHTL?LGLAHSDHAGZRGTNDFI?KJ?GSAWOEPOENXTJCVJGMYOFIQKKDWOCIKPGCMFEKNEUPFGBCBYQCM?EQSAX?HZ?MFKAUHOHRKZZSIVZCAKYIKBDJYOCZJRYNLSOKGAEGQRQ?TBURXXLHAFCNVGAUVWBXZILMHWSBYJTIMWPNEGATPURPTJYFWKHRL?QPYUQ?HKDDHWAHOWUSONQKSZFIYFMFUJAMIYAMPNBGVPJSDFDFSAHDWWGEAKXLHBURNTIMCUZIAFAOCVNKPJRNLNGSJVMGKQ?IFQSRHTZGKHGXFJBDGPLCUUMEWNOSCONIVCLAOAPPSFFLCPRIXTKNBSSOVM", "output": "-1" }, { "input": "MRHKVVRBFEIFWIZGWCATJPBSZWNYANEWSSEVFQUUVNJKQOKVIGYBPFSZFTBUCNQEJEYVOWSPYER", "output": "-1" }, { "input": "CNRFBWKRTQTDFOMIGPPGDBHPRNRXFASDDBCZXHORGXDRSIORLJEROJBLLEHLNBILBPX?KHQLCOUPTKUADCDNHNBWMVNUUVUFPIRXSPNUCCRLJTDSUIUDLBKNKMXSAVBJDUGWIMNBIUWJX?TCBDEBNDYUGPS?MQSSEIIUGEE?XXKW?CMFQMWUAEXTSZNNOCPHBAEAKWALYBBMUMQZXUKTQPWNMZKIDECWIZFHKQIUJZRSBZPQFUQNVKQZMYJDHXZWXFHIZ?HWPIPIWV?JMIYKEJDNPMKTTOY?NTOMZZXTNMWQENYRWFYM?WLJJFCIJSETZSJORBZZHAFWYKGQJAPYQQXUWROOZUDOJJLNCDRSGUKYAZLLENGUICGOYPLJQ?POSKHPMOFJMAOXCITWWL?LOEDKHZPQFZZCTB?JYZNXZSDREAMGGXHMCFTQNOUALEYHULSDQVOXZIWFHNNHHG?FYUOCQNKBLFGGZ?YNFNVLRMENYBDWMDSP", "output": "-1" }, { "input": "KSRVTPFVRJWNPYUZMXBRLKVXIQPPBYVSYKRQPNGKTKRPFMKLIYFACFKBIQGPAXLEUESVGPBBXLY", "output": "-1" }, { "input": "LLVYUOXHBHUZSAPUMQEKWSQAFRKSMEENXDQYOPQFXNNFXSRBGXFUIRBFJDSDKQIDMCPPTWRJOZCRHZYZPBVUJPQXHNALAOCJDTTBDZWYDBVPMNSQNVMLHHUJAOIWFSEJEJSRBYREOZKHEXTBAXPTISPGIPOYBFFEJNAKKXAEPNGKWYGEJTNEZIXAWRSCEIRTKNEWSKSGKNIKDEOVXGYVEVFRGTNDFNWIFDRZQEJQZYIWNZXCONVZAKKKETPTPPXZMIVDWPGXOFODRNJZBATKGXAPXYHTUUFFASCHOLSMVSWBIJBAENEGNQTWKKOJUYQNXWDCDXBXBJOOWETWLQMGKHAJEMGXMYNVEHRAEGZOJJQPZGYRHXRNKMSWFYDIZLIBUTSKIKGQJZLGZQFJVIMNOHNZJKWVVPFMFACVXKJKTBZRXRZDJKSWSXBBKWIKEICSZEIPTOJCKJQYYPNUPRNPQNNCVITNXPLAKQBYAIQGNAHXDUQWQLYN", "output": "-1" }, { "input": "PVCKCT?KLTFPIBBIHODCAABEQLJKQECRUJUSHSXPMBEVBKHQTIKQLBLTIRQZPOGPWMMNWWCUKAD", "output": "-1" }, { "input": "BRTYNUVBBWMFDSRXAMLNSBIN???WDDQVPCSWGJTHLRAKTPFKGVLHAKNRIEYIDDRDZLLTBRKXRVRSPBSLXIZRRBEVMHJSAFPLZAIHFVTTEKDO?DYWKILEYRM?VHSEQCBYZZRZMICVZRYA?ONCSZOPGZUMIHJQJPIFX?YJMIERCMKTSFTDZIKEZPLDEOOCJLQIZ?RPHUEQHPNNSBRQRTDGLWNSCZ?WQVIZPTOETEXYI?DRQUOMREPUTOAJKFNBGYNWMGCAOELXEPLLZEYHTVLT?ETJJXLHJMAUDQESNQ?ZCGNDGI?JSGUXQV?QAWQIYKXBKCCSWNRTGHPZF?CSWDQSAZIWQNHOWHYAEZNXRMPAZEQQPPIBQQJEDHJEDHVXNEDETEN?ZHEPJJ?VVDYGPJUWGCBMB?ANFJHJXQVAJWCAZEZXZX?BACPPXORNENMCRMQPIYKNPHX?NSKGEABWWVLHQ?ESWLJUPQJSFIUEGMGHEYVLYEDWJG?L", "output": "-1" }, { "input": "TESTEIGHTYFOUR", "output": "-1" }, { "input": "ABCDEFGHIJKLMNOPQRSTUVWXY", "output": "-1" }, { "input": "?????????????????????????", "output": "-1" }, { "input": "Q?RYJPGLNQ", "output": "-1" }, { "input": "ABCDEFGHIJKLMNOPQRZTUVWXYS", "output": "ABCDEFGHIJKLMNOPQRZTUVWXYS" }, { "input": "AACDEFGHIJKLMNOPQRZTUVWXYS", "output": "-1" }, { "input": "ZA?ABCDEFGHIJKLMNOPQRSTUVWXY", "output": "ZAZABCDEFGHIJKLMNOPQRSTUVWXY" }, { "input": "AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTTUUVVWWXXYYZZ", "output": "-1" }, { "input": "ABCDEFGHIJKLMNOPQRSTUVWXYYYZABC", "output": "-1" }, { "input": "????", "output": "-1" }, { "input": "ABCDEFGHIJKLMNOPQRZTUVWXYS??", "output": "ABCDEFGHIJKLMNOPQRZTUVWXYSAA" }, { "input": "A", "output": "-1" }, { "input": "NKBDABACEFGGGIJLLLLMMMOMPQWZSSRHHTTUWUWVXYY", "output": "-1" }, { "input": "AA", "output": "-1" }, { "input": "BAAAAAAAAAAAAAAAAAAAAAAAAAAAXA?CDEFGHIJKLMNOPQRSTUVWXYZ", "output": "BAAAAAAAAAAAAAAAAAAAAAAAAAAAXABCDEFGHIJKLMNOPQRSTUVWXYZ" }, { "input": "???DEFGHIJKL??L?PQRSTUVW???", "output": "-1" }, { "input": "?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A", "output": "-1" }, { "input": "A?AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA?????????????AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA???????????AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA??????????", "output": "-1" }, { "input": "ZXXCVBNMLKJHGFDSAQWWERTYUIOP", "output": "-1" }, { "input": "ABCA???????????????????????", "output": "ABCADEFGHIJKLMNOPQRSTUVWXYZ" }, { "input": "AB", "output": "-1" }, { "input": "ABCDEFGHIJKLMNOPQRSTUVWXYZ", "output": "ABCDEFGHIJKLMNOPQRSTUVWXYZ" }, { "input": "BCDEFGHIAJKLMNOPQARSTUVWXYZ", "output": "-1" }, { "input": "AABBCDEFGHIJKLMNOPQRSTUVWXYZ", "output": "-1" }, { "input": "???AA????????????????????BB???", "output": "-1" }, { "input": "ABC??FGAHIJ??MNOPQRST??WXYZ", "output": "ABCDEFGAHIJKLMNOPQRSTUVWXYZ" }, { "input": "QWERTYUIOPASDFGHJKLZXCVBN", "output": "-1" }, { "input": "??????AAAAAAAAAAAAAAAAAAAABBBBB??????????AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBB????????????AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA??????????AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASSSSSSSSFFFFFFF?????????DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD??????WWWWWWWWWWEEEEEEEEEEERRRRRRRRRRRRRRRRRRRRRRRRRHHHHHHHHHH?????", "output": "-1" } ]
1,553,759,939
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
5
93
0
def isF(a): for i in range(len(a)): for j in range(i + 1, len(a)): if a[j] == a[i] and a[j] != "?": return False return True a = input() alf = ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"] flag = True for i in range(len(a) - 25): str1 = list(a[i:i + 26]) if isF(str1): flag = False for i in range(len(str1)): if str1[i] != "?": alf.remove(str1[i]) for i in range(len(str1)): if str1[i] == "?": str1[i] = alf[0] alf.remove(alf[0]) break if flag: print(-1) else: b = "" for x in str1: b += x print(b)
Title: Complete the Word Time Limit: None seconds Memory Limit: None megabytes Problem Description: ZS the Coder loves to read the dictionary. He thinks that a word is nice if there exists a substring (contiguous segment of letters) of it of length 26 where each letter of English alphabet appears exactly once. In particular, if the string has length strictly less than 26, no such substring exists and thus it is not nice. Now, ZS the Coder tells you a word, where some of its letters are missing as he forgot them. He wants to determine if it is possible to fill in the missing letters so that the resulting word is nice. If it is possible, he needs you to find an example of such a word as well. Can you help him? Input Specification: The first and only line of the input contains a single string *s* (1<=≤<=|*s*|<=≤<=50<=000), the word that ZS the Coder remembers. Each character of the string is the uppercase letter of English alphabet ('A'-'Z') or is a question mark ('?'), where the question marks denotes the letters that ZS the Coder can't remember. Output Specification: If there is no way to replace all the question marks with uppercase letters such that the resulting word is nice, then print <=-<=1 in the only line. Otherwise, print a string which denotes a possible nice word that ZS the Coder learned. This string should match the string from the input, except for the question marks replaced with uppercase English letters. If there are multiple solutions, you may print any of them. Demo Input: ['ABC??FGHIJK???OPQR?TUVWXY?\n', 'WELCOMETOCODEFORCESROUNDTHREEHUNDREDANDSEVENTYTWO\n', '??????????????????????????\n', 'AABCDEFGHIJKLMNOPQRSTUVW??M\n'] Demo Output: ['ABCDEFGHIJKLMNOPQRZTUVWXYS', '-1', 'MNBVCXZLKJHGFDSAQPWOEIRUYT', '-1'] Note: In the first sample case, ABCDEFGHIJKLMNOPQRZTUVWXYS is a valid answer beacuse it contains a substring of length 26 (the whole string in this case) which contains all the letters of the English alphabet exactly once. Note that there are many possible solutions, such as ABCDEFGHIJKLMNOPQRSTUVWXYZ or ABCEDFGHIJKLMNOPQRZTUVWXYS. In the second sample case, there are no missing letters. In addition, the given string does not have a substring of length 26 that contains all the letters of the alphabet, so the answer is  - 1. In the third sample case, any string of length 26 that contains all letters of the English alphabet fits as an answer.
```python def isF(a): for i in range(len(a)): for j in range(i + 1, len(a)): if a[j] == a[i] and a[j] != "?": return False return True a = input() alf = ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"] flag = True for i in range(len(a) - 25): str1 = list(a[i:i + 26]) if isF(str1): flag = False for i in range(len(str1)): if str1[i] != "?": alf.remove(str1[i]) for i in range(len(str1)): if str1[i] == "?": str1[i] = alf[0] alf.remove(alf[0]) break if flag: print(-1) else: b = "" for x in str1: b += x print(b) ```
0
260
B
Ancient Prophesy
PROGRAMMING
1,600
[ "brute force", "implementation", "strings" ]
null
null
A recently found Ancient Prophesy is believed to contain the exact Apocalypse date. The prophesy is a string that only consists of digits and characters "-". We'll say that some date is mentioned in the Prophesy if there is a substring in the Prophesy that is the date's record in the format "dd-mm-yyyy". We'll say that the number of the date's occurrences is the number of such substrings in the Prophesy. For example, the Prophesy "0012-10-2012-10-2012" mentions date 12-10-2012 twice (first time as "0012-10-2012-10-2012", second time as "0012-10-2012-10-2012"). The date of the Apocalypse is such correct date that the number of times it is mentioned in the Prophesy is strictly larger than that of any other correct date. A date is correct if the year lies in the range from 2013 to 2015, the month is from 1 to 12, and the number of the day is strictly more than a zero and doesn't exceed the number of days in the current month. Note that a date is written in the format "dd-mm-yyyy", that means that leading zeroes may be added to the numbers of the months or days if needed. In other words, date "1-1-2013" isn't recorded in the format "dd-mm-yyyy", and date "01-01-2013" is recorded in it. Notice, that any year between 2013 and 2015 is not a leap year.
The first line contains the Prophesy: a non-empty string that only consists of digits and characters "-". The length of the Prophesy doesn't exceed 105 characters.
In a single line print the date of the Apocalypse. It is guaranteed that such date exists and is unique.
[ "777-444---21-12-2013-12-2013-12-2013---444-777\n" ]
[ "13-12-2013" ]
none
1,000
[ { "input": "777-444---21-12-2013-12-2013-12-2013---444-777", "output": "13-12-2013" }, { "input": "30-12-201429-15-208830-12-2014", "output": "30-12-2014" }, { "input": "14-08-201314-08-201314-08-201381-16-20172406414-08-201314-08-201314-08-20134237014-08-201314-08-2013", "output": "14-08-2013" }, { "input": "15-11-201413-02-20147-86-25-298813-02-201413-02-201434615-11-201415-11-201415-11-201415-11-2014", "output": "15-11-2014" }, { "input": "19-07-201419-07-201424-06-201719-07-201419-07-201413-10-201419-07-201468-01-201619-07-20142", "output": "19-07-2014" }, { "input": "01-04-201425-08-201386-04-201525-10-2014878-04-20102-06-201501-04-2014-08-20159533-45-00-1212", "output": "01-04-2014" }, { "input": "23-11-201413-07-201412-06-2015124-03-20140-19-201323-11-201424-03-2014537523-11-20143575015-10-2014", "output": "23-11-2014" }, { "input": "15-04-201413-08-201589-09-201013-08-20130-74-28-201620-8497-14-1063713-08-2013813-02-201513-08-2013", "output": "13-08-2013" }, { "input": "13-05-201412-11-2013-12-11-201314-12-201329-05-201306-24-188814-07-201312-11-201312-04-2010", "output": "12-11-2013" }, { "input": "14-01-201402-04-201514-01-201485-26-1443948-14-278314-01-2014615259-09-178413-06-201314-05-2014", "output": "14-01-2014" }, { "input": "31-12-201331-11-201331-11-2013", "output": "31-12-2013" }, { "input": "01-01-2014", "output": "01-01-2014" }, { "input": "32-13-2100-32-13-2100-32-13-2100-12-12-2013", "output": "12-12-2013" }, { "input": "15-1--201315-1--201301-01-2013", "output": "01-01-2013" }, { "input": "00-12-2014-00-12-2014-00-12-2014-12-12-2014", "output": "12-12-2014" }, { "input": "120110201311-10-20151201102013", "output": "11-10-2015" }, { "input": "31-08-2013---31-08-2013---03-03-2013", "output": "31-08-2013" }, { "input": "12-12-201312-12-201312-12-201313--12-201313--12-201313--12-201313--12-201313--12-201313--12-201313--12-201313--12-2013", "output": "12-12-2013" }, { "input": "21-12-201221-12-201221-12-201221-12-201213-12-2013", "output": "13-12-2013" }, { "input": "29-02-2013-02-2013-29-02-2013", "output": "13-02-2013" }, { "input": "20-12-2012----20-12-2012-----01-01-2013", "output": "01-01-2013" }, { "input": "01-2-02013---01-2-02013----13-02-2014", "output": "13-02-2014" }, { "input": "11111111111111111111---21-12-2013", "output": "21-12-2013" }, { "input": "29-02-2014--29-02-2014--28-02-2014", "output": "28-02-2014" }, { "input": "29-02-201329-02-201321-12-2013", "output": "21-12-2013" }, { "input": "01--01--2013-12-2013-01--01--2013", "output": "13-12-2013" }, { "input": "10-10-2023-10-10-2023-10-10-2013", "output": "10-10-2013" } ]
1,666,517,491
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
62
135,270,400
from collections import defaultdict, deque from functools import lru_cache from heapq import heappush, heappop, heapify from bisect import bisect_right, bisect_left from random import randint from fractions import Fraction as frac import math hpop = heappop hpush = heappush MOD = 10**9 + 7 def valied_data(d,m,y): days_of_month = [31,28,31,30,31,30,31,31,30,31,30,31] if y < 2013 or y > 2015: return None if m > 12: return None max_days = days_of_month[m-1] if d > max_days: return None return str(d) + "-" + str(m) + "-" + str(y) def get_date_arr(i, line): count = 0 arr = [] left = i; right = i while right <= len(line) and count < 3: if right == len(line) or line[right] == "-": arr.append(line[left:right]) left = right + 1 count += 1 right += 1 if right - left > 5: break if count < 3: return ["", "", ""] return arr def solution(): line = input() freq = defaultdict(int) for i in range(len(line) - 3): day, month, year = get_date_arr(i, line) if len(day) and len(month) and len(year): res = valied_data(int(day), int(month), int(year)) if res: freq[res] += 1 return print(max(freq, key=lambda x:freq[x])) def test(): pass def main(): #test() t = 1 #t = int(input()) for _ in range(t): solution() import sys import threading sys.setrecursionlimit(1 << 30) threading.stack_size(1 << 27) thread = threading.Thread(target=main) thread.start(); thread.join() #main()
Title: Ancient Prophesy Time Limit: None seconds Memory Limit: None megabytes Problem Description: A recently found Ancient Prophesy is believed to contain the exact Apocalypse date. The prophesy is a string that only consists of digits and characters "-". We'll say that some date is mentioned in the Prophesy if there is a substring in the Prophesy that is the date's record in the format "dd-mm-yyyy". We'll say that the number of the date's occurrences is the number of such substrings in the Prophesy. For example, the Prophesy "0012-10-2012-10-2012" mentions date 12-10-2012 twice (first time as "0012-10-2012-10-2012", second time as "0012-10-2012-10-2012"). The date of the Apocalypse is such correct date that the number of times it is mentioned in the Prophesy is strictly larger than that of any other correct date. A date is correct if the year lies in the range from 2013 to 2015, the month is from 1 to 12, and the number of the day is strictly more than a zero and doesn't exceed the number of days in the current month. Note that a date is written in the format "dd-mm-yyyy", that means that leading zeroes may be added to the numbers of the months or days if needed. In other words, date "1-1-2013" isn't recorded in the format "dd-mm-yyyy", and date "01-01-2013" is recorded in it. Notice, that any year between 2013 and 2015 is not a leap year. Input Specification: The first line contains the Prophesy: a non-empty string that only consists of digits and characters "-". The length of the Prophesy doesn't exceed 105 characters. Output Specification: In a single line print the date of the Apocalypse. It is guaranteed that such date exists and is unique. Demo Input: ['777-444---21-12-2013-12-2013-12-2013---444-777\n'] Demo Output: ['13-12-2013'] Note: none
```python from collections import defaultdict, deque from functools import lru_cache from heapq import heappush, heappop, heapify from bisect import bisect_right, bisect_left from random import randint from fractions import Fraction as frac import math hpop = heappop hpush = heappush MOD = 10**9 + 7 def valied_data(d,m,y): days_of_month = [31,28,31,30,31,30,31,31,30,31,30,31] if y < 2013 or y > 2015: return None if m > 12: return None max_days = days_of_month[m-1] if d > max_days: return None return str(d) + "-" + str(m) + "-" + str(y) def get_date_arr(i, line): count = 0 arr = [] left = i; right = i while right <= len(line) and count < 3: if right == len(line) or line[right] == "-": arr.append(line[left:right]) left = right + 1 count += 1 right += 1 if right - left > 5: break if count < 3: return ["", "", ""] return arr def solution(): line = input() freq = defaultdict(int) for i in range(len(line) - 3): day, month, year = get_date_arr(i, line) if len(day) and len(month) and len(year): res = valied_data(int(day), int(month), int(year)) if res: freq[res] += 1 return print(max(freq, key=lambda x:freq[x])) def test(): pass def main(): #test() t = 1 #t = int(input()) for _ in range(t): solution() import sys import threading sys.setrecursionlimit(1 << 30) threading.stack_size(1 << 27) thread = threading.Thread(target=main) thread.start(); thread.join() #main() ```
0
507
A
Amr and Music
PROGRAMMING
1,000
[ "greedy", "implementation", "sortings" ]
null
null
Amr is a young coder who likes music a lot. He always wanted to learn how to play music but he was busy coding so he got an idea. Amr has *n* instruments, it takes *a**i* days to learn *i*-th instrument. Being busy, Amr dedicated *k* days to learn how to play the maximum possible number of instruments. Amr asked for your help to distribute his free days between instruments so that he can achieve his goal.
The first line contains two numbers *n*, *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=10<=000), the number of instruments and number of days respectively. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=100), representing number of days required to learn the *i*-th instrument.
In the first line output one integer *m* representing the maximum number of instruments Amr can learn. In the second line output *m* space-separated integers: the indices of instruments to be learnt. You may output indices in any order. if there are multiple optimal solutions output any. It is not necessary to use all days for studying.
[ "4 10\n4 3 1 2\n", "5 6\n4 3 1 1 2\n", "1 3\n4\n" ]
[ "4\n1 2 3 4", "3\n1 3 4", "0\n" ]
In the first test Amr can learn all 4 instruments. In the second test other possible solutions are: {2, 3, 5} or {3, 4, 5}. In the third test Amr doesn't have enough time to learn the only presented instrument.
500
[ { "input": "4 10\n4 3 1 2", "output": "4\n1 2 3 4" }, { "input": "5 6\n4 3 1 1 2", "output": "3\n3 4 5" }, { "input": "1 3\n4", "output": "0" }, { "input": "2 100\n100 100", "output": "1\n1" }, { "input": "3 150\n50 50 50", "output": "3\n1 2 3" }, { "input": "4 0\n100 100 100 100", "output": "0" }, { "input": "100 7567\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "75\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75" }, { "input": "68 3250\n95 84 67 7 82 75 100 39 31 45 69 100 8 97 13 58 74 40 88 69 35 91 94 28 62 85 51 97 37 15 87 51 24 96 89 49 53 54 35 17 23 54 51 91 94 18 26 92 79 63 23 37 98 43 16 44 82 25 100 59 97 3 60 92 76 58 56 50", "output": "60\n1 2 3 4 5 6 8 9 10 11 13 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 31 32 33 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 54 55 56 57 58 60 62 63 64 65 66 67 68" }, { "input": "100 10000\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100" }, { "input": "25 1293\n96 13 7 2 81 72 39 45 5 88 47 23 60 81 54 46 63 52 41 57 2 87 90 28 93", "output": "25\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25" }, { "input": "98 7454\n71 57 94 76 52 90 76 81 67 60 99 88 98 61 73 61 80 91 88 93 53 55 88 64 71 55 81 76 52 63 87 99 84 66 65 52 83 99 92 62 95 81 90 67 64 57 80 80 67 75 77 58 71 85 97 50 97 55 52 59 55 96 57 53 85 100 95 95 74 51 78 88 66 98 97 86 94 81 56 64 61 57 67 95 85 82 85 60 76 95 69 95 76 91 74 100 69 76", "output": "98\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98" }, { "input": "5 249\n96 13 7 2 81", "output": "5\n1 2 3 4 5" }, { "input": "61 3331\n12 63 99 56 57 70 53 21 41 82 97 63 42 91 18 84 99 78 85 89 6 63 76 28 33 78 100 46 78 78 32 13 11 12 73 50 34 60 12 73 9 19 88 100 28 51 50 45 51 10 78 38 25 22 8 40 71 55 56 83 44", "output": "61\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61" }, { "input": "99 10000\n42 88 21 63 59 38 23 100 86 37 57 86 11 22 19 89 6 19 15 64 18 77 83 29 14 26 80 73 8 51 14 19 9 98 81 96 47 77 22 19 86 71 91 61 84 8 80 28 6 25 33 95 96 21 57 92 96 57 31 88 38 32 70 19 25 67 29 78 18 90 37 50 62 33 49 16 47 39 9 33 88 69 69 29 14 66 75 76 41 98 40 52 65 25 33 47 39 24 80", "output": "99\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99" }, { "input": "89 4910\n44 9 31 70 85 72 55 9 85 84 63 43 92 85 10 34 83 28 73 45 62 7 34 52 89 58 24 10 28 6 72 45 57 36 71 34 26 24 38 59 5 15 48 82 58 99 8 77 49 84 14 58 29 46 88 50 13 7 58 23 40 63 96 23 46 31 17 8 59 93 12 76 69 20 43 44 91 78 68 94 37 27 100 65 40 25 52 30 97", "output": "89\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89" }, { "input": "40 2110\n91 18 52 22 26 67 59 10 55 43 97 78 20 81 99 36 33 12 86 32 82 87 70 63 48 48 45 94 78 23 77 15 68 17 71 54 44 98 54 8", "output": "39\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40" }, { "input": "27 1480\n38 95 9 36 21 70 19 89 35 46 7 31 88 25 10 72 81 32 65 83 68 57 50 20 73 42 12", "output": "27\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27" }, { "input": "57 2937\n84 73 23 62 93 64 23 17 53 100 47 67 52 53 90 58 19 84 33 69 46 47 50 28 73 74 40 42 92 70 32 29 57 52 23 82 42 32 46 83 45 87 40 58 50 51 48 37 57 52 78 26 21 54 16 66 93", "output": "55\n1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56" }, { "input": "6 41\n6 8 9 8 9 8", "output": "5\n1 2 3 4 6" }, { "input": "9 95\n9 11 12 11 12 11 8 11 10", "output": "9\n1 2 3 4 5 6 7 8 9" }, { "input": "89 6512\n80 87 61 91 85 51 58 69 79 57 81 67 74 55 88 70 77 61 55 81 56 76 79 67 92 52 54 73 67 72 81 54 72 81 65 88 83 57 83 92 62 66 63 58 61 66 92 77 73 66 71 85 92 73 82 65 76 64 58 62 64 51 90 59 79 70 86 89 86 51 72 61 60 71 52 74 58 72 77 91 91 60 76 56 64 55 61 81 52", "output": "89\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89" }, { "input": "5 29\n6 3 7 2 1", "output": "5\n1 2 3 4 5" }, { "input": "5 49\n16 13 7 2 1", "output": "5\n1 2 3 4 5" }, { "input": "6 84\n16 21 25 6 17 16", "output": "5\n1 2 4 5 6" }, { "input": "4 9\n7 4 2 1", "output": "3\n2 3 4" }, { "input": "50 2500\n50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50", "output": "50\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50" }, { "input": "100 10000\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100" }, { "input": "100 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100" }, { "input": "96 514\n6 3 7 2 1 2 9 5 5 8 7 3 10 1 4 6 3 2 1 7 2 7 10 8 3 8 10 4 8 8 2 5 3 2 1 4 4 8 4 3 3 7 4 4 2 7 8 3 9 2 2 6 3 4 8 6 7 5 4 3 10 7 6 5 10 1 7 10 7 7 8 2 1 2 3 10 9 8 8 2 7 1 2 7 10 1 2 2 3 8 6 2 9 6 9 6", "output": "96\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96" }, { "input": "47 350\n6 1 9 12 8 8 11 4 4 8 8 3 3 2 12 7 7 7 12 2 9 1 5 10 6 1 5 2 6 3 9 13 8 3 10 10 10 10 6 9 10 10 8 5 12 11 3", "output": "47\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47" }, { "input": "100 200\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2", "output": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100" }, { "input": "2 10000\n1 1", "output": "2\n1 2" }, { "input": "1 2\n1", "output": "1\n1" }, { "input": "1 3\n2", "output": "1\n1" }, { "input": "34 4964\n37 27 90 83 36 59 80 7 28 41 97 72 64 8 40 30 76 4 92 51 52 44 42 13 38 64 60 66 47 93 30 35 71 71", "output": "34\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34" }, { "input": "2 2\n1 10", "output": "1\n1" }, { "input": "2 5\n1 1", "output": "2\n1 2" }, { "input": "1 4\n3", "output": "1\n1" }, { "input": "4 384\n1 2 3 4", "output": "4\n1 2 3 4" } ]
1,655,363,439
2,147,483,647
PyPy 3-64
OK
TESTS
39
62
0
n, k = map(int, input().split()) arr = list(enumerate(list(map(int, input().split())))) arr.sort(key=lambda x: x[1]) ins = 0 sum_ = 0 res = [] for i in arr: if sum_+i[1] <= k: sum_ += i[1] ins += 1 res.append(i[0]+1) else: break print(ins) print(" ".join([str(i) for i in res]))
Title: Amr and Music Time Limit: None seconds Memory Limit: None megabytes Problem Description: Amr is a young coder who likes music a lot. He always wanted to learn how to play music but he was busy coding so he got an idea. Amr has *n* instruments, it takes *a**i* days to learn *i*-th instrument. Being busy, Amr dedicated *k* days to learn how to play the maximum possible number of instruments. Amr asked for your help to distribute his free days between instruments so that he can achieve his goal. Input Specification: The first line contains two numbers *n*, *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=10<=000), the number of instruments and number of days respectively. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=100), representing number of days required to learn the *i*-th instrument. Output Specification: In the first line output one integer *m* representing the maximum number of instruments Amr can learn. In the second line output *m* space-separated integers: the indices of instruments to be learnt. You may output indices in any order. if there are multiple optimal solutions output any. It is not necessary to use all days for studying. Demo Input: ['4 10\n4 3 1 2\n', '5 6\n4 3 1 1 2\n', '1 3\n4\n'] Demo Output: ['4\n1 2 3 4', '3\n1 3 4', '0\n'] Note: In the first test Amr can learn all 4 instruments. In the second test other possible solutions are: {2, 3, 5} or {3, 4, 5}. In the third test Amr doesn't have enough time to learn the only presented instrument.
```python n, k = map(int, input().split()) arr = list(enumerate(list(map(int, input().split())))) arr.sort(key=lambda x: x[1]) ins = 0 sum_ = 0 res = [] for i in arr: if sum_+i[1] <= k: sum_ += i[1] ins += 1 res.append(i[0]+1) else: break print(ins) print(" ".join([str(i) for i in res])) ```
3
1,011
A
Stages
PROGRAMMING
900
[ "greedy", "implementation", "sortings" ]
null
null
Natasha is going to fly to Mars. She needs to build a rocket, which consists of several stages in some order. Each of the stages is defined by a lowercase Latin letter. This way, the rocket can be described by the string — concatenation of letters, which correspond to the stages. There are $n$ stages available. The rocket must contain exactly $k$ of them. Stages in the rocket should be ordered by their weight. So, after the stage with some letter can go only stage with a letter, which is at least two positions after in the alphabet (skipping one letter in between, or even more). For example, after letter 'c' can't go letters 'a', 'b', 'c' and 'd', but can go letters 'e', 'f', ..., 'z'. For the rocket to fly as far as possible, its weight should be minimal. The weight of the rocket is equal to the sum of the weights of its stages. The weight of the stage is the number of its letter in the alphabet. For example, the stage 'a 'weighs one ton,' b 'weighs two tons, and' z' — $26$ tons. Build the rocket with the minimal weight or determine, that it is impossible to build a rocket at all. Each stage can be used at most once.
The first line of input contains two integers — $n$ and $k$ ($1 \le k \le n \le 50$) – the number of available stages and the number of stages to use in the rocket. The second line contains string $s$, which consists of exactly $n$ lowercase Latin letters. Each letter defines a new stage, which can be used to build the rocket. Each stage can be used at most once.
Print a single integer — the minimal total weight of the rocket or -1, if it is impossible to build the rocket at all.
[ "5 3\nxyabd\n", "7 4\nproblem\n", "2 2\nab\n", "12 1\nabaabbaaabbb\n" ]
[ "29", "34", "-1", "1" ]
In the first example, the following rockets satisfy the condition: - "adx" (weight is $1+4+24=29$);- "ady" (weight is $1+4+25=30$);- "bdx" (weight is $2+4+24=30$);- "bdy" (weight is $2+4+25=31$). Rocket "adx" has the minimal weight, so the answer is $29$. In the second example, target rocket is "belo". Its weight is $2+5+12+15=34$. In the third example, $n=k=2$, so the rocket must have both stages: 'a' and 'b'. This rocket doesn't satisfy the condition, because these letters are adjacent in the alphabet. Answer is -1.
500
[ { "input": "5 3\nxyabd", "output": "29" }, { "input": "7 4\nproblem", "output": "34" }, { "input": "2 2\nab", "output": "-1" }, { "input": "12 1\nabaabbaaabbb", "output": "1" }, { "input": "50 13\nqwertyuiopasdfghjklzxcvbnmaaaaaaaaaaaaaaaaaaaaaaaa", "output": "169" }, { "input": "50 14\nqwertyuiopasdfghjklzxcvbnmaaaaaaaaaaaaaaaaaaaaaaaa", "output": "-1" }, { "input": "1 1\na", "output": "1" }, { "input": "50 1\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "1" }, { "input": "50 2\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "-1" }, { "input": "13 13\nuwgmkyqeiaocs", "output": "169" }, { "input": "13 13\nhzdxpbfvrltnj", "output": "182" }, { "input": "1 1\nn", "output": "14" }, { "input": "10 8\nsmzeblyjqw", "output": "113" }, { "input": "20 20\ntzmvhskkyugkuuxpvtbh", "output": "-1" }, { "input": "30 15\nwjzolzzkfulwgioksfxmcxmnnjtoav", "output": "-1" }, { "input": "40 30\nxumfrflllrrgswehqtsskefixhcxjrxbjmrpsshv", "output": "-1" }, { "input": "50 31\nahbyyoxltryqdmvenemaqnbakglgqolxnaifnqtoclnnqiabpz", "output": "-1" }, { "input": "10 7\niuiukrxcml", "output": "99" }, { "input": "38 2\nvjzarfykmrsrvwbwfwldsulhxtykmjbnwmdufa", "output": "5" }, { "input": "12 6\nfwseyrarkwcd", "output": "61" }, { "input": "2 2\nac", "output": "4" }, { "input": "1 1\nc", "output": "3" }, { "input": "2 2\nad", "output": "5" }, { "input": "2 1\nac", "output": "1" }, { "input": "4 3\nadjz", "output": "15" }, { "input": "3 3\naoz", "output": "42" }, { "input": "3 1\nzzz", "output": "26" }, { "input": "2 1\nxz", "output": "24" }, { "input": "5 1\naaddd", "output": "1" } ]
1,650,702,494
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
6
31
0
import sys input = sys.stdin.readline n, k = map(int, input().split()) s = list(map(lambda x:x-96,map(ord, (sorted(set(input()[:n])))))) c = s[0] d = 0 for i in range(1, len(s)): if s[i] - s[i-1] > 1: c += s[i] k -= 1 else: if d == 1: c += s[i] k -= 1 d = 0 else: d = 1 if k == 1: print(c) break else: print(-1)
Title: Stages Time Limit: None seconds Memory Limit: None megabytes Problem Description: Natasha is going to fly to Mars. She needs to build a rocket, which consists of several stages in some order. Each of the stages is defined by a lowercase Latin letter. This way, the rocket can be described by the string — concatenation of letters, which correspond to the stages. There are $n$ stages available. The rocket must contain exactly $k$ of them. Stages in the rocket should be ordered by their weight. So, after the stage with some letter can go only stage with a letter, which is at least two positions after in the alphabet (skipping one letter in between, or even more). For example, after letter 'c' can't go letters 'a', 'b', 'c' and 'd', but can go letters 'e', 'f', ..., 'z'. For the rocket to fly as far as possible, its weight should be minimal. The weight of the rocket is equal to the sum of the weights of its stages. The weight of the stage is the number of its letter in the alphabet. For example, the stage 'a 'weighs one ton,' b 'weighs two tons, and' z' — $26$ tons. Build the rocket with the minimal weight or determine, that it is impossible to build a rocket at all. Each stage can be used at most once. Input Specification: The first line of input contains two integers — $n$ and $k$ ($1 \le k \le n \le 50$) – the number of available stages and the number of stages to use in the rocket. The second line contains string $s$, which consists of exactly $n$ lowercase Latin letters. Each letter defines a new stage, which can be used to build the rocket. Each stage can be used at most once. Output Specification: Print a single integer — the minimal total weight of the rocket or -1, if it is impossible to build the rocket at all. Demo Input: ['5 3\nxyabd\n', '7 4\nproblem\n', '2 2\nab\n', '12 1\nabaabbaaabbb\n'] Demo Output: ['29', '34', '-1', '1'] Note: In the first example, the following rockets satisfy the condition: - "adx" (weight is $1+4+24=29$);- "ady" (weight is $1+4+25=30$);- "bdx" (weight is $2+4+24=30$);- "bdy" (weight is $2+4+25=31$). Rocket "adx" has the minimal weight, so the answer is $29$. In the second example, target rocket is "belo". Its weight is $2+5+12+15=34$. In the third example, $n=k=2$, so the rocket must have both stages: 'a' and 'b'. This rocket doesn't satisfy the condition, because these letters are adjacent in the alphabet. Answer is -1.
```python import sys input = sys.stdin.readline n, k = map(int, input().split()) s = list(map(lambda x:x-96,map(ord, (sorted(set(input()[:n])))))) c = s[0] d = 0 for i in range(1, len(s)): if s[i] - s[i-1] > 1: c += s[i] k -= 1 else: if d == 1: c += s[i] k -= 1 d = 0 else: d = 1 if k == 1: print(c) break else: print(-1) ```
0
745
A
Hongcow Learns the Cyclic Shift
PROGRAMMING
900
[ "implementation", "strings" ]
null
null
Hongcow is learning to spell! One day, his teacher gives him a word that he needs to learn to spell. Being a dutiful student, he immediately learns how to spell the word. Hongcow has decided to try to make new words from this one. He starts by taking the word he just learned how to spell, and moves the last character of the word to the beginning of the word. He calls this a cyclic shift. He can apply cyclic shift many times. For example, consecutively applying cyclic shift operation to the word "abracadabra" Hongcow will get words "aabracadabr", "raabracadab" and so on. Hongcow is now wondering how many distinct words he can generate by doing the cyclic shift arbitrarily many times. The initial string is also counted.
The first line of input will be a single string *s* (1<=≤<=|*s*|<=≤<=50), the word Hongcow initially learns how to spell. The string *s* consists only of lowercase English letters ('a'–'z').
Output a single integer equal to the number of distinct strings that Hongcow can obtain by applying the cyclic shift arbitrarily many times to the given string.
[ "abcd\n", "bbb\n", "yzyz\n" ]
[ "4\n", "1\n", "2\n" ]
For the first sample, the strings Hongcow can generate are "abcd", "dabc", "cdab", and "bcda". For the second sample, no matter how many times Hongcow does the cyclic shift, Hongcow can only generate "bbb". For the third sample, the two strings Hongcow can generate are "yzyz" and "zyzy".
500
[ { "input": "abcd", "output": "4" }, { "input": "bbb", "output": "1" }, { "input": "yzyz", "output": "2" }, { "input": "abcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxy", "output": "25" }, { "input": "zclkjadoprqronzclkjadoprqronzclkjadoprqron", "output": "14" }, { "input": "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz", "output": "1" }, { "input": "xyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxy", "output": "2" }, { "input": "y", "output": "1" }, { "input": "ervbfotfedpozygoumbmxeaqegouaqqzqerlykhmvxvvlcaos", "output": "49" }, { "input": "zyzzzyyzyyyzyyzyzyzyzyzzzyyyzzyzyyzzzzzyyyzzzzyzyy", "output": "50" }, { "input": "zzfyftdezzfyftdezzfyftdezzfyftdezzfyftdezzfyftde", "output": "8" }, { "input": "yehcqdlllqpuxdsaicyjjxiylahgxbygmsopjbxhtimzkashs", "output": "49" }, { "input": "yyyyzzzyzzzyzyzyzyyyyyzzyzyzyyyyyzyzyyyzyzzyyzzzz", "output": "49" }, { "input": "zkqcrhzlzsnwzkqcrhzlzsnwzkqcrhzlzsnwzkqcrhzlzsnw", "output": "12" }, { "input": "xxyxxyxxyxxyxxyxxyxxyxxyxxyxxyxxyxxyxxyxxyxxyxxy", "output": "3" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaab", "output": "25" }, { "input": "aabaaabaaabaaabaaabaaabaaabaaabaaabaaabaaabaaaba", "output": "4" }, { "input": "pqqpqqpqqpqqpqqpqqpqqpqqpqqpqqpqqppqppqppqppqppq", "output": "48" }, { "input": "zxkljaqzxkljaqzxkljaqzxkljaqzxrljaqzxkljaqzxkljaq", "output": "49" }, { "input": "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwx", "output": "50" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaz", "output": "50" }, { "input": "abcddcba", "output": "8" }, { "input": "aabaabaabaacaabaabaabaacaabaabaabaacaabaabaabaac", "output": "12" }, { "input": "aabaabcaabaabcdaabaabcaabaabcd", "output": "15" }, { "input": "ababaababaaababaababaaaababaababaaababaababaaaa", "output": "47" }, { "input": "ababaababaaababaababaaaababaababaaababaababaaa", "output": "23" }, { "input": "aaababaab", "output": "9" }, { "input": "aba", "output": "3" } ]
1,579,345,167
2,147,483,647
PyPy 3
COMPILATION_ERROR
TESTS
0
0
0
#include <bits/stdc++.h> using namespace std; template<typename S, typename T> ostream& operator<<(ostream& out, const pair<S, T> p) { out << "(" << p.first << "," << p.second << ")"; return out; } template<typename T> ostream& operator<<(ostream& out, const vector<T>& v) { for (auto a: v) out << a << " "; return out; } template<typename T> ostream& operator<<(ostream& out, const set<T>& S) { for (auto a: S) cout << a << " "; return out; } template<typename T> ostream& operator<<(ostream& out, const multiset<T>& S) { for (auto a: S) cout << a << " "; return out; } template<typename S, typename T> ostream& operator<<(ostream& out, const map<S, T>& M) { for (auto m: M) cout << "(" << m.first << "->" << m.second << ") "; return out; } template<typename S, typename T> pair<S, T> operator+(pair<S, T> a, pair<S, T> b) { return make_pair(a.first + b.first, a.second + b.second); } template<typename S, typename T> pair<S, T> operator-(pair<S, T> a, pair<S, T> b) { return make_pair(a.first - b.first, a.second - b.second); } template<typename T> struct SparseTable { int n; int m; vector<vector<T>> minA; void init(const vector<T>& A) { n = A.size(); if (n == 0) return; m = floor(log2(n)) + 1; minA.resize(m); for (int i = 0; i < m; i++) minA[i].resize(n); copy(A.begin(), A.end(), minA[0].begin()); for (int i = 1; i < m; i++) { for (int j = 0; j + (1<<i) <= n; j++) { minA[i][j] = min(minA[i-1][j], minA[i-1][j+(1<<(i-1))]); } } } T query_minimum_value(int x, int y) { int len = (y - x + 1); int m = floor(log2(len)); return min(minA[m][x], minA[m][y-(1<<m)+1]); } void dump() { for (int i = 0; i < minA.size(); i++) cout << "minA[" << i << "]: " << minA[i] << endl; } }; template<typename T, typename V> int query_maximum_right_range_with_lower_bound_value(T& segment, int x, V k) { int n = segment.n; int left = x; int right = n - 1; if (segment.query_minimum_value(x, left) < k) return 0; if (segment.query_minimum_value(x, right) >= k) return (right - x + 1); while (right - left > 1) { int mid = (left + right) / 2; if (segment.query_minimum_value(x, mid) >= k) { left = mid; } else { right = mid; } } return left - x + 1; } struct CircularArray { int n; string T; vector<int> sa; vector<int> rank; // instance only when build_lcp is enabled vector<int> lcp; SparseTable<int> sparse; // counting sort int sigma; vector<vector<int>> bucket; vector<int> tmp; int gap; void counting_sort(int k) { int m = max(n, sigma + 1); bucket.resize(m); for (int i = 0; i < m; i++) bucket[i].clear(); for (auto a: sa) { bucket[rank[(a+k)%n]+1].push_back(a); } sa.clear(); for (auto b: bucket) { for (auto a: b) { sa.push_back(a); } } } // sigma=128 int idx(char ch) { return ch; } void init(const string& str, bool build_lcp=true, int sigma=128) { n = str.size(); T = str; this->sigma = sigma; sa.resize(n); tmp.resize(n); rank.resize(n); for (int i = 0; i < n; i++) sa[i] = i; for (int i = 0; i < n; i++) rank[i] = idx(str[i]); auto my_cmp = [&](int a, int b) { if (rank[a] != rank[b]) return rank[a] < rank[b]; int val1 = gap + gap <= n? rank[(a+gap)%n]: rank[(a+n-gap)%n]; int val2 = gap + gap <= n? rank[(b+gap)%n]: rank[(b+n-gap)%n]; if (val1 != val2) return val1 < val2; return a < b; }; for (gap = 1; gap < n; gap<<=1) { if (gap + gap <= n) counting_sort(gap); else counting_sort(n-gap); counting_sort(0); tmp[sa[0]] = 0; for (int i = 1; i < n; i++) { tmp[sa[i]] = tmp[sa[i-1]]; if (my_cmp(sa[i-1], sa[i])) tmp[sa[i]]++; } copy(tmp.begin(), tmp.end(), rank.begin()); if (rank[sa.back()] == n - 1) break; } if (build_lcp) { lcp.resize(n); for (int i = 0, k = 0; i < n; i++) { if (k) k--; if (rank[i] == 0) { k = 0; } else { while (k < n && str[(i+k)%n] == str[(sa[rank[i]-1]+k)%n]) k++; } lcp[rank[i]] = k; } sparse.init(lcp); } } vector<int> query_sa() { return sa; } vector<int> query_rank() { return rank; } vector<int> query_lcp() { return lcp; } vector<vector<int>> query_sparse() { return sparse.minA; } int query_distinct_cyclic_string_number() { int ans = 0; for (int i = 0; i < n; i++) { int s = sa[i]; if (i == 0) { ans += 1; } else { if (lcp[i] != n) { ans += 1; } } } return ans; } void dump() { cout << "n: " << n << endl; cout << "T: " << T << endl; cout << "sa: " << query_sa() << endl; cout << "rank: " << query_rank() << endl; cout << "lcp: " << query_lcp() << endl; sparse.dump(); } }; CircularArray circular; int main() { ios_base::sync_with_stdio(0); cin.tie(0); string str; cin >> str; circular.init(str, true); // circular.dump(); cout << circular.query_distinct_cyclic_string_number() << endl; return 0; }
Title: Hongcow Learns the Cyclic Shift Time Limit: None seconds Memory Limit: None megabytes Problem Description: Hongcow is learning to spell! One day, his teacher gives him a word that he needs to learn to spell. Being a dutiful student, he immediately learns how to spell the word. Hongcow has decided to try to make new words from this one. He starts by taking the word he just learned how to spell, and moves the last character of the word to the beginning of the word. He calls this a cyclic shift. He can apply cyclic shift many times. For example, consecutively applying cyclic shift operation to the word "abracadabra" Hongcow will get words "aabracadabr", "raabracadab" and so on. Hongcow is now wondering how many distinct words he can generate by doing the cyclic shift arbitrarily many times. The initial string is also counted. Input Specification: The first line of input will be a single string *s* (1<=≤<=|*s*|<=≤<=50), the word Hongcow initially learns how to spell. The string *s* consists only of lowercase English letters ('a'–'z'). Output Specification: Output a single integer equal to the number of distinct strings that Hongcow can obtain by applying the cyclic shift arbitrarily many times to the given string. Demo Input: ['abcd\n', 'bbb\n', 'yzyz\n'] Demo Output: ['4\n', '1\n', '2\n'] Note: For the first sample, the strings Hongcow can generate are "abcd", "dabc", "cdab", and "bcda". For the second sample, no matter how many times Hongcow does the cyclic shift, Hongcow can only generate "bbb". For the third sample, the two strings Hongcow can generate are "yzyz" and "zyzy".
```python #include <bits/stdc++.h> using namespace std; template<typename S, typename T> ostream& operator<<(ostream& out, const pair<S, T> p) { out << "(" << p.first << "," << p.second << ")"; return out; } template<typename T> ostream& operator<<(ostream& out, const vector<T>& v) { for (auto a: v) out << a << " "; return out; } template<typename T> ostream& operator<<(ostream& out, const set<T>& S) { for (auto a: S) cout << a << " "; return out; } template<typename T> ostream& operator<<(ostream& out, const multiset<T>& S) { for (auto a: S) cout << a << " "; return out; } template<typename S, typename T> ostream& operator<<(ostream& out, const map<S, T>& M) { for (auto m: M) cout << "(" << m.first << "->" << m.second << ") "; return out; } template<typename S, typename T> pair<S, T> operator+(pair<S, T> a, pair<S, T> b) { return make_pair(a.first + b.first, a.second + b.second); } template<typename S, typename T> pair<S, T> operator-(pair<S, T> a, pair<S, T> b) { return make_pair(a.first - b.first, a.second - b.second); } template<typename T> struct SparseTable { int n; int m; vector<vector<T>> minA; void init(const vector<T>& A) { n = A.size(); if (n == 0) return; m = floor(log2(n)) + 1; minA.resize(m); for (int i = 0; i < m; i++) minA[i].resize(n); copy(A.begin(), A.end(), minA[0].begin()); for (int i = 1; i < m; i++) { for (int j = 0; j + (1<<i) <= n; j++) { minA[i][j] = min(minA[i-1][j], minA[i-1][j+(1<<(i-1))]); } } } T query_minimum_value(int x, int y) { int len = (y - x + 1); int m = floor(log2(len)); return min(minA[m][x], minA[m][y-(1<<m)+1]); } void dump() { for (int i = 0; i < minA.size(); i++) cout << "minA[" << i << "]: " << minA[i] << endl; } }; template<typename T, typename V> int query_maximum_right_range_with_lower_bound_value(T& segment, int x, V k) { int n = segment.n; int left = x; int right = n - 1; if (segment.query_minimum_value(x, left) < k) return 0; if (segment.query_minimum_value(x, right) >= k) return (right - x + 1); while (right - left > 1) { int mid = (left + right) / 2; if (segment.query_minimum_value(x, mid) >= k) { left = mid; } else { right = mid; } } return left - x + 1; } struct CircularArray { int n; string T; vector<int> sa; vector<int> rank; // instance only when build_lcp is enabled vector<int> lcp; SparseTable<int> sparse; // counting sort int sigma; vector<vector<int>> bucket; vector<int> tmp; int gap; void counting_sort(int k) { int m = max(n, sigma + 1); bucket.resize(m); for (int i = 0; i < m; i++) bucket[i].clear(); for (auto a: sa) { bucket[rank[(a+k)%n]+1].push_back(a); } sa.clear(); for (auto b: bucket) { for (auto a: b) { sa.push_back(a); } } } // sigma=128 int idx(char ch) { return ch; } void init(const string& str, bool build_lcp=true, int sigma=128) { n = str.size(); T = str; this->sigma = sigma; sa.resize(n); tmp.resize(n); rank.resize(n); for (int i = 0; i < n; i++) sa[i] = i; for (int i = 0; i < n; i++) rank[i] = idx(str[i]); auto my_cmp = [&](int a, int b) { if (rank[a] != rank[b]) return rank[a] < rank[b]; int val1 = gap + gap <= n? rank[(a+gap)%n]: rank[(a+n-gap)%n]; int val2 = gap + gap <= n? rank[(b+gap)%n]: rank[(b+n-gap)%n]; if (val1 != val2) return val1 < val2; return a < b; }; for (gap = 1; gap < n; gap<<=1) { if (gap + gap <= n) counting_sort(gap); else counting_sort(n-gap); counting_sort(0); tmp[sa[0]] = 0; for (int i = 1; i < n; i++) { tmp[sa[i]] = tmp[sa[i-1]]; if (my_cmp(sa[i-1], sa[i])) tmp[sa[i]]++; } copy(tmp.begin(), tmp.end(), rank.begin()); if (rank[sa.back()] == n - 1) break; } if (build_lcp) { lcp.resize(n); for (int i = 0, k = 0; i < n; i++) { if (k) k--; if (rank[i] == 0) { k = 0; } else { while (k < n && str[(i+k)%n] == str[(sa[rank[i]-1]+k)%n]) k++; } lcp[rank[i]] = k; } sparse.init(lcp); } } vector<int> query_sa() { return sa; } vector<int> query_rank() { return rank; } vector<int> query_lcp() { return lcp; } vector<vector<int>> query_sparse() { return sparse.minA; } int query_distinct_cyclic_string_number() { int ans = 0; for (int i = 0; i < n; i++) { int s = sa[i]; if (i == 0) { ans += 1; } else { if (lcp[i] != n) { ans += 1; } } } return ans; } void dump() { cout << "n: " << n << endl; cout << "T: " << T << endl; cout << "sa: " << query_sa() << endl; cout << "rank: " << query_rank() << endl; cout << "lcp: " << query_lcp() << endl; sparse.dump(); } }; CircularArray circular; int main() { ios_base::sync_with_stdio(0); cin.tie(0); string str; cin >> str; circular.init(str, true); // circular.dump(); cout << circular.query_distinct_cyclic_string_number() << endl; return 0; } ```
-1
121
A
Lucky Sum
PROGRAMMING
1,100
[ "implementation" ]
null
null
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Let *next*(*x*) be the minimum lucky number which is larger than or equals *x*. Petya is interested what is the value of the expression *next*(*l*)<=+<=*next*(*l*<=+<=1)<=+<=...<=+<=*next*(*r*<=-<=1)<=+<=*next*(*r*). Help him solve this problem.
The single line contains two integers *l* and *r* (1<=≤<=*l*<=≤<=*r*<=≤<=109) — the left and right interval limits.
In the single line print the only number — the sum *next*(*l*)<=+<=*next*(*l*<=+<=1)<=+<=...<=+<=*next*(*r*<=-<=1)<=+<=*next*(*r*). Please do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specificator.
[ "2 7\n", "7 7\n" ]
[ "33\n", "7\n" ]
In the first sample: *next*(2) + *next*(3) + *next*(4) + *next*(5) + *next*(6) + *next*(7) = 4 + 4 + 4 + 7 + 7 + 7 = 33 In the second sample: *next*(7) = 7
500
[ { "input": "2 7", "output": "33" }, { "input": "7 7", "output": "7" }, { "input": "1 9", "output": "125" }, { "input": "4 7", "output": "25" }, { "input": "12 47", "output": "1593" }, { "input": "6 77", "output": "4012" }, { "input": "1 100", "output": "14247" }, { "input": "1000000000 1000000000", "output": "4444444444" }, { "input": "77 77", "output": "77" }, { "input": "69 788", "output": "452195" }, { "input": "474 747", "output": "202794" }, { "input": "4 77777", "output": "4070145675" }, { "input": "1 1000000", "output": "1394675359387" }, { "input": "47 744447", "output": "381286992761" }, { "input": "47444 1000000000", "output": "1394672348253941136" }, { "input": "48 854888", "output": "749733199853" }, { "input": "854444 985555", "output": "582719941728" }, { "input": "774744 774747", "output": "3098985" }, { "input": "654 987654", "output": "1339803940266" }, { "input": "477777 1000000000", "output": "1394672167300009765" }, { "input": "77777 777777777", "output": "407018021649898097" }, { "input": "963 85555574", "output": "7526978888069560" }, { "input": "47 7444", "output": "38125896" }, { "input": "1 1000000000", "output": "1394672350065645019" }, { "input": "474 999888555", "output": "1394177038954402791" }, { "input": "777 1000000000", "output": "1394672350065239125" }, { "input": "7 777777774", "output": "407018023386632646" }, { "input": "369 852", "output": "606732" }, { "input": "47 47", "output": "47" }, { "input": "747 748", "output": "1521" }, { "input": "77777440 77777444", "output": "388887220" }, { "input": "987545885 999875584", "output": "54798666661186800" }, { "input": "2 777777776", "output": "407018024942188226" }, { "input": "1 1", "output": "4" }, { "input": "1 2", "output": "8" }, { "input": "999999999 1000000000", "output": "8888888888" }, { "input": "777777777 1000000000", "output": "987654325123456789" }, { "input": "777777778 1000000000", "output": "987654324345679012" }, { "input": "5 6", "output": "14" }, { "input": "49 49", "output": "74" }, { "input": "6 6", "output": "7" }, { "input": "3 4", "output": "8" } ]
1,592,933,218
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
l,r=map(int,input().split()) nums=[4,7] k=2 while(nums[-1]<r): for i in range(-k, -1, 1): four=nums[i]*10+4 seven=nums[i]*10+7 nums.append(four) nums.append(seven) if(four>r || seven>r): break k*=2 _sum=0 i=0 n=len(nums) while(i<n and l<r): while(nums[i]<l): i+=1 _sum+=nums[i] l+=1 print(_sum)
Title: Lucky Sum Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Let *next*(*x*) be the minimum lucky number which is larger than or equals *x*. Petya is interested what is the value of the expression *next*(*l*)<=+<=*next*(*l*<=+<=1)<=+<=...<=+<=*next*(*r*<=-<=1)<=+<=*next*(*r*). Help him solve this problem. Input Specification: The single line contains two integers *l* and *r* (1<=≤<=*l*<=≤<=*r*<=≤<=109) — the left and right interval limits. Output Specification: In the single line print the only number — the sum *next*(*l*)<=+<=*next*(*l*<=+<=1)<=+<=...<=+<=*next*(*r*<=-<=1)<=+<=*next*(*r*). Please do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specificator. Demo Input: ['2 7\n', '7 7\n'] Demo Output: ['33\n', '7\n'] Note: In the first sample: *next*(2) + *next*(3) + *next*(4) + *next*(5) + *next*(6) + *next*(7) = 4 + 4 + 4 + 7 + 7 + 7 = 33 In the second sample: *next*(7) = 7
```python l,r=map(int,input().split()) nums=[4,7] k=2 while(nums[-1]<r): for i in range(-k, -1, 1): four=nums[i]*10+4 seven=nums[i]*10+7 nums.append(four) nums.append(seven) if(four>r || seven>r): break k*=2 _sum=0 i=0 n=len(nums) while(i<n and l<r): while(nums[i]<l): i+=1 _sum+=nums[i] l+=1 print(_sum) ```
-1
2
A
Winner
PROGRAMMING
1,500
[ "hashing", "implementation" ]
A. Winner
1
64
The winner of the card game popular in Berland "Berlogging" is determined according to the following rules. If at the end of the game there is only one player with the maximum number of points, he is the winner. The situation becomes more difficult if the number of such players is more than one. During each round a player gains or loses a particular number of points. In the course of the game the number of points is registered in the line "name score", where name is a player's name, and score is the number of points gained in this round, which is an integer number. If score is negative, this means that the player has lost in the round. So, if two or more players have the maximum number of points (say, it equals to *m*) at the end of the game, than wins the one of them who scored at least *m* points first. Initially each player has 0 points. It's guaranteed that at the end of the game at least one player has a positive number of points.
The first line contains an integer number *n* (1<=<=≤<=<=*n*<=<=≤<=<=1000), *n* is the number of rounds played. Then follow *n* lines, containing the information about the rounds in "name score" format in chronological order, where name is a string of lower-case Latin letters with the length from 1 to 32, and score is an integer number between -1000 and 1000, inclusive.
Print the name of the winner.
[ "3\nmike 3\nandrew 5\nmike 2\n", "3\nandrew 3\nandrew 2\nmike 5\n" ]
[ "andrew\n", "andrew\n" ]
none
0
[ { "input": "3\nmike 3\nandrew 5\nmike 2", "output": "andrew" }, { "input": "3\nandrew 3\nandrew 2\nmike 5", "output": "andrew" }, { "input": "5\nkaxqybeultn -352\nmgochgrmeyieyskhuourfg -910\nkaxqybeultn 691\nmgochgrmeyieyskhuourfg -76\nkaxqybeultn -303", "output": "kaxqybeultn" }, { "input": "7\nksjuuerbnlklcfdjeyq 312\ndthjlkrvvbyahttifpdewvyslsh -983\nksjuuerbnlklcfdjeyq 268\ndthjlkrvvbyahttifpdewvyslsh 788\nksjuuerbnlklcfdjeyq -79\nksjuuerbnlklcfdjeyq -593\nksjuuerbnlklcfdjeyq 734", "output": "ksjuuerbnlklcfdjeyq" }, { "input": "12\natrtthfpcvishmqbakprquvnejr 185\natrtthfpcvishmqbakprquvnejr -699\natrtthfpcvishmqbakprquvnejr -911\natrtthfpcvishmqbakprquvnejr -220\nfcgslzkicjrpbqaifgweyzreajjfdo 132\nfcgslzkicjrpbqaifgweyzreajjfdo -242\nm 177\nm -549\natrtthfpcvishmqbakprquvnejr -242\nm 38\natrtthfpcvishmqbakprquvnejr -761\nfcgslzkicjrpbqaifgweyzreajjfdo 879", "output": "fcgslzkicjrpbqaifgweyzreajjfdo" }, { "input": "15\naawtvezfntstrcpgbzjbf 681\nzhahpvqiptvksnbjkdvmknb -74\naawtvezfntstrcpgbzjbf 661\njpdwmyke 474\naawtvezfntstrcpgbzjbf -547\naawtvezfntstrcpgbzjbf 600\nzhahpvqiptvksnbjkdvmknb -11\njpdwmyke 711\nbjmj 652\naawtvezfntstrcpgbzjbf -1000\naawtvezfntstrcpgbzjbf -171\nbjmj -302\naawtvezfntstrcpgbzjbf 961\nzhahpvqiptvksnbjkdvmknb 848\nbjmj -735", "output": "aawtvezfntstrcpgbzjbf" }, { "input": "17\nqdplghhx -649\nivhgbxiv 424\nivhgbxiv -72\nivhgbxiv 479\nugowfouebkelargxylsxn 83\nugowfouebkelargxylsxn -840\nivhgbxiv 382\nqdplghhx -904\nivhgbxiv -710\nugowfouebkelargxylsxn -838\nqdplghhx -974\nqdplghhx 571\nivhgbxiv -145\nugowfouebkelargxylsxn -788\nivhgbxiv 209\nivhgbxiv 420\nqdplghhx -158", "output": "ivhgbxiv" } ]
1,389,424,494
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
8
92
307,200
test = [] test1 = [] result = {} n = int(input()) mark = 0 max = 0 for i in range(0, n): mark = 0 name, scores = map(str, input().split()) score = int(scores) if len(test) is 0: test.append((name, score)) continue for temp in test: if temp[0] == name: score += temp[1] test.remove(temp) test.append((name, score)) mark = 1 break if mark is 0: test.append((name, score)) test1.append((name, score)) result[name] = 0 for i in range(len(test)): if max < test[i][1]: max = test[i][1] for i in range(len(test1)): result[test1[i][0]] += test1[i][1] if result[test1[i][0]] >= max: print(test1[i][0]) break
Title: Winner Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: The winner of the card game popular in Berland "Berlogging" is determined according to the following rules. If at the end of the game there is only one player with the maximum number of points, he is the winner. The situation becomes more difficult if the number of such players is more than one. During each round a player gains or loses a particular number of points. In the course of the game the number of points is registered in the line "name score", where name is a player's name, and score is the number of points gained in this round, which is an integer number. If score is negative, this means that the player has lost in the round. So, if two or more players have the maximum number of points (say, it equals to *m*) at the end of the game, than wins the one of them who scored at least *m* points first. Initially each player has 0 points. It's guaranteed that at the end of the game at least one player has a positive number of points. Input Specification: The first line contains an integer number *n* (1<=<=≤<=<=*n*<=<=≤<=<=1000), *n* is the number of rounds played. Then follow *n* lines, containing the information about the rounds in "name score" format in chronological order, where name is a string of lower-case Latin letters with the length from 1 to 32, and score is an integer number between -1000 and 1000, inclusive. Output Specification: Print the name of the winner. Demo Input: ['3\nmike 3\nandrew 5\nmike 2\n', '3\nandrew 3\nandrew 2\nmike 5\n'] Demo Output: ['andrew\n', 'andrew\n'] Note: none
```python test = [] test1 = [] result = {} n = int(input()) mark = 0 max = 0 for i in range(0, n): mark = 0 name, scores = map(str, input().split()) score = int(scores) if len(test) is 0: test.append((name, score)) continue for temp in test: if temp[0] == name: score += temp[1] test.remove(temp) test.append((name, score)) mark = 1 break if mark is 0: test.append((name, score)) test1.append((name, score)) result[name] = 0 for i in range(len(test)): if max < test[i][1]: max = test[i][1] for i in range(len(test1)): result[test1[i][0]] += test1[i][1] if result[test1[i][0]] >= max: print(test1[i][0]) break ```
0
441
A
Valera and Antique Items
PROGRAMMING
1,000
[ "implementation" ]
null
null
Valera is a collector. Once he wanted to expand his collection with exactly one antique item. Valera knows *n* sellers of antiques, the *i*-th of them auctioned *k**i* items. Currently the auction price of the *j*-th object of the *i*-th seller is *s**ij*. Valera gets on well with each of the *n* sellers. He is perfectly sure that if he outbids the current price of one of the items in the auction (in other words, offers the seller the money that is strictly greater than the current price of the item at the auction), the seller of the object will immediately sign a contract with him. Unfortunately, Valera has only *v* units of money. Help him to determine which of the *n* sellers he can make a deal with.
The first line contains two space-separated integers *n*,<=*v* (1<=≤<=*n*<=≤<=50; 104<=≤<=*v*<=≤<=106) — the number of sellers and the units of money the Valera has. Then *n* lines follow. The *i*-th line first contains integer *k**i* (1<=≤<=*k**i*<=≤<=50) the number of items of the *i*-th seller. Then go *k**i* space-separated integers *s**i*1,<=*s**i*2,<=...,<=*s**ik**i* (104<=≤<=*s**ij*<=≤<=106) — the current prices of the items of the *i*-th seller.
In the first line, print integer *p* — the number of sellers with who Valera can make a deal. In the second line print *p* space-separated integers *q*1,<=*q*2,<=...,<=*q**p* (1<=≤<=*q**i*<=≤<=*n*) — the numbers of the sellers with who Valera can make a deal. Print the numbers of the sellers in the increasing order.
[ "3 50000\n1 40000\n2 20000 60000\n3 10000 70000 190000\n", "3 50000\n1 50000\n3 100000 120000 110000\n3 120000 110000 120000\n" ]
[ "3\n1 2 3\n", "0\n\n" ]
In the first sample Valera can bargain with each of the sellers. He can outbid the following items: a 40000 item from the first seller, a 20000 item from the second seller, and a 10000 item from the third seller. In the second sample Valera can not make a deal with any of the sellers, as the prices of all items in the auction too big for him.
500
[ { "input": "3 50000\n1 40000\n2 20000 60000\n3 10000 70000 190000", "output": "3\n1 2 3" }, { "input": "3 50000\n1 50000\n3 100000 120000 110000\n3 120000 110000 120000", "output": "0" }, { "input": "2 100001\n1 895737\n1 541571", "output": "0" }, { "input": "1 1000000\n1 1000000", "output": "0" }, { "input": "1 1000000\n1 561774", "output": "1\n1" }, { "input": "3 1000000\n5 1000000 568832 1000000 1000000 1000000\n13 1000000 1000000 1000000 596527 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000\n20 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000", "output": "2\n1 2" }, { "input": "3 999999\n7 1000000 1000000 1000000 999999 1000000 999999 1000000\n6 999999 1000000 999999 1000000 999999 999999\n7 999999 1000000 1000000 999999 1000000 1000000 1000000", "output": "0" }, { "input": "3 999999\n22 1000000 1000000 999999 999999 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 999999 1000000 1000000 999999 1000000 1000000 1000000 352800 999999 1000000\n14 999999 999999 999999 999999 999999 1000000 999999 999999 999999 999999 702638 999999 1000000 999999\n5 999999 1000000 1000000 999999 363236", "output": "3\n1 2 3" }, { "input": "1 50001\n1 50000", "output": "1\n1" } ]
1,636,109,211
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
2
61
30,720,000
x, y = map(int, input().split()); ct = 0; ls = [] for i in range(x) : j, *k = map(int, input().split()) if any(elm < y for elm in k) : ct += 1; ls.append(str(j)) print(ct) print(' '.join(ls))
Title: Valera and Antique Items Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valera is a collector. Once he wanted to expand his collection with exactly one antique item. Valera knows *n* sellers of antiques, the *i*-th of them auctioned *k**i* items. Currently the auction price of the *j*-th object of the *i*-th seller is *s**ij*. Valera gets on well with each of the *n* sellers. He is perfectly sure that if he outbids the current price of one of the items in the auction (in other words, offers the seller the money that is strictly greater than the current price of the item at the auction), the seller of the object will immediately sign a contract with him. Unfortunately, Valera has only *v* units of money. Help him to determine which of the *n* sellers he can make a deal with. Input Specification: The first line contains two space-separated integers *n*,<=*v* (1<=≤<=*n*<=≤<=50; 104<=≤<=*v*<=≤<=106) — the number of sellers and the units of money the Valera has. Then *n* lines follow. The *i*-th line first contains integer *k**i* (1<=≤<=*k**i*<=≤<=50) the number of items of the *i*-th seller. Then go *k**i* space-separated integers *s**i*1,<=*s**i*2,<=...,<=*s**ik**i* (104<=≤<=*s**ij*<=≤<=106) — the current prices of the items of the *i*-th seller. Output Specification: In the first line, print integer *p* — the number of sellers with who Valera can make a deal. In the second line print *p* space-separated integers *q*1,<=*q*2,<=...,<=*q**p* (1<=≤<=*q**i*<=≤<=*n*) — the numbers of the sellers with who Valera can make a deal. Print the numbers of the sellers in the increasing order. Demo Input: ['3 50000\n1 40000\n2 20000 60000\n3 10000 70000 190000\n', '3 50000\n1 50000\n3 100000 120000 110000\n3 120000 110000 120000\n'] Demo Output: ['3\n1 2 3\n', '0\n\n'] Note: In the first sample Valera can bargain with each of the sellers. He can outbid the following items: a 40000 item from the first seller, a 20000 item from the second seller, and a 10000 item from the third seller. In the second sample Valera can not make a deal with any of the sellers, as the prices of all items in the auction too big for him.
```python x, y = map(int, input().split()); ct = 0; ls = [] for i in range(x) : j, *k = map(int, input().split()) if any(elm < y for elm in k) : ct += 1; ls.append(str(j)) print(ct) print(' '.join(ls)) ```
0
732
A
Buy a Shovel
PROGRAMMING
800
[ "brute force", "constructive algorithms", "implementation", "math" ]
null
null
Polycarp urgently needs a shovel! He comes to the shop and chooses an appropriate one. The shovel that Policarp chooses is sold for *k* burles. Assume that there is an unlimited number of such shovels in the shop. In his pocket Polycarp has an unlimited number of "10-burle coins" and exactly one coin of *r* burles (1<=≤<=*r*<=≤<=9). What is the minimum number of shovels Polycarp has to buy so that he can pay for the purchase without any change? It is obvious that he can pay for 10 shovels without any change (by paying the requied amount of 10-burle coins and not using the coin of *r* burles). But perhaps he can buy fewer shovels and pay without any change. Note that Polycarp should buy at least one shovel.
The single line of input contains two integers *k* and *r* (1<=≤<=*k*<=≤<=1000, 1<=≤<=*r*<=≤<=9) — the price of one shovel and the denomination of the coin in Polycarp's pocket that is different from "10-burle coins". Remember that he has an unlimited number of coins in the denomination of 10, that is, Polycarp has enough money to buy any number of shovels.
Print the required minimum number of shovels Polycarp has to buy so that he can pay for them without any change.
[ "117 3\n", "237 7\n", "15 2\n" ]
[ "9\n", "1\n", "2\n" ]
In the first example Polycarp can buy 9 shovels and pay 9·117 = 1053 burles. Indeed, he can pay this sum by using 10-burle coins and one 3-burle coin. He can't buy fewer shovels without any change. In the second example it is enough for Polycarp to buy one shovel. In the third example Polycarp should buy two shovels and pay 2·15 = 30 burles. It is obvious that he can pay this sum without any change.
500
[ { "input": "117 3", "output": "9" }, { "input": "237 7", "output": "1" }, { "input": "15 2", "output": "2" }, { "input": "1 1", "output": "1" }, { "input": "1 9", "output": "9" }, { "input": "1000 3", "output": "1" }, { "input": "1000 1", "output": "1" }, { "input": "1000 9", "output": "1" }, { "input": "1 2", "output": "2" }, { "input": "999 9", "output": "1" }, { "input": "999 8", "output": "2" }, { "input": "105 6", "output": "2" }, { "input": "403 9", "output": "3" }, { "input": "546 4", "output": "4" }, { "input": "228 9", "output": "5" }, { "input": "57 2", "output": "6" }, { "input": "437 9", "output": "7" }, { "input": "997 6", "output": "8" }, { "input": "109 1", "output": "9" }, { "input": "998 9", "output": "5" }, { "input": "4 2", "output": "3" }, { "input": "9 3", "output": "7" }, { "input": "8 2", "output": "4" }, { "input": "1 3", "output": "3" }, { "input": "1 4", "output": "4" }, { "input": "1 5", "output": "5" }, { "input": "1 6", "output": "6" }, { "input": "1 7", "output": "7" }, { "input": "1 8", "output": "8" }, { "input": "100 3", "output": "1" }, { "input": "1000 2", "output": "1" }, { "input": "1000 4", "output": "1" }, { "input": "1000 5", "output": "1" }, { "input": "1000 6", "output": "1" }, { "input": "1000 7", "output": "1" }, { "input": "1000 8", "output": "1" }, { "input": "23 4", "output": "8" }, { "input": "33 1", "output": "7" }, { "input": "33 2", "output": "4" }, { "input": "666 5", "output": "5" }, { "input": "2 3", "output": "5" }, { "input": "5 5", "output": "1" }, { "input": "3 6", "output": "2" }, { "input": "12 4", "output": "2" }, { "input": "15 5", "output": "1" }, { "input": "2 5", "output": "5" }, { "input": "25 5", "output": "1" }, { "input": "2 9", "output": "5" }, { "input": "6 7", "output": "5" }, { "input": "8 9", "output": "5" }, { "input": "2 7", "output": "5" }, { "input": "4 7", "output": "5" }, { "input": "2 1", "output": "5" }, { "input": "261 1", "output": "1" } ]
1,680,782,707
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
#include<iostream> using namespace std; int main() { int k,r,x,ans=0; cin >> k >> r; if ((k-r)%10==0 || k%10==0) { cout << "1" << endl; } int i = 1; for (;;i++) { x = k*i; // cout << x; if (x%10==0 || x%10==r) { ans++; break; } else{ ans++; } } if (ans>1) { cout << ans; } return 0; }
Title: Buy a Shovel Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp urgently needs a shovel! He comes to the shop and chooses an appropriate one. The shovel that Policarp chooses is sold for *k* burles. Assume that there is an unlimited number of such shovels in the shop. In his pocket Polycarp has an unlimited number of "10-burle coins" and exactly one coin of *r* burles (1<=≤<=*r*<=≤<=9). What is the minimum number of shovels Polycarp has to buy so that he can pay for the purchase without any change? It is obvious that he can pay for 10 shovels without any change (by paying the requied amount of 10-burle coins and not using the coin of *r* burles). But perhaps he can buy fewer shovels and pay without any change. Note that Polycarp should buy at least one shovel. Input Specification: The single line of input contains two integers *k* and *r* (1<=≤<=*k*<=≤<=1000, 1<=≤<=*r*<=≤<=9) — the price of one shovel and the denomination of the coin in Polycarp's pocket that is different from "10-burle coins". Remember that he has an unlimited number of coins in the denomination of 10, that is, Polycarp has enough money to buy any number of shovels. Output Specification: Print the required minimum number of shovels Polycarp has to buy so that he can pay for them without any change. Demo Input: ['117 3\n', '237 7\n', '15 2\n'] Demo Output: ['9\n', '1\n', '2\n'] Note: In the first example Polycarp can buy 9 shovels and pay 9·117 = 1053 burles. Indeed, he can pay this sum by using 10-burle coins and one 3-burle coin. He can't buy fewer shovels without any change. In the second example it is enough for Polycarp to buy one shovel. In the third example Polycarp should buy two shovels and pay 2·15 = 30 burles. It is obvious that he can pay this sum without any change.
```python #include<iostream> using namespace std; int main() { int k,r,x,ans=0; cin >> k >> r; if ((k-r)%10==0 || k%10==0) { cout << "1" << endl; } int i = 1; for (;;i++) { x = k*i; // cout << x; if (x%10==0 || x%10==r) { ans++; break; } else{ ans++; } } if (ans>1) { cout << ans; } return 0; } ```
-1
994
A
Fingerprints
PROGRAMMING
800
[ "implementation" ]
null
null
You are locked in a room with a door that has a keypad with 10 keys corresponding to digits from 0 to 9. To escape from the room, you need to enter a correct code. You also have a sequence of digits. Some keys on the keypad have fingerprints. You believe the correct code is the longest not necessarily contiguous subsequence of the sequence you have that only contains digits with fingerprints on the corresponding keys. Find such code.
The first line contains two integers $n$ and $m$ ($1 \le n, m \le 10$) representing the number of digits in the sequence you have and the number of keys on the keypad that have fingerprints. The next line contains $n$ distinct space-separated integers $x_1, x_2, \ldots, x_n$ ($0 \le x_i \le 9$) representing the sequence. The next line contains $m$ distinct space-separated integers $y_1, y_2, \ldots, y_m$ ($0 \le y_i \le 9$) — the keys with fingerprints.
In a single line print a space-separated sequence of integers representing the code. If the resulting sequence is empty, both printing nothing and printing a single line break is acceptable.
[ "7 3\n3 5 7 1 6 2 8\n1 2 7\n", "4 4\n3 4 1 0\n0 1 7 9\n" ]
[ "7 1 2\n", "1 0\n" ]
In the first example, the only digits with fingerprints are $1$, $2$ and $7$. All three of them appear in the sequence you know, $7$ first, then $1$ and then $2$. Therefore the output is 7 1 2. Note that the order is important, and shall be the same as the order in the original sequence. In the second example digits $0$, $1$, $7$ and $9$ have fingerprints, however only $0$ and $1$ appear in the original sequence. $1$ appears earlier, so the output is 1 0. Again, the order is important.
500
[ { "input": "7 3\n3 5 7 1 6 2 8\n1 2 7", "output": "7 1 2" }, { "input": "4 4\n3 4 1 0\n0 1 7 9", "output": "1 0" }, { "input": "9 4\n9 8 7 6 5 4 3 2 1\n2 4 6 8", "output": "8 6 4 2" }, { "input": "10 5\n3 7 1 2 4 6 9 0 5 8\n4 3 0 7 9", "output": "3 7 4 9 0" }, { "input": "10 10\n1 2 3 4 5 6 7 8 9 0\n4 5 6 7 1 2 3 0 9 8", "output": "1 2 3 4 5 6 7 8 9 0" }, { "input": "1 1\n4\n4", "output": "4" }, { "input": "3 7\n6 3 4\n4 9 0 1 7 8 6", "output": "6 4" }, { "input": "10 1\n9 0 8 1 7 4 6 5 2 3\n0", "output": "0" }, { "input": "5 10\n6 0 3 8 1\n3 1 0 5 4 7 2 8 9 6", "output": "6 0 3 8 1" }, { "input": "8 2\n7 2 9 6 1 0 3 4\n6 3", "output": "6 3" }, { "input": "5 4\n7 0 1 4 9\n0 9 5 3", "output": "0 9" }, { "input": "10 1\n9 6 2 0 1 8 3 4 7 5\n6", "output": "6" }, { "input": "10 2\n7 1 0 2 4 6 5 9 3 8\n3 2", "output": "2 3" }, { "input": "5 9\n3 7 9 2 4\n3 8 4 5 9 6 1 0 2", "output": "3 9 2 4" }, { "input": "10 6\n7 1 2 3 8 0 6 4 5 9\n1 5 8 2 3 6", "output": "1 2 3 8 6 5" }, { "input": "8 2\n7 4 8 9 2 5 6 1\n6 4", "output": "4 6" }, { "input": "10 2\n1 0 3 5 8 9 4 7 6 2\n0 3", "output": "0 3" }, { "input": "7 6\n9 2 8 6 1 3 7\n4 2 0 3 1 8", "output": "2 8 1 3" }, { "input": "1 6\n3\n6 8 2 4 5 3", "output": "3" }, { "input": "1 8\n0\n9 2 4 8 1 5 0 7", "output": "0" }, { "input": "6 9\n7 3 9 4 1 0\n9 1 5 8 0 6 2 7 4", "output": "7 9 4 1 0" }, { "input": "10 2\n4 9 6 8 3 0 1 5 7 2\n0 1", "output": "0 1" }, { "input": "10 5\n5 2 8 0 9 7 6 1 4 3\n9 6 4 1 2", "output": "2 9 6 1 4" }, { "input": "6 3\n8 3 9 2 7 6\n5 4 3", "output": "3" }, { "input": "4 10\n8 3 9 6\n4 9 6 2 7 0 8 1 3 5", "output": "8 3 9 6" }, { "input": "1 2\n1\n1 0", "output": "1" }, { "input": "3 6\n1 2 3\n4 5 6 1 2 3", "output": "1 2 3" }, { "input": "1 2\n2\n1 2", "output": "2" }, { "input": "1 10\n9\n0 1 2 3 4 5 6 7 8 9", "output": "9" } ]
1,529,233,019
2,147,483,647
Python 3
OK
TESTS
31
93
0
c = input() n = int(list(c.split())[0]) m = int(list(c.split())[1]) seq = list(input().split()) fprnt = list(input().split()) x = list(filter(lambda seq: seq in fprnt,seq)) for i in range(len(x)): print(x[i],end=' ')
Title: Fingerprints Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are locked in a room with a door that has a keypad with 10 keys corresponding to digits from 0 to 9. To escape from the room, you need to enter a correct code. You also have a sequence of digits. Some keys on the keypad have fingerprints. You believe the correct code is the longest not necessarily contiguous subsequence of the sequence you have that only contains digits with fingerprints on the corresponding keys. Find such code. Input Specification: The first line contains two integers $n$ and $m$ ($1 \le n, m \le 10$) representing the number of digits in the sequence you have and the number of keys on the keypad that have fingerprints. The next line contains $n$ distinct space-separated integers $x_1, x_2, \ldots, x_n$ ($0 \le x_i \le 9$) representing the sequence. The next line contains $m$ distinct space-separated integers $y_1, y_2, \ldots, y_m$ ($0 \le y_i \le 9$) — the keys with fingerprints. Output Specification: In a single line print a space-separated sequence of integers representing the code. If the resulting sequence is empty, both printing nothing and printing a single line break is acceptable. Demo Input: ['7 3\n3 5 7 1 6 2 8\n1 2 7\n', '4 4\n3 4 1 0\n0 1 7 9\n'] Demo Output: ['7 1 2\n', '1 0\n'] Note: In the first example, the only digits with fingerprints are $1$, $2$ and $7$. All three of them appear in the sequence you know, $7$ first, then $1$ and then $2$. Therefore the output is 7 1 2. Note that the order is important, and shall be the same as the order in the original sequence. In the second example digits $0$, $1$, $7$ and $9$ have fingerprints, however only $0$ and $1$ appear in the original sequence. $1$ appears earlier, so the output is 1 0. Again, the order is important.
```python c = input() n = int(list(c.split())[0]) m = int(list(c.split())[1]) seq = list(input().split()) fprnt = list(input().split()) x = list(filter(lambda seq: seq in fprnt,seq)) for i in range(len(x)): print(x[i],end=' ') ```
3
898
A
Rounding
PROGRAMMING
800
[ "implementation", "math" ]
null
null
Vasya has a non-negative integer *n*. He wants to round it to nearest integer, which ends up with 0. If *n* already ends up with 0, Vasya considers it already rounded. For example, if *n*<==<=4722 answer is 4720. If *n*<==<=5 Vasya can round it to 0 or to 10. Both ways are correct. For given *n* find out to which integer will Vasya round it.
The first line contains single integer *n* (0<=≤<=*n*<=≤<=109) — number that Vasya has.
Print result of rounding *n*. Pay attention that in some cases answer isn't unique. In that case print any correct answer.
[ "5\n", "113\n", "1000000000\n", "5432359\n" ]
[ "0\n", "110\n", "1000000000\n", "5432360\n" ]
In the first example *n* = 5. Nearest integers, that ends up with zero are 0 and 10. Any of these answers is correct, so you can print 0 or 10.
500
[ { "input": "5", "output": "0" }, { "input": "113", "output": "110" }, { "input": "1000000000", "output": "1000000000" }, { "input": "5432359", "output": "5432360" }, { "input": "999999994", "output": "999999990" }, { "input": "10", "output": "10" }, { "input": "9", "output": "10" }, { "input": "1", "output": "0" }, { "input": "0", "output": "0" }, { "input": "3", "output": "0" }, { "input": "4", "output": "0" }, { "input": "6", "output": "10" }, { "input": "7", "output": "10" }, { "input": "8", "output": "10" }, { "input": "19", "output": "20" }, { "input": "100", "output": "100" }, { "input": "997", "output": "1000" }, { "input": "9994", "output": "9990" }, { "input": "10002", "output": "10000" }, { "input": "100000", "output": "100000" }, { "input": "99999", "output": "100000" }, { "input": "999999999", "output": "1000000000" }, { "input": "999999998", "output": "1000000000" }, { "input": "999999995", "output": "999999990" }, { "input": "999999990", "output": "999999990" }, { "input": "1000000", "output": "1000000" }, { "input": "1000010", "output": "1000010" }, { "input": "10000010", "output": "10000010" }, { "input": "100000011", "output": "100000010" }, { "input": "400000003", "output": "400000000" }, { "input": "234234", "output": "234230" }, { "input": "675621", "output": "675620" }, { "input": "43532", "output": "43530" }, { "input": "4576453", "output": "4576450" }, { "input": "65754674", "output": "65754670" }, { "input": "3245526", "output": "3245530" }, { "input": "123445", "output": "123440" }, { "input": "234217", "output": "234220" }, { "input": "23451218", "output": "23451220" }, { "input": "1231239", "output": "1231240" }, { "input": "1923140", "output": "1923140" }, { "input": "307910310", "output": "307910310" }, { "input": "780961030", "output": "780961030" }, { "input": "103509421", "output": "103509420" }, { "input": "576560141", "output": "576560140" }, { "input": "48851642", "output": "48851640" }, { "input": "226935072", "output": "226935070" }, { "input": "844450763", "output": "844450760" }, { "input": "22534183", "output": "22534180" }, { "input": "640049874", "output": "640049870" }, { "input": "818133304", "output": "818133300" }, { "input": "730616285", "output": "730616280" }, { "input": "613732415", "output": "613732410" }, { "input": "380991216", "output": "380991220" }, { "input": "559074636", "output": "559074640" }, { "input": "176590327", "output": "176590330" }, { "input": "354673757", "output": "354673760" }, { "input": "267156738", "output": "267156740" }, { "input": "150272868", "output": "150272870" }, { "input": "62755859", "output": "62755860" }, { "input": "945871979", "output": "945871980" }, { "input": "46", "output": "50" }, { "input": "999", "output": "1000" }, { "input": "1397", "output": "1400" } ]
1,644,770,207
2,147,483,647
PyPy 3
OK
TESTS
64
77
0
n=int(input()) if(n%10==0): print(n) else: r=round(n/10)*10 print(r)
Title: Rounding Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya has a non-negative integer *n*. He wants to round it to nearest integer, which ends up with 0. If *n* already ends up with 0, Vasya considers it already rounded. For example, if *n*<==<=4722 answer is 4720. If *n*<==<=5 Vasya can round it to 0 or to 10. Both ways are correct. For given *n* find out to which integer will Vasya round it. Input Specification: The first line contains single integer *n* (0<=≤<=*n*<=≤<=109) — number that Vasya has. Output Specification: Print result of rounding *n*. Pay attention that in some cases answer isn't unique. In that case print any correct answer. Demo Input: ['5\n', '113\n', '1000000000\n', '5432359\n'] Demo Output: ['0\n', '110\n', '1000000000\n', '5432360\n'] Note: In the first example *n* = 5. Nearest integers, that ends up with zero are 0 and 10. Any of these answers is correct, so you can print 0 or 10.
```python n=int(input()) if(n%10==0): print(n) else: r=round(n/10)*10 print(r) ```
3
50
A
Domino piling
PROGRAMMING
800
[ "greedy", "math" ]
A. Domino piling
2
256
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions.
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output one number — the maximal number of dominoes, which can be placed.
[ "2 4\n", "3 3\n" ]
[ "4\n", "4\n" ]
none
500
[ { "input": "2 4", "output": "4" }, { "input": "3 3", "output": "4" }, { "input": "1 5", "output": "2" }, { "input": "1 6", "output": "3" }, { "input": "1 15", "output": "7" }, { "input": "1 16", "output": "8" }, { "input": "2 5", "output": "5" }, { "input": "2 6", "output": "6" }, { "input": "2 7", "output": "7" }, { "input": "2 14", "output": "14" }, { "input": "2 15", "output": "15" }, { "input": "1 4", "output": "2" }, { "input": "2 16", "output": "16" }, { "input": "3 5", "output": "7" }, { "input": "3 6", "output": "9" }, { "input": "3 10", "output": "15" }, { "input": "3 14", "output": "21" }, { "input": "3 15", "output": "22" }, { "input": "3 16", "output": "24" }, { "input": "5 7", "output": "17" }, { "input": "16 16", "output": "128" }, { "input": "15 16", "output": "120" }, { "input": "2 3", "output": "3" }, { "input": "15 15", "output": "112" }, { "input": "14 16", "output": "112" }, { "input": "11 13", "output": "71" }, { "input": "5 16", "output": "40" }, { "input": "8 15", "output": "60" }, { "input": "2 2", "output": "2" }, { "input": "3 4", "output": "6" }, { "input": "4 4", "output": "8" }, { "input": "1 1", "output": "0" }, { "input": "1 2", "output": "1" }, { "input": "1 3", "output": "1" }, { "input": "14 15", "output": "105" } ]
1,638,345,315
2,147,483,647
Python 3
OK
TESTS
35
92
0
inp = input() data = [int(i) for i in inp.split(" ")] rec_area = 1 for num in data: rec_area *= num num_dom = rec_area//2 print(num_dom)
Title: Domino piling Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions. Input Specification: In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16). Output Specification: Output one number — the maximal number of dominoes, which can be placed. Demo Input: ['2 4\n', '3 3\n'] Demo Output: ['4\n', '4\n'] Note: none
```python inp = input() data = [int(i) for i in inp.split(" ")] rec_area = 1 for num in data: rec_area *= num num_dom = rec_area//2 print(num_dom) ```
3.977
302
A
Eugeny and Array
PROGRAMMING
800
[ "implementation" ]
null
null
Eugeny has array *a*<==<=*a*1,<=*a*2,<=...,<=*a**n*, consisting of *n* integers. Each integer *a**i* equals to -1, or to 1. Also, he has *m* queries: - Query number *i* is given as a pair of integers *l**i*, *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*). - The response to the query will be integer 1, if the elements of array *a* can be rearranged so as the sum *a**l**i*<=+<=*a**l**i*<=+<=1<=+<=...<=+<=*a**r**i*<==<=0, otherwise the response to the query will be integer 0. Help Eugeny, answer all his queries.
The first line contains integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=2·105). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (*a**i*<==<=-1,<=1). Next *m* lines contain Eugene's queries. The *i*-th line contains integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*).
Print *m* integers — the responses to Eugene's queries in the order they occur in the input.
[ "2 3\n1 -1\n1 1\n1 2\n2 2\n", "5 5\n-1 1 1 1 -1\n1 1\n2 3\n3 5\n2 5\n1 5\n" ]
[ "0\n1\n0\n", "0\n1\n0\n1\n0\n" ]
none
500
[ { "input": "2 3\n1 -1\n1 1\n1 2\n2 2", "output": "0\n1\n0" }, { "input": "5 5\n-1 1 1 1 -1\n1 1\n2 3\n3 5\n2 5\n1 5", "output": "0\n1\n0\n1\n0" }, { "input": "3 3\n1 1 1\n2 2\n1 1\n1 1", "output": "0\n0\n0" }, { "input": "4 4\n-1 -1 -1 -1\n1 3\n1 2\n1 2\n1 1", "output": "0\n0\n0\n0" }, { "input": "5 5\n-1 -1 -1 -1 -1\n1 1\n1 1\n3 4\n1 1\n1 4", "output": "0\n0\n0\n0\n0" }, { "input": "6 6\n-1 -1 1 -1 -1 1\n1 1\n3 4\n1 1\n1 1\n1 3\n1 4", "output": "0\n1\n0\n0\n0\n1" }, { "input": "7 7\n-1 -1 -1 1 -1 -1 -1\n1 1\n2 7\n1 3\n1 5\n4 7\n1 7\n6 7", "output": "0\n0\n0\n0\n0\n0\n1" }, { "input": "8 8\n1 1 1 1 1 1 1 1\n5 8\n2 6\n2 3\n1 7\n7 7\n1 6\n1 8\n1 3", "output": "0\n0\n0\n0\n0\n0\n0\n0" }, { "input": "9 9\n-1 1 1 1 1 1 1 1 1\n1 7\n5 6\n1 4\n1 1\n1 1\n6 8\n1 1\n6 7\n3 5", "output": "0\n1\n0\n0\n0\n0\n0\n1\n0" }, { "input": "10 10\n-1 1 -1 1 -1 -1 -1 -1 -1 -1\n6 7\n2 5\n3 6\n1 3\n3 5\n4 5\n3 4\n1 6\n1 1\n1 1", "output": "1\n1\n1\n0\n0\n1\n1\n0\n0\n0" }, { "input": "1 1\n-1\n1 1", "output": "0" }, { "input": "1 1\n1\n1 1", "output": "0" } ]
1,697,177,385
2,147,483,647
PyPy 3-64
TIME_LIMIT_EXCEEDED
TESTS
10
1,000
14,643,200
n,m=list(map(int,input().split(" "))) arr=list(map(int,input().split(" "))) o=0 mo=0 for i in range(len(arr)): if arr[i]==1: o=o+1 else: mo=mo+1 for i in range(m): l,r=list(map(int,input().split(" "))) l=l-1 r=r-1 temp=r-l+1 if o==0 or mo==0: print(0) continue if temp%2!=0: print(0) else: one=temp//2 minusone=temp//2 if o>=one and mo>=minusone: print(1) else: print(0)
Title: Eugeny and Array Time Limit: None seconds Memory Limit: None megabytes Problem Description: Eugeny has array *a*<==<=*a*1,<=*a*2,<=...,<=*a**n*, consisting of *n* integers. Each integer *a**i* equals to -1, or to 1. Also, he has *m* queries: - Query number *i* is given as a pair of integers *l**i*, *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*). - The response to the query will be integer 1, if the elements of array *a* can be rearranged so as the sum *a**l**i*<=+<=*a**l**i*<=+<=1<=+<=...<=+<=*a**r**i*<==<=0, otherwise the response to the query will be integer 0. Help Eugeny, answer all his queries. Input Specification: The first line contains integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=2·105). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (*a**i*<==<=-1,<=1). Next *m* lines contain Eugene's queries. The *i*-th line contains integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*). Output Specification: Print *m* integers — the responses to Eugene's queries in the order they occur in the input. Demo Input: ['2 3\n1 -1\n1 1\n1 2\n2 2\n', '5 5\n-1 1 1 1 -1\n1 1\n2 3\n3 5\n2 5\n1 5\n'] Demo Output: ['0\n1\n0\n', '0\n1\n0\n1\n0\n'] Note: none
```python n,m=list(map(int,input().split(" "))) arr=list(map(int,input().split(" "))) o=0 mo=0 for i in range(len(arr)): if arr[i]==1: o=o+1 else: mo=mo+1 for i in range(m): l,r=list(map(int,input().split(" "))) l=l-1 r=r-1 temp=r-l+1 if o==0 or mo==0: print(0) continue if temp%2!=0: print(0) else: one=temp//2 minusone=temp//2 if o>=one and mo>=minusone: print(1) else: print(0) ```
0
10
A
Power Consumption Calculation
PROGRAMMING
900
[ "implementation" ]
A. Power Consumption Calculation
1
256
Tom is interested in power consumption of his favourite laptop. His laptop has three modes. In normal mode laptop consumes *P*1 watt per minute. *T*1 minutes after Tom moved the mouse or touched the keyboard for the last time, a screensaver starts and power consumption changes to *P*2 watt per minute. Finally, after *T*2 minutes from the start of the screensaver, laptop switches to the "sleep" mode and consumes *P*3 watt per minute. If Tom moves the mouse or touches the keyboard when the laptop is in the second or in the third mode, it switches to the first (normal) mode. Tom's work with the laptop can be divided into *n* time periods [*l*1,<=*r*1],<=[*l*2,<=*r*2],<=...,<=[*l**n*,<=*r**n*]. During each interval Tom continuously moves the mouse and presses buttons on the keyboard. Between the periods Tom stays away from the laptop. Find out the total amount of power consumed by the laptop during the period [*l*1,<=*r**n*].
The first line contains 6 integer numbers *n*, *P*1, *P*2, *P*3, *T*1, *T*2 (1<=≤<=*n*<=≤<=100,<=0<=≤<=*P*1,<=*P*2,<=*P*3<=≤<=100,<=1<=≤<=*T*1,<=*T*2<=≤<=60). The following *n* lines contain description of Tom's work. Each *i*-th of these lines contains two space-separated integers *l**i* and *r**i* (0<=≤<=*l**i*<=&lt;<=*r**i*<=≤<=1440, *r**i*<=&lt;<=*l**i*<=+<=1 for *i*<=&lt;<=*n*), which stand for the start and the end of the *i*-th period of work.
Output the answer to the problem.
[ "1 3 2 1 5 10\n0 10\n", "2 8 4 2 5 10\n20 30\n50 100\n" ]
[ "30", "570" ]
none
0
[ { "input": "1 3 2 1 5 10\n0 10", "output": "30" }, { "input": "2 8 4 2 5 10\n20 30\n50 100", "output": "570" }, { "input": "3 15 9 95 39 19\n873 989\n1003 1137\n1172 1436", "output": "8445" }, { "input": "4 73 2 53 58 16\n51 52\n209 242\n281 407\n904 945", "output": "52870" }, { "input": "5 41 20 33 43 4\n46 465\n598 875\n967 980\n1135 1151\n1194 1245", "output": "46995" }, { "input": "6 88 28 100 53 36\n440 445\n525 614\n644 844\n1238 1261\n1305 1307\n1425 1434", "output": "85540" }, { "input": "7 46 61 55 28 59\n24 26\n31 61\n66 133\n161 612\n741 746\n771 849\n1345 1357", "output": "67147" }, { "input": "8 83 18 30 28 5\n196 249\n313 544\n585 630\n718 843\n1040 1194\n1207 1246\n1268 1370\n1414 1422", "output": "85876" }, { "input": "9 31 65 27 53 54\n164 176\n194 210\n485 538\n617 690\n875 886\n888 902\n955 957\n1020 1200\n1205 1282", "output": "38570" }, { "input": "30 3 1 58 44 7\n11 13\n14 32\n37 50\n70 74\n101 106\n113 129\n184 195\n197 205\n213 228\n370 394\n443 446\n457 460\n461 492\n499 585\n602 627\n709 776\n812 818\n859 864\n910 913\n918 964\n1000 1010\n1051 1056\n1063 1075\n1106 1145\n1152 1189\n1211 1212\n1251 1259\n1272 1375\n1412 1417\n1430 1431", "output": "11134" }, { "input": "30 42 3 76 28 26\n38 44\n55 66\n80 81\n84 283\n298 314\n331 345\n491 531\n569 579\n597 606\n612 617\n623 701\n723 740\n747 752\n766 791\n801 827\n842 846\n853 891\n915 934\n945 949\n955 964\n991 1026\n1051 1059\n1067 1179\n1181 1191\n1214 1226\n1228 1233\n1294 1306\n1321 1340\n1371 1374\n1375 1424", "output": "59043" }, { "input": "30 46 5 93 20 46\n12 34\n40 41\n54 58\n100 121\n162 182\n220 349\n358 383\n390 398\n401 403\n408 409\n431 444\n466 470\n471 535\n556 568\n641 671\n699 709\n767 777\n786 859\n862 885\n912 978\n985 997\n1013 1017\n1032 1038\n1047 1048\n1062 1080\n1094 1097\n1102 1113\n1122 1181\n1239 1280\n1320 1369", "output": "53608" }, { "input": "30 50 74 77 4 57\n17 23\n24 61\n67 68\n79 87\n93 101\n104 123\n150 192\n375 377\n398 414\n461 566\n600 633\n642 646\n657 701\n771 808\n812 819\n823 826\n827 833\n862 875\n880 891\n919 920\n928 959\n970 1038\n1057 1072\n1074 1130\n1165 1169\n1171 1230\n1265 1276\n1279 1302\n1313 1353\n1354 1438", "output": "84067" }, { "input": "30 54 76 95 48 16\n9 11\n23 97\n112 116\n126 185\n214 223\n224 271\n278 282\n283 348\n359 368\n373 376\n452 463\n488 512\n532 552\n646 665\n681 685\n699 718\n735 736\n750 777\n791 810\n828 838\n841 858\n874 1079\n1136 1171\n1197 1203\n1210 1219\n1230 1248\n1280 1292\n1324 1374\n1397 1435\n1438 1439", "output": "79844" }, { "input": "30 58 78 12 41 28\n20 26\n27 31\n35 36\n38 99\n103 104\n106 112\n133 143\n181 246\n248 251\n265 323\n350 357\n378 426\n430 443\n466 476\n510 515\n517 540\n542 554\n562 603\n664 810\n819 823\n826 845\n869 895\n921 973\n1002 1023\n1102 1136\n1143 1148\n1155 1288\n1316 1388\n1394 1403\n1434 1437", "output": "82686" }, { "input": "30 62 80 97 25 47\n19 20\n43 75\n185 188\n199 242\n252 258\n277 310\n316 322\n336 357\n398 399\n404 436\n443 520\n549 617\n637 649\n679 694\n705 715\n725 730\n731 756\n768 793\n806 833\n834 967\n1003 1079\n1088 1097\n1100 1104\n1108 1121\n1127 1164\n1240 1263\n1274 1307\n1367 1407\n1419 1425\n1433 1437", "output": "92356" }, { "input": "30 100 48 14 9 7\n26 55\n75 107\n145 146\n158 167\n197 199\n201 213\n222 238\n257 265\n271 338\n357 439\n454 462\n463 562\n633 660\n670 691\n696 829\n844 864\n880 888\n891 894\n895 900\n950 973\n1004 1007\n1018 1021\n1045 1049\n1062 1073\n1138 1184\n1240 1272\n1278 1315\n1403 1410\n1412 1418\n1426 1434", "output": "107490" }, { "input": "30 3 50 32 1 18\n46 60\n66 94\n99 141\n162 239\n309 334\n400 550\n594 630\n659 663\n664 701\n735 736\n741 755\n756 801\n823 854\n865 915\n937 964\n984 986\n990 1007\n1008 1031\n1052 1064\n1073 1080\n1190 1191\n1192 1254\n1265 1266\n1272 1273\n1274 1277\n1284 1302\n1308 1312\n1358 1383\n1388 1389\n1390 1401", "output": "25258" }, { "input": "30 7 52 49 46 37\n2 73\n129 130\n131 140\n143 150\n187 190\n217 238\n248 271\n375 426\n465 470\n475 503\n506 541\n569 571\n578 585\n680 683\n690 738\n742 761\n868 877\n890 892\n904 915\n935 961\n1076 1100\n1103 1114\n1232 1244\n1246 1247\n1257 1261\n1271 1276\n1280 1298\n1346 1360\n1373 1382\n1407 1419", "output": "23992" } ]
1,689,885,827
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
1
92
0
n, P1, P2, P3, T1, T2 = map(int, input().split()) answer = 0 ending = 0 for _ in range(n): start, end = map(int, input().split()) sleepmode = start - ending answer += P1 * min(T1, sleepmode) sleepmode = max(0, sleepmode - T1) answer += P2 * min(T2, sleepmode) sleepmode = max(0, sleepmode - T2) answer += P3 * sleepmode answer += (end - start) * P1 ending = end print(answer)
Title: Power Consumption Calculation Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Tom is interested in power consumption of his favourite laptop. His laptop has three modes. In normal mode laptop consumes *P*1 watt per minute. *T*1 minutes after Tom moved the mouse or touched the keyboard for the last time, a screensaver starts and power consumption changes to *P*2 watt per minute. Finally, after *T*2 minutes from the start of the screensaver, laptop switches to the "sleep" mode and consumes *P*3 watt per minute. If Tom moves the mouse or touches the keyboard when the laptop is in the second or in the third mode, it switches to the first (normal) mode. Tom's work with the laptop can be divided into *n* time periods [*l*1,<=*r*1],<=[*l*2,<=*r*2],<=...,<=[*l**n*,<=*r**n*]. During each interval Tom continuously moves the mouse and presses buttons on the keyboard. Between the periods Tom stays away from the laptop. Find out the total amount of power consumed by the laptop during the period [*l*1,<=*r**n*]. Input Specification: The first line contains 6 integer numbers *n*, *P*1, *P*2, *P*3, *T*1, *T*2 (1<=≤<=*n*<=≤<=100,<=0<=≤<=*P*1,<=*P*2,<=*P*3<=≤<=100,<=1<=≤<=*T*1,<=*T*2<=≤<=60). The following *n* lines contain description of Tom's work. Each *i*-th of these lines contains two space-separated integers *l**i* and *r**i* (0<=≤<=*l**i*<=&lt;<=*r**i*<=≤<=1440, *r**i*<=&lt;<=*l**i*<=+<=1 for *i*<=&lt;<=*n*), which stand for the start and the end of the *i*-th period of work. Output Specification: Output the answer to the problem. Demo Input: ['1 3 2 1 5 10\n0 10\n', '2 8 4 2 5 10\n20 30\n50 100\n'] Demo Output: ['30', '570'] Note: none
```python n, P1, P2, P3, T1, T2 = map(int, input().split()) answer = 0 ending = 0 for _ in range(n): start, end = map(int, input().split()) sleepmode = start - ending answer += P1 * min(T1, sleepmode) sleepmode = max(0, sleepmode - T1) answer += P2 * min(T2, sleepmode) sleepmode = max(0, sleepmode - T2) answer += P3 * sleepmode answer += (end - start) * P1 ending = end print(answer) ```
0
938
B
Run For Your Prize
PROGRAMMING
1,100
[ "brute force", "greedy" ]
null
null
You and your friend are participating in a TV show "Run For Your Prize". At the start of the show *n* prizes are located on a straight line. *i*-th prize is located at position *a**i*. Positions of all prizes are distinct. You start at position 1, your friend — at position 106 (and there is no prize in any of these two positions). You have to work as a team and collect all prizes in minimum possible time, in any order. You know that it takes exactly 1 second to move from position *x* to position *x*<=+<=1 or *x*<=-<=1, both for you and your friend. You also have trained enough to instantly pick up any prize, if its position is equal to your current position (and the same is true for your friend). Carrying prizes does not affect your speed (or your friend's speed) at all. Now you may discuss your strategy with your friend and decide who will pick up each prize. Remember that every prize must be picked up, either by you or by your friend. What is the minimum number of seconds it will take to pick up all the prizes?
The first line contains one integer *n* (1<=≤<=*n*<=≤<=105) — the number of prizes. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (2<=≤<=*a**i*<=≤<=106<=-<=1) — the positions of the prizes. No two prizes are located at the same position. Positions are given in ascending order.
Print one integer — the minimum number of seconds it will take to collect all prizes.
[ "3\n2 3 9\n", "2\n2 999995\n" ]
[ "8\n", "5\n" ]
In the first example you take all the prizes: take the first at 1, the second at 2 and the third at 8. In the second example you take the first prize in 1 second and your friend takes the other in 5 seconds, you do this simultaneously, so the total time is 5.
0
[ { "input": "3\n2 3 9", "output": "8" }, { "input": "2\n2 999995", "output": "5" }, { "input": "1\n20", "output": "19" }, { "input": "6\n2 3 500000 999997 999998 999999", "output": "499999" }, { "input": "1\n999999", "output": "1" }, { "input": "1\n510000", "output": "490000" }, { "input": "3\n2 5 27", "output": "26" }, { "input": "2\n600000 800000", "output": "400000" }, { "input": "5\n2 5 6 27 29", "output": "28" }, { "input": "1\n500001", "output": "499999" }, { "input": "10\n3934 38497 42729 45023 51842 68393 77476 82414 91465 98055", "output": "98054" }, { "input": "1\n900000", "output": "100000" }, { "input": "1\n500000", "output": "499999" }, { "input": "1\n999998", "output": "2" }, { "input": "3\n999997 999998 999999", "output": "3" }, { "input": "2\n999997 999999", "output": "3" }, { "input": "2\n2 999998", "output": "2" }, { "input": "2\n500000 500001", "output": "499999" }, { "input": "1\n500002", "output": "499998" }, { "input": "1\n700000", "output": "300000" }, { "input": "2\n2 999999", "output": "1" }, { "input": "2\n999998 999999", "output": "2" }, { "input": "1\n999995", "output": "5" }, { "input": "2\n499999 500001", "output": "499999" }, { "input": "1\n499999", "output": "499998" }, { "input": "2\n100 999900", "output": "100" }, { "input": "2\n499999 500000", "output": "499999" }, { "input": "2\n500001 999999", "output": "499999" }, { "input": "3\n500000 500001 500002", "output": "499999" }, { "input": "2\n2 500001", "output": "499999" }, { "input": "2\n499999 999999", "output": "499998" }, { "input": "2\n2 500000", "output": "499999" }, { "input": "4\n2 3 4 999999", "output": "3" }, { "input": "2\n100000 500001", "output": "499999" }, { "input": "1\n2", "output": "1" }, { "input": "1\n800000", "output": "200000" }, { "input": "1\n505050", "output": "494950" }, { "input": "1\n753572", "output": "246428" }, { "input": "2\n576696 760487", "output": "423304" }, { "input": "10\n3 4 5 6 7 8 9 10 11 12", "output": "11" }, { "input": "4\n2 3 4 5", "output": "4" }, { "input": "4\n999996 999997 999998 999999", "output": "4" } ]
1,519,135,272
2,147,483,647
Python 3
OK
TESTS
48
140
12,902,400
n = int(input()) print(max([min(int(x)-1, 10**6-int(x)) for x in input().split()]))
Title: Run For Your Prize Time Limit: None seconds Memory Limit: None megabytes Problem Description: You and your friend are participating in a TV show "Run For Your Prize". At the start of the show *n* prizes are located on a straight line. *i*-th prize is located at position *a**i*. Positions of all prizes are distinct. You start at position 1, your friend — at position 106 (and there is no prize in any of these two positions). You have to work as a team and collect all prizes in minimum possible time, in any order. You know that it takes exactly 1 second to move from position *x* to position *x*<=+<=1 or *x*<=-<=1, both for you and your friend. You also have trained enough to instantly pick up any prize, if its position is equal to your current position (and the same is true for your friend). Carrying prizes does not affect your speed (or your friend's speed) at all. Now you may discuss your strategy with your friend and decide who will pick up each prize. Remember that every prize must be picked up, either by you or by your friend. What is the minimum number of seconds it will take to pick up all the prizes? Input Specification: The first line contains one integer *n* (1<=≤<=*n*<=≤<=105) — the number of prizes. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (2<=≤<=*a**i*<=≤<=106<=-<=1) — the positions of the prizes. No two prizes are located at the same position. Positions are given in ascending order. Output Specification: Print one integer — the minimum number of seconds it will take to collect all prizes. Demo Input: ['3\n2 3 9\n', '2\n2 999995\n'] Demo Output: ['8\n', '5\n'] Note: In the first example you take all the prizes: take the first at 1, the second at 2 and the third at 8. In the second example you take the first prize in 1 second and your friend takes the other in 5 seconds, you do this simultaneously, so the total time is 5.
```python n = int(input()) print(max([min(int(x)-1, 10**6-int(x)) for x in input().split()])) ```
3
940
B
Our Tanya is Crying Out Loud
PROGRAMMING
1,400
[ "dp", "greedy" ]
null
null
Right now she actually isn't. But she will be, if you don't solve this problem. You are given integers *n*, *k*, *A* and *B*. There is a number *x*, which is initially equal to *n*. You are allowed to perform two types of operations: 1. Subtract 1 from *x*. This operation costs you *A* coins. 1. Divide *x* by *k*. Can be performed only if *x* is divisible by *k*. This operation costs you *B* coins.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=2·109). The second line contains a single integer *k* (1<=≤<=*k*<=≤<=2·109). The third line contains a single integer *A* (1<=≤<=*A*<=≤<=2·109). The fourth line contains a single integer *B* (1<=≤<=*B*<=≤<=2·109).
Output a single integer — the minimum amount of coins you have to pay to make *x* equal to 1.
[ "9\n2\n3\n1\n", "5\n5\n2\n20\n", "19\n3\n4\n2\n" ]
[ "6\n", "8\n", "12\n" ]
In the first testcase, the optimal strategy is as follows: - Subtract 1 from *x* (9 → 8) paying 3 coins. - Divide *x* by 2 (8 → 4) paying 1 coin. - Divide *x* by 2 (4 → 2) paying 1 coin. - Divide *x* by 2 (2 → 1) paying 1 coin. The total cost is 6 coins. In the second test case the optimal strategy is to subtract 1 from *x* 4 times paying 8 coins in total.
1,250
[ { "input": "9\n2\n3\n1", "output": "6" }, { "input": "5\n5\n2\n20", "output": "8" }, { "input": "19\n3\n4\n2", "output": "12" }, { "input": "1845999546\n999435865\n1234234\n2323423", "output": "1044857680578777" }, { "input": "1604353664\n1604353665\n9993432\n1", "output": "16032999235141416" }, { "input": "777888456\n1\n98\n43", "output": "76233068590" }, { "input": "1162261467\n3\n1\n2000000000", "output": "1162261466" }, { "input": "1000000000\n1999999999\n789987\n184569875", "output": "789986999210013" }, { "input": "2000000000\n2\n1\n2000000000", "output": "1999999999" }, { "input": "1999888325\n3\n2\n2000000000", "output": "3333258884" }, { "input": "1897546487\n687\n89798979\n879876541", "output": "110398404423" }, { "input": "20\n1\n20\n1", "output": "380" }, { "input": "16\n5\n17\n3", "output": "54" }, { "input": "19\n19\n19\n1", "output": "1" }, { "input": "18\n2\n3\n16", "output": "40" }, { "input": "1\n11\n8\n9", "output": "0" }, { "input": "9\n10\n1\n20", "output": "8" }, { "input": "19\n10\n19\n2", "output": "173" }, { "input": "16\n9\n14\n2", "output": "100" }, { "input": "15\n2\n5\n2", "output": "21" }, { "input": "14\n7\n13\n1", "output": "14" }, { "input": "43\n3\n45\n3", "output": "189" }, { "input": "99\n1\n98\n1", "output": "9604" }, { "input": "77\n93\n100\n77", "output": "7600" }, { "input": "81\n3\n91\n95", "output": "380" }, { "input": "78\n53\n87\n34", "output": "2209" }, { "input": "80\n3\n15\n1", "output": "108" }, { "input": "97\n24\n4\n24", "output": "40" }, { "input": "100\n100\n1\n100", "output": "99" }, { "input": "87\n4\n17\n7", "output": "106" }, { "input": "65\n2\n3\n6", "output": "36" }, { "input": "1000000\n1435\n3\n999999", "output": "1005804" }, { "input": "783464\n483464\n2\n966928", "output": "1566926" }, { "input": "248035\n11\n3\n20", "output": "202" }, { "input": "524287\n2\n945658\n999756", "output": "34963354" }, { "input": "947352\n78946\n85\n789654", "output": "790589" }, { "input": "1000000\n1\n999899\n60", "output": "999898000101" }, { "input": "753687\n977456\n6547\n456", "output": "4934382242" }, { "input": "1000000\n500000\n1\n999997", "output": "999998" }, { "input": "997458\n843596\n1\n843596", "output": "997457" }, { "input": "821109\n92\n6547\n98787", "output": "394566" }, { "input": "1073741823\n2\n9543\n8923453", "output": "188412866" }, { "input": "1000999777\n1934999345\n2356346\n34534565", "output": "2358701818178496" }, { "input": "2000000000\n1\n2000000000\n98", "output": "3999999998000000000" }, { "input": "1999324353\n978435356\n1\n978435356", "output": "1020888998" }, { "input": "2000000000\n2\n2000000000\n2000000000", "output": "84000000000" }, { "input": "241375690\n17\n2\n1998789654", "output": "482751378" }, { "input": "171507000\n350\n789\n6548687", "output": "14216965" }, { "input": "1100220011\n10001\n2\n1999778654", "output": "1999998674" }, { "input": "1867622656\n43216\n789644\n12315468", "output": "24630936" }, { "input": "1867622656\n43216\n1\n1879865413", "output": "1867622655" }, { "input": "1999999999\n1000000000\n789987\n184569875", "output": "789987183779888" }, { "input": "1987987897\n103546\n7\n98754563", "output": "98946650" }, { "input": "10\n2\n2\n5", "output": "13" }, { "input": "7\n2\n1\n100000", "output": "6" }, { "input": "7\n2\n3\n1", "output": "8" }, { "input": "2000000000\n666666667\n1\n1", "output": "666666668" }, { "input": "1999999997\n666666666\n2\n2", "output": "1333333334" } ]
1,593,022,954
2,147,483,647
PyPy 3
TIME_LIMIT_EXCEEDED
TESTS
3
1,000
21,708,800
n = int(input()) k = int(input()) a = int(input()) b = int(input()) d=0 while(n>1): if(n==2 and k==2): d+=min(a,b) n-=1 else: if(n%k==0): f = n-n//k d+=min(f*a,b) n=n//k else: d+=a n-=1 print(d)
Title: Our Tanya is Crying Out Loud Time Limit: None seconds Memory Limit: None megabytes Problem Description: Right now she actually isn't. But she will be, if you don't solve this problem. You are given integers *n*, *k*, *A* and *B*. There is a number *x*, which is initially equal to *n*. You are allowed to perform two types of operations: 1. Subtract 1 from *x*. This operation costs you *A* coins. 1. Divide *x* by *k*. Can be performed only if *x* is divisible by *k*. This operation costs you *B* coins. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=2·109). The second line contains a single integer *k* (1<=≤<=*k*<=≤<=2·109). The third line contains a single integer *A* (1<=≤<=*A*<=≤<=2·109). The fourth line contains a single integer *B* (1<=≤<=*B*<=≤<=2·109). Output Specification: Output a single integer — the minimum amount of coins you have to pay to make *x* equal to 1. Demo Input: ['9\n2\n3\n1\n', '5\n5\n2\n20\n', '19\n3\n4\n2\n'] Demo Output: ['6\n', '8\n', '12\n'] Note: In the first testcase, the optimal strategy is as follows: - Subtract 1 from *x* (9 → 8) paying 3 coins. - Divide *x* by 2 (8 → 4) paying 1 coin. - Divide *x* by 2 (4 → 2) paying 1 coin. - Divide *x* by 2 (2 → 1) paying 1 coin. The total cost is 6 coins. In the second test case the optimal strategy is to subtract 1 from *x* 4 times paying 8 coins in total.
```python n = int(input()) k = int(input()) a = int(input()) b = int(input()) d=0 while(n>1): if(n==2 and k==2): d+=min(a,b) n-=1 else: if(n%k==0): f = n-n//k d+=min(f*a,b) n=n//k else: d+=a n-=1 print(d) ```
0
686
A
Free Ice Cream
PROGRAMMING
800
[ "constructive algorithms", "implementation" ]
null
null
After their adventure with the magic mirror Kay and Gerda have returned home and sometimes give free ice cream to kids in the summer. At the start of the day they have *x* ice cream packs. Since the ice cream is free, people start standing in the queue before Kay and Gerda's house even in the night. Each person in the queue wants either to take several ice cream packs for himself and his friends or to give several ice cream packs to Kay and Gerda (carriers that bring ice cream have to stand in the same queue). If a carrier with *d* ice cream packs comes to the house, then Kay and Gerda take all his packs. If a child who wants to take *d* ice cream packs comes to the house, then Kay and Gerda will give him *d* packs if they have enough ice cream, otherwise the child will get no ice cream at all and will leave in distress. Kay wants to find the amount of ice cream they will have after all people will leave from the queue, and Gerda wants to find the number of distressed kids.
The first line contains two space-separated integers *n* and *x* (1<=≤<=*n*<=≤<=1000, 0<=≤<=*x*<=≤<=109). Each of the next *n* lines contains a character '+' or '-', and an integer *d**i*, separated by a space (1<=≤<=*d**i*<=≤<=109). Record "+ *d**i*" in *i*-th line means that a carrier with *d**i* ice cream packs occupies *i*-th place from the start of the queue, and record "- *d**i*" means that a child who wants to take *d**i* packs stands in *i*-th place.
Print two space-separated integers — number of ice cream packs left after all operations, and number of kids that left the house in distress.
[ "5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20\n", "5 17\n- 16\n- 2\n- 98\n+ 100\n- 98\n" ]
[ "22 1\n", "3 2\n" ]
Consider the first sample. 1. Initially Kay and Gerda have 7 packs of ice cream. 1. Carrier brings 5 more, so now they have 12 packs. 1. A kid asks for 10 packs and receives them. There are only 2 packs remaining. 1. Another kid asks for 20 packs. Kay and Gerda do not have them, so the kid goes away distressed. 1. Carrier bring 40 packs, now Kay and Gerda have 42 packs. 1. Kid asks for 20 packs and receives them. There are 22 packs remaining.
500
[ { "input": "5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20", "output": "22 1" }, { "input": "5 17\n- 16\n- 2\n- 98\n+ 100\n- 98", "output": "3 2" }, { "input": "6 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000", "output": "7000000000 0" }, { "input": "5 12\n- 12\n+ 7\n- 6\n- 1\n+ 46", "output": "46 0" }, { "input": "11 1000\n- 100\n+ 100\n+ 100\n+ 100\n+ 100\n- 100\n- 100\n- 100\n- 100\n- 100\n- 100", "output": "700 0" }, { "input": "1 0\n- 526403222", "output": "0 1" }, { "input": "1 897986543\n- 371188251", "output": "526798292 0" }, { "input": "1 0\n+ 1", "output": "1 0" }, { "input": "1 0\n- 1", "output": "0 1" }, { "input": "1 10\n+ 10", "output": "20 0" }, { "input": "1 3\n- 5", "output": "3 1" }, { "input": "1 0\n- 5", "output": "0 1" }, { "input": "1 0\n+ 5", "output": "5 0" } ]
1,602,856,584
2,147,483,647
Python 3
OK
TESTS
34
140
819,200
import re regex = re.compile(r'\S+') regex1 = re.compile(r'\d+') a = input() r1 = regex1.findall(a) x = int(r1[1]) dis = 0 for i in range(int(r1[0])): l = input() r2 = regex.findall(l) if r2[0] == '-': if int(r2[1]) > x: dis = dis +1 else: x = x - int(r2[1]) if r2[0] == '+': x = x + int(r2[1]) print(x,dis)
Title: Free Ice Cream Time Limit: None seconds Memory Limit: None megabytes Problem Description: After their adventure with the magic mirror Kay and Gerda have returned home and sometimes give free ice cream to kids in the summer. At the start of the day they have *x* ice cream packs. Since the ice cream is free, people start standing in the queue before Kay and Gerda's house even in the night. Each person in the queue wants either to take several ice cream packs for himself and his friends or to give several ice cream packs to Kay and Gerda (carriers that bring ice cream have to stand in the same queue). If a carrier with *d* ice cream packs comes to the house, then Kay and Gerda take all his packs. If a child who wants to take *d* ice cream packs comes to the house, then Kay and Gerda will give him *d* packs if they have enough ice cream, otherwise the child will get no ice cream at all and will leave in distress. Kay wants to find the amount of ice cream they will have after all people will leave from the queue, and Gerda wants to find the number of distressed kids. Input Specification: The first line contains two space-separated integers *n* and *x* (1<=≤<=*n*<=≤<=1000, 0<=≤<=*x*<=≤<=109). Each of the next *n* lines contains a character '+' or '-', and an integer *d**i*, separated by a space (1<=≤<=*d**i*<=≤<=109). Record "+ *d**i*" in *i*-th line means that a carrier with *d**i* ice cream packs occupies *i*-th place from the start of the queue, and record "- *d**i*" means that a child who wants to take *d**i* packs stands in *i*-th place. Output Specification: Print two space-separated integers — number of ice cream packs left after all operations, and number of kids that left the house in distress. Demo Input: ['5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20\n', '5 17\n- 16\n- 2\n- 98\n+ 100\n- 98\n'] Demo Output: ['22 1\n', '3 2\n'] Note: Consider the first sample. 1. Initially Kay and Gerda have 7 packs of ice cream. 1. Carrier brings 5 more, so now they have 12 packs. 1. A kid asks for 10 packs and receives them. There are only 2 packs remaining. 1. Another kid asks for 20 packs. Kay and Gerda do not have them, so the kid goes away distressed. 1. Carrier bring 40 packs, now Kay and Gerda have 42 packs. 1. Kid asks for 20 packs and receives them. There are 22 packs remaining.
```python import re regex = re.compile(r'\S+') regex1 = re.compile(r'\d+') a = input() r1 = regex1.findall(a) x = int(r1[1]) dis = 0 for i in range(int(r1[0])): l = input() r2 = regex.findall(l) if r2[0] == '-': if int(r2[1]) > x: dis = dis +1 else: x = x - int(r2[1]) if r2[0] == '+': x = x + int(r2[1]) print(x,dis) ```
3
913
A
Modular Exponentiation
PROGRAMMING
900
[ "implementation", "math" ]
null
null
The following problem is well-known: given integers *n* and *m*, calculate where 2*n*<==<=2·2·...·2 (*n* factors), and denotes the remainder of division of *x* by *y*. You are asked to solve the "reverse" problem. Given integers *n* and *m*, calculate
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=108). The second line contains a single integer *m* (1<=≤<=*m*<=≤<=108).
Output a single integer — the value of .
[ "4\n42\n", "1\n58\n", "98765432\n23456789\n" ]
[ "10\n", "0\n", "23456789\n" ]
In the first example, the remainder of division of 42 by 2<sup class="upper-index">4</sup> = 16 is equal to 10. In the second example, 58 is divisible by 2<sup class="upper-index">1</sup> = 2 without remainder, and the answer is 0.
500
[ { "input": "4\n42", "output": "10" }, { "input": "1\n58", "output": "0" }, { "input": "98765432\n23456789", "output": "23456789" }, { "input": "8\n88127381", "output": "149" }, { "input": "32\n92831989", "output": "92831989" }, { "input": "92831989\n25", "output": "25" }, { "input": "100000000\n100000000", "output": "100000000" }, { "input": "7\n1234", "output": "82" }, { "input": "1\n1", "output": "1" }, { "input": "1\n100000000", "output": "0" }, { "input": "100000000\n1", "output": "1" }, { "input": "1\n2", "output": "0" }, { "input": "2\n1", "output": "1" }, { "input": "2\n2", "output": "2" }, { "input": "2\n3", "output": "3" }, { "input": "2\n4", "output": "0" }, { "input": "2\n5", "output": "1" }, { "input": "25\n33554432", "output": "0" }, { "input": "26\n33554432", "output": "33554432" }, { "input": "25\n67108864", "output": "0" }, { "input": "26\n67108864", "output": "0" }, { "input": "25\n92831989", "output": "25723125" }, { "input": "26\n92831989", "output": "25723125" }, { "input": "27\n92831989", "output": "92831989" }, { "input": "29\n92831989", "output": "92831989" }, { "input": "30\n92831989", "output": "92831989" }, { "input": "31\n92831989", "output": "92831989" }, { "input": "99812399\n93172892", "output": "93172892" }, { "input": "67108864\n12345678", "output": "12345678" }, { "input": "3\n98391849", "output": "1" }, { "input": "13\n1231232", "output": "2432" }, { "input": "18\n9842194", "output": "142866" }, { "input": "24\n71237177", "output": "4128313" }, { "input": "11\n65535", "output": "2047" }, { "input": "11\n65536", "output": "0" }, { "input": "12\n123", "output": "123" }, { "input": "123456\n12", "output": "12" }, { "input": "88\n888", "output": "888" }, { "input": "888\n88", "output": "88" }, { "input": "8888\n8888", "output": "8888" }, { "input": "64\n128", "output": "128" }, { "input": "128\n64", "output": "64" }, { "input": "60\n9999999", "output": "9999999" }, { "input": "200\n100000", "output": "100000" }, { "input": "3\n8", "output": "0" }, { "input": "10000000\n25024886", "output": "25024886" }, { "input": "100\n100000", "output": "100000" }, { "input": "99999999\n100000000", "output": "100000000" }, { "input": "70\n12345678", "output": "12345678" } ]
1,629,492,463
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
2
1,000
53,043,200
n = int(input()) m = int(input()) print(str(m%(2**n)))
Title: Modular Exponentiation Time Limit: None seconds Memory Limit: None megabytes Problem Description: The following problem is well-known: given integers *n* and *m*, calculate where 2*n*<==<=2·2·...·2 (*n* factors), and denotes the remainder of division of *x* by *y*. You are asked to solve the "reverse" problem. Given integers *n* and *m*, calculate Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=108). The second line contains a single integer *m* (1<=≤<=*m*<=≤<=108). Output Specification: Output a single integer — the value of . Demo Input: ['4\n42\n', '1\n58\n', '98765432\n23456789\n'] Demo Output: ['10\n', '0\n', '23456789\n'] Note: In the first example, the remainder of division of 42 by 2<sup class="upper-index">4</sup> = 16 is equal to 10. In the second example, 58 is divisible by 2<sup class="upper-index">1</sup> = 2 without remainder, and the answer is 0.
```python n = int(input()) m = int(input()) print(str(m%(2**n))) ```
0
868
A
Bark to Unlock
PROGRAMMING
900
[ "brute force", "implementation", "strings" ]
null
null
As technologies develop, manufacturers are making the process of unlocking a phone as user-friendly as possible. To unlock its new phone, Arkady's pet dog Mu-mu has to bark the password once. The phone represents a password as a string of two lowercase English letters. Mu-mu's enemy Kashtanka wants to unlock Mu-mu's phone to steal some sensible information, but it can only bark *n* distinct words, each of which can be represented as a string of two lowercase English letters. Kashtanka wants to bark several words (not necessarily distinct) one after another to pronounce a string containing the password as a substring. Tell if it's possible to unlock the phone in this way, or not.
The first line contains two lowercase English letters — the password on the phone. The second line contains single integer *n* (1<=≤<=*n*<=≤<=100) — the number of words Kashtanka knows. The next *n* lines contain two lowercase English letters each, representing the words Kashtanka knows. The words are guaranteed to be distinct.
Print "YES" if Kashtanka can bark several words in a line forming a string containing the password, and "NO" otherwise. You can print each letter in arbitrary case (upper or lower).
[ "ya\n4\nah\noy\nto\nha\n", "hp\n2\nht\ntp\n", "ah\n1\nha\n" ]
[ "YES\n", "NO\n", "YES\n" ]
In the first example the password is "ya", and Kashtanka can bark "oy" and then "ah", and then "ha" to form the string "oyahha" which contains the password. So, the answer is "YES". In the second example Kashtanka can't produce a string containing password as a substring. Note that it can bark "ht" and then "tp" producing "http", but it doesn't contain the password "hp" as a substring. In the third example the string "hahahaha" contains "ah" as a substring.
250
[ { "input": "ya\n4\nah\noy\nto\nha", "output": "YES" }, { "input": "hp\n2\nht\ntp", "output": "NO" }, { "input": "ah\n1\nha", "output": "YES" }, { "input": "bb\n4\nba\nab\naa\nbb", "output": "YES" }, { "input": "bc\n4\nca\nba\nbb\ncc", "output": "YES" }, { "input": "ba\n4\ncd\nad\ncc\ncb", "output": "YES" }, { "input": "pg\n4\nzl\nxs\ndi\nxn", "output": "NO" }, { "input": "bn\n100\ndf\nyb\nze\nml\nyr\nof\nnw\nfm\ndw\nlv\nzr\nhu\nzt\nlw\nld\nmo\nxz\ntp\nmr\nou\nme\npx\nvp\nes\nxi\nnr\nbx\nqc\ngm\njs\nkn\ntw\nrq\nkz\nuc\nvc\nqr\nab\nna\nro\nya\nqy\ngu\nvk\nqk\ngs\nyq\nop\nhw\nrj\neo\nlz\nbh\nkr\nkb\nma\nrd\nza\nuf\nhq\nmc\nmn\nti\nwn\nsh\nax\nsi\nnd\ntz\ndu\nfj\nkl\nws\now\nnf\nvr\nye\nzc\niw\nfv\nkv\noo\nsm\nbc\nrs\nau\nuz\nuv\ngh\nsu\njn\ndz\nrl\nwj\nbk\nzl\nas\nms\nit\nwu", "output": "YES" }, { "input": "bb\n1\naa", "output": "NO" }, { "input": "qm\n25\nqw\nwe\ner\nrt\nty\nyu\nui\nio\nop\npa\nas\nsd\ndf\nfg\ngh\nhj\njk\nkl\nlz\nzx\nxc\ncv\nvb\nbn\nnm", "output": "NO" }, { "input": "mq\n25\nqw\nwe\ner\nrt\nty\nyu\nui\nio\nop\npa\nas\nsd\ndf\nfg\ngh\nhj\njk\nkl\nlz\nzx\nxc\ncv\nvb\nbn\nnm", "output": "YES" }, { "input": "aa\n1\naa", "output": "YES" }, { "input": "bb\n1\nbb", "output": "YES" }, { "input": "ba\n1\ncc", "output": "NO" }, { "input": "ha\n1\nha", "output": "YES" }, { "input": "aa\n1\naa", "output": "YES" }, { "input": "ez\n1\njl", "output": "NO" }, { "input": "aa\n2\nab\nba", "output": "YES" }, { "input": "aa\n2\nca\ncc", "output": "NO" }, { "input": "dd\n2\nac\ndc", "output": "NO" }, { "input": "qc\n2\nyc\nkr", "output": "NO" }, { "input": "aa\n3\nba\nbb\nab", "output": "YES" }, { "input": "ca\n3\naa\nbb\nab", "output": "NO" }, { "input": "ca\n3\nbc\nbd\nca", "output": "YES" }, { "input": "dd\n3\nmt\nrg\nxl", "output": "NO" }, { "input": "be\n20\nad\ncd\ncb\ndb\ndd\naa\nab\nca\nae\ned\ndc\nbb\nba\nda\nee\nea\ncc\nac\nec\neb", "output": "YES" }, { "input": "fc\n20\nca\nbb\nce\nfd\nde\nfa\ncc\nec\nfb\nfc\nff\nbe\ncf\nba\ndb\ned\naf\nae\nda\nef", "output": "YES" }, { "input": "ca\n20\ndc\naf\ndf\neg\naa\nbc\nea\nbd\nab\ndb\ngc\nfb\nba\nbe\nee\ngf\ncf\nag\nga\nca", "output": "YES" }, { "input": "ke\n20\nzk\nra\nbq\nqz\nwt\nzg\nmz\nuk\nge\nuv\nud\nfd\neh\ndm\nsk\nki\nfv\ntp\nat\nfb", "output": "YES" }, { "input": "hh\n50\nag\nhg\ndg\nfh\neg\ngh\ngd\nda\nbh\nab\nhf\ndc\nhb\nfe\nad\nec\nac\nfd\nca\naf\ncg\nhd\neb\nce\nhe\nha\ngb\nea\nae\nfb\nff\nbe\nch\nhh\nee\nde\nge\ngf\naa\ngg\neh\ned\nbf\nfc\nah\nga\nbd\ncb\nbg\nbc", "output": "YES" }, { "input": "id\n50\nhi\ndc\nfg\nee\ngi\nhc\nac\nih\ndg\nfc\nde\ned\nie\neb\nic\ncf\nib\nfa\ngc\nba\nbe\nga\nha\nhg\nia\ndf\nab\nei\neh\nad\nii\nci\ndh\nec\nif\ndi\nbg\nag\nhe\neg\nca\nae\ndb\naa\nid\nfh\nhh\ncc\nfb\ngb", "output": "YES" }, { "input": "fe\n50\nje\nbi\nbg\ngc\nfb\nig\ndf\nji\ndg\nfe\nfc\ncf\ngf\nai\nhe\nac\nch\nja\ngh\njf\nge\ncb\nij\ngb\ncg\naf\neh\nee\nhd\njd\njb\nii\nca\nci\nga\nab\nhi\nag\nfj\nej\nfi\nie\ndj\nfg\nef\njc\njg\njh\nhf\nha", "output": "YES" }, { "input": "rn\n50\nba\nec\nwg\nao\nlk\nmz\njj\ncf\nfa\njk\ndy\nsz\njs\nzr\nqv\ntx\nwv\nrd\nqw\nls\nrr\nvt\nrx\nkc\neh\nnj\niq\nyi\nkh\nue\nnv\nkz\nrn\nes\nua\nzf\nvu\nll\neg\nmj\ncz\nzj\nxz\net\neb\nci\nih\nig\nam\nvd", "output": "YES" }, { "input": "ee\n100\nah\nfb\ncd\nbi\nii\nai\nid\nag\nie\nha\ndi\nec\nae\nce\njb\ndg\njg\ngd\ngf\nda\nih\nbd\nhj\ngg\nhb\ndf\ned\nfh\naf\nja\nci\nfc\nic\nji\nac\nhi\nfj\nch\nbc\njd\naa\nff\nad\ngj\nej\nde\nee\nhe\ncf\nga\nia\ncg\nbb\nhc\nbe\ngi\njf\nbg\naj\njj\nbh\nfe\ndj\nef\ngb\nge\ndb\nig\ncj\ndc\nij\njh\nei\ndd\nib\nhf\neg\nbf\nfg\nab\ngc\nfd\nhd\ngh\neh\njc\neb\nhh\nca\nje\nbj\nif\nea\nhg\nfa\ncc\nba\ndh\ncb\nfi", "output": "YES" }, { "input": "if\n100\njd\nbc\nje\nhi\nga\nde\nkb\nfc\ncd\ngd\naj\ncb\nei\nbf\ncf\ndk\ndb\ncg\nki\ngg\nkg\nfa\nkj\nii\njf\njg\ngb\nbh\nbg\neh\nhj\nhb\ndg\ndj\njc\njb\nce\ndi\nig\nci\ndf\nji\nhc\nfk\naf\nac\ngk\nhd\nae\nkd\nec\nkc\neb\nfh\nij\nie\nca\nhh\nkf\nha\ndd\nif\nef\nih\nhg\nej\nfe\njk\nea\nib\nck\nhf\nak\ngi\nch\ndc\nba\nke\nad\nka\neg\njh\nja\ngc\nfd\ncc\nab\ngj\nik\nfg\nbj\nhe\nfj\nge\ngh\nhk\nbk\ned\nid\nfi", "output": "YES" }, { "input": "kd\n100\nek\nea\nha\nkf\nkj\ngh\ndl\nfj\nal\nga\nlj\nik\ngd\nid\ncb\nfh\ndk\nif\nbh\nkb\nhc\nej\nhk\ngc\ngb\nef\nkk\nll\nlf\nkh\ncl\nlh\njj\nil\nhh\nci\ndb\ndf\ngk\njg\nch\nbd\ncg\nfg\nda\neb\nlg\ndg\nbk\nje\nbg\nbl\njl\ncj\nhb\nei\naa\ngl\nka\nfa\nfi\naf\nkc\nla\ngi\nij\nib\nle\ndi\nck\nag\nlc\nca\nge\nie\nlb\nke\nii\nae\nig\nic\nhe\ncf\nhd\nak\nfb\nhi\ngf\nad\nba\nhg\nbi\nkl\nac\ngg\ngj\nbe\nlk\nld\naj", "output": "YES" }, { "input": "ab\n1\nab", "output": "YES" }, { "input": "ya\n1\nya", "output": "YES" }, { "input": "ay\n1\nyb", "output": "NO" }, { "input": "ax\n2\nii\nxa", "output": "YES" }, { "input": "hi\n1\nhi", "output": "YES" }, { "input": "ag\n1\nag", "output": "YES" }, { "input": "th\n1\nth", "output": "YES" }, { "input": "sb\n1\nsb", "output": "YES" }, { "input": "hp\n1\nhp", "output": "YES" }, { "input": "ah\n1\nah", "output": "YES" }, { "input": "ta\n1\nta", "output": "YES" }, { "input": "tb\n1\ntb", "output": "YES" }, { "input": "ab\n5\nca\nda\nea\nfa\nka", "output": "NO" }, { "input": "ac\n1\nac", "output": "YES" }, { "input": "ha\n2\nha\nzz", "output": "YES" }, { "input": "ok\n1\nok", "output": "YES" }, { "input": "bc\n1\nbc", "output": "YES" }, { "input": "az\n1\nzz", "output": "NO" }, { "input": "ab\n2\nba\ntt", "output": "YES" }, { "input": "ah\n2\nap\nhp", "output": "NO" }, { "input": "sh\n1\nsh", "output": "YES" }, { "input": "az\n1\nby", "output": "NO" }, { "input": "as\n1\nas", "output": "YES" }, { "input": "ab\n2\nab\ncd", "output": "YES" }, { "input": "ab\n2\nxa\nza", "output": "NO" }, { "input": "ab\n2\net\nab", "output": "YES" }, { "input": "ab\n1\naa", "output": "NO" }, { "input": "ab\n2\nab\nde", "output": "YES" }, { "input": "ah\n2\nba\nha", "output": "YES" }, { "input": "ha\n3\ndd\ncc\nha", "output": "YES" }, { "input": "oo\n1\nox", "output": "NO" }, { "input": "ab\n2\nax\nbx", "output": "NO" }, { "input": "ww\n4\nuw\now\npo\nko", "output": "NO" }, { "input": "ay\n1\nay", "output": "YES" }, { "input": "yo\n1\nyo", "output": "YES" }, { "input": "ba\n1\nba", "output": "YES" }, { "input": "qw\n1\nqw", "output": "YES" }, { "input": "la\n1\nla", "output": "YES" }, { "input": "ab\n2\nbb\nbc", "output": "NO" }, { "input": "aa\n2\nab\nac", "output": "NO" }, { "input": "ah\n2\nbb\nha", "output": "YES" }, { "input": "ya\n42\nab\nac\nad\nae\naf\nag\nah\nai\nak\naj\nba\nbc\nbd\nbe\nbf\nbg\nbh\nbi\nbk\nbj\ncb\nca\ncd\nce\ncf\ncg\nch\nci\nck\ncj\ndb\ndc\nda\nde\ndf\ndg\ndh\ndi\ndk\ndj\nef\nek", "output": "NO" }, { "input": "ab\n3\nab\nxx\nyy", "output": "YES" }, { "input": "ab\n2\nab\ncc", "output": "YES" }, { "input": "sa\n2\nxx\nas", "output": "YES" }, { "input": "ma\n1\nma", "output": "YES" }, { "input": "ba\n1\nbb", "output": "NO" }, { "input": "bc\n1\nab", "output": "NO" }, { "input": "fa\n1\nfa", "output": "YES" }, { "input": "ap\n1\nap", "output": "YES" }, { "input": "ab\n1\nbb", "output": "NO" }, { "input": "bk\n1\nbk", "output": "YES" }, { "input": "xy\n2\nxy\naa", "output": "YES" }, { "input": "ab\n2\nza\nbz", "output": "YES" } ]
1,658,252,891
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
14
31
0
str0 = input() t=int(input()) str1='' str2='' flag=0 for i in range(t): x=input() if str0[0]==x[1]: str1+=x flag+=1 if str0[1]==x[0]: str2+=x flag+=1 streal=str1+str2 if flag>0: print("YES") else: print("NO")
Title: Bark to Unlock Time Limit: None seconds Memory Limit: None megabytes Problem Description: As technologies develop, manufacturers are making the process of unlocking a phone as user-friendly as possible. To unlock its new phone, Arkady's pet dog Mu-mu has to bark the password once. The phone represents a password as a string of two lowercase English letters. Mu-mu's enemy Kashtanka wants to unlock Mu-mu's phone to steal some sensible information, but it can only bark *n* distinct words, each of which can be represented as a string of two lowercase English letters. Kashtanka wants to bark several words (not necessarily distinct) one after another to pronounce a string containing the password as a substring. Tell if it's possible to unlock the phone in this way, or not. Input Specification: The first line contains two lowercase English letters — the password on the phone. The second line contains single integer *n* (1<=≤<=*n*<=≤<=100) — the number of words Kashtanka knows. The next *n* lines contain two lowercase English letters each, representing the words Kashtanka knows. The words are guaranteed to be distinct. Output Specification: Print "YES" if Kashtanka can bark several words in a line forming a string containing the password, and "NO" otherwise. You can print each letter in arbitrary case (upper or lower). Demo Input: ['ya\n4\nah\noy\nto\nha\n', 'hp\n2\nht\ntp\n', 'ah\n1\nha\n'] Demo Output: ['YES\n', 'NO\n', 'YES\n'] Note: In the first example the password is "ya", and Kashtanka can bark "oy" and then "ah", and then "ha" to form the string "oyahha" which contains the password. So, the answer is "YES". In the second example Kashtanka can't produce a string containing password as a substring. Note that it can bark "ht" and then "tp" producing "http", but it doesn't contain the password "hp" as a substring. In the third example the string "hahahaha" contains "ah" as a substring.
```python str0 = input() t=int(input()) str1='' str2='' flag=0 for i in range(t): x=input() if str0[0]==x[1]: str1+=x flag+=1 if str0[1]==x[0]: str2+=x flag+=1 streal=str1+str2 if flag>0: print("YES") else: print("NO") ```
0
847
A
Union of Doubly Linked Lists
PROGRAMMING
1,500
[ "implementation" ]
null
null
Doubly linked list is one of the fundamental data structures. A doubly linked list is a sequence of elements, each containing information about the previous and the next elements of the list. In this problem all lists have linear structure. I.e. each element except the first has exactly one previous element, each element except the last has exactly one next element. The list is not closed in a cycle. In this problem you are given *n* memory cells forming one or more doubly linked lists. Each cell contains information about element from some list. Memory cells are numbered from 1 to *n*. For each cell *i* you are given two values: - *l**i* — cell containing previous element for the element in the cell *i*; - *r**i* — cell containing next element for the element in the cell *i*. If cell *i* contains information about the element which has no previous element then *l**i*<==<=0. Similarly, if cell *i* contains information about the element which has no next element then *r**i*<==<=0. For example, for the picture above the values of *l* and *r* are the following: *l*1<==<=4, *r*1<==<=7; *l*2<==<=5, *r*2<==<=0; *l*3<==<=0, *r*3<==<=0; *l*4<==<=6, *r*4<==<=1; *l*5<==<=0, *r*5<==<=2; *l*6<==<=0, *r*6<==<=4; *l*7<==<=1, *r*7<==<=0. Your task is to unite all given lists in a single list, joining them to each other in any order. In particular, if the input data already contains a single list, then there is no need to perform any actions. Print the resulting list in the form of values *l**i*, *r**i*. Any other action, other than joining the beginning of one list to the end of another, can not be performed.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of memory cells where the doubly linked lists are located. Each of the following *n* lines contains two integers *l**i*, *r**i* (0<=≤<=*l**i*,<=*r**i*<=≤<=*n*) — the cells of the previous and the next element of list for cell *i*. Value *l**i*<==<=0 if element in cell *i* has no previous element in its list. Value *r**i*<==<=0 if element in cell *i* has no next element in its list. It is guaranteed that the input contains the correct description of a single or more doubly linked lists. All lists have linear structure: each element of list except the first has exactly one previous element; each element of list except the last has exactly one next element. Each memory cell contains information about one element from some list, each element of each list written in one of *n* given cells.
Print *n* lines, the *i*-th line must contain two integers *l**i* and *r**i* — the cells of the previous and the next element of list for cell *i* after all lists from the input are united in a single list. If there are many solutions print any of them.
[ "7\n4 7\n5 0\n0 0\n6 1\n0 2\n0 4\n1 0\n" ]
[ "4 7\n5 6\n0 5\n6 1\n3 2\n2 4\n1 0\n" ]
none
0
[ { "input": "7\n4 7\n5 0\n0 0\n6 1\n0 2\n0 4\n1 0", "output": "4 7\n5 6\n0 5\n6 1\n3 2\n2 4\n1 0" }, { "input": "2\n2 0\n0 1", "output": "2 0\n0 1" }, { "input": "1\n0 0", "output": "0 0" }, { "input": "4\n0 2\n1 0\n0 4\n3 0", "output": "0 2\n1 3\n2 4\n3 0" }, { "input": "5\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "0 2\n1 3\n2 4\n3 5\n4 0" }, { "input": "2\n0 0\n0 0", "output": "0 2\n1 0" }, { "input": "2\n0 2\n1 0", "output": "0 2\n1 0" }, { "input": "5\n5 3\n4 0\n1 4\n3 2\n0 1", "output": "5 3\n4 0\n1 4\n3 2\n0 1" }, { "input": "5\n2 0\n0 1\n0 4\n3 5\n4 0", "output": "2 3\n0 1\n1 4\n3 5\n4 0" }, { "input": "5\n3 4\n0 0\n0 1\n1 0\n0 0", "output": "3 4\n0 3\n2 1\n1 5\n4 0" }, { "input": "5\n3 0\n0 0\n0 1\n0 0\n0 0", "output": "3 4\n0 3\n2 1\n1 5\n4 0" }, { "input": "10\n7 5\n5 0\n4 7\n10 3\n1 2\n0 9\n3 1\n9 10\n6 8\n8 4", "output": "7 5\n5 0\n4 7\n10 3\n1 2\n0 9\n3 1\n9 10\n6 8\n8 4" }, { "input": "10\n6 2\n1 0\n9 4\n3 6\n10 8\n4 1\n0 10\n5 0\n0 3\n7 5", "output": "6 2\n1 0\n9 4\n3 6\n10 8\n4 1\n0 10\n5 9\n8 3\n7 5" }, { "input": "10\n0 9\n4 0\n5 0\n7 2\n0 3\n8 10\n0 4\n0 6\n1 0\n6 0", "output": "0 9\n4 8\n5 7\n7 2\n9 3\n8 10\n3 4\n2 6\n1 5\n6 0" }, { "input": "10\n7 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 1\n0 0\n0 0\n0 0", "output": "7 8\n0 3\n2 4\n3 5\n4 6\n5 7\n6 1\n1 9\n8 10\n9 0" }, { "input": "10\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "0 2\n1 3\n2 4\n3 5\n4 6\n5 7\n6 8\n7 9\n8 10\n9 0" }, { "input": "100\n0 0\n0 0\n0 0\n97 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 29\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n12 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 4\n0 0\n0 0\n0 0", "output": "0 2\n1 3\n2 5\n97 98\n3 6\n5 7\n6 8\n7 9\n8 10\n9 11\n10 12\n11 29\n29 14\n13 15\n14 16\n15 17\n16 18\n17 19\n18 20\n19 21\n20 22\n21 23\n22 24\n23 25\n24 26\n25 27\n26 28\n27 30\n12 13\n28 31\n30 32\n31 33\n32 34\n33 35\n34 36\n35 37\n36 38\n37 39\n38 40\n39 41\n40 42\n41 43\n42 44\n43 45\n44 46\n45 47\n46 48\n47 49\n48 50\n49 51\n50 52\n51 53\n52 54\n53 55\n54 56\n55 57\n56 58\n57 59\n58 60\n59 61\n60 62\n61 63\n62 64\n63 65\n64 66\n65 67\n66 68\n67 69\n68 70\n69 71\n70 72\n71 73\n72 74\n73 75\n74 76\n75..." }, { "input": "100\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 80\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n21 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "0 2\n1 3\n2 4\n3 5\n4 6\n5 7\n6 8\n7 9\n8 10\n9 11\n10 12\n11 13\n12 14\n13 15\n14 16\n15 17\n16 18\n17 19\n18 20\n19 21\n20 80\n80 23\n22 24\n23 25\n24 26\n25 27\n26 28\n27 29\n28 30\n29 31\n30 32\n31 33\n32 34\n33 35\n34 36\n35 37\n36 38\n37 39\n38 40\n39 41\n40 42\n41 43\n42 44\n43 45\n44 46\n45 47\n46 48\n47 49\n48 50\n49 51\n50 52\n51 53\n52 54\n53 55\n54 56\n55 57\n56 58\n57 59\n58 60\n59 61\n60 62\n61 63\n62 64\n63 65\n64 66\n65 67\n66 68\n67 69\n68 70\n69 71\n70 72\n71 73\n72 74\n73 75\n74 76\n75 7..." }, { "input": "100\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "0 2\n1 3\n2 4\n3 5\n4 6\n5 7\n6 8\n7 9\n8 10\n9 11\n10 12\n11 13\n12 14\n13 15\n14 16\n15 17\n16 18\n17 19\n18 20\n19 21\n20 22\n21 23\n22 24\n23 25\n24 26\n25 27\n26 28\n27 29\n28 30\n29 31\n30 32\n31 33\n32 34\n33 35\n34 36\n35 37\n36 38\n37 39\n38 40\n39 41\n40 42\n41 43\n42 44\n43 45\n44 46\n45 47\n46 48\n47 49\n48 50\n49 51\n50 52\n51 53\n52 54\n53 55\n54 56\n55 57\n56 58\n57 59\n58 60\n59 61\n60 62\n61 63\n62 64\n63 65\n64 66\n65 67\n66 68\n67 69\n68 70\n69 71\n70 72\n71 73\n72 74\n73 75\n74 76\n75 7..." } ]
1,674,658,479
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
9
77
0
n=int(input()) L,L2,lst=[],[],[] c=0 for _ in range(n): l,r=map(int,input().split()) L.append([l,r]) if r==0: c+=1 else: L2.append(r) for i in range(n): if n-i not in L2: lst.append(n-i) p=0 for i in range(n): if L[i][1]==0 and lst[p]!=L[i][0] and i+1!=lst[p] and i+1!= L[lst[p]-1][1] and c>1: L[i][1]=lst[p] L[lst[p]-1][0]=i+1 p+=1 c-=1 for i in range(n): print(*L[i],sep=" ")
Title: Union of Doubly Linked Lists Time Limit: None seconds Memory Limit: None megabytes Problem Description: Doubly linked list is one of the fundamental data structures. A doubly linked list is a sequence of elements, each containing information about the previous and the next elements of the list. In this problem all lists have linear structure. I.e. each element except the first has exactly one previous element, each element except the last has exactly one next element. The list is not closed in a cycle. In this problem you are given *n* memory cells forming one or more doubly linked lists. Each cell contains information about element from some list. Memory cells are numbered from 1 to *n*. For each cell *i* you are given two values: - *l**i* — cell containing previous element for the element in the cell *i*; - *r**i* — cell containing next element for the element in the cell *i*. If cell *i* contains information about the element which has no previous element then *l**i*<==<=0. Similarly, if cell *i* contains information about the element which has no next element then *r**i*<==<=0. For example, for the picture above the values of *l* and *r* are the following: *l*1<==<=4, *r*1<==<=7; *l*2<==<=5, *r*2<==<=0; *l*3<==<=0, *r*3<==<=0; *l*4<==<=6, *r*4<==<=1; *l*5<==<=0, *r*5<==<=2; *l*6<==<=0, *r*6<==<=4; *l*7<==<=1, *r*7<==<=0. Your task is to unite all given lists in a single list, joining them to each other in any order. In particular, if the input data already contains a single list, then there is no need to perform any actions. Print the resulting list in the form of values *l**i*, *r**i*. Any other action, other than joining the beginning of one list to the end of another, can not be performed. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of memory cells where the doubly linked lists are located. Each of the following *n* lines contains two integers *l**i*, *r**i* (0<=≤<=*l**i*,<=*r**i*<=≤<=*n*) — the cells of the previous and the next element of list for cell *i*. Value *l**i*<==<=0 if element in cell *i* has no previous element in its list. Value *r**i*<==<=0 if element in cell *i* has no next element in its list. It is guaranteed that the input contains the correct description of a single or more doubly linked lists. All lists have linear structure: each element of list except the first has exactly one previous element; each element of list except the last has exactly one next element. Each memory cell contains information about one element from some list, each element of each list written in one of *n* given cells. Output Specification: Print *n* lines, the *i*-th line must contain two integers *l**i* and *r**i* — the cells of the previous and the next element of list for cell *i* after all lists from the input are united in a single list. If there are many solutions print any of them. Demo Input: ['7\n4 7\n5 0\n0 0\n6 1\n0 2\n0 4\n1 0\n'] Demo Output: ['4 7\n5 6\n0 5\n6 1\n3 2\n2 4\n1 0\n'] Note: none
```python n=int(input()) L,L2,lst=[],[],[] c=0 for _ in range(n): l,r=map(int,input().split()) L.append([l,r]) if r==0: c+=1 else: L2.append(r) for i in range(n): if n-i not in L2: lst.append(n-i) p=0 for i in range(n): if L[i][1]==0 and lst[p]!=L[i][0] and i+1!=lst[p] and i+1!= L[lst[p]-1][1] and c>1: L[i][1]=lst[p] L[lst[p]-1][0]=i+1 p+=1 c-=1 for i in range(n): print(*L[i],sep=" ") ```
0
810
B
Summer sell-off
PROGRAMMING
1,300
[ "greedy", "sortings" ]
null
null
Summer holidays! Someone is going on trips, someone is visiting grandparents, but someone is trying to get a part-time job. This summer Noora decided that she wants to earn some money, and took a job in a shop as an assistant. Shop, where Noora is working, has a plan on the following *n* days. For each day sales manager knows exactly, that in *i*-th day *k**i* products will be put up for sale and exactly *l**i* clients will come to the shop that day. Also, the manager is sure, that everyone, who comes to the shop, buys exactly one product or, if there aren't any left, leaves the shop without buying anything. Moreover, due to the short shelf-life of the products, manager established the following rule: if some part of the products left on the shelves at the end of the day, that products aren't kept on the next day and are sent to the dump. For advertising purposes manager offered to start a sell-out in the shop. He asked Noora to choose any *f* days from *n* next for sell-outs. On each of *f* chosen days the number of products were put up for sale would be doubled. Thus, if on *i*-th day shop planned to put up for sale *k**i* products and Noora has chosen this day for sell-out, shelves of the shop would keep 2·*k**i* products. Consequently, there is an opportunity to sell two times more products on days of sell-out. Noora's task is to choose *f* days to maximize total number of sold products. She asks you to help her with such a difficult problem.
The first line contains two integers *n* and *f* (1<=≤<=*n*<=≤<=105,<=0<=≤<=*f*<=≤<=*n*) denoting the number of days in shop's plan and the number of days that Noora has to choose for sell-out. Each line of the following *n* subsequent lines contains two integers *k**i*,<=*l**i* (0<=≤<=*k**i*,<=*l**i*<=≤<=109) denoting the number of products on the shelves of the shop on the *i*-th day and the number of clients that will come to the shop on *i*-th day.
Print a single integer denoting the maximal number of products that shop can sell.
[ "4 2\n2 1\n3 5\n2 3\n1 5\n", "4 1\n0 2\n0 3\n3 5\n0 6\n" ]
[ "10", "5" ]
In the first example we can choose days with numbers 2 and 4 for sell-out. In this case new numbers of products for sale would be equal to [2, 6, 2, 2] respectively. So on the first day shop will sell 1 product, on the second — 5, on the third — 2, on the fourth — 2. In total 1 + 5 + 2 + 2 = 10 product units. In the second example it is possible to sell 5 products, if you choose third day for sell-out.
1,000
[ { "input": "4 2\n2 1\n3 5\n2 3\n1 5", "output": "10" }, { "input": "4 1\n0 2\n0 3\n3 5\n0 6", "output": "5" }, { "input": "1 1\n5 8", "output": "8" }, { "input": "2 1\n8 12\n6 11", "output": "19" }, { "input": "2 1\n6 7\n5 7", "output": "13" }, { "input": "2 1\n5 7\n6 7", "output": "13" }, { "input": "2 1\n7 8\n3 6", "output": "13" }, { "input": "2 1\n9 10\n5 8", "output": "17" }, { "input": "2 1\n3 6\n7 8", "output": "13" }, { "input": "1 0\n10 20", "output": "10" }, { "input": "2 1\n99 100\n3 6", "output": "105" }, { "input": "4 2\n2 10\n3 10\n9 9\n5 10", "output": "27" }, { "input": "2 1\n3 4\n2 8", "output": "7" }, { "input": "50 2\n74 90\n68 33\n49 88\n52 13\n73 21\n77 63\n27 62\n8 52\n60 57\n42 83\n98 15\n79 11\n77 46\n55 91\n72 100\n70 86\n50 51\n57 39\n20 54\n64 95\n66 22\n79 64\n31 28\n11 89\n1 36\n13 4\n75 62\n16 62\n100 35\n43 96\n97 54\n86 33\n62 63\n94 24\n19 6\n20 58\n38 38\n11 76\n70 40\n44 24\n32 96\n28 100\n62 45\n41 68\n90 52\n16 0\n98 32\n81 79\n67 82\n28 2", "output": "1889" }, { "input": "2 1\n10 5\n2 4", "output": "9" }, { "input": "2 1\n50 51\n30 40", "output": "90" }, { "input": "3 2\n5 10\n5 10\n7 9", "output": "27" }, { "input": "3 1\n1000 1000\n50 100\n2 2", "output": "1102" }, { "input": "2 1\n2 4\n12 12", "output": "16" }, { "input": "2 1\n4 4\n1 2", "output": "6" }, { "input": "2 1\n4000 4000\n1 2", "output": "4002" }, { "input": "2 1\n5 6\n2 4", "output": "9" }, { "input": "3 2\n10 10\n10 10\n1 2", "output": "22" }, { "input": "10 5\n9 1\n11 1\n12 1\n13 1\n14 1\n2 4\n2 4\n2 4\n2 4\n2 4", "output": "25" }, { "input": "2 1\n30 30\n10 20", "output": "50" }, { "input": "1 1\n1 1", "output": "1" }, { "input": "2 1\n10 2\n2 10", "output": "6" }, { "input": "2 1\n4 5\n3 9", "output": "10" }, { "input": "2 1\n100 100\n5 10", "output": "110" }, { "input": "2 1\n14 28\n15 28", "output": "43" }, { "input": "2 1\n100 1\n20 40", "output": "41" }, { "input": "2 1\n5 10\n6 10", "output": "16" }, { "input": "2 1\n29 30\n10 20", "output": "49" }, { "input": "1 0\n12 12", "output": "12" }, { "input": "2 1\n7 8\n4 7", "output": "14" }, { "input": "2 1\n5 5\n2 4", "output": "9" }, { "input": "2 1\n1 2\n228 2", "output": "4" }, { "input": "2 1\n5 10\n100 20", "output": "30" }, { "input": "2 1\n1000 1001\n2 4", "output": "1004" }, { "input": "2 1\n3 9\n7 7", "output": "13" }, { "input": "2 0\n1 1\n1 1", "output": "2" }, { "input": "4 1\n10 10\n10 10\n10 10\n4 6", "output": "36" }, { "input": "18 13\n63 8\n87 100\n18 89\n35 29\n66 81\n27 85\n64 51\n60 52\n32 94\n74 22\n86 31\n43 78\n12 2\n36 2\n67 23\n2 16\n78 71\n34 64", "output": "772" }, { "input": "2 1\n10 18\n17 19", "output": "35" }, { "input": "3 0\n1 1\n1 1\n1 1", "output": "3" }, { "input": "2 1\n4 7\n8 9", "output": "15" }, { "input": "4 2\n2 10\n3 10\n9 10\n5 10", "output": "27" }, { "input": "2 1\n5 7\n3 6", "output": "11" }, { "input": "2 1\n3 4\n12 12", "output": "16" }, { "input": "2 1\n10 11\n9 20", "output": "28" }, { "input": "2 1\n7 8\n2 4", "output": "11" }, { "input": "2 1\n5 10\n7 10", "output": "17" }, { "input": "4 2\n2 10\n3 10\n5 10\n9 10", "output": "27" }, { "input": "2 1\n99 100\n5 10", "output": "109" }, { "input": "4 2\n2 10\n3 10\n5 10\n9 9", "output": "27" }, { "input": "2 1\n3 7\n5 7", "output": "11" }, { "input": "2 1\n10 10\n3 6", "output": "16" }, { "input": "2 1\n100 1\n2 4", "output": "5" }, { "input": "5 0\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "5" }, { "input": "3 1\n3 7\n4 5\n2 3", "output": "12" }, { "input": "2 1\n3 9\n7 8", "output": "13" }, { "input": "2 1\n10 2\n3 4", "output": "6" }, { "input": "2 1\n40 40\n3 5", "output": "45" }, { "input": "2 1\n5 3\n1 2", "output": "5" }, { "input": "10 5\n9 5\n10 5\n11 5\n12 5\n13 5\n2 4\n2 4\n2 4\n2 4\n2 4", "output": "45" }, { "input": "3 1\n1 5\n1 5\n4 4", "output": "7" }, { "input": "4 0\n1 1\n1 1\n1 1\n1 1", "output": "4" }, { "input": "4 1\n1000 1001\n1000 1001\n2 4\n1 2", "output": "2005" }, { "input": "2 1\n15 30\n50 59", "output": "80" }, { "input": "2 1\n8 8\n3 5", "output": "13" }, { "input": "2 1\n4 5\n2 5", "output": "8" }, { "input": "3 2\n3 3\n1 2\n1 2", "output": "7" }, { "input": "3 1\n2 5\n2 5\n4 4", "output": "10" }, { "input": "2 1\n3 10\n50 51", "output": "56" }, { "input": "4 2\n2 4\n2 4\n9 10\n9 10", "output": "26" }, { "input": "2 1\n3 5\n8 8", "output": "13" }, { "input": "2 1\n100 150\n70 150", "output": "240" }, { "input": "2 1\n4 5\n3 6", "output": "10" }, { "input": "2 1\n20 10\n3 5", "output": "15" }, { "input": "15 13\n76167099 92301116\n83163126 84046805\n45309500 65037149\n29982002 77381688\n76738161 52935441\n37889502 25466134\n55955619 14197941\n31462620 12999429\n64648384 8824773\n3552934 68992494\n2823376 9338427\n86832070 3763091\n67753633 2162190\n302887 92011825\n84894984 410533", "output": "435467000" }, { "input": "2 1\n8 7\n3 6", "output": "13" }, { "input": "2 1\n7 8\n3 5", "output": "12" }, { "input": "2 1\n10 10\n1 3", "output": "12" }, { "input": "2 1\n9 10\n2 4", "output": "13" }, { "input": "3 1\n10 11\n12 13\n8 10", "output": "32" }, { "input": "2 1\n5 10\n7 7", "output": "17" }, { "input": "4 2\n90 91\n2 10\n2 10\n2 10", "output": "100" }, { "input": "2 1\n2 4\n4 4", "output": "8" }, { "input": "2 1\n2 3\n4 3", "output": "6" }, { "input": "2 1\n40 45\n50 52", "output": "95" }, { "input": "3 1\n1 4\n2 4\n3 4", "output": "8" }, { "input": "2 1\n1 2\n1000 1000", "output": "1002" }, { "input": "2 1\n80 100\n70 95", "output": "175" } ]
1,659,803,225
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
14
592
9,318,400
n,f=list(map(int,input().split()));sol=[];doub=[] for i in range(n): pro,cli=[int(j) for j in input().split()] sol.append(min(pro,cli)) pro*=2 doub.append([min(pro,cli),i]) c=-1;doub.sort() for i in range(f): sol[doub[c][1]]=doub[c][0];c-=1 print(sum(sol))
Title: Summer sell-off Time Limit: None seconds Memory Limit: None megabytes Problem Description: Summer holidays! Someone is going on trips, someone is visiting grandparents, but someone is trying to get a part-time job. This summer Noora decided that she wants to earn some money, and took a job in a shop as an assistant. Shop, where Noora is working, has a plan on the following *n* days. For each day sales manager knows exactly, that in *i*-th day *k**i* products will be put up for sale and exactly *l**i* clients will come to the shop that day. Also, the manager is sure, that everyone, who comes to the shop, buys exactly one product or, if there aren't any left, leaves the shop without buying anything. Moreover, due to the short shelf-life of the products, manager established the following rule: if some part of the products left on the shelves at the end of the day, that products aren't kept on the next day and are sent to the dump. For advertising purposes manager offered to start a sell-out in the shop. He asked Noora to choose any *f* days from *n* next for sell-outs. On each of *f* chosen days the number of products were put up for sale would be doubled. Thus, if on *i*-th day shop planned to put up for sale *k**i* products and Noora has chosen this day for sell-out, shelves of the shop would keep 2·*k**i* products. Consequently, there is an opportunity to sell two times more products on days of sell-out. Noora's task is to choose *f* days to maximize total number of sold products. She asks you to help her with such a difficult problem. Input Specification: The first line contains two integers *n* and *f* (1<=≤<=*n*<=≤<=105,<=0<=≤<=*f*<=≤<=*n*) denoting the number of days in shop's plan and the number of days that Noora has to choose for sell-out. Each line of the following *n* subsequent lines contains two integers *k**i*,<=*l**i* (0<=≤<=*k**i*,<=*l**i*<=≤<=109) denoting the number of products on the shelves of the shop on the *i*-th day and the number of clients that will come to the shop on *i*-th day. Output Specification: Print a single integer denoting the maximal number of products that shop can sell. Demo Input: ['4 2\n2 1\n3 5\n2 3\n1 5\n', '4 1\n0 2\n0 3\n3 5\n0 6\n'] Demo Output: ['10', '5'] Note: In the first example we can choose days with numbers 2 and 4 for sell-out. In this case new numbers of products for sale would be equal to [2, 6, 2, 2] respectively. So on the first day shop will sell 1 product, on the second — 5, on the third — 2, on the fourth — 2. In total 1 + 5 + 2 + 2 = 10 product units. In the second example it is possible to sell 5 products, if you choose third day for sell-out.
```python n,f=list(map(int,input().split()));sol=[];doub=[] for i in range(n): pro,cli=[int(j) for j in input().split()] sol.append(min(pro,cli)) pro*=2 doub.append([min(pro,cli),i]) c=-1;doub.sort() for i in range(f): sol[doub[c][1]]=doub[c][0];c-=1 print(sum(sol)) ```
0
71
A
Way Too Long Words
PROGRAMMING
800
[ "strings" ]
A. Way Too Long Words
1
256
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
[ "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n" ]
[ "word\nl10n\ni18n\np43s\n" ]
none
500
[ { "input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis", "output": "word\nl10n\ni18n\np43s" }, { "input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm", "output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m" }, { "input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd", "output": "n20n\nj27b\nk15d" }, { "input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt", "output": "t41t" }, { "input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings", "output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings" }, { "input": "1\na", "output": "a" }, { "input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz", "output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz" }, { "input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij", "output": "a98j" }, { "input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco", "output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco" }, { "input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt", "output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t" }, { "input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr", "output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr" } ]
1,695,806,455
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
15
5,632,000
def repl(word): if len(word)>10: start=word[0] end=word[-1] l=len(word)-2 ret=start+str(l)+end return ret else: return word n=int(input(":")) for i in range(n): word=input(":") w=repl(word) print(w)
Title: Way Too Long Words Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters. Output Specification: Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data. Demo Input: ['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n'] Demo Output: ['word\nl10n\ni18n\np43s\n'] Note: none
```python def repl(word): if len(word)>10: start=word[0] end=word[-1] l=len(word)-2 ret=start+str(l)+end return ret else: return word n=int(input(":")) for i in range(n): word=input(":") w=repl(word) print(w) ```
0
353
A
Domino
PROGRAMMING
1,200
[ "implementation", "math" ]
null
null
Valera has got *n* domino pieces in a row. Each piece consists of two halves — the upper one and the lower one. Each of the halves contains a number from 1 to 6. Valera loves even integers very much, so he wants the sum of the numbers on the upper halves and the sum of the numbers on the lower halves to be even. To do that, Valera can rotate the dominoes by 180 degrees. After the rotation the upper and the lower halves swap places. This action takes one second. Help Valera find out the minimum time he must spend rotating dominoes to make his wish come true.
The first line contains integer *n* (1<=≤<=*n*<=≤<=100), denoting the number of dominoes Valera has. Next *n* lines contain two space-separated integers *x**i*,<=*y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=6). Number *x**i* is initially written on the upper half of the *i*-th domino, *y**i* is initially written on the lower half.
Print a single number — the minimum required number of seconds. If Valera can't do the task in any time, print <=-<=1.
[ "2\n4 2\n6 4\n", "1\n2 3\n", "3\n1 4\n2 3\n4 4\n" ]
[ "0\n", "-1\n", "1\n" ]
In the first test case the sum of the numbers on the upper halves equals 10 and the sum of the numbers on the lower halves equals 6. Both numbers are even, so Valera doesn't required to do anything. In the second sample Valera has only one piece of domino. It is written 3 on the one of its halves, therefore one of the sums will always be odd. In the third case Valera can rotate the first piece, and after that the sum on the upper halves will be equal to 10, and the sum on the lower halves will be equal to 8.
500
[ { "input": "2\n4 2\n6 4", "output": "0" }, { "input": "1\n2 3", "output": "-1" }, { "input": "3\n1 4\n2 3\n4 4", "output": "1" }, { "input": "5\n5 4\n5 4\n1 5\n5 5\n3 3", "output": "1" }, { "input": "20\n1 3\n5 2\n5 2\n2 6\n2 4\n1 1\n1 3\n1 4\n2 6\n4 2\n5 6\n2 2\n6 2\n4 3\n2 1\n6 2\n6 5\n4 5\n2 4\n1 4", "output": "-1" }, { "input": "100\n2 3\n2 4\n3 3\n1 4\n5 2\n5 4\n6 6\n3 4\n1 1\n4 2\n5 1\n5 5\n5 3\n3 6\n4 1\n1 6\n1 1\n3 2\n4 5\n6 1\n6 4\n1 1\n3 4\n3 3\n2 2\n1 1\n4 4\n6 4\n3 2\n5 2\n6 4\n3 2\n3 5\n4 4\n1 4\n5 2\n3 4\n1 4\n2 2\n5 6\n3 5\n6 1\n5 5\n1 6\n6 3\n1 4\n1 5\n5 5\n4 1\n3 2\n4 1\n5 5\n5 5\n1 5\n1 2\n6 4\n1 3\n3 6\n4 3\n3 5\n6 4\n2 6\n5 5\n1 4\n2 2\n2 3\n5 1\n2 5\n1 2\n2 6\n5 5\n4 6\n1 4\n3 6\n2 3\n6 1\n6 5\n3 2\n6 4\n4 5\n4 5\n2 6\n1 3\n6 2\n1 2\n2 3\n4 3\n5 4\n3 4\n1 6\n6 6\n2 4\n4 1\n3 1\n2 6\n5 4\n1 2\n6 5\n3 6\n2 4", "output": "-1" }, { "input": "1\n2 4", "output": "0" }, { "input": "1\n1 1", "output": "-1" }, { "input": "1\n1 2", "output": "-1" }, { "input": "2\n1 1\n3 3", "output": "0" }, { "input": "2\n1 1\n2 2", "output": "-1" }, { "input": "2\n1 1\n1 2", "output": "-1" }, { "input": "5\n1 2\n6 6\n1 1\n3 3\n6 1", "output": "1" }, { "input": "5\n5 4\n2 6\n6 2\n1 4\n6 2", "output": "0" }, { "input": "10\n4 1\n3 2\n1 2\n2 6\n3 5\n2 1\n5 2\n4 6\n5 6\n3 1", "output": "0" }, { "input": "10\n6 1\n4 4\n2 6\n6 5\n3 6\n6 3\n2 4\n5 1\n1 6\n1 5", "output": "-1" }, { "input": "15\n1 2\n5 1\n6 4\n5 1\n1 6\n2 6\n3 1\n6 4\n3 1\n2 1\n6 4\n3 5\n6 2\n1 6\n1 1", "output": "1" }, { "input": "15\n3 3\n2 1\n5 4\n3 3\n5 3\n5 4\n2 5\n1 3\n3 2\n3 3\n3 5\n2 5\n4 1\n2 3\n5 4", "output": "-1" }, { "input": "20\n1 5\n6 4\n4 3\n6 2\n1 1\n1 5\n6 3\n2 3\n3 6\n3 6\n3 6\n2 5\n4 3\n4 6\n5 5\n4 6\n3 4\n4 2\n3 3\n5 2", "output": "0" }, { "input": "20\n2 1\n6 5\n3 1\n2 5\n3 5\n4 1\n1 1\n5 4\n5 1\n2 4\n1 5\n3 2\n1 2\n3 5\n5 2\n1 2\n1 3\n4 2\n2 3\n4 5", "output": "-1" }, { "input": "25\n4 1\n6 3\n1 3\n2 3\n2 4\n6 6\n4 2\n4 2\n1 5\n5 4\n1 2\n2 5\n3 6\n4 1\n3 4\n2 6\n6 1\n5 6\n6 6\n4 2\n1 5\n3 3\n3 3\n6 5\n1 4", "output": "-1" }, { "input": "25\n5 5\n4 3\n2 5\n4 3\n4 6\n4 2\n5 6\n2 1\n5 4\n6 6\n1 3\n1 4\n2 3\n5 6\n5 4\n5 6\n5 4\n6 3\n3 5\n1 3\n2 5\n2 2\n4 4\n2 1\n4 4", "output": "-1" }, { "input": "30\n3 5\n2 5\n1 6\n1 6\n2 4\n5 5\n5 4\n5 6\n5 4\n2 1\n2 4\n1 6\n3 5\n1 1\n3 6\n5 5\n1 6\n3 4\n1 4\n4 6\n2 1\n3 3\n1 3\n4 5\n1 4\n1 6\n2 1\n4 6\n3 5\n5 6", "output": "1" }, { "input": "30\n2 3\n3 1\n6 6\n1 3\n5 5\n3 6\n4 5\n2 1\n1 3\n2 3\n4 4\n2 4\n6 4\n2 4\n5 4\n2 1\n2 5\n2 5\n4 2\n1 4\n2 6\n3 2\n3 2\n6 6\n4 2\n3 4\n6 3\n6 6\n6 6\n5 5", "output": "1" }, { "input": "35\n6 1\n4 3\n1 2\n4 3\n6 4\n4 6\n3 1\n5 5\n3 4\n5 4\n4 6\n1 6\n2 4\n6 6\n5 4\n5 2\n1 3\n1 4\n3 5\n1 4\n2 3\n4 5\n4 3\n6 1\n5 3\n3 2\n5 6\n3 5\n6 5\n4 1\n1 3\n5 5\n4 6\n6 1\n1 3", "output": "1" }, { "input": "35\n4 3\n5 6\n4 5\n2 5\n6 6\n4 1\n2 2\n4 2\n3 4\n4 1\n6 6\n6 3\n1 5\n1 5\n5 6\n4 2\n4 6\n5 5\n2 2\n5 2\n1 2\n4 6\n6 6\n6 5\n2 1\n3 5\n2 5\n3 1\n5 3\n6 4\n4 6\n5 6\n5 1\n3 4\n3 5", "output": "1" }, { "input": "40\n5 6\n1 1\n3 3\n2 6\n6 6\n5 4\n6 4\n3 5\n1 3\n4 4\n4 4\n2 5\n1 3\n3 6\n5 2\n4 3\n4 4\n5 6\n2 3\n1 1\n3 1\n1 1\n1 5\n4 3\n5 5\n3 4\n6 6\n5 6\n2 2\n6 6\n2 1\n2 4\n5 2\n2 2\n1 1\n1 4\n4 2\n3 5\n5 5\n4 5", "output": "-1" }, { "input": "40\n3 2\n5 3\n4 6\n3 5\n6 1\n5 2\n1 2\n6 2\n5 3\n3 2\n4 4\n3 3\n5 2\n4 5\n1 4\n5 1\n3 3\n1 3\n1 3\n2 1\n3 6\n4 2\n4 6\n6 2\n2 5\n2 2\n2 5\n3 3\n5 3\n2 1\n3 2\n2 3\n6 3\n6 3\n3 4\n3 2\n4 3\n5 4\n2 4\n4 6", "output": "-1" }, { "input": "45\n2 4\n3 4\n6 1\n5 5\n1 1\n3 5\n4 3\n5 2\n3 6\n6 1\n4 4\n6 1\n2 1\n6 1\n3 6\n3 3\n6 1\n1 2\n1 5\n6 5\n1 3\n5 6\n6 1\n4 5\n3 6\n2 2\n1 2\n4 5\n5 6\n1 5\n6 2\n2 4\n3 3\n3 1\n6 5\n6 5\n2 1\n5 2\n2 1\n3 3\n2 2\n1 4\n2 2\n3 3\n2 1", "output": "-1" }, { "input": "45\n6 6\n1 6\n1 2\n3 5\n4 4\n2 1\n5 3\n2 1\n5 2\n5 3\n1 4\n5 2\n4 2\n3 6\n5 2\n1 5\n4 4\n5 5\n6 5\n2 1\n2 6\n5 5\n2 1\n6 1\n1 6\n6 5\n2 4\n4 3\n2 6\n2 4\n6 5\n6 4\n6 3\n6 6\n2 1\n6 4\n5 6\n5 4\n1 5\n5 1\n3 3\n5 6\n2 5\n4 5\n3 6", "output": "-1" }, { "input": "50\n4 4\n5 1\n6 4\n6 2\n6 2\n1 4\n5 5\n4 2\n5 5\n5 4\n1 3\n3 5\n6 1\n6 1\n1 4\n4 3\n5 1\n3 6\n2 2\n6 2\n4 4\n2 3\n4 2\n6 5\n5 6\n2 2\n2 4\n3 5\n1 5\n3 2\n3 4\n5 6\n4 6\n1 6\n4 5\n2 6\n2 2\n3 5\n6 4\n5 1\n4 3\n3 4\n3 5\n3 3\n2 3\n3 2\n2 2\n1 4\n3 1\n4 4", "output": "1" }, { "input": "50\n1 2\n1 4\n1 1\n4 5\n4 4\n3 2\n4 5\n3 5\n1 1\n3 4\n3 2\n2 4\n2 6\n2 6\n3 2\n4 6\n1 6\n3 1\n1 6\n2 1\n4 1\n1 6\n4 3\n6 6\n5 2\n6 4\n2 1\n4 3\n6 4\n5 1\n5 5\n3 1\n1 1\n5 5\n2 2\n2 3\n2 3\n3 5\n5 5\n1 6\n1 5\n3 6\n3 6\n1 1\n3 3\n2 6\n5 5\n1 3\n6 3\n6 6", "output": "-1" }, { "input": "55\n3 2\n5 6\n5 1\n3 5\n5 5\n1 5\n5 4\n6 3\n5 6\n4 2\n3 1\n1 2\n5 5\n1 1\n5 2\n6 3\n5 4\n3 6\n4 6\n2 6\n6 4\n1 4\n1 6\n4 1\n2 5\n4 3\n2 1\n2 1\n6 2\n3 1\n2 5\n4 4\n6 3\n2 2\n3 5\n5 1\n3 6\n5 4\n4 6\n6 5\n5 6\n2 2\n3 2\n5 2\n6 5\n2 2\n5 3\n3 1\n4 5\n6 4\n2 4\n1 2\n5 6\n2 6\n5 2", "output": "0" }, { "input": "55\n4 6\n3 3\n6 5\n5 3\n5 6\n2 3\n2 2\n3 4\n3 1\n5 4\n5 4\n2 4\n3 4\n4 5\n1 5\n6 3\n1 1\n5 1\n3 4\n1 5\n3 1\n2 5\n3 3\n4 3\n3 3\n3 1\n6 6\n3 3\n3 3\n5 6\n5 3\n3 5\n1 4\n5 5\n1 3\n1 4\n3 5\n3 6\n2 4\n2 4\n5 1\n6 4\n5 1\n5 5\n1 1\n3 2\n4 3\n5 4\n5 1\n2 4\n4 3\n6 1\n3 4\n1 5\n6 3", "output": "-1" }, { "input": "60\n2 6\n1 4\n3 2\n1 2\n3 2\n2 4\n6 4\n4 6\n1 3\n3 1\n6 5\n2 4\n5 4\n4 2\n1 6\n3 4\n4 5\n5 2\n1 5\n5 4\n3 4\n3 4\n4 4\n4 1\n6 6\n3 6\n2 4\n2 1\n4 4\n6 5\n3 1\n4 3\n1 3\n6 3\n5 5\n1 4\n3 1\n3 6\n1 5\n3 1\n1 5\n4 4\n1 3\n2 4\n6 2\n4 1\n5 3\n3 4\n5 6\n1 2\n1 6\n6 3\n1 6\n3 6\n3 4\n6 2\n4 6\n2 3\n3 3\n3 3", "output": "-1" }, { "input": "60\n2 3\n4 6\n2 4\n1 3\n5 6\n1 5\n1 2\n1 3\n5 6\n4 3\n4 2\n3 1\n1 3\n3 5\n1 5\n3 4\n2 4\n3 5\n4 5\n1 2\n3 1\n1 5\n2 5\n6 2\n1 6\n3 3\n6 2\n5 3\n1 3\n1 4\n6 4\n6 3\n4 2\n4 2\n1 4\n1 3\n3 2\n3 1\n2 1\n1 2\n3 1\n2 6\n1 4\n3 6\n3 3\n1 5\n2 4\n5 5\n6 2\n5 2\n3 3\n5 3\n3 4\n4 5\n5 6\n2 4\n5 3\n3 1\n2 4\n5 4", "output": "-1" }, { "input": "65\n5 4\n3 3\n1 2\n4 3\n3 5\n1 5\n4 5\n2 6\n1 2\n1 5\n6 3\n2 6\n4 3\n3 6\n1 5\n3 5\n4 6\n2 5\n6 5\n1 4\n3 4\n4 3\n1 4\n2 5\n6 5\n3 1\n4 3\n1 2\n1 1\n6 1\n5 2\n3 2\n1 6\n2 6\n3 3\n6 6\n4 6\n1 5\n5 1\n4 5\n1 4\n3 2\n5 4\n4 2\n6 2\n1 3\n4 2\n5 3\n6 4\n3 6\n1 2\n6 1\n6 6\n3 3\n4 2\n3 5\n4 6\n4 1\n5 4\n6 1\n5 1\n5 6\n6 1\n4 6\n5 5", "output": "1" }, { "input": "65\n5 4\n6 3\n5 4\n4 5\n5 3\n3 6\n1 3\n3 1\n1 3\n6 1\n6 4\n1 3\n2 2\n4 6\n4 1\n5 6\n6 5\n1 1\n1 3\n6 6\n4 1\n2 4\n5 4\n4 1\n5 5\n5 3\n6 2\n2 6\n4 2\n2 2\n6 2\n3 3\n4 5\n4 3\n3 1\n1 4\n4 5\n3 2\n5 5\n4 6\n5 1\n3 4\n5 4\n5 2\n1 6\n4 2\n3 4\n3 4\n1 3\n1 2\n3 3\n3 6\n6 4\n4 6\n6 2\n6 5\n3 2\n2 1\n6 4\n2 1\n1 5\n5 2\n6 5\n3 6\n5 1", "output": "1" }, { "input": "70\n4 1\n2 6\n1 1\n5 6\n5 1\n2 3\n3 5\n1 1\n1 1\n4 6\n4 3\n1 5\n2 2\n2 3\n3 1\n6 4\n3 1\n4 2\n5 4\n1 3\n3 5\n5 2\n5 6\n4 4\n4 5\n2 2\n4 5\n3 2\n3 5\n2 5\n2 6\n5 5\n2 6\n5 1\n1 1\n2 5\n3 1\n1 2\n6 4\n6 5\n5 5\n5 1\n1 5\n2 2\n6 3\n4 3\n6 2\n5 5\n1 1\n6 2\n6 6\n3 4\n2 2\n3 5\n1 5\n2 5\n4 5\n2 4\n6 3\n5 1\n2 6\n4 2\n1 4\n1 6\n6 2\n5 2\n5 6\n2 5\n5 6\n5 5", "output": "-1" }, { "input": "70\n4 3\n6 4\n5 5\n3 1\n1 2\n2 5\n4 6\n4 2\n3 2\n4 2\n1 5\n2 2\n4 3\n1 2\n6 1\n6 6\n1 6\n5 1\n2 2\n6 3\n4 2\n4 3\n1 2\n6 6\n3 3\n6 5\n6 2\n3 6\n6 6\n4 6\n5 2\n5 4\n3 3\n1 6\n5 6\n2 3\n4 6\n1 1\n1 2\n6 6\n1 1\n3 4\n1 6\n2 6\n3 4\n6 3\n5 3\n1 2\n2 3\n4 6\n2 1\n6 4\n4 6\n4 6\n4 2\n5 5\n3 5\n3 2\n4 3\n3 6\n1 4\n3 6\n1 4\n1 6\n1 5\n5 6\n4 4\n3 3\n3 5\n2 2", "output": "0" }, { "input": "75\n1 3\n4 5\n4 1\n6 5\n2 1\n1 4\n5 4\n1 5\n5 3\n1 2\n4 1\n1 1\n5 1\n5 3\n1 5\n4 2\n2 2\n6 3\n1 2\n4 3\n2 5\n5 3\n5 5\n4 1\n4 6\n2 5\n6 1\n2 4\n6 4\n5 2\n6 2\n2 4\n1 3\n5 4\n6 5\n5 4\n6 4\n1 5\n4 6\n1 5\n1 1\n4 4\n3 5\n6 3\n6 5\n1 5\n2 1\n1 5\n6 6\n2 2\n2 2\n4 4\n6 6\n5 4\n4 5\n3 2\n2 4\n1 1\n4 3\n3 2\n5 4\n1 6\n1 2\n2 2\n3 5\n2 6\n1 1\n2 2\n2 3\n6 2\n3 6\n4 4\n5 1\n4 1\n4 1", "output": "0" }, { "input": "75\n1 1\n2 1\n5 5\n6 5\n6 3\n1 6\n6 1\n4 4\n2 1\n6 2\n3 1\n6 4\n1 6\n2 2\n4 3\n4 2\n1 2\n6 2\n4 2\n5 1\n1 2\n3 2\n6 6\n6 3\n2 4\n4 1\n4 1\n2 4\n5 5\n2 3\n5 5\n4 5\n3 1\n1 5\n4 3\n2 3\n3 5\n4 6\n5 6\n1 6\n2 3\n2 2\n1 2\n5 6\n1 4\n1 5\n1 3\n6 2\n1 2\n4 2\n2 1\n1 3\n6 4\n4 1\n5 2\n6 2\n3 5\n2 3\n4 2\n5 1\n5 6\n3 2\n2 1\n6 6\n2 1\n6 2\n1 1\n3 2\n1 2\n3 5\n4 6\n1 3\n3 4\n5 5\n6 2", "output": "1" }, { "input": "80\n3 1\n6 3\n2 2\n2 2\n6 3\n6 1\n6 5\n1 4\n3 6\n6 5\n1 3\n2 4\n1 4\n3 1\n5 3\n5 3\n1 4\n2 5\n4 3\n4 4\n4 5\n6 1\n3 1\n2 6\n4 2\n3 1\n6 5\n2 6\n2 2\n5 1\n1 3\n5 1\n2 1\n4 3\n6 3\n3 5\n4 3\n5 6\n3 3\n4 1\n5 1\n6 5\n5 1\n2 5\n6 1\n3 2\n4 3\n3 3\n5 6\n1 6\n5 2\n1 5\n5 6\n6 4\n2 2\n4 2\n4 6\n4 2\n4 4\n6 5\n5 2\n6 2\n4 6\n6 4\n4 3\n5 1\n4 1\n3 5\n3 2\n3 2\n5 3\n5 4\n3 4\n1 3\n1 2\n6 6\n6 3\n6 1\n5 6\n3 2", "output": "0" }, { "input": "80\n4 5\n3 3\n3 6\n4 5\n3 4\n6 5\n1 5\n2 5\n5 6\n5 1\n5 1\n1 2\n5 5\n5 1\n2 3\n1 1\n4 5\n4 1\n1 1\n5 5\n5 6\n5 2\n5 4\n4 2\n6 2\n5 3\n3 2\n4 2\n1 3\n1 6\n2 1\n6 6\n4 5\n6 4\n2 2\n1 6\n6 2\n4 3\n2 3\n4 6\n4 6\n6 2\n3 4\n4 3\n5 5\n1 6\n3 2\n4 6\n2 3\n1 6\n5 4\n4 2\n5 4\n1 1\n4 3\n5 1\n3 6\n6 2\n3 1\n4 1\n5 3\n2 2\n3 4\n3 6\n3 5\n5 5\n5 1\n3 5\n2 6\n6 3\n6 5\n3 3\n5 6\n1 2\n3 1\n6 3\n3 4\n6 6\n6 6\n1 2", "output": "-1" }, { "input": "85\n6 3\n4 1\n1 2\n3 5\n6 4\n6 2\n2 6\n1 2\n1 5\n6 2\n1 4\n6 6\n2 4\n4 6\n4 5\n1 6\n3 1\n2 5\n5 1\n5 2\n3 5\n1 1\n4 1\n2 3\n1 1\n3 3\n6 4\n1 4\n1 1\n3 6\n1 5\n1 6\n2 5\n2 2\n5 1\n6 6\n1 3\n1 5\n5 6\n4 5\n4 3\n5 5\n1 3\n6 3\n4 6\n2 4\n5 6\n6 2\n4 5\n1 4\n1 4\n6 5\n1 6\n6 1\n1 6\n5 5\n2 1\n5 2\n2 3\n1 6\n1 6\n1 6\n5 6\n2 4\n6 5\n6 5\n4 2\n5 4\n3 4\n4 3\n6 6\n3 3\n3 2\n3 6\n2 5\n2 1\n2 5\n3 4\n1 2\n5 4\n6 2\n5 1\n1 4\n3 4\n4 5", "output": "0" }, { "input": "85\n3 1\n3 2\n6 3\n1 3\n2 1\n3 6\n1 4\n2 5\n6 5\n1 6\n1 5\n1 1\n4 3\n3 5\n4 6\n3 2\n6 6\n4 4\n4 1\n5 5\n4 2\n6 2\n2 2\n4 5\n6 1\n3 4\n4 5\n3 5\n4 2\n3 5\n4 4\n3 1\n4 4\n6 4\n1 4\n5 5\n1 5\n2 2\n6 5\n5 6\n6 5\n3 2\n3 2\n6 1\n6 5\n2 1\n4 6\n2 1\n3 1\n5 6\n1 3\n5 4\n1 4\n1 4\n5 3\n2 3\n1 3\n2 2\n5 3\n2 3\n2 3\n1 3\n3 6\n4 4\n6 6\n6 2\n5 1\n5 5\n5 5\n1 2\n1 4\n2 4\n3 6\n4 6\n6 3\n6 4\n5 5\n3 2\n5 4\n5 4\n4 5\n6 4\n2 1\n5 2\n5 1", "output": "-1" }, { "input": "90\n5 2\n5 5\n5 1\n4 6\n4 3\n5 3\n5 6\n5 1\n3 4\n1 3\n4 2\n1 6\n6 4\n1 2\n6 1\n4 1\n6 2\n6 5\n6 2\n5 4\n3 6\n1 1\n5 5\n2 2\n1 6\n3 5\n6 5\n1 6\n1 5\n2 3\n2 6\n2 3\n3 3\n1 3\n5 1\n2 5\n3 6\n1 2\n4 4\n1 6\n2 3\n1 5\n2 5\n1 3\n2 2\n4 6\n3 6\n6 3\n1 2\n4 3\n4 5\n4 6\n3 2\n6 5\n6 2\n2 5\n2 4\n1 3\n1 6\n4 3\n1 3\n6 4\n4 6\n4 1\n1 1\n4 1\n4 4\n6 2\n6 5\n1 1\n2 2\n3 1\n1 4\n6 2\n5 2\n1 4\n1 3\n6 5\n3 2\n6 4\n3 4\n2 6\n2 2\n6 3\n4 6\n1 2\n4 2\n3 4\n2 3\n1 5", "output": "-1" }, { "input": "90\n1 4\n3 5\n4 2\n2 5\n4 3\n2 6\n2 6\n3 2\n4 4\n6 1\n4 3\n2 3\n5 3\n6 6\n2 2\n6 3\n4 1\n4 4\n5 6\n6 4\n4 2\n5 6\n4 6\n4 4\n6 4\n4 1\n5 3\n3 2\n4 4\n5 2\n5 4\n6 4\n1 2\n3 3\n3 4\n6 4\n1 6\n4 2\n3 2\n1 1\n2 2\n5 1\n6 6\n4 1\n5 2\n3 6\n2 1\n2 2\n4 6\n6 5\n4 4\n5 5\n5 6\n1 6\n1 4\n5 6\n3 6\n6 3\n5 6\n6 5\n5 1\n6 1\n6 6\n6 3\n1 5\n4 5\n3 1\n6 6\n3 4\n6 2\n1 4\n2 2\n3 2\n5 6\n2 4\n1 4\n6 3\n4 6\n1 4\n5 2\n1 2\n6 5\n1 5\n1 4\n4 2\n2 5\n3 2\n5 1\n5 4\n5 3", "output": "-1" }, { "input": "95\n4 3\n3 2\n5 5\n5 3\n1 6\n4 4\n5 5\n6 5\n3 5\n1 5\n4 2\n5 1\n1 2\n2 3\n6 4\n2 3\n6 3\n6 5\n5 6\n1 4\n2 6\n2 6\n2 5\n2 1\n3 1\n3 5\n2 2\n6 1\n2 4\n4 6\n6 6\n6 4\n3 2\n5 1\n4 3\n6 5\n2 3\n4 1\n2 5\n6 5\n6 5\n6 5\n5 1\n5 4\n4 6\n3 2\n2 5\n2 6\n4 6\n6 3\n6 4\n5 6\n4 6\n2 4\n3 4\n1 4\n2 4\n2 3\n5 6\n6 4\n3 1\n5 1\n3 6\n3 5\n2 6\n6 3\n4 3\n3 1\n6 1\n2 2\n6 3\n2 2\n2 2\n6 4\n6 1\n2 1\n5 6\n5 4\n5 2\n3 4\n3 6\n2 1\n1 6\n5 5\n2 6\n2 3\n3 6\n1 3\n1 5\n5 1\n1 2\n2 2\n5 3\n6 4\n4 5", "output": "0" }, { "input": "95\n4 5\n5 6\n3 2\n5 1\n4 3\n4 1\n6 1\n5 2\n2 4\n5 3\n2 3\n6 4\n4 1\n1 6\n2 6\n2 3\n4 6\n2 4\n3 4\n4 2\n5 5\n1 1\n1 5\n4 3\n4 5\n6 2\n6 1\n6 3\n5 5\n4 1\n5 1\n2 3\n5 1\n3 6\n6 6\n4 5\n4 4\n4 3\n1 6\n6 6\n4 6\n6 4\n1 2\n6 2\n4 6\n6 6\n5 5\n6 1\n5 2\n4 5\n6 6\n6 5\n4 4\n1 5\n4 6\n4 1\n3 6\n5 1\n3 1\n4 6\n4 5\n1 3\n5 4\n4 5\n2 2\n6 1\n5 2\n6 5\n2 2\n1 1\n6 3\n6 1\n2 6\n3 3\n2 1\n4 6\n2 4\n5 5\n5 2\n3 2\n1 2\n6 6\n6 2\n5 1\n2 6\n5 2\n2 2\n5 5\n3 5\n3 3\n2 6\n5 3\n4 3\n1 6\n5 4", "output": "-1" }, { "input": "100\n1 1\n3 5\n2 1\n1 2\n3 4\n5 6\n5 6\n6 1\n5 5\n2 4\n5 5\n5 6\n6 2\n6 6\n2 6\n1 4\n2 2\n3 2\n1 3\n5 5\n6 3\n5 6\n1 1\n1 2\n1 2\n2 1\n2 3\n1 6\n4 3\n1 1\n2 5\n2 4\n4 4\n1 5\n3 3\n6 1\n3 5\n1 1\n3 6\n3 1\n4 2\n4 3\n3 6\n6 6\n1 6\n6 2\n2 5\n5 4\n6 3\n1 4\n2 6\n6 2\n3 4\n6 1\n6 5\n4 6\n6 5\n4 4\n3 1\n6 3\n5 1\n2 4\n5 1\n1 2\n2 4\n2 1\n6 6\n5 3\n4 6\n6 3\n5 5\n3 3\n1 1\n6 5\n4 3\n2 6\n1 5\n3 5\n2 4\n4 5\n1 6\n2 3\n6 3\n5 5\n2 6\n2 6\n3 4\n3 2\n6 1\n3 4\n6 4\n3 3\n2 3\n5 1\n3 1\n6 2\n2 3\n6 4\n1 4\n1 2", "output": "-1" }, { "input": "100\n1 1\n5 5\n1 2\n5 3\n5 5\n2 2\n1 5\n3 4\n3 2\n1 3\n5 6\n4 5\n2 1\n5 5\n2 2\n1 6\n6 1\n5 1\n4 1\n4 6\n3 5\n6 1\n2 3\n5 6\n3 6\n2 3\n5 6\n1 6\n3 2\n2 2\n3 3\n6 5\n5 5\n1 4\n5 6\n6 4\n1 4\n1 2\n2 6\n3 2\n6 4\n5 3\n3 3\n6 4\n4 6\n2 2\n5 6\n5 1\n1 2\n3 4\n4 5\n1 1\n3 4\n5 2\n4 5\n3 3\n1 1\n3 4\n1 6\n2 4\n1 3\n3 2\n6 5\n1 6\n3 6\n2 3\n2 6\n5 1\n5 5\n5 6\n4 1\n6 2\n3 6\n5 3\n2 2\n2 4\n6 6\n3 6\n4 6\n2 5\n5 3\n1 2\n3 4\n3 4\n6 2\n2 4\n2 2\n4 6\n3 5\n4 2\n5 6\n4 2\n2 3\n6 2\n5 6\n2 1\n3 3\n6 6\n4 3\n4 2", "output": "1" }, { "input": "1\n2 2", "output": "0" }, { "input": "3\n2 4\n6 6\n3 3", "output": "-1" }, { "input": "2\n3 6\n4 1", "output": "1" }, { "input": "3\n1 1\n1 1\n3 3", "output": "-1" }, { "input": "3\n2 3\n1 1\n2 3", "output": "1" }, { "input": "3\n2 2\n2 1\n1 2", "output": "1" }, { "input": "3\n1 1\n1 1\n1 1", "output": "-1" } ]
1,381,592,484
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
import sys class Reader: def __init__(self, file): self.tok, self.tok_length, self.tok_position = ([], 0, 0) self.lines, self.line_position = (file.readlines(), 0) def next_token(self): if self.tok_position < self.tok_length: self.tok_position += 1 return self.tok[self.tok_position - 1] self.tok = self.lines[self.line_position].split() self.tok_length, self.tok_position = (len(self.tok), 0) self.line_position += 1 return self.next_token() def next_line(self): self.tok, self.tok_length, self.tok_position = ([], 0, 0) self.line_position += 1 return self.lines[self.line_position - 1] def main(): reader = Reader(sys.stdin) n = int(reader.next_token()) ls = 0 rs = 0 cnt = 0 for i in range(n): l = int(reader.next_token()) r = int(reader.next_token()) ls += l rs += r if (l % 2 != r % 2): cnt += 1 if ((ls + rs) % 2 != 0): print(-1) return if (ls % 2 == 0) and (rs % 2 == 0): print(0) return if (cnt > 0): print(1) return print(-1) if __name__ == "__main__": main()
Title: Domino Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valera has got *n* domino pieces in a row. Each piece consists of two halves — the upper one and the lower one. Each of the halves contains a number from 1 to 6. Valera loves even integers very much, so he wants the sum of the numbers on the upper halves and the sum of the numbers on the lower halves to be even. To do that, Valera can rotate the dominoes by 180 degrees. After the rotation the upper and the lower halves swap places. This action takes one second. Help Valera find out the minimum time he must spend rotating dominoes to make his wish come true. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=100), denoting the number of dominoes Valera has. Next *n* lines contain two space-separated integers *x**i*,<=*y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=6). Number *x**i* is initially written on the upper half of the *i*-th domino, *y**i* is initially written on the lower half. Output Specification: Print a single number — the minimum required number of seconds. If Valera can't do the task in any time, print <=-<=1. Demo Input: ['2\n4 2\n6 4\n', '1\n2 3\n', '3\n1 4\n2 3\n4 4\n'] Demo Output: ['0\n', '-1\n', '1\n'] Note: In the first test case the sum of the numbers on the upper halves equals 10 and the sum of the numbers on the lower halves equals 6. Both numbers are even, so Valera doesn't required to do anything. In the second sample Valera has only one piece of domino. It is written 3 on the one of its halves, therefore one of the sums will always be odd. In the third case Valera can rotate the first piece, and after that the sum on the upper halves will be equal to 10, and the sum on the lower halves will be equal to 8.
```python import sys class Reader: def __init__(self, file): self.tok, self.tok_length, self.tok_position = ([], 0, 0) self.lines, self.line_position = (file.readlines(), 0) def next_token(self): if self.tok_position < self.tok_length: self.tok_position += 1 return self.tok[self.tok_position - 1] self.tok = self.lines[self.line_position].split() self.tok_length, self.tok_position = (len(self.tok), 0) self.line_position += 1 return self.next_token() def next_line(self): self.tok, self.tok_length, self.tok_position = ([], 0, 0) self.line_position += 1 return self.lines[self.line_position - 1] def main(): reader = Reader(sys.stdin) n = int(reader.next_token()) ls = 0 rs = 0 cnt = 0 for i in range(n): l = int(reader.next_token()) r = int(reader.next_token()) ls += l rs += r if (l % 2 != r % 2): cnt += 1 if ((ls + rs) % 2 != 0): print(-1) return if (ls % 2 == 0) and (rs % 2 == 0): print(0) return if (cnt > 0): print(1) return print(-1) if __name__ == "__main__": main() ```
-1
180
C
Letter
PROGRAMMING
1,400
[ "dp" ]
null
null
Patrick has just finished writing a message to his sweetheart Stacey when he noticed that the message didn't look fancy. Patrick was nervous while writing the message, so some of the letters there were lowercase and some of them were uppercase. Patrick believes that a message is fancy if any uppercase letter stands to the left of any lowercase one. In other words, this rule describes the strings where first go zero or more uppercase letters, and then — zero or more lowercase letters. To make the message fancy, Patrick can erase some letter and add the same letter in the same place in the opposite case (that is, he can replace an uppercase letter with the lowercase one and vice versa). Patrick got interested in the following question: what minimum number of actions do we need to make a message fancy? Changing a letter's case in the message counts as one action. Patrick cannot perform any other actions.
The only line of the input contains a non-empty string consisting of uppercase and lowercase letters. The string's length does not exceed 105.
Print a single number — the least number of actions needed to make the message fancy.
[ "PRuvetSTAaYA\n", "OYPROSTIYAOPECHATALSYAPRIVETSTASYA\n", "helloworld\n" ]
[ "5\n", "0\n", "0\n" ]
none
0
[ { "input": "PRuvetSTAaYA", "output": "5" }, { "input": "OYPROSTIYAOPECHATALSYAPRIVETSTASYA", "output": "0" }, { "input": "helloworld", "output": "0" }, { "input": "P", "output": "0" }, { "input": "t", "output": "0" }, { "input": "XdJ", "output": "1" }, { "input": "FSFlNEelYY", "output": "3" }, { "input": "lgtyasficu", "output": "0" }, { "input": "WYKUDTDDBT", "output": "0" }, { "input": "yysxwlyqboatikfnpxczmpijziiojbvadlfozjqldssffcxdegyxfrvohoxvgsrvlzjlkcuffoeisrpvagxtbkapkpzcafadzzjd", "output": "0" }, { "input": "mnAkOBuKxaiJwXhKnlcCvjxYXGXDoIqfUYkiLrdSYWhMemgWFzsgpoKOtHqooxbLYFuABWQSXuHdbyPVWyrkeEfqOsnEBikiqhfu", "output": "43" }, { "input": "MMVESdOCALHJCTBTUWWQRGUUVTTTABKKAAdIINAdKLRLLVLODHDXDPMcQfUhPNHFBJSDRGsHZNORSCPNvKOOIuZnZAmTPUCoPNlR", "output": "13" }, { "input": "MMbJIBhgFXPVpdQHLkWJkAHFIfJSpITTCRzRCzvRPRYECCheOknfINZWuKATDBOrEVKTcWXiYPjtzQMGUSGPNTMCUrvYCSWQHqAi", "output": "27" }, { "input": "ZnqXEBOABXVbHRFFqDLWpWBBLqZIagmbRAYMDKJAYyFQXnPYwvDyRXKHLQnMLHGEOnRKmXtGqyQkoBCSmgKPcEIEugwJyxDOtTVn", "output": "31" } ]
1,667,633,678
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
2
92
0
message = input() count_small = 0 count_capital = 0 def check_upper(c): if c >= 'A' and c <= 'Z': return True else: return False curr = 0 for i in message: if not check_upper(i): count_small +=1 if count_small>0: curr = count_small count_capital+=1 print(min(curr, count_capital))
Title: Letter Time Limit: None seconds Memory Limit: None megabytes Problem Description: Patrick has just finished writing a message to his sweetheart Stacey when he noticed that the message didn't look fancy. Patrick was nervous while writing the message, so some of the letters there were lowercase and some of them were uppercase. Patrick believes that a message is fancy if any uppercase letter stands to the left of any lowercase one. In other words, this rule describes the strings where first go zero or more uppercase letters, and then — zero or more lowercase letters. To make the message fancy, Patrick can erase some letter and add the same letter in the same place in the opposite case (that is, he can replace an uppercase letter with the lowercase one and vice versa). Patrick got interested in the following question: what minimum number of actions do we need to make a message fancy? Changing a letter's case in the message counts as one action. Patrick cannot perform any other actions. Input Specification: The only line of the input contains a non-empty string consisting of uppercase and lowercase letters. The string's length does not exceed 105. Output Specification: Print a single number — the least number of actions needed to make the message fancy. Demo Input: ['PRuvetSTAaYA\n', 'OYPROSTIYAOPECHATALSYAPRIVETSTASYA\n', 'helloworld\n'] Demo Output: ['5\n', '0\n', '0\n'] Note: none
```python message = input() count_small = 0 count_capital = 0 def check_upper(c): if c >= 'A' and c <= 'Z': return True else: return False curr = 0 for i in message: if not check_upper(i): count_small +=1 if count_small>0: curr = count_small count_capital+=1 print(min(curr, count_capital)) ```
0
637
B
Chat Order
PROGRAMMING
1,200
[ "*special", "binary search", "constructive algorithms", "data structures", "sortings" ]
null
null
Polycarp is a big lover of killing time in social networks. A page with a chatlist in his favourite network is made so that when a message is sent to some friend, his friend's chat rises to the very top of the page. The relative order of the other chats doesn't change. If there was no chat with this friend before, then a new chat is simply inserted to the top of the list. Assuming that the chat list is initially empty, given the sequence of Polycaprus' messages make a list of chats after all of his messages are processed. Assume that no friend wrote any message to Polycarpus.
The first line contains integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of Polycarpus' messages. Next *n* lines enlist the message recipients in the order in which the messages were sent. The name of each participant is a non-empty sequence of lowercase English letters of length at most 10.
Print all the recipients to who Polycarp talked to in the order of chats with them, from top to bottom.
[ "4\nalex\nivan\nroman\nivan\n", "8\nalina\nmaria\nekaterina\ndarya\ndarya\nekaterina\nmaria\nalina\n" ]
[ "ivan\nroman\nalex\n", "alina\nmaria\nekaterina\ndarya\n" ]
In the first test case Polycarpus first writes to friend by name "alex", and the list looks as follows: 1. alex Then Polycarpus writes to friend by name "ivan" and the list looks as follows: 1. ivan 1. alex Polycarpus writes the third message to friend by name "roman" and the list looks as follows: 1. roman 1. ivan 1. alex Polycarpus writes the fourth message to friend by name "ivan", to who he has already sent a message, so the list of chats changes as follows: 1. ivan 1. roman 1. alex
1,000
[ { "input": "4\nalex\nivan\nroman\nivan", "output": "ivan\nroman\nalex" }, { "input": "8\nalina\nmaria\nekaterina\ndarya\ndarya\nekaterina\nmaria\nalina", "output": "alina\nmaria\nekaterina\ndarya" }, { "input": "1\nwdi", "output": "wdi" }, { "input": "2\nypg\nypg", "output": "ypg" }, { "input": "3\nexhll\nexhll\narruapexj", "output": "arruapexj\nexhll" }, { "input": "3\nfv\nle\nle", "output": "le\nfv" }, { "input": "8\nm\nm\nm\nm\nm\nm\nm\nm", "output": "m" }, { "input": "10\nr\nr\ni\nw\nk\nr\nb\nu\nu\nr", "output": "r\nu\nb\nk\nw\ni" }, { "input": "7\ne\nfau\ncmk\nnzs\nby\nwx\ntjmok", "output": "tjmok\nwx\nby\nnzs\ncmk\nfau\ne" }, { "input": "6\nklrj\nwe\nklrj\nwe\nwe\nwe", "output": "we\nklrj" }, { "input": "8\nzncybqmh\naeebef\nzncybqmh\nn\naeebef\nzncybqmh\nzncybqmh\nzncybqmh", "output": "zncybqmh\naeebef\nn" }, { "input": "30\nkqqcbs\nvap\nkymomn\nj\nkqqcbs\nfuzlzoum\nkymomn\ndbh\nfuzlzoum\nkymomn\nvap\nvlgzs\ndbh\nvlgzs\nbvy\ndbh\nkymomn\nkymomn\neoqql\nkymomn\nkymomn\nkqqcbs\nvlgzs\nkqqcbs\nkqqcbs\nfuzlzoum\nvlgzs\nrylgdoo\nvlgzs\nrylgdoo", "output": "rylgdoo\nvlgzs\nfuzlzoum\nkqqcbs\nkymomn\neoqql\ndbh\nbvy\nvap\nj" }, { "input": "40\nji\nv\nv\nns\nji\nn\nji\nv\nfvy\nvje\nns\nvje\nv\nhas\nv\nusm\nhas\nfvy\nvje\nkdb\nn\nv\nji\nji\nn\nhas\nv\nji\nkdb\nr\nvje\nns\nv\nusm\nn\nvje\nhas\nns\nhas\nn", "output": "n\nhas\nns\nvje\nusm\nv\nr\nkdb\nji\nfvy" }, { "input": "50\njcg\nvle\njopb\nepdb\nnkef\nfv\nxj\nufe\nfuy\noqta\ngbc\nyuz\nec\nyji\nkuux\ncwm\ntq\nnno\nhp\nzry\nxxpp\ntjvo\ngyz\nkwo\nvwqz\nyaqc\njnj\nwoav\nqcv\ndcu\ngc\nhovn\nop\nevy\ndc\ntrpu\nyb\nuzfa\npca\noq\nnhxy\nsiqu\nde\nhphy\nc\nwovu\nf\nbvv\ndsik\nlwyg", "output": "lwyg\ndsik\nbvv\nf\nwovu\nc\nhphy\nde\nsiqu\nnhxy\noq\npca\nuzfa\nyb\ntrpu\ndc\nevy\nop\nhovn\ngc\ndcu\nqcv\nwoav\njnj\nyaqc\nvwqz\nkwo\ngyz\ntjvo\nxxpp\nzry\nhp\nnno\ntq\ncwm\nkuux\nyji\nec\nyuz\ngbc\noqta\nfuy\nufe\nxj\nfv\nnkef\nepdb\njopb\nvle\njcg" }, { "input": "100\nvhh\nvhh\nvhh\nfa\nfa\nvhh\nvhh\nvhh\nfa\nfa\nfa\nvhh\nfa\nvhh\nvhh\nvhh\nfa\nvhh\nvhh\nfa\nfa\nfa\nfa\nfa\nfa\nvhh\nfa\nfa\nvhh\nvhh\nvhh\nfa\nfa\nfa\nvhh\nfa\nvhh\nfa\nvhh\nvhh\nfa\nvhh\nfa\nvhh\nvhh\nvhh\nfa\nvhh\nfa\nfa\nvhh\nfa\nvhh\nvhh\nvhh\nvhh\nfa\nvhh\nvhh\nvhh\nvhh\nfa\nvhh\nvhh\nvhh\nvhh\nvhh\nfa\nvhh\nvhh\nfa\nfa\nfa\nvhh\nfa\nfa\nvhh\nfa\nvhh\nfa\nfa\nfa\nfa\nfa\nfa\nvhh\nvhh\nfa\nvhh\nfa\nfa\nvhh\nfa\nfa\nvhh\nfa\nvhh\nvhh\nfa\nvhh", "output": "vhh\nfa" }, { "input": "2\naa\nbb", "output": "bb\naa" }, { "input": "2\naa\na", "output": "a\naa" }, { "input": "3\naa\naa\naa", "output": "aa" }, { "input": "5\naa\na\naa\na\naa", "output": "aa\na" }, { "input": "7\naaaa\naaaa\naaa\na\naa\naaaaaaa\naaa", "output": "aaa\naaaaaaa\naa\na\naaaa" }, { "input": "5\na\naa\naaa\naaaa\na", "output": "a\naaaa\naaa\naa" }, { "input": "12\naaaaa\naaaaaa\naaaa\naaaaaa\naa\naaaa\naaaa\naaaaaa\na\naaa\naaaaaaaa\naa", "output": "aa\naaaaaaaa\naaa\na\naaaaaa\naaaa\naaaaa" }, { "input": "3\na\naa\naaa", "output": "aaa\naa\na" }, { "input": "9\nzzz\nzzzzz\nzzz\nzzzz\nzz\nzzzz\nzzzzz\nzzzz\nzzzzzzz", "output": "zzzzzzz\nzzzz\nzzzzz\nzz\nzzz" } ]
1,500,944,480
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
11
3,000
9,011,200
s=[input() for i in range(int(input()))] k=0 while k<len(s)-1: if s[k] in s[k+1:]: del s[k] else: k+=1 print(*s[::-1], sep='\n')
Title: Chat Order Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp is a big lover of killing time in social networks. A page with a chatlist in his favourite network is made so that when a message is sent to some friend, his friend's chat rises to the very top of the page. The relative order of the other chats doesn't change. If there was no chat with this friend before, then a new chat is simply inserted to the top of the list. Assuming that the chat list is initially empty, given the sequence of Polycaprus' messages make a list of chats after all of his messages are processed. Assume that no friend wrote any message to Polycarpus. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of Polycarpus' messages. Next *n* lines enlist the message recipients in the order in which the messages were sent. The name of each participant is a non-empty sequence of lowercase English letters of length at most 10. Output Specification: Print all the recipients to who Polycarp talked to in the order of chats with them, from top to bottom. Demo Input: ['4\nalex\nivan\nroman\nivan\n', '8\nalina\nmaria\nekaterina\ndarya\ndarya\nekaterina\nmaria\nalina\n'] Demo Output: ['ivan\nroman\nalex\n', 'alina\nmaria\nekaterina\ndarya\n'] Note: In the first test case Polycarpus first writes to friend by name "alex", and the list looks as follows: 1. alex Then Polycarpus writes to friend by name "ivan" and the list looks as follows: 1. ivan 1. alex Polycarpus writes the third message to friend by name "roman" and the list looks as follows: 1. roman 1. ivan 1. alex Polycarpus writes the fourth message to friend by name "ivan", to who he has already sent a message, so the list of chats changes as follows: 1. ivan 1. roman 1. alex
```python s=[input() for i in range(int(input()))] k=0 while k<len(s)-1: if s[k] in s[k+1:]: del s[k] else: k+=1 print(*s[::-1], sep='\n') ```
0
59
A
Word
PROGRAMMING
800
[ "implementation", "strings" ]
A. Word
2
256
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
[ "HoUse\n", "ViP\n", "maTRIx\n" ]
[ "house\n", "VIP\n", "matrix\n" ]
none
500
[ { "input": "HoUse", "output": "house" }, { "input": "ViP", "output": "VIP" }, { "input": "maTRIx", "output": "matrix" }, { "input": "BNHWpnpawg", "output": "bnhwpnpawg" }, { "input": "VTYGP", "output": "VTYGP" }, { "input": "CHNenu", "output": "chnenu" }, { "input": "ERPZGrodyu", "output": "erpzgrodyu" }, { "input": "KSXBXWpebh", "output": "KSXBXWPEBH" }, { "input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv", "output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv" }, { "input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd", "output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd" }, { "input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv", "output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv" }, { "input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg", "output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg" }, { "input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak", "output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK" }, { "input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw", "output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW" }, { "input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB", "output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB" }, { "input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge", "output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge" }, { "input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw", "output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw" }, { "input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks", "output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks" }, { "input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz", "output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ" }, { "input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg", "output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG" }, { "input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO", "output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO" }, { "input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd", "output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD" }, { "input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas", "output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas" }, { "input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm", "output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM" }, { "input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn", "output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn" }, { "input": "t", "output": "t" }, { "input": "N", "output": "N" }, { "input": "kv", "output": "kv" }, { "input": "Ur", "output": "ur" }, { "input": "CN", "output": "CN" } ]
1,626,242,521
2,147,483,647
Python 3
OK
TESTS
30
154
6,758,400
n=input() count=0 for i in range(0,len(n)): if n[i].isupper(): count+=1 else: pass if count>abs(count-len(n)): n=n.upper() else: n=n.lower() print(n)
Title: Word Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word. Input Specification: The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100. Output Specification: Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one. Demo Input: ['HoUse\n', 'ViP\n', 'maTRIx\n'] Demo Output: ['house\n', 'VIP\n', 'matrix\n'] Note: none
```python n=input() count=0 for i in range(0,len(n)): if n[i].isupper(): count+=1 else: pass if count>abs(count-len(n)): n=n.upper() else: n=n.lower() print(n) ```
3.948911
788
A
Functions again
PROGRAMMING
1,600
[ "dp", "two pointers" ]
null
null
Something happened in Uzhlyandia again... There are riots on the streets... Famous Uzhlyandian superheroes Shean the Sheep and Stas the Giraffe were called in order to save the situation. Upon the arriving, they found that citizens are worried about maximum values of the Main Uzhlyandian Function *f*, which is defined as follows: In the above formula, 1<=≤<=*l*<=&lt;<=*r*<=≤<=*n* must hold, where *n* is the size of the Main Uzhlyandian Array *a*, and |*x*| means absolute value of *x*. But the heroes skipped their math lessons in school, so they asked you for help. Help them calculate the maximum value of *f* among all possible values of *l* and *r* for the given array *a*.
The first line contains single integer *n* (2<=≤<=*n*<=≤<=105) — the size of the array *a*. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (-109<=≤<=*a**i*<=≤<=109) — the array elements.
Print the only integer — the maximum value of *f*.
[ "5\n1 4 2 3 1\n", "4\n1 5 4 7\n" ]
[ "3", "6" ]
In the first sample case, the optimal value of *f* is reached on intervals [1, 2] and [2, 5]. In the second case maximal value of *f* is reachable only on the whole array.
500
[ { "input": "5\n1 4 2 3 1", "output": "3" }, { "input": "4\n1 5 4 7", "output": "6" }, { "input": "8\n16 14 12 10 8 100 50 0", "output": "92" }, { "input": "2\n1 1", "output": "0" }, { "input": "50\n-5 -9 0 44 -10 37 34 -49 11 -22 -26 44 8 -13 23 -46 34 12 -24 2 -40 -15 -28 38 -40 -42 -42 7 -43 5 2 -11 10 43 9 49 -13 36 2 24 46 50 -15 -26 -6 -6 8 4 -44 -3", "output": "208" }, { "input": "100\n23 64 60 -45 -36 -64 -59 15 -75 69 -30 -7 -20 17 -77 58 93 -76 -98 -22 -31 16 -50 6 -20 -85 1 64 -88 -8 -15 -6 -57 25 91 10 2 -90 74 -66 -42 73 28 49 -85 59 96 79 -25 49 -59 -89 -75 12 -96 -33 -65 -8 -100 -81 17 99 -91 -5 7 -21 1 85 63 86 -26 85 -31 11 -75 35 -82 15 98 93 -55 66 70 36 -38 8 92 -63 -5 60 -78 -7 -22 -1 4 54 36 16 32 -20", "output": "632" }, { "input": "3\n0 0 0", "output": "0" }, { "input": "3\n0 1 -1", "output": "2" }, { "input": "5\n1000000000 0 0 1000000000 -1000000000", "output": "2000000000" }, { "input": "2\n1000000000 -1000000000", "output": "2000000000" }, { "input": "4\n1000000000 0 0 -1000000000", "output": "2000000000" }, { "input": "4\n1 0 1 0", "output": "1" }, { "input": "5\n0 10 20 30 40", "output": "10" }, { "input": "2\n-1000000000 1000000000", "output": "2000000000" }, { "input": "2\n1 2", "output": "1" }, { "input": "9\n1000000000 0 0 1000000000 1000000000 0 0 1000000000 1000000000", "output": "4000000000" }, { "input": "16\n-1000000000 1000000000 1000000000 -1000000000 -1000000000 1000000000 1000000000 -1000000000 -1000000000 1000000000 1000000000 -1000000000 -1000000000 1000000000 1000000000 -1000000000", "output": "16000000000" }, { "input": "6\n1000000000 0 0 1000000000 1000000000 0", "output": "3000000000" }, { "input": "17\n1000000000 0 0 1000000000 1000000000 0 0 1000000000 1000000000 0 0 1000000000 1000000000 0 0 1000000000 1000000000", "output": "8000000000" }, { "input": "11\n1000000000 0 1 1000000000 999999999 1 0 1000000000 999999999 1 1000000000", "output": "4999999991" }, { "input": "4\n1000000000 -1000000000 -1000000000 1000000000", "output": "4000000000" }, { "input": "10\n1000000000 -1000000000 -1000000000 1000000000 1000000000 -1000000000 -1000000000 1000000000 1000000000 -1000000000", "output": "10000000000" } ]
1,573,988,376
2,147,483,647
PyPy 3
OK
TESTS
52
249
12,083,200
n = int(input()) arr = list(map(int, input().split())) diff = [abs(arr[i] - arr[i-1]) for i in range(1, n)] res0, res1, res, curr_sum = -2e9, 0, -2e9, 0 for i in range(n-1): curr_sum += diff[i] * (1 if i % 2 == 0 else -1) res = max(res, curr_sum - res1, res0 - curr_sum) if i % 2 == 0: res0 = max(res0, curr_sum) else: res1 = min(res1, curr_sum) print(res)
Title: Functions again Time Limit: None seconds Memory Limit: None megabytes Problem Description: Something happened in Uzhlyandia again... There are riots on the streets... Famous Uzhlyandian superheroes Shean the Sheep and Stas the Giraffe were called in order to save the situation. Upon the arriving, they found that citizens are worried about maximum values of the Main Uzhlyandian Function *f*, which is defined as follows: In the above formula, 1<=≤<=*l*<=&lt;<=*r*<=≤<=*n* must hold, where *n* is the size of the Main Uzhlyandian Array *a*, and |*x*| means absolute value of *x*. But the heroes skipped their math lessons in school, so they asked you for help. Help them calculate the maximum value of *f* among all possible values of *l* and *r* for the given array *a*. Input Specification: The first line contains single integer *n* (2<=≤<=*n*<=≤<=105) — the size of the array *a*. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (-109<=≤<=*a**i*<=≤<=109) — the array elements. Output Specification: Print the only integer — the maximum value of *f*. Demo Input: ['5\n1 4 2 3 1\n', '4\n1 5 4 7\n'] Demo Output: ['3', '6'] Note: In the first sample case, the optimal value of *f* is reached on intervals [1, 2] and [2, 5]. In the second case maximal value of *f* is reachable only on the whole array.
```python n = int(input()) arr = list(map(int, input().split())) diff = [abs(arr[i] - arr[i-1]) for i in range(1, n)] res0, res1, res, curr_sum = -2e9, 0, -2e9, 0 for i in range(n-1): curr_sum += diff[i] * (1 if i % 2 == 0 else -1) res = max(res, curr_sum - res1, res0 - curr_sum) if i % 2 == 0: res0 = max(res0, curr_sum) else: res1 = min(res1, curr_sum) print(res) ```
3
994
A
Fingerprints
PROGRAMMING
800
[ "implementation" ]
null
null
You are locked in a room with a door that has a keypad with 10 keys corresponding to digits from 0 to 9. To escape from the room, you need to enter a correct code. You also have a sequence of digits. Some keys on the keypad have fingerprints. You believe the correct code is the longest not necessarily contiguous subsequence of the sequence you have that only contains digits with fingerprints on the corresponding keys. Find such code.
The first line contains two integers $n$ and $m$ ($1 \le n, m \le 10$) representing the number of digits in the sequence you have and the number of keys on the keypad that have fingerprints. The next line contains $n$ distinct space-separated integers $x_1, x_2, \ldots, x_n$ ($0 \le x_i \le 9$) representing the sequence. The next line contains $m$ distinct space-separated integers $y_1, y_2, \ldots, y_m$ ($0 \le y_i \le 9$) — the keys with fingerprints.
In a single line print a space-separated sequence of integers representing the code. If the resulting sequence is empty, both printing nothing and printing a single line break is acceptable.
[ "7 3\n3 5 7 1 6 2 8\n1 2 7\n", "4 4\n3 4 1 0\n0 1 7 9\n" ]
[ "7 1 2\n", "1 0\n" ]
In the first example, the only digits with fingerprints are $1$, $2$ and $7$. All three of them appear in the sequence you know, $7$ first, then $1$ and then $2$. Therefore the output is 7 1 2. Note that the order is important, and shall be the same as the order in the original sequence. In the second example digits $0$, $1$, $7$ and $9$ have fingerprints, however only $0$ and $1$ appear in the original sequence. $1$ appears earlier, so the output is 1 0. Again, the order is important.
500
[ { "input": "7 3\n3 5 7 1 6 2 8\n1 2 7", "output": "7 1 2" }, { "input": "4 4\n3 4 1 0\n0 1 7 9", "output": "1 0" }, { "input": "9 4\n9 8 7 6 5 4 3 2 1\n2 4 6 8", "output": "8 6 4 2" }, { "input": "10 5\n3 7 1 2 4 6 9 0 5 8\n4 3 0 7 9", "output": "3 7 4 9 0" }, { "input": "10 10\n1 2 3 4 5 6 7 8 9 0\n4 5 6 7 1 2 3 0 9 8", "output": "1 2 3 4 5 6 7 8 9 0" }, { "input": "1 1\n4\n4", "output": "4" }, { "input": "3 7\n6 3 4\n4 9 0 1 7 8 6", "output": "6 4" }, { "input": "10 1\n9 0 8 1 7 4 6 5 2 3\n0", "output": "0" }, { "input": "5 10\n6 0 3 8 1\n3 1 0 5 4 7 2 8 9 6", "output": "6 0 3 8 1" }, { "input": "8 2\n7 2 9 6 1 0 3 4\n6 3", "output": "6 3" }, { "input": "5 4\n7 0 1 4 9\n0 9 5 3", "output": "0 9" }, { "input": "10 1\n9 6 2 0 1 8 3 4 7 5\n6", "output": "6" }, { "input": "10 2\n7 1 0 2 4 6 5 9 3 8\n3 2", "output": "2 3" }, { "input": "5 9\n3 7 9 2 4\n3 8 4 5 9 6 1 0 2", "output": "3 9 2 4" }, { "input": "10 6\n7 1 2 3 8 0 6 4 5 9\n1 5 8 2 3 6", "output": "1 2 3 8 6 5" }, { "input": "8 2\n7 4 8 9 2 5 6 1\n6 4", "output": "4 6" }, { "input": "10 2\n1 0 3 5 8 9 4 7 6 2\n0 3", "output": "0 3" }, { "input": "7 6\n9 2 8 6 1 3 7\n4 2 0 3 1 8", "output": "2 8 1 3" }, { "input": "1 6\n3\n6 8 2 4 5 3", "output": "3" }, { "input": "1 8\n0\n9 2 4 8 1 5 0 7", "output": "0" }, { "input": "6 9\n7 3 9 4 1 0\n9 1 5 8 0 6 2 7 4", "output": "7 9 4 1 0" }, { "input": "10 2\n4 9 6 8 3 0 1 5 7 2\n0 1", "output": "0 1" }, { "input": "10 5\n5 2 8 0 9 7 6 1 4 3\n9 6 4 1 2", "output": "2 9 6 1 4" }, { "input": "6 3\n8 3 9 2 7 6\n5 4 3", "output": "3" }, { "input": "4 10\n8 3 9 6\n4 9 6 2 7 0 8 1 3 5", "output": "8 3 9 6" }, { "input": "1 2\n1\n1 0", "output": "1" }, { "input": "3 6\n1 2 3\n4 5 6 1 2 3", "output": "1 2 3" }, { "input": "1 2\n2\n1 2", "output": "2" }, { "input": "1 10\n9\n0 1 2 3 4 5 6 7 8 9", "output": "9" } ]
1,645,771,738
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
n,m=map(int(input().split()) a=list(map(int,input().split())) b=list(map(int,input().split())) c=[] for i in a: if i in b: c.append(i) print(c)
Title: Fingerprints Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are locked in a room with a door that has a keypad with 10 keys corresponding to digits from 0 to 9. To escape from the room, you need to enter a correct code. You also have a sequence of digits. Some keys on the keypad have fingerprints. You believe the correct code is the longest not necessarily contiguous subsequence of the sequence you have that only contains digits with fingerprints on the corresponding keys. Find such code. Input Specification: The first line contains two integers $n$ and $m$ ($1 \le n, m \le 10$) representing the number of digits in the sequence you have and the number of keys on the keypad that have fingerprints. The next line contains $n$ distinct space-separated integers $x_1, x_2, \ldots, x_n$ ($0 \le x_i \le 9$) representing the sequence. The next line contains $m$ distinct space-separated integers $y_1, y_2, \ldots, y_m$ ($0 \le y_i \le 9$) — the keys with fingerprints. Output Specification: In a single line print a space-separated sequence of integers representing the code. If the resulting sequence is empty, both printing nothing and printing a single line break is acceptable. Demo Input: ['7 3\n3 5 7 1 6 2 8\n1 2 7\n', '4 4\n3 4 1 0\n0 1 7 9\n'] Demo Output: ['7 1 2\n', '1 0\n'] Note: In the first example, the only digits with fingerprints are $1$, $2$ and $7$. All three of them appear in the sequence you know, $7$ first, then $1$ and then $2$. Therefore the output is 7 1 2. Note that the order is important, and shall be the same as the order in the original sequence. In the second example digits $0$, $1$, $7$ and $9$ have fingerprints, however only $0$ and $1$ appear in the original sequence. $1$ appears earlier, so the output is 1 0. Again, the order is important.
```python n,m=map(int(input().split()) a=list(map(int,input().split())) b=list(map(int,input().split())) c=[] for i in a: if i in b: c.append(i) print(c) ```
-1
886
B
Vlad and Cafes
PROGRAMMING
1,000
[]
null
null
Vlad likes to eat in cafes very much. During his life, he has visited cafes *n* times. Unfortunately, Vlad started to feel that his last visits are not any different from each other. To fix that Vlad had a small research. First of all, Vlad assigned individual indices to all cafes. Then, he wrote down indices of cafes he visited in a row, in order of visiting them. Now, Vlad wants to find such a cafe that his last visit to that cafe was before his last visits to every other cafe. In other words, he wants to find such a cafe that he hasn't been there for as long as possible. Help Vlad to find that cafe.
In first line there is one integer *n* (1<=≤<=*n*<=≤<=2·105) — number of cafes indices written by Vlad. In second line, *n* numbers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=2·105) are written — indices of cafes in order of being visited by Vlad. Vlad could visit some cafes more than once. Note that in numeration, some indices could be omitted.
Print one integer — index of the cafe that Vlad hasn't visited for as long as possible.
[ "5\n1 3 2 1 2\n", "6\n2 1 2 2 4 1\n" ]
[ "3\n", "2\n" ]
In first test, there are three cafes, and the last visits to cafes with indices 1 and 2 were after the last visit to cafe with index 3; so this cafe is the answer. In second test case, there are also three cafes, but with indices 1, 2 and 4. Cafes with indices 1 and 4 were visited after the last visit of cafe with index 2, so the answer is 2. Note that Vlad could omit some numbers while numerating the cafes.
1,000
[ { "input": "5\n1 3 2 1 2", "output": "3" }, { "input": "6\n2 1 2 2 4 1", "output": "2" }, { "input": "1\n0", "output": "0" }, { "input": "1\n200000", "output": "200000" }, { "input": "2\n2018 2017", "output": "2018" }, { "input": "5\n100 1000 1000 1000 1000", "output": "100" }, { "input": "8\n200000 1 200000 1 200000 1 200000 2", "output": "1" }, { "input": "5\n20000 1 2 3 4", "output": "20000" }, { "input": "2\n200000 1", "output": "200000" }, { "input": "3\n2 100 2", "output": "100" }, { "input": "2\n10 1", "output": "10" }, { "input": "11\n1 1 1 1 1 1 1 1 1 1 1", "output": "1" }, { "input": "3\n5 5 5", "output": "5" }, { "input": "2\n5 1", "output": "5" } ]
1,513,878,233
3,773
Python 3
RUNTIME_ERROR
TESTS
0
46
5,529,600
n=int(input()) a=input() b=list(set(a.split())) k=[] for t in range(len(b)): k+=[a.rfind(b[t])//2] min=0 for v in range(len(k)): if k[v]<=min: min=k[v] m1=v s=0 while s<=len(k): if k[s]==m1: y=s break else: s+=1 print(b[y])
Title: Vlad and Cafes Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vlad likes to eat in cafes very much. During his life, he has visited cafes *n* times. Unfortunately, Vlad started to feel that his last visits are not any different from each other. To fix that Vlad had a small research. First of all, Vlad assigned individual indices to all cafes. Then, he wrote down indices of cafes he visited in a row, in order of visiting them. Now, Vlad wants to find such a cafe that his last visit to that cafe was before his last visits to every other cafe. In other words, he wants to find such a cafe that he hasn't been there for as long as possible. Help Vlad to find that cafe. Input Specification: In first line there is one integer *n* (1<=≤<=*n*<=≤<=2·105) — number of cafes indices written by Vlad. In second line, *n* numbers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=2·105) are written — indices of cafes in order of being visited by Vlad. Vlad could visit some cafes more than once. Note that in numeration, some indices could be omitted. Output Specification: Print one integer — index of the cafe that Vlad hasn't visited for as long as possible. Demo Input: ['5\n1 3 2 1 2\n', '6\n2 1 2 2 4 1\n'] Demo Output: ['3\n', '2\n'] Note: In first test, there are three cafes, and the last visits to cafes with indices 1 and 2 were after the last visit to cafe with index 3; so this cafe is the answer. In second test case, there are also three cafes, but with indices 1, 2 and 4. Cafes with indices 1 and 4 were visited after the last visit of cafe with index 2, so the answer is 2. Note that Vlad could omit some numbers while numerating the cafes.
```python n=int(input()) a=input() b=list(set(a.split())) k=[] for t in range(len(b)): k+=[a.rfind(b[t])//2] min=0 for v in range(len(k)): if k[v]<=min: min=k[v] m1=v s=0 while s<=len(k): if k[s]==m1: y=s break else: s+=1 print(b[y]) ```
-1
441
C
Valera and Tubes
PROGRAMMING
1,500
[ "constructive algorithms", "dfs and similar", "implementation" ]
null
null
Valera has got a rectangle table consisting of *n* rows and *m* columns. Valera numbered the table rows starting from one, from top to bottom and the columns – starting from one, from left to right. We will represent cell that is on the intersection of row *x* and column *y* by a pair of integers (*x*,<=*y*). Valera wants to place exactly *k* tubes on his rectangle table. A tube is such sequence of table cells (*x*1,<=*y*1), (*x*2,<=*y*2), ..., (*x**r*,<=*y**r*), that: - *r*<=≥<=2; - for any integer *i* (1<=≤<=*i*<=≤<=*r*<=-<=1) the following equation |*x**i*<=-<=*x**i*<=+<=1|<=+<=|*y**i*<=-<=*y**i*<=+<=1|<==<=1 holds; - each table cell, which belongs to the tube, must occur exactly once in the sequence. Valera thinks that the tubes are arranged in a fancy manner if the following conditions are fulfilled: - no pair of tubes has common cells; - each cell of the table belongs to some tube. Help Valera to arrange *k* tubes on his rectangle table in a fancy manner.
The first line contains three space-separated integers *n*,<=*m*,<=*k* (2<=≤<=*n*,<=*m*<=≤<=300; 2<=≤<=2*k*<=≤<=*n*·*m*) — the number of rows, the number of columns and the number of tubes, correspondingly.
Print *k* lines. In the *i*-th line print the description of the *i*-th tube: first print integer *r**i* (the number of tube cells), then print 2*r**i* integers *x**i*1,<=*y**i*1,<=*x**i*2,<=*y**i*2,<=...,<=*x**ir**i*,<=*y**ir**i* (the sequence of table cells). If there are multiple solutions, you can print any of them. It is guaranteed that at least one solution exists.
[ "3 3 3\n", "2 3 1\n" ]
[ "3 1 1 1 2 1 3\n3 2 1 2 2 2 3\n3 3 1 3 2 3 3\n", "6 1 1 1 2 1 3 2 3 2 2 2 1\n" ]
Picture for the first sample: Picture for the second sample:
1,500
[ { "input": "3 3 3", "output": "3 1 1 1 2 1 3\n3 2 1 2 2 2 3\n3 3 1 3 2 3 3" }, { "input": "2 3 1", "output": "6 1 1 1 2 1 3 2 3 2 2 2 1" }, { "input": "2 3 1", "output": "6 1 1 1 2 1 3 2 3 2 2 2 1" }, { "input": "300 300 2", "output": "2 1 1 1 2\n89998 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1 97 1 98 1 99 1 100 1 101 1 10..." }, { "input": "300 300 150", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..." }, { "input": "300 299 299", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..." }, { "input": "300 300 45000", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..." }, { "input": "300 299 44850", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..." }, { "input": "2 2 2", "output": "2 1 1 1 2\n2 2 2 2 1" }, { "input": "2 3 3", "output": "2 1 1 1 2\n2 1 3 2 3\n2 2 2 2 1" }, { "input": "3 3 4", "output": "2 1 1 1 2\n2 1 3 2 3\n2 2 2 2 1\n3 3 1 3 2 3 3" }, { "input": "5 5 12", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 2 5\n2 2 4 2 3\n2 2 2 2 1\n2 3 1 3 2\n2 3 3 3 4\n2 3 5 4 5\n2 4 4 4 3\n2 4 2 4 1\n2 5 1 5 2\n3 5 3 5 4 5 5" }, { "input": "7 5 17", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 2 5\n2 2 4 2 3\n2 2 2 2 1\n2 3 1 3 2\n2 3 3 3 4\n2 3 5 4 5\n2 4 4 4 3\n2 4 2 4 1\n2 5 1 5 2\n2 5 3 5 4\n2 5 5 6 5\n2 6 4 6 3\n2 6 2 6 1\n2 7 1 7 2\n3 7 3 7 4 7 5" }, { "input": "135 91 4352", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..." }, { "input": "32 27 153", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 2 27\n2 2 26 2 25\n2 2 24 2 23\n2 2 22 2 21\n2 2 20 2 19\n2 2 18 2 17\n2 2 16 2 15\n2 2 14 2 13\n2 2 12 2 11\n2 2 10 2 9\n2 2 8 2 7\n2 2 6 2 5\n2 2 4 2 3\n2 2 2 2 1\n2 3 1 3 2\n2 3 3 3 4\n2 3 5 3 6\n2 3 7 3 8\n2 3 9 3 10\n2 3 11 3 12\n2 3 13 3 14\n2 3 15 3 16\n2 3 17 3 18\n2 3 19 3 20\n2 3 21 3 22\n2 3 23 3 24\n2 3 25 3 26\n2 3 27 4 27\n2 4 2..." }, { "input": "74 83 2667", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..." }, { "input": "296 218 5275", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..." }, { "input": "89 82 2330", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..." }, { "input": "15 68 212", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 2 68 2 67\n2 2 66 2 65\n2 2 64 2 63\n2 2 62 2 61\n2 2 60 2 59\n2 2 58 2 57\n..." }, { "input": "95 4 177", "output": "2 1 1 1 2\n2 1 3 1 4\n2 2 4 2 3\n2 2 2 2 1\n2 3 1 3 2\n2 3 3 3 4\n2 4 4 4 3\n2 4 2 4 1\n2 5 1 5 2\n2 5 3 5 4\n2 6 4 6 3\n2 6 2 6 1\n2 7 1 7 2\n2 7 3 7 4\n2 8 4 8 3\n2 8 2 8 1\n2 9 1 9 2\n2 9 3 9 4\n2 10 4 10 3\n2 10 2 10 1\n2 11 1 11 2\n2 11 3 11 4\n2 12 4 12 3\n2 12 2 12 1\n2 13 1 13 2\n2 13 3 13 4\n2 14 4 14 3\n2 14 2 14 1\n2 15 1 15 2\n2 15 3 15 4\n2 16 4 16 3\n2 16 2 16 1\n2 17 1 17 2\n2 17 3 17 4\n2 18 4 18 3\n2 18 2 18 1\n2 19 1 19 2\n2 19 3 19 4\n2 20 4 20 3\n2 20 2 20 1\n2 21 1 21 2\n2 21 3 21 4\n2..." }, { "input": "60 136 8", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n8146 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1 97 1 98 1 99..." }, { "input": "91 183 7827", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..." }, { "input": "2 15 3", "output": "2 1 1 1 2\n2 1 3 1 4\n26 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 2 15 2 14 2 13 2 12 2 11 2 10 2 9 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1" }, { "input": "139 275 10770", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..." }, { "input": "114 298 7143", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..." }, { "input": "260 182 9496", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..." }, { "input": "42 297 3703", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..." }, { "input": "236 156 9535", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..." }, { "input": "201 226 1495", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..." }, { "input": "299 299 100", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..." }, { "input": "299 298 100", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..." }, { "input": "298 299 100", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..." }, { "input": "299 299 2", "output": "2 1 1 1 2\n89399 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1 97 1 98 1 99 1 100 1 101 1 10..." }, { "input": "299 299 1", "output": "89401 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1 97 1 98 1 99 1 100 1 101 1 102 1..." }, { "input": "298 299 1", "output": "89102 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1 97 1 98 1 99 1 100 1 101 1 102 1..." }, { "input": "299 298 11", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n89082 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1 97..." }, { "input": "298 300 12", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n89378 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1..." }, { "input": "298 2 1", "output": "596 1 1 1 2 2 2 2 1 3 1 3 2 4 2 4 1 5 1 5 2 6 2 6 1 7 1 7 2 8 2 8 1 9 1 9 2 10 2 10 1 11 1 11 2 12 2 12 1 13 1 13 2 14 2 14 1 15 1 15 2 16 2 16 1 17 1 17 2 18 2 18 1 19 1 19 2 20 2 20 1 21 1 21 2 22 2 22 1 23 1 23 2 24 2 24 1 25 1 25 2 26 2 26 1 27 1 27 2 28 2 28 1 29 1 29 2 30 2 30 1 31 1 31 2 32 2 32 1 33 1 33 2 34 2 34 1 35 1 35 2 36 2 36 1 37 1 37 2 38 2 38 1 39 1 39 2 40 2 40 1 41 1 41 2 42 2 42 1 43 1 43 2 44 2 44 1 45 1 45 2 46 2 46 1 47 1 47 2 48 2 48 1 49 1 49 2 50 2 50 1 51 1 51 2 52 2 52 1 53 1 ..." }, { "input": "2 298 1", "output": "596 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1 97 1 98 1 99 1 100 1 101 1 102 1 1..." }, { "input": "300 300 500", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..." }, { "input": "300 300 501", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..." }, { "input": "300 300 44999", "output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..." }, { "input": "5 5 3", "output": "2 1 1 1 2\n2 1 3 1 4\n21 1 5 2 5 2 4 2 3 2 2 2 1 3 1 3 2 3 3 3 4 3 5 4 5 4 4 4 3 4 2 4 1 5 1 5 2 5 3 5 4 5 5" }, { "input": "2 4 3", "output": "2 1 1 1 2\n2 1 3 1 4\n4 2 4 2 3 2 2 2 1" } ]
1,646,468,944
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
14
202
16,179,200
# 2022-03-05 17:15:17.986835 # https://codeforces.com/problemset/problem/441/C import sys _DEBUG = True if not _DEBUG: input = sys.stdin.readline # print = sys.stdout.write n, m, k = map(int, input().split()) def proc(n, m, k): t = [[False] * (m + 2) for _ in range(n + 2)] for i in range(n + 2): t[i][0] = t[i][m + 1] = True for i in range(m + 2): t[0][i] = t[n + 1][i] = True paths = [] next_x = next_y = 1 for i in range(k - 1): path = [] x, y = next_x, next_y if i < k - 1: if x == n: path = [(x, y), (x, y + 1)] next_y += 2 t[x][y] = t[x][y + 1] = True else: path = [(x, y), (x + 1, y)] next_y += 1 if next_y > m: next_x += 2 next_y = 1 t[x][y] = t[x + 1][y] = True paths.append(path) t[next_x][next_y] = True dx, dy = [-1, 0, 1, 0], [0, 1, 0, -1] stack = [(next_x, next_y)] last_path = [(next_x, next_y)] while stack: x, y = stack.pop() for i in range(4): next_x, next_y = x + dx[i], y + dy[i] if t[next_x][next_y]: continue last_path.append((next_x, next_y)) t[next_x][next_y] = True stack.append((next_x, next_y)) break paths.append(last_path) return paths ans = proc(n, m, k) for path in ans: print('{} {}'.format(len(path), ' '.join(map(lambda x: '{} {}'.format(*x), path))))
Title: Valera and Tubes Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valera has got a rectangle table consisting of *n* rows and *m* columns. Valera numbered the table rows starting from one, from top to bottom and the columns – starting from one, from left to right. We will represent cell that is on the intersection of row *x* and column *y* by a pair of integers (*x*,<=*y*). Valera wants to place exactly *k* tubes on his rectangle table. A tube is such sequence of table cells (*x*1,<=*y*1), (*x*2,<=*y*2), ..., (*x**r*,<=*y**r*), that: - *r*<=≥<=2; - for any integer *i* (1<=≤<=*i*<=≤<=*r*<=-<=1) the following equation |*x**i*<=-<=*x**i*<=+<=1|<=+<=|*y**i*<=-<=*y**i*<=+<=1|<==<=1 holds; - each table cell, which belongs to the tube, must occur exactly once in the sequence. Valera thinks that the tubes are arranged in a fancy manner if the following conditions are fulfilled: - no pair of tubes has common cells; - each cell of the table belongs to some tube. Help Valera to arrange *k* tubes on his rectangle table in a fancy manner. Input Specification: The first line contains three space-separated integers *n*,<=*m*,<=*k* (2<=≤<=*n*,<=*m*<=≤<=300; 2<=≤<=2*k*<=≤<=*n*·*m*) — the number of rows, the number of columns and the number of tubes, correspondingly. Output Specification: Print *k* lines. In the *i*-th line print the description of the *i*-th tube: first print integer *r**i* (the number of tube cells), then print 2*r**i* integers *x**i*1,<=*y**i*1,<=*x**i*2,<=*y**i*2,<=...,<=*x**ir**i*,<=*y**ir**i* (the sequence of table cells). If there are multiple solutions, you can print any of them. It is guaranteed that at least one solution exists. Demo Input: ['3 3 3\n', '2 3 1\n'] Demo Output: ['3 1 1 1 2 1 3\n3 2 1 2 2 2 3\n3 3 1 3 2 3 3\n', '6 1 1 1 2 1 3 2 3 2 2 2 1\n'] Note: Picture for the first sample: Picture for the second sample:
```python # 2022-03-05 17:15:17.986835 # https://codeforces.com/problemset/problem/441/C import sys _DEBUG = True if not _DEBUG: input = sys.stdin.readline # print = sys.stdout.write n, m, k = map(int, input().split()) def proc(n, m, k): t = [[False] * (m + 2) for _ in range(n + 2)] for i in range(n + 2): t[i][0] = t[i][m + 1] = True for i in range(m + 2): t[0][i] = t[n + 1][i] = True paths = [] next_x = next_y = 1 for i in range(k - 1): path = [] x, y = next_x, next_y if i < k - 1: if x == n: path = [(x, y), (x, y + 1)] next_y += 2 t[x][y] = t[x][y + 1] = True else: path = [(x, y), (x + 1, y)] next_y += 1 if next_y > m: next_x += 2 next_y = 1 t[x][y] = t[x + 1][y] = True paths.append(path) t[next_x][next_y] = True dx, dy = [-1, 0, 1, 0], [0, 1, 0, -1] stack = [(next_x, next_y)] last_path = [(next_x, next_y)] while stack: x, y = stack.pop() for i in range(4): next_x, next_y = x + dx[i], y + dy[i] if t[next_x][next_y]: continue last_path.append((next_x, next_y)) t[next_x][next_y] = True stack.append((next_x, next_y)) break paths.append(last_path) return paths ans = proc(n, m, k) for path in ans: print('{} {}'.format(len(path), ' '.join(map(lambda x: '{} {}'.format(*x), path)))) ```
0
347
B
Fixed Points
PROGRAMMING
1,100
[ "brute force", "implementation", "math" ]
null
null
A permutation of length *n* is an integer sequence such that each integer from 0 to (*n*<=-<=1) appears exactly once in it. For example, sequence [0,<=2,<=1] is a permutation of length 3 while both [0,<=2,<=2] and [1,<=2,<=3] are not. A fixed point of a function is a point that is mapped to itself by the function. A permutation can be regarded as a bijective function. We'll get a definition of a fixed point in a permutation. An integer *i* is a fixed point of permutation *a*0,<=*a*1,<=...,<=*a**n*<=-<=1 if and only if *a**i*<==<=*i*. For example, permutation [0,<=2,<=1] has 1 fixed point and permutation [0,<=1,<=2] has 3 fixed points. You are given permutation *a*. You are allowed to swap two elements of the permutation at most once. Your task is to maximize the number of fixed points in the resulting permutation. Note that you are allowed to make at most one swap operation.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105). The second line contains *n* integers *a*0,<=*a*1,<=...,<=*a**n*<=-<=1 — the given permutation.
Print a single integer — the maximum possible number of fixed points in the permutation after at most one swap operation.
[ "5\n0 1 3 4 2\n" ]
[ "3\n" ]
none
1,000
[ { "input": "5\n0 1 3 4 2", "output": "3" }, { "input": "10\n6 9 4 7 8 2 3 5 0 1", "output": "2" }, { "input": "100\n99 5 40 32 4 31 38 57 94 47 26 16 89 72 9 80 55 86 78 90 42 41 46 74 56 97 21 48 66 27 93 85 88 59 64 95 10 45 12 22 84 60 8 98 62 51 14 65 39 30 11 71 92 19 76 43 87 54 15 53 37 6 25 18 96 35 13 91 2 3 0 23 1 7 49 75 81 33 50 52 63 44 69 36 17 61 24 20 68 34 73 29 70 83 58 79 82 28 77 67", "output": "3" }, { "input": "3\n0 1 2", "output": "3" }, { "input": "3\n2 1 0", "output": "3" }, { "input": "3\n1 2 0", "output": "1" }, { "input": "1\n0", "output": "1" }, { "input": "5\n0 1 2 3 4", "output": "5" }, { "input": "4\n0 1 2 3", "output": "4" }, { "input": "7\n0 1 2 4 3 6 5", "output": "5" }, { "input": "6\n0 1 2 3 5 4", "output": "6" } ]
1,379,692,540
1,540
Python 3
TIME_LIMIT_EXCEEDED
PRETESTS
4
2,000
512,000
n = int(input()) A = list(map(int, input().split())) B = [-1] * n k = 0 for i in range(n): if A[i] == i: k += 1 else: B[i] = A[i] if k == n: print(n) else: T = False for i in range(n): if B[i] != -1: for j in range(i, n): if B[i] == j and B[j] == i: T = True if T: print(k + 2) else: print(k + 1)
Title: Fixed Points Time Limit: None seconds Memory Limit: None megabytes Problem Description: A permutation of length *n* is an integer sequence such that each integer from 0 to (*n*<=-<=1) appears exactly once in it. For example, sequence [0,<=2,<=1] is a permutation of length 3 while both [0,<=2,<=2] and [1,<=2,<=3] are not. A fixed point of a function is a point that is mapped to itself by the function. A permutation can be regarded as a bijective function. We'll get a definition of a fixed point in a permutation. An integer *i* is a fixed point of permutation *a*0,<=*a*1,<=...,<=*a**n*<=-<=1 if and only if *a**i*<==<=*i*. For example, permutation [0,<=2,<=1] has 1 fixed point and permutation [0,<=1,<=2] has 3 fixed points. You are given permutation *a*. You are allowed to swap two elements of the permutation at most once. Your task is to maximize the number of fixed points in the resulting permutation. Note that you are allowed to make at most one swap operation. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105). The second line contains *n* integers *a*0,<=*a*1,<=...,<=*a**n*<=-<=1 — the given permutation. Output Specification: Print a single integer — the maximum possible number of fixed points in the permutation after at most one swap operation. Demo Input: ['5\n0 1 3 4 2\n'] Demo Output: ['3\n'] Note: none
```python n = int(input()) A = list(map(int, input().split())) B = [-1] * n k = 0 for i in range(n): if A[i] == i: k += 1 else: B[i] = A[i] if k == n: print(n) else: T = False for i in range(n): if B[i] != -1: for j in range(i, n): if B[i] == j and B[j] == i: T = True if T: print(k + 2) else: print(k + 1) ```
0
499
B
Lecture
PROGRAMMING
1,000
[ "implementation", "strings" ]
null
null
You have a new professor of graph theory and he speaks very quickly. You come up with the following plan to keep up with his lecture and make notes. You know two languages, and the professor is giving the lecture in the first one. The words in both languages consist of lowercase English characters, each language consists of several words. For each language, all words are distinct, i.e. they are spelled differently. Moreover, the words of these languages have a one-to-one correspondence, that is, for each word in each language, there exists exactly one word in the other language having has the same meaning. You can write down every word the professor says in either the first language or the second language. Of course, during the lecture you write down each word in the language in which the word is shorter. In case of equal lengths of the corresponding words you prefer the word of the first language. You are given the text of the lecture the professor is going to read. Find out how the lecture will be recorded in your notes.
The first line contains two integers, *n* and *m* (1<=≤<=*n*<=≤<=3000, 1<=≤<=*m*<=≤<=3000) — the number of words in the professor's lecture and the number of words in each of these languages. The following *m* lines contain the words. The *i*-th line contains two strings *a**i*, *b**i* meaning that the word *a**i* belongs to the first language, the word *b**i* belongs to the second language, and these two words have the same meaning. It is guaranteed that no word occurs in both languages, and each word occurs in its language exactly once. The next line contains *n* space-separated strings *c*1,<=*c*2,<=...,<=*c**n* — the text of the lecture. It is guaranteed that each of the strings *c**i* belongs to the set of strings {*a*1,<=*a*2,<=... *a**m*}. All the strings in the input are non-empty, each consisting of no more than 10 lowercase English letters.
Output exactly *n* words: how you will record the lecture in your notebook. Output the words of the lecture in the same order as in the input.
[ "4 3\ncodeforces codesecrof\ncontest round\nletter message\ncodeforces contest letter contest\n", "5 3\njoll wuqrd\neuzf un\nhbnyiyc rsoqqveh\nhbnyiyc joll joll euzf joll\n" ]
[ "codeforces round letter round\n", "hbnyiyc joll joll un joll\n" ]
none
500
[ { "input": "4 3\ncodeforces codesecrof\ncontest round\nletter message\ncodeforces contest letter contest", "output": "codeforces round letter round" }, { "input": "5 3\njoll wuqrd\neuzf un\nhbnyiyc rsoqqveh\nhbnyiyc joll joll euzf joll", "output": "hbnyiyc joll joll un joll" }, { "input": "5 5\nqueyqj f\nb vn\ntabzvk qpfzoqx\nytnyonoc hnxsd\njpggvr lchinjmt\nqueyqj jpggvr b ytnyonoc b", "output": "f jpggvr b hnxsd b" }, { "input": "10 22\nazbrll oen\ngh vdyayei\njphveblohx vfglv\nmfyxib jepnvhcuwo\nrpikazqj uam\nl rx\nokjenof qpnyi\nj tixqrno\nod itozmfct\nikkdxmirx ev\nqexftojc p\nkdazb zjs\nmbk ykvqjrxaxu\nhbcwhouzq pwt\nmirpsz zfaegpl\nuhkkvcj rlvwj\nef iqnnwtolrc\npjzfcpmeag ecdayth\nsa qcthz\ncbfhfxi qrnbvdryz\nwqel tj\natx smkbid\nef hbcwhouzq cbfhfxi hbcwhouzq mirpsz cbfhfxi cbfhfxi okjenof pjzfcpmeag kdazb", "output": "ef pwt cbfhfxi pwt mirpsz cbfhfxi cbfhfxi qpnyi ecdayth zjs" }, { "input": "1 1\namit am\namit", "output": "am" }, { "input": "1 1\na c\na", "output": "a" } ]
1,623,426,067
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
46
0
t1,t2 = map(int,input().strip().split()) y=[] z=[] for i in range(t2+1): x = input().strip().split() y.append(x) print(y) for i in range(len(y)-1): if len(y[i][0]) <= len(y[i][1]): z.append(y[i][0]) else: z.append(y[i][1]) op="" for ele in y[t2]: for e in range(len(y)-1): if ele in y[e][0]: op=op+' '+z[e] print(op[1:])
Title: Lecture Time Limit: None seconds Memory Limit: None megabytes Problem Description: You have a new professor of graph theory and he speaks very quickly. You come up with the following plan to keep up with his lecture and make notes. You know two languages, and the professor is giving the lecture in the first one. The words in both languages consist of lowercase English characters, each language consists of several words. For each language, all words are distinct, i.e. they are spelled differently. Moreover, the words of these languages have a one-to-one correspondence, that is, for each word in each language, there exists exactly one word in the other language having has the same meaning. You can write down every word the professor says in either the first language or the second language. Of course, during the lecture you write down each word in the language in which the word is shorter. In case of equal lengths of the corresponding words you prefer the word of the first language. You are given the text of the lecture the professor is going to read. Find out how the lecture will be recorded in your notes. Input Specification: The first line contains two integers, *n* and *m* (1<=≤<=*n*<=≤<=3000, 1<=≤<=*m*<=≤<=3000) — the number of words in the professor's lecture and the number of words in each of these languages. The following *m* lines contain the words. The *i*-th line contains two strings *a**i*, *b**i* meaning that the word *a**i* belongs to the first language, the word *b**i* belongs to the second language, and these two words have the same meaning. It is guaranteed that no word occurs in both languages, and each word occurs in its language exactly once. The next line contains *n* space-separated strings *c*1,<=*c*2,<=...,<=*c**n* — the text of the lecture. It is guaranteed that each of the strings *c**i* belongs to the set of strings {*a*1,<=*a*2,<=... *a**m*}. All the strings in the input are non-empty, each consisting of no more than 10 lowercase English letters. Output Specification: Output exactly *n* words: how you will record the lecture in your notebook. Output the words of the lecture in the same order as in the input. Demo Input: ['4 3\ncodeforces codesecrof\ncontest round\nletter message\ncodeforces contest letter contest\n', '5 3\njoll wuqrd\neuzf un\nhbnyiyc rsoqqveh\nhbnyiyc joll joll euzf joll\n'] Demo Output: ['codeforces round letter round\n', 'hbnyiyc joll joll un joll\n'] Note: none
```python t1,t2 = map(int,input().strip().split()) y=[] z=[] for i in range(t2+1): x = input().strip().split() y.append(x) print(y) for i in range(len(y)-1): if len(y[i][0]) <= len(y[i][1]): z.append(y[i][0]) else: z.append(y[i][1]) op="" for ele in y[t2]: for e in range(len(y)-1): if ele in y[e][0]: op=op+' '+z[e] print(op[1:]) ```
0
297
B
Fish Weight
PROGRAMMING
1,600
[ "constructive algorithms", "greedy" ]
null
null
It is known that there are *k* fish species in the polar ocean, numbered from 1 to *k*. They are sorted by non-decreasing order of their weight, which is a positive number. Let the weight of the *i*-th type of fish be *w**i*, then 0<=&lt;<=*w*1<=≤<=*w*2<=≤<=...<=≤<=*w**k* holds. Polar bears Alice and Bob each have caught some fish, and they are guessing who has the larger sum of weight of the fish he/she's caught. Given the type of the fish they've caught, determine whether it is possible that the fish caught by Alice has a strictly larger total weight than Bob's. In other words, does there exist a sequence of weights *w**i* (not necessary integers), such that the fish caught by Alice has a strictly larger total weight?
The first line contains three integers *n*,<=*m*,<=*k* (1<=≤<=*n*,<=*m*<=≤<=105,<=1<=≤<=*k*<=≤<=109) — the number of fish caught by Alice and Bob respectively, and the number of fish species. The second line contains *n* integers each from 1 to *k*, the list of fish type caught by Alice. The third line contains *m* integers each from 1 to *k*, the list of fish type caught by Bob. Note that one may have caught more than one fish for a same species.
Output "YES" (without quotes) if it is possible, and "NO" (without quotes) otherwise.
[ "3 3 3\n2 2 2\n1 1 3\n", "4 7 9\n5 2 7 3\n3 5 2 7 3 8 7\n" ]
[ "YES\n", "NO\n" ]
In the first sample, if *w*<sub class="lower-index">1</sub> = 1, *w*<sub class="lower-index">2</sub> = 2, *w*<sub class="lower-index">3</sub> = 2.5, then Alice has a total of 2 + 2 + 2 = 6 weight units, while Bob only has 1 + 1 + 2.5 = 4.5. In the second sample, the fish that Alice caught is a subset of Bob's. Therefore, the total weight of Bob’s fish is always not less than the total weight of Alice’s fish.
500
[ { "input": "3 3 3\n2 2 2\n1 1 3", "output": "YES" }, { "input": "4 7 9\n5 2 7 3\n3 5 2 7 3 8 7", "output": "NO" }, { "input": "5 5 10\n8 2 8 5 9\n9 1 7 5 1", "output": "YES" }, { "input": "7 7 10\n8 2 8 10 6 9 10\n2 4 9 5 6 2 5", "output": "YES" }, { "input": "15 15 10\n4 5 9 1 4 6 4 1 4 3 7 9 9 2 6\n6 6 7 7 2 9 1 6 10 9 7 10 7 10 9", "output": "NO" }, { "input": "25 25 10\n10 6 2 1 9 7 2 5 6 9 2 3 2 8 5 8 2 9 10 8 9 7 7 4 8\n6 2 10 4 7 9 3 2 4 5 1 8 6 9 8 6 9 8 4 8 7 9 10 2 8", "output": "NO" }, { "input": "50 100 10\n10 9 10 5 5 2 2 6 4 8 9 1 6 3 9 7 8 3 8 5 6 6 5 7 2 10 3 6 8 1 8 8 9 5 10 1 5 10 9 4 7 8 10 3 3 4 7 8 6 3\n5 3 2 6 4 10 2 3 1 8 8 10 1 1 4 3 9 2 9 9 8 8 7 9 4 1 1 10 5 6 3 7 2 10 2 3 3 3 7 4 1 3 1 6 7 6 1 9 1 7 6 8 6 1 3 3 3 4 3 6 7 8 2 5 4 1 4 8 3 9 7 4 10 5 3 6 3 1 4 10 3 6 1 8 4 6 10 9 6 2 8 3 7 5 3 4 10 9 1 4", "output": "NO" }, { "input": "100 50 10\n7 8 7 1 6 7 9 2 4 6 7 7 3 9 4 5 1 7 8 10 4 1 3 6 8 10 4 6 6 1 6 6 7 4 10 3 10 1 3 2 10 6 9 9 5 2 9 2 9 8 10 2 10 3 3 2 3 8 6 2 7 10 7 2 7 2 8 9 6 2 5 4 4 5 3 3 9 10 9 4 9 3 9 5 3 6 6 1 3 6 10 3 10 2 6 10 10 10 4 8\n3 3 2 9 4 4 10 2 7 3 3 2 6 3 3 4 7 4 1 2 3 8 1 6 7 7 2 10 1 1 1 5 7 7 5 1 6 8 7 5 3 7 4 6 10 5 5 5 1 9", "output": "YES" }, { "input": "2 2 1000000000\n398981840 446967516\n477651114 577011341", "output": "NO" }, { "input": "1 1 1\n1\n1", "output": "NO" }, { "input": "1 1 1000000000\n502700350\n502700349", "output": "YES" }, { "input": "1 1 1000000000\n406009709\n406009709", "output": "NO" }, { "input": "2 1 1000000000\n699573624 308238132\n308238132", "output": "YES" }, { "input": "10 10 10\n2 10 8 1 10 4 6 1 3 7\n8 1 1 5 7 1 9 10 2 3", "output": "YES" }, { "input": "5 4 5\n1 2 2 3 4\n1 3 4 5", "output": "YES" } ]
1,658,924,790
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
12
374
9,932,800
def fish(): [n, m, k] = [int(i) for i in input().split(' ')] a = [int(i) for i in input().split(' ')] b = [int(i) for i in input().split(' ')] if len(a) > len(b): print('YES') return a.sort(reverse=True) b.sort(reverse=True) cmp = 0 for i in range(len(a)): if a[i] > b[i]: cmp += 1 elif a[i] < b[i]: cmp -= 1 if cmp > 0: print('YES') return print('NO') if __name__ == '__main__': fish()
Title: Fish Weight Time Limit: None seconds Memory Limit: None megabytes Problem Description: It is known that there are *k* fish species in the polar ocean, numbered from 1 to *k*. They are sorted by non-decreasing order of their weight, which is a positive number. Let the weight of the *i*-th type of fish be *w**i*, then 0<=&lt;<=*w*1<=≤<=*w*2<=≤<=...<=≤<=*w**k* holds. Polar bears Alice and Bob each have caught some fish, and they are guessing who has the larger sum of weight of the fish he/she's caught. Given the type of the fish they've caught, determine whether it is possible that the fish caught by Alice has a strictly larger total weight than Bob's. In other words, does there exist a sequence of weights *w**i* (not necessary integers), such that the fish caught by Alice has a strictly larger total weight? Input Specification: The first line contains three integers *n*,<=*m*,<=*k* (1<=≤<=*n*,<=*m*<=≤<=105,<=1<=≤<=*k*<=≤<=109) — the number of fish caught by Alice and Bob respectively, and the number of fish species. The second line contains *n* integers each from 1 to *k*, the list of fish type caught by Alice. The third line contains *m* integers each from 1 to *k*, the list of fish type caught by Bob. Note that one may have caught more than one fish for a same species. Output Specification: Output "YES" (without quotes) if it is possible, and "NO" (without quotes) otherwise. Demo Input: ['3 3 3\n2 2 2\n1 1 3\n', '4 7 9\n5 2 7 3\n3 5 2 7 3 8 7\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first sample, if *w*<sub class="lower-index">1</sub> = 1, *w*<sub class="lower-index">2</sub> = 2, *w*<sub class="lower-index">3</sub> = 2.5, then Alice has a total of 2 + 2 + 2 = 6 weight units, while Bob only has 1 + 1 + 2.5 = 4.5. In the second sample, the fish that Alice caught is a subset of Bob's. Therefore, the total weight of Bob’s fish is always not less than the total weight of Alice’s fish.
```python def fish(): [n, m, k] = [int(i) for i in input().split(' ')] a = [int(i) for i in input().split(' ')] b = [int(i) for i in input().split(' ')] if len(a) > len(b): print('YES') return a.sort(reverse=True) b.sort(reverse=True) cmp = 0 for i in range(len(a)): if a[i] > b[i]: cmp += 1 elif a[i] < b[i]: cmp -= 1 if cmp > 0: print('YES') return print('NO') if __name__ == '__main__': fish() ```
0
365
A
Good Number
PROGRAMMING
1,100
[ "implementation" ]
null
null
Let's call a number *k*-good if it contains all digits not exceeding *k* (0,<=...,<=*k*). You've got a number *k* and an array *a* containing *n* numbers. Find out how many *k*-good numbers are in *a* (count each number every time it occurs in array *a*).
The first line contains integers *n* and *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=9). The *i*-th of the following *n* lines contains integer *a**i* without leading zeroes (1<=≤<=*a**i*<=≤<=109).
Print a single integer — the number of *k*-good numbers in *a*.
[ "10 6\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n", "2 1\n1\n10\n" ]
[ "10\n", "1\n" ]
none
500
[ { "input": "10 6\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560", "output": "10" }, { "input": "2 1\n1\n10", "output": "1" }, { "input": "1 0\n1000000000", "output": "1" }, { "input": "1 1\n1000000000", "output": "1" }, { "input": "6 0\n10\n102\n120\n1032\n1212103\n1999999", "output": "5" }, { "input": "1 3\n1000000000", "output": "0" }, { "input": "1 9\n1000000000", "output": "0" }, { "input": "1 0\n1", "output": "0" }, { "input": "1 1\n1", "output": "0" }, { "input": "1 3\n1", "output": "0" }, { "input": "1 9\n1", "output": "0" }, { "input": "2 8\n123456780\n123", "output": "1" }, { "input": "2 8\n12345678\n1230", "output": "0" }, { "input": "6 1\n10\n102\n120\n1032\n1212103\n1999999", "output": "5" }, { "input": "6 2\n10\n102\n120\n1032\n1212103\n1999999", "output": "4" }, { "input": "6 3\n10\n102\n120\n1032\n1212103\n1999999", "output": "2" }, { "input": "6 9\n10\n102\n120\n1032\n1212103\n1999999", "output": "0" }, { "input": "1 2\n2220", "output": "0" } ]
1,645,461,782
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
46
0
n, m = list(map(int,input().split())) for i in range(0, n): count = 0 list1 = list(map(int,input().split())) flag = 0 for x in list1: if(x<=0 and x>=m): flag = 1 break if(flag == 1): count += 1 print(count)
Title: Good Number Time Limit: None seconds Memory Limit: None megabytes Problem Description: Let's call a number *k*-good if it contains all digits not exceeding *k* (0,<=...,<=*k*). You've got a number *k* and an array *a* containing *n* numbers. Find out how many *k*-good numbers are in *a* (count each number every time it occurs in array *a*). Input Specification: The first line contains integers *n* and *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=9). The *i*-th of the following *n* lines contains integer *a**i* without leading zeroes (1<=≤<=*a**i*<=≤<=109). Output Specification: Print a single integer — the number of *k*-good numbers in *a*. Demo Input: ['10 6\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n', '2 1\n1\n10\n'] Demo Output: ['10\n', '1\n'] Note: none
```python n, m = list(map(int,input().split())) for i in range(0, n): count = 0 list1 = list(map(int,input().split())) flag = 0 for x in list1: if(x<=0 and x>=m): flag = 1 break if(flag == 1): count += 1 print(count) ```
0
0
none
none
none
0
[ "none" ]
null
null
Valentin participates in a show called "Shockers". The rules are quite easy: jury selects one letter which Valentin doesn't know. He should make a small speech, but every time he pronounces a word that contains the selected letter, he receives an electric shock. He can make guesses which letter is selected, but for each incorrect guess he receives an electric shock too. The show ends when Valentin guesses the selected letter correctly. Valentin can't keep in mind everything, so he could guess the selected letter much later than it can be uniquely determined and get excessive electric shocks. Excessive electric shocks are those which Valentin got after the moment the selected letter can be uniquely determined. You should find out the number of excessive electric shocks.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of actions Valentin did. The next *n* lines contain descriptions of his actions, each line contains description of one action. Each action can be of one of three types: 1. Valentin pronounced some word and didn't get an electric shock. This action is described by the string ". w" (without quotes), in which "." is a dot (ASCII-code 46), and *w* is the word that Valentin said. 1. Valentin pronounced some word and got an electric shock. This action is described by the string "! w" (without quotes), in which "!" is an exclamation mark (ASCII-code 33), and *w* is the word that Valentin said. 1. Valentin made a guess about the selected letter. This action is described by the string "? s" (without quotes), in which "?" is a question mark (ASCII-code 63), and *s* is the guess — a lowercase English letter. All words consist only of lowercase English letters. The total length of all words does not exceed 105. It is guaranteed that last action is a guess about the selected letter. Also, it is guaranteed that Valentin didn't make correct guesses about the selected letter before the last action. Moreover, it's guaranteed that if Valentin got an electric shock after pronouncing some word, then it contains the selected letter; and also if Valentin didn't get an electric shock after pronouncing some word, then it does not contain the selected letter.
Output a single integer — the number of electric shocks that Valentin could have avoided if he had told the selected letter just after it became uniquely determined.
[ "5\n! abc\n. ad\n. b\n! cd\n? c\n", "8\n! hello\n! codeforces\n? c\n. o\n? d\n? h\n. l\n? e\n", "7\n! ababahalamaha\n? a\n? b\n? a\n? b\n? a\n? h\n" ]
[ "1\n", "2\n", "0\n" ]
In the first test case after the first action it becomes clear that the selected letter is one of the following: *a*, *b*, *c*. After the second action we can note that the selected letter is not *a*. Valentin tells word "b" and doesn't get a shock. After that it is clear that the selected letter is *c*, but Valentin pronounces the word *cd* and gets an excessive electric shock. In the second test case after the first two electric shocks we understand that the selected letter is *e* or *o*. Valentin tries some words consisting of these letters and after the second word it's clear that the selected letter is *e*, but Valentin makes 3 more actions before he makes a correct hypothesis. In the third example the selected letter can be uniquely determined only when Valentin guesses it, so he didn't get excessive electric shocks.
0
[ { "input": "5\n! abc\n. ad\n. b\n! cd\n? c", "output": "1" }, { "input": "8\n! hello\n! codeforces\n? c\n. o\n? d\n? h\n. l\n? e", "output": "2" }, { "input": "7\n! ababahalamaha\n? a\n? b\n? a\n? b\n? a\n? h", "output": "0" }, { "input": "4\n! abcd\n! cdef\n? d\n? c", "output": "0" }, { "input": "1\n? q", "output": "0" }, { "input": "15\n. r\n? e\n. s\n. rw\n? y\n. fj\n. zftyd\n? r\n! wq\n? w\n? p\n. ours\n. dto\n. lbyfru\n? q", "output": "2" }, { "input": "3\n. abcdefghijklmnopqrstuvwxy\n? a\n? z", "output": "1" }, { "input": "3\n. abcdefghijklmnopqrstuvwxy\n! z\n? z", "output": "1" } ]
1,514,041,800
3,900
Python 3
WRONG_ANSWER
PRETESTS
7
61
5,939,200
n = int(input()) m = set() p = set() r = 0 h = True j = True for i in range(n): line = input().split() if line[0] == '.': for el in line[1]: m.add(el) if el in p: p.remove(el) elif line[0] == '!': if len(p) > 0: e = set() for el in p: if el not in line[1]: e.add(el) for el in e: p.remove(el) m.add(el) r += 1 for el in line[1]: if el not in m and j: p.add(el) j = False elif line[0] == '?': if i + 1 == n: p = set() p.add(line[1]) else: r += 1 m.add(line[1]) if line[1] in p: p.remove(line[1]) if (len(p) == 1)and h: r = 0 h = False print(r)
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valentin participates in a show called "Shockers". The rules are quite easy: jury selects one letter which Valentin doesn't know. He should make a small speech, but every time he pronounces a word that contains the selected letter, he receives an electric shock. He can make guesses which letter is selected, but for each incorrect guess he receives an electric shock too. The show ends when Valentin guesses the selected letter correctly. Valentin can't keep in mind everything, so he could guess the selected letter much later than it can be uniquely determined and get excessive electric shocks. Excessive electric shocks are those which Valentin got after the moment the selected letter can be uniquely determined. You should find out the number of excessive electric shocks. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of actions Valentin did. The next *n* lines contain descriptions of his actions, each line contains description of one action. Each action can be of one of three types: 1. Valentin pronounced some word and didn't get an electric shock. This action is described by the string ". w" (without quotes), in which "." is a dot (ASCII-code 46), and *w* is the word that Valentin said. 1. Valentin pronounced some word and got an electric shock. This action is described by the string "! w" (without quotes), in which "!" is an exclamation mark (ASCII-code 33), and *w* is the word that Valentin said. 1. Valentin made a guess about the selected letter. This action is described by the string "? s" (without quotes), in which "?" is a question mark (ASCII-code 63), and *s* is the guess — a lowercase English letter. All words consist only of lowercase English letters. The total length of all words does not exceed 105. It is guaranteed that last action is a guess about the selected letter. Also, it is guaranteed that Valentin didn't make correct guesses about the selected letter before the last action. Moreover, it's guaranteed that if Valentin got an electric shock after pronouncing some word, then it contains the selected letter; and also if Valentin didn't get an electric shock after pronouncing some word, then it does not contain the selected letter. Output Specification: Output a single integer — the number of electric shocks that Valentin could have avoided if he had told the selected letter just after it became uniquely determined. Demo Input: ['5\n! abc\n. ad\n. b\n! cd\n? c\n', '8\n! hello\n! codeforces\n? c\n. o\n? d\n? h\n. l\n? e\n', '7\n! ababahalamaha\n? a\n? b\n? a\n? b\n? a\n? h\n'] Demo Output: ['1\n', '2\n', '0\n'] Note: In the first test case after the first action it becomes clear that the selected letter is one of the following: *a*, *b*, *c*. After the second action we can note that the selected letter is not *a*. Valentin tells word "b" and doesn't get a shock. After that it is clear that the selected letter is *c*, but Valentin pronounces the word *cd* and gets an excessive electric shock. In the second test case after the first two electric shocks we understand that the selected letter is *e* or *o*. Valentin tries some words consisting of these letters and after the second word it's clear that the selected letter is *e*, but Valentin makes 3 more actions before he makes a correct hypothesis. In the third example the selected letter can be uniquely determined only when Valentin guesses it, so he didn't get excessive electric shocks.
```python n = int(input()) m = set() p = set() r = 0 h = True j = True for i in range(n): line = input().split() if line[0] == '.': for el in line[1]: m.add(el) if el in p: p.remove(el) elif line[0] == '!': if len(p) > 0: e = set() for el in p: if el not in line[1]: e.add(el) for el in e: p.remove(el) m.add(el) r += 1 for el in line[1]: if el not in m and j: p.add(el) j = False elif line[0] == '?': if i + 1 == n: p = set() p.add(line[1]) else: r += 1 m.add(line[1]) if line[1] in p: p.remove(line[1]) if (len(p) == 1)and h: r = 0 h = False print(r) ```
0
967
B
Watering System
PROGRAMMING
1,000
[ "math", "sortings" ]
null
null
Arkady wants to water his only flower. Unfortunately, he has a very poor watering system that was designed for $n$ flowers and so it looks like a pipe with $n$ holes. Arkady can only use the water that flows from the first hole. Arkady can block some of the holes, and then pour $A$ liters of water into the pipe. After that, the water will flow out from the non-blocked holes proportionally to their sizes $s_1, s_2, \ldots, s_n$. In other words, if the sum of sizes of non-blocked holes is $S$, and the $i$-th hole is not blocked, $\frac{s_i \cdot A}{S}$ liters of water will flow out of it. What is the minimum number of holes Arkady should block to make at least $B$ liters of water flow out of the first hole?
The first line contains three integers $n$, $A$, $B$ ($1 \le n \le 100\,000$, $1 \le B \le A \le 10^4$) — the number of holes, the volume of water Arkady will pour into the system, and the volume he wants to get out of the first hole. The second line contains $n$ integers $s_1, s_2, \ldots, s_n$ ($1 \le s_i \le 10^4$) — the sizes of the holes.
Print a single integer — the number of holes Arkady should block.
[ "4 10 3\n2 2 2 2\n", "4 80 20\n3 2 1 4\n", "5 10 10\n1000 1 1 1 1\n" ]
[ "1\n", "0\n", "4\n" ]
In the first example Arkady should block at least one hole. After that, $\frac{10 \cdot 2}{6} \approx 3.333$ liters of water will flow out of the first hole, and that suits Arkady. In the second example even without blocking any hole, $\frac{80 \cdot 3}{10} = 24$ liters will flow out of the first hole, that is not less than $20$. In the third example Arkady has to block all holes except the first to make all water flow out of the first hole.
1,000
[ { "input": "4 10 3\n2 2 2 2", "output": "1" }, { "input": "4 80 20\n3 2 1 4", "output": "0" }, { "input": "5 10 10\n1000 1 1 1 1", "output": "4" }, { "input": "10 300 100\n20 1 3 10 8 5 3 6 4 3", "output": "1" }, { "input": "10 300 100\n20 25 68 40 60 37 44 85 23 96", "output": "8" }, { "input": "1 1 1\n1", "output": "0" }, { "input": "1 2 1\n1", "output": "0" }, { "input": "2 2 2\n1 10000", "output": "1" }, { "input": "2 10000 1\n1 9999", "output": "0" } ]
1,550,671,671
2,147,483,647
Python 3
OK
TESTS
26
187
6,656,000
n,A,B=map(int,input().split()) hole=list(map(int, input().split())) h1=hole[0] s1=hole.count(h1) tong=sum(hole) S=h1*A/B hole.sort() hole.reverse() rs=0 for i in hole: if S>=tong: break if i<=tong: if i==h1: if s1==1: continue else: s1-=1 tong-=i rs+=1 print(rs)
Title: Watering System Time Limit: None seconds Memory Limit: None megabytes Problem Description: Arkady wants to water his only flower. Unfortunately, he has a very poor watering system that was designed for $n$ flowers and so it looks like a pipe with $n$ holes. Arkady can only use the water that flows from the first hole. Arkady can block some of the holes, and then pour $A$ liters of water into the pipe. After that, the water will flow out from the non-blocked holes proportionally to their sizes $s_1, s_2, \ldots, s_n$. In other words, if the sum of sizes of non-blocked holes is $S$, and the $i$-th hole is not blocked, $\frac{s_i \cdot A}{S}$ liters of water will flow out of it. What is the minimum number of holes Arkady should block to make at least $B$ liters of water flow out of the first hole? Input Specification: The first line contains three integers $n$, $A$, $B$ ($1 \le n \le 100\,000$, $1 \le B \le A \le 10^4$) — the number of holes, the volume of water Arkady will pour into the system, and the volume he wants to get out of the first hole. The second line contains $n$ integers $s_1, s_2, \ldots, s_n$ ($1 \le s_i \le 10^4$) — the sizes of the holes. Output Specification: Print a single integer — the number of holes Arkady should block. Demo Input: ['4 10 3\n2 2 2 2\n', '4 80 20\n3 2 1 4\n', '5 10 10\n1000 1 1 1 1\n'] Demo Output: ['1\n', '0\n', '4\n'] Note: In the first example Arkady should block at least one hole. After that, $\frac{10 \cdot 2}{6} \approx 3.333$ liters of water will flow out of the first hole, and that suits Arkady. In the second example even without blocking any hole, $\frac{80 \cdot 3}{10} = 24$ liters will flow out of the first hole, that is not less than $20$. In the third example Arkady has to block all holes except the first to make all water flow out of the first hole.
```python n,A,B=map(int,input().split()) hole=list(map(int, input().split())) h1=hole[0] s1=hole.count(h1) tong=sum(hole) S=h1*A/B hole.sort() hole.reverse() rs=0 for i in hole: if S>=tong: break if i<=tong: if i==h1: if s1==1: continue else: s1-=1 tong-=i rs+=1 print(rs) ```
3
337
A
Puzzles
PROGRAMMING
900
[ "greedy" ]
null
null
The end of the school year is near and Ms. Manana, the teacher, will soon have to say goodbye to a yet another class. She decided to prepare a goodbye present for her *n* students and give each of them a jigsaw puzzle (which, as wikipedia states, is a tiling puzzle that requires the assembly of numerous small, often oddly shaped, interlocking and tessellating pieces). The shop assistant told the teacher that there are *m* puzzles in the shop, but they might differ in difficulty and size. Specifically, the first jigsaw puzzle consists of *f*1 pieces, the second one consists of *f*2 pieces and so on. Ms. Manana doesn't want to upset the children, so she decided that the difference between the numbers of pieces in her presents must be as small as possible. Let *A* be the number of pieces in the largest puzzle that the teacher buys and *B* be the number of pieces in the smallest such puzzle. She wants to choose such *n* puzzles that *A*<=-<=*B* is minimum possible. Help the teacher and find the least possible value of *A*<=-<=*B*.
The first line contains space-separated integers *n* and *m* (2<=≤<=*n*<=≤<=*m*<=≤<=50). The second line contains *m* space-separated integers *f*1,<=*f*2,<=...,<=*f**m* (4<=≤<=*f**i*<=≤<=1000) — the quantities of pieces in the puzzles sold in the shop.
Print a single integer — the least possible difference the teacher can obtain.
[ "4 6\n10 12 10 7 5 22\n" ]
[ "5\n" ]
Sample 1. The class has 4 students. The shop sells 6 puzzles. If Ms. Manana buys the first four puzzles consisting of 10, 12, 10 and 7 pieces correspondingly, then the difference between the sizes of the largest and the smallest puzzle will be equal to 5. It is impossible to obtain a smaller difference. Note that the teacher can also buy puzzles 1, 3, 4 and 5 to obtain the difference 5.
500
[ { "input": "4 6\n10 12 10 7 5 22", "output": "5" }, { "input": "2 2\n4 4", "output": "0" }, { "input": "2 10\n4 5 6 7 8 9 10 11 12 12", "output": "0" }, { "input": "4 5\n818 136 713 59 946", "output": "759" }, { "input": "3 20\n446 852 783 313 549 965 40 88 86 617 479 118 768 34 47 826 366 957 463 903", "output": "13" }, { "input": "2 25\n782 633 152 416 432 825 115 97 386 357 836 310 530 413 354 373 847 882 913 682 729 582 671 674 94", "output": "3" }, { "input": "4 25\n226 790 628 528 114 64 239 279 619 39 894 763 763 847 525 93 882 697 999 643 650 244 159 884 190", "output": "31" }, { "input": "2 50\n971 889 628 39 253 157 925 694 129 516 660 272 738 319 611 816 142 717 514 392 41 105 132 676 958 118 306 768 600 685 103 857 704 346 857 309 23 718 618 161 176 379 846 834 640 468 952 878 164 997", "output": "0" }, { "input": "25 50\n582 146 750 905 313 509 402 21 488 512 32 898 282 64 579 869 37 996 377 929 975 697 666 837 311 205 116 992 533 298 648 268 54 479 792 595 152 69 267 417 184 433 894 603 988 712 24 414 301 176", "output": "412" }, { "input": "49 50\n58 820 826 960 271 294 473 102 925 318 729 672 244 914 796 646 868 6 893 882 726 203 528 498 271 195 355 459 721 680 547 147 631 116 169 804 145 996 133 559 110 257 771 476 576 251 607 314 427 886", "output": "938" }, { "input": "50 50\n374 573 323 744 190 806 485 247 628 336 491 606 702 321 991 678 337 579 86 240 993 208 668 686 855 205 363 177 719 249 896 919 782 434 59 647 787 996 286 216 636 212 546 903 958 559 544 126 608 993", "output": "937" }, { "input": "6 50\n6 8 7 8 5 4 4 5 7 8 6 5 7 4 7 7 7 8 6 4 6 6 8 8 7 7 8 7 5 8 5 4 4 7 8 4 4 6 6 6 8 7 4 7 6 6 5 8 4 7", "output": "0" }, { "input": "37 50\n14 5 11 17 8 20 19 16 20 11 17 20 16 9 14 14 13 18 11 20 8 8 8 5 19 17 6 18 10 20 9 7 12 6 14 17 4 4 10 13 7 4 11 6 20 19 12 12 15 19", "output": "12" }, { "input": "40 50\n4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4", "output": "0" }, { "input": "40 50\n17 20 43 26 41 37 14 8 30 35 30 24 43 8 42 9 41 50 41 35 27 32 35 43 28 36 31 16 5 7 23 16 14 29 8 39 12 16 36 18 49 39 33 37 38 6 6 27 23 17", "output": "31" }, { "input": "2 2\n1000 4", "output": "996" }, { "input": "2 3\n4 502 1000", "output": "498" }, { "input": "3 3\n4 1000 4", "output": "996" } ]
1,672,946,553
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
62
0
entradasnm = input().split() n = int(entradasnm[0]) m = int(entradasnm[1]) datosF = input().split() F = [] for i in datosF: F.append(int(i)) F.sort() while(n < len(F)): if(F[len(F)-2]-F[0] >= F[len(F)-1]-F[1]): print(F.pop(0)) else: print(F.pop(len(F)-1)) print(F)
Title: Puzzles Time Limit: None seconds Memory Limit: None megabytes Problem Description: The end of the school year is near and Ms. Manana, the teacher, will soon have to say goodbye to a yet another class. She decided to prepare a goodbye present for her *n* students and give each of them a jigsaw puzzle (which, as wikipedia states, is a tiling puzzle that requires the assembly of numerous small, often oddly shaped, interlocking and tessellating pieces). The shop assistant told the teacher that there are *m* puzzles in the shop, but they might differ in difficulty and size. Specifically, the first jigsaw puzzle consists of *f*1 pieces, the second one consists of *f*2 pieces and so on. Ms. Manana doesn't want to upset the children, so she decided that the difference between the numbers of pieces in her presents must be as small as possible. Let *A* be the number of pieces in the largest puzzle that the teacher buys and *B* be the number of pieces in the smallest such puzzle. She wants to choose such *n* puzzles that *A*<=-<=*B* is minimum possible. Help the teacher and find the least possible value of *A*<=-<=*B*. Input Specification: The first line contains space-separated integers *n* and *m* (2<=≤<=*n*<=≤<=*m*<=≤<=50). The second line contains *m* space-separated integers *f*1,<=*f*2,<=...,<=*f**m* (4<=≤<=*f**i*<=≤<=1000) — the quantities of pieces in the puzzles sold in the shop. Output Specification: Print a single integer — the least possible difference the teacher can obtain. Demo Input: ['4 6\n10 12 10 7 5 22\n'] Demo Output: ['5\n'] Note: Sample 1. The class has 4 students. The shop sells 6 puzzles. If Ms. Manana buys the first four puzzles consisting of 10, 12, 10 and 7 pieces correspondingly, then the difference between the sizes of the largest and the smallest puzzle will be equal to 5. It is impossible to obtain a smaller difference. Note that the teacher can also buy puzzles 1, 3, 4 and 5 to obtain the difference 5.
```python entradasnm = input().split() n = int(entradasnm[0]) m = int(entradasnm[1]) datosF = input().split() F = [] for i in datosF: F.append(int(i)) F.sort() while(n < len(F)): if(F[len(F)-2]-F[0] >= F[len(F)-1]-F[1]): print(F.pop(0)) else: print(F.pop(len(F)-1)) print(F) ```
0
270
A
Fancy Fence
PROGRAMMING
1,100
[ "geometry", "implementation", "math" ]
null
null
Emuskald needs a fence around his farm, but he is too lazy to build it himself. So he purchased a fence-building robot. He wants the fence to be a regular polygon. The robot builds the fence along a single path, but it can only make fence corners at a single angle *a*. Will the robot be able to build the fence Emuskald wants? In other words, is there a regular polygon which angles are equal to *a*?
The first line of input contains an integer *t* (0<=&lt;<=*t*<=&lt;<=180) — the number of tests. Each of the following *t* lines contains a single integer *a* (0<=&lt;<=*a*<=&lt;<=180) — the angle the robot can make corners at measured in degrees.
For each test, output on a single line "YES" (without quotes), if the robot can build a fence Emuskald wants, and "NO" (without quotes), if it is impossible.
[ "3\n30\n60\n90\n" ]
[ "NO\nYES\nYES\n" ]
In the first test case, it is impossible to build the fence, since there is no regular polygon with angle <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/df5f4b07dd5316fde165b43657b2696e2919e791.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second test case, the fence is a regular triangle, and in the last test case — a square.
500
[ { "input": "3\n30\n60\n90", "output": "NO\nYES\nYES" }, { "input": "6\n1\n2\n3\n170\n179\n25", "output": "NO\nNO\nNO\nYES\nYES\nNO" } ]
1,678,083,754
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
2
124
1,433,600
def fence(a): flag=0 for i in range(3,10000): if (((i-2)*180)//i==a): flag=1 #print(i) print("YES") break if flag==0: print("NO") t=int(input()) for i in range(t): fence(int(input()))
Title: Fancy Fence Time Limit: None seconds Memory Limit: None megabytes Problem Description: Emuskald needs a fence around his farm, but he is too lazy to build it himself. So he purchased a fence-building robot. He wants the fence to be a regular polygon. The robot builds the fence along a single path, but it can only make fence corners at a single angle *a*. Will the robot be able to build the fence Emuskald wants? In other words, is there a regular polygon which angles are equal to *a*? Input Specification: The first line of input contains an integer *t* (0<=&lt;<=*t*<=&lt;<=180) — the number of tests. Each of the following *t* lines contains a single integer *a* (0<=&lt;<=*a*<=&lt;<=180) — the angle the robot can make corners at measured in degrees. Output Specification: For each test, output on a single line "YES" (without quotes), if the robot can build a fence Emuskald wants, and "NO" (without quotes), if it is impossible. Demo Input: ['3\n30\n60\n90\n'] Demo Output: ['NO\nYES\nYES\n'] Note: In the first test case, it is impossible to build the fence, since there is no regular polygon with angle <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/df5f4b07dd5316fde165b43657b2696e2919e791.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second test case, the fence is a regular triangle, and in the last test case — a square.
```python def fence(a): flag=0 for i in range(3,10000): if (((i-2)*180)//i==a): flag=1 #print(i) print("YES") break if flag==0: print("NO") t=int(input()) for i in range(t): fence(int(input())) ```
0
32
B
Borze
PROGRAMMING
800
[ "expression parsing", "implementation" ]
B. Borze
2
256
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.
The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).
Output the decoded ternary number. It can have leading zeroes.
[ ".-.--\n", "--.\n", "-..-.--\n" ]
[ "012", "20", "1012" ]
none
1,000
[ { "input": ".-.--", "output": "012" }, { "input": "--.", "output": "20" }, { "input": "-..-.--", "output": "1012" }, { "input": "---..", "output": "210" }, { "input": "..--.---..", "output": "0020210" }, { "input": "-.....----.", "output": "10000220" }, { "input": ".", "output": "0" }, { "input": "-.", "output": "1" }, { "input": "--", "output": "2" }, { "input": "..", "output": "00" }, { "input": "--.", "output": "20" }, { "input": ".--.", "output": "020" }, { "input": ".-.-..", "output": "0110" }, { "input": "----.-.", "output": "2201" }, { "input": "-..--.-.", "output": "10201" }, { "input": "..--..--.", "output": "0020020" }, { "input": "-.-.---.--..-..-.-.-..-..-.--.", "output": "112120010111010120" }, { "input": "---.-.-.------..-..-..-..-.-..-.--.-.-..-.-.-----..-.-.", "output": "21112220010101011012011011221011" }, { "input": "-.-..--.-.-.-.-.-..-.-.-.---------.--.---..--...--.-----.-.-.-...--.-.-.---.------.--..-.--.-----.-...-..------", "output": "11020111110111222212021020002022111100201121222020012022110010222" }, { "input": "-.-..-.--.---..---.-..---.-...-.-.----..-.---.-.---..-.--.---.-.-------.---.--....----.-.---.---.---.----.-----..---.-.-.-.-----.--.-------.-..", "output": "110120210211021100112200121121012021122212120000220121212122022102111122120222110" }, { "input": ".-..-.-.---.-----.--.---...-.--.-.-....-..", "output": "01011212212021001201100010" }, { "input": ".------.-.---..--...-..-..-.-.-.--.--.-..-.--...-.-.---.-.-.------..--..-.---..----.-..-.--.---.-.----.-.---...-.-.-.-----.-.-.---.---.-.....-.-...-----.-...-.---.-..-.-----.--...---.-.-..-.--.-.---..", "output": "022201210200010101112020101200011211122200200121022010120211220121001112211121211000011002211001211012212000211101201210" }, { "input": ".-.--.---.-----.-.-----.-.-..-----..-..----..--.-.--.----..---.---..-.-.-----..-------.----..----.-..---...-----..-..-----...-..-.-.-----....---..---..-.-----...-.--...--.-.---.-.-.-.-.-...---..----.", "output": "01202122112211102210102200201202200212101122102221220022010210022101022100101122100021021012210012000201211111100210220" }, { "input": "..-.-.-.---.-.-.-..-.-..-.-.---.-------.---..-----.---....-.---.--.--.-.---.---------.-..---.-.-.--..---.---.-.---.-.-..-.-..-.-.-.----.--.-....--------.-.---..----.------.-.-.--.--.-----.-----.----", "output": "0011121111011011212221210221210001212020121222211021112002121121110110111220201000222201210220222011202022122122" }, { "input": "-..-------.------.-..--.-.-..--.-.-..-----..-.-.-..-..-..--.---..-----..---..-..--.-..-.-.---...-.....-------.---.-----.-...-.-...-.-.---.---.-----.--.--...-.--..-.-..-...-.-.-.-.---..---.-..-.-.-.-..", "output": "102221222010201102011022101110101020210221021010201011210010000222121221100110011212122120200012001101001111210211011110" }, { "input": ".-.----.-.--..-.-.-.-..----..-.-...--.-.---.---.-------..-.--..-......--.------.--.----.--...-.--.--..-----..-.....--.--.-.-.------..--------.----------..-.---.----.---.-..--..-.....-..------.--.", "output": "012201200111102200110020121212221012001000002022202022020001202002210100002020112220022220222220012122021102001000010222020" }, { "input": "------.-----.-....--.-.----.-.---.-.-..---.-.---.-----..-...-.-.---..-.-.-..-.-.-...-.-.-.----..--.------.----.-..-.--...-.-------...-.-..-.-.--.--.---..--..--------.--.-.-.---.-.-.-...----.--..-.--..", "output": "222022110002012201211102112122101001121011101110011122002022202201012000122210011011202021020022220201121111002202001200" }, { "input": "-.---...----...--.--...-.--.----", "output": "121002200020200012022" }, { "input": "--.--.--.---.--.-.---.-.-..-..--.-..---.-.....-..---.-----.--...-.-.-------.-.--.-.----.-..-.------.", "output": "202020212012111010201021100001021221200011222112012201012220" } ]
1,615,895,564
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
0
184
0
def string_splitter(s, a): output_list = [] intermediate_str = "" for i in range(len(s)): if s[i] != a: intermediate_str += s[i] if i == len(s) - 1: output_list.append(int(intermediate_str)) else: if intermediate_str: output_list.append(int(intermediate_str)) intermediate_str = "" return output_list def joiner(l, a): output_str = "" for loc in range(len(l)): if not loc == len(l) - 1: output_str += l[loc] + a output_str += l[-1] return output_str def sum_up_list(l): sum = 0 for i in l: sum += i return sum def minof(l): min = l[0] for i in l: if i < min: min = i return min def book_shelf(): l = [] a = input() i = 0 while i < len(a): if a[i] == ".": l.append(str(0)) i += 1 elif a[i] == "-": if a[i + 1] == ".": l.append(str(1)) else: l.append(str(2)) i += 2 return joiner(l, "")
Title: Borze Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet. Input Specification: The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes). Output Specification: Output the decoded ternary number. It can have leading zeroes. Demo Input: ['.-.--\n', '--.\n', '-..-.--\n'] Demo Output: ['012', '20', '1012'] Note: none
```python def string_splitter(s, a): output_list = [] intermediate_str = "" for i in range(len(s)): if s[i] != a: intermediate_str += s[i] if i == len(s) - 1: output_list.append(int(intermediate_str)) else: if intermediate_str: output_list.append(int(intermediate_str)) intermediate_str = "" return output_list def joiner(l, a): output_str = "" for loc in range(len(l)): if not loc == len(l) - 1: output_str += l[loc] + a output_str += l[-1] return output_str def sum_up_list(l): sum = 0 for i in l: sum += i return sum def minof(l): min = l[0] for i in l: if i < min: min = i return min def book_shelf(): l = [] a = input() i = 0 while i < len(a): if a[i] == ".": l.append(str(0)) i += 1 elif a[i] == "-": if a[i + 1] == ".": l.append(str(1)) else: l.append(str(2)) i += 2 return joiner(l, "") ```
0
0
none
none
none
0
[ "none" ]
null
null
Mr. Funt now lives in a country with a very specific tax laws. The total income of mr. Funt during this year is equal to *n* (*n*<=≥<=2) burles and the amount of tax he has to pay is calculated as the maximum divisor of *n* (not equal to *n*, of course). For example, if *n*<==<=6 then Funt has to pay 3 burles, while for *n*<==<=25 he needs to pay 5 and if *n*<==<=2 he pays only 1 burle. As mr. Funt is a very opportunistic person he wants to cheat a bit. In particular, he wants to split the initial *n* in several parts *n*1<=+<=*n*2<=+<=...<=+<=*n**k*<==<=*n* (here *k* is arbitrary, even *k*<==<=1 is allowed) and pay the taxes for each part separately. He can't make some part equal to 1 because it will reveal him. So, the condition *n**i*<=≥<=2 should hold for all *i* from 1 to *k*. Ostap Bender wonders, how many money Funt has to pay (i.e. minimal) if he chooses and optimal way to split *n* in parts.
The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=2·109) — the total year income of mr. Funt.
Print one integer — minimum possible number of burles that mr. Funt has to pay as a tax.
[ "4\n", "27\n" ]
[ "2\n", "3\n" ]
none
0
[ { "input": "4", "output": "2" }, { "input": "27", "output": "3" }, { "input": "3", "output": "1" }, { "input": "5", "output": "1" }, { "input": "10", "output": "2" }, { "input": "2000000000", "output": "2" }, { "input": "26", "output": "2" }, { "input": "7", "output": "1" }, { "input": "2", "output": "1" }, { "input": "11", "output": "1" }, { "input": "1000000007", "output": "1" }, { "input": "1000000009", "output": "1" }, { "input": "1999999999", "output": "3" }, { "input": "1000000011", "output": "2" }, { "input": "101", "output": "1" }, { "input": "103", "output": "1" }, { "input": "1001", "output": "3" }, { "input": "1003", "output": "3" }, { "input": "10001", "output": "3" }, { "input": "10003", "output": "3" }, { "input": "129401294", "output": "2" }, { "input": "234911024", "output": "2" }, { "input": "192483501", "output": "3" }, { "input": "1234567890", "output": "2" }, { "input": "719241201", "output": "3" }, { "input": "9", "output": "2" }, { "input": "33", "output": "2" }, { "input": "25", "output": "2" }, { "input": "15", "output": "2" }, { "input": "147", "output": "3" }, { "input": "60119912", "output": "2" }, { "input": "45", "output": "2" }, { "input": "21", "output": "2" }, { "input": "9975", "output": "2" }, { "input": "17", "output": "1" }, { "input": "99", "output": "2" }, { "input": "49", "output": "2" }, { "input": "243", "output": "2" }, { "input": "43", "output": "1" }, { "input": "39", "output": "2" }, { "input": "6", "output": "2" }, { "input": "8", "output": "2" }, { "input": "12", "output": "2" }, { "input": "13", "output": "1" }, { "input": "14", "output": "2" }, { "input": "16", "output": "2" }, { "input": "18", "output": "2" }, { "input": "19", "output": "1" }, { "input": "20", "output": "2" }, { "input": "22", "output": "2" }, { "input": "23", "output": "1" }, { "input": "24", "output": "2" }, { "input": "962", "output": "2" }, { "input": "29", "output": "1" }, { "input": "55", "output": "2" }, { "input": "125", "output": "3" }, { "input": "1999999929", "output": "2" }, { "input": "493", "output": "2" }, { "input": "10000021", "output": "2" }, { "input": "541", "output": "1" }, { "input": "187", "output": "3" }, { "input": "95", "output": "3" }, { "input": "999991817", "output": "3" }, { "input": "37998938", "output": "2" }, { "input": "1847133842", "output": "2" }, { "input": "1000000005", "output": "3" }, { "input": "19828", "output": "2" }, { "input": "998321704", "output": "2" }, { "input": "370359", "output": "3" }, { "input": "115", "output": "2" }, { "input": "200000015", "output": "3" }, { "input": "479001600", "output": "2" }, { "input": "536870912", "output": "2" }, { "input": "10759922", "output": "2" }, { "input": "1999999927", "output": "1" }, { "input": "123", "output": "3" }, { "input": "200743933", "output": "3" }, { "input": "949575615", "output": "3" }, { "input": "99990001", "output": "1" }, { "input": "715827883", "output": "1" }, { "input": "5592406", "output": "2" }, { "input": "8388609", "output": "3" }, { "input": "1908903481", "output": "3" }, { "input": "1076153021", "output": "3" }, { "input": "344472101", "output": "3" } ]
1,482,353,499
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
46
4,608,000
n = int(input()) maxdiv = 0 for a in range(1, n-1): if n%a == 0: maxdiv = maxdiv+1 print(maxdiv)
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mr. Funt now lives in a country with a very specific tax laws. The total income of mr. Funt during this year is equal to *n* (*n*<=≥<=2) burles and the amount of tax he has to pay is calculated as the maximum divisor of *n* (not equal to *n*, of course). For example, if *n*<==<=6 then Funt has to pay 3 burles, while for *n*<==<=25 he needs to pay 5 and if *n*<==<=2 he pays only 1 burle. As mr. Funt is a very opportunistic person he wants to cheat a bit. In particular, he wants to split the initial *n* in several parts *n*1<=+<=*n*2<=+<=...<=+<=*n**k*<==<=*n* (here *k* is arbitrary, even *k*<==<=1 is allowed) and pay the taxes for each part separately. He can't make some part equal to 1 because it will reveal him. So, the condition *n**i*<=≥<=2 should hold for all *i* from 1 to *k*. Ostap Bender wonders, how many money Funt has to pay (i.e. minimal) if he chooses and optimal way to split *n* in parts. Input Specification: The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=2·109) — the total year income of mr. Funt. Output Specification: Print one integer — minimum possible number of burles that mr. Funt has to pay as a tax. Demo Input: ['4\n', '27\n'] Demo Output: ['2\n', '3\n'] Note: none
```python n = int(input()) maxdiv = 0 for a in range(1, n-1): if n%a == 0: maxdiv = maxdiv+1 print(maxdiv) ```
0
4
A
Watermelon
PROGRAMMING
800
[ "brute force", "math" ]
A. Watermelon
1
64
One hot summer day Pete and his friend Billy decided to buy a watermelon. They chose the biggest and the ripest one, in their opinion. After that the watermelon was weighed, and the scales showed *w* kilos. They rushed home, dying of thirst, and decided to divide the berry, however they faced a hard problem. Pete and Billy are great fans of even numbers, that's why they want to divide the watermelon in such a way that each of the two parts weighs even number of kilos, at the same time it is not obligatory that the parts are equal. The boys are extremely tired and want to start their meal as soon as possible, that's why you should help them and find out, if they can divide the watermelon in the way they want. For sure, each of them should get a part of positive weight.
The first (and the only) input line contains integer number *w* (1<=≤<=*w*<=≤<=100) — the weight of the watermelon bought by the boys.
Print YES, if the boys can divide the watermelon into two parts, each of them weighing even number of kilos; and NO in the opposite case.
[ "8\n" ]
[ "YES\n" ]
For example, the boys can divide the watermelon into two parts of 2 and 6 kilos respectively (another variant — two parts of 4 and 4 kilos).
0
[ { "input": "8", "output": "YES" }, { "input": "5", "output": "NO" }, { "input": "4", "output": "YES" }, { "input": "3", "output": "NO" }, { "input": "2", "output": "NO" }, { "input": "1", "output": "NO" }, { "input": "7", "output": "NO" }, { "input": "6", "output": "YES" }, { "input": "10", "output": "YES" }, { "input": "9", "output": "NO" }, { "input": "53", "output": "NO" }, { "input": "77", "output": "NO" }, { "input": "32", "output": "YES" }, { "input": "44", "output": "YES" }, { "input": "98", "output": "YES" }, { "input": "99", "output": "NO" }, { "input": "90", "output": "YES" }, { "input": "67", "output": "NO" }, { "input": "100", "output": "YES" }, { "input": "88", "output": "YES" } ]
1,692,725,754
2,147,483,647
Python 3
OK
TESTS
20
92
0
def can_divide_watermelon(weight): if weight < 4: return "NO" elif weight % 2 == 0 and (weight - 2) % 2 == 0: return "YES" else: return "NO" w = int(input().strip()) result = can_divide_watermelon(w) print(result)
Title: Watermelon Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: One hot summer day Pete and his friend Billy decided to buy a watermelon. They chose the biggest and the ripest one, in their opinion. After that the watermelon was weighed, and the scales showed *w* kilos. They rushed home, dying of thirst, and decided to divide the berry, however they faced a hard problem. Pete and Billy are great fans of even numbers, that's why they want to divide the watermelon in such a way that each of the two parts weighs even number of kilos, at the same time it is not obligatory that the parts are equal. The boys are extremely tired and want to start their meal as soon as possible, that's why you should help them and find out, if they can divide the watermelon in the way they want. For sure, each of them should get a part of positive weight. Input Specification: The first (and the only) input line contains integer number *w* (1<=≤<=*w*<=≤<=100) — the weight of the watermelon bought by the boys. Output Specification: Print YES, if the boys can divide the watermelon into two parts, each of them weighing even number of kilos; and NO in the opposite case. Demo Input: ['8\n'] Demo Output: ['YES\n'] Note: For example, the boys can divide the watermelon into two parts of 2 and 6 kilos respectively (another variant — two parts of 4 and 4 kilos).
```python def can_divide_watermelon(weight): if weight < 4: return "NO" elif weight % 2 == 0 and (weight - 2) % 2 == 0: return "YES" else: return "NO" w = int(input().strip()) result = can_divide_watermelon(w) print(result) ```
3.954
7
C
Line
PROGRAMMING
1,800
[ "math", "number theory" ]
C. Line
1
256
A line on the plane is described by an equation *Ax*<=+<=*By*<=+<=*C*<==<=0. You are to find any point on this line, whose coordinates are integer numbers from <=-<=5·1018 to 5·1018 inclusive, or to find out that such points do not exist.
The first line contains three integers *A*, *B* and *C* (<=-<=2·109<=≤<=*A*,<=*B*,<=*C*<=≤<=2·109) — corresponding coefficients of the line equation. It is guaranteed that *A*2<=+<=*B*2<=&gt;<=0.
If the required point exists, output its coordinates, otherwise output -1.
[ "2 5 3\n" ]
[ "6 -3\n" ]
none
0
[ { "input": "2 5 3", "output": "6 -3" }, { "input": "0 2 3", "output": "-1" }, { "input": "931480234 -1767614767 -320146190", "output": "-98880374013340920 -52107006370101410" }, { "input": "-1548994394 -1586527767 -1203252104", "output": "-878123061596147680 857348814150663048" }, { "input": "296038088 887120955 1338330394", "output": "2114412129515872 -705593211994286" }, { "input": "1906842444 749552572 -1693767003", "output": "-1" }, { "input": "-1638453107 317016895 -430897103", "output": "-23538272620589909 -121653945000687008" }, { "input": "-1183748658 875864960 -1315510852", "output": "-97498198168399474 -131770725522871624" }, { "input": "427055698 738296578 -52640953", "output": "-1" }, { "input": "-1516373701 -584304312 -746376800", "output": "202167007852295200 -524659372900676000" }, { "input": "200000003 200000001 1", "output": "100000000 -100000001" }, { "input": "0 -1 -2", "output": "0 -2" }, { "input": "0 15 -17", "output": "-1" }, { "input": "-13 0 0", "output": "0 0" }, { "input": "-1000 0 -6", "output": "-1" }, { "input": "1233978557 804808375 539283626", "output": "3168196851074932 -4857661898189602" }, { "input": "532430220 -2899704 -328786059", "output": "-1" }, { "input": "546348890 -29226055 -341135185", "output": "50549411713300 944965544604433" }, { "input": "-1061610169 583743042 1503847115", "output": "-333340893817405 -606222356685680" }, { "input": "10273743 174653631 -628469658", "output": "-1" }, { "input": "1 2000000000 -1", "output": "1 0" }, { "input": "592707810 829317963 -753392742", "output": "-15849808632976 11327748563154" }, { "input": "1300000013 0 -800000008", "output": "-1" }, { "input": "853072 -269205 -1778980", "output": "7238140 22936620" }, { "input": "3162 56 674", "output": "-4381 247358" }, { "input": "19 -5 115", "output": "115 460" }, { "input": "7 5 -17", "output": "-34 51" }, { "input": "-1 1 -2", "output": "-2 0" }, { "input": "12453630 -163142553 -74721780", "output": "-780 -60" }, { "input": "-3416750 528845750 -93743375", "output": "-1" }, { "input": "701408733 1134903170 1836311903", "output": "-796030994547383611 491974210728665288" }, { "input": "1000000013 -1 135", "output": "0 135" }, { "input": "-2000000000 1 2000000000", "output": "0 -2000000000" }, { "input": "2000000000 -2000000000 2000000000", "output": "-1 0" }, { "input": "610684570 628836350 933504357", "output": "-1" }, { "input": "827797728 -613880705 854959653", "output": "60828197453915544 82024802605070757" }, { "input": "1044910887 -700497854 -1772517851", "output": "572270531415215165 853638173436907976" }, { "input": "1663473197 -1943214909 -399995353", "output": "90913128604458086 77825438652462521" }, { "input": "1880586355 -177315705 -478540057", "output": "-1" }, { "input": "-957757861 308710346 45337024", "output": "587450634832960 1822535171726016" }, { "input": "19999 -20000 10000", "output": "10000 10000" }, { "input": "1999999 -2000000 1000000", "output": "1000000 1000000" }, { "input": "999999999 -1000000000 500000000", "output": "500000000 500000000" }, { "input": "999999999 -2 1", "output": "-1 -499999999" }, { "input": "999999993 999999991 1", "output": "499999995 -499999996" }, { "input": "999999993 -999999997 1", "output": "-249999999 -249999998" }, { "input": "1999999993 1999999991 -1", "output": "-999999995 999999996" }, { "input": "1999999993 1999999991 -1999999997", "output": "-1999999987000000015 1999999989000000012" } ]
1,693,748,776
2,147,483,647
PyPy 3-64
RUNTIME_ERROR
TESTS
0
154
2,867,200
def gcd(a,b): if a == 0: return b if b == 0: return a if (a == 1) or (a == -1) or (b == 1) or (b == -1): return 1 return gcd(max(a, b) % min(a, b), min(a, b)) a, b, c = map(int,input().split()) d = gcd(gcd(a, b), c) a /= d b /= d c /= d if c % gcd(a, b) != 0: print(-1) else: if a <= b: if a == 1: print(-c," ",0) else: for i in range( (1 + a) / b, a): if (i * b) %a == 1: b_inv = i break print(c * (b * b_inv - 1) / a, " ", -c * b_inv) else: if b == 1: print(0, " ", -c) else: for i in range((1 + b) / a, b): if (i * b) % a == 1: a_inv = i break print(c * (a * a_inv - 1) / b, " ", -c * a_inv)
Title: Line Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: A line on the plane is described by an equation *Ax*<=+<=*By*<=+<=*C*<==<=0. You are to find any point on this line, whose coordinates are integer numbers from <=-<=5·1018 to 5·1018 inclusive, or to find out that such points do not exist. Input Specification: The first line contains three integers *A*, *B* and *C* (<=-<=2·109<=≤<=*A*,<=*B*,<=*C*<=≤<=2·109) — corresponding coefficients of the line equation. It is guaranteed that *A*2<=+<=*B*2<=&gt;<=0. Output Specification: If the required point exists, output its coordinates, otherwise output -1. Demo Input: ['2 5 3\n'] Demo Output: ['6 -3\n'] Note: none
```python def gcd(a,b): if a == 0: return b if b == 0: return a if (a == 1) or (a == -1) or (b == 1) or (b == -1): return 1 return gcd(max(a, b) % min(a, b), min(a, b)) a, b, c = map(int,input().split()) d = gcd(gcd(a, b), c) a /= d b /= d c /= d if c % gcd(a, b) != 0: print(-1) else: if a <= b: if a == 1: print(-c," ",0) else: for i in range( (1 + a) / b, a): if (i * b) %a == 1: b_inv = i break print(c * (b * b_inv - 1) / a, " ", -c * b_inv) else: if b == 1: print(0, " ", -c) else: for i in range((1 + b) / a, b): if (i * b) % a == 1: a_inv = i break print(c * (a * a_inv - 1) / b, " ", -c * a_inv) ```
-1
7
A
Kalevitch and Chess
PROGRAMMING
1,100
[ "brute force", "constructive algorithms" ]
A. Kalevitch and Chess
2
64
A famous Berland's painter Kalevitch likes to shock the public. One of his last obsessions is chess. For more than a thousand years people have been playing this old game on uninteresting, monotonous boards. Kalevitch decided to put an end to this tradition and to introduce a new attitude to chessboards. As before, the chessboard is a square-checkered board with the squares arranged in a 8<=×<=8 grid, each square is painted black or white. Kalevitch suggests that chessboards should be painted in the following manner: there should be chosen a horizontal or a vertical line of 8 squares (i.e. a row or a column), and painted black. Initially the whole chessboard is white, and it can be painted in the above described way one or more times. It is allowed to paint a square many times, but after the first time it does not change its colour any more and remains black. Kalevitch paints chessboards neatly, and it is impossible to judge by an individual square if it was painted with a vertical or a horizontal stroke. Kalevitch hopes that such chessboards will gain popularity, and he will be commissioned to paint chessboards, which will help him ensure a comfortable old age. The clients will inform him what chessboard they want to have, and the painter will paint a white chessboard meeting the client's requirements. It goes without saying that in such business one should economize on everything — for each commission he wants to know the minimum amount of strokes that he has to paint to fulfill the client's needs. You are asked to help Kalevitch with this task.
The input file contains 8 lines, each of the lines contains 8 characters. The given matrix describes the client's requirements, W character stands for a white square, and B character — for a square painted black. It is guaranteed that client's requirments can be fulfilled with a sequence of allowed strokes (vertical/column or horizontal/row).
Output the only number — the minimum amount of rows and columns that Kalevitch has to paint on the white chessboard to meet the client's requirements.
[ "WWWBWWBW\nBBBBBBBB\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\n", "WWWWWWWW\nBBBBBBBB\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\n" ]
[ "3\n", "1\n" ]
none
0
[ { "input": "WWWBWWBW\nBBBBBBBB\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW", "output": "3" }, { "input": "WWWWWWWW\nBBBBBBBB\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW", "output": "1" }, { "input": "WWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW", "output": "0" }, { "input": "BBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB", "output": "8" }, { "input": "BBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBW", "output": "14" }, { "input": "BBBBBBBB\nBBBBBBBB\nBBBBBBWB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB", "output": "14" }, { "input": "BBBBBBBB\nWBBBWBBW\nBBBBBBBB\nWBBBWBBW\nWBBBWBBW\nBBBBBBBB\nBBBBBBBB\nWBBBWBBW", "output": "9" }, { "input": "BBBBBBBB\nWBBWWWBB\nBBBBBBBB\nWBBWWWBB\nBBBBBBBB\nBBBBBBBB\nWBBWWWBB\nBBBBBBBB", "output": "9" }, { "input": "BBBBBWWB\nBBBBBBBB\nBBBBBBBB\nBBBBBWWB\nBBBBBWWB\nBBBBBWWB\nBBBBBWWB\nBBBBBWWB", "output": "8" }, { "input": "WWWWBBBB\nWWWWBBBB\nBBBBBBBB\nBBBBBBBB\nWWWWBBBB\nWWWWBBBB\nBBBBBBBB\nBBBBBBBB", "output": "8" }, { "input": "BBBBBBBB\nWBWWBBBW\nBBBBBBBB\nWBWWBBBW\nWBWWBBBW\nWBWWBBBW\nWBWWBBBW\nBBBBBBBB", "output": "7" }, { "input": "WBWWBBBW\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nWBWWBBBW\nWBWWBBBW", "output": "9" }, { "input": "BBWWBBBW\nBBBBBBBB\nBBBBBBBB\nBBWWBBBW\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB", "output": "11" }, { "input": "WWBWBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nWWBWBBBB\nBBBBBBBB\nWWBWBBBB\nBBBBBBBB", "output": "10" }, { "input": "BBBBBBBB\nBBBBBBBB\nBBBBBBBB\nWWBWBBBB\nWWBWBBBB\nBBBBBBBB\nBBBBBBBB\nWWBWBBBB", "output": "10" }, { "input": "WBBWBBBW\nWBBWBBBW\nWBBWBBBW\nWBBWBBBW\nWBBWBBBW\nBBBBBBBB\nWBBWBBBW\nWBBWBBBW", "output": "6" }, { "input": "BBBWBBBW\nBBBWBBBW\nBBBWBBBW\nBBBBBBBB\nBBBBBBBB\nBBBWBBBW\nBBBBBBBB\nBBBBBBBB", "output": "10" }, { "input": "BBBBBBBB\nBBBWBBBB\nBBBWBBBB\nBBBWBBBB\nBBBBBBBB\nBBBWBBBB\nBBBWBBBB\nBBBWBBBB", "output": "9" }, { "input": "BBBBBBBB\nWWWBBBBB\nWWWBBBBB\nBBBBBBBB\nWWWBBBBB\nWWWBBBBB\nBBBBBBBB\nBBBBBBBB", "output": "9" }, { "input": "WBBBBBWB\nBBBBBBBB\nWBBBBBWB\nWBBBBBWB\nWBBBBBWB\nWBBBBBWB\nWBBBBBWB\nBBBBBBBB", "output": "8" }, { "input": "WBBBWWBW\nWBBBWWBW\nBBBBBBBB\nWBBBWWBW\nBBBBBBBB\nWBBBWWBW\nWBBBWWBW\nWBBBWWBW", "output": "6" }, { "input": "WBBBBWBB\nBBBBBBBB\nBBBBBBBB\nWBBBBWBB\nWBBBBWBB\nBBBBBBBB\nWBBBBWBB\nBBBBBBBB", "output": "10" }, { "input": "BBBBBBBB\nBBBBBBBB\nBBBBBBBB\nWBBBWBBW\nBBBBBBBB\nBBBBBBBB\nWBBBWBBW\nBBBBBBBB", "output": "11" }, { "input": "BBBBBBBB\nBWBBBBBW\nBWBBBBBW\nBBBBBBBB\nBWBBBBBW\nBWBBBBBW\nBBBBBBBB\nBWBBBBBW", "output": "9" }, { "input": "BBBBBBBB\nBBBBBBBB\nWBBBWWWW\nBBBBBBBB\nBBBBBBBB\nWBBBWWWW\nBBBBBBBB\nBBBBBBBB", "output": "9" }, { "input": "BWBBBWWB\nBWBBBWWB\nBBBBBBBB\nBBBBBBBB\nBWBBBWWB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB", "output": "10" }, { "input": "BBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBWBBWBWB", "output": "12" }, { "input": "BWBBBBWW\nBWBBBBWW\nBWBBBBWW\nBWBBBBWW\nBBBBBBBB\nBWBBBBWW\nBWBBBBWW\nBBBBBBBB", "output": "7" }, { "input": "WWBBWWBB\nBBBBBBBB\nWWBBWWBB\nWWBBWWBB\nWWBBWWBB\nBBBBBBBB\nWWBBWWBB\nWWBBWWBB", "output": "6" }, { "input": "BWBBWWWW\nBWBBWWWW\nBWBBWWWW\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBWBBWWWW\nBBBBBBBB", "output": "7" } ]
1,621,082,744
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
92
0
a = int(input()) for i in range(a): b = str(input()) if len(b) > a: d = b b = d[1:-1] c = d[0] + str(len(b)) + d[-1] print(c) else: print(b)
Title: Kalevitch and Chess Time Limit: 2 seconds Memory Limit: 64 megabytes Problem Description: A famous Berland's painter Kalevitch likes to shock the public. One of his last obsessions is chess. For more than a thousand years people have been playing this old game on uninteresting, monotonous boards. Kalevitch decided to put an end to this tradition and to introduce a new attitude to chessboards. As before, the chessboard is a square-checkered board with the squares arranged in a 8<=×<=8 grid, each square is painted black or white. Kalevitch suggests that chessboards should be painted in the following manner: there should be chosen a horizontal or a vertical line of 8 squares (i.e. a row or a column), and painted black. Initially the whole chessboard is white, and it can be painted in the above described way one or more times. It is allowed to paint a square many times, but after the first time it does not change its colour any more and remains black. Kalevitch paints chessboards neatly, and it is impossible to judge by an individual square if it was painted with a vertical or a horizontal stroke. Kalevitch hopes that such chessboards will gain popularity, and he will be commissioned to paint chessboards, which will help him ensure a comfortable old age. The clients will inform him what chessboard they want to have, and the painter will paint a white chessboard meeting the client's requirements. It goes without saying that in such business one should economize on everything — for each commission he wants to know the minimum amount of strokes that he has to paint to fulfill the client's needs. You are asked to help Kalevitch with this task. Input Specification: The input file contains 8 lines, each of the lines contains 8 characters. The given matrix describes the client's requirements, W character stands for a white square, and B character — for a square painted black. It is guaranteed that client's requirments can be fulfilled with a sequence of allowed strokes (vertical/column or horizontal/row). Output Specification: Output the only number — the minimum amount of rows and columns that Kalevitch has to paint on the white chessboard to meet the client's requirements. Demo Input: ['WWWBWWBW\nBBBBBBBB\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\n', 'WWWWWWWW\nBBBBBBBB\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\n'] Demo Output: ['3\n', '1\n'] Note: none
```python a = int(input()) for i in range(a): b = str(input()) if len(b) > a: d = b b = d[1:-1] c = d[0] + str(len(b)) + d[-1] print(c) else: print(b) ```
-1
656
D
Rosetta Problem
PROGRAMMING
2,100
[ "*special" ]
null
null
The input contains a single integer *a* (0<=≤<=*a*<=≤<=1<=000<=000).
Output a single integer.
[ "129\n" ]
[ "1\n" ]
none
0
[ { "input": "129", "output": "1" }, { "input": "0", "output": "0" }, { "input": "4", "output": "0" }, { "input": "6", "output": "0" }, { "input": "16", "output": "0" }, { "input": "299593", "output": "7" }, { "input": "398929", "output": "4" }, { "input": "860076", "output": "1" }, { "input": "262144", "output": "1" }, { "input": "1000000", "output": "2" }, { "input": "266305", "output": "4" }, { "input": "456910", "output": "2" }, { "input": "953086", "output": "0" }, { "input": "23982", "output": "0" }, { "input": "9852", "output": "1" }, { "input": "569", "output": "2" }, { "input": "11249", "output": "1" }, { "input": "73", "output": "3" }, { "input": "2122", "output": "2" }, { "input": "6218", "output": "3" }, { "input": "33345", "output": "4" }, { "input": "42705", "output": "2" }, { "input": "121", "output": "2" }, { "input": "67", "output": "1" }, { "input": "3593", "output": "2" } ]
1,490,899,679
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
5
61
5,529,600
x = int(input()) c = 0 while(x>0): d = x % 8 c += (d == 1) x = x / 8 print(c)
Title: Rosetta Problem Time Limit: None seconds Memory Limit: None megabytes Problem Description: Input Specification: The input contains a single integer *a* (0<=≤<=*a*<=≤<=1<=000<=000). Output Specification: Output a single integer. Demo Input: ['129\n'] Demo Output: ['1\n'] Note: none
```python x = int(input()) c = 0 while(x>0): d = x % 8 c += (d == 1) x = x / 8 print(c) ```
0
236
A
Boy or Girl
PROGRAMMING
800
[ "brute force", "implementation", "strings" ]
null
null
Those days, many boys use beautiful girls' photos as avatars in forums. So it is pretty hard to tell the gender of a user at the first glance. Last year, our hero went to a forum and had a nice chat with a beauty (he thought so). After that they talked very often and eventually they became a couple in the network. But yesterday, he came to see "her" in the real world and found out "she" is actually a very strong man! Our hero is very sad and he is too tired to love again now. So he came up with a way to recognize users' genders by their user names. This is his method: if the number of distinct characters in one's user name is odd, then he is a male, otherwise she is a female. You are given the string that denotes the user name, please help our hero to determine the gender of this user by his method.
The first line contains a non-empty string, that contains only lowercase English letters — the user name. This string contains at most 100 letters.
If it is a female by our hero's method, print "CHAT WITH HER!" (without the quotes), otherwise, print "IGNORE HIM!" (without the quotes).
[ "wjmzbmr\n", "xiaodao\n", "sevenkplus\n" ]
[ "CHAT WITH HER!\n", "IGNORE HIM!\n", "CHAT WITH HER!\n" ]
For the first example. There are 6 distinct characters in "wjmzbmr". These characters are: "w", "j", "m", "z", "b", "r". So wjmzbmr is a female and you should print "CHAT WITH HER!".
500
[ { "input": "wjmzbmr", "output": "CHAT WITH HER!" }, { "input": "xiaodao", "output": "IGNORE HIM!" }, { "input": "sevenkplus", "output": "CHAT WITH HER!" }, { "input": "pezu", "output": "CHAT WITH HER!" }, { "input": "wnemlgppy", "output": "CHAT WITH HER!" }, { "input": "zcinitufxoldnokacdvtmdohsfdjepyfioyvclhmujiqwvmudbfjzxjfqqxjmoiyxrfsbvseawwoyynn", "output": "IGNORE HIM!" }, { "input": "qsxxuoynwtebujwpxwpajitiwxaxwgbcylxneqiebzfphugwkftpaikixmumkhfbjiswmvzbtiyifbx", "output": "CHAT WITH HER!" }, { "input": "qwbdfzfylckctudyjlyrtmvbidfatdoqfmrfshsqqmhzohhsczscvwzpwyoyswhktjlykumhvaounpzwpxcspxwlgt", "output": "IGNORE HIM!" }, { "input": "nuezoadauueermoeaabjrkxttkatspjsjegjcjcdmcxgodowzbwuqncfbeqlhkk", "output": "IGNORE HIM!" }, { "input": "lggvdmulrsvtuagoavstuyufhypdxfomjlzpnduulukszqnnwfvxbvxyzmleocmofwclmzz", "output": "IGNORE HIM!" }, { "input": "tgcdptnkc", "output": "IGNORE HIM!" }, { "input": "wvfgnfrzabgibzxhzsojskmnlmrokydjoexnvi", "output": "IGNORE HIM!" }, { "input": "sxtburpzskucowowebgrbovhadrrayamuwypmmxhscrujkmcgvyinp", "output": "IGNORE HIM!" }, { "input": "pjqxhvxkyeqqvyuujxhmbspatvrckhhkfloottuybjivkkhpyivcighxumavrxzxslfpggnwbtalmhysyfllznphzia", "output": "IGNORE HIM!" }, { "input": "fpellxwskyekoyvrfnuf", "output": "CHAT WITH HER!" }, { "input": "xninyvkuvakfbs", "output": "IGNORE HIM!" }, { "input": "vnxhrweyvhqufpfywdwftoyrfgrhxuamqhblkvdpxmgvphcbeeqbqssresjifwyzgfhurmamhkwupymuomak", "output": "CHAT WITH HER!" }, { "input": "kmsk", "output": "IGNORE HIM!" }, { "input": "lqonogasrkzhryjxppjyriyfxmdfubieglthyswz", "output": "CHAT WITH HER!" }, { "input": "ndormkufcrkxlihdhmcehzoimcfhqsmombnfjrlcalffq", "output": "CHAT WITH HER!" }, { "input": "zqzlnnuwcfufwujygtczfakhcpqbtxtejrbgoodychepzdphdahtxyfpmlrycyicqthsgm", "output": "IGNORE HIM!" }, { "input": "ppcpbnhwoizajrl", "output": "IGNORE HIM!" }, { "input": "sgubujztzwkzvztitssxxxwzanfmddfqvv", "output": "CHAT WITH HER!" }, { "input": "ptkyaxycecpbrjnvxcjtbqiocqcswnmicxbvhdsptbxyxswbw", "output": "IGNORE HIM!" }, { "input": "yhbtzfppwcycxqjpqdfmjnhwaogyuaxamwxpnrdrnqsgdyfvxu", "output": "CHAT WITH HER!" }, { "input": "ojjvpnkrxibyevxk", "output": "CHAT WITH HER!" }, { "input": "wjweqcrqfuollfvfbiyriijovweg", "output": "IGNORE HIM!" }, { "input": "hkdbykboclchfdsuovvpknwqr", "output": "IGNORE HIM!" }, { "input": "stjvyfrfowopwfjdveduedqylerqugykyu", "output": "IGNORE HIM!" }, { "input": "rafcaanqytfclvfdegak", "output": "CHAT WITH HER!" }, { "input": "xczn", "output": "CHAT WITH HER!" }, { "input": "arcoaeozyeawbveoxpmafxxzdjldsielp", "output": "IGNORE HIM!" }, { "input": "smdfafbyehdylhaleevhoggiurdgeleaxkeqdixyfztkuqsculgslheqfafxyghyuibdgiuwrdxfcitojxika", "output": "CHAT WITH HER!" }, { "input": "vbpfgjqnhfazmvtkpjrdasfhsuxnpiepxfrzvoh", "output": "CHAT WITH HER!" }, { "input": "dbdokywnpqnotfrhdbrzmuyoxfdtrgrzcccninbtmoqvxfatcqg", "output": "CHAT WITH HER!" }, { "input": "udlpagtpq", "output": "CHAT WITH HER!" }, { "input": "zjurevbytijifnpfuyswfchdzelxheboruwjqijxcucylysmwtiqsqqhktexcynquvcwhbjsipy", "output": "CHAT WITH HER!" }, { "input": "qagzrqjomdwhagkhrjahhxkieijyten", "output": "CHAT WITH HER!" }, { "input": "achhcfjnnfwgoufxamcqrsontgjjhgyfzuhklkmiwybnrlsvblnsrjqdytglipxsulpnphpjpoewvlusalsgovwnsngb", "output": "CHAT WITH HER!" }, { "input": "qbkjsdwpahdbbohggbclfcufqelnojoehsxxkr", "output": "CHAT WITH HER!" }, { "input": "cpvftiwgyvnlmbkadiafddpgfpvhqqvuehkypqjsoibpiudfvpkhzlfrykc", "output": "IGNORE HIM!" }, { "input": "lnpdosnceumubvk", "output": "IGNORE HIM!" }, { "input": "efrk", "output": "CHAT WITH HER!" }, { "input": "temnownneghnrujforif", "output": "IGNORE HIM!" }, { "input": "ottnneymszwbumgobazfjyxewkjakglbfflsajuzescplpcxqta", "output": "IGNORE HIM!" }, { "input": "eswpaclodzcwhgixhpyzvhdwsgneqidanbzdzszquefh", "output": "IGNORE HIM!" }, { "input": "gwntwbpj", "output": "IGNORE HIM!" }, { "input": "wuqvlbblkddeindiiswsinkfrnkxghhwunzmmvyovpqapdfbolyim", "output": "IGNORE HIM!" }, { "input": "swdqsnzmzmsyvktukaoyqsqzgfmbzhezbfaqeywgwizrwjyzquaahucjchegknqaioliqd", "output": "CHAT WITH HER!" }, { "input": "vlhrpzezawyolhbmvxbwhtjustdbqggexmzxyieihjlelvwjosmkwesfjmramsikhkupzvfgezmrqzudjcalpjacmhykhgfhrjx", "output": "IGNORE HIM!" }, { "input": "lxxwbkrjgnqjwsnflfnsdyxihmlspgivirazsbveztnkuzpaxtygidniflyjheejelnjyjvgkgvdqks", "output": "CHAT WITH HER!" }, { "input": "wpxbxzfhtdecetpljcrvpjjnllosdqirnkzesiqeukbedkayqx", "output": "CHAT WITH HER!" }, { "input": "vmzxgacicvweclaodrunmjnfwtimceetsaoickarqyrkdghcmyjgmtgsqastcktyrjgvjqimdc", "output": "CHAT WITH HER!" }, { "input": "yzlzmesxdttfcztooypjztlgxwcr", "output": "IGNORE HIM!" }, { "input": "qpbjwzwgdzmeluheirjrvzrhbmagfsjdgvzgwumjtjzecsfkrfqjasssrhhtgdqqfydlmrktlgfc", "output": "IGNORE HIM!" }, { "input": "aqzftsvezdgouyrirsxpbuvdjupnzvbhguyayeqozfzymfnepvwgblqzvmxxkxcilmsjvcgyqykpoaktjvsxbygfgsalbjoq", "output": "CHAT WITH HER!" }, { "input": "znicjjgijhrbdlnwmtjgtdgziollrfxroabfhadygnomodaembllreorlyhnehijfyjbfxucazellblegyfrzuraogadj", "output": "IGNORE HIM!" }, { "input": "qordzrdiknsympdrkgapjxokbldorpnmnpucmwakklmqenpmkom", "output": "CHAT WITH HER!" }, { "input": "wqfldgihuxfktzanyycluzhtewmwvnawqlfoavuguhygqrrxtstxwouuzzsryjqtfqo", "output": "CHAT WITH HER!" }, { "input": "vujtrrpshinkskgyknlcfckmqdrwtklkzlyipmetjvaqxdsslkskschbalmdhzsdrrjmxdltbtnxbh", "output": "IGNORE HIM!" }, { "input": "zioixjibuhrzyrbzqcdjbbhhdmpgmqykixcxoqupggaqajuzonrpzihbsogjfsrrypbiphehonyhohsbybnnukqebopppa", "output": "CHAT WITH HER!" }, { "input": "oh", "output": "CHAT WITH HER!" }, { "input": "kxqthadqesbpgpsvpbcbznxpecqrzjoilpauttzlnxvaczcqwuri", "output": "IGNORE HIM!" }, { "input": "zwlunigqnhrwirkvufqwrnwcnkqqonebrwzcshcbqqwkjxhymjjeakuzjettebciadjlkbfp", "output": "CHAT WITH HER!" }, { "input": "fjuldpuejgmggvvigkwdyzytfxzwdlofrpifqpdnhfyroginqaufwgjcbgshyyruwhofctsdaisqpjxqjmtpp", "output": "CHAT WITH HER!" }, { "input": "xiwntnheuitbtqxrmzvxmieldudakogealwrpygbxsbluhsqhtwmdlpjwzyafckrqrdduonkgo", "output": "CHAT WITH HER!" }, { "input": "mnmbupgo", "output": "IGNORE HIM!" }, { "input": "mcjehdiygkbmrbfjqwpwxidbdfelifwhstaxdapigbymmsgrhnzsdjhsqchl", "output": "IGNORE HIM!" }, { "input": "yocxrzspinchmhtmqo", "output": "CHAT WITH HER!" }, { "input": "vasvvnpymtgjirnzuynluluvmgpquskuaafwogeztfnvybblajvuuvfomtifeuzpikjrolzeeoftv", "output": "CHAT WITH HER!" }, { "input": "ecsdicrznvglwggrdbrvehwzaenzjutjydhvimtqegweurpxtjkmpcznshtrvotkvrghxhacjkedidqqzrduzad", "output": "IGNORE HIM!" }, { "input": "ubvhyaebyxoghakajqrpqpctwbrfqzli", "output": "CHAT WITH HER!" }, { "input": "gogbxfeqylxoummvgxpkoqzsmobasesxbqjjktqbwqxeiaagnnhbvepbpy", "output": "IGNORE HIM!" }, { "input": "nheihhxkbbrmlpxpxbhnpofcjmxemyvqqdbanwd", "output": "IGNORE HIM!" }, { "input": "acrzbavz", "output": "CHAT WITH HER!" }, { "input": "drvzznznvrzskftnrhvvzxcalwutxmdza", "output": "IGNORE HIM!" }, { "input": "oacwxipdfcoabhkwxqdbtowiekpnflnqhlrkustgzryvws", "output": "CHAT WITH HER!" }, { "input": "tpnwfmfsibnccvdwjvzviyvjfljupinfigfunyff", "output": "CHAT WITH HER!" }, { "input": "gavaihhamfolcndgytcsgucqdqngxkrlovpthvteacmmthoglxu", "output": "CHAT WITH HER!" }, { "input": "hsfcfvameeupldgvchmogrvwxrvsmnwxxkxoawwodtsahqvehlcw", "output": "IGNORE HIM!" }, { "input": "sbkydrscoojychxchqsuciperfroumenelgiyiwlqfwximrgdbyvkmacy", "output": "CHAT WITH HER!" }, { "input": "rhh", "output": "CHAT WITH HER!" }, { "input": "zhdouqfmlkenjzdijxdfxnlegxeuvhelo", "output": "IGNORE HIM!" }, { "input": "yufkkfwyhhvcjntsgsvpzbhqtmtgyxifqoewmuplphykmptfdebjxuaxigomjtwgtljwdjhjernkitifbomifbhysnmadtnyn", "output": "CHAT WITH HER!" }, { "input": "urigreuzpxnej", "output": "CHAT WITH HER!" } ]
1,696,404,617
2,147,483,647
Python 3
OK
TESTS
85
92
0
username = input() letter = list(set(username)) if len(letter) % 2: print('IGNORE HIM!') else: print('CHAT WITH HER!')
Title: Boy or Girl Time Limit: None seconds Memory Limit: None megabytes Problem Description: Those days, many boys use beautiful girls' photos as avatars in forums. So it is pretty hard to tell the gender of a user at the first glance. Last year, our hero went to a forum and had a nice chat with a beauty (he thought so). After that they talked very often and eventually they became a couple in the network. But yesterday, he came to see "her" in the real world and found out "she" is actually a very strong man! Our hero is very sad and he is too tired to love again now. So he came up with a way to recognize users' genders by their user names. This is his method: if the number of distinct characters in one's user name is odd, then he is a male, otherwise she is a female. You are given the string that denotes the user name, please help our hero to determine the gender of this user by his method. Input Specification: The first line contains a non-empty string, that contains only lowercase English letters — the user name. This string contains at most 100 letters. Output Specification: If it is a female by our hero's method, print "CHAT WITH HER!" (without the quotes), otherwise, print "IGNORE HIM!" (without the quotes). Demo Input: ['wjmzbmr\n', 'xiaodao\n', 'sevenkplus\n'] Demo Output: ['CHAT WITH HER!\n', 'IGNORE HIM!\n', 'CHAT WITH HER!\n'] Note: For the first example. There are 6 distinct characters in "wjmzbmr". These characters are: "w", "j", "m", "z", "b", "r". So wjmzbmr is a female and you should print "CHAT WITH HER!".
```python username = input() letter = list(set(username)) if len(letter) % 2: print('IGNORE HIM!') else: print('CHAT WITH HER!') ```
3
63
A
Sinking Ship
PROGRAMMING
900
[ "implementation", "sortings", "strings" ]
A. Sinking Ship
2
256
The ship crashed into a reef and is sinking. Now the entire crew must be evacuated. All *n* crew members have already lined up in a row (for convenience let's label them all from left to right with positive integers from 1 to *n*) and await further instructions. However, one should evacuate the crew properly, in a strict order. Specifically: The first crew members to leave the ship are rats. Then women and children (both groups have the same priority) leave the ship. After that all men are evacuated from the ship. The captain leaves the sinking ship last. If we cannot determine exactly who should leave the ship first for any two members of the crew by the rules from the previous paragraph, then the one who stands to the left in the line leaves the ship first (or in other words, the one whose number in the line is less). For each crew member we know his status as a crew member, and also his name. All crew members have different names. Determine the order in which to evacuate the crew.
The first line contains an integer *n*, which is the number of people in the crew (1<=≤<=*n*<=≤<=100). Then follow *n* lines. The *i*-th of those lines contains two words — the name of the crew member who is *i*-th in line, and his status on the ship. The words are separated by exactly one space. There are no other spaces in the line. The names consist of Latin letters, the first letter is uppercase, the rest are lowercase. The length of any name is from 1 to 10 characters. The status can have the following values: rat for a rat, woman for a woman, child for a child, man for a man, captain for the captain. The crew contains exactly one captain.
Print *n* lines. The *i*-th of them should contain the name of the crew member who must be the *i*-th one to leave the ship.
[ "6\nJack captain\nAlice woman\nCharlie man\nTeddy rat\nBob child\nJulia woman\n" ]
[ "Teddy\nAlice\nBob\nJulia\nCharlie\nJack\n" ]
none
500
[ { "input": "6\nJack captain\nAlice woman\nCharlie man\nTeddy rat\nBob child\nJulia woman", "output": "Teddy\nAlice\nBob\nJulia\nCharlie\nJack" }, { "input": "1\nA captain", "output": "A" }, { "input": "1\nAbcdefjhij captain", "output": "Abcdefjhij" }, { "input": "5\nA captain\nB man\nD woman\nC child\nE rat", "output": "E\nD\nC\nB\nA" }, { "input": "10\nCap captain\nD child\nC woman\nA woman\nE child\nMan man\nB child\nF woman\nRat rat\nRatt rat", "output": "Rat\nRatt\nD\nC\nA\nE\nB\nF\nMan\nCap" }, { "input": "5\nJoyxnkypf captain\nDxssgr woman\nKeojmnpd rat\nGdv man\nHnw man", "output": "Keojmnpd\nDxssgr\nGdv\nHnw\nJoyxnkypf" }, { "input": "11\nJue rat\nWyglbyphk rat\nGjlgu child\nGi man\nAttx rat\nTheorpkgx man\nYm rat\nX child\nB captain\nEnualf rat\nKktsgyuyv woman", "output": "Jue\nWyglbyphk\nAttx\nYm\nEnualf\nGjlgu\nX\nKktsgyuyv\nGi\nTheorpkgx\nB" }, { "input": "22\nWswwcvvm woman\nBtmfats rat\nI rat\nOcmtsnwx man\nUrcqv rat\nYghnogt woman\nWtyfc man\nWqle child\nUjfrelpu rat\nDstixj man\nAhksnio woman\nKhkvaap woman\nSjppvwm rat\nEgdmsv rat\nDank rat\nNquicjnw rat\nLh captain\nTdyaqaqln rat\nQtj rat\nTfgwijvq rat\nNbiso child\nNqthvbf woman", "output": "Btmfats\nI\nUrcqv\nUjfrelpu\nSjppvwm\nEgdmsv\nDank\nNquicjnw\nTdyaqaqln\nQtj\nTfgwijvq\nWswwcvvm\nYghnogt\nWqle\nAhksnio\nKhkvaap\nNbiso\nNqthvbf\nOcmtsnwx\nWtyfc\nDstixj\nLh" }, { "input": "36\nKqxmtwmsf child\nIze woman\nDlpr child\nK woman\nF captain\nRjwfeuhba rat\nBbv rat\nS rat\nMnmg woman\nSmzyx woman\nSr man\nQmhroracn rat\nSoqpuqock rat\nPibdq man\nIlrkrptx rat\nZaecfyqka man\nMmersfs child\nVvvocqi man\nHjeqxvq rat\nMpmb woman\nWmgu woman\nCerelmhoxi child\nA man\nDylv man\nXrdgmmtcpq woman\nXj woman\nCeh child\nOfccguo man\nNevr man\nAknkwdkq child\nBmo man\nLqo woman\nVej child\nT child\nRlijc man\nNsdtpdg woman", "output": "Rjwfeuhba\nBbv\nS\nQmhroracn\nSoqpuqock\nIlrkrptx\nHjeqxvq\nKqxmtwmsf\nIze\nDlpr\nK\nMnmg\nSmzyx\nMmersfs\nMpmb\nWmgu\nCerelmhoxi\nXrdgmmtcpq\nXj\nCeh\nAknkwdkq\nLqo\nVej\nT\nNsdtpdg\nSr\nPibdq\nZaecfyqka\nVvvocqi\nA\nDylv\nOfccguo\nNevr\nBmo\nRlijc\nF" }, { "input": "2\nA captain\nB man", "output": "B\nA" }, { "input": "2\nB woman\nA captain", "output": "B\nA" }, { "input": "2\nX child\nY captain", "output": "X\nY" }, { "input": "2\nX captain\nY rat", "output": "Y\nX" }, { "input": "6\nAbdelrhman captain\nAlice woman\nCharlie man\nTeddy rat\nBob child\nJulia woman", "output": "Teddy\nAlice\nBob\nJulia\nCharlie\nAbdelrhman" }, { "input": "4\nAratos captain\nMind child\nAman woman\nCarrot man", "output": "Mind\nAman\nCarrot\nAratos" } ]
1,693,843,342
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
60
0
n = int(input()) c = [] for _ in range(n): w, s = input().split() c.append((w, s)) c.sort(key=lambda x: ("rat", "woman", "child", "man", "captain").index(x[1])) for m in c: print(m[0])
Title: Sinking Ship Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The ship crashed into a reef and is sinking. Now the entire crew must be evacuated. All *n* crew members have already lined up in a row (for convenience let's label them all from left to right with positive integers from 1 to *n*) and await further instructions. However, one should evacuate the crew properly, in a strict order. Specifically: The first crew members to leave the ship are rats. Then women and children (both groups have the same priority) leave the ship. After that all men are evacuated from the ship. The captain leaves the sinking ship last. If we cannot determine exactly who should leave the ship first for any two members of the crew by the rules from the previous paragraph, then the one who stands to the left in the line leaves the ship first (or in other words, the one whose number in the line is less). For each crew member we know his status as a crew member, and also his name. All crew members have different names. Determine the order in which to evacuate the crew. Input Specification: The first line contains an integer *n*, which is the number of people in the crew (1<=≤<=*n*<=≤<=100). Then follow *n* lines. The *i*-th of those lines contains two words — the name of the crew member who is *i*-th in line, and his status on the ship. The words are separated by exactly one space. There are no other spaces in the line. The names consist of Latin letters, the first letter is uppercase, the rest are lowercase. The length of any name is from 1 to 10 characters. The status can have the following values: rat for a rat, woman for a woman, child for a child, man for a man, captain for the captain. The crew contains exactly one captain. Output Specification: Print *n* lines. The *i*-th of them should contain the name of the crew member who must be the *i*-th one to leave the ship. Demo Input: ['6\nJack captain\nAlice woman\nCharlie man\nTeddy rat\nBob child\nJulia woman\n'] Demo Output: ['Teddy\nAlice\nBob\nJulia\nCharlie\nJack\n'] Note: none
```python n = int(input()) c = [] for _ in range(n): w, s = input().split() c.append((w, s)) c.sort(key=lambda x: ("rat", "woman", "child", "man", "captain").index(x[1])) for m in c: print(m[0]) ```
0
486
A
Calculating Function
PROGRAMMING
800
[ "implementation", "math" ]
null
null
For a positive integer *n* let's define a function *f*: *f*(*n*)<==<=<=-<=1<=+<=2<=-<=3<=+<=..<=+<=(<=-<=1)*n**n* Your task is to calculate *f*(*n*) for a given integer *n*.
The single line contains the positive integer *n* (1<=≤<=*n*<=≤<=1015).
Print *f*(*n*) in a single line.
[ "4\n", "5\n" ]
[ "2\n", "-3\n" ]
*f*(4) =  - 1 + 2 - 3 + 4 = 2 *f*(5) =  - 1 + 2 - 3 + 4 - 5 =  - 3
500
[ { "input": "4", "output": "2" }, { "input": "5", "output": "-3" }, { "input": "1000000000", "output": "500000000" }, { "input": "1000000001", "output": "-500000001" }, { "input": "1000000000000000", "output": "500000000000000" }, { "input": "100", "output": "50" }, { "input": "101", "output": "-51" }, { "input": "102", "output": "51" }, { "input": "103", "output": "-52" }, { "input": "104", "output": "52" }, { "input": "105", "output": "-53" }, { "input": "106", "output": "53" }, { "input": "107", "output": "-54" }, { "input": "108", "output": "54" }, { "input": "109", "output": "-55" }, { "input": "208170109961052", "output": "104085054980526" }, { "input": "46017661651072", "output": "23008830825536" }, { "input": "4018154546667", "output": "-2009077273334" }, { "input": "288565475053", "output": "-144282737527" }, { "input": "3052460231", "output": "-1526230116" }, { "input": "29906716", "output": "14953358" }, { "input": "87897701693326", "output": "43948850846663" }, { "input": "8240", "output": "4120" }, { "input": "577935", "output": "-288968" }, { "input": "62", "output": "31" }, { "input": "1", "output": "-1" }, { "input": "2", "output": "1" }, { "input": "9999999999999", "output": "-5000000000000" }, { "input": "1000000000000", "output": "500000000000" }, { "input": "99999999999999", "output": "-50000000000000" }, { "input": "999999999999999", "output": "-500000000000000" }, { "input": "42191359342", "output": "21095679671" }, { "input": "100000000000000", "output": "50000000000000" }, { "input": "145645214654154", "output": "72822607327077" }, { "input": "4294967296", "output": "2147483648" }, { "input": "3037000499", "output": "-1518500250" }, { "input": "10000000000001", "output": "-5000000000001" }, { "input": "100000017040846", "output": "50000008520423" }, { "input": "98979894985999", "output": "-49489947493000" } ]
1,696,683,908
2,147,483,647
PyPy 3-64
TIME_LIMIT_EXCEEDED
TESTS
2
1,000
1,536,000
n = int(input()) result = 0 for i in range(n): if (i+1) % 2 == 0: result += (i+1) else: result -= (i+1) print(result)
Title: Calculating Function Time Limit: None seconds Memory Limit: None megabytes Problem Description: For a positive integer *n* let's define a function *f*: *f*(*n*)<==<=<=-<=1<=+<=2<=-<=3<=+<=..<=+<=(<=-<=1)*n**n* Your task is to calculate *f*(*n*) for a given integer *n*. Input Specification: The single line contains the positive integer *n* (1<=≤<=*n*<=≤<=1015). Output Specification: Print *f*(*n*) in a single line. Demo Input: ['4\n', '5\n'] Demo Output: ['2\n', '-3\n'] Note: *f*(4) =  - 1 + 2 - 3 + 4 = 2 *f*(5) =  - 1 + 2 - 3 + 4 - 5 =  - 3
```python n = int(input()) result = 0 for i in range(n): if (i+1) % 2 == 0: result += (i+1) else: result -= (i+1) print(result) ```
0
994
B
Knights of a Polygonal Table
PROGRAMMING
1,400
[ "greedy", "implementation", "sortings" ]
null
null
Unlike Knights of a Round Table, Knights of a Polygonal Table deprived of nobility and happy to kill each other. But each knight has some power and a knight can kill another knight if and only if his power is greater than the power of victim. However, even such a knight will torment his conscience, so he can kill no more than $k$ other knights. Also, each knight has some number of coins. After a kill, a knight can pick up all victim's coins. Now each knight ponders: how many coins he can have if only he kills other knights? You should answer this question for each knight.
The first line contains two integers $n$ and $k$ $(1 \le n \le 10^5, 0 \le k \le \min(n-1,10))$ — the number of knights and the number $k$ from the statement. The second line contains $n$ integers $p_1, p_2 ,\ldots,p_n$ $(1 \le p_i \le 10^9)$ — powers of the knights. All $p_i$ are distinct. The third line contains $n$ integers $c_1, c_2 ,\ldots,c_n$ $(0 \le c_i \le 10^9)$ — the number of coins each knight has.
Print $n$ integers — the maximum number of coins each knight can have it only he kills other knights.
[ "4 2\n4 5 9 7\n1 2 11 33\n", "5 1\n1 2 3 4 5\n1 2 3 4 5\n", "1 0\n2\n3\n" ]
[ "1 3 46 36 ", "1 3 5 7 9 ", "3 " ]
Consider the first example. - The first knight is the weakest, so he can't kill anyone. That leaves him with the only coin he initially has. - The second knight can kill the first knight and add his coin to his own two. - The third knight is the strongest, but he can't kill more than $k = 2$ other knights. It is optimal to kill the second and the fourth knights: $2+11+33 = 46$. - The fourth knight should kill the first and the second knights: $33+1+2 = 36$. In the second example the first knight can't kill anyone, while all the others should kill the one with the index less by one than their own. In the third example there is only one knight, so he can't kill anyone.
1,000
[ { "input": "4 2\n4 5 9 7\n1 2 11 33", "output": "1 3 46 36 " }, { "input": "5 1\n1 2 3 4 5\n1 2 3 4 5", "output": "1 3 5 7 9 " }, { "input": "1 0\n2\n3", "output": "3 " }, { "input": "7 1\n2 3 4 5 7 8 9\n0 3 7 9 5 8 9", "output": "0 3 10 16 14 17 18 " }, { "input": "7 2\n2 4 6 7 8 9 10\n10 8 4 8 4 5 9", "output": "10 18 22 26 22 23 27 " }, { "input": "11 10\n1 2 3 4 5 6 7 8 9 10 11\n1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000", "output": "1000000000 2000000000 3000000000 4000000000 5000000000 6000000000 7000000000 8000000000 9000000000 10000000000 11000000000 " }, { "input": "2 0\n2 3\n3 3", "output": "3 3 " }, { "input": "7 3\n1 2 3 4 5 6 7\n3 3 3 4 5 6 7", "output": "3 6 9 13 15 18 22 " }, { "input": "3 0\n3 2 1\n1 2 3", "output": "1 2 3 " }, { "input": "5 3\n4 5 7 9 11\n10 10 10 10 10", "output": "10 20 30 40 40 " }, { "input": "4 0\n4 5 9 7\n1 2 11 33", "output": "1 2 11 33 " }, { "input": "7 3\n1 2 3 4 5 6 7\n3 3 3 8 8 8 8", "output": "3 6 9 17 22 27 32 " }, { "input": "3 0\n1 2 3\n5 5 5", "output": "5 5 5 " }, { "input": "4 2\n4 5 9 7\n2 2 11 33", "output": "2 4 46 37 " }, { "input": "6 3\n1 2 3 4 5 6\n1 1 1 1 1 1", "output": "1 2 3 4 4 4 " }, { "input": "10 5\n1 2 3 4 5 6 7 8 9 10\n1 1 1 1 1 1 1 1 1 1", "output": "1 2 3 4 5 6 6 6 6 6 " }, { "input": "3 2\n1 2 3\n1 1 1", "output": "1 2 3 " }, { "input": "3 0\n1 2 3\n10 20 30", "output": "10 20 30 " }, { "input": "4 0\n4 5 9 7\n1 2 3 4", "output": "1 2 3 4 " }, { "input": "5 4\n1 2 3 4 5\n1 1 1 1 1", "output": "1 2 3 4 5 " }, { "input": "4 3\n1 2 3 4\n5 5 5 5", "output": "5 10 15 20 " }, { "input": "5 3\n1 2 3 4 5\n7 7 7 7 7", "output": "7 14 21 28 28 " } ]
1,587,283,597
2,147,483,647
PyPy 3
OK
TESTS
73
701
19,763,200
n,k=map(int,input().split()) a=list(map(int,input().split())) b=list(map(int,input().split())) d={} l=[] for i in range(n): x=a[i] y=b[i] l.append((x,y)) l.sort() ans=[] j=0 if k==0: print(*b) else: for i in range(n): if i<k: ans.append(l[i][1]) ans.sort() d[l[i][0]]=sum(ans) else: d[l[i][0]]=sum(ans)+l[i][1] if min(ans)<l[i][1]: ind=ans.index(min(ans)) ans[ind]=l[i][1] for i in range(n): print(d[a[i]],end=' ')
Title: Knights of a Polygonal Table Time Limit: None seconds Memory Limit: None megabytes Problem Description: Unlike Knights of a Round Table, Knights of a Polygonal Table deprived of nobility and happy to kill each other. But each knight has some power and a knight can kill another knight if and only if his power is greater than the power of victim. However, even such a knight will torment his conscience, so he can kill no more than $k$ other knights. Also, each knight has some number of coins. After a kill, a knight can pick up all victim's coins. Now each knight ponders: how many coins he can have if only he kills other knights? You should answer this question for each knight. Input Specification: The first line contains two integers $n$ and $k$ $(1 \le n \le 10^5, 0 \le k \le \min(n-1,10))$ — the number of knights and the number $k$ from the statement. The second line contains $n$ integers $p_1, p_2 ,\ldots,p_n$ $(1 \le p_i \le 10^9)$ — powers of the knights. All $p_i$ are distinct. The third line contains $n$ integers $c_1, c_2 ,\ldots,c_n$ $(0 \le c_i \le 10^9)$ — the number of coins each knight has. Output Specification: Print $n$ integers — the maximum number of coins each knight can have it only he kills other knights. Demo Input: ['4 2\n4 5 9 7\n1 2 11 33\n', '5 1\n1 2 3 4 5\n1 2 3 4 5\n', '1 0\n2\n3\n'] Demo Output: ['1 3 46 36 ', '1 3 5 7 9 ', '3 '] Note: Consider the first example. - The first knight is the weakest, so he can't kill anyone. That leaves him with the only coin he initially has. - The second knight can kill the first knight and add his coin to his own two. - The third knight is the strongest, but he can't kill more than $k = 2$ other knights. It is optimal to kill the second and the fourth knights: $2+11+33 = 46$. - The fourth knight should kill the first and the second knights: $33+1+2 = 36$. In the second example the first knight can't kill anyone, while all the others should kill the one with the index less by one than their own. In the third example there is only one knight, so he can't kill anyone.
```python n,k=map(int,input().split()) a=list(map(int,input().split())) b=list(map(int,input().split())) d={} l=[] for i in range(n): x=a[i] y=b[i] l.append((x,y)) l.sort() ans=[] j=0 if k==0: print(*b) else: for i in range(n): if i<k: ans.append(l[i][1]) ans.sort() d[l[i][0]]=sum(ans) else: d[l[i][0]]=sum(ans)+l[i][1] if min(ans)<l[i][1]: ind=ans.index(min(ans)) ans[ind]=l[i][1] for i in range(n): print(d[a[i]],end=' ') ```
3
627
A
XOR Equation
PROGRAMMING
1,700
[ "dp", "math" ]
null
null
Two positive integers *a* and *b* have a sum of *s* and a bitwise XOR of *x*. How many possible values are there for the ordered pair (*a*,<=*b*)?
The first line of the input contains two integers *s* and *x* (2<=≤<=*s*<=≤<=1012, 0<=≤<=*x*<=≤<=1012), the sum and bitwise xor of the pair of positive integers, respectively.
Print a single integer, the number of solutions to the given conditions. If no solutions exist, print 0.
[ "9 5\n", "3 3\n", "5 2\n" ]
[ "4\n", "2\n", "0\n" ]
In the first sample, we have the following solutions: (2, 7), (3, 6), (6, 3), (7, 2). In the second sample, the only solutions are (1, 2) and (2, 1).
500
[ { "input": "9 5", "output": "4" }, { "input": "3 3", "output": "2" }, { "input": "5 2", "output": "0" }, { "input": "6 0", "output": "1" }, { "input": "549755813887 549755813887", "output": "549755813886" }, { "input": "2 0", "output": "1" }, { "input": "2 2", "output": "0" }, { "input": "433864631347 597596794426", "output": "0" }, { "input": "80 12", "output": "4" }, { "input": "549755813888 549755813886", "output": "274877906944" }, { "input": "643057379466 24429729346", "output": "2048" }, { "input": "735465350041 356516240229", "output": "32768" }, { "input": "608032203317 318063018433", "output": "4096" }, { "input": "185407964720 148793115916", "output": "16384" }, { "input": "322414792152 285840263184", "output": "4096" }, { "input": "547616456703 547599679487", "output": "68719476736" }, { "input": "274861129991 274861129463", "output": "34359738368" }, { "input": "549688705887 549688703839", "output": "34359738368" }, { "input": "412182675455 412182609919", "output": "68719476736" }, { "input": "552972910589 546530328573", "output": "17179869184" }, { "input": "274869346299 274869346299", "output": "8589934590" }, { "input": "341374319077 341374319077", "output": "134217726" }, { "input": "232040172650 232040172650", "output": "65534" }, { "input": "322373798090 322373798090", "output": "1048574" }, { "input": "18436 18436", "output": "6" }, { "input": "137707749376 137707749376", "output": "30" }, { "input": "9126813696 9126813696", "output": "6" }, { "input": "419432708 419432708", "output": "62" }, { "input": "1839714 248080", "output": "128" }, { "input": "497110 38", "output": "8" }, { "input": "1420572 139928", "output": "64" }, { "input": "583545 583545", "output": "4094" }, { "input": "33411 33411", "output": "30" }, { "input": "66068 66068", "output": "14" }, { "input": "320 320", "output": "2" }, { "input": "1530587 566563", "output": "256" }, { "input": "1988518 108632", "output": "128" }, { "input": "915425594051 155160267299", "output": "0" }, { "input": "176901202458 21535662096", "output": "0" }, { "input": "865893190664 224852444148", "output": "32768" }, { "input": "297044970199 121204864", "output": "0" }, { "input": "241173201018 236676464482", "output": "0" }, { "input": "1582116 139808", "output": "0" }, { "input": "1707011 656387", "output": "0" }, { "input": "169616 132704", "output": "32" }, { "input": "2160101 553812", "output": "0" }, { "input": "1322568 271816", "output": "0" }, { "input": "228503520839 471917524248", "output": "0" }, { "input": "32576550340 504864993495", "output": "0" }, { "input": "910648542843 537125462055", "output": "0" }, { "input": "751720572344 569387893618", "output": "0" }, { "input": "629791564846 602334362179", "output": "0" }, { "input": "1000000000000 1000000000000", "output": "8190" }, { "input": "1000000000000 999999999999", "output": "0" }, { "input": "1000000000000 4", "output": "0" }, { "input": "1000000000000 4096", "output": "2" }, { "input": "3 1", "output": "0" }, { "input": "2097152 0", "output": "1" }, { "input": "40 390", "output": "0" }, { "input": "22212 39957", "output": "0" }, { "input": "128 36", "output": "0" }, { "input": "14 4", "output": "0" }, { "input": "6 2", "output": "0" }, { "input": "43 18467", "output": "0" }, { "input": "7 1", "output": "0" }, { "input": "7 5", "output": "0" }, { "input": "251059 79687", "output": "0" }, { "input": "17 7", "output": "0" }, { "input": "4 6", "output": "0" }, { "input": "2 4", "output": "0" }, { "input": "3 7", "output": "0" } ]
1,627,467,045
2,147,483,647
Python 3
OK
TESTS
71
77
6,963,200
def func(S,X): if S - X < 0 : return 0 elif (S - X) % 2: return 0 nd = (S - X) // 2 c = 0 while X: if X & 1: if nd & 1: return 0 c += 1 X >>= 1 nd >>= 1 return 2 ** c S,X = map(int,input().split()) print(func(S,X) - 2*(S == X))
Title: XOR Equation Time Limit: None seconds Memory Limit: None megabytes Problem Description: Two positive integers *a* and *b* have a sum of *s* and a bitwise XOR of *x*. How many possible values are there for the ordered pair (*a*,<=*b*)? Input Specification: The first line of the input contains two integers *s* and *x* (2<=≤<=*s*<=≤<=1012, 0<=≤<=*x*<=≤<=1012), the sum and bitwise xor of the pair of positive integers, respectively. Output Specification: Print a single integer, the number of solutions to the given conditions. If no solutions exist, print 0. Demo Input: ['9 5\n', '3 3\n', '5 2\n'] Demo Output: ['4\n', '2\n', '0\n'] Note: In the first sample, we have the following solutions: (2, 7), (3, 6), (6, 3), (7, 2). In the second sample, the only solutions are (1, 2) and (2, 1).
```python def func(S,X): if S - X < 0 : return 0 elif (S - X) % 2: return 0 nd = (S - X) // 2 c = 0 while X: if X & 1: if nd & 1: return 0 c += 1 X >>= 1 nd >>= 1 return 2 ** c S,X = map(int,input().split()) print(func(S,X) - 2*(S == X)) ```
3
915
C
Permute Digits
PROGRAMMING
1,700
[ "dp", "greedy" ]
null
null
You are given two positive integer numbers *a* and *b*. Permute (change order) of the digits of *a* to construct maximal number not exceeding *b*. No number in input and/or output can start with the digit 0. It is allowed to leave *a* as it is.
The first line contains integer *a* (1<=≤<=*a*<=≤<=1018). The second line contains integer *b* (1<=≤<=*b*<=≤<=1018). Numbers don't have leading zeroes. It is guaranteed that answer exists.
Print the maximum possible number that is a permutation of digits of *a* and is not greater than *b*. The answer can't have any leading zeroes. It is guaranteed that the answer exists. The number in the output should have exactly the same length as number *a*. It should be a permutation of digits of *a*.
[ "123\n222\n", "3921\n10000\n", "4940\n5000\n" ]
[ "213\n", "9321\n", "4940\n" ]
none
0
[ { "input": "123\n222", "output": "213" }, { "input": "3921\n10000", "output": "9321" }, { "input": "4940\n5000", "output": "4940" }, { "input": "23923472834\n23589234723", "output": "23498743322" }, { "input": "102391019\n491010301", "output": "399211100" }, { "input": "123456789123456789\n276193619183618162", "output": "276193618987554432" }, { "input": "1000000000000000000\n1000000000000000000", "output": "1000000000000000000" }, { "input": "1\n1000000000000000000", "output": "1" }, { "input": "999999999999999999\n1000000000000000000", "output": "999999999999999999" }, { "input": "2475345634895\n3455834583479", "output": "3455834579642" }, { "input": "15778899\n98715689", "output": "98598771" }, { "input": "4555\n5454", "output": "4555" }, { "input": "122112\n221112", "output": "221112" }, { "input": "199999999999991\n191000000000000", "output": "119999999999999" }, { "input": "13\n31", "output": "31" }, { "input": "212\n211", "output": "122" }, { "input": "222234\n322223", "output": "243222" }, { "input": "123456789\n987654311", "output": "987654231" }, { "input": "20123\n21022", "output": "20321" }, { "input": "10101\n11000", "output": "10110" }, { "input": "592\n924", "output": "592" }, { "input": "5654456\n5634565", "output": "5566544" }, { "input": "655432\n421631", "output": "365542" }, { "input": "200\n200", "output": "200" }, { "input": "123456789987654321\n121111111111111111", "output": "119988776655443322" }, { "input": "12345\n21344", "output": "15432" }, { "input": "120\n200", "output": "120" }, { "input": "123\n212", "output": "132" }, { "input": "2184645\n5213118", "output": "5186442" }, { "input": "9912346\n9912345", "output": "9694321" }, { "input": "5003\n5000", "output": "3500" }, { "input": "12345\n31234", "output": "25431" }, { "input": "5001\n5000", "output": "1500" }, { "input": "53436\n53425", "output": "53364" }, { "input": "9329\n3268", "output": "2993" }, { "input": "1234567890\n9000000001", "output": "8976543210" }, { "input": "321\n212", "output": "132" }, { "input": "109823464\n901234467", "output": "896443210" }, { "input": "6543\n6542", "output": "6534" }, { "input": "555441\n555100", "output": "554541" }, { "input": "472389479\n327489423", "output": "327487994" }, { "input": "45645643756464352\n53465475637456247", "output": "53465475636654442" }, { "input": "254\n599", "output": "542" }, { "input": "5232222345652321\n5000000000000000", "output": "4655533322222221" }, { "input": "201\n200", "output": "120" }, { "input": "14362799391220361\n45160821596433661", "output": "43999766332221110" }, { "input": "3453\n5304", "output": "4533" }, { "input": "989\n998", "output": "998" }, { "input": "5200000000234\n5200000000311", "output": "5200000000243" }, { "input": "5555132\n1325442", "output": "1255553" }, { "input": "123\n211", "output": "132" }, { "input": "65689\n66123", "output": "65986" }, { "input": "123451234567890\n123456789012345", "output": "123456789012345" }, { "input": "22115\n22015", "output": "21521" }, { "input": "123\n311", "output": "231" }, { "input": "12222\n21111", "output": "12222" }, { "input": "765\n567", "output": "567" }, { "input": "9087645\n9087640", "output": "9087564" }, { "input": "1111111122222333\n2220000000000000", "output": "2213332221111111" }, { "input": "7901\n7108", "output": "7091" }, { "input": "215489\n215488", "output": "214985" }, { "input": "102\n200", "output": "120" }, { "input": "19260817\n20011213", "output": "19876210" }, { "input": "12345\n53200", "output": "53142" }, { "input": "1040003001\n1040003000", "output": "1040001300" }, { "input": "295\n924", "output": "592" }, { "input": "20000000000000001\n20000000000000000", "output": "12000000000000000" }, { "input": "99988877\n99887766", "output": "99879887" }, { "input": "12\n12", "output": "12" }, { "input": "199999999999999999\n900000000000000000", "output": "199999999999999999" }, { "input": "1234\n4310", "output": "4231" }, { "input": "100011\n100100", "output": "100011" }, { "input": "328899\n328811", "output": "299883" }, { "input": "646722972346\n397619201220", "output": "397476664222" }, { "input": "1203\n1200", "output": "1032" }, { "input": "1\n2", "output": "1" }, { "input": "1112\n2110", "output": "1211" }, { "input": "4545\n5540", "output": "5454" }, { "input": "3053\n5004", "output": "3530" }, { "input": "3503\n5004", "output": "3530" }, { "input": "351731653766064847\n501550303749042658", "output": "501548777666643331" }, { "input": "10123456789013451\n26666666666666666", "output": "26598754433111100" }, { "input": "1110111\n1100000", "output": "1011111" }, { "input": "30478\n32265", "output": "30874" }, { "input": "456546546549874615\n441554543131214545", "output": "441554498766665554" }, { "input": "214\n213", "output": "142" }, { "input": "415335582799619283\n133117803602859310", "output": "132999887655543321" }, { "input": "787\n887", "output": "877" }, { "input": "3333222288889999\n3333222288881111", "output": "3332999988883222" }, { "input": "495779862481416791\n836241745208800994", "output": "829998777665444111" }, { "input": "139\n193", "output": "193" }, { "input": "9568\n6500", "output": "5986" }, { "input": "3208899\n3228811", "output": "3209988" }, { "input": "27778\n28710", "output": "27877" }, { "input": "62345\n46415", "output": "46352" }, { "input": "405739873179209\n596793907108871", "output": "594998777332100" }, { "input": "365\n690", "output": "653" }, { "input": "8388731334391\n4710766672578", "output": "4398887333311" }, { "input": "1230\n1200", "output": "1032" }, { "input": "1025\n5000", "output": "2510" }, { "input": "4207799\n4027711", "output": "2997740" }, { "input": "4444222277779999\n4444222277771111", "output": "4442999977774222" }, { "input": "7430\n3047", "output": "3047" }, { "input": "649675735\n540577056", "output": "539776654" }, { "input": "26\n82", "output": "62" }, { "input": "241285\n207420", "output": "185422" }, { "input": "3\n3", "output": "3" }, { "input": "12\n21", "output": "21" }, { "input": "481287\n826607", "output": "824871" }, { "input": "40572351\n59676984", "output": "57543210" }, { "input": "268135787269\n561193454469", "output": "539887766221" }, { "input": "4\n9", "output": "4" }, { "input": "5\n6", "output": "5" }, { "input": "60579839\n33370073", "output": "30998765" }, { "input": "49939\n39200", "output": "34999" }, { "input": "2224\n4220", "output": "2422" }, { "input": "427799\n427711", "output": "299774" }, { "input": "49\n90", "output": "49" }, { "input": "93875\n82210", "output": "79853" }, { "input": "78831\n7319682", "output": "88731" }, { "input": "937177\n7143444", "output": "977731" }, { "input": "499380628\n391990337", "output": "390988642" }, { "input": "2090909\n2900000", "output": "2099900" }, { "input": "112233445566778890\n987654321987654320", "output": "987654321876543210" }, { "input": "48257086\n80903384", "output": "80876542" }, { "input": "112233445566778890\n900654321987654320", "output": "898776655443322110" }, { "input": "112233445566778890\n123456789123456788", "output": "123456789123456780" }, { "input": "5207799\n5027711", "output": "2997750" }, { "input": "200000000000000001\n200000000000000000", "output": "120000000000000000" }, { "input": "597402457\n797455420", "output": "797455420" }, { "input": "90\n94", "output": "90" }, { "input": "86888\n88683", "output": "86888" }, { "input": "419155888\n588151913", "output": "588151894" }, { "input": "408919130\n191830070", "output": "191830049" }, { "input": "524975\n554924", "output": "554792" }, { "input": "53029\n30524", "output": "30295" }, { "input": "5549\n5542", "output": "5495" }, { "input": "6\n9", "output": "6" }, { "input": "87\n810", "output": "87" }, { "input": "920491855\n281495062", "output": "281495059" }, { "input": "6691\n6910", "output": "6691" }, { "input": "533\n335", "output": "335" }, { "input": "999999999999999998\n999999999999999997", "output": "999999999999999989" }, { "input": "21111111111111111\n21111111111111110", "output": "12111111111111111" }, { "input": "2\n12", "output": "2" }, { "input": "76544\n45744", "output": "45674" }, { "input": "2000000000000001\n2000000000000000", "output": "1200000000000000" }, { "input": "740867\n467701", "output": "467087" }, { "input": "2\n6", "output": "2" }, { "input": "103\n130", "output": "130" }, { "input": "2423712\n8466235", "output": "7432221" }, { "input": "84\n48", "output": "48" }, { "input": "1210\n12113", "output": "2110" }, { "input": "2430\n20786", "output": "4320" }, { "input": "100\n999", "output": "100" }, { "input": "19325\n21903", "output": "21593" }, { "input": "1969\n23251", "output": "9961" } ]
1,626,937,124
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
5
46
6,963,200
a=input() b=input() na=len(a) nb=len(b) if(na<nb): print("".join(sorted(list(a),reverse=True))) else: if(a==b): print(a) l=sorted(list(a),reverse=True) ans="" flag=0 for i in b: for j in range(len(l)): if i==l[j]: ans+=l[j] #shan chu l.pop(j) break if i>l[j]: ans+=l[j] l.pop(j) flag=1 break if(flag==1): break ans+="".join(l) print(ans)
Title: Permute Digits Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given two positive integer numbers *a* and *b*. Permute (change order) of the digits of *a* to construct maximal number not exceeding *b*. No number in input and/or output can start with the digit 0. It is allowed to leave *a* as it is. Input Specification: The first line contains integer *a* (1<=≤<=*a*<=≤<=1018). The second line contains integer *b* (1<=≤<=*b*<=≤<=1018). Numbers don't have leading zeroes. It is guaranteed that answer exists. Output Specification: Print the maximum possible number that is a permutation of digits of *a* and is not greater than *b*. The answer can't have any leading zeroes. It is guaranteed that the answer exists. The number in the output should have exactly the same length as number *a*. It should be a permutation of digits of *a*. Demo Input: ['123\n222\n', '3921\n10000\n', '4940\n5000\n'] Demo Output: ['213\n', '9321\n', '4940\n'] Note: none
```python a=input() b=input() na=len(a) nb=len(b) if(na<nb): print("".join(sorted(list(a),reverse=True))) else: if(a==b): print(a) l=sorted(list(a),reverse=True) ans="" flag=0 for i in b: for j in range(len(l)): if i==l[j]: ans+=l[j] #shan chu l.pop(j) break if i>l[j]: ans+=l[j] l.pop(j) flag=1 break if(flag==1): break ans+="".join(l) print(ans) ```
0
59
A
Word
PROGRAMMING
800
[ "implementation", "strings" ]
A. Word
2
256
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
[ "HoUse\n", "ViP\n", "maTRIx\n" ]
[ "house\n", "VIP\n", "matrix\n" ]
none
500
[ { "input": "HoUse", "output": "house" }, { "input": "ViP", "output": "VIP" }, { "input": "maTRIx", "output": "matrix" }, { "input": "BNHWpnpawg", "output": "bnhwpnpawg" }, { "input": "VTYGP", "output": "VTYGP" }, { "input": "CHNenu", "output": "chnenu" }, { "input": "ERPZGrodyu", "output": "erpzgrodyu" }, { "input": "KSXBXWpebh", "output": "KSXBXWPEBH" }, { "input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv", "output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv" }, { "input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd", "output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd" }, { "input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv", "output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv" }, { "input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg", "output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg" }, { "input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak", "output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK" }, { "input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw", "output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW" }, { "input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB", "output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB" }, { "input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge", "output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge" }, { "input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw", "output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw" }, { "input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks", "output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks" }, { "input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz", "output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ" }, { "input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg", "output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG" }, { "input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO", "output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO" }, { "input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd", "output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD" }, { "input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas", "output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas" }, { "input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm", "output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM" }, { "input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn", "output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn" }, { "input": "t", "output": "t" }, { "input": "N", "output": "N" }, { "input": "kv", "output": "kv" }, { "input": "Ur", "output": "ur" }, { "input": "CN", "output": "CN" } ]
1,592,010,943
2,147,483,647
Python 3
OK
TESTS
30
280
0
s=input() u=[] l=[] uc,lc=0,0 for i in s: if i.isupper(): u.append(i) uc+=1 elif i.islower(): l.append(i) lc+=1 if uc>lc: print(s.upper()) elif uc<lc: print(s.lower()) elif uc==lc: print(s.lower())
Title: Word Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word. Input Specification: The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100. Output Specification: Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one. Demo Input: ['HoUse\n', 'ViP\n', 'maTRIx\n'] Demo Output: ['house\n', 'VIP\n', 'matrix\n'] Note: none
```python s=input() u=[] l=[] uc,lc=0,0 for i in s: if i.isupper(): u.append(i) uc+=1 elif i.islower(): l.append(i) lc+=1 if uc>lc: print(s.upper()) elif uc<lc: print(s.lower()) elif uc==lc: print(s.lower()) ```
3.93
6
C
Alice, Bob and Chocolate
PROGRAMMING
1,200
[ "greedy", "two pointers" ]
C. Alice, Bob and Chocolate
2
64
Alice and Bob like games. And now they are ready to start a new game. They have placed *n* chocolate bars in a line. Alice starts to eat chocolate bars one by one from left to right, and Bob — from right to left. For each chocololate bar the time, needed for the player to consume it, is known (Alice and Bob eat them with equal speed). When the player consumes a chocolate bar, he immediately starts with another. It is not allowed to eat two chocolate bars at the same time, to leave the bar unfinished and to make pauses. If both players start to eat the same bar simultaneously, Bob leaves it to Alice as a true gentleman. How many bars each of the players will consume?
The first line contains one integer *n* (1<=≤<=*n*<=≤<=105) — the amount of bars on the table. The second line contains a sequence *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=1000), where *t**i* is the time (in seconds) needed to consume the *i*-th bar (in the order from left to right).
Print two numbers *a* and *b*, where *a* is the amount of bars consumed by Alice, and *b* is the amount of bars consumed by Bob.
[ "5\n2 9 8 2 7\n" ]
[ "2 3\n" ]
none
0
[ { "input": "5\n2 9 8 2 7", "output": "2 3" }, { "input": "1\n1", "output": "1 0" }, { "input": "2\n1 1", "output": "1 1" }, { "input": "3\n1 1 1", "output": "2 1" }, { "input": "4\n1 1 1 1", "output": "2 2" }, { "input": "1\n6", "output": "1 0" }, { "input": "2\n8 2", "output": "1 1" }, { "input": "3\n6 8 4", "output": "1 2" }, { "input": "4\n4 3 2 8", "output": "3 1" }, { "input": "5\n1 9 8 2 7", "output": "2 3" }, { "input": "6\n1 4 7 3 2 1", "output": "3 3" }, { "input": "11\n7 9 1 8 7 1 7 1 4 8 1", "output": "4 7" }, { "input": "12\n4 2 7 1 9 5 6 2 7 8 5 7", "output": "7 5" }, { "input": "13\n9 9 9 9 9 9 9 9 9 9 9 9 9", "output": "7 6" } ]
1,584,549,305
2,147,483,647
Python 3
OK
TESTS
40
342
6,860,800
n=int(input()) x=list(map(int,input().split())) ca,cb=0,0 i=0 j=n-1 while i<=j: if ca<=cb: ca+=x[i] i+=1 else: cb+=x[j] j-=1 print(i,n-i)
Title: Alice, Bob and Chocolate Time Limit: 2 seconds Memory Limit: 64 megabytes Problem Description: Alice and Bob like games. And now they are ready to start a new game. They have placed *n* chocolate bars in a line. Alice starts to eat chocolate bars one by one from left to right, and Bob — from right to left. For each chocololate bar the time, needed for the player to consume it, is known (Alice and Bob eat them with equal speed). When the player consumes a chocolate bar, he immediately starts with another. It is not allowed to eat two chocolate bars at the same time, to leave the bar unfinished and to make pauses. If both players start to eat the same bar simultaneously, Bob leaves it to Alice as a true gentleman. How many bars each of the players will consume? Input Specification: The first line contains one integer *n* (1<=≤<=*n*<=≤<=105) — the amount of bars on the table. The second line contains a sequence *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=1000), where *t**i* is the time (in seconds) needed to consume the *i*-th bar (in the order from left to right). Output Specification: Print two numbers *a* and *b*, where *a* is the amount of bars consumed by Alice, and *b* is the amount of bars consumed by Bob. Demo Input: ['5\n2 9 8 2 7\n'] Demo Output: ['2 3\n'] Note: none
```python n=int(input()) x=list(map(int,input().split())) ca,cb=0,0 i=0 j=n-1 while i<=j: if ca<=cb: ca+=x[i] i+=1 else: cb+=x[j] j-=1 print(i,n-i) ```
3.863383
259
A
Little Elephant and Chess
PROGRAMMING
1,000
[ "brute force", "strings" ]
null
null
The Little Elephant loves chess very much. One day the Little Elephant and his friend decided to play chess. They've got the chess pieces but the board is a problem. They've got an 8<=×<=8 checkered board, each square is painted either black or white. The Little Elephant and his friend know that a proper chessboard doesn't have any side-adjacent cells with the same color and the upper left cell is white. To play chess, they want to make the board they have a proper chessboard. For that the friends can choose any row of the board and cyclically shift the cells of the chosen row, that is, put the last (rightmost) square on the first place in the row and shift the others one position to the right. You can run the described operation multiple times (or not run it at all). For example, if the first line of the board looks like that "BBBBBBWW" (the white cells of the line are marked with character "W", the black cells are marked with character "B"), then after one cyclic shift it will look like that "WBBBBBBW". Help the Little Elephant and his friend to find out whether they can use any number of the described operations to turn the board they have into a proper chessboard.
The input consists of exactly eight lines. Each line contains exactly eight characters "W" or "B" without any spaces: the *j*-th character in the *i*-th line stands for the color of the *j*-th cell of the *i*-th row of the elephants' board. Character "W" stands for the white color, character "B" stands for the black color. Consider the rows of the board numbered from 1 to 8 from top to bottom, and the columns — from 1 to 8 from left to right. The given board can initially be a proper chessboard.
In a single line print "YES" (without the quotes), if we can make the board a proper chessboard and "NO" (without the quotes) otherwise.
[ "WBWBWBWB\nBWBWBWBW\nBWBWBWBW\nBWBWBWBW\nWBWBWBWB\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\n", "WBWBWBWB\nWBWBWBWB\nBBWBWWWB\nBWBWBWBW\nBWBWBWBW\nBWBWBWWW\nBWBWBWBW\nBWBWBWBW\n" ]
[ "YES\n", "NO\n" ]
In the first sample you should shift the following lines one position to the right: the 3-rd, the 6-th, the 7-th and the 8-th. In the second sample there is no way you can achieve the goal.
500
[ { "input": "WBWBWBWB\nBWBWBWBW\nBWBWBWBW\nBWBWBWBW\nWBWBWBWB\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB", "output": "YES" }, { "input": "WBWBWBWB\nWBWBWBWB\nBBWBWWWB\nBWBWBWBW\nBWBWBWBW\nBWBWBWWW\nBWBWBWBW\nBWBWBWBW", "output": "NO" }, { "input": "BWBWBWBW\nWBWBWBWB\nBWBWBWBW\nBWBWBWBW\nWBWBWBWB\nWBWBWBWB\nWBWBWBWB\nWBWBWBWB", "output": "YES" }, { "input": "BWBWBWBW\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nWBWBWBWB\nWBWBWBWB", "output": "YES" }, { "input": "WBWBWBWB\nBWBWBWBW\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW\nBWBWBWBW\nBWBWBWBW\nBWBWBWBW", "output": "YES" }, { "input": "WBWBWBWB\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nWBWBWBWB\nWBWBWBWB\nWBWBWBWB\nBWWWBWBW", "output": "NO" }, { "input": "BBBBBWWW\nWBBWBWWB\nWWWWWBWW\nBWBWWBWW\nBBBWWBWW\nBBBBBWBW\nWBBBWBWB\nWBWBWWWB", "output": "NO" }, { "input": "BWBWBWBW\nBWBWBWBW\nBWWWWWBB\nBBWBWBWB\nWBWBWBWB\nWWBWWBWW\nBWBWBWBW\nWBWWBBBB", "output": "NO" }, { "input": "WBWBWBWB\nWBWBWBWB\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nWBWWBWBB", "output": "NO" }, { "input": "WBWBWBWB\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nWBWBWBWB\nBWBWBWBW\nBWBWBWBW", "output": "YES" }, { "input": "WBWBWBWB\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW\nBWBWBWBW", "output": "YES" }, { "input": "WWWWBWWB\nBWBWBWBW\nBWBWBWBW\nWWBWBBBB\nBBWWBBBB\nBBBWWBBW\nBWWWWWWB\nBWWBBBWW", "output": "NO" }, { "input": "WBBWWBWB\nBBWBWBWB\nBWBWBWBW\nBWBWBWBW\nWBWBWBBW\nWBWBBBBW\nBWWWWBWB\nBBBBBBBW", "output": "NO" }, { "input": "BWBWBWBW\nBWBWBWBW\nBBWWWBBB\nWBBBBBWW\nWBBBBWBB\nWBWBWBWB\nWBWWBWWB\nWBBWBBWW", "output": "NO" }, { "input": "WBBBBBWB\nBWBWBWBW\nBWBWBWBW\nWBWBWBWB\nWBWBWBWB\nBBBBBWBB\nWBBWWBWB\nBWBWBWBW", "output": "NO" }, { "input": "BWBWBWBW\nBWBWBWBW\nBWBWBWBW\nWBWBWBWB\nWBWBWBWB\nBWBWBWBW\nBWBWBWBW\nWBBWWBWB", "output": "NO" }, { "input": "BWBWBWBW\nWBWBWBWB\nBWBWBWBW\nBWWWBWBW\nWBWBWBWB\nWBWBWBWB\nBWBWBWBW\nWBWBWBBW", "output": "NO" }, { "input": "WBWBWBWB\nWBWBWBWB\nBWBWBWBW\nBWBWBWBW\nBWBWBWBW\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW", "output": "YES" }, { "input": "BWBWBWBW\nWBWBWBWB\nBWBWBWBW\nBWBWBWBW\nBWBWBWBW\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW", "output": "YES" }, { "input": "BWBWBWBW\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW", "output": "YES" }, { "input": "WWBBWWBB\nBWWBBWWB\nBWBWBWBW\nWWBBWWWB\nWBWWWWBB\nWBWWBBWB\nBWBBWBWW\nBWBWWWWW", "output": "NO" }, { "input": "WBWBWBWB\nWBWBWBWB\nWWBBWBBB\nWBWBWBWB\nWWWWBWWB\nWBBBBWWW\nBWBWWWBW\nWWWBWBBB", "output": "NO" }, { "input": "WBWBWBWB\nBWWBWWWW\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nWWBBBBBW\nWWWBWWBW\nWWBBBBWW", "output": "NO" }, { "input": "BWBWBWBW\nBWBBBWWB\nWBWBWBWB\nBWBWBWBW\nBWBWBWBW\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW", "output": "NO" }, { "input": "BWBWBWBW\nBWBWBWBW\nWBWBWBWB\nWBWBWBWB\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW", "output": "YES" }, { "input": "BBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW", "output": "NO" }, { "input": "BBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB", "output": "NO" }, { "input": "BWBWBWBB\nBWBWBWBB\nBWBWBWBB\nBWBWBWBB\nBWBWBWBB\nBWBWBWBB\nBWBWBWBB\nBWBWBWBB", "output": "NO" }, { "input": "WWBWWBWB\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW", "output": "NO" }, { "input": "WWWWWWWW\nBBBBBBBB\nWWWWWWWW\nBBBBBBBB\nWWWWWWWW\nBBBBBBBB\nWWWWWWWW\nBBBBBBBB", "output": "NO" }, { "input": "BBBBBBBB\nBWBWBWBW\nBWBWBWBW\nBWBWBWBW\nWBWBWBWB\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB", "output": "NO" }, { "input": "BBBBBBBW\nBBBBBBBW\nBBBBBBBW\nBBBBBBBW\nBBBBBBBW\nBBBBBBBW\nBBBBBBBW\nBBBBBBBW", "output": "NO" }, { "input": "BBBWWWWW\nWWWBBBBB\nBBBWWWWW\nWWWBBBBB\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB", "output": "NO" } ]
1,525,025,819
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
25
154
7,065,600
for i in range(8): l = list(input()) if (l[::2].count('B') != 0 and l[::2].count('W') != 0) or (l[1::2].count('B') != 0 and l[1::2].count('W') != 0): print('NO') exit() print('YES')
Title: Little Elephant and Chess Time Limit: None seconds Memory Limit: None megabytes Problem Description: The Little Elephant loves chess very much. One day the Little Elephant and his friend decided to play chess. They've got the chess pieces but the board is a problem. They've got an 8<=×<=8 checkered board, each square is painted either black or white. The Little Elephant and his friend know that a proper chessboard doesn't have any side-adjacent cells with the same color and the upper left cell is white. To play chess, they want to make the board they have a proper chessboard. For that the friends can choose any row of the board and cyclically shift the cells of the chosen row, that is, put the last (rightmost) square on the first place in the row and shift the others one position to the right. You can run the described operation multiple times (or not run it at all). For example, if the first line of the board looks like that "BBBBBBWW" (the white cells of the line are marked with character "W", the black cells are marked with character "B"), then after one cyclic shift it will look like that "WBBBBBBW". Help the Little Elephant and his friend to find out whether they can use any number of the described operations to turn the board they have into a proper chessboard. Input Specification: The input consists of exactly eight lines. Each line contains exactly eight characters "W" or "B" without any spaces: the *j*-th character in the *i*-th line stands for the color of the *j*-th cell of the *i*-th row of the elephants' board. Character "W" stands for the white color, character "B" stands for the black color. Consider the rows of the board numbered from 1 to 8 from top to bottom, and the columns — from 1 to 8 from left to right. The given board can initially be a proper chessboard. Output Specification: In a single line print "YES" (without the quotes), if we can make the board a proper chessboard and "NO" (without the quotes) otherwise. Demo Input: ['WBWBWBWB\nBWBWBWBW\nBWBWBWBW\nBWBWBWBW\nWBWBWBWB\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\n', 'WBWBWBWB\nWBWBWBWB\nBBWBWWWB\nBWBWBWBW\nBWBWBWBW\nBWBWBWWW\nBWBWBWBW\nBWBWBWBW\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first sample you should shift the following lines one position to the right: the 3-rd, the 6-th, the 7-th and the 8-th. In the second sample there is no way you can achieve the goal.
```python for i in range(8): l = list(input()) if (l[::2].count('B') != 0 and l[::2].count('W') != 0) or (l[1::2].count('B') != 0 and l[1::2].count('W') != 0): print('NO') exit() print('YES') ```
0
294
A
Shaass and Oskols
PROGRAMMING
800
[ "implementation", "math" ]
null
null
Shaass has decided to hunt some birds. There are *n* horizontal electricity wires aligned parallel to each other. Wires are numbered 1 to *n* from top to bottom. On each wire there are some oskols sitting next to each other. Oskol is the name of a delicious kind of birds in Shaass's territory. Supposed there are *a**i* oskols sitting on the *i*-th wire. Sometimes Shaass shots one of the birds and the bird dies (suppose that this bird sat at the *i*-th wire). Consequently all the birds on the *i*-th wire to the left of the dead bird get scared and jump up on the wire number *i*<=-<=1, if there exists no upper wire they fly away. Also all the birds to the right of the dead bird jump down on wire number *i*<=+<=1, if there exists no such wire they fly away. Shaass has shot *m* birds. You're given the initial number of birds on each wire, tell him how many birds are sitting on each wire after the shots.
The first line of the input contains an integer *n*, (1<=≤<=*n*<=≤<=100). The next line contains a list of space-separated integers *a*1,<=*a*2,<=...,<=*a**n*, (0<=≤<=*a**i*<=≤<=100). The third line contains an integer *m*, (0<=≤<=*m*<=≤<=100). Each of the next *m* lines contains two integers *x**i* and *y**i*. The integers mean that for the *i*-th time Shaass shoot the *y**i*-th (from left) bird on the *x**i*-th wire, (1<=≤<=*x**i*<=≤<=*n*,<=1<=≤<=*y**i*). It's guaranteed there will be at least *y**i* birds on the *x**i*-th wire at that moment.
On the *i*-th line of the output print the number of birds on the *i*-th wire.
[ "5\n10 10 10 10 10\n5\n2 5\n3 13\n2 12\n1 13\n4 6\n", "3\n2 4 1\n1\n2 2\n" ]
[ "0\n12\n5\n0\n16\n", "3\n0\n3\n" ]
none
500
[ { "input": "5\n10 10 10 10 10\n5\n2 5\n3 13\n2 12\n1 13\n4 6", "output": "0\n12\n5\n0\n16" }, { "input": "3\n2 4 1\n1\n2 2", "output": "3\n0\n3" }, { "input": "5\n58 51 45 27 48\n5\n4 9\n5 15\n4 5\n5 8\n1 43", "output": "0\n66\n57\n7\n0" }, { "input": "10\n48 53 10 28 91 56 81 2 67 52\n2\n2 40\n6 51", "output": "87\n0\n23\n28\n141\n0\n86\n2\n67\n52" }, { "input": "2\n72 45\n6\n1 69\n2 41\n1 19\n2 7\n1 5\n2 1", "output": "0\n0" }, { "input": "10\n95 54 36 39 98 30 19 24 14 12\n3\n9 5\n8 15\n7 5", "output": "95\n54\n36\n39\n98\n34\n0\n28\n13\n21" }, { "input": "100\n95 15 25 18 64 62 23 59 70 84 50 26 87 35 75 86 0 22 77 60 66 41 21 9 75 50 25 3 69 14 39 68 64 46 59 99 2 0 21 76 90 12 61 42 6 91 36 39 47 41 93 81 66 57 70 36 68 89 52 1 19 93 67 22 76 20 8 81 98 18 100 73 61 93 75 80 53 72 40 20 2 86 33 59 27 16 11 26 55 44 47 55 94 58 2 55 82 22 9 95\n0", "output": "95\n15\n25\n18\n64\n62\n23\n59\n70\n84\n50\n26\n87\n35\n75\n86\n0\n22\n77\n60\n66\n41\n21\n9\n75\n50\n25\n3\n69\n14\n39\n68\n64\n46\n59\n99\n2\n0\n21\n76\n90\n12\n61\n42\n6\n91\n36\n39\n47\n41\n93\n81\n66\n57\n70\n36\n68\n89\n52\n1\n19\n93\n67\n22\n76\n20\n8\n81\n98\n18\n100\n73\n61\n93\n75\n80\n53\n72\n40\n20\n2\n86\n33\n59\n27\n16\n11\n26\n55\n44\n47\n55\n94\n58\n2\n55\n82\n22\n9\n95" }, { "input": "1\n100\n1\n1 100", "output": "0" }, { "input": "1\n100\n1\n1 1", "output": "0" }, { "input": "1\n50\n1\n1 25", "output": "0" }, { "input": "2\n50 0\n1\n1 1", "output": "0\n49" }, { "input": "1\n10\n0", "output": "10" } ]
1,620,301,494
2,147,483,647
PyPy 3
COMPILATION_ERROR
TESTS
0
0
0
#include<iostream> #include<vector> #define ll long long using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); int n; cin>>n; vector<int> birds(n); for (int i = 0; i < n; i++) { cin>>birds[i]; } int m; int x,y; cin>>m; for (int i = 0; i < m; i++) { cin>>x>>y; x -=1; if(x>0) { birds[x-1] += y-1; } if(x<(n-1)) { birds[x+1] += birds[x]-y; } birds[x] = 0; } for (auto x: birds) { cout<<x<<endl; } return 0; }
Title: Shaass and Oskols Time Limit: None seconds Memory Limit: None megabytes Problem Description: Shaass has decided to hunt some birds. There are *n* horizontal electricity wires aligned parallel to each other. Wires are numbered 1 to *n* from top to bottom. On each wire there are some oskols sitting next to each other. Oskol is the name of a delicious kind of birds in Shaass's territory. Supposed there are *a**i* oskols sitting on the *i*-th wire. Sometimes Shaass shots one of the birds and the bird dies (suppose that this bird sat at the *i*-th wire). Consequently all the birds on the *i*-th wire to the left of the dead bird get scared and jump up on the wire number *i*<=-<=1, if there exists no upper wire they fly away. Also all the birds to the right of the dead bird jump down on wire number *i*<=+<=1, if there exists no such wire they fly away. Shaass has shot *m* birds. You're given the initial number of birds on each wire, tell him how many birds are sitting on each wire after the shots. Input Specification: The first line of the input contains an integer *n*, (1<=≤<=*n*<=≤<=100). The next line contains a list of space-separated integers *a*1,<=*a*2,<=...,<=*a**n*, (0<=≤<=*a**i*<=≤<=100). The third line contains an integer *m*, (0<=≤<=*m*<=≤<=100). Each of the next *m* lines contains two integers *x**i* and *y**i*. The integers mean that for the *i*-th time Shaass shoot the *y**i*-th (from left) bird on the *x**i*-th wire, (1<=≤<=*x**i*<=≤<=*n*,<=1<=≤<=*y**i*). It's guaranteed there will be at least *y**i* birds on the *x**i*-th wire at that moment. Output Specification: On the *i*-th line of the output print the number of birds on the *i*-th wire. Demo Input: ['5\n10 10 10 10 10\n5\n2 5\n3 13\n2 12\n1 13\n4 6\n', '3\n2 4 1\n1\n2 2\n'] Demo Output: ['0\n12\n5\n0\n16\n', '3\n0\n3\n'] Note: none
```python #include<iostream> #include<vector> #define ll long long using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); int n; cin>>n; vector<int> birds(n); for (int i = 0; i < n; i++) { cin>>birds[i]; } int m; int x,y; cin>>m; for (int i = 0; i < m; i++) { cin>>x>>y; x -=1; if(x>0) { birds[x-1] += y-1; } if(x<(n-1)) { birds[x+1] += birds[x]-y; } birds[x] = 0; } for (auto x: birds) { cout<<x<<endl; } return 0; } ```
-1
660
C
Hard Process
PROGRAMMING
1,600
[ "binary search", "dp", "two pointers" ]
null
null
You are given an array *a* with *n* elements. Each element of *a* is either 0 or 1. Let's denote the length of the longest subsegment of consecutive elements in *a*, consisting of only numbers one, as *f*(*a*). You can change no more than *k* zeroes to ones to maximize *f*(*a*).
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=3·105,<=0<=≤<=*k*<=≤<=*n*) — the number of elements in *a* and the parameter *k*. The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=1) — the elements of *a*.
On the first line print a non-negative integer *z* — the maximal value of *f*(*a*) after no more than *k* changes of zeroes to ones. On the second line print *n* integers *a**j* — the elements of the array *a* after the changes. If there are multiple answers, you can print any one of them.
[ "7 1\n1 0 0 1 1 0 1\n", "10 2\n1 0 0 1 0 1 0 1 0 1\n" ]
[ "4\n1 0 0 1 1 1 1\n", "5\n1 0 0 1 1 1 1 1 0 1\n" ]
none
0
[ { "input": "7 1\n1 0 0 1 1 0 1", "output": "4\n1 0 0 1 1 1 1" }, { "input": "10 2\n1 0 0 1 0 1 0 1 0 1", "output": "5\n1 0 0 1 1 1 1 1 0 1" }, { "input": "1 0\n0", "output": "0\n0" }, { "input": "1 0\n0", "output": "0\n0" }, { "input": "7 0\n0 1 0 0 0 1 0", "output": "1\n0 1 0 0 0 1 0" }, { "input": "7 2\n1 0 1 1 0 0 0", "output": "5\n1 1 1 1 1 0 0" }, { "input": "7 3\n1 0 0 0 0 1 0", "output": "4\n1 1 1 1 0 1 0" }, { "input": "3 0\n1 1 1", "output": "3\n1 1 1" }, { "input": "1 0\n1", "output": "1\n1" }, { "input": "2 0\n0 1", "output": "1\n0 1" }, { "input": "1 1\n0", "output": "1\n1" }, { "input": "3 1\n0 0 1", "output": "2\n0 1 1" }, { "input": "2 0\n0 0", "output": "0\n0 0" }, { "input": "3 1\n0 0 0", "output": "1\n1 0 0" }, { "input": "7 7\n1 0 1 0 0 0 0", "output": "7\n1 1 1 1 1 1 1" }, { "input": "1 1\n1", "output": "1\n1" }, { "input": "3 0\n0 0 0", "output": "0\n0 0 0" }, { "input": "7 3\n1 1 1 1 1 1 1", "output": "7\n1 1 1 1 1 1 1" }, { "input": "10 3\n0 0 1 0 0 1 0 0 1 1", "output": "6\n0 0 1 0 1 1 1 1 1 1" }, { "input": "2 1\n0 0", "output": "1\n1 0" }, { "input": "2 2\n1 0", "output": "2\n1 1" } ]
1,699,698,008
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
31
0
n, k = map(int, input().split()) arr = list(map(int, input().split())) f = 0 fl = 0 fr = 0 r = 0 s = arr[0] for l in range(n): while r < n-1 and s+k >= r-l+1: r += 1 s += arr[r] if r < n-1: if f < s+k: f = s+k fl = l fr = r-1 else: if f < r-l+1: f = r-l+1 fl = l fr = r s -= arr[l] print(f) for i in range(fl, fr): arr[i] = 1 print(*arr)
Title: Hard Process Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given an array *a* with *n* elements. Each element of *a* is either 0 or 1. Let's denote the length of the longest subsegment of consecutive elements in *a*, consisting of only numbers one, as *f*(*a*). You can change no more than *k* zeroes to ones to maximize *f*(*a*). Input Specification: The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=3·105,<=0<=≤<=*k*<=≤<=*n*) — the number of elements in *a* and the parameter *k*. The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=1) — the elements of *a*. Output Specification: On the first line print a non-negative integer *z* — the maximal value of *f*(*a*) after no more than *k* changes of zeroes to ones. On the second line print *n* integers *a**j* — the elements of the array *a* after the changes. If there are multiple answers, you can print any one of them. Demo Input: ['7 1\n1 0 0 1 1 0 1\n', '10 2\n1 0 0 1 0 1 0 1 0 1\n'] Demo Output: ['4\n1 0 0 1 1 1 1\n', '5\n1 0 0 1 1 1 1 1 0 1\n'] Note: none
```python n, k = map(int, input().split()) arr = list(map(int, input().split())) f = 0 fl = 0 fr = 0 r = 0 s = arr[0] for l in range(n): while r < n-1 and s+k >= r-l+1: r += 1 s += arr[r] if r < n-1: if f < s+k: f = s+k fl = l fr = r-1 else: if f < r-l+1: f = r-l+1 fl = l fr = r s -= arr[l] print(f) for i in range(fl, fr): arr[i] = 1 print(*arr) ```
0
227
B
Effective Approach
PROGRAMMING
1,100
[ "implementation" ]
null
null
Once at a team training Vasya, Petya and Sasha got a problem on implementing linear search in an array. According to the boys, linear search works as follows. The array elements in a pre-selected order are in turn compared with the number that you need to find. Once you find the array element that is equal to the required one, the search ends. The efficiency of the algorithm is the number of performed comparisons. The fewer comparisons the linear search has made, the more effective it is. Vasya believes that a linear search would work better if it sequentially iterates through the elements, starting with the 1-st one (in this problem we consider the elements of the array indexed from 1 to *n*) and ending with the *n*-th one. And Petya says that Vasya is wrong: the search will need less comparisons if it sequentially iterates the elements starting from the *n*-th and ending with the 1-st one. Sasha argues that the two approaches are equivalent. To finally begin the task, the teammates decided to settle the debate and compare the two approaches on an example. For this, they took an array that is a permutation of integers from 1 to *n*, and generated *m* queries of the form: find element with value *b**i* in the array. They want to calculate for both approaches how many comparisons in total the linear search will need to respond to all queries. If the first search needs fewer comparisons, then the winner of the dispute is Vasya. If the second one does, then the winner is Petya. If both approaches make the same number of comparisons, then Sasha's got the upper hand. But the problem is, linear search is too slow. That's why the boys aren't going to find out who is right before the end of the training, unless you come in here. Help them to determine who will win the dispute.
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of elements in the array. The second line contains *n* distinct space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — the elements of array. The third line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of queries. The last line contains *m* space-separated integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=*n*) — the search queries. Note that the queries can repeat.
Print two integers, showing how many comparisons Vasya's approach needs and how many comparisons Petya's approach needs. Separate the numbers by spaces. Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier.
[ "2\n1 2\n1\n1\n", "2\n2 1\n1\n1\n", "3\n3 1 2\n3\n1 2 3\n" ]
[ "1 2\n", "2 1\n", "6 6\n" ]
In the first sample Vasya's approach will make one comparison (it starts with the 1-st element and immediately finds the required number), and Petya's approach makes two comparisons (first he compares with the 2-nd array element, doesn't find the search item and compares with the 1-st element). In the second sample, on the contrary, Vasya's approach will need two comparisons (first with 1-st element, and then with the 2-nd), and Petya's approach will find the required value in one comparison (the first comparison with the 2-nd element).
1,000
[ { "input": "2\n1 2\n1\n1", "output": "1 2" }, { "input": "2\n2 1\n1\n1", "output": "2 1" }, { "input": "3\n3 1 2\n3\n1 2 3", "output": "6 6" }, { "input": "9\n2 9 3 1 6 4 7 8 5\n9\n5 1 5 2 8 4 4 4 5", "output": "58 32" }, { "input": "10\n3 10 9 2 7 6 5 8 4 1\n1\n4", "output": "9 2" }, { "input": "10\n5 2 10 8 3 1 9 7 6 4\n9\n2 5 9 2 3 2 5 9 8", "output": "31 68" }, { "input": "9\n3 8 4 7 1 2 5 6 9\n3\n2 7 1", "output": "15 15" }, { "input": "9\n5 3 8 4 2 6 1 7 9\n4\n6 1 9 2", "output": "27 13" }, { "input": "4\n1 3 2 4\n4\n3 1 2 3", "output": "8 12" }, { "input": "3\n1 2 3\n8\n3 2 1 1 2 3 1 2", "output": "15 17" } ]
1,654,153,299
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
6
2,000
9,420,800
n = int(input()) num = input().split() num = list(map(int,num)) nfind = int(input()) find = input().split() find = list(map(int,find)) count1 = 0 count2 = 0 for i in find: count1 = count1 + num.index(i) + 1 count2 = count2 + (n - num.index(i)) print(" ".join([str(count1),str(count2)]))
Title: Effective Approach Time Limit: None seconds Memory Limit: None megabytes Problem Description: Once at a team training Vasya, Petya and Sasha got a problem on implementing linear search in an array. According to the boys, linear search works as follows. The array elements in a pre-selected order are in turn compared with the number that you need to find. Once you find the array element that is equal to the required one, the search ends. The efficiency of the algorithm is the number of performed comparisons. The fewer comparisons the linear search has made, the more effective it is. Vasya believes that a linear search would work better if it sequentially iterates through the elements, starting with the 1-st one (in this problem we consider the elements of the array indexed from 1 to *n*) and ending with the *n*-th one. And Petya says that Vasya is wrong: the search will need less comparisons if it sequentially iterates the elements starting from the *n*-th and ending with the 1-st one. Sasha argues that the two approaches are equivalent. To finally begin the task, the teammates decided to settle the debate and compare the two approaches on an example. For this, they took an array that is a permutation of integers from 1 to *n*, and generated *m* queries of the form: find element with value *b**i* in the array. They want to calculate for both approaches how many comparisons in total the linear search will need to respond to all queries. If the first search needs fewer comparisons, then the winner of the dispute is Vasya. If the second one does, then the winner is Petya. If both approaches make the same number of comparisons, then Sasha's got the upper hand. But the problem is, linear search is too slow. That's why the boys aren't going to find out who is right before the end of the training, unless you come in here. Help them to determine who will win the dispute. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of elements in the array. The second line contains *n* distinct space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — the elements of array. The third line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of queries. The last line contains *m* space-separated integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=*n*) — the search queries. Note that the queries can repeat. Output Specification: Print two integers, showing how many comparisons Vasya's approach needs and how many comparisons Petya's approach needs. Separate the numbers by spaces. Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier. Demo Input: ['2\n1 2\n1\n1\n', '2\n2 1\n1\n1\n', '3\n3 1 2\n3\n1 2 3\n'] Demo Output: ['1 2\n', '2 1\n', '6 6\n'] Note: In the first sample Vasya's approach will make one comparison (it starts with the 1-st element and immediately finds the required number), and Petya's approach makes two comparisons (first he compares with the 2-nd array element, doesn't find the search item and compares with the 1-st element). In the second sample, on the contrary, Vasya's approach will need two comparisons (first with 1-st element, and then with the 2-nd), and Petya's approach will find the required value in one comparison (the first comparison with the 2-nd element).
```python n = int(input()) num = input().split() num = list(map(int,num)) nfind = int(input()) find = input().split() find = list(map(int,find)) count1 = 0 count2 = 0 for i in find: count1 = count1 + num.index(i) + 1 count2 = count2 + (n - num.index(i)) print(" ".join([str(count1),str(count2)])) ```
0
199
A
Hexadecimal's theorem
PROGRAMMING
900
[ "brute force", "constructive algorithms", "implementation", "number theory" ]
null
null
Recently, a chaotic virus Hexadecimal advanced a new theorem which will shake the Universe. She thinks that each Fibonacci number can be represented as sum of three not necessary different Fibonacci numbers. Let's remember how Fibonacci numbers can be calculated. *F*0<==<=0, *F*1<==<=1, and all the next numbers are *F**i*<==<=*F**i*<=-<=2<=+<=*F**i*<=-<=1. So, Fibonacci numbers make a sequence of numbers: 0, 1, 1, 2, 3, 5, 8, 13, ... If you haven't run away from the PC in fear, you have to help the virus. Your task is to divide given Fibonacci number *n* by three not necessary different Fibonacci numbers or say that it is impossible.
The input contains of a single integer *n* (0<=≤<=*n*<=&lt;<=109) — the number that should be represented by the rules described above. It is guaranteed that *n* is a Fibonacci number.
Output three required numbers: *a*, *b* and *c*. If there is no answer for the test you have to print "I'm too stupid to solve this problem" without the quotes. If there are multiple answers, print any of them.
[ "3\n", "13\n" ]
[ "1 1 1\n", "2 3 8\n" ]
none
500
[ { "input": "3", "output": "1 1 1" }, { "input": "13", "output": "2 3 8" }, { "input": "0", "output": "0 0 0" }, { "input": "1", "output": "1 0 0" }, { "input": "2", "output": "1 1 0" }, { "input": "1597", "output": "233 377 987" }, { "input": "0", "output": "0 0 0" }, { "input": "1", "output": "1 0 0" }, { "input": "1", "output": "1 0 0" }, { "input": "2", "output": "1 1 0" }, { "input": "3", "output": "1 1 1" }, { "input": "5", "output": "1 1 3" }, { "input": "8", "output": "1 2 5" }, { "input": "13", "output": "2 3 8" }, { "input": "21", "output": "3 5 13" }, { "input": "34", "output": "5 8 21" }, { "input": "55", "output": "8 13 34" }, { "input": "89", "output": "13 21 55" }, { "input": "144", "output": "21 34 89" }, { "input": "233", "output": "34 55 144" }, { "input": "377", "output": "55 89 233" }, { "input": "610", "output": "89 144 377" }, { "input": "987", "output": "144 233 610" }, { "input": "1597", "output": "233 377 987" }, { "input": "2584", "output": "377 610 1597" }, { "input": "4181", "output": "610 987 2584" }, { "input": "6765", "output": "987 1597 4181" }, { "input": "10946", "output": "1597 2584 6765" }, { "input": "17711", "output": "2584 4181 10946" }, { "input": "28657", "output": "4181 6765 17711" }, { "input": "46368", "output": "6765 10946 28657" }, { "input": "75025", "output": "10946 17711 46368" }, { "input": "121393", "output": "17711 28657 75025" }, { "input": "196418", "output": "28657 46368 121393" }, { "input": "317811", "output": "46368 75025 196418" }, { "input": "514229", "output": "75025 121393 317811" }, { "input": "832040", "output": "121393 196418 514229" }, { "input": "1346269", "output": "196418 317811 832040" }, { "input": "2178309", "output": "317811 514229 1346269" }, { "input": "3524578", "output": "514229 832040 2178309" }, { "input": "5702887", "output": "832040 1346269 3524578" }, { "input": "9227465", "output": "1346269 2178309 5702887" }, { "input": "14930352", "output": "2178309 3524578 9227465" }, { "input": "24157817", "output": "3524578 5702887 14930352" }, { "input": "39088169", "output": "5702887 9227465 24157817" }, { "input": "63245986", "output": "9227465 14930352 39088169" }, { "input": "102334155", "output": "14930352 24157817 63245986" }, { "input": "165580141", "output": "24157817 39088169 102334155" }, { "input": "267914296", "output": "39088169 63245986 165580141" }, { "input": "433494437", "output": "63245986 102334155 267914296" }, { "input": "701408733", "output": "102334155 165580141 433494437" }, { "input": "701408733", "output": "102334155 165580141 433494437" }, { "input": "102334155", "output": "14930352 24157817 63245986" }, { "input": "63245986", "output": "9227465 14930352 39088169" } ]
1,591,875,832
2,147,483,647
PyPy 3
MEMORY_LIMIT_EXCEEDED
TESTS
2
1,090
268,390,400
n=int(input()) arr = [0,1] if n==0: print(0,0,0) if n==1: print(0,0,1) if n==2: print(0,1,1) else: while(arr[-1] !=n): arr.append(arr[-1]+arr[-2]) print(arr[-2],arr[-4],arr[-5])
Title: Hexadecimal's theorem Time Limit: None seconds Memory Limit: None megabytes Problem Description: Recently, a chaotic virus Hexadecimal advanced a new theorem which will shake the Universe. She thinks that each Fibonacci number can be represented as sum of three not necessary different Fibonacci numbers. Let's remember how Fibonacci numbers can be calculated. *F*0<==<=0, *F*1<==<=1, and all the next numbers are *F**i*<==<=*F**i*<=-<=2<=+<=*F**i*<=-<=1. So, Fibonacci numbers make a sequence of numbers: 0, 1, 1, 2, 3, 5, 8, 13, ... If you haven't run away from the PC in fear, you have to help the virus. Your task is to divide given Fibonacci number *n* by three not necessary different Fibonacci numbers or say that it is impossible. Input Specification: The input contains of a single integer *n* (0<=≤<=*n*<=&lt;<=109) — the number that should be represented by the rules described above. It is guaranteed that *n* is a Fibonacci number. Output Specification: Output three required numbers: *a*, *b* and *c*. If there is no answer for the test you have to print "I'm too stupid to solve this problem" without the quotes. If there are multiple answers, print any of them. Demo Input: ['3\n', '13\n'] Demo Output: ['1 1 1\n', '2 3 8\n'] Note: none
```python n=int(input()) arr = [0,1] if n==0: print(0,0,0) if n==1: print(0,0,1) if n==2: print(0,1,1) else: while(arr[-1] !=n): arr.append(arr[-1]+arr[-2]) print(arr[-2],arr[-4],arr[-5]) ```
0
631
D
Messenger
PROGRAMMING
2,100
[ "data structures", "hashing", "implementation", "string suffix structures", "strings" ]
null
null
Each employee of the "Blake Techologies" company uses a special messaging app "Blake Messenger". All the stuff likes this app and uses it constantly. However, some important futures are missing. For example, many users want to be able to search through the message history. It was already announced that the new feature will appear in the nearest update, when developers faced some troubles that only you may help them to solve. All the messages are represented as a strings consisting of only lowercase English letters. In order to reduce the network load strings are represented in the special compressed form. Compression algorithm works as follows: string is represented as a concatenation of *n* blocks, each block containing only equal characters. One block may be described as a pair (*l**i*,<=*c**i*), where *l**i* is the length of the *i*-th block and *c**i* is the corresponding letter. Thus, the string *s* may be written as the sequence of pairs . Your task is to write the program, that given two compressed string *t* and *s* finds all occurrences of *s* in *t*. Developers know that there may be many such occurrences, so they only ask you to find the number of them. Note that *p* is the starting position of some occurrence of *s* in *t* if and only if *t**p**t**p*<=+<=1...*t**p*<=+<=|*s*|<=-<=1<==<=*s*, where *t**i* is the *i*-th character of string *t*. Note that the way to represent the string in compressed form may not be unique. For example string "aaaa" may be given as , , ...
The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=200<=000) — the number of blocks in the strings *t* and *s*, respectively. The second line contains the descriptions of *n* parts of string *t* in the format "*l**i*-*c**i*" (1<=≤<=*l**i*<=≤<=1<=000<=000) — the length of the *i*-th part and the corresponding lowercase English letter. The second line contains the descriptions of *m* parts of string *s* in the format "*l**i*-*c**i*" (1<=≤<=*l**i*<=≤<=1<=000<=000) — the length of the *i*-th part and the corresponding lowercase English letter.
Print a single integer — the number of occurrences of *s* in *t*.
[ "5 3\n3-a 2-b 4-c 3-a 2-c\n2-a 2-b 1-c\n", "6 1\n3-a 6-b 7-a 4-c 8-e 2-a\n3-a\n", "5 5\n1-h 1-e 1-l 1-l 1-o\n1-w 1-o 1-r 1-l 1-d\n" ]
[ "1", "6", "0" ]
In the first sample, *t* = "aaabbccccaaacc", and string *s* = "aabbc". The only occurrence of string *s* in string *t* starts at position *p* = 2. In the second sample, *t* = "aaabbbbbbaaaaaaacccceeeeeeeeaa", and *s* = "aaa". The occurrences of *s* in *t* start at positions *p* = 1, *p* = 10, *p* = 11, *p* = 12, *p* = 13 and *p* = 14.
2,000
[ { "input": "5 3\n3-a 2-b 4-c 3-a 2-c\n2-a 2-b 1-c", "output": "1" }, { "input": "6 1\n3-a 6-b 7-a 4-c 8-e 2-a\n3-a", "output": "6" }, { "input": "5 5\n1-h 1-e 1-l 1-l 1-o\n1-w 1-o 1-r 1-l 1-d", "output": "0" }, { "input": "9 3\n1-h 1-e 2-l 1-o 1-w 1-o 1-r 1-l 1-d\n2-l 1-o 1-w", "output": "1" }, { "input": "5 3\n1-m 1-i 2-r 1-o 1-r\n1-m 1-i 1-r", "output": "1" }, { "input": "9 2\n1-a 2-b 1-o 1-k 1-l 1-m 1-a 3-b 3-z\n1-a 2-b", "output": "2" }, { "input": "10 3\n1-b 1-a 2-b 1-a 1-b 1-a 4-b 1-a 1-a 2-b\n1-b 1-a 1-b", "output": "3" }, { "input": "4 2\n7-a 3-b 2-c 11-a\n3-a 4-a", "output": "6" }, { "input": "4 3\n8-b 2-a 7-b 3-a\n3-b 2-b 1-a", "output": "2" }, { "input": "1 1\n12344-a\n12345-a", "output": "0" }, { "input": "1 1\n5352-k\n5234-j", "output": "0" }, { "input": "1 1\n6543-o\n34-o", "output": "6510" }, { "input": "1 1\n1-z\n1-z", "output": "1" }, { "input": "5 2\n7-a 6-b 6-a 5-b 2-b\n6-a 7-b", "output": "1" }, { "input": "10 3\n7-a 1-c 6-b 1-c 8-a 1-c 8-b 6-a 2-c 5-b\n5-a 1-c 4-b", "output": "2" }, { "input": "4 2\n10-c 3-c 2-d 8-a\n6-a 1-b", "output": "0" }, { "input": "4 1\n10-a 2-b 8-d 11-e\n1-c", "output": "0" }, { "input": "28 7\n1-a 1-b 1-c 1-d 1-e 1-f 1-t 1-a 1-b 1-c 1-d 1-e 1-f 1-j 1-a 1-b 1-c 1-d 1-e 1-f 1-g 1-a 1-b 1-c 1-d 1-e 1-f 2-g\n1-a 1-b 1-c 1-d 1-e 1-f 1-g", "output": "2" }, { "input": "10 3\n2-w 4-l 2-w 4-l 2-w 5-l 2-w 6-l 3-w 3-l\n2-l 2-w 2-l", "output": "3" }, { "input": "15 7\n1-b 1-a 1-b 1-c 1-b 1-a 1-b 1-c 1-b 1-a 1-b 1-c 1-b 1-a 1-b\n1-b 1-a 1-b 1-c 1-b 1-a 1-b", "output": "3" }, { "input": "15 7\n1-b 2-a 1-b 1-c 1-b 1-a 1-b 1-c 1-b 2-a 1-b 1-c 1-b 1-a 1-b\n1-b 2-a 1-b 1-c 1-b 1-a 1-b", "output": "2" }, { "input": "2 2\n1-a 1-b\n2-a 1-b", "output": "0" }, { "input": "8 5\n1-a 1-b 1-c 1-a 2-b 1-c 1-a 1-b\n1-a 1-b 1-c 1-a 1-b", "output": "1" }, { "input": "9 5\n7-a 6-b 7-a 6-b 7-a 6-b 8-a 6-b 7-a\n7-a 6-b 7-a 6-b 7-a", "output": "2" } ]
1,457,320,147
6,547
Python 3
TIME_LIMIT_EXCEEDED
TESTS
13
2,000
28,876,800
def compress(bstr): pk, pc = None, None for block in bstr: if pc is None: pk, pc = block elif pc == block[1]: pk += block[0] else: yield pk, pc pk, pc = block if pc is not None: yield pk, pc def find1(text, query): (bk, bc), = query return sum(k-bk+1 for k, c in text if c == bc and k >= bk) def is_match(text, i, query): k, c = text[i] qk, qc = query[0] if c != qc or k < qk: return False for j in range(1, len(query)-1): if text[i+j] != query[j]: return False k, c = text[i + len(query)-1] qk, qc = query[-1] if c != qc or k < qk: return False return True def find2(text, query): return sum(1 for i in range(len(text)-len(query)+1) if is_match(text, i, query)) def find(text, query): text = list(compress(text)) query = list(compress(query)) return (find1 if len(query) == 1 else find2)(text, query) def parse_block(s): k, c = s.split('-') return int(k), c def get_input(): n, m = map(int, input().split()) text = list(map(parse_block, input().split())) assert len(text) == n query = list(map(parse_block, input().split())) assert len(query) == m return text, query if __name__ == '__main__': print(find(*get_input()))
Title: Messenger Time Limit: None seconds Memory Limit: None megabytes Problem Description: Each employee of the "Blake Techologies" company uses a special messaging app "Blake Messenger". All the stuff likes this app and uses it constantly. However, some important futures are missing. For example, many users want to be able to search through the message history. It was already announced that the new feature will appear in the nearest update, when developers faced some troubles that only you may help them to solve. All the messages are represented as a strings consisting of only lowercase English letters. In order to reduce the network load strings are represented in the special compressed form. Compression algorithm works as follows: string is represented as a concatenation of *n* blocks, each block containing only equal characters. One block may be described as a pair (*l**i*,<=*c**i*), where *l**i* is the length of the *i*-th block and *c**i* is the corresponding letter. Thus, the string *s* may be written as the sequence of pairs . Your task is to write the program, that given two compressed string *t* and *s* finds all occurrences of *s* in *t*. Developers know that there may be many such occurrences, so they only ask you to find the number of them. Note that *p* is the starting position of some occurrence of *s* in *t* if and only if *t**p**t**p*<=+<=1...*t**p*<=+<=|*s*|<=-<=1<==<=*s*, where *t**i* is the *i*-th character of string *t*. Note that the way to represent the string in compressed form may not be unique. For example string "aaaa" may be given as , , ... Input Specification: The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=200<=000) — the number of blocks in the strings *t* and *s*, respectively. The second line contains the descriptions of *n* parts of string *t* in the format "*l**i*-*c**i*" (1<=≤<=*l**i*<=≤<=1<=000<=000) — the length of the *i*-th part and the corresponding lowercase English letter. The second line contains the descriptions of *m* parts of string *s* in the format "*l**i*-*c**i*" (1<=≤<=*l**i*<=≤<=1<=000<=000) — the length of the *i*-th part and the corresponding lowercase English letter. Output Specification: Print a single integer — the number of occurrences of *s* in *t*. Demo Input: ['5 3\n3-a 2-b 4-c 3-a 2-c\n2-a 2-b 1-c\n', '6 1\n3-a 6-b 7-a 4-c 8-e 2-a\n3-a\n', '5 5\n1-h 1-e 1-l 1-l 1-o\n1-w 1-o 1-r 1-l 1-d\n'] Demo Output: ['1', '6', '0'] Note: In the first sample, *t* = "aaabbccccaaacc", and string *s* = "aabbc". The only occurrence of string *s* in string *t* starts at position *p* = 2. In the second sample, *t* = "aaabbbbbbaaaaaaacccceeeeeeeeaa", and *s* = "aaa". The occurrences of *s* in *t* start at positions *p* = 1, *p* = 10, *p* = 11, *p* = 12, *p* = 13 and *p* = 14.
```python def compress(bstr): pk, pc = None, None for block in bstr: if pc is None: pk, pc = block elif pc == block[1]: pk += block[0] else: yield pk, pc pk, pc = block if pc is not None: yield pk, pc def find1(text, query): (bk, bc), = query return sum(k-bk+1 for k, c in text if c == bc and k >= bk) def is_match(text, i, query): k, c = text[i] qk, qc = query[0] if c != qc or k < qk: return False for j in range(1, len(query)-1): if text[i+j] != query[j]: return False k, c = text[i + len(query)-1] qk, qc = query[-1] if c != qc or k < qk: return False return True def find2(text, query): return sum(1 for i in range(len(text)-len(query)+1) if is_match(text, i, query)) def find(text, query): text = list(compress(text)) query = list(compress(query)) return (find1 if len(query) == 1 else find2)(text, query) def parse_block(s): k, c = s.split('-') return int(k), c def get_input(): n, m = map(int, input().split()) text = list(map(parse_block, input().split())) assert len(text) == n query = list(map(parse_block, input().split())) assert len(query) == m return text, query if __name__ == '__main__': print(find(*get_input())) ```
0
61
A
Ultra-Fast Mathematician
PROGRAMMING
800
[ "implementation" ]
A. Ultra-Fast Mathematician
2
256
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Write one line — the corresponding answer. Do not omit the leading 0s.
[ "1010100\n0100101\n", "000\n111\n", "1110\n1010\n", "01110\n01100\n" ]
[ "1110001\n", "111\n", "0100\n", "00010\n" ]
none
500
[ { "input": "1010100\n0100101", "output": "1110001" }, { "input": "000\n111", "output": "111" }, { "input": "1110\n1010", "output": "0100" }, { "input": "01110\n01100", "output": "00010" }, { "input": "011101\n000001", "output": "011100" }, { "input": "10\n01", "output": "11" }, { "input": "00111111\n11011101", "output": "11100010" }, { "input": "011001100\n101001010", "output": "110000110" }, { "input": "1100100001\n0110101100", "output": "1010001101" }, { "input": "00011101010\n10010100101", "output": "10001001111" }, { "input": "100000101101\n111010100011", "output": "011010001110" }, { "input": "1000001111010\n1101100110001", "output": "0101101001011" }, { "input": "01011111010111\n10001110111010", "output": "11010001101101" }, { "input": "110010000111100\n001100101011010", "output": "111110101100110" }, { "input": "0010010111110000\n0000000011010110", "output": "0010010100100110" }, { "input": "00111110111110000\n01111100001100000", "output": "01000010110010000" }, { "input": "101010101111010001\n001001111101111101", "output": "100011010010101100" }, { "input": "0110010101111100000\n0011000101000000110", "output": "0101010000111100110" }, { "input": "11110100011101010111\n00001000011011000000", "output": "11111100000110010111" }, { "input": "101010101111101101001\n111010010010000011111", "output": "010000111101101110110" }, { "input": "0000111111100011000010\n1110110110110000001010", "output": "1110001001010011001000" }, { "input": "10010010101000110111000\n00101110100110111000111", "output": "10111100001110001111111" }, { "input": "010010010010111100000111\n100100111111100011001110", "output": "110110101101011111001001" }, { "input": "0101110100100111011010010\n0101100011010111001010001", "output": "0000010111110000010000011" }, { "input": "10010010100011110111111011\n10000110101100000001000100", "output": "00010100001111110110111111" }, { "input": "000001111000000100001000000\n011100111101111001110110001", "output": "011101000101111101111110001" }, { "input": "0011110010001001011001011100\n0000101101000011101011001010", "output": "0011011111001010110010010110" }, { "input": "11111000000000010011001101111\n11101110011001010100010000000", "output": "00010110011001000111011101111" }, { "input": "011001110000110100001100101100\n001010000011110000001000101001", "output": "010011110011000100000100000101" }, { "input": "1011111010001100011010110101111\n1011001110010000000101100010101", "output": "0000110100011100011111010111010" }, { "input": "10111000100001000001010110000001\n10111000001100101011011001011000", "output": "00000000101101101010001111011001" }, { "input": "000001010000100001000000011011100\n111111111001010100100001100000111", "output": "111110101001110101100001111011011" }, { "input": "1101000000000010011011101100000110\n1110000001100010011010000011011110", "output": "0011000001100000000001101111011000" }, { "input": "01011011000010100001100100011110001\n01011010111000001010010100001110000", "output": "00000001111010101011110000010000001" }, { "input": "000011111000011001000110111100000100\n011011000110000111101011100111000111", "output": "011000111110011110101101011011000011" }, { "input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000", "output": "1011001001111001001011101010101000010" }, { "input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011", "output": "10001110000010101110000111000011111110" }, { "input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100", "output": "000100001011110000011101110111010001110" }, { "input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001", "output": "1101110101010110000011000000101011110011" }, { "input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100", "output": "11001011110010010000010111001100001001110" }, { "input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110", "output": "001100101000011111111101111011101010111001" }, { "input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001", "output": "0111010010100110110101100010000100010100000" }, { "input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100", "output": "11111110000000100101000100110111001100011001" }, { "input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011", "output": "101011011100100010100011011001101010100100010" }, { "input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001", "output": "1101001100111011010111110110101111001011110111" }, { "input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001", "output": "10010101000101000000011010011110011110011110001" }, { "input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100", "output": "011011011100000000010101110010000000101000111101" }, { "input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100", "output": "0101010111101001011011110110011101010101010100011" }, { "input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011", "output": "11001011010010111000010110011101100100001110111111" }, { "input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011", "output": "111011101010011100001111101001101011110010010110001" }, { "input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001", "output": "0100111110110011111110010010010000110111100101101101" }, { "input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100", "output": "01011001110111010111001100010011010100010000111011000" }, { "input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111", "output": "100011101001001000011011011001111000100000010100100100" }, { "input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110", "output": "1100110010000101101010111111101001001001110101110010110" }, { "input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110", "output": "01000111100111001011110010100011111111110010101100001101" }, { "input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010", "output": "110001010001000011000101110101000100001011111001011001001" }, { "input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111", "output": "1110100010111000101001001011101110011111100111000011011011" }, { "input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110", "output": "01110110101110100100110011010000001000101100101111000111011" }, { "input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011", "output": "111100101000000011101011011001110010101111000110010010000000" }, { "input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111", "output": "0100100010111110010011101010000011111110001110010110010111001" }, { "input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111", "output": "00110100000011001101101100100010110010001100000001100110011101" }, { "input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011", "output": "000000011000111011110011101000010000010100101000000011010110010" }, { "input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010", "output": "0010100110110100111100100100101101010100100111011010001001010101" }, { "input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111", "output": "11010110111100101111101001100001110100010110010110110111100110100" }, { "input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111", "output": "111111010011011100101110100110111111111001111110011010111111110000" }, { "input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110", "output": "1010101010100010001001001001100000111000010010010100010011000100000" }, { "input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000", "output": "00011111011111001000011100010011100011010100101011011000001001111110" }, { "input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111", "output": "001111000011001110100111010101111111011100110011001010010010000111011" }, { "input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101", "output": "0110001100110100010000110111000010011010011000011001010011010100010100" }, { "input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010", "output": "00010000000110110101000011001000000100100110111010011111101010001010000" }, { "input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001", "output": "000100100000000110011100100001010110101001100101110010010011111001110111" }, { "input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000", "output": "1000111100010011010110011101000000101010101100011111100001101111001010010" }, { "input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011", "output": "01000010011110111001011011110000001011000111101101101010010110001010100100" }, { "input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101", "output": "101101110110110010011100001011111100100001110000101100110000100011011100110" }, { "input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001", "output": "1110111111110010111000001100101010101011010100101010100101100011001001111111" }, { "input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111", "output": "10111011000111000101110100101000100111011011100011110110000101010001111010111" }, { "input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110", "output": "110100100110000101010010011010011001100110000111010000010100001011110111111101" }, { "input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111", "output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111" }, { "input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001", "output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001" }, { "input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110", "output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011" }, { "input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111", "output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101" }, { "input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010", "output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101" }, { "input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000", "output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001" }, { "input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011", "output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110" }, { "input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011", "output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011" }, { "input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011", "output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011" }, { "input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010", "output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011" }, { "input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001", "output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110" }, { "input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111", "output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010" }, { "input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011", "output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011" }, { "input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100", "output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000" }, { "input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001", "output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101" }, { "input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110", "output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101" }, { "input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011", "output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110" }, { "input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111", "output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110" }, { "input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000", "output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001" }, { "input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010", "output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101" }, { "input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101", "output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011" }, { "input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011", "output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010", "output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011" }, { "input": "0\n0", "output": "0" }, { "input": "0\n1", "output": "1" } ]
1,593,303,242
2,147,483,647
PyPy 3
OK
TESTS
102
155
20,172,800
def calc(a,b): L = len(a) a = int(a, base=2) b = int(b, base=2) s = str(bin(a^b))[2:] while len(s) != L: s = '0' + s return s # get inputs a = input() b = input() print(calc(a, b))
Title: Ultra-Fast Mathematician Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate. Input Specification: There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100. Output Specification: Write one line — the corresponding answer. Do not omit the leading 0s. Demo Input: ['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n'] Demo Output: ['1110001\n', '111\n', '0100\n', '00010\n'] Note: none
```python def calc(a,b): L = len(a) a = int(a, base=2) b = int(b, base=2) s = str(bin(a^b))[2:] while len(s) != L: s = '0' + s return s # get inputs a = input() b = input() print(calc(a, b)) ```
3.923675
439
A
Devu, the Singer and Churu, the Joker
PROGRAMMING
900
[ "greedy", "implementation" ]
null
null
Devu is a renowned classical singer. He is invited to many big functions/festivals. Recently he was invited to "All World Classical Singing Festival". Other than Devu, comedian Churu was also invited. Devu has provided organizers a list of the songs and required time for singing them. He will sing *n* songs, *i**th* song will take *t**i* minutes exactly. The Comedian, Churu will crack jokes. All his jokes are of 5 minutes exactly. People have mainly come to listen Devu. But you know that he needs rest of 10 minutes after each song. On the other hand, Churu being a very active person, doesn't need any rest. You as one of the organizers should make an optimal sсhedule for the event. For some reasons you must follow the conditions: - The duration of the event must be no more than *d* minutes; - Devu must complete all his songs; - With satisfying the two previous conditions the number of jokes cracked by Churu should be as many as possible. If it is not possible to find a way to conduct all the songs of the Devu, output -1. Otherwise find out maximum number of jokes that Churu can crack in the grand event.
The first line contains two space separated integers *n*, *d* (1<=≤<=*n*<=≤<=100; 1<=≤<=*d*<=≤<=10000). The second line contains *n* space-separated integers: *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=100).
If there is no way to conduct all the songs of Devu, output -1. Otherwise output the maximum number of jokes that Churu can crack in the grand event.
[ "3 30\n2 2 1\n", "3 20\n2 1 1\n" ]
[ "5\n", "-1\n" ]
Consider the first example. The duration of the event is 30 minutes. There could be maximum 5 jokes in the following way: - First Churu cracks a joke in 5 minutes. - Then Devu performs the first song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now Devu performs second song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now finally Devu will perform his last song in 1 minutes. Total time spent is 5 + 2 + 10 + 2 + 10 + 1 = 30 minutes. Consider the second example. There is no way of organizing Devu's all songs. Hence the answer is -1.
500
[ { "input": "3 30\n2 2 1", "output": "5" }, { "input": "3 20\n2 1 1", "output": "-1" }, { "input": "50 10000\n5 4 10 9 9 6 7 7 7 3 3 7 7 4 7 4 10 10 1 7 10 3 1 4 5 7 2 10 10 10 2 3 4 7 6 1 8 4 7 3 8 8 4 10 1 1 9 2 6 1", "output": "1943" }, { "input": "50 10000\n4 7 15 9 11 12 20 9 14 14 10 13 6 13 14 17 6 8 20 12 10 15 13 17 5 12 13 11 7 5 5 2 3 15 13 7 14 14 19 2 13 14 5 15 3 19 15 16 4 1", "output": "1891" }, { "input": "100 9000\n5 2 3 1 1 3 4 9 9 6 7 10 10 10 2 10 6 8 8 6 7 9 9 5 6 2 1 10 10 9 4 5 9 2 4 3 8 5 6 1 1 5 3 6 2 6 6 6 5 8 3 6 7 3 1 10 9 1 8 3 10 9 5 6 3 4 1 1 10 10 2 3 4 8 10 10 5 1 5 3 6 8 10 6 10 2 1 8 10 1 7 6 9 10 5 2 3 5 3 2", "output": "1688" }, { "input": "100 8007\n5 19 14 18 9 6 15 8 1 14 11 20 3 17 7 12 2 6 3 17 7 20 1 14 20 17 2 10 13 7 18 18 9 10 16 8 1 11 11 9 13 18 9 20 12 12 7 15 12 17 11 5 11 15 9 2 15 1 18 3 18 16 15 4 10 5 18 13 13 12 3 8 17 2 12 2 13 3 1 13 2 4 9 10 18 10 14 4 4 17 12 19 2 9 6 5 5 20 18 12", "output": "1391" }, { "input": "39 2412\n1 1 1 1 1 1 26 1 1 1 99 1 1 1 1 1 1 1 1 1 1 88 7 1 1 1 1 76 1 1 1 93 40 1 13 1 68 1 32", "output": "368" }, { "input": "39 2617\n47 1 1 1 63 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 70 1 99 63 1 1 1 1 1 1 1 1 64 1 1", "output": "435" }, { "input": "39 3681\n83 77 1 94 85 47 1 98 29 16 1 1 1 71 96 85 31 97 96 93 40 50 98 1 60 51 1 96 100 72 1 1 1 89 1 93 1 92 100", "output": "326" }, { "input": "45 894\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 28 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 99 3 1 1", "output": "139" }, { "input": "45 4534\n1 99 65 99 4 46 54 80 51 30 96 1 28 30 44 70 78 1 1 100 1 62 1 1 1 85 1 1 1 61 1 46 75 1 61 77 97 26 67 1 1 63 81 85 86", "output": "514" }, { "input": "72 3538\n52 1 8 1 1 1 7 1 1 1 1 48 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 40 1 1 38 1 1 1 1 1 1 1 1 1 1 1 35 1 93 79 1 1 1 1 1 1 1 1 1 51 1 1 1 1 1 1 1 1 1 1 1 1 96 1", "output": "586" }, { "input": "81 2200\n1 59 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 93 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 50 1 1 1 1 1 1 1 1 1 1 1", "output": "384" }, { "input": "81 2577\n85 91 1 1 2 1 1 100 1 80 1 1 17 86 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 37 1 66 24 1 1 96 49 1 66 1 44 1 1 1 1 98 1 1 1 1 35 1 37 3 35 1 1 87 64 1 24 1 58 1 1 42 83 5 1 1 1 1 1 95 1 94 1 50 1 1", "output": "174" }, { "input": "81 4131\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "807" }, { "input": "81 6315\n1 1 67 100 1 99 36 1 92 5 1 96 42 12 1 57 91 1 1 66 41 30 74 95 1 37 1 39 91 69 1 52 77 47 65 1 1 93 96 74 90 35 85 76 71 92 92 1 1 67 92 74 1 1 86 76 35 1 56 16 27 57 37 95 1 40 20 100 51 1 80 60 45 79 95 1 46 1 25 100 96", "output": "490" }, { "input": "96 1688\n1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 71 1 1 1 30 1 1 1", "output": "284" }, { "input": "96 8889\n1 1 18 1 1 1 1 1 1 1 1 1 99 1 1 1 1 88 1 45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 96 1 1 1 1 21 1 1 1 1 1 1 1 73 1 1 1 1 1 10 1 1 1 1 1 1 1 46 43 1 1 1 1 1 98 1 1 1 1 1 1 6 1 1 1 1 1 74 1 25 1 55 1 1 1 13 1 1 54 1 1 1", "output": "1589" }, { "input": "10 100\n1 1 1 1 1 1 1 1 1 1", "output": "18" }, { "input": "100 10000\n54 46 72 94 79 83 91 54 73 3 24 55 54 31 28 20 19 6 25 19 47 23 1 70 15 87 51 39 54 77 55 5 60 3 15 99 56 88 22 78 79 21 38 27 28 86 7 88 12 59 55 70 25 1 70 49 1 45 69 72 50 17 4 56 8 100 90 34 35 20 61 76 88 79 4 74 65 68 75 26 40 72 59 94 10 67 96 85 29 90 47 24 44 1 66 93 55 36 1 99", "output": "1017" }, { "input": "100 6000\n41 31 23 17 24 78 26 96 93 48 46 2 49 33 35 9 73 100 34 48 83 36 33 69 43 24 3 74 8 81 27 33 94 38 77 9 76 90 62 90 21 67 22 22 12 2 17 27 61 18 72 85 59 65 71 38 90 75 74 66 60 47 58 50 90 95 75 10 5 100 97 29 83 88 65 26 93 90 22 98 36 55 70 38 50 92 88 72 99 96 25 14 74 16 25 92 67 94 77 96", "output": "-1" }, { "input": "1 1\n1", "output": "0" }, { "input": "1 6\n1", "output": "1" }, { "input": "1 5\n1", "output": "0" }, { "input": "1 3\n4", "output": "-1" }, { "input": "3 24\n2 1 2", "output": "-1" } ]
1,589,013,887
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
93
6,656,000
n,x=map(int,input().split()) l=list(map(int,input().split())) s=sum(l)+5+10*(n-1) if(s<=x): r=(n-1)*2 print(r+1) else: print('-1')
Title: Devu, the Singer and Churu, the Joker Time Limit: None seconds Memory Limit: None megabytes Problem Description: Devu is a renowned classical singer. He is invited to many big functions/festivals. Recently he was invited to "All World Classical Singing Festival". Other than Devu, comedian Churu was also invited. Devu has provided organizers a list of the songs and required time for singing them. He will sing *n* songs, *i**th* song will take *t**i* minutes exactly. The Comedian, Churu will crack jokes. All his jokes are of 5 minutes exactly. People have mainly come to listen Devu. But you know that he needs rest of 10 minutes after each song. On the other hand, Churu being a very active person, doesn't need any rest. You as one of the organizers should make an optimal sсhedule for the event. For some reasons you must follow the conditions: - The duration of the event must be no more than *d* minutes; - Devu must complete all his songs; - With satisfying the two previous conditions the number of jokes cracked by Churu should be as many as possible. If it is not possible to find a way to conduct all the songs of the Devu, output -1. Otherwise find out maximum number of jokes that Churu can crack in the grand event. Input Specification: The first line contains two space separated integers *n*, *d* (1<=≤<=*n*<=≤<=100; 1<=≤<=*d*<=≤<=10000). The second line contains *n* space-separated integers: *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=100). Output Specification: If there is no way to conduct all the songs of Devu, output -1. Otherwise output the maximum number of jokes that Churu can crack in the grand event. Demo Input: ['3 30\n2 2 1\n', '3 20\n2 1 1\n'] Demo Output: ['5\n', '-1\n'] Note: Consider the first example. The duration of the event is 30 minutes. There could be maximum 5 jokes in the following way: - First Churu cracks a joke in 5 minutes. - Then Devu performs the first song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now Devu performs second song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now finally Devu will perform his last song in 1 minutes. Total time spent is 5 + 2 + 10 + 2 + 10 + 1 = 30 minutes. Consider the second example. There is no way of organizing Devu's all songs. Hence the answer is -1.
```python n,x=map(int,input().split()) l=list(map(int,input().split())) s=sum(l)+5+10*(n-1) if(s<=x): r=(n-1)*2 print(r+1) else: print('-1') ```
0
527
A
Playing with Paper
PROGRAMMING
1,100
[ "implementation", "math" ]
null
null
One day Vasya was sitting on a not so interesting Maths lesson and making an origami from a rectangular *a* mm <=×<= *b* mm sheet of paper (*a*<=&gt;<=*b*). Usually the first step in making an origami is making a square piece of paper from the rectangular sheet by folding the sheet along the bisector of the right angle, and cutting the excess part. After making a paper ship from the square piece, Vasya looked on the remaining (*a*<=-<=*b*) mm <=×<= *b* mm strip of paper. He got the idea to use this strip of paper in the same way to make an origami, and then use the remainder (if it exists) and so on. At the moment when he is left with a square piece of paper, he will make the last ship from it and stop. Can you determine how many ships Vasya will make during the lesson?
The first line of the input contains two integers *a*, *b* (1<=≤<=*b*<=&lt;<=*a*<=≤<=1012) — the sizes of the original sheet of paper.
Print a single integer — the number of ships that Vasya will make.
[ "2 1\n", "10 7\n", "1000000000000 1\n" ]
[ "2\n", "6\n", "1000000000000\n" ]
Pictures to the first and second sample test.
500
[ { "input": "2 1", "output": "2" }, { "input": "10 7", "output": "6" }, { "input": "1000000000000 1", "output": "1000000000000" }, { "input": "3 1", "output": "3" }, { "input": "4 1", "output": "4" }, { "input": "3 2", "output": "3" }, { "input": "4 2", "output": "2" }, { "input": "1000 700", "output": "6" }, { "input": "959986566087 524054155168", "output": "90" }, { "input": "4 3", "output": "4" }, { "input": "7 6", "output": "7" }, { "input": "1000 999", "output": "1000" }, { "input": "1000 998", "output": "500" }, { "input": "1000 997", "output": "336" }, { "input": "42 1", "output": "42" }, { "input": "1000 1", "output": "1000" }, { "input": "8 5", "output": "5" }, { "input": "13 8", "output": "6" }, { "input": "987 610", "output": "15" }, { "input": "442 42", "output": "22" }, { "input": "754 466", "output": "13" }, { "input": "1000000000000 999999999999", "output": "1000000000000" }, { "input": "1000000000000 999999999998", "output": "500000000000" }, { "input": "941 14", "output": "74" }, { "input": "998 2", "output": "499" }, { "input": "1000 42", "output": "32" }, { "input": "1000 17", "output": "66" }, { "input": "5 1", "output": "5" }, { "input": "5 2", "output": "4" }, { "input": "5 3", "output": "4" }, { "input": "5 4", "output": "5" }, { "input": "293 210", "output": "17" }, { "input": "787878787878 424242424242", "output": "8" }, { "input": "956722026041 591286729879", "output": "58" }, { "input": "956722026041 365435296162", "output": "58" }, { "input": "628625247282 464807889701", "output": "102" }, { "input": "695928431619 424778620208", "output": "167" }, { "input": "1000000000000 42", "output": "23809523821" }, { "input": "987654345678 23", "output": "42941493300" }, { "input": "10000000001 2", "output": "5000000002" }, { "input": "1000000000000 2", "output": "500000000000" }, { "input": "1000000000000 3", "output": "333333333336" }, { "input": "100000000000 3", "output": "33333333336" }, { "input": "100000000000 23", "output": "4347826109" }, { "input": "999999999997 7", "output": "142857142861" }, { "input": "8589934592 4294967296", "output": "2" } ]
1,427,265,582
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
31
0
a, b = [int(x) for x in input().split()] if b > a: a, b = b, a r = 0 while b: r += a // b a %= b a, b = b, a print(a, b) print(r)
Title: Playing with Paper Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day Vasya was sitting on a not so interesting Maths lesson and making an origami from a rectangular *a* mm <=×<= *b* mm sheet of paper (*a*<=&gt;<=*b*). Usually the first step in making an origami is making a square piece of paper from the rectangular sheet by folding the sheet along the bisector of the right angle, and cutting the excess part. After making a paper ship from the square piece, Vasya looked on the remaining (*a*<=-<=*b*) mm <=×<= *b* mm strip of paper. He got the idea to use this strip of paper in the same way to make an origami, and then use the remainder (if it exists) and so on. At the moment when he is left with a square piece of paper, he will make the last ship from it and stop. Can you determine how many ships Vasya will make during the lesson? Input Specification: The first line of the input contains two integers *a*, *b* (1<=≤<=*b*<=&lt;<=*a*<=≤<=1012) — the sizes of the original sheet of paper. Output Specification: Print a single integer — the number of ships that Vasya will make. Demo Input: ['2 1\n', '10 7\n', '1000000000000 1\n'] Demo Output: ['2\n', '6\n', '1000000000000\n'] Note: Pictures to the first and second sample test.
```python a, b = [int(x) for x in input().split()] if b > a: a, b = b, a r = 0 while b: r += a // b a %= b a, b = b, a print(a, b) print(r) ```
0
230
B
T-primes
PROGRAMMING
1,300
[ "binary search", "implementation", "math", "number theory" ]
null
null
We know that prime numbers are positive integers that have exactly two distinct positive divisors. Similarly, we'll call a positive integer *t* Т-prime, if *t* has exactly three distinct positive divisors. You are given an array of *n* positive integers. For each of them determine whether it is Т-prime or not.
The first line contains a single positive integer, *n* (1<=≤<=*n*<=≤<=105), showing how many numbers are in the array. The next line contains *n* space-separated integers *x**i* (1<=≤<=*x**i*<=≤<=1012). Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is advised to use the cin, cout streams or the %I64d specifier.
Print *n* lines: the *i*-th line should contain "YES" (without the quotes), if number *x**i* is Т-prime, and "NO" (without the quotes), if it isn't.
[ "3\n4 5 6\n" ]
[ "YES\nNO\nNO\n" ]
The given test has three numbers. The first number 4 has exactly three divisors — 1, 2 and 4, thus the answer for this number is "YES". The second number 5 has two divisors (1 and 5), and the third number 6 has four divisors (1, 2, 3, 6), hence the answer for them is "NO".
500
[ { "input": "3\n4 5 6", "output": "YES\nNO\nNO" }, { "input": "2\n48 49", "output": "NO\nYES" }, { "input": "10\n10 9 8 7 6 5 4 3 2 1", "output": "NO\nYES\nNO\nNO\nNO\nNO\nYES\nNO\nNO\nNO" }, { "input": "1\n36", "output": "NO" }, { "input": "1\n999966000289", "output": "YES" }, { "input": "1\n999993399999", "output": "NO" }, { "input": "9\n111 121 131 111 121 131 111 121 131", "output": "NO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO" }, { "input": "1\n1", "output": "NO" }, { "input": "1\n10", "output": "NO" }, { "input": "1\n976197352729", "output": "NO" }, { "input": "1\n1000000000000", "output": "NO" }, { "input": "1\n9", "output": "YES" }, { "input": "6\n549755813888 847288609443 762939453125 678223072849 285311670611 137858491849", "output": "NO\nNO\nNO\nNO\nNO\nNO" }, { "input": "3\n223092870 6469693230 200560490130", "output": "NO\nNO\nNO" }, { "input": "2\n81 25", "output": "NO\nYES" }, { "input": "1\n16", "output": "NO" }, { "input": "22\n1 2 3 4 5 6 7 8 9 10 12752041 64 121 144 27550356289 124 24657 23756 135153365 25235235235 42351351 81", "output": "NO\nNO\nNO\nYES\nNO\nNO\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nNO\nNO\nNO\nNO\nNO" }, { "input": "1\n225", "output": "NO" }, { "input": "1\n1521", "output": "NO" }, { "input": "1\n81", "output": "NO" } ]
1,697,446,820
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
4
2,000
0
n = int(input()) num = list(map(int, input().split())) l = [] for i in num: divisor = [] for j in range(1, i+1): if i % j == 0: divisor.append(j) l.append(len(divisor)) for k in l: if k == 3: print("YES") else: print("NO")
Title: T-primes Time Limit: None seconds Memory Limit: None megabytes Problem Description: We know that prime numbers are positive integers that have exactly two distinct positive divisors. Similarly, we'll call a positive integer *t* Т-prime, if *t* has exactly three distinct positive divisors. You are given an array of *n* positive integers. For each of them determine whether it is Т-prime or not. Input Specification: The first line contains a single positive integer, *n* (1<=≤<=*n*<=≤<=105), showing how many numbers are in the array. The next line contains *n* space-separated integers *x**i* (1<=≤<=*x**i*<=≤<=1012). Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is advised to use the cin, cout streams or the %I64d specifier. Output Specification: Print *n* lines: the *i*-th line should contain "YES" (without the quotes), if number *x**i* is Т-prime, and "NO" (without the quotes), if it isn't. Demo Input: ['3\n4 5 6\n'] Demo Output: ['YES\nNO\nNO\n'] Note: The given test has three numbers. The first number 4 has exactly three divisors — 1, 2 and 4, thus the answer for this number is "YES". The second number 5 has two divisors (1 and 5), and the third number 6 has four divisors (1, 2, 3, 6), hence the answer for them is "NO".
```python n = int(input()) num = list(map(int, input().split())) l = [] for i in num: divisor = [] for j in range(1, i+1): if i % j == 0: divisor.append(j) l.append(len(divisor)) for k in l: if k == 3: print("YES") else: print("NO") ```
0
816
B
Karen and Coffee
PROGRAMMING
1,400
[ "binary search", "data structures", "implementation" ]
null
null
To stay woke and attentive during classes, Karen needs some coffee! Karen, a coffee aficionado, wants to know the optimal temperature for brewing the perfect cup of coffee. Indeed, she has spent some time reading several recipe books, including the universally acclaimed "The Art of the Covfefe". She knows *n* coffee recipes. The *i*-th recipe suggests that coffee should be brewed between *l**i* and *r**i* degrees, inclusive, to achieve the optimal taste. Karen thinks that a temperature is admissible if at least *k* recipes recommend it. Karen has a rather fickle mind, and so she asks *q* questions. In each question, given that she only wants to prepare coffee with a temperature between *a* and *b*, inclusive, can you tell her how many admissible integer temperatures fall within the range?
The first line of input contains three integers, *n*, *k* (1<=≤<=*k*<=≤<=*n*<=≤<=200000), and *q* (1<=≤<=*q*<=≤<=200000), the number of recipes, the minimum number of recipes a certain temperature must be recommended by to be admissible, and the number of questions Karen has, respectively. The next *n* lines describe the recipes. Specifically, the *i*-th line among these contains two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=200000), describing that the *i*-th recipe suggests that the coffee be brewed between *l**i* and *r**i* degrees, inclusive. The next *q* lines describe the questions. Each of these lines contains *a* and *b*, (1<=≤<=*a*<=≤<=*b*<=≤<=200000), describing that she wants to know the number of admissible integer temperatures between *a* and *b* degrees, inclusive.
For each question, output a single integer on a line by itself, the number of admissible integer temperatures between *a* and *b* degrees, inclusive.
[ "3 2 4\n91 94\n92 97\n97 99\n92 94\n93 97\n95 96\n90 100\n", "2 1 1\n1 1\n200000 200000\n90 100\n" ]
[ "3\n3\n0\n4\n", "0\n" ]
In the first test case, Karen knows 3 recipes. 1. The first one recommends brewing the coffee between 91 and 94 degrees, inclusive. 1. The second one recommends brewing the coffee between 92 and 97 degrees, inclusive. 1. The third one recommends brewing the coffee between 97 and 99 degrees, inclusive. A temperature is admissible if at least 2 recipes recommend it. She asks 4 questions. In her first question, she wants to know the number of admissible integer temperatures between 92 and 94 degrees, inclusive. There are 3: 92, 93 and 94 degrees are all admissible. In her second question, she wants to know the number of admissible integer temperatures between 93 and 97 degrees, inclusive. There are 3: 93, 94 and 97 degrees are all admissible. In her third question, she wants to know the number of admissible integer temperatures between 95 and 96 degrees, inclusive. There are none. In her final question, she wants to know the number of admissible integer temperatures between 90 and 100 degrees, inclusive. There are 4: 92, 93, 94 and 97 degrees are all admissible. In the second test case, Karen knows 2 recipes. 1. The first one, "wikiHow to make Cold Brew Coffee", recommends brewing the coffee at exactly 1 degree. 1. The second one, "What good is coffee that isn't brewed at at least 36.3306 times the temperature of the surface of the sun?", recommends brewing the coffee at exactly 200000 degrees. A temperature is admissible if at least 1 recipe recommends it. In her first and only question, she wants to know the number of admissible integer temperatures that are actually reasonable. There are none.
1,000
[ { "input": "3 2 4\n91 94\n92 97\n97 99\n92 94\n93 97\n95 96\n90 100", "output": "3\n3\n0\n4" }, { "input": "2 1 1\n1 1\n200000 200000\n90 100", "output": "0" }, { "input": "1 1 1\n1 1\n1 1", "output": "1" }, { "input": "1 1 1\n200000 200000\n200000 200000", "output": "1" } ]
1,697,280,632
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
0
109
7,475,200
# LUOGU_RID: 129367909 from itertools import accumulate from typing import List, Tuple def karenAndCoffee( recipes: List[Tuple[int, int]], queries: List[Tuple[int, int]], threshold: int ) -> List[int]: N = int(2e5 + 10) diff = [0] * N for left, right in recipes: diff[left] += 1 diff[right + 1] -= 1 diff = list(accumulate(diff)) preSum = list(accumulate(diff, lambda x, y: x + (y >= threshold), initial=0)) return [preSum[right + 1] - preSum[left] for left, right in queries] if __name__ == "__main__": n, k, q = map(int, input().split()) recipes = [tuple(map(int, input().split())) for _ in range(n)] queries = [tuple(map(int, input().split())) for _ in range(q)] print(*karenAndCoffee(recipes, queries, k))
Title: Karen and Coffee Time Limit: None seconds Memory Limit: None megabytes Problem Description: To stay woke and attentive during classes, Karen needs some coffee! Karen, a coffee aficionado, wants to know the optimal temperature for brewing the perfect cup of coffee. Indeed, she has spent some time reading several recipe books, including the universally acclaimed "The Art of the Covfefe". She knows *n* coffee recipes. The *i*-th recipe suggests that coffee should be brewed between *l**i* and *r**i* degrees, inclusive, to achieve the optimal taste. Karen thinks that a temperature is admissible if at least *k* recipes recommend it. Karen has a rather fickle mind, and so she asks *q* questions. In each question, given that she only wants to prepare coffee with a temperature between *a* and *b*, inclusive, can you tell her how many admissible integer temperatures fall within the range? Input Specification: The first line of input contains three integers, *n*, *k* (1<=≤<=*k*<=≤<=*n*<=≤<=200000), and *q* (1<=≤<=*q*<=≤<=200000), the number of recipes, the minimum number of recipes a certain temperature must be recommended by to be admissible, and the number of questions Karen has, respectively. The next *n* lines describe the recipes. Specifically, the *i*-th line among these contains two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=200000), describing that the *i*-th recipe suggests that the coffee be brewed between *l**i* and *r**i* degrees, inclusive. The next *q* lines describe the questions. Each of these lines contains *a* and *b*, (1<=≤<=*a*<=≤<=*b*<=≤<=200000), describing that she wants to know the number of admissible integer temperatures between *a* and *b* degrees, inclusive. Output Specification: For each question, output a single integer on a line by itself, the number of admissible integer temperatures between *a* and *b* degrees, inclusive. Demo Input: ['3 2 4\n91 94\n92 97\n97 99\n92 94\n93 97\n95 96\n90 100\n', '2 1 1\n1 1\n200000 200000\n90 100\n'] Demo Output: ['3\n3\n0\n4\n', '0\n'] Note: In the first test case, Karen knows 3 recipes. 1. The first one recommends brewing the coffee between 91 and 94 degrees, inclusive. 1. The second one recommends brewing the coffee between 92 and 97 degrees, inclusive. 1. The third one recommends brewing the coffee between 97 and 99 degrees, inclusive. A temperature is admissible if at least 2 recipes recommend it. She asks 4 questions. In her first question, she wants to know the number of admissible integer temperatures between 92 and 94 degrees, inclusive. There are 3: 92, 93 and 94 degrees are all admissible. In her second question, she wants to know the number of admissible integer temperatures between 93 and 97 degrees, inclusive. There are 3: 93, 94 and 97 degrees are all admissible. In her third question, she wants to know the number of admissible integer temperatures between 95 and 96 degrees, inclusive. There are none. In her final question, she wants to know the number of admissible integer temperatures between 90 and 100 degrees, inclusive. There are 4: 92, 93, 94 and 97 degrees are all admissible. In the second test case, Karen knows 2 recipes. 1. The first one, "wikiHow to make Cold Brew Coffee", recommends brewing the coffee at exactly 1 degree. 1. The second one, "What good is coffee that isn't brewed at at least 36.3306 times the temperature of the surface of the sun?", recommends brewing the coffee at exactly 200000 degrees. A temperature is admissible if at least 1 recipe recommends it. In her first and only question, she wants to know the number of admissible integer temperatures that are actually reasonable. There are none.
```python # LUOGU_RID: 129367909 from itertools import accumulate from typing import List, Tuple def karenAndCoffee( recipes: List[Tuple[int, int]], queries: List[Tuple[int, int]], threshold: int ) -> List[int]: N = int(2e5 + 10) diff = [0] * N for left, right in recipes: diff[left] += 1 diff[right + 1] -= 1 diff = list(accumulate(diff)) preSum = list(accumulate(diff, lambda x, y: x + (y >= threshold), initial=0)) return [preSum[right + 1] - preSum[left] for left, right in queries] if __name__ == "__main__": n, k, q = map(int, input().split()) recipes = [tuple(map(int, input().split())) for _ in range(n)] queries = [tuple(map(int, input().split())) for _ in range(q)] print(*karenAndCoffee(recipes, queries, k)) ```
-1
912
B
New Year's Eve
PROGRAMMING
1,300
[ "bitmasks", "constructive algorithms", "number theory" ]
null
null
Since Grisha behaved well last year, at New Year's Eve he was visited by Ded Moroz who brought an enormous bag of gifts with him! The bag contains *n* sweet candies from the good ol' bakery, each labeled from 1 to *n* corresponding to its tastiness. No two candies have the same tastiness. The choice of candies has a direct effect on Grisha's happiness. One can assume that he should take the tastiest ones — but no, the holiday magic turns things upside down. It is the xor-sum of tastinesses that matters, not the ordinary sum! A xor-sum of a sequence of integers *a*1,<=*a*2,<=...,<=*a**m* is defined as the bitwise XOR of all its elements: , here denotes the bitwise XOR operation; more about bitwise XOR can be found [here.](https://en.wikipedia.org/wiki/Bitwise_operation#XOR) Ded Moroz warned Grisha he has more houses to visit, so Grisha can take no more than *k* candies from the bag. Help Grisha determine the largest xor-sum (largest xor-sum means maximum happiness!) he can obtain.
The sole string contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=1018).
Output one number — the largest possible xor-sum.
[ "4 3\n", "6 6\n" ]
[ "7\n", "7\n" ]
In the first sample case, one optimal answer is 1, 2 and 4, giving the xor-sum of 7. In the second sample case, one can, for example, take all six candies and obtain the xor-sum of 7.
1,000
[ { "input": "4 3", "output": "7" }, { "input": "6 6", "output": "7" }, { "input": "2 2", "output": "3" }, { "input": "1022 10", "output": "1023" }, { "input": "415853337373441 52", "output": "562949953421311" }, { "input": "75 12", "output": "127" }, { "input": "1000000000000000000 1000000000000000000", "output": "1152921504606846975" }, { "input": "1 1", "output": "1" }, { "input": "1000000000000000000 2", "output": "1152921504606846975" }, { "input": "49194939 22", "output": "67108863" }, { "input": "228104606 17", "output": "268435455" }, { "input": "817034381 7", "output": "1073741823" }, { "input": "700976748 4", "output": "1073741823" }, { "input": "879886415 9", "output": "1073741823" }, { "input": "18007336 10353515", "output": "33554431" }, { "input": "196917003 154783328", "output": "268435455" }, { "input": "785846777 496205300", "output": "1073741823" }, { "input": "964756444 503568330", "output": "1073741823" }, { "input": "848698811 317703059", "output": "1073741823" }, { "input": "676400020444788 1", "output": "676400020444788" }, { "input": "502643198528213 1", "output": "502643198528213" }, { "input": "815936580997298686 684083143940282566", "output": "1152921504606846975" }, { "input": "816762824175382110 752185261508428780", "output": "1152921504606846975" }, { "input": "327942415253132295 222598158321260499", "output": "576460752303423487" }, { "input": "328768654136248423 284493129147496637", "output": "576460752303423487" }, { "input": "329594893019364551 25055600080496801", "output": "576460752303423487" }, { "input": "921874985256864012 297786684518764536", "output": "1152921504606846975" }, { "input": "922701224139980141 573634416190460758", "output": "1152921504606846975" }, { "input": "433880815217730325 45629641110945892", "output": "576460752303423487" }, { "input": "434707058395813749 215729375494216481", "output": "576460752303423487" }, { "input": "435533301573897173 34078453236225189", "output": "576460752303423487" }, { "input": "436359544751980597 199220719961060641", "output": "576460752303423487" }, { "input": "437185783635096725 370972992240105630", "output": "576460752303423487" }, { "input": "438012026813180149 111323110116193830", "output": "576460752303423487" }, { "input": "438838269991263573 295468957052046146", "output": "576460752303423487" }, { "input": "439664513169346997 46560240538186155", "output": "576460752303423487" }, { "input": "440490752052463125 216165966013438147", "output": "576460752303423487" }, { "input": "441316995230546549 401964286420555423", "output": "576460752303423487" }, { "input": "952496582013329437 673506882352402278", "output": "1152921504606846975" }, { "input": "1000000000000000000 1", "output": "1000000000000000000" }, { "input": "2147483647 1", "output": "2147483647" }, { "input": "2147483647 2", "output": "2147483647" }, { "input": "2147483647 31", "output": "2147483647" }, { "input": "8 2", "output": "15" }, { "input": "3 3", "output": "3" }, { "input": "4 1", "output": "4" }, { "input": "10 2", "output": "15" }, { "input": "288230376151711743 2", "output": "288230376151711743" }, { "input": "5 2", "output": "7" }, { "input": "576460752303423487 2", "output": "576460752303423487" }, { "input": "36028797018963967 123", "output": "36028797018963967" }, { "input": "1125899906842623 2", "output": "1125899906842623" }, { "input": "576460752303423489 5", "output": "1152921504606846975" }, { "input": "288230376151711743 3", "output": "288230376151711743" }, { "input": "36028797018963967 345", "output": "36028797018963967" }, { "input": "18014398509481984 30", "output": "36028797018963967" }, { "input": "8 8", "output": "15" }, { "input": "8 1", "output": "8" } ]
1,556,466,443
2,147,483,647
Python 3
OK
TESTS
58
109
0
pin=lambda:map(int,input().split()) x,a=pin() if a==1:print(x);exit() print(2**x.bit_length()-1)
Title: New Year's Eve Time Limit: None seconds Memory Limit: None megabytes Problem Description: Since Grisha behaved well last year, at New Year's Eve he was visited by Ded Moroz who brought an enormous bag of gifts with him! The bag contains *n* sweet candies from the good ol' bakery, each labeled from 1 to *n* corresponding to its tastiness. No two candies have the same tastiness. The choice of candies has a direct effect on Grisha's happiness. One can assume that he should take the tastiest ones — but no, the holiday magic turns things upside down. It is the xor-sum of tastinesses that matters, not the ordinary sum! A xor-sum of a sequence of integers *a*1,<=*a*2,<=...,<=*a**m* is defined as the bitwise XOR of all its elements: , here denotes the bitwise XOR operation; more about bitwise XOR can be found [here.](https://en.wikipedia.org/wiki/Bitwise_operation#XOR) Ded Moroz warned Grisha he has more houses to visit, so Grisha can take no more than *k* candies from the bag. Help Grisha determine the largest xor-sum (largest xor-sum means maximum happiness!) he can obtain. Input Specification: The sole string contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=1018). Output Specification: Output one number — the largest possible xor-sum. Demo Input: ['4 3\n', '6 6\n'] Demo Output: ['7\n', '7\n'] Note: In the first sample case, one optimal answer is 1, 2 and 4, giving the xor-sum of 7. In the second sample case, one can, for example, take all six candies and obtain the xor-sum of 7.
```python pin=lambda:map(int,input().split()) x,a=pin() if a==1:print(x);exit() print(2**x.bit_length()-1) ```
3
11
B
Jumping Jack
PROGRAMMING
1,600
[ "math" ]
B. Jumping Jack
1
64
Jack is working on his jumping skills recently. Currently he's located at point zero of the number line. He would like to get to the point *x*. In order to train, he has decided that he'll first jump by only one unit, and each subsequent jump will be exactly one longer than the previous one. He can go either left or right with each jump. He wonders how many jumps he needs to reach *x*.
The input data consists of only one integer *x* (<=-<=109<=≤<=*x*<=≤<=109).
Output the minimal number of jumps that Jack requires to reach *x*.
[ "2\n", "6\n", "0\n" ]
[ "3\n", "3\n", "0\n" ]
none
0
[ { "input": "2", "output": "3" }, { "input": "6", "output": "3" }, { "input": "0", "output": "0" }, { "input": "-1000000000", "output": "44723" }, { "input": "999961560", "output": "44720" }, { "input": "999961561", "output": "44721" }, { "input": "999961559", "output": "44721" }, { "input": "-488979819", "output": "31273" }, { "input": "-865918189", "output": "41617" }, { "input": "-278253406", "output": "23591" }, { "input": "-87275307", "output": "13213" }, { "input": "103702792", "output": "14403" }, { "input": "294680891", "output": "24277" }, { "input": "485658989", "output": "31166" }, { "input": "676637088", "output": "36787" }, { "input": "867615187", "output": "41657" }, { "input": "-941406715", "output": "43393" }, { "input": "-897912263", "output": "42377" }, { "input": "-706934164", "output": "37603" }, { "input": "-790244010", "output": "39755" }, { "input": "16417015", "output": "5730" }, { "input": "823078041", "output": "40573" }, { "input": "-517744582", "output": "32179" }, { "input": "288916443", "output": "24038" }, { "input": "-904422532", "output": "42531" }, { "input": "-245245154", "output": "22147" }, { "input": "561415872", "output": "33511" }, { "input": "-779406751", "output": "39482" }, { "input": "27254274", "output": "7383" }, { "input": "845249034", "output": "41116" } ]
1,577,707,194
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
122
0
j = abs(int(input())) j=1 i = 0 while j > 0 or j&1: i += 1 j -= i print(i)
Title: Jumping Jack Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: Jack is working on his jumping skills recently. Currently he's located at point zero of the number line. He would like to get to the point *x*. In order to train, he has decided that he'll first jump by only one unit, and each subsequent jump will be exactly one longer than the previous one. He can go either left or right with each jump. He wonders how many jumps he needs to reach *x*. Input Specification: The input data consists of only one integer *x* (<=-<=109<=≤<=*x*<=≤<=109). Output Specification: Output the minimal number of jumps that Jack requires to reach *x*. Demo Input: ['2\n', '6\n', '0\n'] Demo Output: ['3\n', '3\n', '0\n'] Note: none
```python j = abs(int(input())) j=1 i = 0 while j > 0 or j&1: i += 1 j -= i print(i) ```
0
577
A
Multiplication Table
PROGRAMMING
1,000
[ "implementation", "number theory" ]
null
null
Let's consider a table consisting of *n* rows and *n* columns. The cell located at the intersection of *i*-th row and *j*-th column contains number *i*<=×<=*j*. The rows and columns are numbered starting from 1. You are given a positive integer *x*. Your task is to count the number of cells in a table that contain number *x*.
The single line contains numbers *n* and *x* (1<=≤<=*n*<=≤<=105, 1<=≤<=*x*<=≤<=109) — the size of the table and the number that we are looking for in the table.
Print a single number: the number of times *x* occurs in the table.
[ "10 5\n", "6 12\n", "5 13\n" ]
[ "2\n", "4\n", "0\n" ]
A table for the second sample test is given below. The occurrences of number 12 are marked bold.
500
[ { "input": "10 5", "output": "2" }, { "input": "6 12", "output": "4" }, { "input": "5 13", "output": "0" }, { "input": "1 1", "output": "1" }, { "input": "2 1", "output": "1" }, { "input": "100000 1", "output": "1" }, { "input": "1 1000000000", "output": "0" }, { "input": "100000 1000000000", "output": "16" }, { "input": "100000 362880", "output": "154" }, { "input": "1 4", "output": "0" }, { "input": "9 12", "output": "4" }, { "input": "10 123", "output": "0" }, { "input": "9551 975275379", "output": "0" }, { "input": "17286 948615687", "output": "0" }, { "input": "58942 936593001", "output": "0" }, { "input": "50000 989460910", "output": "4" }, { "input": "22741 989460910", "output": "0" }, { "input": "22740 989460910", "output": "0" }, { "input": "100000 989460910", "output": "4" }, { "input": "100000 98280", "output": "128" }, { "input": "100000 997920", "output": "222" }, { "input": "100000 720720", "output": "226" }, { "input": "100000 2162160", "output": "282" }, { "input": "100000 4324320", "output": "320" }, { "input": "100000 8648640", "output": "348" }, { "input": "100000 183783600", "output": "438" }, { "input": "100000 551350800", "output": "392" }, { "input": "40000 551350800", "output": "150" }, { "input": "20000 400000000", "output": "1" }, { "input": "19999 400000000", "output": "0" }, { "input": "19999 399960001", "output": "1" }, { "input": "31621 999887641", "output": "1" }, { "input": "31622 999887641", "output": "1" }, { "input": "31620 999887641", "output": "0" }, { "input": "100000 999887641", "output": "3" }, { "input": "100000 25", "output": "3" }, { "input": "100000 1", "output": "1" }, { "input": "100000 3628800", "output": "220" }, { "input": "100000 39916800", "output": "328" }, { "input": "100000 479001600", "output": "254" }, { "input": "4 9", "output": "1" }, { "input": "2 6", "output": "0" }, { "input": "20 100", "output": "3" }, { "input": "10 3", "output": "2" }, { "input": "4 4", "output": "3" }, { "input": "2 4", "output": "1" }, { "input": "89874 1", "output": "1" } ]
1,693,499,842
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
15
0
x = list(map(int, input().split())) matrix = [] for y in range(x[0]): matrix.extend(list(range(1, ((1+y)*(x[0])), (y+1)))) print(matrix.count(x[1]))
Title: Multiplication Table Time Limit: None seconds Memory Limit: None megabytes Problem Description: Let's consider a table consisting of *n* rows and *n* columns. The cell located at the intersection of *i*-th row and *j*-th column contains number *i*<=×<=*j*. The rows and columns are numbered starting from 1. You are given a positive integer *x*. Your task is to count the number of cells in a table that contain number *x*. Input Specification: The single line contains numbers *n* and *x* (1<=≤<=*n*<=≤<=105, 1<=≤<=*x*<=≤<=109) — the size of the table and the number that we are looking for in the table. Output Specification: Print a single number: the number of times *x* occurs in the table. Demo Input: ['10 5\n', '6 12\n', '5 13\n'] Demo Output: ['2\n', '4\n', '0\n'] Note: A table for the second sample test is given below. The occurrences of number 12 are marked bold.
```python x = list(map(int, input().split())) matrix = [] for y in range(x[0]): matrix.extend(list(range(1, ((1+y)*(x[0])), (y+1)))) print(matrix.count(x[1])) ```
0
0
none
none
none
0
[ "none" ]
null
null
This is an interactive problem. In the output section below you will see the information about flushing the output. On Sunday Leha the hacker took Nura from the house where she lives and went with her to one of the most luxurious restaurants in Vičkopolis. Upon arrival, they left the car in a huge parking lot near the restaurant and hurried inside the building. In the restaurant a polite waiter immediately brought the menu to Leha and Noora, consisting of *n* dishes. It is interesting that all dishes in the menu are numbered with integers from 1 to *n*. After a little thought, the girl ordered exactly *k* different dishes from available in the menu. To pass the waiting time while the chefs prepare ordered dishes, the girl invited the hacker to play a game that will help them get to know each other better. The game itself is very simple: Noora wants Leha to guess any two dishes among all ordered. At the same time, she is ready to answer only one type of questions. Leha can say two numbers *x* and *y* (1<=≤<=*x*,<=*y*<=≤<=*n*). After that Noora chooses some dish *a* for the number *x* such that, at first, *a* is among the dishes Noora ordered (*x* can be equal to *a*), and, secondly, the value is the minimum possible. By the same rules the girl chooses dish *b* for *y*. After that Noora says «TAK» to Leha, if , and «NIE» otherwise. However, the restaurant is preparing quickly, so Leha has enough time to ask no more than 60 questions. After that he should name numbers of any two dishes Noora ordered. Help Leha to solve this problem!
There are two numbers *n* and *k* (2<=≤<=*k*<=≤<=*n*<=≤<=105) in the single line of input denoting the number of dishes in the menu and the number of dishes Noora ordered.
If you want to provide an answer, output a string of the form 2 *x* *y* (1<=≤<=*x*,<=*y*<=≤<=*n*,<=*x*<=≠<=*y*), if you think the dishes *x* and *y* was among dishes ordered by Noora. After that, flush the output and terminate your program.
[ "3 2\nNIE\nTAK\nNIE\nTAK\nTAK\nTAK\n" ]
[ "1 1 2\n1 2 1\n1 1 3\n1 3 1\n1 2 3\n1 3 2\n2 2 3\n" ]
There are three dishes in sample. Noora ordered dished numberes 2 and 3, which Leha should guess. If Noora receive requests for the first dish (*x* = 1), then she'll choose the second dish (*a* = 2) as the dish with the minimum value <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/e5a4a1705bc256e413564795cc8b70857f0ae44c.png" style="max-width: 100.0%;max-height: 100.0%;"/>. For the second (*x* = 2) and the third (*x* = 3) dishes themselves will be optimal, because in that case <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/79add195d023131e992b60a354fec89501759e75.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Let Leha asks Noora about the next couple of dishes: - *x* = 1, *y* = 2, then he'll recieve «NIE» answer, because |1 - 2| &gt; |2 - 2| - *x* = 2, *y* = 1, then he'll recieve «TAK» answer, because |2 - 2| ≤ |1 - 2| - *x* = 1, *y* = 3, then he'll recieve «NIE» answer, because |1 - 2| &gt; |3 - 3| - *x* = 3, *y* = 1, then he'll recieve «TAK» answer, because |3 - 3| ≤ |1 - 2| - *x* = 2, *y* = 3, then he'll recieve «TAK» answer, because |2 - 2| ≤ |3 - 3| - *x* = 3, *y* = 2, then he'll recieve «TAK» answer, because |3 - 3| ≤ |2 - 2| According to the available information, it is possible to say that Nura ordered dishes with numbers 2 and 3.
0
[]
1,559,222,426
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
93
0
def closer(x, y): print('1 {} {}'.format(x, y), flush=True) s = input().strip() return s == 'TAK' def find_in_interval(i, j): while j > i: m = (j + i) // 2 if closer(m, m + 1): j = m else: i = m + 1 return i def exists_right(i, n): if i == n: return False a = 0 b = 1 while a < b: if closer(i + b, i + a): return True a = b b = b * 2 if i + b > n: b = n - i return False def main(): n = int(input().strip()) x = find_in_interval(1, n) if exists_right(x, n): y = find_in_interval(x + 1, n) else: y = find_in_interval(1, x - 1) print('2 {} {}'.format(x, y), flush=True) if __name__ == '__main__': main()
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: This is an interactive problem. In the output section below you will see the information about flushing the output. On Sunday Leha the hacker took Nura from the house where she lives and went with her to one of the most luxurious restaurants in Vičkopolis. Upon arrival, they left the car in a huge parking lot near the restaurant and hurried inside the building. In the restaurant a polite waiter immediately brought the menu to Leha and Noora, consisting of *n* dishes. It is interesting that all dishes in the menu are numbered with integers from 1 to *n*. After a little thought, the girl ordered exactly *k* different dishes from available in the menu. To pass the waiting time while the chefs prepare ordered dishes, the girl invited the hacker to play a game that will help them get to know each other better. The game itself is very simple: Noora wants Leha to guess any two dishes among all ordered. At the same time, she is ready to answer only one type of questions. Leha can say two numbers *x* and *y* (1<=≤<=*x*,<=*y*<=≤<=*n*). After that Noora chooses some dish *a* for the number *x* such that, at first, *a* is among the dishes Noora ordered (*x* can be equal to *a*), and, secondly, the value is the minimum possible. By the same rules the girl chooses dish *b* for *y*. After that Noora says «TAK» to Leha, if , and «NIE» otherwise. However, the restaurant is preparing quickly, so Leha has enough time to ask no more than 60 questions. After that he should name numbers of any two dishes Noora ordered. Help Leha to solve this problem! Input Specification: There are two numbers *n* and *k* (2<=≤<=*k*<=≤<=*n*<=≤<=105) in the single line of input denoting the number of dishes in the menu and the number of dishes Noora ordered. Output Specification: If you want to provide an answer, output a string of the form 2 *x* *y* (1<=≤<=*x*,<=*y*<=≤<=*n*,<=*x*<=≠<=*y*), if you think the dishes *x* and *y* was among dishes ordered by Noora. After that, flush the output and terminate your program. Demo Input: ['3 2\nNIE\nTAK\nNIE\nTAK\nTAK\nTAK\n'] Demo Output: ['1 1 2\n1 2 1\n1 1 3\n1 3 1\n1 2 3\n1 3 2\n2 2 3\n'] Note: There are three dishes in sample. Noora ordered dished numberes 2 and 3, which Leha should guess. If Noora receive requests for the first dish (*x* = 1), then she'll choose the second dish (*a* = 2) as the dish with the minimum value <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/e5a4a1705bc256e413564795cc8b70857f0ae44c.png" style="max-width: 100.0%;max-height: 100.0%;"/>. For the second (*x* = 2) and the third (*x* = 3) dishes themselves will be optimal, because in that case <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/79add195d023131e992b60a354fec89501759e75.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Let Leha asks Noora about the next couple of dishes: - *x* = 1, *y* = 2, then he'll recieve «NIE» answer, because |1 - 2| &gt; |2 - 2| - *x* = 2, *y* = 1, then he'll recieve «TAK» answer, because |2 - 2| ≤ |1 - 2| - *x* = 1, *y* = 3, then he'll recieve «NIE» answer, because |1 - 2| &gt; |3 - 3| - *x* = 3, *y* = 1, then he'll recieve «TAK» answer, because |3 - 3| ≤ |1 - 2| - *x* = 2, *y* = 3, then he'll recieve «TAK» answer, because |2 - 2| ≤ |3 - 3| - *x* = 3, *y* = 2, then he'll recieve «TAK» answer, because |3 - 3| ≤ |2 - 2| According to the available information, it is possible to say that Nura ordered dishes with numbers 2 and 3.
```python def closer(x, y): print('1 {} {}'.format(x, y), flush=True) s = input().strip() return s == 'TAK' def find_in_interval(i, j): while j > i: m = (j + i) // 2 if closer(m, m + 1): j = m else: i = m + 1 return i def exists_right(i, n): if i == n: return False a = 0 b = 1 while a < b: if closer(i + b, i + a): return True a = b b = b * 2 if i + b > n: b = n - i return False def main(): n = int(input().strip()) x = find_in_interval(1, n) if exists_right(x, n): y = find_in_interval(x + 1, n) else: y = find_in_interval(1, x - 1) print('2 {} {}'.format(x, y), flush=True) if __name__ == '__main__': main() ```
-1
9
A
Die Roll
PROGRAMMING
800
[ "math", "probabilities" ]
A. Die Roll
1
64
Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place. But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams. Yakko thrown a die and got Y points, Wakko — W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania. It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win.
The only line of the input file contains two natural numbers Y and W — the results of Yakko's and Wakko's die rolls.
Output the required probability in the form of irreducible fraction in format «A/B», where A — the numerator, and B — the denominator. If the required probability equals to zero, output «0/1». If the required probability equals to 1, output «1/1».
[ "4 2\n" ]
[ "1/2\n" ]
Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
0
[ { "input": "4 2", "output": "1/2" }, { "input": "1 1", "output": "1/1" }, { "input": "1 2", "output": "5/6" }, { "input": "1 3", "output": "2/3" }, { "input": "1 4", "output": "1/2" }, { "input": "1 5", "output": "1/3" }, { "input": "1 6", "output": "1/6" }, { "input": "2 1", "output": "5/6" }, { "input": "2 2", "output": "5/6" }, { "input": "2 3", "output": "2/3" }, { "input": "2 4", "output": "1/2" }, { "input": "2 5", "output": "1/3" }, { "input": "2 6", "output": "1/6" }, { "input": "3 1", "output": "2/3" }, { "input": "3 2", "output": "2/3" }, { "input": "3 3", "output": "2/3" }, { "input": "3 4", "output": "1/2" }, { "input": "3 5", "output": "1/3" }, { "input": "3 6", "output": "1/6" }, { "input": "4 1", "output": "1/2" }, { "input": "4 3", "output": "1/2" }, { "input": "4 4", "output": "1/2" }, { "input": "4 5", "output": "1/3" }, { "input": "4 6", "output": "1/6" }, { "input": "5 1", "output": "1/3" }, { "input": "5 2", "output": "1/3" }, { "input": "5 3", "output": "1/3" }, { "input": "5 4", "output": "1/3" }, { "input": "5 5", "output": "1/3" }, { "input": "5 6", "output": "1/6" }, { "input": "6 1", "output": "1/6" }, { "input": "6 2", "output": "1/6" }, { "input": "6 3", "output": "1/6" }, { "input": "6 4", "output": "1/6" }, { "input": "6 5", "output": "1/6" }, { "input": "6 6", "output": "1/6" } ]
1,650,123,391
2,147,483,647
Python 3
OK
TESTS
36
62
0
from math import gcd a, b = map(int, input().split()) c = 7 - max(a, b) d = gcd(c, 6) print(f"{c // d}/{6 // d}") # Sat Apr 16 2022 15:36:29 GMT+0000 (Coordinated Universal Time)
Title: Die Roll Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place. But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams. Yakko thrown a die and got Y points, Wakko — W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania. It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win. Input Specification: The only line of the input file contains two natural numbers Y and W — the results of Yakko's and Wakko's die rolls. Output Specification: Output the required probability in the form of irreducible fraction in format «A/B», where A — the numerator, and B — the denominator. If the required probability equals to zero, output «0/1». If the required probability equals to 1, output «1/1». Demo Input: ['4 2\n'] Demo Output: ['1/2\n'] Note: Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
```python from math import gcd a, b = map(int, input().split()) c = 7 - max(a, b) d = gcd(c, 6) print(f"{c // d}/{6 // d}") # Sat Apr 16 2022 15:36:29 GMT+0000 (Coordinated Universal Time) ```
3.969
920
C
Swap Adjacent Elements
PROGRAMMING
1,400
[ "dfs and similar", "greedy", "math", "sortings", "two pointers" ]
null
null
You have an array *a* consisting of *n* integers. Each integer from 1 to *n* appears exactly once in this array. For some indices *i* (1<=≤<=*i*<=≤<=*n*<=-<=1) it is possible to swap *i*-th element with (*i*<=+<=1)-th, for other indices it is not possible. You may perform any number of swapping operations any order. There is no limit on the number of times you swap *i*-th element with (*i*<=+<=1)-th (if the position is not forbidden). Can you make this array sorted in ascending order performing some sequence of swapping operations?
The first line contains one integer *n* (2<=≤<=*n*<=≤<=200000) — the number of elements in the array. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=200000) — the elements of the array. Each integer from 1 to *n* appears exactly once. The third line contains a string of *n*<=-<=1 characters, each character is either 0 or 1. If *i*-th character is 1, then you can swap *i*-th element with (*i*<=+<=1)-th any number of times, otherwise it is forbidden to swap *i*-th element with (*i*<=+<=1)-th.
If it is possible to sort the array in ascending order using any sequence of swaps you are allowed to make, print YES. Otherwise, print NO.
[ "6\n1 2 5 3 4 6\n01110\n", "6\n1 2 5 3 4 6\n01010\n" ]
[ "YES\n", "NO\n" ]
In the first example you may swap *a*<sub class="lower-index">3</sub> and *a*<sub class="lower-index">4</sub>, and then swap *a*<sub class="lower-index">4</sub> and *a*<sub class="lower-index">5</sub>.
0
[ { "input": "6\n1 2 5 3 4 6\n01110", "output": "YES" }, { "input": "6\n1 2 5 3 4 6\n01010", "output": "NO" }, { "input": "6\n1 6 3 4 5 2\n01101", "output": "NO" }, { "input": "6\n2 3 1 4 5 6\n01111", "output": "NO" }, { "input": "4\n2 3 1 4\n011", "output": "NO" }, { "input": "2\n2 1\n0", "output": "NO" }, { "input": "5\n1 2 4 5 3\n0101", "output": "NO" }, { "input": "5\n1 2 4 5 3\n0001", "output": "NO" }, { "input": "5\n1 4 5 2 3\n0110", "output": "NO" }, { "input": "5\n4 5 1 2 3\n0111", "output": "NO" }, { "input": "3\n3 1 2\n10", "output": "NO" }, { "input": "5\n2 3 4 5 1\n0011", "output": "NO" }, { "input": "16\n3 4 14 16 11 7 13 9 10 8 6 5 15 12 1 2\n111111101111111", "output": "NO" }, { "input": "5\n1 5 3 4 2\n1101", "output": "NO" }, { "input": "6\n6 1 2 3 4 5\n11101", "output": "NO" }, { "input": "3\n2 3 1\n01", "output": "NO" }, { "input": "6\n1 6 3 4 5 2\n01110", "output": "NO" }, { "input": "7\n1 7 3 4 5 6 2\n010001", "output": "NO" }, { "input": "5\n5 2 3 4 1\n1001", "output": "NO" }, { "input": "4\n1 3 4 2\n001", "output": "NO" }, { "input": "5\n4 5 1 2 3\n1011", "output": "NO" }, { "input": "6\n1 5 3 4 2 6\n11011", "output": "NO" }, { "input": "5\n1 4 2 5 3\n1101", "output": "NO" }, { "input": "5\n3 2 4 1 5\n1010", "output": "NO" }, { "input": "6\n1 4 3 5 6 2\n01101", "output": "NO" }, { "input": "6\n2 3 4 5 1 6\n00010", "output": "NO" }, { "input": "10\n5 2 7 9 1 10 3 4 6 8\n111101000", "output": "NO" }, { "input": "5\n2 4 3 1 5\n0110", "output": "NO" }, { "input": "4\n3 1 2 4\n100", "output": "NO" }, { "input": "6\n1 5 3 4 2 6\n01010", "output": "NO" }, { "input": "4\n3 1 2 4\n101", "output": "NO" }, { "input": "4\n2 4 3 1\n011", "output": "NO" }, { "input": "4\n2 3 4 1\n001", "output": "NO" }, { "input": "4\n3 4 1 2\n011", "output": "NO" }, { "input": "5\n2 4 1 3 5\n0110", "output": "NO" }, { "input": "4\n1 3 4 2\n101", "output": "NO" }, { "input": "20\n20 19 18 17 16 15 1 2 3 4 5 14 13 12 11 10 9 8 7 6\n1111111011111111111", "output": "NO" }, { "input": "6\n6 5 4 1 2 3\n11100", "output": "NO" }, { "input": "5\n2 3 5 1 4\n0011", "output": "NO" }, { "input": "4\n1 4 2 3\n010", "output": "NO" }, { "input": "6\n1 6 3 4 5 2\n01001", "output": "NO" }, { "input": "7\n1 7 2 4 3 5 6\n011110", "output": "NO" }, { "input": "5\n1 3 4 2 5\n0010", "output": "NO" }, { "input": "5\n5 4 3 1 2\n1110", "output": "NO" }, { "input": "5\n2 5 4 3 1\n0111", "output": "NO" }, { "input": "4\n2 3 4 1\n101", "output": "NO" }, { "input": "5\n1 4 5 2 3\n1011", "output": "NO" }, { "input": "5\n1 3 2 5 4\n1110", "output": "NO" }, { "input": "6\n3 2 4 1 5 6\n10111", "output": "NO" }, { "input": "7\n3 1 7 4 5 2 6\n101110", "output": "NO" }, { "input": "10\n5 4 10 9 2 1 6 7 3 8\n011111111", "output": "NO" }, { "input": "5\n1 5 3 2 4\n1110", "output": "NO" }, { "input": "4\n2 3 4 1\n011", "output": "NO" }, { "input": "5\n5 4 3 2 1\n0000", "output": "NO" }, { "input": "12\n6 9 11 1 12 7 5 8 10 4 3 2\n11111111110", "output": "NO" }, { "input": "5\n3 1 5 2 4\n1011", "output": "NO" }, { "input": "5\n4 5 1 2 3\n1110", "output": "NO" }, { "input": "10\n1 2 3 4 5 6 8 9 7 10\n000000000", "output": "NO" }, { "input": "6\n5 6 3 2 4 1\n01111", "output": "NO" }, { "input": "5\n1 3 4 2 5\n0100", "output": "NO" }, { "input": "4\n2 1 4 3\n100", "output": "NO" }, { "input": "6\n1 2 3 4 6 5\n00000", "output": "NO" }, { "input": "6\n4 6 5 3 2 1\n01111", "output": "NO" }, { "input": "5\n3 1 4 5 2\n1001", "output": "NO" }, { "input": "5\n5 2 3 1 4\n1011", "output": "NO" }, { "input": "3\n2 3 1\n10", "output": "NO" }, { "input": "10\n6 5 9 4 3 2 8 10 7 1\n111111110", "output": "NO" }, { "input": "7\n1 2 7 3 4 5 6\n111101", "output": "NO" }, { "input": "6\n5 6 1 2 4 3\n11101", "output": "NO" }, { "input": "6\n4 6 3 5 2 1\n11110", "output": "NO" }, { "input": "5\n5 4 2 3 1\n1110", "output": "NO" }, { "input": "2\n2 1\n1", "output": "YES" }, { "input": "3\n1 3 2\n10", "output": "NO" }, { "input": "5\n3 4 5 1 2\n1110", "output": "NO" }, { "input": "5\n3 4 2 1 5\n0110", "output": "NO" }, { "input": "6\n6 1 2 3 4 5\n10001", "output": "NO" }, { "input": "10\n1 2 3 4 5 6 7 8 9 10\n000000000", "output": "YES" }, { "input": "3\n3 2 1\n00", "output": "NO" }, { "input": "5\n5 4 3 2 1\n1110", "output": "NO" }, { "input": "6\n3 1 2 5 6 4\n10011", "output": "NO" }, { "input": "6\n3 2 1 6 5 4\n11000", "output": "NO" }, { "input": "2\n1 2\n0", "output": "YES" }, { "input": "2\n1 2\n1", "output": "YES" }, { "input": "11\n1 2 3 4 5 6 7 8 9 10 11\n0000000000", "output": "YES" }, { "input": "4\n2 4 3 1\n101", "output": "NO" }, { "input": "4\n3 4 1 2\n101", "output": "NO" }, { "input": "3\n1 3 2\n01", "output": "YES" }, { "input": "6\n6 2 3 1 4 5\n11110", "output": "NO" }, { "input": "3\n2 1 3\n01", "output": "NO" }, { "input": "5\n1 5 4 3 2\n0111", "output": "YES" }, { "input": "6\n1 2 6 3 4 5\n11110", "output": "NO" }, { "input": "7\n2 3 1 7 6 5 4\n011111", "output": "NO" }, { "input": "6\n5 6 1 2 3 4\n01111", "output": "NO" }, { "input": "4\n1 2 4 3\n001", "output": "YES" }, { "input": "6\n1 2 3 6 4 5\n11001", "output": "NO" }, { "input": "11\n9 8 10 11 1 2 3 4 5 6 7\n1101111111", "output": "NO" }, { "input": "5\n1 5 3 4 2\n0101", "output": "NO" }, { "input": "10\n9 1 2 3 7 8 5 6 4 10\n110111100", "output": "NO" }, { "input": "7\n1 2 7 3 4 5 6\n111011", "output": "NO" }, { "input": "10\n3 10 1 2 6 4 5 7 8 9\n111111001", "output": "NO" }, { "input": "10\n1 3 6 5 2 9 7 8 4 10\n001101111", "output": "NO" }, { "input": "10\n1 8 9 7 6 10 4 2 3 5\n111111101", "output": "NO" }, { "input": "7\n1 2 5 3 6 4 7\n111011", "output": "NO" }, { "input": "4\n2 4 3 1\n100", "output": "NO" }, { "input": "6\n1 2 3 4 6 5\n00001", "output": "YES" }, { "input": "6\n2 1 3 4 5 6\n10000", "output": "YES" }, { "input": "5\n3 2 1 5 4\n1100", "output": "NO" }, { "input": "9\n2 1 3 6 5 4 7 9 8\n10011001", "output": "YES" }, { "input": "8\n2 6 4 1 5 7 3 8\n1010010", "output": "NO" }, { "input": "5\n1 2 4 5 3\n1101", "output": "NO" }, { "input": "6\n1 3 5 2 4 6\n00110", "output": "NO" }, { "input": "6\n1 3 6 2 4 5\n10111", "output": "NO" }, { "input": "9\n9 8 7 6 5 4 3 1 2\n11111110", "output": "NO" }, { "input": "10\n6 7 8 9 10 1 2 3 4 5\n111111110", "output": "NO" }, { "input": "8\n6 1 7 8 3 2 5 4\n1011111", "output": "NO" }, { "input": "70\n4 65 66 30 67 16 39 35 57 14 42 51 5 21 61 53 63 13 60 29 68 70 69 46 20 2 43 47 49 52 26 44 54 62 25 19 12 28 27 24 18 36 6 33 7 8 11 1 45 32 64 38 23 22 56 59 15 9 41 37 40 55 3 31 34 48 50 10 17 58\n111111101101111111111110101111111111111101101111010010110011011110010", "output": "NO" }, { "input": "5\n5 3 2 4 1\n0100", "output": "NO" }, { "input": "6\n3 2 6 5 1 4\n11011", "output": "NO" }, { "input": "6\n1 2 4 5 6 3\n10011", "output": "NO" }, { "input": "7\n1 7 3 2 5 6 4\n111001", "output": "NO" } ]
1,600,815,655
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
2
1,000
14,028,800
n = int(input()) a = list(map(int, input().split())) b = [] s = input() s = s[:] + '0' k = 0 for i in range(n): if s[i] == '0': t = a[k : i + 1] k = i + 1 t.sort() b = b[:] + t a.sort() ans = True for i in range(len(a)): if a[i] != b[i]: ans = False break if ans: print('YES') else: print('NO')
Title: Swap Adjacent Elements Time Limit: None seconds Memory Limit: None megabytes Problem Description: You have an array *a* consisting of *n* integers. Each integer from 1 to *n* appears exactly once in this array. For some indices *i* (1<=≤<=*i*<=≤<=*n*<=-<=1) it is possible to swap *i*-th element with (*i*<=+<=1)-th, for other indices it is not possible. You may perform any number of swapping operations any order. There is no limit on the number of times you swap *i*-th element with (*i*<=+<=1)-th (if the position is not forbidden). Can you make this array sorted in ascending order performing some sequence of swapping operations? Input Specification: The first line contains one integer *n* (2<=≤<=*n*<=≤<=200000) — the number of elements in the array. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=200000) — the elements of the array. Each integer from 1 to *n* appears exactly once. The third line contains a string of *n*<=-<=1 characters, each character is either 0 or 1. If *i*-th character is 1, then you can swap *i*-th element with (*i*<=+<=1)-th any number of times, otherwise it is forbidden to swap *i*-th element with (*i*<=+<=1)-th. Output Specification: If it is possible to sort the array in ascending order using any sequence of swaps you are allowed to make, print YES. Otherwise, print NO. Demo Input: ['6\n1 2 5 3 4 6\n01110\n', '6\n1 2 5 3 4 6\n01010\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first example you may swap *a*<sub class="lower-index">3</sub> and *a*<sub class="lower-index">4</sub>, and then swap *a*<sub class="lower-index">4</sub> and *a*<sub class="lower-index">5</sub>.
```python n = int(input()) a = list(map(int, input().split())) b = [] s = input() s = s[:] + '0' k = 0 for i in range(n): if s[i] == '0': t = a[k : i + 1] k = i + 1 t.sort() b = b[:] + t a.sort() ans = True for i in range(len(a)): if a[i] != b[i]: ans = False break if ans: print('YES') else: print('NO') ```
0
424
A
Squats
PROGRAMMING
900
[ "implementation" ]
null
null
Pasha has many hamsters and he makes them work out. Today, *n* hamsters (*n* is even) came to work out. The hamsters lined up and each hamster either sat down or stood up. For another exercise, Pasha needs exactly hamsters to stand up and the other hamsters to sit down. In one minute, Pasha can make some hamster ether sit down or stand up. How many minutes will he need to get what he wants if he acts optimally well?
The first line contains integer *n* (2<=≤<=*n*<=≤<=200; *n* is even). The next line contains *n* characters without spaces. These characters describe the hamsters' position: the *i*-th character equals 'X', if the *i*-th hamster in the row is standing, and 'x', if he is sitting.
In the first line, print a single integer — the minimum required number of minutes. In the second line, print a string that describes the hamsters' position after Pasha makes the required changes. If there are multiple optimal positions, print any of them.
[ "4\nxxXx\n", "2\nXX\n", "6\nxXXxXx\n" ]
[ "1\nXxXx\n", "1\nxX\n", "0\nxXXxXx\n" ]
none
500
[ { "input": "4\nxxXx", "output": "1\nXxXx" }, { "input": "2\nXX", "output": "1\nxX" }, { "input": "6\nxXXxXx", "output": "0\nxXXxXx" }, { "input": "4\nxXXX", "output": "1\nxxXX" }, { "input": "2\nXx", "output": "0\nXx" }, { "input": "22\nXXxXXxxXxXxXXXXXXXXXxx", "output": "4\nxxxxxxxXxXxXXXXXXXXXxx" }, { "input": "30\nXXxXxxXXXXxxXXxxXXxxxxXxxXXXxx", "output": "0\nXXxXxxXXXXxxXXxxXXxxxxXxxXXXxx" }, { "input": "104\nxxXxXxxXXXxxXxXxxXXXxxxXxxXXXxxXXXxXxXxXXxxXxxxxxXXXXxXXXXxXXXxxxXxxxxxxxXxxXxXXxxXXXXxXXXxxXXXXXXXXXxXX", "output": "4\nxxxxxxxxxXxxXxXxxXXXxxxXxxXXXxxXXXxXxXxXXxxXxxxxxXXXXxXXXXxXXXxxxXxxxxxxxXxxXxXXxxXXXXxXXXxxXXXXXXXXXxXX" }, { "input": "78\nxxxXxxXxXxxXxxxxxXxXXXxXXXXxxxxxXxXXXxxXxXXXxxxxXxxXXXxxxxxxxxXXXXxXxXXxXXXxXX", "output": "3\nXXXXxxXxXxxXxxxxxXxXXXxXXXXxxxxxXxXXXxxXxXXXxxxxXxxXXXxxxxxxxxXXXXxXxXXxXXXxXX" }, { "input": "200\nxxXXxxXXxXxxXxxXxXxxXxXxXxXxxxxxXXxXXxxXXXXxXXXxXXxXxXxxxxXxxXXXxxxXxXxxxXxxXXxXxXxxxxxxxXxxXxXxxXxXXXxxXxXXXXxxXxxxXxXXXXXXxXxXXxxxxXxxxXxxxXxXXXxXxXXXXxXXxxxXxXXxxXXxxxXxXxXXxXXXxXxXxxxXXxxxxXXxXXXX", "output": "4\nXXXXXXXXxXxxXxxXxXxxXxXxXxXxxxxxXXxXXxxXXXXxXXXxXXxXxXxxxxXxxXXXxxxXxXxxxXxxXXxXxXxxxxxxxXxxXxXxxXxXXXxxXxXXXXxxXxxxXxXXXXXXxXxXXxxxxXxxxXxxxXxXXXxXxXXXXxXXxxxXxXXxxXXxxxXxXxXXxXXXxXxXxxxXXxxxxXXxXXXX" }, { "input": "198\nxXxxXxxXxxXXxXxXxXxxXXXxxXxxxxXXXXxxXxxxxXXXXxXxXXxxxXXXXXXXxXXXxxxxXXxXXxXxXXxxxxXxXXXXXXxXxxXxXxxxXxXXXXxxXXxxXxxxXXxXxXXxXxXXxXXXXxxxxxXxXXxxxXxXXXXxXxXXxxXxXXxXxXXxxxXxXXXXxXxxXxXXXxxxxXxXXXXxXx", "output": "5\nxxxxxxxxxxxxxXxXxXxxXXXxxXxxxxXXXXxxXxxxxXXXXxXxXXxxxXXXXXXXxXXXxxxxXXxXXxXxXXxxxxXxXXXXXXxXxxXxXxxxXxXXXXxxXXxxXxxxXXxXxXXxXxXXxXXXXxxxxxXxXXxxxXxXXXXxXxXXxxXxXXxXxXXxxxXxXXXXxXxxXxXXXxxxxXxXXXXxXx" }, { "input": "200\nxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", "output": "100\nXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" }, { "input": "198\nxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", "output": "99\nXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" }, { "input": "200\nXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "output": "100\nxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" }, { "input": "198\nXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "output": "99\nxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" }, { "input": "2\nxx", "output": "1\nXx" }, { "input": "2\nXx", "output": "0\nXx" }, { "input": "2\nxX", "output": "0\nxX" }, { "input": "4\nXXXX", "output": "2\nxxXX" }, { "input": "4\nxxxx", "output": "2\nXXxx" }, { "input": "4\nxxXX", "output": "0\nxxXX" }, { "input": "4\nXXxx", "output": "0\nXXxx" }, { "input": "4\nxXxx", "output": "1\nXXxx" }, { "input": "4\nXxxx", "output": "1\nXXxx" }, { "input": "4\nxxxX", "output": "1\nXxxX" }, { "input": "4\nxxXx", "output": "1\nXxXx" }, { "input": "4\nXXXx", "output": "1\nxXXx" }, { "input": "4\nxXXX", "output": "1\nxxXX" }, { "input": "4\nXxXX", "output": "1\nxxXX" }, { "input": "4\nXXxX", "output": "1\nxXxX" }, { "input": "4\nXxXx", "output": "0\nXxXx" }, { "input": "6\nxXXxXX", "output": "1\nxxXxXX" } ]
1,637,209,164
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
30
0
l = int(input()) s = input() a = s.count('X') b = s.count('x') print((a-b)//2)
Title: Squats Time Limit: None seconds Memory Limit: None megabytes Problem Description: Pasha has many hamsters and he makes them work out. Today, *n* hamsters (*n* is even) came to work out. The hamsters lined up and each hamster either sat down or stood up. For another exercise, Pasha needs exactly hamsters to stand up and the other hamsters to sit down. In one minute, Pasha can make some hamster ether sit down or stand up. How many minutes will he need to get what he wants if he acts optimally well? Input Specification: The first line contains integer *n* (2<=≤<=*n*<=≤<=200; *n* is even). The next line contains *n* characters without spaces. These characters describe the hamsters' position: the *i*-th character equals 'X', if the *i*-th hamster in the row is standing, and 'x', if he is sitting. Output Specification: In the first line, print a single integer — the minimum required number of minutes. In the second line, print a string that describes the hamsters' position after Pasha makes the required changes. If there are multiple optimal positions, print any of them. Demo Input: ['4\nxxXx\n', '2\nXX\n', '6\nxXXxXx\n'] Demo Output: ['1\nXxXx\n', '1\nxX\n', '0\nxXXxXx\n'] Note: none
```python l = int(input()) s = input() a = s.count('X') b = s.count('x') print((a-b)//2) ```
0
791
A
Bear and Big Brother
PROGRAMMING
800
[ "implementation" ]
null
null
Bear Limak wants to become the largest of bears, or at least to become larger than his brother Bob. Right now, Limak and Bob weigh *a* and *b* respectively. It's guaranteed that Limak's weight is smaller than or equal to his brother's weight. Limak eats a lot and his weight is tripled after every year, while Bob's weight is doubled after every year. After how many full years will Limak become strictly larger (strictly heavier) than Bob?
The only line of the input contains two integers *a* and *b* (1<=≤<=*a*<=≤<=*b*<=≤<=10) — the weight of Limak and the weight of Bob respectively.
Print one integer, denoting the integer number of years after which Limak will become strictly larger than Bob.
[ "4 7\n", "4 9\n", "1 1\n" ]
[ "2\n", "3\n", "1\n" ]
In the first sample, Limak weighs 4 and Bob weighs 7 initially. After one year their weights are 4·3 = 12 and 7·2 = 14 respectively (one weight is tripled while the other one is doubled). Limak isn't larger than Bob yet. After the second year weights are 36 and 28, so the first weight is greater than the second one. Limak became larger than Bob after two years so you should print 2. In the second sample, Limak's and Bob's weights in next years are: 12 and 18, then 36 and 36, and finally 108 and 72 (after three years). The answer is 3. Remember that Limak wants to be larger than Bob and he won't be satisfied with equal weights. In the third sample, Limak becomes larger than Bob after the first year. Their weights will be 3 and 2 then.
500
[ { "input": "4 7", "output": "2" }, { "input": "4 9", "output": "3" }, { "input": "1 1", "output": "1" }, { "input": "4 6", "output": "2" }, { "input": "1 10", "output": "6" }, { "input": "1 1", "output": "1" }, { "input": "1 2", "output": "2" }, { "input": "1 3", "output": "3" }, { "input": "1 4", "output": "4" }, { "input": "1 5", "output": "4" }, { "input": "1 6", "output": "5" }, { "input": "1 7", "output": "5" }, { "input": "1 8", "output": "6" }, { "input": "1 9", "output": "6" }, { "input": "1 10", "output": "6" }, { "input": "2 2", "output": "1" }, { "input": "2 3", "output": "2" }, { "input": "2 4", "output": "2" }, { "input": "2 5", "output": "3" }, { "input": "2 6", "output": "3" }, { "input": "2 7", "output": "4" }, { "input": "2 8", "output": "4" }, { "input": "2 9", "output": "4" }, { "input": "2 10", "output": "4" }, { "input": "3 3", "output": "1" }, { "input": "3 4", "output": "1" }, { "input": "3 5", "output": "2" }, { "input": "3 6", "output": "2" }, { "input": "3 7", "output": "3" }, { "input": "3 8", "output": "3" }, { "input": "3 9", "output": "3" }, { "input": "3 10", "output": "3" }, { "input": "4 4", "output": "1" }, { "input": "4 5", "output": "1" }, { "input": "4 6", "output": "2" }, { "input": "4 7", "output": "2" }, { "input": "4 8", "output": "2" }, { "input": "4 9", "output": "3" }, { "input": "4 10", "output": "3" }, { "input": "5 5", "output": "1" }, { "input": "5 6", "output": "1" }, { "input": "5 7", "output": "1" }, { "input": "5 8", "output": "2" }, { "input": "5 9", "output": "2" }, { "input": "5 10", "output": "2" }, { "input": "6 6", "output": "1" }, { "input": "6 7", "output": "1" }, { "input": "6 8", "output": "1" }, { "input": "6 9", "output": "2" }, { "input": "6 10", "output": "2" }, { "input": "7 7", "output": "1" }, { "input": "7 8", "output": "1" }, { "input": "7 9", "output": "1" }, { "input": "7 10", "output": "1" }, { "input": "8 8", "output": "1" }, { "input": "8 9", "output": "1" }, { "input": "8 10", "output": "1" }, { "input": "9 9", "output": "1" }, { "input": "9 10", "output": "1" }, { "input": "10 10", "output": "1" }, { "input": "10 10", "output": "1" }, { "input": "1 2", "output": "2" } ]
1,699,603,757
2,147,483,647
Python 3
OK
TESTS
62
46
0
a,b=map(int,input().split()) count=0 while a <= b: a=a*3 b=b*2 count += 1 print(count)
Title: Bear and Big Brother Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bear Limak wants to become the largest of bears, or at least to become larger than his brother Bob. Right now, Limak and Bob weigh *a* and *b* respectively. It's guaranteed that Limak's weight is smaller than or equal to his brother's weight. Limak eats a lot and his weight is tripled after every year, while Bob's weight is doubled after every year. After how many full years will Limak become strictly larger (strictly heavier) than Bob? Input Specification: The only line of the input contains two integers *a* and *b* (1<=≤<=*a*<=≤<=*b*<=≤<=10) — the weight of Limak and the weight of Bob respectively. Output Specification: Print one integer, denoting the integer number of years after which Limak will become strictly larger than Bob. Demo Input: ['4 7\n', '4 9\n', '1 1\n'] Demo Output: ['2\n', '3\n', '1\n'] Note: In the first sample, Limak weighs 4 and Bob weighs 7 initially. After one year their weights are 4·3 = 12 and 7·2 = 14 respectively (one weight is tripled while the other one is doubled). Limak isn't larger than Bob yet. After the second year weights are 36 and 28, so the first weight is greater than the second one. Limak became larger than Bob after two years so you should print 2. In the second sample, Limak's and Bob's weights in next years are: 12 and 18, then 36 and 36, and finally 108 and 72 (after three years). The answer is 3. Remember that Limak wants to be larger than Bob and he won't be satisfied with equal weights. In the third sample, Limak becomes larger than Bob after the first year. Their weights will be 3 and 2 then.
```python a,b=map(int,input().split()) count=0 while a <= b: a=a*3 b=b*2 count += 1 print(count) ```
3
0
none
none
none
0
[ "none" ]
null
null
Mashmokh's boss, Bimokh, didn't like Mashmokh. So he fired him. Mashmokh decided to go to university and participate in ACM instead of finding a new job. He wants to become a member of Bamokh's team. In order to join he was given some programming tasks and one week to solve them. Mashmokh is not a very experienced programmer. Actually he is not a programmer at all. So he wasn't able to solve them. That's why he asked you to help him with these tasks. One of these tasks is the following. A sequence of *l* integers *b*1,<=*b*2,<=...,<=*b**l* (1<=≤<=*b*1<=≤<=*b*2<=≤<=...<=≤<=*b**l*<=≤<=*n*) is called good if each number divides (without a remainder) by the next number in the sequence. More formally for all *i* (1<=≤<=*i*<=≤<=*l*<=-<=1). Given *n* and *k* find the number of good sequences of length *k*. As the answer can be rather large print it modulo 1000000007 (109<=+<=7).
The first line of input contains two space-separated integers *n*,<=*k* (1<=≤<=*n*,<=*k*<=≤<=2000).
Output a single integer — the number of good sequences of length *k* modulo 1000000007 (109<=+<=7).
[ "3 2\n", "6 4\n", "2 1\n" ]
[ "5\n", "39\n", "2\n" ]
In the first sample the good sequences are: [1, 1], [2, 2], [3, 3], [1, 2], [1, 3].
0
[ { "input": "3 2", "output": "5" }, { "input": "6 4", "output": "39" }, { "input": "2 1", "output": "2" }, { "input": "1478 194", "output": "312087753" }, { "input": "1415 562", "output": "953558593" }, { "input": "1266 844", "output": "735042656" }, { "input": "680 1091", "output": "351905328" }, { "input": "1229 1315", "output": "100240813" }, { "input": "1766 1038", "output": "435768250" }, { "input": "1000 1", "output": "1000" }, { "input": "2000 100", "output": "983281065" }, { "input": "1 1", "output": "1" }, { "input": "2000 1000", "output": "228299266" }, { "input": "1928 1504", "output": "81660104" }, { "input": "2000 2000", "output": "585712681" }, { "input": "29 99", "output": "23125873" }, { "input": "56 48", "output": "20742237" }, { "input": "209 370", "output": "804680894" }, { "input": "83 37", "output": "22793555" }, { "input": "49 110", "output": "956247348" }, { "input": "217 3", "output": "4131" }, { "input": "162 161", "output": "591739753" }, { "input": "273 871", "output": "151578252" }, { "input": "43 1640", "output": "173064407" }, { "input": "1472 854", "output": "748682383" }, { "input": "1639 1056", "output": "467464129" }, { "input": "359 896", "output": "770361185" }, { "input": "1544 648", "output": "9278889" }, { "input": "436 1302", "output": "874366220" }, { "input": "1858 743", "output": "785912917" }, { "input": "991 1094", "output": "483493131" }, { "input": "1013 1550", "output": "613533467" }, { "input": "675 741", "output": "474968598" }, { "input": "1420 1223", "output": "922677437" }, { "input": "1544 1794", "output": "933285446" }, { "input": "1903 1612", "output": "620810276" }, { "input": "500 1304", "output": "706176027" }, { "input": "525 314", "output": "245394744" }, { "input": "39 1930", "output": "992125404" }, { "input": "1895 753", "output": "180474828" }, { "input": "1722 1474", "output": "742424590" }, { "input": "1153 1823", "output": "791493066" }, { "input": "1409 734", "output": "627413973" }, { "input": "478 1301", "output": "476483030" }, { "input": "1887 1729", "output": "730033374" }, { "input": "1610 774", "output": "50897314" }, { "input": "1770 679", "output": "235295539" }, { "input": "987 1292", "output": "560110556" }, { "input": "1707 1117", "output": "237674323" }, { "input": "1424 1431", "output": "184145444" }, { "input": "86 1078", "output": "252515343" }, { "input": "1066 995", "output": "180753612" }, { "input": "1024 133", "output": "392603027" }, { "input": "659 974", "output": "397026719" }, { "input": "1349 1606", "output": "522392901" }, { "input": "473 211", "output": "809550224" }, { "input": "634 1825", "output": "438513382" }, { "input": "22 373", "output": "907321755" }, { "input": "531 147", "output": "242883376" }, { "input": "1307 1247", "output": "21512331" }, { "input": "415 735", "output": "393705804" }, { "input": "1659 1501", "output": "225266660" }, { "input": "1454 296", "output": "750032659" }, { "input": "158 772", "output": "850911301" }, { "input": "2000 1", "output": "2000" } ]
1,396,802,294
3,494
Python 3
WRONG_ANSWER
PRETESTS
3
218
0
""" Codeforces Round 240 Div 1 Problem D Author : chaotic_iak Language: Python 3.3.4 """ class InputHandlerObject(object): inputs = [] def getInput(self, n = 0): res = "" inputs = self.inputs if not inputs: inputs.extend(input().split(" ")) if n == 0: res = inputs[:] inputs[:] = [] while n > len(inputs): inputs.extend(input().split(" ")) if n > 0: res = inputs[:n] inputs[:n] = [] return res InputHandler = InputHandlerObject() g = InputHandler.getInput ############################## SOLUTION ############################## MOD = 10**9+7 n,k = [int(x) for x in g()] dp = list(range(1,n+1)) lis = list(set(n//i for i in range(1,n+1))) lis.sort() lis = [(j, int(j**.5), (int(j**.5) == j**.5)) for j in lis] for i in range(k-1): x = [0] * n for j, lim, boo in lis: for m, _, __ in lis: if m > lim: break x[j-1] += dp[j//m-1] if not boo: x[j-1] += (j//m - j//(m+1)) * dp[m-1] x[j-1] %= MOD dp = x print(dp[-1])
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mashmokh's boss, Bimokh, didn't like Mashmokh. So he fired him. Mashmokh decided to go to university and participate in ACM instead of finding a new job. He wants to become a member of Bamokh's team. In order to join he was given some programming tasks and one week to solve them. Mashmokh is not a very experienced programmer. Actually he is not a programmer at all. So he wasn't able to solve them. That's why he asked you to help him with these tasks. One of these tasks is the following. A sequence of *l* integers *b*1,<=*b*2,<=...,<=*b**l* (1<=≤<=*b*1<=≤<=*b*2<=≤<=...<=≤<=*b**l*<=≤<=*n*) is called good if each number divides (without a remainder) by the next number in the sequence. More formally for all *i* (1<=≤<=*i*<=≤<=*l*<=-<=1). Given *n* and *k* find the number of good sequences of length *k*. As the answer can be rather large print it modulo 1000000007 (109<=+<=7). Input Specification: The first line of input contains two space-separated integers *n*,<=*k* (1<=≤<=*n*,<=*k*<=≤<=2000). Output Specification: Output a single integer — the number of good sequences of length *k* modulo 1000000007 (109<=+<=7). Demo Input: ['3 2\n', '6 4\n', '2 1\n'] Demo Output: ['5\n', '39\n', '2\n'] Note: In the first sample the good sequences are: [1, 1], [2, 2], [3, 3], [1, 2], [1, 3].
```python """ Codeforces Round 240 Div 1 Problem D Author : chaotic_iak Language: Python 3.3.4 """ class InputHandlerObject(object): inputs = [] def getInput(self, n = 0): res = "" inputs = self.inputs if not inputs: inputs.extend(input().split(" ")) if n == 0: res = inputs[:] inputs[:] = [] while n > len(inputs): inputs.extend(input().split(" ")) if n > 0: res = inputs[:n] inputs[:n] = [] return res InputHandler = InputHandlerObject() g = InputHandler.getInput ############################## SOLUTION ############################## MOD = 10**9+7 n,k = [int(x) for x in g()] dp = list(range(1,n+1)) lis = list(set(n//i for i in range(1,n+1))) lis.sort() lis = [(j, int(j**.5), (int(j**.5) == j**.5)) for j in lis] for i in range(k-1): x = [0] * n for j, lim, boo in lis: for m, _, __ in lis: if m > lim: break x[j-1] += dp[j//m-1] if not boo: x[j-1] += (j//m - j//(m+1)) * dp[m-1] x[j-1] %= MOD dp = x print(dp[-1]) ```
0
583
A
Asphalting Roads
PROGRAMMING
1,000
[ "implementation" ]
null
null
City X consists of *n* vertical and *n* horizontal infinite roads, forming *n*<=×<=*n* intersections. Roads (both vertical and horizontal) are numbered from 1 to *n*, and the intersections are indicated by the numbers of the roads that form them. Sand roads have long been recognized out of date, so the decision was made to asphalt them. To do this, a team of workers was hired and a schedule of work was made, according to which the intersections should be asphalted. Road repairs are planned for *n*2 days. On the *i*-th day of the team arrives at the *i*-th intersection in the list and if none of the two roads that form the intersection were already asphalted they asphalt both roads. Otherwise, the team leaves the intersection, without doing anything with the roads. According to the schedule of road works tell in which days at least one road will be asphalted.
The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of vertical and horizontal roads in the city. Next *n*2 lines contain the order of intersections in the schedule. The *i*-th of them contains two numbers *h**i*,<=*v**i* (1<=≤<=*h**i*,<=*v**i*<=≤<=*n*), separated by a space, and meaning that the intersection that goes *i*-th in the timetable is at the intersection of the *h**i*-th horizontal and *v**i*-th vertical roads. It is guaranteed that all the intersections in the timetable are distinct.
In the single line print the numbers of the days when road works will be in progress in ascending order. The days are numbered starting from 1.
[ "2\n1 1\n1 2\n2 1\n2 2\n", "1\n1 1\n" ]
[ "1 4 \n", "1 \n" ]
In the sample the brigade acts like that: 1. On the first day the brigade comes to the intersection of the 1-st horizontal and the 1-st vertical road. As none of them has been asphalted, the workers asphalt the 1-st vertical and the 1-st horizontal road; 1. On the second day the brigade of the workers comes to the intersection of the 1-st horizontal and the 2-nd vertical road. The 2-nd vertical road hasn't been asphalted, but as the 1-st horizontal road has been asphalted on the first day, the workers leave and do not asphalt anything; 1. On the third day the brigade of the workers come to the intersection of the 2-nd horizontal and the 1-st vertical road. The 2-nd horizontal road hasn't been asphalted but as the 1-st vertical road has been asphalted on the first day, the workers leave and do not asphalt anything; 1. On the fourth day the brigade come to the intersection formed by the intersection of the 2-nd horizontal and 2-nd vertical road. As none of them has been asphalted, the workers asphalt the 2-nd vertical and the 2-nd horizontal road.
500
[ { "input": "2\n1 1\n1 2\n2 1\n2 2", "output": "1 4 " }, { "input": "1\n1 1", "output": "1 " }, { "input": "2\n1 1\n2 2\n1 2\n2 1", "output": "1 2 " }, { "input": "2\n1 2\n2 2\n2 1\n1 1", "output": "1 3 " }, { "input": "3\n2 2\n1 2\n3 2\n3 3\n1 1\n2 3\n1 3\n3 1\n2 1", "output": "1 4 5 " }, { "input": "3\n1 3\n3 1\n2 1\n1 1\n1 2\n2 2\n3 2\n3 3\n2 3", "output": "1 2 6 " }, { "input": "4\n1 3\n2 3\n2 4\n4 4\n3 1\n1 1\n3 4\n2 1\n1 4\n4 3\n4 1\n3 2\n1 2\n4 2\n2 2\n3 3", "output": "1 3 5 14 " }, { "input": "4\n3 3\n4 2\n2 3\n3 4\n4 4\n1 2\n3 2\n2 2\n1 4\n3 1\n4 1\n2 1\n1 3\n1 1\n4 3\n2 4", "output": "1 2 9 12 " }, { "input": "9\n4 5\n2 3\n8 3\n5 6\n9 3\n4 4\n5 4\n4 7\n1 7\n8 4\n1 4\n1 5\n5 7\n7 8\n7 1\n9 9\n8 7\n7 5\n3 7\n6 6\n7 3\n5 2\n3 6\n7 4\n9 6\n5 8\n9 7\n6 3\n7 9\n1 2\n1 1\n6 2\n5 3\n7 2\n1 6\n4 1\n6 1\n8 9\n2 2\n3 9\n2 9\n7 7\n2 8\n9 4\n2 5\n8 6\n3 4\n2 1\n2 7\n6 5\n9 1\n3 3\n3 8\n5 5\n4 3\n3 1\n1 9\n6 4\n3 2\n6 8\n2 6\n5 9\n8 5\n8 8\n9 5\n6 9\n9 2\n3 5\n4 9\n4 8\n2 4\n5 1\n4 6\n7 6\n9 8\n1 3\n4 2\n8 1\n8 2\n6 7\n1 8", "output": "1 2 4 9 10 14 16 32 56 " }, { "input": "8\n1 1\n1 2\n1 3\n1 4\n1 5\n8 6\n1 7\n1 8\n2 1\n8 5\n2 3\n2 4\n2 5\n2 6\n4 3\n2 2\n3 1\n3 2\n3 3\n3 4\n3 5\n3 6\n5 6\n3 8\n4 1\n4 2\n2 7\n4 4\n8 8\n4 6\n4 7\n4 8\n5 1\n5 2\n5 3\n6 5\n5 5\n3 7\n5 7\n5 8\n6 1\n6 2\n6 3\n6 4\n5 4\n6 6\n6 7\n6 8\n7 1\n7 2\n7 3\n7 4\n7 5\n7 6\n7 7\n7 8\n8 1\n8 2\n8 3\n8 4\n2 8\n1 6\n8 7\n4 5", "output": "1 6 11 18 28 36 39 56 " }, { "input": "9\n9 9\n5 5\n8 8\n3 3\n2 2\n6 6\n4 4\n1 1\n7 7\n8 4\n1 4\n1 5\n5 7\n7 8\n7 1\n1 7\n8 7\n7 5\n3 7\n5 6\n7 3\n5 2\n3 6\n7 4\n9 6\n5 8\n9 7\n6 3\n7 9\n1 2\n4 5\n6 2\n5 3\n7 2\n1 6\n4 1\n6 1\n8 9\n2 3\n3 9\n2 9\n5 4\n2 8\n9 4\n2 5\n8 6\n3 4\n2 1\n2 7\n6 5\n9 1\n8 3\n3 8\n9 3\n4 3\n3 1\n1 9\n6 4\n3 2\n6 8\n2 6\n5 9\n8 5\n4 7\n9 5\n6 9\n9 2\n3 5\n4 9\n4 8\n2 4\n5 1\n4 6\n7 6\n9 8\n1 3\n4 2\n8 1\n8 2\n6 7\n1 8", "output": "1 2 3 4 5 6 7 8 9 " } ]
1,459,266,884
2,147,483,647
Python 3
OK
TESTS
39
62
5,120,000
#!/usr/bin/python3 class StdReader: def read_int(self): return int(self.read_string()) def read_ints(self, sep=None): return [int(i) for i in self.read_strings(sep)] def read_float(self): return float(self.read_string()) def read_floats(self, sep=None): return [float(i) for i in self.read_strings(sep)] def read_string(self): return input() def read_strings(self, sep=None): return self.read_string().split(sep) reader = StdReader() def main(): n = reader.read_int() h_done = [False]*n v_done = [False]*n for i in range(n*n): h, v = reader.read_ints() h -= 1 v -= 1 if not h_done[h] and not v_done[v]: print(i+1, end=' ') h_done[h] = True v_done[v] = True if __name__ == '__main__': main()
Title: Asphalting Roads Time Limit: None seconds Memory Limit: None megabytes Problem Description: City X consists of *n* vertical and *n* horizontal infinite roads, forming *n*<=×<=*n* intersections. Roads (both vertical and horizontal) are numbered from 1 to *n*, and the intersections are indicated by the numbers of the roads that form them. Sand roads have long been recognized out of date, so the decision was made to asphalt them. To do this, a team of workers was hired and a schedule of work was made, according to which the intersections should be asphalted. Road repairs are planned for *n*2 days. On the *i*-th day of the team arrives at the *i*-th intersection in the list and if none of the two roads that form the intersection were already asphalted they asphalt both roads. Otherwise, the team leaves the intersection, without doing anything with the roads. According to the schedule of road works tell in which days at least one road will be asphalted. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of vertical and horizontal roads in the city. Next *n*2 lines contain the order of intersections in the schedule. The *i*-th of them contains two numbers *h**i*,<=*v**i* (1<=≤<=*h**i*,<=*v**i*<=≤<=*n*), separated by a space, and meaning that the intersection that goes *i*-th in the timetable is at the intersection of the *h**i*-th horizontal and *v**i*-th vertical roads. It is guaranteed that all the intersections in the timetable are distinct. Output Specification: In the single line print the numbers of the days when road works will be in progress in ascending order. The days are numbered starting from 1. Demo Input: ['2\n1 1\n1 2\n2 1\n2 2\n', '1\n1 1\n'] Demo Output: ['1 4 \n', '1 \n'] Note: In the sample the brigade acts like that: 1. On the first day the brigade comes to the intersection of the 1-st horizontal and the 1-st vertical road. As none of them has been asphalted, the workers asphalt the 1-st vertical and the 1-st horizontal road; 1. On the second day the brigade of the workers comes to the intersection of the 1-st horizontal and the 2-nd vertical road. The 2-nd vertical road hasn't been asphalted, but as the 1-st horizontal road has been asphalted on the first day, the workers leave and do not asphalt anything; 1. On the third day the brigade of the workers come to the intersection of the 2-nd horizontal and the 1-st vertical road. The 2-nd horizontal road hasn't been asphalted but as the 1-st vertical road has been asphalted on the first day, the workers leave and do not asphalt anything; 1. On the fourth day the brigade come to the intersection formed by the intersection of the 2-nd horizontal and 2-nd vertical road. As none of them has been asphalted, the workers asphalt the 2-nd vertical and the 2-nd horizontal road.
```python #!/usr/bin/python3 class StdReader: def read_int(self): return int(self.read_string()) def read_ints(self, sep=None): return [int(i) for i in self.read_strings(sep)] def read_float(self): return float(self.read_string()) def read_floats(self, sep=None): return [float(i) for i in self.read_strings(sep)] def read_string(self): return input() def read_strings(self, sep=None): return self.read_string().split(sep) reader = StdReader() def main(): n = reader.read_int() h_done = [False]*n v_done = [False]*n for i in range(n*n): h, v = reader.read_ints() h -= 1 v -= 1 if not h_done[h] and not v_done[v]: print(i+1, end=' ') h_done[h] = True v_done[v] = True if __name__ == '__main__': main() ```
3
479
A
Expression
PROGRAMMING
1,000
[ "brute force", "math" ]
null
null
Petya studies in a school and he adores Maths. His class has been studying arithmetic expressions. On the last class the teacher wrote three positive integers *a*, *b*, *c* on the blackboard. The task was to insert signs of operations '+' and '*', and probably brackets between the numbers so that the value of the resulting expression is as large as possible. Let's consider an example: assume that the teacher wrote numbers 1, 2 and 3 on the blackboard. Here are some ways of placing signs and brackets: - 1+2*3=7 - 1*(2+3)=5 - 1*2*3=6 - (1+2)*3=9 Note that you can insert operation signs only between *a* and *b*, and between *b* and *c*, that is, you cannot swap integers. For instance, in the given sample you cannot get expression (1+3)*2. It's easy to see that the maximum value that you can obtain is 9. Your task is: given *a*, *b* and *c* print the maximum value that you can get.
The input contains three integers *a*, *b* and *c*, each on a single line (1<=≤<=*a*,<=*b*,<=*c*<=≤<=10).
Print the maximum value of the expression that you can obtain.
[ "1\n2\n3\n", "2\n10\n3\n" ]
[ "9\n", "60\n" ]
none
500
[ { "input": "1\n2\n3", "output": "9" }, { "input": "2\n10\n3", "output": "60" }, { "input": "1\n1\n1", "output": "3" }, { "input": "1\n2\n1", "output": "4" }, { "input": "10\n10\n10", "output": "1000" }, { "input": "5\n1\n3", "output": "20" }, { "input": "3\n1\n5", "output": "20" }, { "input": "6\n7\n1", "output": "48" }, { "input": "1\n8\n3", "output": "27" }, { "input": "9\n7\n2", "output": "126" }, { "input": "1\n1\n10", "output": "20" }, { "input": "9\n1\n1", "output": "18" }, { "input": "10\n5\n6", "output": "300" }, { "input": "8\n9\n7", "output": "504" }, { "input": "4\n2\n10", "output": "80" }, { "input": "2\n8\n3", "output": "48" }, { "input": "3\n5\n7", "output": "105" }, { "input": "1\n10\n1", "output": "12" }, { "input": "2\n2\n2", "output": "8" }, { "input": "5\n6\n1", "output": "35" }, { "input": "10\n1\n1", "output": "20" }, { "input": "1\n6\n1", "output": "8" }, { "input": "1\n9\n1", "output": "11" }, { "input": "2\n1\n2", "output": "6" }, { "input": "2\n6\n1", "output": "14" }, { "input": "9\n2\n1", "output": "27" }, { "input": "1\n9\n2", "output": "20" }, { "input": "1\n3\n1", "output": "5" }, { "input": "2\n1\n1", "output": "4" } ]
1,685,368,638
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
1
93
0
def main(): first = int(input()) second = int(input()) third = int(input()) maximum = max(max(first, second), third) if maximum == first: print((second+third)*first) elif maximum == second: print((first+third)*second) else: print((first+second)*third) main()
Title: Expression Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya studies in a school and he adores Maths. His class has been studying arithmetic expressions. On the last class the teacher wrote three positive integers *a*, *b*, *c* on the blackboard. The task was to insert signs of operations '+' and '*', and probably brackets between the numbers so that the value of the resulting expression is as large as possible. Let's consider an example: assume that the teacher wrote numbers 1, 2 and 3 on the blackboard. Here are some ways of placing signs and brackets: - 1+2*3=7 - 1*(2+3)=5 - 1*2*3=6 - (1+2)*3=9 Note that you can insert operation signs only between *a* and *b*, and between *b* and *c*, that is, you cannot swap integers. For instance, in the given sample you cannot get expression (1+3)*2. It's easy to see that the maximum value that you can obtain is 9. Your task is: given *a*, *b* and *c* print the maximum value that you can get. Input Specification: The input contains three integers *a*, *b* and *c*, each on a single line (1<=≤<=*a*,<=*b*,<=*c*<=≤<=10). Output Specification: Print the maximum value of the expression that you can obtain. Demo Input: ['1\n2\n3\n', '2\n10\n3\n'] Demo Output: ['9\n', '60\n'] Note: none
```python def main(): first = int(input()) second = int(input()) third = int(input()) maximum = max(max(first, second), third) if maximum == first: print((second+third)*first) elif maximum == second: print((first+third)*second) else: print((first+second)*third) main() ```
0
617
A
Elephant
PROGRAMMING
800
[ "math" ]
null
null
An elephant decided to visit his friend. It turned out that the elephant's house is located at point 0 and his friend's house is located at point *x*(*x*<=&gt;<=0) of the coordinate line. In one step the elephant can move 1, 2, 3, 4 or 5 positions forward. Determine, what is the minimum number of steps he need to make in order to get to his friend's house.
The first line of the input contains an integer *x* (1<=≤<=*x*<=≤<=1<=000<=000) — The coordinate of the friend's house.
Print the minimum number of steps that elephant needs to make to get from point 0 to point *x*.
[ "5\n", "12\n" ]
[ "1\n", "3\n" ]
In the first sample the elephant needs to make one step of length 5 to reach the point *x*. In the second sample the elephant can get to point *x* if he moves by 3, 5 and 4. There are other ways to get the optimal answer but the elephant cannot reach *x* in less than three moves.
500
[ { "input": "5", "output": "1" }, { "input": "12", "output": "3" }, { "input": "999999", "output": "200000" }, { "input": "41", "output": "9" }, { "input": "1000000", "output": "200000" }, { "input": "1", "output": "1" }, { "input": "2", "output": "1" }, { "input": "3", "output": "1" }, { "input": "4", "output": "1" }, { "input": "534204", "output": "106841" }, { "input": "469569", "output": "93914" }, { "input": "502877", "output": "100576" }, { "input": "942212", "output": "188443" }, { "input": "97", "output": "20" }, { "input": "53", "output": "11" }, { "input": "89", "output": "18" }, { "input": "574", "output": "115" }, { "input": "716", "output": "144" }, { "input": "729", "output": "146" }, { "input": "8901", "output": "1781" }, { "input": "3645", "output": "729" }, { "input": "4426", "output": "886" }, { "input": "46573", "output": "9315" }, { "input": "86380", "output": "17276" }, { "input": "94190", "output": "18838" }, { "input": "999990", "output": "199998" }, { "input": "999991", "output": "199999" }, { "input": "999992", "output": "199999" }, { "input": "999993", "output": "199999" }, { "input": "999994", "output": "199999" }, { "input": "999995", "output": "199999" }, { "input": "999996", "output": "200000" }, { "input": "999997", "output": "200000" }, { "input": "999998", "output": "200000" } ]
1,700,035,197
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
31
0
num = int(input()) divid = [1,2,3,4,5] asd = 0 while num > 0: if num >= 5: num -= 1 else: for i in divid[::-1]: if i >= num: num -= i break asd += 1 print(asd)
Title: Elephant Time Limit: None seconds Memory Limit: None megabytes Problem Description: An elephant decided to visit his friend. It turned out that the elephant's house is located at point 0 and his friend's house is located at point *x*(*x*<=&gt;<=0) of the coordinate line. In one step the elephant can move 1, 2, 3, 4 or 5 positions forward. Determine, what is the minimum number of steps he need to make in order to get to his friend's house. Input Specification: The first line of the input contains an integer *x* (1<=≤<=*x*<=≤<=1<=000<=000) — The coordinate of the friend's house. Output Specification: Print the minimum number of steps that elephant needs to make to get from point 0 to point *x*. Demo Input: ['5\n', '12\n'] Demo Output: ['1\n', '3\n'] Note: In the first sample the elephant needs to make one step of length 5 to reach the point *x*. In the second sample the elephant can get to point *x* if he moves by 3, 5 and 4. There are other ways to get the optimal answer but the elephant cannot reach *x* in less than three moves.
```python num = int(input()) divid = [1,2,3,4,5] asd = 0 while num > 0: if num >= 5: num -= 1 else: for i in divid[::-1]: if i >= num: num -= i break asd += 1 print(asd) ```
0
136
A
Presents
PROGRAMMING
800
[ "implementation" ]
null
null
Little Petya very much likes gifts. Recently he has received a new laptop as a New Year gift from his mother. He immediately decided to give it to somebody else as what can be more pleasant than giving somebody gifts. And on this occasion he organized a New Year party at his place and invited *n* his friends there. If there's one thing Petya likes more that receiving gifts, that's watching others giving gifts to somebody else. Thus, he safely hid the laptop until the next New Year and made up his mind to watch his friends exchanging gifts while he does not participate in the process. He numbered all his friends with integers from 1 to *n*. Petya remembered that a friend number *i* gave a gift to a friend number *p**i*. He also remembered that each of his friends received exactly one gift. Now Petya wants to know for each friend *i* the number of a friend who has given him a gift.
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the quantity of friends Petya invited to the party. The second line contains *n* space-separated integers: the *i*-th number is *p**i* — the number of a friend who gave a gift to friend number *i*. It is guaranteed that each friend received exactly one gift. It is possible that some friends do not share Petya's ideas of giving gifts to somebody else. Those friends gave the gifts to themselves.
Print *n* space-separated integers: the *i*-th number should equal the number of the friend who gave a gift to friend number *i*.
[ "4\n2 3 4 1\n", "3\n1 3 2\n", "2\n1 2\n" ]
[ "4 1 2 3\n", "1 3 2\n", "1 2\n" ]
none
500
[ { "input": "4\n2 3 4 1", "output": "4 1 2 3" }, { "input": "3\n1 3 2", "output": "1 3 2" }, { "input": "2\n1 2", "output": "1 2" }, { "input": "1\n1", "output": "1" }, { "input": "10\n1 3 2 6 4 5 7 9 8 10", "output": "1 3 2 5 6 4 7 9 8 10" }, { "input": "5\n5 4 3 2 1", "output": "5 4 3 2 1" }, { "input": "20\n2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19", "output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19" }, { "input": "21\n3 2 1 6 5 4 9 8 7 12 11 10 15 14 13 18 17 16 21 20 19", "output": "3 2 1 6 5 4 9 8 7 12 11 10 15 14 13 18 17 16 21 20 19" }, { "input": "10\n3 4 5 6 7 8 9 10 1 2", "output": "9 10 1 2 3 4 5 6 7 8" }, { "input": "8\n1 5 3 7 2 6 4 8", "output": "1 5 3 7 2 6 4 8" }, { "input": "50\n49 22 4 2 20 46 7 32 5 19 48 24 26 15 45 21 44 11 50 43 39 17 31 1 42 34 3 27 36 25 12 30 13 33 28 35 18 6 8 37 38 14 10 9 29 16 40 23 41 47", "output": "24 4 27 3 9 38 7 39 44 43 18 31 33 42 14 46 22 37 10 5 16 2 48 12 30 13 28 35 45 32 23 8 34 26 36 29 40 41 21 47 49 25 20 17 15 6 50 11 1 19" }, { "input": "34\n13 20 33 30 15 11 27 4 8 2 29 25 24 7 3 22 18 10 26 16 5 1 32 9 34 6 12 14 28 19 31 21 23 17", "output": "22 10 15 8 21 26 14 9 24 18 6 27 1 28 5 20 34 17 30 2 32 16 33 13 12 19 7 29 11 4 31 23 3 25" }, { "input": "92\n23 1 6 4 84 54 44 76 63 34 61 20 48 13 28 78 26 46 90 72 24 55 91 89 53 38 82 5 79 92 29 32 15 64 11 88 60 70 7 66 18 59 8 57 19 16 42 21 80 71 62 27 75 86 36 9 83 73 74 50 43 31 56 30 17 33 40 81 49 12 10 41 22 77 25 68 51 2 47 3 58 69 87 67 39 37 35 65 14 45 52 85", "output": "2 78 80 4 28 3 39 43 56 71 35 70 14 89 33 46 65 41 45 12 48 73 1 21 75 17 52 15 31 64 62 32 66 10 87 55 86 26 85 67 72 47 61 7 90 18 79 13 69 60 77 91 25 6 22 63 44 81 42 37 11 51 9 34 88 40 84 76 82 38 50 20 58 59 53 8 74 16 29 49 68 27 57 5 92 54 83 36 24 19 23 30" }, { "input": "49\n30 24 33 48 7 3 17 2 8 35 10 39 23 40 46 32 18 21 26 22 1 16 47 45 41 28 31 6 12 43 27 11 13 37 19 15 44 5 29 42 4 38 20 34 14 9 25 36 49", "output": "21 8 6 41 38 28 5 9 46 11 32 29 33 45 36 22 7 17 35 43 18 20 13 2 47 19 31 26 39 1 27 16 3 44 10 48 34 42 12 14 25 40 30 37 24 15 23 4 49" }, { "input": "12\n3 8 7 4 6 5 2 1 11 9 10 12", "output": "8 7 1 4 6 5 3 2 10 11 9 12" }, { "input": "78\n16 56 36 78 21 14 9 77 26 57 70 61 41 47 18 44 5 31 50 74 65 52 6 39 22 62 67 69 43 7 64 29 24 40 48 51 73 54 72 12 19 34 4 25 55 33 17 35 23 53 10 8 27 32 42 68 20 63 3 2 1 71 58 46 13 30 49 11 37 66 38 60 28 75 15 59 45 76", "output": "61 60 59 43 17 23 30 52 7 51 68 40 65 6 75 1 47 15 41 57 5 25 49 33 44 9 53 73 32 66 18 54 46 42 48 3 69 71 24 34 13 55 29 16 77 64 14 35 67 19 36 22 50 38 45 2 10 63 76 72 12 26 58 31 21 70 27 56 28 11 62 39 37 20 74 78 8 4" }, { "input": "64\n64 57 40 3 15 8 62 18 33 59 51 19 22 13 4 37 47 45 50 35 63 11 58 42 46 21 7 2 41 48 32 23 28 38 17 12 24 27 49 31 60 6 30 25 61 52 26 54 9 14 29 20 44 39 55 10 34 16 5 56 1 36 53 43", "output": "61 28 4 15 59 42 27 6 49 56 22 36 14 50 5 58 35 8 12 52 26 13 32 37 44 47 38 33 51 43 40 31 9 57 20 62 16 34 54 3 29 24 64 53 18 25 17 30 39 19 11 46 63 48 55 60 2 23 10 41 45 7 21 1" }, { "input": "49\n38 20 49 32 14 41 39 45 25 48 40 19 26 43 34 12 10 3 35 42 5 7 46 47 4 2 13 22 16 24 33 15 11 18 29 31 23 9 44 36 6 17 37 1 30 28 8 21 27", "output": "44 26 18 25 21 41 22 47 38 17 33 16 27 5 32 29 42 34 12 2 48 28 37 30 9 13 49 46 35 45 36 4 31 15 19 40 43 1 7 11 6 20 14 39 8 23 24 10 3" }, { "input": "78\n17 50 30 48 33 12 42 4 18 53 76 67 38 3 20 72 51 55 60 63 46 10 57 45 54 32 24 62 8 11 35 44 65 74 58 28 2 6 56 52 39 23 47 49 61 1 66 41 15 77 7 27 78 13 14 34 5 31 37 21 40 16 29 69 59 43 64 36 70 19 25 73 71 75 9 68 26 22", "output": "46 37 14 8 57 38 51 29 75 22 30 6 54 55 49 62 1 9 70 15 60 78 42 27 71 77 52 36 63 3 58 26 5 56 31 68 59 13 41 61 48 7 66 32 24 21 43 4 44 2 17 40 10 25 18 39 23 35 65 19 45 28 20 67 33 47 12 76 64 69 73 16 72 34 74 11 50 53" }, { "input": "29\n14 21 27 1 4 18 10 17 20 23 2 24 7 9 28 22 8 25 12 15 11 6 16 29 3 26 19 5 13", "output": "4 11 25 5 28 22 13 17 14 7 21 19 29 1 20 23 8 6 27 9 2 16 10 12 18 26 3 15 24" }, { "input": "82\n6 1 10 75 28 66 61 81 78 63 17 19 58 34 49 12 67 50 41 44 3 15 59 38 51 72 36 11 46 29 18 64 27 23 13 53 56 68 2 25 47 40 69 54 42 5 60 55 4 16 24 79 57 20 7 73 32 80 76 52 82 37 26 31 65 8 39 62 33 71 30 9 77 43 48 74 70 22 14 45 35 21", "output": "2 39 21 49 46 1 55 66 72 3 28 16 35 79 22 50 11 31 12 54 82 78 34 51 40 63 33 5 30 71 64 57 69 14 81 27 62 24 67 42 19 45 74 20 80 29 41 75 15 18 25 60 36 44 48 37 53 13 23 47 7 68 10 32 65 6 17 38 43 77 70 26 56 76 4 59 73 9 52 58 8 61" }, { "input": "82\n74 18 15 69 71 77 19 26 80 20 66 7 30 82 22 48 21 44 52 65 64 61 35 49 12 8 53 81 54 16 11 9 40 46 13 1 29 58 5 41 55 4 78 60 6 51 56 2 38 36 34 62 63 25 17 67 45 14 32 37 75 79 10 47 27 39 31 68 59 24 50 43 72 70 42 28 76 23 57 3 73 33", "output": "36 48 80 42 39 45 12 26 32 63 31 25 35 58 3 30 55 2 7 10 17 15 78 70 54 8 65 76 37 13 67 59 82 51 23 50 60 49 66 33 40 75 72 18 57 34 64 16 24 71 46 19 27 29 41 47 79 38 69 44 22 52 53 21 20 11 56 68 4 74 5 73 81 1 61 77 6 43 62 9 28 14" }, { "input": "45\n2 32 34 13 3 15 16 33 22 12 31 38 42 14 27 7 36 8 4 19 45 41 5 35 10 11 39 20 29 44 17 9 6 40 37 28 25 21 1 30 24 18 43 26 23", "output": "39 1 5 19 23 33 16 18 32 25 26 10 4 14 6 7 31 42 20 28 38 9 45 41 37 44 15 36 29 40 11 2 8 3 24 17 35 12 27 34 22 13 43 30 21" }, { "input": "45\n4 32 33 39 43 21 22 35 45 7 14 5 16 9 42 31 24 36 17 29 41 25 37 34 27 20 11 44 3 13 19 2 1 10 26 30 38 18 6 8 15 23 40 28 12", "output": "33 32 29 1 12 39 10 40 14 34 27 45 30 11 41 13 19 38 31 26 6 7 42 17 22 35 25 44 20 36 16 2 3 24 8 18 23 37 4 43 21 15 5 28 9" }, { "input": "74\n48 72 40 67 17 4 27 53 11 32 25 9 74 2 41 24 56 22 14 21 33 5 18 55 20 7 29 36 69 13 52 19 38 30 68 59 66 34 63 6 47 45 54 44 62 12 50 71 16 10 8 64 57 73 46 26 49 42 3 23 35 1 61 39 70 60 65 43 15 28 37 51 58 31", "output": "62 14 59 6 22 40 26 51 12 50 9 46 30 19 69 49 5 23 32 25 20 18 60 16 11 56 7 70 27 34 74 10 21 38 61 28 71 33 64 3 15 58 68 44 42 55 41 1 57 47 72 31 8 43 24 17 53 73 36 66 63 45 39 52 67 37 4 35 29 65 48 2 54 13" }, { "input": "47\n9 26 27 10 6 34 28 42 39 22 45 21 11 43 14 47 38 15 40 32 46 1 36 29 17 25 2 23 31 5 24 4 7 8 12 19 16 44 37 20 18 33 30 13 35 41 3", "output": "22 27 47 32 30 5 33 34 1 4 13 35 44 15 18 37 25 41 36 40 12 10 28 31 26 2 3 7 24 43 29 20 42 6 45 23 39 17 9 19 46 8 14 38 11 21 16" }, { "input": "49\n14 38 6 29 9 49 36 43 47 3 44 20 34 15 7 11 1 28 12 40 16 37 31 10 42 41 33 21 18 30 5 27 17 35 25 26 45 19 2 13 23 32 4 22 46 48 24 39 8", "output": "17 39 10 43 31 3 15 49 5 24 16 19 40 1 14 21 33 29 38 12 28 44 41 47 35 36 32 18 4 30 23 42 27 13 34 7 22 2 48 20 26 25 8 11 37 45 9 46 6" }, { "input": "100\n78 56 31 91 90 95 16 65 58 77 37 89 33 61 10 76 62 47 35 67 69 7 63 83 22 25 49 8 12 30 39 44 57 64 48 42 32 11 70 43 55 50 99 24 85 73 45 14 54 21 98 84 74 2 26 18 9 36 80 53 75 46 66 86 59 93 87 68 94 13 72 28 79 88 92 29 52 82 34 97 19 38 1 41 27 4 40 5 96 100 51 6 20 23 81 15 17 3 60 71", "output": "83 54 98 86 88 92 22 28 57 15 38 29 70 48 96 7 97 56 81 93 50 25 94 44 26 55 85 72 76 30 3 37 13 79 19 58 11 82 31 87 84 36 40 32 47 62 18 35 27 42 91 77 60 49 41 2 33 9 65 99 14 17 23 34 8 63 20 68 21 39 100 71 46 53 61 16 10 1 73 59 95 78 24 52 45 64 67 74 12 5 4 75 66 69 6 89 80 51 43 90" }, { "input": "22\n12 8 11 2 16 7 13 6 22 21 20 10 4 14 18 1 5 15 3 19 17 9", "output": "16 4 19 13 17 8 6 2 22 12 3 1 7 14 18 5 21 15 20 11 10 9" }, { "input": "72\n16 11 49 51 3 27 60 55 23 40 66 7 53 70 13 5 15 32 18 72 33 30 8 31 46 12 28 67 25 38 50 22 69 34 71 52 58 39 24 35 42 9 41 26 62 1 63 65 36 64 68 61 37 14 45 47 6 57 54 20 17 2 56 59 29 10 4 48 21 43 19 44", "output": "46 62 5 67 16 57 12 23 42 66 2 26 15 54 17 1 61 19 71 60 69 32 9 39 29 44 6 27 65 22 24 18 21 34 40 49 53 30 38 10 43 41 70 72 55 25 56 68 3 31 4 36 13 59 8 63 58 37 64 7 52 45 47 50 48 11 28 51 33 14 35 20" }, { "input": "63\n21 56 11 10 62 24 20 42 28 52 38 2 37 43 48 22 7 8 40 14 13 46 53 1 23 4 60 63 51 36 25 12 39 32 49 16 58 44 31 61 33 50 55 54 45 6 47 41 9 57 30 29 26 18 19 27 15 34 3 35 59 5 17", "output": "24 12 59 26 62 46 17 18 49 4 3 32 21 20 57 36 63 54 55 7 1 16 25 6 31 53 56 9 52 51 39 34 41 58 60 30 13 11 33 19 48 8 14 38 45 22 47 15 35 42 29 10 23 44 43 2 50 37 61 27 40 5 28" }, { "input": "18\n2 16 8 4 18 12 3 6 5 9 10 15 11 17 14 13 1 7", "output": "17 1 7 4 9 8 18 3 10 11 13 6 16 15 12 2 14 5" }, { "input": "47\n6 9 10 41 25 3 4 37 20 1 36 22 29 27 11 24 43 31 12 17 34 42 38 39 13 2 7 21 18 5 15 35 44 26 33 46 19 40 30 14 28 23 47 32 45 8 16", "output": "10 26 6 7 30 1 27 46 2 3 15 19 25 40 31 47 20 29 37 9 28 12 42 16 5 34 14 41 13 39 18 44 35 21 32 11 8 23 24 38 4 22 17 33 45 36 43" }, { "input": "96\n41 91 48 88 29 57 1 19 44 43 37 5 10 75 25 63 30 78 76 53 8 92 18 70 39 17 49 60 9 16 3 34 86 59 23 79 55 45 72 51 28 33 96 40 26 54 6 32 89 61 85 74 7 82 52 31 64 66 94 95 11 22 2 73 35 13 42 71 14 47 84 69 50 67 58 12 77 46 38 68 15 36 20 93 27 90 83 56 87 4 21 24 81 62 80 65", "output": "7 63 31 90 12 47 53 21 29 13 61 76 66 69 81 30 26 23 8 83 91 62 35 92 15 45 85 41 5 17 56 48 42 32 65 82 11 79 25 44 1 67 10 9 38 78 70 3 27 73 40 55 20 46 37 88 6 75 34 28 50 94 16 57 96 58 74 80 72 24 68 39 64 52 14 19 77 18 36 95 93 54 87 71 51 33 89 4 49 86 2 22 84 59 60 43" }, { "input": "73\n67 24 39 22 23 20 48 34 42 40 19 70 65 69 64 21 53 11 59 15 26 10 30 33 72 29 55 25 56 71 8 9 57 49 41 61 13 12 6 27 66 36 47 50 73 60 2 37 7 4 51 17 1 46 14 62 35 3 45 63 43 58 54 32 31 5 28 44 18 52 68 38 16", "output": "53 47 58 50 66 39 49 31 32 22 18 38 37 55 20 73 52 69 11 6 16 4 5 2 28 21 40 67 26 23 65 64 24 8 57 42 48 72 3 10 35 9 61 68 59 54 43 7 34 44 51 70 17 63 27 29 33 62 19 46 36 56 60 15 13 41 1 71 14 12 30 25 45" }, { "input": "81\n25 2 78 40 12 80 69 13 49 43 17 33 23 54 32 61 77 66 27 71 24 26 42 55 60 9 5 30 7 37 45 63 53 11 38 44 68 34 28 52 67 22 57 46 47 50 8 16 79 62 4 36 20 14 73 64 6 76 35 74 58 10 29 81 59 31 19 1 75 39 70 18 41 21 72 65 3 48 15 56 51", "output": "68 2 77 51 27 57 29 47 26 62 34 5 8 54 79 48 11 72 67 53 74 42 13 21 1 22 19 39 63 28 66 15 12 38 59 52 30 35 70 4 73 23 10 36 31 44 45 78 9 46 81 40 33 14 24 80 43 61 65 25 16 50 32 56 76 18 41 37 7 71 20 75 55 60 69 58 17 3 49 6 64" }, { "input": "12\n12 3 1 5 11 6 7 10 2 8 9 4", "output": "3 9 2 12 4 6 7 10 11 8 5 1" }, { "input": "47\n7 21 41 18 40 31 12 28 24 14 43 23 33 10 19 38 26 8 34 15 29 44 5 13 39 25 3 27 20 42 35 9 2 1 30 46 36 32 4 22 37 45 6 47 11 16 17", "output": "34 33 27 39 23 43 1 18 32 14 45 7 24 10 20 46 47 4 15 29 2 40 12 9 26 17 28 8 21 35 6 38 13 19 31 37 41 16 25 5 3 30 11 22 42 36 44" }, { "input": "8\n1 3 5 2 4 8 6 7", "output": "1 4 2 5 3 7 8 6" }, { "input": "38\n28 8 2 33 20 32 26 29 23 31 15 38 11 37 18 21 22 19 4 34 1 35 16 7 17 6 27 30 36 12 9 24 25 13 5 3 10 14", "output": "21 3 36 19 35 26 24 2 31 37 13 30 34 38 11 23 25 15 18 5 16 17 9 32 33 7 27 1 8 28 10 6 4 20 22 29 14 12" }, { "input": "10\n2 9 4 6 10 1 7 5 3 8", "output": "6 1 9 3 8 4 7 10 2 5" }, { "input": "23\n20 11 15 1 5 12 23 9 2 22 13 19 16 14 7 4 8 21 6 17 18 10 3", "output": "4 9 23 16 5 19 15 17 8 22 2 6 11 14 3 13 20 21 12 1 18 10 7" }, { "input": "10\n2 4 9 3 6 8 10 5 1 7", "output": "9 1 4 2 8 5 10 6 3 7" }, { "input": "55\n9 48 23 49 11 24 4 22 34 32 17 45 39 13 14 21 19 25 2 31 37 7 55 36 20 51 5 12 54 10 35 40 43 1 46 18 53 41 38 26 29 50 3 42 52 27 8 28 47 33 6 16 30 44 15", "output": "34 19 43 7 27 51 22 47 1 30 5 28 14 15 55 52 11 36 17 25 16 8 3 6 18 40 46 48 41 53 20 10 50 9 31 24 21 39 13 32 38 44 33 54 12 35 49 2 4 42 26 45 37 29 23" }, { "input": "58\n49 13 12 54 2 38 56 11 33 25 26 19 28 8 23 41 20 36 46 55 15 35 9 7 32 37 58 6 3 14 47 31 40 30 53 44 4 50 29 34 10 43 39 57 5 22 27 45 51 42 24 16 18 21 52 17 48 1", "output": "58 5 29 37 45 28 24 14 23 41 8 3 2 30 21 52 56 53 12 17 54 46 15 51 10 11 47 13 39 34 32 25 9 40 22 18 26 6 43 33 16 50 42 36 48 19 31 57 1 38 49 55 35 4 20 7 44 27" }, { "input": "34\n20 25 2 3 33 29 1 16 14 7 21 9 32 31 6 26 22 4 27 23 24 10 34 12 19 15 5 18 28 17 13 8 11 30", "output": "7 3 4 18 27 15 10 32 12 22 33 24 31 9 26 8 30 28 25 1 11 17 20 21 2 16 19 29 6 34 14 13 5 23" }, { "input": "53\n47 29 46 25 23 13 7 31 33 4 38 11 35 16 42 14 15 43 34 39 28 18 6 45 30 1 40 20 2 37 5 32 24 12 44 26 27 3 19 51 36 21 22 9 10 50 41 48 49 53 8 17 52", "output": "26 29 38 10 31 23 7 51 44 45 12 34 6 16 17 14 52 22 39 28 42 43 5 33 4 36 37 21 2 25 8 32 9 19 13 41 30 11 20 27 47 15 18 35 24 3 1 48 49 46 40 53 50" }, { "input": "99\n77 87 90 48 53 38 68 6 28 57 35 82 63 71 60 41 3 12 86 65 10 59 22 67 33 74 93 27 24 1 61 43 25 4 51 52 15 88 9 31 30 42 89 49 23 21 29 32 46 73 37 16 5 69 56 26 92 64 20 54 75 14 98 13 94 2 95 7 36 66 58 8 50 78 84 45 11 96 76 62 97 80 40 39 47 85 34 79 83 17 91 72 19 44 70 81 55 99 18", "output": "30 66 17 34 53 8 68 72 39 21 77 18 64 62 37 52 90 99 93 59 46 23 45 29 33 56 28 9 47 41 40 48 25 87 11 69 51 6 84 83 16 42 32 94 76 49 85 4 44 73 35 36 5 60 97 55 10 71 22 15 31 80 13 58 20 70 24 7 54 95 14 92 50 26 61 79 1 74 88 82 96 12 89 75 86 19 2 38 43 3 91 57 27 65 67 78 81 63 98" }, { "input": "32\n17 29 2 6 30 8 26 7 1 27 10 9 13 24 31 21 15 19 22 18 4 11 25 28 32 3 23 12 5 14 20 16", "output": "9 3 26 21 29 4 8 6 12 11 22 28 13 30 17 32 1 20 18 31 16 19 27 14 23 7 10 24 2 5 15 25" }, { "input": "65\n18 40 1 60 17 19 4 6 12 49 28 58 2 25 13 14 64 56 61 34 62 30 59 51 26 8 33 63 36 48 46 7 43 21 31 27 11 44 29 5 32 23 35 9 53 57 52 50 15 38 42 3 54 65 55 41 20 24 22 47 45 10 39 16 37", "output": "3 13 52 7 40 8 32 26 44 62 37 9 15 16 49 64 5 1 6 57 34 59 42 58 14 25 36 11 39 22 35 41 27 20 43 29 65 50 63 2 56 51 33 38 61 31 60 30 10 48 24 47 45 53 55 18 46 12 23 4 19 21 28 17 54" }, { "input": "71\n35 50 55 58 25 32 26 40 63 34 44 53 24 18 37 7 64 27 56 65 1 19 2 43 42 14 57 47 22 13 59 61 39 67 30 45 54 38 33 48 6 5 3 69 36 21 41 4 16 46 20 17 15 12 10 70 68 23 60 31 52 29 66 28 51 49 62 11 8 9 71", "output": "21 23 43 48 42 41 16 69 70 55 68 54 30 26 53 49 52 14 22 51 46 29 58 13 5 7 18 64 62 35 60 6 39 10 1 45 15 38 33 8 47 25 24 11 36 50 28 40 66 2 65 61 12 37 3 19 27 4 31 59 32 67 9 17 20 63 34 57 44 56 71" }, { "input": "74\n33 8 42 63 64 61 31 74 11 50 68 14 36 25 57 30 7 44 21 15 6 9 23 59 46 3 73 16 62 51 40 60 41 54 5 39 35 28 48 4 58 12 66 69 13 26 71 1 24 19 29 52 37 2 20 43 18 72 17 56 34 38 65 67 27 10 47 70 53 32 45 55 49 22", "output": "48 54 26 40 35 21 17 2 22 66 9 42 45 12 20 28 59 57 50 55 19 74 23 49 14 46 65 38 51 16 7 70 1 61 37 13 53 62 36 31 33 3 56 18 71 25 67 39 73 10 30 52 69 34 72 60 15 41 24 32 6 29 4 5 63 43 64 11 44 68 47 58 27 8" }, { "input": "96\n78 10 82 46 38 91 77 69 2 27 58 80 79 44 59 41 6 31 76 11 42 48 51 37 19 87 43 25 52 32 1 39 63 29 21 65 53 74 92 16 15 95 90 83 30 73 71 5 50 17 96 33 86 60 67 64 20 26 61 40 55 88 94 93 9 72 47 57 14 45 22 3 54 68 13 24 4 7 56 81 89 70 49 8 84 28 18 62 35 36 75 23 66 85 34 12", "output": "31 9 72 77 48 17 78 84 65 2 20 96 75 69 41 40 50 87 25 57 35 71 92 76 28 58 10 86 34 45 18 30 52 95 89 90 24 5 32 60 16 21 27 14 70 4 67 22 83 49 23 29 37 73 61 79 68 11 15 54 59 88 33 56 36 93 55 74 8 82 47 66 46 38 91 19 7 1 13 12 80 3 44 85 94 53 26 62 81 43 6 39 64 63 42 51" }, { "input": "7\n2 1 5 7 3 4 6", "output": "2 1 5 6 3 7 4" }, { "input": "51\n8 33 37 2 16 22 24 30 4 9 5 15 27 3 18 39 31 26 10 17 46 41 25 14 6 1 29 48 36 20 51 49 21 43 19 13 38 50 47 34 11 23 28 12 42 7 32 40 44 45 35", "output": "26 4 14 9 11 25 46 1 10 19 41 44 36 24 12 5 20 15 35 30 33 6 42 7 23 18 13 43 27 8 17 47 2 40 51 29 3 37 16 48 22 45 34 49 50 21 39 28 32 38 31" }, { "input": "27\n12 14 7 3 20 21 25 13 22 15 23 4 2 24 10 17 19 8 26 11 27 18 9 5 6 1 16", "output": "26 13 4 12 24 25 3 18 23 15 20 1 8 2 10 27 16 22 17 5 6 9 11 14 7 19 21" }, { "input": "71\n51 13 20 48 54 23 24 64 14 62 71 67 57 53 3 30 55 43 33 25 39 40 66 6 46 18 5 19 61 16 32 68 70 41 60 44 29 49 27 69 50 38 10 17 45 56 9 21 26 63 28 35 7 59 1 65 2 15 8 11 12 34 37 47 58 22 31 4 36 42 52", "output": "55 57 15 68 27 24 53 59 47 43 60 61 2 9 58 30 44 26 28 3 48 66 6 7 20 49 39 51 37 16 67 31 19 62 52 69 63 42 21 22 34 70 18 36 45 25 64 4 38 41 1 71 14 5 17 46 13 65 54 35 29 10 50 8 56 23 12 32 40 33 11" }, { "input": "9\n8 5 2 6 1 9 4 7 3", "output": "5 3 9 7 2 4 8 1 6" }, { "input": "29\n10 24 11 5 26 25 2 9 22 15 8 14 29 21 4 1 23 17 3 12 13 16 18 28 19 20 7 6 27", "output": "16 7 19 15 4 28 27 11 8 1 3 20 21 12 10 22 18 23 25 26 14 9 17 2 6 5 29 24 13" }, { "input": "60\n39 25 42 4 55 60 16 18 47 1 11 40 7 50 19 35 49 54 12 3 30 38 2 58 17 26 45 6 33 43 37 32 52 36 15 23 27 59 24 20 28 14 8 9 13 29 44 46 41 21 5 48 51 22 31 56 57 53 10 34", "output": "10 23 20 4 51 28 13 43 44 59 11 19 45 42 35 7 25 8 15 40 50 54 36 39 2 26 37 41 46 21 55 32 29 60 16 34 31 22 1 12 49 3 30 47 27 48 9 52 17 14 53 33 58 18 5 56 57 24 38 6" }, { "input": "50\n37 45 22 5 12 21 28 24 18 47 20 25 8 50 14 2 34 43 11 16 49 41 48 1 19 31 39 46 32 23 15 42 3 35 38 30 44 26 10 9 40 36 7 17 33 4 27 6 13 29", "output": "24 16 33 46 4 48 43 13 40 39 19 5 49 15 31 20 44 9 25 11 6 3 30 8 12 38 47 7 50 36 26 29 45 17 34 42 1 35 27 41 22 32 18 37 2 28 10 23 21 14" }, { "input": "30\n8 29 28 16 17 25 27 15 21 11 6 20 2 13 1 30 5 4 24 10 14 3 23 18 26 9 12 22 19 7", "output": "15 13 22 18 17 11 30 1 26 20 10 27 14 21 8 4 5 24 29 12 9 28 23 19 6 25 7 3 2 16" }, { "input": "46\n15 2 44 43 38 19 31 42 4 37 29 30 24 45 27 41 8 20 33 7 35 3 18 46 36 26 1 28 21 40 16 22 32 11 14 13 12 9 25 39 10 6 23 17 5 34", "output": "27 2 22 9 45 42 20 17 38 41 34 37 36 35 1 31 44 23 6 18 29 32 43 13 39 26 15 28 11 12 7 33 19 46 21 25 10 5 40 30 16 8 4 3 14 24" }, { "input": "9\n4 8 6 5 3 9 2 7 1", "output": "9 7 5 1 4 3 8 2 6" }, { "input": "46\n31 30 33 23 45 7 36 8 11 3 32 39 41 20 1 28 6 27 18 24 17 5 16 37 26 13 22 14 2 38 15 46 9 4 19 21 12 44 10 35 25 34 42 43 40 29", "output": "15 29 10 34 22 17 6 8 33 39 9 37 26 28 31 23 21 19 35 14 36 27 4 20 41 25 18 16 46 2 1 11 3 42 40 7 24 30 12 45 13 43 44 38 5 32" }, { "input": "66\n27 12 37 48 46 21 34 58 38 28 66 2 64 32 44 31 13 36 40 15 19 11 22 5 30 29 6 7 61 39 20 42 23 54 51 33 50 9 60 8 57 45 49 10 62 41 59 3 55 63 52 24 25 26 43 56 65 4 16 14 1 35 18 17 53 47", "output": "61 12 48 58 24 27 28 40 38 44 22 2 17 60 20 59 64 63 21 31 6 23 33 52 53 54 1 10 26 25 16 14 36 7 62 18 3 9 30 19 46 32 55 15 42 5 66 4 43 37 35 51 65 34 49 56 41 8 47 39 29 45 50 13 57 11" }, { "input": "13\n3 12 9 2 8 5 13 4 11 1 10 7 6", "output": "10 4 1 8 6 13 12 5 3 11 9 2 7" }, { "input": "80\n21 25 56 50 20 61 7 74 51 69 8 2 46 57 45 71 14 52 17 43 9 30 70 78 31 10 38 13 23 15 37 79 6 16 77 73 80 4 49 48 18 28 26 58 33 41 64 22 54 72 59 60 40 63 53 27 1 5 75 67 62 34 19 39 68 65 44 55 3 32 11 42 76 12 35 47 66 36 24 29", "output": "57 12 69 38 58 33 7 11 21 26 71 74 28 17 30 34 19 41 63 5 1 48 29 79 2 43 56 42 80 22 25 70 45 62 75 78 31 27 64 53 46 72 20 67 15 13 76 40 39 4 9 18 55 49 68 3 14 44 51 52 6 61 54 47 66 77 60 65 10 23 16 50 36 8 59 73 35 24 32 37" }, { "input": "63\n9 49 53 25 40 46 43 51 54 22 58 16 23 26 10 47 5 27 2 8 61 59 19 35 63 56 28 20 34 4 62 38 6 55 36 31 57 15 29 33 1 48 50 37 7 30 18 42 32 52 12 41 14 21 45 11 24 17 39 13 44 60 3", "output": "41 19 63 30 17 33 45 20 1 15 56 51 60 53 38 12 58 47 23 28 54 10 13 57 4 14 18 27 39 46 36 49 40 29 24 35 44 32 59 5 52 48 7 61 55 6 16 42 2 43 8 50 3 9 34 26 37 11 22 62 21 31 25" }, { "input": "26\n11 4 19 13 17 9 2 24 6 5 22 23 14 15 3 25 16 8 18 10 21 1 12 26 7 20", "output": "22 7 15 2 10 9 25 18 6 20 1 23 4 13 14 17 5 19 3 26 21 11 12 8 16 24" }, { "input": "69\n40 22 11 66 4 27 31 29 64 53 37 55 51 2 7 36 18 52 6 1 30 21 17 20 14 9 59 62 49 68 3 50 65 57 44 5 67 46 33 13 34 15 24 48 63 58 38 25 41 35 16 54 32 10 60 61 39 12 69 8 23 45 26 47 56 43 28 19 42", "output": "20 14 31 5 36 19 15 60 26 54 3 58 40 25 42 51 23 17 68 24 22 2 61 43 48 63 6 67 8 21 7 53 39 41 50 16 11 47 57 1 49 69 66 35 62 38 64 44 29 32 13 18 10 52 12 65 34 46 27 55 56 28 45 9 33 4 37 30 59" }, { "input": "6\n4 3 6 5 1 2", "output": "5 6 2 1 4 3" }, { "input": "9\n7 8 5 3 1 4 2 9 6", "output": "5 7 4 6 3 9 1 2 8" }, { "input": "41\n27 24 16 30 25 8 32 2 26 20 39 33 41 22 40 14 36 9 28 4 34 11 31 23 19 18 17 35 3 10 6 13 5 15 29 38 7 21 1 12 37", "output": "39 8 29 20 33 31 37 6 18 30 22 40 32 16 34 3 27 26 25 10 38 14 24 2 5 9 1 19 35 4 23 7 12 21 28 17 41 36 11 15 13" }, { "input": "1\n1", "output": "1" }, { "input": "20\n2 6 4 18 7 10 17 13 16 8 14 9 20 5 19 12 1 3 15 11", "output": "17 1 18 3 14 2 5 10 12 6 20 16 8 11 19 9 7 4 15 13" }, { "input": "2\n2 1", "output": "2 1" }, { "input": "60\n2 4 31 51 11 7 34 20 3 14 18 23 48 54 15 36 38 60 49 40 5 33 41 26 55 58 10 8 13 9 27 30 37 1 21 59 44 57 35 19 46 43 42 45 12 22 39 32 24 16 6 56 53 52 25 17 47 29 50 28", "output": "34 1 9 2 21 51 6 28 30 27 5 45 29 10 15 50 56 11 40 8 35 46 12 49 55 24 31 60 58 32 3 48 22 7 39 16 33 17 47 20 23 43 42 37 44 41 57 13 19 59 4 54 53 14 25 52 38 26 36 18" }, { "input": "14\n14 6 3 12 11 2 7 1 10 9 8 5 4 13", "output": "8 6 3 13 12 2 7 11 10 9 5 4 14 1" }, { "input": "81\n13 43 79 8 7 21 73 46 63 4 62 78 56 11 70 68 61 53 60 49 16 27 59 47 69 5 22 44 77 57 52 48 1 9 72 81 28 55 58 33 51 18 31 17 41 20 42 3 32 54 19 2 75 34 64 10 65 50 30 29 67 12 71 66 74 15 26 23 6 38 25 35 37 24 80 76 40 45 39 36 14", "output": "33 52 48 10 26 69 5 4 34 56 14 62 1 81 66 21 44 42 51 46 6 27 68 74 71 67 22 37 60 59 43 49 40 54 72 80 73 70 79 77 45 47 2 28 78 8 24 32 20 58 41 31 18 50 38 13 30 39 23 19 17 11 9 55 57 64 61 16 25 15 63 35 7 65 53 76 29 12 3 75 36" }, { "input": "42\n41 11 10 8 21 37 32 19 31 25 1 15 36 5 6 27 4 3 13 7 16 17 2 23 34 24 38 28 12 20 30 42 18 26 39 35 33 40 9 14 22 29", "output": "11 23 18 17 14 15 20 4 39 3 2 29 19 40 12 21 22 33 8 30 5 41 24 26 10 34 16 28 42 31 9 7 37 25 36 13 6 27 35 38 1 32" }, { "input": "97\n20 6 76 42 4 18 35 59 39 63 27 7 66 47 61 52 15 36 88 93 19 33 10 92 1 34 46 86 78 57 51 94 77 29 26 73 41 2 58 97 43 65 17 74 21 49 25 3 91 82 95 12 96 13 84 90 69 24 72 37 16 55 54 71 64 62 48 89 11 70 80 67 30 40 44 85 53 83 79 9 56 45 75 87 22 14 81 68 8 38 60 50 28 23 31 32 5", "output": "25 38 48 5 97 2 12 89 80 23 69 52 54 86 17 61 43 6 21 1 45 85 94 58 47 35 11 93 34 73 95 96 22 26 7 18 60 90 9 74 37 4 41 75 82 27 14 67 46 92 31 16 77 63 62 81 30 39 8 91 15 66 10 65 42 13 72 88 57 70 64 59 36 44 83 3 33 29 79 71 87 50 78 55 76 28 84 19 68 56 49 24 20 32 51 53 40" }, { "input": "62\n15 27 46 6 8 51 14 56 23 48 42 49 52 22 20 31 29 12 47 3 62 34 37 35 32 57 19 25 5 60 61 38 18 10 11 55 45 53 17 30 9 36 4 50 41 16 44 28 40 59 24 1 13 39 26 7 33 58 2 43 21 54", "output": "52 59 20 43 29 4 56 5 41 34 35 18 53 7 1 46 39 33 27 15 61 14 9 51 28 55 2 48 17 40 16 25 57 22 24 42 23 32 54 49 45 11 60 47 37 3 19 10 12 44 6 13 38 62 36 8 26 58 50 30 31 21" }, { "input": "61\n35 27 4 61 52 32 41 46 14 37 17 54 55 31 11 26 44 49 15 30 9 50 45 39 7 38 53 3 58 40 13 56 18 19 28 6 43 5 21 42 20 34 2 25 36 12 33 57 16 60 1 8 59 10 22 23 24 48 51 47 29", "output": "51 43 28 3 38 36 25 52 21 54 15 46 31 9 19 49 11 33 34 41 39 55 56 57 44 16 2 35 61 20 14 6 47 42 1 45 10 26 24 30 7 40 37 17 23 8 60 58 18 22 59 5 27 12 13 32 48 29 53 50 4" }, { "input": "59\n31 26 36 15 17 19 10 53 11 34 13 46 55 9 44 7 8 37 32 52 47 25 51 22 35 39 41 4 43 24 5 27 20 57 6 38 3 28 21 40 50 18 14 56 33 45 12 2 49 59 54 29 16 48 42 58 1 30 23", "output": "57 48 37 28 31 35 16 17 14 7 9 47 11 43 4 53 5 42 6 33 39 24 59 30 22 2 32 38 52 58 1 19 45 10 25 3 18 36 26 40 27 55 29 15 46 12 21 54 49 41 23 20 8 51 13 44 34 56 50" }, { "input": "10\n2 10 7 4 1 5 8 6 3 9", "output": "5 1 9 4 6 8 3 7 10 2" }, { "input": "14\n14 2 1 8 6 12 11 10 9 7 3 4 5 13", "output": "3 2 11 12 13 5 10 4 9 8 7 6 14 1" }, { "input": "43\n28 38 15 14 31 42 27 30 19 33 43 26 22 29 18 32 3 13 1 8 35 34 4 12 11 17 41 21 5 25 39 37 20 23 7 24 16 10 40 9 6 36 2", "output": "19 43 17 23 29 41 35 20 40 38 25 24 18 4 3 37 26 15 9 33 28 13 34 36 30 12 7 1 14 8 5 16 10 22 21 42 32 2 31 39 27 6 11" }, { "input": "86\n39 11 20 31 28 76 29 64 35 21 41 71 12 82 5 37 80 73 38 26 79 75 23 15 59 45 47 6 3 62 50 49 51 22 2 65 86 60 70 42 74 17 1 30 55 44 8 66 81 27 57 77 43 13 54 32 72 46 48 56 14 34 78 52 36 85 24 19 69 83 25 61 7 4 84 33 63 58 18 40 68 10 67 9 16 53", "output": "43 35 29 74 15 28 73 47 84 82 2 13 54 61 24 85 42 79 68 3 10 34 23 67 71 20 50 5 7 44 4 56 76 62 9 65 16 19 1 80 11 40 53 46 26 58 27 59 32 31 33 64 86 55 45 60 51 78 25 38 72 30 77 8 36 48 83 81 69 39 12 57 18 41 22 6 52 63 21 17 49 14 70 75 66 37" }, { "input": "99\n65 78 56 98 33 24 61 40 29 93 1 64 57 22 25 52 67 95 50 3 31 15 90 68 71 83 38 36 6 46 89 26 4 87 14 88 72 37 23 43 63 12 80 96 5 34 73 86 9 48 92 62 99 10 16 20 66 27 28 2 82 70 30 94 49 8 84 69 18 60 58 59 44 39 21 7 91 76 54 19 75 85 74 47 55 32 97 77 51 13 35 79 45 42 11 41 17 81 53", "output": "11 60 20 33 45 29 76 66 49 54 95 42 90 35 22 55 97 69 80 56 75 14 39 6 15 32 58 59 9 63 21 86 5 46 91 28 38 27 74 8 96 94 40 73 93 30 84 50 65 19 89 16 99 79 85 3 13 71 72 70 7 52 41 12 1 57 17 24 68 62 25 37 47 83 81 78 88 2 92 43 98 61 26 67 82 48 34 36 31 23 77 51 10 64 18 44 87 4 53" }, { "input": "100\n42 23 48 88 36 6 18 70 96 1 34 40 46 22 39 55 85 93 45 67 71 75 59 9 21 3 86 63 65 68 20 38 73 31 84 90 50 51 56 95 72 33 49 19 83 76 54 74 100 30 17 98 15 94 4 97 5 99 81 27 92 32 89 12 13 91 87 29 60 11 52 43 35 58 10 25 16 80 28 2 44 61 8 82 66 69 41 24 57 62 78 37 79 77 53 7 14 47 26 64", "output": "10 80 26 55 57 6 96 83 24 75 70 64 65 97 53 77 51 7 44 31 25 14 2 88 76 99 60 79 68 50 34 62 42 11 73 5 92 32 15 12 87 1 72 81 19 13 98 3 43 37 38 71 95 47 16 39 89 74 23 69 82 90 28 100 29 85 20 30 86 8 21 41 33 48 22 46 94 91 93 78 59 84 45 35 17 27 67 4 63 36 66 61 18 54 40 9 56 52 58 49" }, { "input": "99\n8 68 94 75 71 60 57 58 6 11 5 48 65 41 49 12 46 72 95 59 13 70 74 7 84 62 17 36 55 76 38 79 2 85 23 10 32 99 87 50 83 28 54 91 53 51 1 3 97 81 21 89 93 78 61 26 82 96 4 98 25 40 31 44 24 47 30 52 14 16 39 27 9 29 45 18 67 63 37 43 90 66 19 69 88 22 92 77 34 42 73 80 56 64 20 35 15 33 86", "output": "47 33 48 59 11 9 24 1 73 36 10 16 21 69 97 70 27 76 83 95 51 86 35 65 61 56 72 42 74 67 63 37 98 89 96 28 79 31 71 62 14 90 80 64 75 17 66 12 15 40 46 68 45 43 29 93 7 8 20 6 55 26 78 94 13 82 77 2 84 22 5 18 91 23 4 30 88 54 32 92 50 57 41 25 34 99 39 85 52 81 44 87 53 3 19 58 49 60 38" }, { "input": "99\n12 99 88 13 7 19 74 47 23 90 16 29 26 11 58 60 64 98 37 18 82 67 72 46 51 85 17 92 87 20 77 36 78 71 57 35 80 54 73 15 14 62 97 45 31 79 94 56 76 96 28 63 8 44 38 86 49 2 52 66 61 59 10 43 55 50 22 34 83 53 95 40 81 21 30 42 27 3 5 41 1 70 69 25 93 48 65 6 24 89 91 33 39 68 9 4 32 84 75", "output": "81 58 78 96 79 88 5 53 95 63 14 1 4 41 40 11 27 20 6 30 74 67 9 89 84 13 77 51 12 75 45 97 92 68 36 32 19 55 93 72 80 76 64 54 44 24 8 86 57 66 25 59 70 38 65 48 35 15 62 16 61 42 52 17 87 60 22 94 83 82 34 23 39 7 99 49 31 33 46 37 73 21 69 98 26 56 29 3 90 10 91 28 85 47 71 50 43 18 2" }, { "input": "99\n20 79 26 75 99 69 98 47 93 62 18 42 43 38 90 66 67 8 13 84 76 58 81 60 64 46 56 23 78 17 86 36 19 52 85 39 48 27 96 49 37 95 5 31 10 24 12 1 80 35 92 33 16 68 57 54 32 29 45 88 72 77 4 87 97 89 59 3 21 22 61 94 83 15 44 34 70 91 55 9 51 50 73 11 14 6 40 7 63 25 2 82 41 65 28 74 71 30 53", "output": "48 91 68 63 43 86 88 18 80 45 84 47 19 85 74 53 30 11 33 1 69 70 28 46 90 3 38 95 58 98 44 57 52 76 50 32 41 14 36 87 93 12 13 75 59 26 8 37 40 82 81 34 99 56 79 27 55 22 67 24 71 10 89 25 94 16 17 54 6 77 97 61 83 96 4 21 62 29 2 49 23 92 73 20 35 31 64 60 66 15 78 51 9 72 42 39 65 7 5" }, { "input": "99\n74 20 9 1 60 85 65 13 4 25 40 99 5 53 64 3 36 31 73 44 55 50 45 63 98 51 68 6 47 37 71 82 88 34 84 18 19 12 93 58 86 7 11 46 90 17 33 27 81 69 42 59 56 32 95 52 76 61 96 62 78 43 66 21 49 97 75 14 41 72 89 16 30 79 22 23 15 83 91 38 48 2 87 26 28 80 94 70 54 92 57 10 8 35 67 77 29 24 39", "output": "4 82 16 9 13 28 42 93 3 92 43 38 8 68 77 72 46 36 37 2 64 75 76 98 10 84 48 85 97 73 18 54 47 34 94 17 30 80 99 11 69 51 62 20 23 44 29 81 65 22 26 56 14 89 21 53 91 40 52 5 58 60 24 15 7 63 95 27 50 88 31 70 19 1 67 57 96 61 74 86 49 32 78 35 6 41 83 33 71 45 79 90 39 87 55 59 66 25 12" }, { "input": "99\n50 94 2 18 69 90 59 83 75 68 77 97 39 78 25 7 16 9 49 4 42 89 44 48 17 96 61 70 3 10 5 81 56 57 88 6 98 1 46 67 92 37 11 30 85 41 8 36 51 29 20 71 19 79 74 93 43 34 55 40 38 21 64 63 32 24 72 14 12 86 82 15 65 23 66 22 28 53 13 26 95 99 91 52 76 27 60 45 47 33 73 84 31 35 54 80 58 62 87", "output": "38 3 29 20 31 36 16 47 18 30 43 69 79 68 72 17 25 4 53 51 62 76 74 66 15 80 86 77 50 44 93 65 90 58 94 48 42 61 13 60 46 21 57 23 88 39 89 24 19 1 49 84 78 95 59 33 34 97 7 87 27 98 64 63 73 75 40 10 5 28 52 67 91 55 9 85 11 14 54 96 32 71 8 92 45 70 99 35 22 6 83 41 56 2 81 26 12 37 82" }, { "input": "99\n19 93 14 34 39 37 33 15 52 88 7 43 69 27 9 77 94 31 48 22 63 70 79 17 50 6 81 8 76 58 23 74 86 11 57 62 41 87 75 51 12 18 68 56 95 3 80 83 84 29 24 61 71 78 59 96 20 85 90 28 45 36 38 97 1 49 40 98 44 67 13 73 72 91 47 10 30 54 35 42 4 2 92 26 64 60 53 21 5 82 46 32 55 66 16 89 99 65 25", "output": "65 82 46 81 89 26 11 28 15 76 34 41 71 3 8 95 24 42 1 57 88 20 31 51 99 84 14 60 50 77 18 92 7 4 79 62 6 63 5 67 37 80 12 69 61 91 75 19 66 25 40 9 87 78 93 44 35 30 55 86 52 36 21 85 98 94 70 43 13 22 53 73 72 32 39 29 16 54 23 47 27 90 48 49 58 33 38 10 96 59 74 83 2 17 45 56 64 68 97" }, { "input": "99\n86 25 50 51 62 39 41 67 44 20 45 14 80 88 66 7 36 59 13 84 78 58 96 75 2 43 48 47 69 12 19 98 22 38 28 55 11 76 68 46 53 70 85 34 16 33 91 30 8 40 74 60 94 82 87 32 37 4 5 10 89 73 90 29 35 26 23 57 27 65 24 3 9 83 77 72 6 31 15 92 93 79 64 18 63 42 56 1 52 97 17 81 71 21 49 99 54 95 61", "output": "88 25 72 58 59 77 16 49 73 60 37 30 19 12 79 45 91 84 31 10 94 33 67 71 2 66 69 35 64 48 78 56 46 44 65 17 57 34 6 50 7 86 26 9 11 40 28 27 95 3 4 89 41 97 36 87 68 22 18 52 99 5 85 83 70 15 8 39 29 42 93 76 62 51 24 38 75 21 82 13 92 54 74 20 43 1 55 14 61 63 47 80 81 53 98 23 90 32 96" }, { "input": "100\n66 44 99 15 43 79 28 33 88 90 49 68 82 38 9 74 4 58 29 81 31 94 10 42 89 21 63 40 62 61 18 6 84 72 48 25 67 69 71 85 98 34 83 70 65 78 91 77 93 41 23 24 87 11 55 12 59 73 36 97 7 14 26 39 30 27 45 20 50 17 53 2 57 47 95 56 75 19 37 96 16 35 8 3 76 60 13 86 5 32 64 80 46 51 54 100 1 22 52 92", "output": "97 72 84 17 89 32 61 83 15 23 54 56 87 62 4 81 70 31 78 68 26 98 51 52 36 63 66 7 19 65 21 90 8 42 82 59 79 14 64 28 50 24 5 2 67 93 74 35 11 69 94 99 71 95 55 76 73 18 57 86 30 29 27 91 45 1 37 12 38 44 39 34 58 16 77 85 48 46 6 92 20 13 43 33 40 88 53 9 25 10 47 100 49 22 75 80 60 41 3 96" }, { "input": "99\n3 73 32 37 25 15 93 63 85 8 91 78 80 5 39 48 46 7 83 70 23 96 9 29 77 53 30 20 56 50 13 45 21 76 87 99 65 31 16 18 14 72 51 28 43 2 81 34 38 40 66 54 74 26 71 4 61 17 58 24 22 33 49 36 42 11 12 55 60 27 62 90 79 92 94 68 1 52 84 41 86 35 69 75 47 10 64 88 97 98 67 19 89 95 59 82 57 44 6", "output": "77 46 1 56 14 99 18 10 23 86 66 67 31 41 6 39 58 40 92 28 33 61 21 60 5 54 70 44 24 27 38 3 62 48 82 64 4 49 15 50 80 65 45 98 32 17 85 16 63 30 43 78 26 52 68 29 97 59 95 69 57 71 8 87 37 51 91 76 83 20 55 42 2 53 84 34 25 12 73 13 47 96 19 79 9 81 35 88 93 72 11 74 7 75 94 22 89 90 36" }, { "input": "100\n100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1" } ]
1,691,919,786
2,147,483,647
Python 3
OK
TESTS
101
92
0
a=int(input()) b=map(int,input().split(" ")) tab=[0]*a s=1 for i in b: tab[i-1]=s s+=1 res="" for i in tab: res+=str(i) res+=" " print(res)
Title: Presents Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Petya very much likes gifts. Recently he has received a new laptop as a New Year gift from his mother. He immediately decided to give it to somebody else as what can be more pleasant than giving somebody gifts. And on this occasion he organized a New Year party at his place and invited *n* his friends there. If there's one thing Petya likes more that receiving gifts, that's watching others giving gifts to somebody else. Thus, he safely hid the laptop until the next New Year and made up his mind to watch his friends exchanging gifts while he does not participate in the process. He numbered all his friends with integers from 1 to *n*. Petya remembered that a friend number *i* gave a gift to a friend number *p**i*. He also remembered that each of his friends received exactly one gift. Now Petya wants to know for each friend *i* the number of a friend who has given him a gift. Input Specification: The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the quantity of friends Petya invited to the party. The second line contains *n* space-separated integers: the *i*-th number is *p**i* — the number of a friend who gave a gift to friend number *i*. It is guaranteed that each friend received exactly one gift. It is possible that some friends do not share Petya's ideas of giving gifts to somebody else. Those friends gave the gifts to themselves. Output Specification: Print *n* space-separated integers: the *i*-th number should equal the number of the friend who gave a gift to friend number *i*. Demo Input: ['4\n2 3 4 1\n', '3\n1 3 2\n', '2\n1 2\n'] Demo Output: ['4 1 2 3\n', '1 3 2\n', '1 2\n'] Note: none
```python a=int(input()) b=map(int,input().split(" ")) tab=[0]*a s=1 for i in b: tab[i-1]=s s+=1 res="" for i in tab: res+=str(i) res+=" " print(res) ```
3
731
A
Night at the Museum
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
Grigoriy, like the hero of one famous comedy film, found a job as a night security guard at the museum. At first night he received embosser and was to take stock of the whole exposition. Embosser is a special devise that allows to "print" the text of a plastic tape. Text is printed sequentially, character by character. The device consists of a wheel with a lowercase English letters written in a circle, static pointer to the current letter and a button that print the chosen letter. At one move it's allowed to rotate the alphabetic wheel one step clockwise or counterclockwise. Initially, static pointer points to letter 'a'. Other letters are located as shown on the picture: After Grigoriy add new item to the base he has to print its name on the plastic tape and attach it to the corresponding exhibit. It's not required to return the wheel to its initial position with pointer on the letter 'a'. Our hero is afraid that some exhibits may become alive and start to attack him, so he wants to print the names as fast as possible. Help him, for the given string find the minimum number of rotations of the wheel required to print it.
The only line of input contains the name of some exhibit — the non-empty string consisting of no more than 100 characters. It's guaranteed that the string consists of only lowercase English letters.
Print one integer — the minimum number of rotations of the wheel, required to print the name given in the input.
[ "zeus\n", "map\n", "ares\n" ]
[ "18\n", "35\n", "34\n" ]
To print the string from the first sample it would be optimal to perform the following sequence of rotations: 1. from 'a' to 'z' (1 rotation counterclockwise), 1. from 'z' to 'e' (5 clockwise rotations), 1. from 'e' to 'u' (10 rotations counterclockwise), 1. from 'u' to 's' (2 counterclockwise rotations).
500
[ { "input": "zeus", "output": "18" }, { "input": "map", "output": "35" }, { "input": "ares", "output": "34" }, { "input": "l", "output": "11" }, { "input": "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuv", "output": "99" }, { "input": "gngvi", "output": "44" }, { "input": "aaaaa", "output": "0" }, { "input": "a", "output": "0" }, { "input": "z", "output": "1" }, { "input": "vyadeehhikklnoqrs", "output": "28" }, { "input": "jjiihhhhgggfedcccbazyxx", "output": "21" }, { "input": "fyyptqqxuciqvwdewyppjdzur", "output": "117" }, { "input": "fqcnzmzmbobmancqcoalzmanaobpdse", "output": "368" }, { "input": "zzzzzaaaaaaazzzzzzaaaaaaazzzzzzaaaazzzza", "output": "8" }, { "input": "aucnwhfixuruefkypvrvnvznwtjgwlghoqtisbkhuwxmgzuljvqhmnwzisnsgjhivnjmbknptxatdkelhzkhsuxzrmlcpeoyukiy", "output": "644" }, { "input": "sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss", "output": "8" }, { "input": "nypjygrdtpzpigzyrisqeqfriwgwlengnezppgttgtndbrryjdl", "output": "421" }, { "input": "pnllnnmmmmoqqqqqrrtssssuuvtsrpopqoonllmonnnpppopnonoopooqpnopppqppqstuuuwwwwvxzxzzaa", "output": "84" }, { "input": "btaoahqgxnfsdmzsjxgvdwjukcvereqeskrdufqfqgzqfsftdqcthtkcnaipftcnco", "output": "666" }, { "input": "eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrwwwwwwwwww", "output": "22" }, { "input": "uyknzcrwjyzmscqucclvacmorepdgmnyhmakmmnygqwglrxkxhkpansbmruwxdeoprxzmpsvwackopujxbbkpwyeggsvjykpxh", "output": "643" }, { "input": "gzwpooohffcxwtpjgfzwtooiccxsrrokezutoojdzwsrmmhecaxwrojcbyrqlfdwwrliiib", "output": "245" }, { "input": "dbvnkktasjdwqsrzfwwtmjgbcxggdxsoeilecihduypktkkbwfbruxzzhlttrssicgdwqruddwrlbtxgmhdbatzvdxbbro", "output": "468" }, { "input": "mdtvowlktxzzbuaeiuebfeorgbdczauxsovbucactkvyvemsknsjfhifqgycqredzchipmkvzbxdjkcbyukomjlzvxzoswumned", "output": "523" }, { "input": "kkkkkkkaaaaxxaaaaaaaxxxxxxxxaaaaaaxaaaaaaaaaakkkkkkkkkaaaaaaannnnnxxxxkkkkkkkkaannnnnnna", "output": "130" }, { "input": "dffiknqqrsvwzcdgjkmpqtuwxadfhkkkmpqrtwxyadfggjmpppsuuwyyzcdgghhknnpsvvvwwwyabccffiloqruwwyyzabeeehh", "output": "163" }, { "input": "qpppmmkjihgecbyvvsppnnnkjiffeebaaywutrrqpmkjhgddbzzzywtssssqnmmljheddbbaxvusrqonmlifedbbzyywwtqnkheb", "output": "155" }, { "input": "wvvwwwvvwxxxyyyxxwwvwwvuttttttuvvwxxwxxyxxwwwwwvvuttssrssstsssssrqpqqppqrssrsrrssrssssrrsrqqrrqpppqp", "output": "57" }, { "input": "dqcpcobpcobnznamznamzlykxkxlxlylzmaobnaobpbnanbpcoaobnboaoboanzlymzmykylymylzlylymanboanaocqdqesfrfs", "output": "1236" }, { "input": "nnnnnnnnnnnnnnnnnnnnaaaaaaaaaaaaaaaaaaaakkkkkkkkkkkkkkkkkkkkkkaaaaaaaaaaaaaaaaaaaaxxxxxxxxxxxxxxxxxx", "output": "49" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "0" }, { "input": "cgilqsuwzaffilptwwbgmnttyyejkorxzflqvzbddhmnrvxchijpuwaeiimosxyycejlpquuwbfkpvbgijkqvxybdjjjptxcfkqt", "output": "331" }, { "input": "ufsepwgtzgtgjssxaitgpailuvgqweoppszjwhoxdhhhpwwdorwfrdjwcdekxiktwziqwbkvbknrtvajpyeqbjvhiikxxaejjpte", "output": "692" }, { "input": "uhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuh", "output": "1293" }, { "input": "vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvgggggggggggggggggggggggggggggggggggggggggggggggggg", "output": "16" }, { "input": "lyidmjyzbszgiwkxhhpnnthfwcvvstueionspfrvqgkvngmwyhezlosrpdnbvtcjjxxsykixwnepbumaacdzadlqhnjlcejovple", "output": "616" }, { "input": "etzqqbaveffalkdguunfmyyrzkccnxmlluxeasqmopxzfvlkbhipqdwjgrttoemruohgwukfisdhznqyvhswbbypoxgtxyappcrl", "output": "605" }, { "input": "lizussgedcbdjhrbeskhgatyozvwwekanlggcstijrniivupmcoofbaxfqrxddyzzptwxcftlhajsmmkkriarrqtkoauhcqefyud", "output": "549" }, { "input": "dvjuvgfdogpknmbowlsfjzcimnygbtjiucyeeroqwhmzwpjqxlbjkqawrdtmvxbiqufllfuqibxvmtdrwaqkjblxqjpwzmhwqore", "output": "688" }, { "input": "eeycuijtbgynmiczjfslwobmnkpgodfgvujvduyfeqchuaoktqrrairkkmmsjahltfcxwtpzzyddxrqfxabfoocmpuviinrjitsc", "output": "604" }, { "input": "cgglnakewwvzoytaghksebrhjdbcdegssuzilrcppayxtgxopybbwshvyqnzhdsifkuwghourmeottrgjwdqpihbklvfzxpomqsa", "output": "572" }, { "input": "aexullmxncckzryymfnuugdklaffevabqqztelpvojecljnhqldazdcaamubpenwxikysxxjjctvbndprsolzehywmgnvkgqvrfp", "output": "609" }, { "input": "psnoieutsvvcwfhtnnphhxkwigzsbzyjmdiyl", "output": "223" }, { "input": "aa", "output": "0" } ]
1,643,926,151
2,147,483,647
Python 3
OK
TESTS
44
46
0
n=['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'] # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 a= str(input()).lower() a='a'+a ln = len(a) t=0 for i in range(ln-1): n1=a[i] n2=a[i+1] n11= n.index(n1) n22 =n.index(n2) diff = abs(n22 -n11) if diff>13: t+=26-diff else: t+=diff print (t)
Title: Night at the Museum Time Limit: None seconds Memory Limit: None megabytes Problem Description: Grigoriy, like the hero of one famous comedy film, found a job as a night security guard at the museum. At first night he received embosser and was to take stock of the whole exposition. Embosser is a special devise that allows to "print" the text of a plastic tape. Text is printed sequentially, character by character. The device consists of a wheel with a lowercase English letters written in a circle, static pointer to the current letter and a button that print the chosen letter. At one move it's allowed to rotate the alphabetic wheel one step clockwise or counterclockwise. Initially, static pointer points to letter 'a'. Other letters are located as shown on the picture: After Grigoriy add new item to the base he has to print its name on the plastic tape and attach it to the corresponding exhibit. It's not required to return the wheel to its initial position with pointer on the letter 'a'. Our hero is afraid that some exhibits may become alive and start to attack him, so he wants to print the names as fast as possible. Help him, for the given string find the minimum number of rotations of the wheel required to print it. Input Specification: The only line of input contains the name of some exhibit — the non-empty string consisting of no more than 100 characters. It's guaranteed that the string consists of only lowercase English letters. Output Specification: Print one integer — the minimum number of rotations of the wheel, required to print the name given in the input. Demo Input: ['zeus\n', 'map\n', 'ares\n'] Demo Output: ['18\n', '35\n', '34\n'] Note: To print the string from the first sample it would be optimal to perform the following sequence of rotations: 1. from 'a' to 'z' (1 rotation counterclockwise), 1. from 'z' to 'e' (5 clockwise rotations), 1. from 'e' to 'u' (10 rotations counterclockwise), 1. from 'u' to 's' (2 counterclockwise rotations).
```python n=['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'] # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 a= str(input()).lower() a='a'+a ln = len(a) t=0 for i in range(ln-1): n1=a[i] n2=a[i+1] n11= n.index(n1) n22 =n.index(n2) diff = abs(n22 -n11) if diff>13: t+=26-diff else: t+=diff print (t) ```
3
573
A
Bear and Poker
PROGRAMMING
1,300
[ "implementation", "math", "number theory" ]
null
null
Limak is an old brown bear. He often plays poker with his friends. Today they went to a casino. There are *n* players (including Limak himself) and right now all of them have bids on the table. *i*-th of them has bid with size *a**i* dollars. Each player can double his bid any number of times and triple his bid any number of times. The casino has a great jackpot for making all bids equal. Is it possible that Limak and his friends will win a jackpot?
First line of input contains an integer *n* (2<=≤<=*n*<=≤<=105), the number of players. The second line contains *n* integer numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the bids of players.
Print "Yes" (without the quotes) if players can make their bids become equal, or "No" otherwise.
[ "4\n75 150 75 50\n", "3\n100 150 250\n" ]
[ "Yes\n", "No\n" ]
In the first sample test first and third players should double their bids twice, second player should double his bid once and fourth player should both double and triple his bid. It can be shown that in the second sample test there is no way to make all bids equal.
500
[ { "input": "4\n75 150 75 50", "output": "Yes" }, { "input": "3\n100 150 250", "output": "No" }, { "input": "7\n34 34 68 34 34 68 34", "output": "Yes" }, { "input": "10\n72 96 12 18 81 20 6 2 54 1", "output": "No" }, { "input": "20\n958692492 954966768 77387000 724664764 101294996 614007760 202904092 555293973 707655552 108023967 73123445 612562357 552908390 914853758 915004122 466129205 122853497 814592742 373389439 818473058", "output": "No" }, { "input": "2\n1 1", "output": "Yes" }, { "input": "2\n72 72", "output": "Yes" }, { "input": "2\n49 42", "output": "No" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "Yes" }, { "input": "6\n162000 96000 648000 1000 864000 432000", "output": "Yes" }, { "input": "8\n600000 100000 100000 100000 900000 600000 900000 600000", "output": "Yes" }, { "input": "12\n2048 1024 6144 1024 3072 3072 6144 1024 4096 2048 6144 3072", "output": "Yes" }, { "input": "20\n246 246 246 246 246 246 246 246 246 246 246 246 246 246 246 246 246 246 246 246", "output": "Yes" }, { "input": "50\n840868705 387420489 387420489 795385082 634350497 206851546 536870912 536870912 414927754 387420489 387420489 536870912 387420489 149011306 373106005 536870912 700746206 387420489 777952883 847215247 176645254 576664386 387420489 230876513 536870912 536870912 536870912 387420489 387420489 536870912 460495524 528643722 387420489 536870912 470369206 899619085 387420489 631148352 387420489 387420489 536870912 414666674 521349938 776784669 387420489 102428009 536870912 387420489 536870912 718311009", "output": "No" }, { "input": "2\n5 6", "output": "No" }, { "input": "3\n536870912 387420489 257407169", "output": "No" }, { "input": "4\n2 2 5 2", "output": "No" }, { "input": "2\n33554432 59049", "output": "Yes" }, { "input": "3\n536870912 387420489 387420489", "output": "Yes" }, { "input": "2\n1 5", "output": "No" }, { "input": "18\n2 3 5 7 11 13 17 19 23 29 31 37 43 47 53 59 67 71", "output": "No" }, { "input": "2\n1 30", "output": "No" }, { "input": "3\n335544320 71744535 71744535", "output": "Yes" }, { "input": "5\n1000000000 999999999 999999998 999999997 999999996", "output": "No" }, { "input": "2\n25 5", "output": "No" }, { "input": "4\n75 150 75 5", "output": "No" }, { "input": "3\n536870912 387420489 362797056", "output": "Yes" }, { "input": "3\n536870912 387420489 89", "output": "No" }, { "input": "4\n547 2606459 222763549 143466789", "output": "No" }, { "input": "3\n129140163 33554432 1", "output": "Yes" }, { "input": "10\n244140625 244140625 244140625 244140625 244140625 244140625 244140625 244140625 536870912 387420489", "output": "No" }, { "input": "3\n5 5 1", "output": "No" }, { "input": "5\n3 7 29 36760123 823996703", "output": "No" } ]
1,631,274,096
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
6
93
14,950,400
from sys import stdin from collections import deque,Counter,defaultdict,OrderedDict import sys import math,os import operator import random from fractions import Fraction import functools import bisect import itertools from heapq import * import time import copy n = int(input()) arr = list(map(int,input().split())) m = max(arr) for i in arr: if i!=m and (m%(2*i) != 0 and m%(3*i) != 0): print("No") sys.exit() print("Yes")
Title: Bear and Poker Time Limit: None seconds Memory Limit: None megabytes Problem Description: Limak is an old brown bear. He often plays poker with his friends. Today they went to a casino. There are *n* players (including Limak himself) and right now all of them have bids on the table. *i*-th of them has bid with size *a**i* dollars. Each player can double his bid any number of times and triple his bid any number of times. The casino has a great jackpot for making all bids equal. Is it possible that Limak and his friends will win a jackpot? Input Specification: First line of input contains an integer *n* (2<=≤<=*n*<=≤<=105), the number of players. The second line contains *n* integer numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the bids of players. Output Specification: Print "Yes" (without the quotes) if players can make their bids become equal, or "No" otherwise. Demo Input: ['4\n75 150 75 50\n', '3\n100 150 250\n'] Demo Output: ['Yes\n', 'No\n'] Note: In the first sample test first and third players should double their bids twice, second player should double his bid once and fourth player should both double and triple his bid. It can be shown that in the second sample test there is no way to make all bids equal.
```python from sys import stdin from collections import deque,Counter,defaultdict,OrderedDict import sys import math,os import operator import random from fractions import Fraction import functools import bisect import itertools from heapq import * import time import copy n = int(input()) arr = list(map(int,input().split())) m = max(arr) for i in arr: if i!=m and (m%(2*i) != 0 and m%(3*i) != 0): print("No") sys.exit() print("Yes") ```
0
413
A
Data Recovery
PROGRAMMING
1,200
[ "implementation" ]
null
null
Not so long ago company R2 bought company R1 and consequently, all its developments in the field of multicore processors. Now the R2 laboratory is testing one of the R1 processors. The testing goes in *n* steps, at each step the processor gets some instructions, and then its temperature is measured. The head engineer in R2 is keeping a report record on the work of the processor: he writes down the minimum and the maximum measured temperature in his notebook. His assistant had to write down all temperatures into his notebook, but (for unknown reasons) he recorded only *m*. The next day, the engineer's assistant filed in a report with all the *m* temperatures. However, the chief engineer doubts that the assistant wrote down everything correctly (naturally, the chief engineer doesn't doubt his notes). So he asked you to help him. Given numbers *n*, *m*, *min*, *max* and the list of *m* temperatures determine whether you can upgrade the set of *m* temperatures to the set of *n* temperatures (that is add *n*<=-<=*m* temperatures), so that the minimum temperature was *min* and the maximum one was *max*.
The first line contains four integers *n*,<=*m*,<=*min*,<=*max* (1<=≤<=*m*<=&lt;<=*n*<=≤<=100; 1<=≤<=*min*<=&lt;<=*max*<=≤<=100). The second line contains *m* space-separated integers *t**i* (1<=≤<=*t**i*<=≤<=100) — the temperatures reported by the assistant. Note, that the reported temperatures, and the temperatures you want to add can contain equal temperatures.
If the data is consistent, print 'Correct' (without the quotes). Otherwise, print 'Incorrect' (without the quotes).
[ "2 1 1 2\n1\n", "3 1 1 3\n2\n", "2 1 1 3\n2\n" ]
[ "Correct\n", "Correct\n", "Incorrect\n" ]
In the first test sample one of the possible initial configurations of temperatures is [1, 2]. In the second test sample one of the possible initial configurations of temperatures is [2, 1, 3]. In the third test sample it is impossible to add one temperature to obtain the minimum equal to 1 and the maximum equal to 3.
500
[ { "input": "2 1 1 2\n1", "output": "Correct" }, { "input": "3 1 1 3\n2", "output": "Correct" }, { "input": "2 1 1 3\n2", "output": "Incorrect" }, { "input": "3 1 1 5\n3", "output": "Correct" }, { "input": "3 2 1 5\n1 5", "output": "Correct" }, { "input": "3 2 1 5\n1 1", "output": "Correct" }, { "input": "3 2 1 5\n5 5", "output": "Correct" }, { "input": "3 2 1 5\n1 6", "output": "Incorrect" }, { "input": "3 2 5 10\n1 10", "output": "Incorrect" }, { "input": "6 5 3 6\n4 4 4 4 4", "output": "Incorrect" }, { "input": "100 50 68 97\n20 42 93 1 98 6 32 11 48 46 82 96 24 73 40 100 99 10 55 87 65 80 97 54 59 48 30 22 16 92 66 2 22 60 23 81 64 60 34 60 99 99 4 70 91 99 30 20 41 96", "output": "Incorrect" }, { "input": "100 50 1 2\n1 1 2 1 1 2 2 1 1 1 1 1 2 2 1 2 1 2 2 1 1 1 2 2 2 1 1 2 1 1 1 1 2 2 1 1 1 1 1 2 1 1 1 2 1 2 2 2 1 2", "output": "Correct" }, { "input": "100 99 1 2\n2 1 1 1 2 2 1 1 1 2 2 2 1 2 1 1 2 1 1 2 1 2 2 1 2 1 2 1 2 1 2 2 2 2 1 1 1 1 1 2 1 2 2 1 2 2 2 1 1 1 1 1 2 2 2 2 1 2 2 1 1 1 2 1 1 2 1 1 2 1 2 1 2 1 1 1 1 2 1 1 1 1 1 2 2 2 1 1 1 1 2 2 2 2 1 1 2 2 2", "output": "Correct" }, { "input": "3 2 2 100\n40 1", "output": "Incorrect" }, { "input": "3 2 2 3\n4 4", "output": "Incorrect" }, { "input": "5 2 2 4\n2 2", "output": "Correct" }, { "input": "5 1 1 4\n1", "output": "Correct" }, { "input": "9 7 1 4\n4 3 3 2 2 4 1", "output": "Correct" }, { "input": "9 5 2 3\n4 2 4 3 3", "output": "Incorrect" }, { "input": "6 3 1 3\n1 4 2", "output": "Incorrect" }, { "input": "3 2 1 99\n34 100", "output": "Incorrect" }, { "input": "4 2 1 99\n100 38", "output": "Incorrect" }, { "input": "5 2 1 99\n100 38", "output": "Incorrect" }, { "input": "4 2 1 99\n36 51", "output": "Correct" }, { "input": "7 6 3 10\n5 10 7 7 4 5", "output": "Correct" }, { "input": "8 6 3 10\n8 5 7 8 4 4", "output": "Correct" }, { "input": "9 6 3 10\n9 7 7 5 3 10", "output": "Correct" }, { "input": "16 15 30 40\n36 37 35 36 34 34 37 35 32 33 31 38 39 38 38", "output": "Incorrect" }, { "input": "17 15 30 40\n38 36 37 34 30 38 38 31 38 38 36 39 39 37 35", "output": "Correct" }, { "input": "18 15 30 40\n35 37 31 32 30 33 36 38 36 38 31 30 39 32 36", "output": "Correct" }, { "input": "17 16 30 40\n39 32 37 31 40 32 36 34 56 34 40 36 37 36 33 36", "output": "Incorrect" }, { "input": "18 16 30 40\n32 35 33 39 34 30 37 34 30 34 39 18 32 37 37 36", "output": "Incorrect" }, { "input": "19 16 30 40\n36 30 37 30 37 32 34 30 35 35 33 35 39 37 46 37", "output": "Incorrect" }, { "input": "2 1 2 100\n38", "output": "Incorrect" }, { "input": "3 1 2 100\n1", "output": "Incorrect" }, { "input": "4 1 2 100\n1", "output": "Incorrect" }, { "input": "91 38 1 3\n3 2 3 2 3 2 3 3 1 1 1 2 2 1 3 2 3 1 3 3 1 3 3 2 1 2 2 3 1 2 1 3 2 2 3 1 1 2", "output": "Correct" }, { "input": "4 3 2 10\n6 3 10", "output": "Correct" }, { "input": "41 6 4 10\n10 7 4 9 9 10", "output": "Correct" }, { "input": "21 1 1 9\n9", "output": "Correct" }, { "input": "2 1 9 10\n10", "output": "Correct" }, { "input": "2 1 2 9\n9", "output": "Correct" }, { "input": "8 7 5 9\n6 7 8 5 5 6 6", "output": "Correct" }, { "input": "3 2 2 8\n7 2", "output": "Correct" }, { "input": "71 36 1 10\n7 10 8 1 3 8 5 7 3 10 8 1 6 4 5 7 8 2 4 3 4 10 8 5 1 2 8 8 10 10 4 3 7 9 7 8", "output": "Correct" }, { "input": "85 3 4 9\n4 8 7", "output": "Correct" }, { "input": "4 3 4 10\n9 10 5", "output": "Correct" }, { "input": "2 1 1 5\n1", "output": "Correct" }, { "input": "91 75 1 10\n2 6 9 7 4 9 4 8 10 6 4 1 10 6 5 9 7 5 1 4 6 4 8 2 1 3 5 7 6 9 5 5 8 1 7 1 4 2 8 3 1 6 6 2 10 6 2 2 8 5 4 5 5 3 10 9 4 3 1 9 10 3 2 4 8 7 4 9 3 1 1 1 3 4 5", "output": "Correct" }, { "input": "10 4 1 8\n7 9 6 6", "output": "Incorrect" }, { "input": "18 1 3 10\n2", "output": "Incorrect" }, { "input": "6 2 4 8\n6 3", "output": "Incorrect" }, { "input": "17 6 2 8\n3 8 6 1 6 4", "output": "Incorrect" }, { "input": "21 1 5 8\n4", "output": "Incorrect" }, { "input": "2 1 1 10\n9", "output": "Incorrect" }, { "input": "2 1 4 8\n5", "output": "Incorrect" }, { "input": "2 1 1 7\n6", "output": "Incorrect" }, { "input": "2 1 4 9\n5", "output": "Incorrect" }, { "input": "2 1 3 8\n7", "output": "Incorrect" }, { "input": "2 1 5 9\n6", "output": "Incorrect" }, { "input": "3 2 1 10\n4 9", "output": "Incorrect" }, { "input": "2 1 4 10\n7", "output": "Incorrect" }, { "input": "2 1 2 9\n8", "output": "Incorrect" }, { "input": "2 1 3 9\n3", "output": "Correct" }, { "input": "3 2 6 7\n6 6", "output": "Correct" }, { "input": "6 4 1 10\n11 10 9 1", "output": "Incorrect" }, { "input": "7 6 3 8\n3 4 5 6 7 8", "output": "Correct" }, { "input": "5 3 1 5\n2 3 4", "output": "Correct" } ]
1,397,979,191
1,991
Python 3
WRONG_ANSWER
PRETESTS
4
62
0
n,m,mins,maxs=map(int,input().split()) z=[int(x) for x in input().split()] if ((mins in z) and (maxs not in z)): print ("Correct") if ((mins not in z) and (maxs in z)): print ("Correct") if ((mins not in z) and (maxs not in z)): if (n-m>=2): print ("Correct") else: print ("Incorrect")
Title: Data Recovery Time Limit: None seconds Memory Limit: None megabytes Problem Description: Not so long ago company R2 bought company R1 and consequently, all its developments in the field of multicore processors. Now the R2 laboratory is testing one of the R1 processors. The testing goes in *n* steps, at each step the processor gets some instructions, and then its temperature is measured. The head engineer in R2 is keeping a report record on the work of the processor: he writes down the minimum and the maximum measured temperature in his notebook. His assistant had to write down all temperatures into his notebook, but (for unknown reasons) he recorded only *m*. The next day, the engineer's assistant filed in a report with all the *m* temperatures. However, the chief engineer doubts that the assistant wrote down everything correctly (naturally, the chief engineer doesn't doubt his notes). So he asked you to help him. Given numbers *n*, *m*, *min*, *max* and the list of *m* temperatures determine whether you can upgrade the set of *m* temperatures to the set of *n* temperatures (that is add *n*<=-<=*m* temperatures), so that the minimum temperature was *min* and the maximum one was *max*. Input Specification: The first line contains four integers *n*,<=*m*,<=*min*,<=*max* (1<=≤<=*m*<=&lt;<=*n*<=≤<=100; 1<=≤<=*min*<=&lt;<=*max*<=≤<=100). The second line contains *m* space-separated integers *t**i* (1<=≤<=*t**i*<=≤<=100) — the temperatures reported by the assistant. Note, that the reported temperatures, and the temperatures you want to add can contain equal temperatures. Output Specification: If the data is consistent, print 'Correct' (without the quotes). Otherwise, print 'Incorrect' (without the quotes). Demo Input: ['2 1 1 2\n1\n', '3 1 1 3\n2\n', '2 1 1 3\n2\n'] Demo Output: ['Correct\n', 'Correct\n', 'Incorrect\n'] Note: In the first test sample one of the possible initial configurations of temperatures is [1, 2]. In the second test sample one of the possible initial configurations of temperatures is [2, 1, 3]. In the third test sample it is impossible to add one temperature to obtain the minimum equal to 1 and the maximum equal to 3.
```python n,m,mins,maxs=map(int,input().split()) z=[int(x) for x in input().split()] if ((mins in z) and (maxs not in z)): print ("Correct") if ((mins not in z) and (maxs in z)): print ("Correct") if ((mins not in z) and (maxs not in z)): if (n-m>=2): print ("Correct") else: print ("Incorrect") ```
0
771
A
Bear and Friendship Condition
PROGRAMMING
1,500
[ "dfs and similar", "dsu", "graphs" ]
null
null
Bear Limak examines a social network. Its main functionality is that two members can become friends (then they can talk with each other and share funny pictures). There are *n* members, numbered 1 through *n*. *m* pairs of members are friends. Of course, a member can't be a friend with themselves. Let A-B denote that members A and B are friends. Limak thinks that a network is reasonable if and only if the following condition is satisfied: For every three distinct members (X, Y, Z), if X-Y and Y-Z then also X-Z. For example: if Alan and Bob are friends, and Bob and Ciri are friends, then Alan and Ciri should be friends as well. Can you help Limak and check if the network is reasonable? Print "YES" or "NO" accordingly, without the quotes.
The first line of the input contain two integers *n* and *m* (3<=≤<=*n*<=≤<=150<=000, ) — the number of members and the number of pairs of members that are friends. The *i*-th of the next *m* lines contains two distinct integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*,<=*a**i*<=≠<=*b**i*). Members *a**i* and *b**i* are friends with each other. No pair of members will appear more than once in the input.
If the given network is reasonable, print "YES" in a single line (without the quotes). Otherwise, print "NO" in a single line (without the quotes).
[ "4 3\n1 3\n3 4\n1 4\n", "4 4\n3 1\n2 3\n3 4\n1 2\n", "10 4\n4 3\n5 10\n8 9\n1 2\n", "3 2\n1 2\n2 3\n" ]
[ "YES\n", "NO\n", "YES\n", "NO\n" ]
The drawings below show the situation in the first sample (on the left) and in the second sample (on the right). Each edge represents two members that are friends. The answer is "NO" in the second sample because members (2, 3) are friends and members (3, 4) are friends, while members (2, 4) are not.
250
[ { "input": "4 3\n1 3\n3 4\n1 4", "output": "YES" }, { "input": "4 4\n3 1\n2 3\n3 4\n1 2", "output": "NO" }, { "input": "10 4\n4 3\n5 10\n8 9\n1 2", "output": "YES" }, { "input": "3 2\n1 2\n2 3", "output": "NO" }, { "input": "3 0", "output": "YES" }, { "input": "15 42\n8 1\n3 14\n7 14\n12 3\n7 9\n6 7\n6 12\n14 12\n3 10\n10 14\n6 3\n3 13\n13 10\n7 12\n7 2\n6 10\n11 4\n9 3\n8 4\n7 3\n2 3\n2 10\n9 13\n2 14\n6 14\n13 2\n1 4\n13 6\n7 10\n13 14\n12 10\n13 7\n12 2\n9 10\n13 12\n2 6\n9 14\n6 9\n12 9\n11 1\n2 9\n11 8", "output": "YES" }, { "input": "20 80\n17 4\n10 1\n11 10\n17 7\n15 10\n14 15\n13 1\n18 13\n3 13\n12 7\n9 13\n10 12\n14 12\n18 11\n4 7\n10 13\n11 3\n19 8\n14 7\n10 17\n14 3\n7 11\n11 14\n19 5\n10 14\n15 17\n3 1\n9 10\n11 1\n4 1\n11 4\n9 1\n12 3\n13 7\n1 14\n11 12\n7 1\n9 12\n18 15\n17 3\n7 15\n4 10\n7 18\n7 9\n12 17\n14 18\n3 18\n18 17\n9 15\n14 4\n14 9\n9 18\n12 4\n7 10\n15 4\n4 18\n15 13\n1 12\n7 3\n13 11\n4 13\n5 8\n12 18\n12 15\n17 9\n11 15\n3 10\n18 10\n4 3\n15 3\n13 12\n9 4\n9 11\n14 17\n13 17\n3 9\n13 14\n1 17\n15 1\n17 11", "output": "NO" }, { "input": "99 26\n64 17\n48 70\n71 50\n3 50\n9 60\n61 64\n53 50\n25 12\n3 71\n71 53\n3 53\n65 70\n9 25\n9 12\n59 56\n39 60\n64 69\n65 94\n70 94\n25 60\n60 12\n94 48\n17 69\n61 17\n65 48\n61 69", "output": "NO" }, { "input": "3 1\n1 2", "output": "YES" }, { "input": "3 2\n3 2\n1 3", "output": "NO" }, { "input": "3 3\n2 3\n1 2\n1 3", "output": "YES" }, { "input": "4 2\n4 1\n2 1", "output": "NO" }, { "input": "4 3\n3 1\n2 1\n3 2", "output": "YES" }, { "input": "5 9\n1 2\n5 1\n3 1\n1 4\n2 4\n5 3\n5 4\n2 3\n5 2", "output": "NO" }, { "input": "10 5\n9 5\n1 2\n6 8\n6 3\n10 6", "output": "NO" }, { "input": "10 8\n10 7\n9 7\n5 7\n6 8\n3 5\n8 10\n3 4\n7 8", "output": "NO" }, { "input": "10 20\n8 2\n8 3\n1 8\n9 5\n2 4\n10 1\n10 5\n7 5\n7 8\n10 7\n6 5\n3 7\n1 9\n9 8\n7 2\n2 10\n2 1\n6 4\n9 7\n4 3", "output": "NO" }, { "input": "150000 10\n62562 50190\n48849 60549\n139470 18456\n21436 25159\n66845 120884\n99972 114453\n11631 99153\n62951 134848\n78114 146050\n136760 131762", "output": "YES" }, { "input": "150000 0", "output": "YES" }, { "input": "4 4\n1 2\n2 3\n3 4\n1 4", "output": "NO" }, { "input": "30 73\n25 2\n2 16\n20 12\n16 20\n7 18\n11 15\n13 11\n30 29\n16 12\n12 25\n2 1\n18 14\n9 8\n28 16\n2 9\n22 21\n1 25\n12 28\n14 7\n4 9\n26 7\n14 27\n12 2\n29 22\n1 9\n13 15\n3 10\n1 12\n8 20\n30 24\n25 20\n4 1\n4 12\n20 1\n8 4\n2 28\n25 16\n16 8\n20 4\n9 12\n21 30\n23 11\n19 6\n28 4\n29 21\n9 28\n30 10\n22 24\n25 8\n27 26\n25 4\n28 20\n9 25\n24 29\n20 9\n18 26\n1 28\n30 22\n23 15\n28 27\n8 2\n23 13\n12 8\n14 26\n16 4\n28 25\n8 1\n4 2\n9 16\n20 2\n18 27\n28 8\n27 7", "output": "NO" }, { "input": "5 4\n1 2\n2 5\n3 4\n4 5", "output": "NO" }, { "input": "4 4\n1 2\n2 3\n3 4\n4 1", "output": "NO" }, { "input": "6 6\n1 2\n2 4\n4 3\n1 5\n5 6\n6 3", "output": "NO" }, { "input": "3 2\n1 2\n1 3", "output": "NO" }, { "input": "6 6\n1 2\n2 3\n3 4\n4 5\n5 6\n1 6", "output": "NO" }, { "input": "4 4\n1 2\n1 3\n2 4\n3 4", "output": "NO" }, { "input": "6 9\n1 4\n1 5\n1 6\n2 4\n2 5\n2 6\n3 4\n3 5\n3 6", "output": "NO" }, { "input": "4 3\n1 2\n1 3\n3 4", "output": "NO" }, { "input": "4 3\n1 2\n1 3\n2 4", "output": "NO" }, { "input": "6 6\n1 2\n2 3\n3 4\n4 5\n5 6\n6 1", "output": "NO" }, { "input": "4 3\n1 2\n1 3\n1 4", "output": "NO" }, { "input": "150000 3\n150000 149999\n149998 149999\n149998 150000", "output": "YES" }, { "input": "10 15\n1 2\n1 3\n2 4\n2 5\n3 4\n3 5\n4 5\n1 6\n6 7\n6 8\n7 9\n7 10\n8 9\n8 10\n9 10", "output": "NO" }, { "input": "5 5\n1 2\n2 3\n3 4\n4 5\n5 1", "output": "NO" }, { "input": "5 4\n1 2\n1 3\n1 4\n1 5", "output": "NO" }, { "input": "9 9\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 1", "output": "NO" }, { "input": "4 5\n1 2\n1 3\n1 4\n2 3\n3 4", "output": "NO" }, { "input": "4 4\n1 2\n1 3\n4 2\n4 3", "output": "NO" }, { "input": "5 5\n1 4\n5 3\n5 1\n2 3\n4 5", "output": "NO" }, { "input": "4 5\n1 2\n1 3\n2 3\n1 4\n2 4", "output": "NO" }, { "input": "4 5\n1 2\n1 3\n1 4\n2 3\n2 4", "output": "NO" }, { "input": "6 12\n1 2\n1 4\n1 5\n1 6\n2 3\n2 5\n2 6\n3 4\n3 5\n3 6\n4 5\n4 6", "output": "NO" }, { "input": "1000 4\n100 132\n100 164\n196 132\n196 164", "output": "NO" } ]
1,605,212,135
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
65
514
14,643,200
from sys import stdin, stdout read, write = stdin.readline, stdout.write p = [0]*200000; size = [0]*200000; q = [0]*200000 def find(a): if p[a] == a: return a p[a] = find(p[a]) return p[a] n,m = map(int, read().split()) for i in range(n): p[i] = i size[i] = 1 while m != 0: a,b = map(int, read().split()) m -= 1 a = find(a) b = find(b) if a != b: p[a] = b size[b] += size[a] q[b] += q[a]+1 else: q[a] += 1 r = True for i in range(n): if p[i] == i: q1 = (size[i]*(size[i]-1))/2 if q1 != q[i]: r = False break if r: print("YES") else: print ("NO")
Title: Bear and Friendship Condition Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bear Limak examines a social network. Its main functionality is that two members can become friends (then they can talk with each other and share funny pictures). There are *n* members, numbered 1 through *n*. *m* pairs of members are friends. Of course, a member can't be a friend with themselves. Let A-B denote that members A and B are friends. Limak thinks that a network is reasonable if and only if the following condition is satisfied: For every three distinct members (X, Y, Z), if X-Y and Y-Z then also X-Z. For example: if Alan and Bob are friends, and Bob and Ciri are friends, then Alan and Ciri should be friends as well. Can you help Limak and check if the network is reasonable? Print "YES" or "NO" accordingly, without the quotes. Input Specification: The first line of the input contain two integers *n* and *m* (3<=≤<=*n*<=≤<=150<=000, ) — the number of members and the number of pairs of members that are friends. The *i*-th of the next *m* lines contains two distinct integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*,<=*a**i*<=≠<=*b**i*). Members *a**i* and *b**i* are friends with each other. No pair of members will appear more than once in the input. Output Specification: If the given network is reasonable, print "YES" in a single line (without the quotes). Otherwise, print "NO" in a single line (without the quotes). Demo Input: ['4 3\n1 3\n3 4\n1 4\n', '4 4\n3 1\n2 3\n3 4\n1 2\n', '10 4\n4 3\n5 10\n8 9\n1 2\n', '3 2\n1 2\n2 3\n'] Demo Output: ['YES\n', 'NO\n', 'YES\n', 'NO\n'] Note: The drawings below show the situation in the first sample (on the left) and in the second sample (on the right). Each edge represents two members that are friends. The answer is "NO" in the second sample because members (2, 3) are friends and members (3, 4) are friends, while members (2, 4) are not.
```python from sys import stdin, stdout read, write = stdin.readline, stdout.write p = [0]*200000; size = [0]*200000; q = [0]*200000 def find(a): if p[a] == a: return a p[a] = find(p[a]) return p[a] n,m = map(int, read().split()) for i in range(n): p[i] = i size[i] = 1 while m != 0: a,b = map(int, read().split()) m -= 1 a = find(a) b = find(b) if a != b: p[a] = b size[b] += size[a] q[b] += q[a]+1 else: q[a] += 1 r = True for i in range(n): if p[i] == i: q1 = (size[i]*(size[i]-1))/2 if q1 != q[i]: r = False break if r: print("YES") else: print ("NO") ```
-1
527
A
Playing with Paper
PROGRAMMING
1,100
[ "implementation", "math" ]
null
null
One day Vasya was sitting on a not so interesting Maths lesson and making an origami from a rectangular *a* mm <=×<= *b* mm sheet of paper (*a*<=&gt;<=*b*). Usually the first step in making an origami is making a square piece of paper from the rectangular sheet by folding the sheet along the bisector of the right angle, and cutting the excess part. After making a paper ship from the square piece, Vasya looked on the remaining (*a*<=-<=*b*) mm <=×<= *b* mm strip of paper. He got the idea to use this strip of paper in the same way to make an origami, and then use the remainder (if it exists) and so on. At the moment when he is left with a square piece of paper, he will make the last ship from it and stop. Can you determine how many ships Vasya will make during the lesson?
The first line of the input contains two integers *a*, *b* (1<=≤<=*b*<=&lt;<=*a*<=≤<=1012) — the sizes of the original sheet of paper.
Print a single integer — the number of ships that Vasya will make.
[ "2 1\n", "10 7\n", "1000000000000 1\n" ]
[ "2\n", "6\n", "1000000000000\n" ]
Pictures to the first and second sample test.
500
[ { "input": "2 1", "output": "2" }, { "input": "10 7", "output": "6" }, { "input": "1000000000000 1", "output": "1000000000000" }, { "input": "3 1", "output": "3" }, { "input": "4 1", "output": "4" }, { "input": "3 2", "output": "3" }, { "input": "4 2", "output": "2" }, { "input": "1000 700", "output": "6" }, { "input": "959986566087 524054155168", "output": "90" }, { "input": "4 3", "output": "4" }, { "input": "7 6", "output": "7" }, { "input": "1000 999", "output": "1000" }, { "input": "1000 998", "output": "500" }, { "input": "1000 997", "output": "336" }, { "input": "42 1", "output": "42" }, { "input": "1000 1", "output": "1000" }, { "input": "8 5", "output": "5" }, { "input": "13 8", "output": "6" }, { "input": "987 610", "output": "15" }, { "input": "442 42", "output": "22" }, { "input": "754 466", "output": "13" }, { "input": "1000000000000 999999999999", "output": "1000000000000" }, { "input": "1000000000000 999999999998", "output": "500000000000" }, { "input": "941 14", "output": "74" }, { "input": "998 2", "output": "499" }, { "input": "1000 42", "output": "32" }, { "input": "1000 17", "output": "66" }, { "input": "5 1", "output": "5" }, { "input": "5 2", "output": "4" }, { "input": "5 3", "output": "4" }, { "input": "5 4", "output": "5" }, { "input": "293 210", "output": "17" }, { "input": "787878787878 424242424242", "output": "8" }, { "input": "956722026041 591286729879", "output": "58" }, { "input": "956722026041 365435296162", "output": "58" }, { "input": "628625247282 464807889701", "output": "102" }, { "input": "695928431619 424778620208", "output": "167" }, { "input": "1000000000000 42", "output": "23809523821" }, { "input": "987654345678 23", "output": "42941493300" }, { "input": "10000000001 2", "output": "5000000002" }, { "input": "1000000000000 2", "output": "500000000000" }, { "input": "1000000000000 3", "output": "333333333336" }, { "input": "100000000000 3", "output": "33333333336" }, { "input": "100000000000 23", "output": "4347826109" }, { "input": "999999999997 7", "output": "142857142861" }, { "input": "8589934592 4294967296", "output": "2" } ]
1,554,180,349
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
2
2,000
0
a, b = map(int, input().split()) ans = 0 while a != b: a, b = min(a, b), max(a, b) - min(a, b) ans += 1 if a == b and a != 0: ans += 1 print(ans)
Title: Playing with Paper Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day Vasya was sitting on a not so interesting Maths lesson and making an origami from a rectangular *a* mm <=×<= *b* mm sheet of paper (*a*<=&gt;<=*b*). Usually the first step in making an origami is making a square piece of paper from the rectangular sheet by folding the sheet along the bisector of the right angle, and cutting the excess part. After making a paper ship from the square piece, Vasya looked on the remaining (*a*<=-<=*b*) mm <=×<= *b* mm strip of paper. He got the idea to use this strip of paper in the same way to make an origami, and then use the remainder (if it exists) and so on. At the moment when he is left with a square piece of paper, he will make the last ship from it and stop. Can you determine how many ships Vasya will make during the lesson? Input Specification: The first line of the input contains two integers *a*, *b* (1<=≤<=*b*<=&lt;<=*a*<=≤<=1012) — the sizes of the original sheet of paper. Output Specification: Print a single integer — the number of ships that Vasya will make. Demo Input: ['2 1\n', '10 7\n', '1000000000000 1\n'] Demo Output: ['2\n', '6\n', '1000000000000\n'] Note: Pictures to the first and second sample test.
```python a, b = map(int, input().split()) ans = 0 while a != b: a, b = min(a, b), max(a, b) - min(a, b) ans += 1 if a == b and a != 0: ans += 1 print(ans) ```
0
873
A
Chores
PROGRAMMING
800
[ "implementation" ]
null
null
Luba has to do *n* chores today. *i*-th chore takes *a**i* units of time to complete. It is guaranteed that for every the condition *a**i*<=≥<=*a**i*<=-<=1 is met, so the sequence is sorted. Also Luba can work really hard on some chores. She can choose not more than *k* any chores and do each of them in *x* units of time instead of *a**i* (). Luba is very responsible, so she has to do all *n* chores, and now she wants to know the minimum time she needs to do everything. Luba cannot do two chores simultaneously.
The first line contains three integers *n*,<=*k*,<=*x* (1<=≤<=*k*<=≤<=*n*<=≤<=100,<=1<=≤<=*x*<=≤<=99) — the number of chores Luba has to do, the number of chores she can do in *x* units of time, and the number *x* itself. The second line contains *n* integer numbers *a**i* (2<=≤<=*a**i*<=≤<=100) — the time Luba has to spend to do *i*-th chore. It is guaranteed that , and for each *a**i*<=≥<=*a**i*<=-<=1.
Print one number — minimum time Luba needs to do all *n* chores.
[ "4 2 2\n3 6 7 10\n", "5 2 1\n100 100 100 100 100\n" ]
[ "13\n", "302\n" ]
In the first example the best option would be to do the third and the fourth chore, spending *x* = 2 time on each instead of *a*<sub class="lower-index">3</sub> and *a*<sub class="lower-index">4</sub>, respectively. Then the answer is 3 + 6 + 2 + 2 = 13. In the second example Luba can choose any two chores to spend *x* time on them instead of *a*<sub class="lower-index">*i*</sub>. So the answer is 100·3 + 2·1 = 302.
0
[ { "input": "4 2 2\n3 6 7 10", "output": "13" }, { "input": "5 2 1\n100 100 100 100 100", "output": "302" }, { "input": "1 1 1\n100", "output": "1" }, { "input": "100 1 99\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "9999" }, { "input": "100 100 1\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "100" }, { "input": "100 50 50\n51 51 52 53 55 55 55 55 56 56 56 57 57 58 58 59 59 59 60 60 61 61 62 62 63 64 64 64 64 65 65 65 65 66 66 66 67 68 68 68 69 69 70 70 70 70 71 71 71 71 71 71 72 72 76 76 76 76 77 79 79 81 81 81 81 82 82 82 82 83 84 85 86 87 87 88 88 88 89 89 89 90 90 90 91 91 91 92 92 93 95 95 96 96 96 97 97 98 99 100", "output": "5618" }, { "input": "100 100 1\n2 4 4 4 5 5 5 6 10 10 11 11 12 12 13 13 13 14 17 18 20 20 21 21 22 22 23 24 24 25 26 29 29 32 32 34 34 35 38 39 39 40 40 42 42 43 45 47 48 49 51 52 52 54 57 59 59 60 61 61 62 63 63 64 65 65 68 70 70 72 74 75 75 76 76 77 77 78 78 78 79 80 81 82 82 83 83 83 84 89 90 92 92 93 94 96 96 97 98 99", "output": "100" }, { "input": "100 1 1\n3 3 5 7 8 8 8 9 9 9 11 13 14 15 18 18 19 20 21 22 22 25 27 27 29 31 32 33 33 34 36 37 37 38 40 42 44 44 46 47 47 48 48 48 50 50 51 51 54 54 54 55 55 56 56 56 60 61 62 62 63 64 65 65 68 70 70 71 71 71 71 75 75 76 76 79 79 79 79 81 81 82 82 86 86 86 86 88 90 90 92 96 97 97 98 98 98 98 100 100", "output": "5202" }, { "input": "100 50 49\n50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51", "output": "4950" }, { "input": "100 50 1\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3", "output": "151" }, { "input": "100 1 1\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2", "output": "199" } ]
1,577,303,279
2,147,483,647
Python 3
OK
TESTS
11
108
0
n = [int(x) for x in input().split()] k = [int(x) for x in input().split()] k.sort() s = 0 for i in range(0,n[0]): if(n[0]-i>n[1]): s+=k[i] else: s+=min(k[i],n[2]) #print(str(n[0])+"-"+str(i)+">"+str(n[1])) #print(s) print(s)
Title: Chores Time Limit: None seconds Memory Limit: None megabytes Problem Description: Luba has to do *n* chores today. *i*-th chore takes *a**i* units of time to complete. It is guaranteed that for every the condition *a**i*<=≥<=*a**i*<=-<=1 is met, so the sequence is sorted. Also Luba can work really hard on some chores. She can choose not more than *k* any chores and do each of them in *x* units of time instead of *a**i* (). Luba is very responsible, so she has to do all *n* chores, and now she wants to know the minimum time she needs to do everything. Luba cannot do two chores simultaneously. Input Specification: The first line contains three integers *n*,<=*k*,<=*x* (1<=≤<=*k*<=≤<=*n*<=≤<=100,<=1<=≤<=*x*<=≤<=99) — the number of chores Luba has to do, the number of chores she can do in *x* units of time, and the number *x* itself. The second line contains *n* integer numbers *a**i* (2<=≤<=*a**i*<=≤<=100) — the time Luba has to spend to do *i*-th chore. It is guaranteed that , and for each *a**i*<=≥<=*a**i*<=-<=1. Output Specification: Print one number — minimum time Luba needs to do all *n* chores. Demo Input: ['4 2 2\n3 6 7 10\n', '5 2 1\n100 100 100 100 100\n'] Demo Output: ['13\n', '302\n'] Note: In the first example the best option would be to do the third and the fourth chore, spending *x* = 2 time on each instead of *a*<sub class="lower-index">3</sub> and *a*<sub class="lower-index">4</sub>, respectively. Then the answer is 3 + 6 + 2 + 2 = 13. In the second example Luba can choose any two chores to spend *x* time on them instead of *a*<sub class="lower-index">*i*</sub>. So the answer is 100·3 + 2·1 = 302.
```python n = [int(x) for x in input().split()] k = [int(x) for x in input().split()] k.sort() s = 0 for i in range(0,n[0]): if(n[0]-i>n[1]): s+=k[i] else: s+=min(k[i],n[2]) #print(str(n[0])+"-"+str(i)+">"+str(n[1])) #print(s) print(s) ```
3
34
B
Sale
PROGRAMMING
900
[ "greedy", "sortings" ]
B. Sale
2
256
Once Bob got to a sale of old TV sets. There were *n* TV sets at that sale. TV set with index *i* costs *a**i* bellars. Some TV sets have a negative price — their owners are ready to pay Bob if he buys their useless apparatus. Bob can «buy» any TV sets he wants. Though he's very strong, Bob can carry at most *m* TV sets, and he has no desire to go to the sale for the second time. Please, help Bob find out the maximum sum of money that he can earn.
The first line contains two space-separated integers *n* and *m* (1<=≤<=*m*<=≤<=*n*<=≤<=100) — amount of TV sets at the sale, and amount of TV sets that Bob can carry. The following line contains *n* space-separated integers *a**i* (<=-<=1000<=≤<=*a**i*<=≤<=1000) — prices of the TV sets.
Output the only number — the maximum sum of money that Bob can earn, given that he can carry at most *m* TV sets.
[ "5 3\n-6 0 35 -2 4\n", "4 2\n7 0 0 -7\n" ]
[ "8\n", "7\n" ]
none
1,000
[ { "input": "5 3\n-6 0 35 -2 4", "output": "8" }, { "input": "4 2\n7 0 0 -7", "output": "7" }, { "input": "6 6\n756 -611 251 -66 572 -818", "output": "1495" }, { "input": "5 5\n976 437 937 788 518", "output": "0" }, { "input": "5 3\n-2 -2 -2 -2 -2", "output": "6" }, { "input": "5 1\n998 997 985 937 998", "output": "0" }, { "input": "2 2\n-742 -187", "output": "929" }, { "input": "3 3\n522 597 384", "output": "0" }, { "input": "4 2\n-215 -620 192 647", "output": "835" }, { "input": "10 6\n557 605 685 231 910 633 130 838 -564 -85", "output": "649" }, { "input": "20 14\n932 442 960 943 624 624 955 998 631 910 850 517 715 123 1000 155 -10 961 966 59", "output": "10" }, { "input": "30 5\n991 997 996 967 977 999 991 986 1000 965 984 997 998 1000 958 983 974 1000 991 999 1000 978 961 992 990 998 998 978 998 1000", "output": "0" }, { "input": "50 20\n-815 -947 -946 -993 -992 -846 -884 -954 -963 -733 -940 -746 -766 -930 -821 -937 -937 -999 -914 -938 -936 -975 -939 -981 -977 -952 -925 -901 -952 -978 -994 -957 -946 -896 -905 -836 -994 -951 -887 -939 -859 -953 -985 -988 -946 -829 -956 -842 -799 -886", "output": "19441" }, { "input": "88 64\n999 999 1000 1000 999 996 995 1000 1000 999 1000 997 998 1000 999 1000 997 1000 993 998 994 999 998 996 1000 997 1000 1000 1000 997 1000 998 997 1000 1000 998 1000 998 999 1000 996 999 999 999 996 995 999 1000 998 999 1000 999 999 1000 1000 1000 996 1000 1000 1000 997 1000 1000 997 999 1000 1000 1000 1000 1000 999 999 1000 1000 996 999 1000 1000 995 999 1000 996 1000 998 999 999 1000 999", "output": "0" }, { "input": "99 17\n-993 -994 -959 -989 -991 -995 -976 -997 -990 -1000 -996 -994 -999 -995 -1000 -983 -979 -1000 -989 -968 -994 -992 -962 -993 -999 -983 -991 -979 -995 -993 -973 -999 -995 -995 -999 -993 -995 -992 -947 -1000 -999 -998 -982 -988 -979 -993 -963 -988 -980 -990 -979 -976 -995 -999 -981 -988 -998 -999 -970 -1000 -983 -994 -943 -975 -998 -977 -973 -997 -959 -999 -983 -985 -950 -977 -977 -991 -998 -973 -987 -985 -985 -986 -984 -994 -978 -998 -989 -989 -988 -970 -985 -974 -997 -981 -962 -972 -995 -988 -993", "output": "16984" }, { "input": "100 37\n205 19 -501 404 912 -435 -322 -469 -655 880 -804 -470 793 312 -108 586 -642 -928 906 605 -353 -800 745 -440 -207 752 -50 -28 498 -800 -62 -195 602 -833 489 352 536 404 -775 23 145 -512 524 759 651 -461 -427 -557 684 -366 62 592 -563 -811 64 418 -881 -308 591 -318 -145 -261 -321 -216 -18 595 -202 960 -4 219 226 -238 -882 -963 425 970 -434 -160 243 -672 -4 873 8 -633 904 -298 -151 -377 -61 -72 -677 -66 197 -716 3 -870 -30 152 -469 981", "output": "21743" }, { "input": "100 99\n-931 -806 -830 -828 -916 -962 -660 -867 -952 -966 -820 -906 -724 -982 -680 -717 -488 -741 -897 -613 -986 -797 -964 -939 -808 -932 -810 -860 -641 -916 -858 -628 -821 -929 -917 -976 -664 -985 -778 -665 -624 -928 -940 -958 -884 -757 -878 -896 -634 -526 -514 -873 -990 -919 -988 -878 -650 -973 -774 -783 -733 -648 -756 -895 -833 -974 -832 -725 -841 -748 -806 -613 -924 -867 -881 -943 -864 -991 -809 -926 -777 -817 -998 -682 -910 -996 -241 -722 -964 -904 -821 -920 -835 -699 -805 -632 -779 -317 -915 -654", "output": "81283" }, { "input": "100 14\n995 994 745 684 510 737 984 690 979 977 542 933 871 603 758 653 962 997 747 974 773 766 975 770 527 960 841 989 963 865 974 967 950 984 757 685 986 809 982 959 931 880 978 867 805 562 970 900 834 782 616 885 910 608 974 918 576 700 871 980 656 941 978 759 767 840 573 859 841 928 693 853 716 927 976 851 962 962 627 797 707 873 869 988 993 533 665 887 962 880 929 980 877 887 572 790 721 883 848 782", "output": "0" }, { "input": "100 84\n768 946 998 752 931 912 826 1000 991 910 875 962 901 952 958 733 959 908 872 840 923 826 952 980 974 980 947 955 959 822 997 963 966 933 829 923 971 999 926 932 865 984 974 858 994 855 949 941 992 861 951 949 991 711 763 728 935 485 716 907 869 952 960 859 909 963 978 942 968 933 923 909 997 962 687 764 924 774 875 1000 961 951 987 974 848 921 966 859 995 997 974 931 886 941 974 986 906 978 998 823", "output": "0" }, { "input": "100 80\n-795 -994 -833 -930 -974 -980 -950 -940 -788 -927 -583 -956 -945 -949 -809 -974 -957 -736 -967 -908 -975 -961 -986 -983 -963 -771 -952 -847 -751 -741 -982 -959 -925 -931 -839 -937 -880 -914 -858 -998 -812 -911 -862 -965 -943 -984 -738 -920 -950 -998 -909 -998 -781 -901 -677 -940 -985 -951 -675 -952 -967 -949 -882 -641 -969 -937 -975 -993 -913 -941 -807 -851 -832 -960 -939 -943 -895 -929 -528 -880 -823 -930 -888 -862 -948 -966 -962 -857 -799 -969 -833 -998 -952 -878 -946 -971 -976 -974 -723 -992", "output": "75068" }, { "input": "1 1\n0", "output": "0" }, { "input": "1 1\n1", "output": "0" }, { "input": "1 1\n555", "output": "0" }, { "input": "1 1\n-1", "output": "1" }, { "input": "1 1\n-24", "output": "24" } ]
1,689,707,670
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
30
0
def max_money(n, m, prices): sorted_prices = sorted(prices) max_sum = sum(sorted_prices[-m:]) return max_sum n, m = map(int, input().split()) prices = list(map(int, input().split())) result1 = max_money(n, m, prices) print(result1)
Title: Sale Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Once Bob got to a sale of old TV sets. There were *n* TV sets at that sale. TV set with index *i* costs *a**i* bellars. Some TV sets have a negative price — their owners are ready to pay Bob if he buys their useless apparatus. Bob can «buy» any TV sets he wants. Though he's very strong, Bob can carry at most *m* TV sets, and he has no desire to go to the sale for the second time. Please, help Bob find out the maximum sum of money that he can earn. Input Specification: The first line contains two space-separated integers *n* and *m* (1<=≤<=*m*<=≤<=*n*<=≤<=100) — amount of TV sets at the sale, and amount of TV sets that Bob can carry. The following line contains *n* space-separated integers *a**i* (<=-<=1000<=≤<=*a**i*<=≤<=1000) — prices of the TV sets. Output Specification: Output the only number — the maximum sum of money that Bob can earn, given that he can carry at most *m* TV sets. Demo Input: ['5 3\n-6 0 35 -2 4\n', '4 2\n7 0 0 -7\n'] Demo Output: ['8\n', '7\n'] Note: none
```python def max_money(n, m, prices): sorted_prices = sorted(prices) max_sum = sum(sorted_prices[-m:]) return max_sum n, m = map(int, input().split()) prices = list(map(int, input().split())) result1 = max_money(n, m, prices) print(result1) ```
0
166
A
Rank List
PROGRAMMING
1,100
[ "binary search", "implementation", "sortings" ]
null
null
Another programming contest is over. You got hold of the contest's final results table. The table has the following data. For each team we are shown two numbers: the number of problems and the total penalty time. However, for no team we are shown its final place. You know the rules of comparing the results of two given teams very well. Let's say that team *a* solved *p**a* problems with total penalty time *t**a* and team *b* solved *p**b* problems with total penalty time *t**b*. Team *a* gets a higher place than team *b* in the end, if it either solved more problems on the contest, or solved the same number of problems but in less total time. In other words, team *a* gets a higher place than team *b* in the final results' table if either *p**a*<=&gt;<=*p**b*, or *p**a*<==<=*p**b* and *t**a*<=&lt;<=*t**b*. It is considered that the teams that solve the same number of problems with the same penalty time share all corresponding places. More formally, let's say there is a group of *x* teams that solved the same number of problems with the same penalty time. Let's also say that *y* teams performed better than the teams from this group. In this case all teams from the group share places *y*<=+<=1, *y*<=+<=2, ..., *y*<=+<=*x*. The teams that performed worse than the teams from this group, get their places in the results table starting from the *y*<=+<=*x*<=+<=1-th place. Your task is to count what number of teams from the given list shared the *k*-th place.
The first line contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=50). Then *n* lines contain the description of the teams: the *i*-th line contains two integers *p**i* and *t**i* (1<=≤<=*p**i*,<=*t**i*<=≤<=50) — the number of solved problems and the total penalty time of the *i*-th team, correspondingly. All numbers in the lines are separated by spaces.
In the only line print the sought number of teams that got the *k*-th place in the final results' table.
[ "7 2\n4 10\n4 10\n4 10\n3 20\n2 1\n2 1\n1 10\n", "5 4\n3 1\n3 1\n5 3\n3 1\n3 1\n" ]
[ "3\n", "4\n" ]
The final results' table for the first sample is: - 1-3 places — 4 solved problems, the penalty time equals 10 - 4 place — 3 solved problems, the penalty time equals 20 - 5-6 places — 2 solved problems, the penalty time equals 1 - 7 place — 1 solved problem, the penalty time equals 10 The table shows that the second place is shared by the teams that solved 4 problems with penalty time 10. There are 3 such teams. The final table for the second sample is: - 1 place — 5 solved problems, the penalty time equals 3 - 2-5 places — 3 solved problems, the penalty time equals 1 The table shows that the fourth place is shared by the teams that solved 3 problems with penalty time 1. There are 4 such teams.
500
[ { "input": "7 2\n4 10\n4 10\n4 10\n3 20\n2 1\n2 1\n1 10", "output": "3" }, { "input": "5 4\n3 1\n3 1\n5 3\n3 1\n3 1", "output": "4" }, { "input": "5 1\n2 2\n1 1\n1 1\n1 1\n2 2", "output": "2" }, { "input": "6 3\n2 2\n3 1\n2 2\n4 5\n2 2\n4 5", "output": "1" }, { "input": "5 5\n3 1\n10 2\n2 2\n1 10\n10 2", "output": "1" }, { "input": "3 2\n3 3\n3 3\n3 3", "output": "3" }, { "input": "4 3\n10 3\n6 10\n5 2\n5 2", "output": "2" }, { "input": "5 3\n10 10\n10 10\n1 1\n10 10\n4 3", "output": "3" }, { "input": "3 1\n2 1\n1 1\n1 2", "output": "1" }, { "input": "1 1\n28 28", "output": "1" }, { "input": "2 2\n1 2\n1 2", "output": "2" }, { "input": "5 3\n2 3\n4 2\n5 3\n2 4\n3 5", "output": "1" }, { "input": "50 22\n4 9\n8 1\n3 7\n1 2\n3 8\n9 8\n8 5\n2 10\n5 8\n1 3\n1 8\n2 3\n7 9\n10 2\n9 9\n7 3\n8 6\n10 6\n5 4\n8 1\n1 5\n6 8\n9 5\n9 5\n3 2\n3 3\n3 8\n7 5\n4 5\n8 10\n8 2\n3 5\n3 2\n1 1\n7 2\n2 7\n6 8\n10 4\n7 5\n1 7\n6 5\n3 1\n4 9\n2 3\n3 6\n5 8\n4 10\n10 7\n7 10\n9 8", "output": "1" }, { "input": "50 6\n11 20\n18 13\n1 13\n3 11\n4 17\n15 10\n15 8\n9 16\n11 17\n16 3\n3 20\n14 13\n12 15\n9 10\n14 2\n12 12\n13 17\n6 10\n20 9\n2 8\n13 7\n7 20\n15 3\n1 20\n2 13\n2 5\n14 7\n10 13\n15 12\n15 5\n17 6\n9 11\n18 5\n10 1\n15 14\n3 16\n6 12\n4 1\n14 9\n7 14\n8 17\n17 13\n4 6\n19 16\n5 6\n3 15\n4 19\n15 20\n2 10\n20 10", "output": "1" }, { "input": "50 12\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "50" }, { "input": "50 28\n2 2\n1 1\n2 1\n1 2\n1 1\n1 1\n1 1\n2 2\n2 2\n2 2\n2 1\n2 2\n2 1\n2 1\n1 2\n1 2\n1 2\n1 1\n2 2\n1 2\n2 2\n2 2\n2 1\n1 1\n1 2\n1 2\n1 1\n1 1\n1 1\n2 2\n2 1\n2 1\n2 2\n1 2\n1 2\n1 2\n1 1\n2 2\n1 2\n1 1\n2 2\n2 2\n1 1\n2 1\n2 1\n1 1\n2 2\n2 2\n2 2\n2 2", "output": "13" }, { "input": "50 40\n2 3\n3 1\n2 1\n2 1\n2 1\n3 1\n1 1\n1 2\n2 3\n1 3\n1 3\n2 1\n3 1\n1 1\n3 1\n3 1\n2 2\n1 1\n3 3\n3 1\n3 2\n2 3\n3 3\n3 1\n1 3\n2 3\n2 1\n3 2\n3 3\n3 1\n2 1\n2 2\n1 3\n3 3\n1 1\n3 2\n1 2\n2 3\n2 1\n2 2\n3 2\n1 3\n3 1\n1 1\n3 3\n2 3\n2 1\n2 3\n2 3\n1 2", "output": "5" }, { "input": "50 16\n2 1\n3 2\n5 2\n2 2\n3 4\n4 4\n3 3\n4 1\n2 3\n1 5\n4 1\n2 2\n1 5\n3 2\n2 1\n5 4\n5 2\n5 4\n1 1\n3 5\n2 1\n4 5\n5 1\n5 5\n5 4\n2 4\n1 2\n5 5\n4 4\n1 5\n4 2\n5 1\n2 4\n2 5\n2 2\n3 4\n3 1\n1 1\n5 5\n2 2\n3 4\n2 4\n5 2\n4 1\n3 1\n1 1\n4 1\n4 4\n1 4\n1 3", "output": "1" }, { "input": "50 32\n6 6\n4 2\n5 5\n1 1\n2 4\n6 5\n2 3\n6 5\n2 3\n6 3\n1 4\n1 6\n3 3\n2 4\n3 2\n6 2\n4 1\n3 3\n3 1\n5 5\n1 2\n2 1\n5 4\n3 1\n4 4\n5 6\n4 1\n2 5\n3 1\n4 6\n2 3\n1 1\n6 5\n2 6\n3 3\n2 6\n2 3\n2 6\n3 4\n2 6\n4 5\n5 4\n1 6\n3 2\n5 1\n4 1\n4 6\n4 2\n1 2\n5 2", "output": "1" }, { "input": "50 48\n5 1\n6 4\n3 2\n2 1\n4 7\n3 6\n7 1\n7 5\n6 5\n5 6\n4 7\n5 7\n5 7\n5 5\n7 3\n3 5\n4 3\n5 4\n6 2\n1 6\n6 3\n6 5\n5 2\n4 2\n3 1\n1 1\n5 6\n1 3\n6 5\n3 7\n1 5\n7 5\n6 5\n3 6\n2 7\n5 3\n5 3\n4 7\n5 2\n6 5\n5 7\n7 1\n2 3\n5 5\n2 6\n4 1\n6 2\n6 5\n3 3\n1 6", "output": "1" }, { "input": "50 8\n5 3\n7 3\n4 3\n7 4\n2 2\n4 4\n5 4\n1 1\n7 7\n4 8\n1 1\n6 3\n1 5\n7 3\n6 5\n4 5\n8 6\n3 6\n2 1\n3 2\n2 5\n7 6\n5 8\n1 3\n5 5\n8 4\n4 5\n4 4\n8 8\n7 2\n7 2\n3 6\n2 8\n8 3\n3 2\n4 5\n8 1\n3 2\n8 7\n6 3\n2 3\n5 1\n3 4\n7 2\n6 3\n7 3\n3 3\n6 4\n2 2\n5 1", "output": "3" }, { "input": "20 16\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "20" }, { "input": "20 20\n1 2\n2 2\n1 1\n2 1\n2 2\n1 1\n1 1\n2 1\n1 1\n1 2\n2 2\n1 2\n1 2\n2 2\n2 2\n1 2\n2 1\n2 1\n1 2\n2 2", "output": "6" }, { "input": "30 16\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "30" }, { "input": "30 22\n2 1\n1 2\n2 1\n2 2\n2 1\n1 2\n2 2\n1 2\n2 2\n1 2\n2 2\n1 2\n1 2\n2 1\n1 2\n2 2\n2 2\n1 2\n2 1\n1 1\n1 2\n1 2\n1 1\n1 2\n1 2\n2 2\n1 2\n2 2\n2 1\n1 1", "output": "13" }, { "input": "30 22\n1 1\n1 3\n2 3\n3 1\n2 3\n3 1\n1 2\n3 3\n2 1\n2 1\n2 2\n3 1\n3 2\n2 3\n3 1\n1 3\n2 3\n3 1\n1 2\n1 2\n2 3\n2 1\n3 3\n3 2\n1 3\n3 3\n3 3\n3 3\n3 3\n3 1", "output": "5" }, { "input": "50 16\n2 1\n3 2\n5 2\n2 2\n3 4\n4 4\n3 3\n4 1\n2 3\n1 5\n4 1\n2 2\n1 5\n3 2\n2 1\n5 4\n5 2\n5 4\n1 1\n3 5\n2 1\n4 5\n5 1\n5 5\n5 4\n2 4\n1 2\n5 5\n4 4\n1 5\n4 2\n5 1\n2 4\n2 5\n2 2\n3 4\n3 1\n1 1\n5 5\n2 2\n3 4\n2 4\n5 2\n4 1\n3 1\n1 1\n4 1\n4 4\n1 4\n1 3", "output": "1" }, { "input": "50 22\n4 9\n8 1\n3 7\n1 2\n3 8\n9 8\n8 5\n2 10\n5 8\n1 3\n1 8\n2 3\n7 9\n10 2\n9 9\n7 3\n8 6\n10 6\n5 4\n8 1\n1 5\n6 8\n9 5\n9 5\n3 2\n3 3\n3 8\n7 5\n4 5\n8 10\n8 2\n3 5\n3 2\n1 1\n7 2\n2 7\n6 8\n10 4\n7 5\n1 7\n6 5\n3 1\n4 9\n2 3\n3 6\n5 8\n4 10\n10 7\n7 10\n9 8", "output": "1" }, { "input": "50 22\n29 15\n18 10\n6 23\n38 28\n34 40\n40 1\n16 26\n22 33\n14 30\n26 7\n15 16\n22 40\n14 15\n6 28\n32 27\n33 3\n38 22\n40 17\n16 27\n21 27\n34 26\n5 15\n34 9\n38 23\n7 36\n17 6\n19 37\n40 1\n10 28\n9 14\n8 31\n40 8\n14 2\n24 16\n38 33\n3 37\n2 9\n21 21\n40 26\n28 33\n24 31\n10 12\n27 27\n17 4\n38 5\n21 31\n5 12\n29 7\n39 12\n26 14", "output": "1" }, { "input": "50 14\n4 20\n37 50\n46 19\n20 25\n47 10\n6 34\n12 41\n47 9\n22 28\n41 34\n47 40\n12 42\n9 4\n15 15\n27 8\n38 9\n4 17\n8 13\n47 7\n9 38\n30 48\n50 7\n41 34\n23 11\n16 37\n2 32\n18 46\n37 48\n47 41\n13 9\n24 50\n46 14\n33 49\n9 50\n35 30\n49 44\n42 49\n39 15\n33 42\n3 18\n44 15\n44 28\n9 17\n16 4\n10 36\n4 22\n47 17\n24 12\n2 31\n6 30", "output": "2" }, { "input": "2 1\n50 50\n50 50", "output": "2" }, { "input": "2 2\n50 50\n50 50", "output": "2" }, { "input": "2 1\n50 50\n50 49", "output": "1" }, { "input": "2 2\n50 50\n50 49", "output": "1" }, { "input": "50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50", "output": "50" }, { "input": "50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n49 50", "output": "1" }, { "input": "50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 49", "output": "49" }, { "input": "10 1\n3 1\n3 2\n3 2\n2 3\n2 3\n2 3\n2 4\n2 4\n2 4\n2 4", "output": "1" }, { "input": "4 3\n1 1\n1 2\n2 1\n2 2", "output": "1" }, { "input": "4 2\n1 2\n1 3\n1 5\n1 2", "output": "2" }, { "input": "6 1\n4 3\n4 2\n5 1\n5 2\n5 3\n5 3", "output": "1" }, { "input": "5 3\n2 1\n1 3\n1 2\n1 1\n1 1", "output": "2" }, { "input": "3 1\n1 1\n1 2\n1 3", "output": "1" }, { "input": "10 10\n3 1\n3 2\n3 2\n2 3\n2 3\n2 3\n2 4\n2 4\n2 4\n2 4", "output": "4" }, { "input": "5 1\n5 5\n5 6\n5 7\n5 8\n5 5", "output": "2" }, { "input": "4 1\n1 1\n1 1\n1 2\n1 3", "output": "2" } ]
1,690,008,842
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
62
0
def Solution(pro,time,k): pro.sort() ans=pro[::-1] print(ans.count(ans[k])) n,k=map(int,input().split()) pro=[] time=[] for i in range(n): p,t=map(int,input().split()) pro.append(p) time.append(t) Solution(pro,time,k)
Title: Rank List Time Limit: None seconds Memory Limit: None megabytes Problem Description: Another programming contest is over. You got hold of the contest's final results table. The table has the following data. For each team we are shown two numbers: the number of problems and the total penalty time. However, for no team we are shown its final place. You know the rules of comparing the results of two given teams very well. Let's say that team *a* solved *p**a* problems with total penalty time *t**a* and team *b* solved *p**b* problems with total penalty time *t**b*. Team *a* gets a higher place than team *b* in the end, if it either solved more problems on the contest, or solved the same number of problems but in less total time. In other words, team *a* gets a higher place than team *b* in the final results' table if either *p**a*<=&gt;<=*p**b*, or *p**a*<==<=*p**b* and *t**a*<=&lt;<=*t**b*. It is considered that the teams that solve the same number of problems with the same penalty time share all corresponding places. More formally, let's say there is a group of *x* teams that solved the same number of problems with the same penalty time. Let's also say that *y* teams performed better than the teams from this group. In this case all teams from the group share places *y*<=+<=1, *y*<=+<=2, ..., *y*<=+<=*x*. The teams that performed worse than the teams from this group, get their places in the results table starting from the *y*<=+<=*x*<=+<=1-th place. Your task is to count what number of teams from the given list shared the *k*-th place. Input Specification: The first line contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=50). Then *n* lines contain the description of the teams: the *i*-th line contains two integers *p**i* and *t**i* (1<=≤<=*p**i*,<=*t**i*<=≤<=50) — the number of solved problems and the total penalty time of the *i*-th team, correspondingly. All numbers in the lines are separated by spaces. Output Specification: In the only line print the sought number of teams that got the *k*-th place in the final results' table. Demo Input: ['7 2\n4 10\n4 10\n4 10\n3 20\n2 1\n2 1\n1 10\n', '5 4\n3 1\n3 1\n5 3\n3 1\n3 1\n'] Demo Output: ['3\n', '4\n'] Note: The final results' table for the first sample is: - 1-3 places — 4 solved problems, the penalty time equals 10 - 4 place — 3 solved problems, the penalty time equals 20 - 5-6 places — 2 solved problems, the penalty time equals 1 - 7 place — 1 solved problem, the penalty time equals 10 The table shows that the second place is shared by the teams that solved 4 problems with penalty time 10. There are 3 such teams. The final table for the second sample is: - 1 place — 5 solved problems, the penalty time equals 3 - 2-5 places — 3 solved problems, the penalty time equals 1 The table shows that the fourth place is shared by the teams that solved 3 problems with penalty time 1. There are 4 such teams.
```python def Solution(pro,time,k): pro.sort() ans=pro[::-1] print(ans.count(ans[k])) n,k=map(int,input().split()) pro=[] time=[] for i in range(n): p,t=map(int,input().split()) pro.append(p) time.append(t) Solution(pro,time,k) ```
0
27
A
Next Test
PROGRAMMING
1,200
[ "implementation", "sortings" ]
A. Next Test
2
256
«Polygon» is a system which allows to create programming tasks in a simple and professional way. When you add a test to the problem, the corresponding form asks you for the test index. As in most cases it is clear which index the next test will have, the system suggests the default value of the index. It is calculated as the smallest positive integer which is not used as an index for some previously added test. You are to implement this feature. Create a program which determines the default index of the next test, given the indexes of the previously added tests.
The first line contains one integer *n* (1<=≤<=*n*<=≤<=3000) — the amount of previously added tests. The second line contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=3000) — indexes of these tests.
Output the required default value for the next test index.
[ "3\n1 7 2\n" ]
[ "3\n" ]
none
500
[ { "input": "1\n1", "output": "2" }, { "input": "2\n2 1", "output": "3" }, { "input": "3\n3 4 1", "output": "2" }, { "input": "4\n6 4 3 5", "output": "1" }, { "input": "5\n3 2 1 7 4", "output": "5" }, { "input": "6\n4 1 2 5 3 7", "output": "6" }, { "input": "7\n3 2 1 6 5 7 4", "output": "8" }, { "input": "8\n2 8 3 7 6 9 1 5", "output": "4" }, { "input": "9\n10 5 9 3 8 7 1 2 4", "output": "6" }, { "input": "10\n7 2 3 8 9 6 5 4 1 10", "output": "11" }, { "input": "1\n1", "output": "2" }, { "input": "2\n1 2", "output": "3" }, { "input": "3\n2 4 1", "output": "3" }, { "input": "4\n4 2 3 1", "output": "5" }, { "input": "5\n3 1 4 2 5", "output": "6" }, { "input": "6\n1 3 6 7 2 4", "output": "5" }, { "input": "7\n1 5 4 7 2 3 6", "output": "8" }, { "input": "8\n12 1 6 5 2 8 3 4", "output": "7" }, { "input": "9\n3 2 7 5 6 4 1 9 10", "output": "8" }, { "input": "10\n1 7 13 6 5 10 3 8 2 4", "output": "9" }, { "input": "1\n2", "output": "1" }, { "input": "1\n3", "output": "1" }, { "input": "1\n3000", "output": "1" }, { "input": "2\n2 3", "output": "1" }, { "input": "2\n3000 1", "output": "2" } ]
1,590,087,792
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
22
218
307,200
n=int(input()) l=list(map(int,input().split())) l.sort() j=0 ans=0 for i in range(1,3000): if i==l[j]: j=j+1 if j<len(l)-1 else j else: ans=i break print(ans)
Title: Next Test Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: «Polygon» is a system which allows to create programming tasks in a simple and professional way. When you add a test to the problem, the corresponding form asks you for the test index. As in most cases it is clear which index the next test will have, the system suggests the default value of the index. It is calculated as the smallest positive integer which is not used as an index for some previously added test. You are to implement this feature. Create a program which determines the default index of the next test, given the indexes of the previously added tests. Input Specification: The first line contains one integer *n* (1<=≤<=*n*<=≤<=3000) — the amount of previously added tests. The second line contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=3000) — indexes of these tests. Output Specification: Output the required default value for the next test index. Demo Input: ['3\n1 7 2\n'] Demo Output: ['3\n'] Note: none
```python n=int(input()) l=list(map(int,input().split())) l.sort() j=0 ans=0 for i in range(1,3000): if i==l[j]: j=j+1 if j<len(l)-1 else j else: ans=i break print(ans) ```
0
460
A
Vasya and Socks
PROGRAMMING
900
[ "brute force", "implementation", "math" ]
null
null
Vasya has *n* pairs of socks. In the morning of each day Vasya has to put on a pair of socks before he goes to school. When he comes home in the evening, Vasya takes off the used socks and throws them away. Every *m*-th day (at days with numbers *m*,<=2*m*,<=3*m*,<=...) mom buys a pair of socks to Vasya. She does it late in the evening, so that Vasya cannot put on a new pair of socks before the next day. How many consecutive days pass until Vasya runs out of socks?
The single line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=100; 2<=≤<=*m*<=≤<=100), separated by a space.
Print a single integer — the answer to the problem.
[ "2 2\n", "9 3\n" ]
[ "3\n", "13\n" ]
In the first sample Vasya spends the first two days wearing the socks that he had initially. Then on day three he puts on the socks that were bought on day two. In the second sample Vasya spends the first nine days wearing the socks that he had initially. Then he spends three days wearing the socks that were bought on the third, sixth and ninth days. Than he spends another day wearing the socks that were bought on the twelfth day.
500
[ { "input": "2 2", "output": "3" }, { "input": "9 3", "output": "13" }, { "input": "1 2", "output": "1" }, { "input": "2 3", "output": "2" }, { "input": "1 99", "output": "1" }, { "input": "4 4", "output": "5" }, { "input": "10 2", "output": "19" }, { "input": "10 9", "output": "11" }, { "input": "100 100", "output": "101" }, { "input": "2 27", "output": "2" }, { "input": "99 100", "output": "99" }, { "input": "99 2", "output": "197" }, { "input": "100 3", "output": "149" }, { "input": "98 3", "output": "146" }, { "input": "4 4", "output": "5" }, { "input": "100 2", "output": "199" }, { "input": "62 4", "output": "82" }, { "input": "99 10", "output": "109" }, { "input": "100 5", "output": "124" }, { "input": "80 80", "output": "81" }, { "input": "95 16", "output": "101" }, { "input": "75 16", "output": "79" }, { "input": "99 74", "output": "100" }, { "input": "20 21", "output": "20" }, { "input": "52 96", "output": "52" }, { "input": "24 5", "output": "29" } ]
1,641,883,856
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
11
77
0
n,m=map(int,input().split()) z=n p=m while(n//p): z+=n//p p*=m z=z//m print(n+z)
Title: Vasya and Socks Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya has *n* pairs of socks. In the morning of each day Vasya has to put on a pair of socks before he goes to school. When he comes home in the evening, Vasya takes off the used socks and throws them away. Every *m*-th day (at days with numbers *m*,<=2*m*,<=3*m*,<=...) mom buys a pair of socks to Vasya. She does it late in the evening, so that Vasya cannot put on a new pair of socks before the next day. How many consecutive days pass until Vasya runs out of socks? Input Specification: The single line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=100; 2<=≤<=*m*<=≤<=100), separated by a space. Output Specification: Print a single integer — the answer to the problem. Demo Input: ['2 2\n', '9 3\n'] Demo Output: ['3\n', '13\n'] Note: In the first sample Vasya spends the first two days wearing the socks that he had initially. Then on day three he puts on the socks that were bought on day two. In the second sample Vasya spends the first nine days wearing the socks that he had initially. Then he spends three days wearing the socks that were bought on the third, sixth and ninth days. Than he spends another day wearing the socks that were bought on the twelfth day.
```python n,m=map(int,input().split()) z=n p=m while(n//p): z+=n//p p*=m z=z//m print(n+z) ```
0
591
A
Wizards' Duel
PROGRAMMING
900
[ "implementation", "math" ]
null
null
Harry Potter and He-Who-Must-Not-Be-Named engaged in a fight to the death once again. This time they are located at opposite ends of the corridor of length *l*. Two opponents simultaneously charge a deadly spell in the enemy. We know that the impulse of Harry's magic spell flies at a speed of *p* meters per second, and the impulse of You-Know-Who's magic spell flies at a speed of *q* meters per second. The impulses are moving through the corridor toward each other, and at the time of the collision they turn round and fly back to those who cast them without changing their original speeds. Then, as soon as the impulse gets back to it's caster, the wizard reflects it and sends again towards the enemy, without changing the original speed of the impulse. Since Harry has perfectly mastered the basics of magic, he knows that after the second collision both impulses will disappear, and a powerful explosion will occur exactly in the place of their collision. However, the young wizard isn't good at math, so he asks you to calculate the distance from his position to the place of the second meeting of the spell impulses, provided that the opponents do not change positions during the whole fight.
The first line of the input contains a single integer *l* (1<=≤<=*l*<=≤<=1<=000) — the length of the corridor where the fight takes place. The second line contains integer *p*, the third line contains integer *q* (1<=≤<=*p*,<=*q*<=≤<=500) — the speeds of magical impulses for Harry Potter and He-Who-Must-Not-Be-Named, respectively.
Print a single real number — the distance from the end of the corridor, where Harry is located, to the place of the second meeting of the spell impulses. Your answer will be considered correct if its absolute or relative error will not exceed 10<=-<=4. Namely: let's assume that your answer equals *a*, and the answer of the jury is *b*. The checker program will consider your answer correct if .
[ "100\n50\n50\n", "199\n60\n40\n" ]
[ "50\n", "119.4\n" ]
In the first sample the speeds of the impulses are equal, so both of their meetings occur exactly in the middle of the corridor.
500
[ { "input": "100\n50\n50", "output": "50" }, { "input": "199\n60\n40", "output": "119.4" }, { "input": "1\n1\n1", "output": "0.5" }, { "input": "1\n1\n500", "output": "0.001996007984" }, { "input": "1\n500\n1", "output": "0.998003992" }, { "input": "1\n500\n500", "output": "0.5" }, { "input": "1000\n1\n1", "output": "500" }, { "input": "1000\n1\n500", "output": "1.996007984" }, { "input": "1000\n500\n1", "output": "998.003992" }, { "input": "1000\n500\n500", "output": "500" }, { "input": "101\n11\n22", "output": "33.66666667" }, { "input": "987\n1\n3", "output": "246.75" }, { "input": "258\n25\n431", "output": "14.14473684" }, { "input": "979\n39\n60", "output": "385.6666667" }, { "input": "538\n479\n416", "output": "287.9351955" }, { "input": "583\n112\n248", "output": "181.3777778" }, { "input": "978\n467\n371", "output": "545.0190931" }, { "input": "980\n322\n193", "output": "612.7378641" }, { "input": "871\n401\n17", "output": "835.576555" }, { "input": "349\n478\n378", "output": "194.885514" }, { "input": "425\n458\n118", "output": "337.9340278" }, { "input": "919\n323\n458", "output": "380.0729834" }, { "input": "188\n59\n126", "output": "59.95675676" }, { "input": "644\n428\n484", "output": "302.2280702" }, { "input": "253\n80\n276", "output": "56.85393258" }, { "input": "745\n152\n417", "output": "199.0158172" }, { "input": "600\n221\n279", "output": "265.2" }, { "input": "690\n499\n430", "output": "370.6243272" }, { "input": "105\n68\n403", "output": "15.15923567" }, { "input": "762\n462\n371", "output": "422.6218487" }, { "input": "903\n460\n362", "output": "505.3284672" }, { "input": "886\n235\n95", "output": "630.9393939" }, { "input": "655\n203\n18", "output": "601.6515837" }, { "input": "718\n29\n375", "output": "51.53960396" }, { "input": "296\n467\n377", "output": "163.7819905" }, { "input": "539\n61\n56", "output": "281.017094" }, { "input": "133\n53\n124", "output": "39.82485876" }, { "input": "998\n224\n65", "output": "773.5363322" }, { "input": "961\n173\n47", "output": "755.6954545" }, { "input": "285\n468\n62", "output": "251.6603774" }, { "input": "496\n326\n429", "output": "214.1668874" }, { "input": "627\n150\n285", "output": "216.2068966" }, { "input": "961\n443\n50", "output": "863.535497" }, { "input": "623\n422\n217", "output": "411.4334898" }, { "input": "678\n295\n29", "output": "617.3148148" } ]
1,678,129,293
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
30
0
distance= int(input()) copy = distance v1 = int(input()) v2 = int(input()) if v1 == v2 : print(v1 / 2 ) else : sumv1 , sumv2 = 0 , 0 while distance > 0 : sumv1 += v1 sumv2 += v2 distance -= (v1 + v2) sumv2 = copy - sumv2 diffrance = abs(sumv1 - sumv2) pos = sumv1 - (diffrance * (v1/100)) print(pos)
Title: Wizards' Duel Time Limit: None seconds Memory Limit: None megabytes Problem Description: Harry Potter and He-Who-Must-Not-Be-Named engaged in a fight to the death once again. This time they are located at opposite ends of the corridor of length *l*. Two opponents simultaneously charge a deadly spell in the enemy. We know that the impulse of Harry's magic spell flies at a speed of *p* meters per second, and the impulse of You-Know-Who's magic spell flies at a speed of *q* meters per second. The impulses are moving through the corridor toward each other, and at the time of the collision they turn round and fly back to those who cast them without changing their original speeds. Then, as soon as the impulse gets back to it's caster, the wizard reflects it and sends again towards the enemy, without changing the original speed of the impulse. Since Harry has perfectly mastered the basics of magic, he knows that after the second collision both impulses will disappear, and a powerful explosion will occur exactly in the place of their collision. However, the young wizard isn't good at math, so he asks you to calculate the distance from his position to the place of the second meeting of the spell impulses, provided that the opponents do not change positions during the whole fight. Input Specification: The first line of the input contains a single integer *l* (1<=≤<=*l*<=≤<=1<=000) — the length of the corridor where the fight takes place. The second line contains integer *p*, the third line contains integer *q* (1<=≤<=*p*,<=*q*<=≤<=500) — the speeds of magical impulses for Harry Potter and He-Who-Must-Not-Be-Named, respectively. Output Specification: Print a single real number — the distance from the end of the corridor, where Harry is located, to the place of the second meeting of the spell impulses. Your answer will be considered correct if its absolute or relative error will not exceed 10<=-<=4. Namely: let's assume that your answer equals *a*, and the answer of the jury is *b*. The checker program will consider your answer correct if . Demo Input: ['100\n50\n50\n', '199\n60\n40\n'] Demo Output: ['50\n', '119.4\n'] Note: In the first sample the speeds of the impulses are equal, so both of their meetings occur exactly in the middle of the corridor.
```python distance= int(input()) copy = distance v1 = int(input()) v2 = int(input()) if v1 == v2 : print(v1 / 2 ) else : sumv1 , sumv2 = 0 , 0 while distance > 0 : sumv1 += v1 sumv2 += v2 distance -= (v1 + v2) sumv2 = copy - sumv2 diffrance = abs(sumv1 - sumv2) pos = sumv1 - (diffrance * (v1/100)) print(pos) ```
0
412
B
Network Configuration
PROGRAMMING
900
[ "greedy", "sortings" ]
null
null
The R1 company wants to hold a web search championship. There were *n* computers given for the competition, each of them is connected to the Internet. The organizers believe that the data transfer speed directly affects the result. The higher the speed of the Internet is, the faster the participant will find the necessary information. Therefore, before the competition started, each computer had its maximum possible data transfer speed measured. On the *i*-th computer it was *a**i* kilobits per second. There will be *k* participants competing in the championship, each should get a separate computer. The organizing company does not want any of the participants to have an advantage over the others, so they want to provide the same data transfer speed to each participant's computer. Also, the organizers want to create the most comfortable conditions for the participants, so the data transfer speed on the participants' computers should be as large as possible. The network settings of the R1 company has a special option that lets you to cut the initial maximum data transfer speed of any computer to any lower speed. How should the R1 company configure the network using the described option so that at least *k* of *n* computers had the same data transfer speed and the data transfer speed on these computers was as large as possible?
The first line contains two space-separated integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=100) — the number of computers and the number of participants, respectively. In the second line you have a space-separated sequence consisting of *n* integers: *a*1,<=*a*2,<=...,<=*a**n* (16<=≤<=*a**i*<=≤<=32768); number *a**i* denotes the maximum data transfer speed on the *i*-th computer.
Print a single integer — the maximum Internet speed value. It is guaranteed that the answer to the problem is always an integer.
[ "3 2\n40 20 30\n", "6 4\n100 20 40 20 50 50\n" ]
[ "30\n", "40\n" ]
In the first test case the organizers can cut the first computer's speed to 30 kilobits. Then two computers (the first and the third one) will have the same speed of 30 kilobits. They should be used as the participants' computers. This answer is optimal.
1,000
[ { "input": "3 2\n40 20 30", "output": "30" }, { "input": "6 4\n100 20 40 20 50 50", "output": "40" }, { "input": "1 1\n16", "output": "16" }, { "input": "2 1\n10000 17", "output": "10000" }, { "input": "2 2\n200 300", "output": "200" }, { "input": "3 1\n21 25 16", "output": "25" }, { "input": "3 2\n23 20 26", "output": "23" }, { "input": "3 3\n19 29 28", "output": "19" }, { "input": "100 2\n82 37 88 28 98 30 38 76 90 68 79 29 67 93 19 71 122 103 110 79 20 75 68 101 16 120 114 68 73 71 103 114 99 70 73 18 36 31 32 87 32 79 44 72 58 25 44 72 106 38 47 17 83 41 75 23 49 30 73 67 117 52 22 117 109 89 66 88 75 62 17 35 83 69 63 60 23 120 93 18 112 93 39 72 116 109 106 72 27 123 117 119 87 72 33 73 70 110 43 43", "output": "122" }, { "input": "30 13\n36 82 93 91 48 62 59 96 72 40 45 68 97 70 26 22 35 98 92 83 72 49 70 39 53 94 97 65 37 28", "output": "70" }, { "input": "50 49\n20 77 31 40 18 87 44 64 70 48 29 59 98 33 95 17 69 84 81 17 24 66 37 54 97 55 77 79 42 21 23 42 36 55 81 83 94 45 25 84 20 97 37 95 46 92 73 39 90 71", "output": "17" }, { "input": "40 40\n110 674 669 146 882 590 650 844 427 187 380 711 122 94 38 216 414 874 380 31 895 390 414 557 913 68 665 964 895 708 594 17 24 621 780 509 837 550 630 568", "output": "17" }, { "input": "40 1\n851 110 1523 1572 945 4966 4560 756 2373 4760 144 2579 4022 220 1924 1042 160 2792 2425 4483 2154 4120 319 4617 4686 2502 4797 4941 4590 4478 4705 4355 695 684 1560 684 2780 1090 4995 3113", "output": "4995" }, { "input": "70 12\n6321 2502 557 2734 16524 10133 13931 5045 3897 18993 5745 8687 12344 1724 12071 2345 3852 9312 14432 8615 7461 2439 4751 19872 12266 12997 8276 8155 9502 3047 7226 12754 9447 17349 1888 14564 18257 18099 8924 14199 738 13693 10917 15554 15773 17859 13391 13176 10567 19658 16494 3968 13977 14694 10537 4044 16402 9714 4425 13599 19660 2426 19687 2455 2382 3413 5754 113 7542 8353", "output": "16402" }, { "input": "80 60\n6159 26457 23753 27073 9877 4492 11957 10989 27151 6552 1646 7773 23924 27554 10517 8788 31160 455 12625 22009 22133 15657 14968 31871 15344 16550 27414 876 31213 10895 21508 17516 12747 59 11786 10497 30143 25548 22003 2809 11694 30395 8122 31248 23075 19013 31614 9133 27942 27346 15969 19415 10367 8424 29355 18903 3396 6327 4201 24124 24266 22586 724 1595 3972 17526 2843 20982 23655 12714 18050 15225 2658 7236 27555 13023 729 9022 17386 2585", "output": "8122" }, { "input": "100 1\n199 348 489 76 638 579 982 125 28 401 228 117 195 337 80 914 752 98 679 417 47 225 357 413 849 622 477 620 487 223 321 240 439 393 733 660 652 500 877 40 788 246 376 723 952 601 912 316 598 809 476 932 384 147 982 271 202 695 129 303 304 712 49 306 598 141 833 730 946 708 724 788 202 465 951 118 279 706 214 655 152 976 998 231 487 311 342 317 243 554 977 232 365 643 336 501 761 400 600 528", "output": "998" }, { "input": "80 50\n15160 6853 20254 11358 19535 27691 2983 31650 9219 11833 32053 31695 21511 4320 4384 24843 1454 31543 18796 13815 1546 27926 16276 14315 12542 25370 24890 29647 3584 17867 12446 15072 19852 30207 16361 7964 5343 398 10837 31114 9252 12767 15098 22562 32637 31823 8160 12658 6422 19142 12448 6765 7373 868 31712 24856 23251 29200 8159 16144 27165 4308 13652 12502 4183 7961 3032 26855 8687 12263 24319 7722 19460 30700 29806 1280 21141 25965 25550 26881", "output": "12448" }, { "input": "50 16\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16", "output": "16" }, { "input": "100 1\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16", "output": "16" }, { "input": "100 2\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16", "output": "16" }, { "input": "100 100\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16", "output": "16" }, { "input": "100 99\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16", "output": "16" } ]
1,397,846,449
2,147,483,647
Python 3
OK
TESTS
34
62
0
n, k = map(int, input().split()) print(list(reversed(list(sorted(list(map(int, input().split()))))))[k - 1])
Title: Network Configuration Time Limit: None seconds Memory Limit: None megabytes Problem Description: The R1 company wants to hold a web search championship. There were *n* computers given for the competition, each of them is connected to the Internet. The organizers believe that the data transfer speed directly affects the result. The higher the speed of the Internet is, the faster the participant will find the necessary information. Therefore, before the competition started, each computer had its maximum possible data transfer speed measured. On the *i*-th computer it was *a**i* kilobits per second. There will be *k* participants competing in the championship, each should get a separate computer. The organizing company does not want any of the participants to have an advantage over the others, so they want to provide the same data transfer speed to each participant's computer. Also, the organizers want to create the most comfortable conditions for the participants, so the data transfer speed on the participants' computers should be as large as possible. The network settings of the R1 company has a special option that lets you to cut the initial maximum data transfer speed of any computer to any lower speed. How should the R1 company configure the network using the described option so that at least *k* of *n* computers had the same data transfer speed and the data transfer speed on these computers was as large as possible? Input Specification: The first line contains two space-separated integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=100) — the number of computers and the number of participants, respectively. In the second line you have a space-separated sequence consisting of *n* integers: *a*1,<=*a*2,<=...,<=*a**n* (16<=≤<=*a**i*<=≤<=32768); number *a**i* denotes the maximum data transfer speed on the *i*-th computer. Output Specification: Print a single integer — the maximum Internet speed value. It is guaranteed that the answer to the problem is always an integer. Demo Input: ['3 2\n40 20 30\n', '6 4\n100 20 40 20 50 50\n'] Demo Output: ['30\n', '40\n'] Note: In the first test case the organizers can cut the first computer's speed to 30 kilobits. Then two computers (the first and the third one) will have the same speed of 30 kilobits. They should be used as the participants' computers. This answer is optimal.
```python n, k = map(int, input().split()) print(list(reversed(list(sorted(list(map(int, input().split()))))))[k - 1]) ```
3
770
A
New Password
PROGRAMMING
800
[ "*special", "implementation" ]
null
null
Innokentiy decides to change the password in the social net "Contact!", but he is too lazy to invent a new password by himself. That is why he needs your help. Innokentiy decides that new password should satisfy the following conditions: - the length of the password must be equal to *n*, - the password should consist only of lowercase Latin letters, - the number of distinct symbols in the password must be equal to *k*, - any two consecutive symbols in the password must be distinct. Your task is to help Innokentiy and to invent a new password which will satisfy all given conditions.
The first line contains two positive integers *n* and *k* (2<=≤<=*n*<=≤<=100, 2<=≤<=*k*<=≤<=*min*(*n*,<=26)) — the length of the password and the number of distinct symbols in it. Pay attention that a desired new password always exists.
Print any password which satisfies all conditions given by Innokentiy.
[ "4 3\n", "6 6\n", "5 2\n" ]
[ "java\n", "python\n", "phphp\n" ]
In the first test there is one of the appropriate new passwords — java, because its length is equal to 4 and 3 distinct lowercase letters a, j and v are used in it. In the second test there is one of the appropriate new passwords — python, because its length is equal to 6 and it consists of 6 distinct lowercase letters. In the third test there is one of the appropriate new passwords — phphp, because its length is equal to 5 and 2 distinct lowercase letters p and h are used in it. Pay attention the condition that no two identical symbols are consecutive is correct for all appropriate passwords in tests.
500
[ { "input": "4 3", "output": "abca" }, { "input": "6 6", "output": "abcdef" }, { "input": "5 2", "output": "ababa" }, { "input": "3 2", "output": "aba" }, { "input": "10 2", "output": "ababababab" }, { "input": "26 13", "output": "abcdefghijklmabcdefghijklm" }, { "input": "100 2", "output": "abababababababababababababababababababababababababababababababababababababababababababababababababab" }, { "input": "100 10", "output": "abcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij" }, { "input": "3 3", "output": "abc" }, { "input": "6 3", "output": "abcabc" }, { "input": "10 3", "output": "abcabcabca" }, { "input": "50 3", "output": "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcab" }, { "input": "90 2", "output": "ababababababababababababababababababababababababababababababababababababababababababababab" }, { "input": "6 2", "output": "ababab" }, { "input": "99 3", "output": "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc" }, { "input": "4 2", "output": "abab" }, { "input": "100 3", "output": "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabca" }, { "input": "40 22", "output": "abcdefghijklmnopqrstuvabcdefghijklmnopqr" }, { "input": "13 8", "output": "abcdefghabcde" }, { "input": "16 15", "output": "abcdefghijklmnoa" }, { "input": "17 17", "output": "abcdefghijklmnopq" }, { "input": "19 4", "output": "abcdabcdabcdabcdabc" }, { "input": "100 26", "output": "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuv" }, { "input": "100 25", "output": "abcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxy" }, { "input": "26 26", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "27 26", "output": "abcdefghijklmnopqrstuvwxyza" }, { "input": "2 2", "output": "ab" }, { "input": "26 25", "output": "abcdefghijklmnopqrstuvwxya" }, { "input": "99 2", "output": "abababababababababababababababababababababababababababababababababababababababababababababababababa" }, { "input": "99 26", "output": "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstu" }, { "input": "4 4", "output": "abcd" }, { "input": "5 3", "output": "abcab" }, { "input": "5 4", "output": "abcda" }, { "input": "5 5", "output": "abcde" }, { "input": "24 22", "output": "abcdefghijklmnopqrstuvab" }, { "input": "26 14", "output": "abcdefghijklmnabcdefghijkl" }, { "input": "26 15", "output": "abcdefghijklmnoabcdefghijk" }, { "input": "30 12", "output": "abcdefghijklabcdefghijklabcdef" }, { "input": "35 4", "output": "abcdabcdabcdabcdabcdabcdabcdabcdabc" }, { "input": "79 3", "output": "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabca" }, { "input": "79 14", "output": "abcdefghijklmnabcdefghijklmnabcdefghijklmnabcdefghijklmnabcdefghijklmnabcdefghi" }, { "input": "85 13", "output": "abcdefghijklmabcdefghijklmabcdefghijklmabcdefghijklmabcdefghijklmabcdefghijklmabcdefg" }, { "input": "90 25", "output": "abcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmno" }, { "input": "90 19", "output": "abcdefghijklmnopqrsabcdefghijklmnopqrsabcdefghijklmnopqrsabcdefghijklmnopqrsabcdefghijklmn" }, { "input": "26 24", "output": "abcdefghijklmnopqrstuvwxab" }, { "input": "100 17", "output": "abcdefghijklmnopqabcdefghijklmnopqabcdefghijklmnopqabcdefghijklmnopqabcdefghijklmnopqabcdefghijklmno" }, { "input": "26 2", "output": "ababababababababababababab" } ]
1,670,218,712
2,147,483,647
Python 3
OK
TESTS
47
46
0
import math a,b=map(int,input().split()) c='qazwsxedcrfvtgbyhnujmikolp' d=c[0:b] k=math.ceil(a/b) d=d*k d=d[0:a] print(d)
Title: New Password Time Limit: None seconds Memory Limit: None megabytes Problem Description: Innokentiy decides to change the password in the social net "Contact!", but he is too lazy to invent a new password by himself. That is why he needs your help. Innokentiy decides that new password should satisfy the following conditions: - the length of the password must be equal to *n*, - the password should consist only of lowercase Latin letters, - the number of distinct symbols in the password must be equal to *k*, - any two consecutive symbols in the password must be distinct. Your task is to help Innokentiy and to invent a new password which will satisfy all given conditions. Input Specification: The first line contains two positive integers *n* and *k* (2<=≤<=*n*<=≤<=100, 2<=≤<=*k*<=≤<=*min*(*n*,<=26)) — the length of the password and the number of distinct symbols in it. Pay attention that a desired new password always exists. Output Specification: Print any password which satisfies all conditions given by Innokentiy. Demo Input: ['4 3\n', '6 6\n', '5 2\n'] Demo Output: ['java\n', 'python\n', 'phphp\n'] Note: In the first test there is one of the appropriate new passwords — java, because its length is equal to 4 and 3 distinct lowercase letters a, j and v are used in it. In the second test there is one of the appropriate new passwords — python, because its length is equal to 6 and it consists of 6 distinct lowercase letters. In the third test there is one of the appropriate new passwords — phphp, because its length is equal to 5 and 2 distinct lowercase letters p and h are used in it. Pay attention the condition that no two identical symbols are consecutive is correct for all appropriate passwords in tests.
```python import math a,b=map(int,input().split()) c='qazwsxedcrfvtgbyhnujmikolp' d=c[0:b] k=math.ceil(a/b) d=d*k d=d[0:a] print(d) ```
3
389
B
Fox and Cross
PROGRAMMING
1,100
[ "greedy", "implementation" ]
null
null
Fox Ciel has a board with *n* rows and *n* columns. So, the board consists of *n*<=×<=*n* cells. Each cell contains either a symbol '.', or a symbol '#'. A cross on the board is a connected set of exactly five cells of the board that looks like a cross. The picture below shows how it looks. Ciel wants to draw several (may be zero) crosses on the board. Each cross must cover exactly five cells with symbols '#', and any cell with symbol '#' must belong to some cross. No two crosses can share a cell. Please, tell Ciel if she can draw the crosses in the described way.
The first line contains an integer *n* (3<=≤<=*n*<=≤<=100) — the size of the board. Each of the next *n* lines describes one row of the board. The *i*-th line describes the *i*-th row of the board and consists of *n* characters. Each character is either a symbol '.', or a symbol '#'.
Output a single line with "YES" if Ciel can draw the crosses in the described way. Otherwise output a single line with "NO".
[ "5\n.#...\n####.\n.####\n...#.\n.....\n", "4\n####\n####\n####\n####\n", "6\n.#....\n####..\n.####.\n.#.##.\n######\n.#..#.\n", "6\n.#..#.\n######\n.####.\n.####.\n######\n.#..#.\n", "3\n...\n...\n...\n" ]
[ "YES\n", "NO\n", "YES\n", "NO\n", "YES\n" ]
In example 1, you can draw two crosses. The picture below shows what they look like. In example 2, the board contains 16 cells with '#', but each cross contains 5. Since 16 is not a multiple of 5, so it's impossible to cover all.
1,000
[ { "input": "4\n####\n####\n####\n####", "output": "NO" }, { "input": "6\n.#....\n####..\n.####.\n.#.##.\n######\n.#..#.", "output": "YES" }, { "input": "6\n.#..#.\n######\n.####.\n.####.\n######\n.#..#.", "output": "NO" }, { "input": "5\n.....\n.#...\n####.\n.####\n...#.", "output": "YES" }, { "input": "5\n#....\n###..\n.###.\n..##.\n..##.", "output": "NO" }, { "input": "10\n....#...#.\n.#.###.###\n#####.#.#.\n.#######..\n.#.##.#.#.\n######.###\n.#..#.#.#.\n.#..#####.\n##########\n.#..#...#.", "output": "YES" }, { "input": "8\n.#...##.\n##.##.#.\n#....##.\n#.###.##\n...##..#\n#..#.##.\n#..#.#..\n#....###", "output": "NO" }, { "input": "15\n.#...##.##.....\n.###.#.#.##..#.\n##.#####......#\n#....###.#..#..\n#.##.#.###.###.\n.###....#.###.#\n##.....##..#...\n.#.########...#\n##..#..##..#.##\n#...#....##....\n.......#.......\n.#..#.#.####...\n.#..#...#..###.\n#..#.#..#......\n###.....##....#", "output": "NO" }, { "input": "7\n.......\n.......\n.......\n.......\n.....#.\n....###\n.....#.", "output": "YES" }, { "input": "9\n.#.#....#\n#.#.....#\n.#..#..#.\n#.#....##\n...#...#.\n#..###.#.\n....#..##\n.#.###...\n....##..#", "output": "NO" }, { "input": "5\n#...#\n.....\n..#..\n.....\n#...#", "output": "NO" }, { "input": "3\n.#.\n#.#\n.#.", "output": "NO" }, { "input": "3\n...\n...\n..#", "output": "NO" } ]
1,469,240,373
2,147,483,647
Python 3
OK
TESTS
42
62
0
#fdf_2791 n = int(input()) a = [list(input()) for i in range(n)] for i in range(1,n-1): for j in range(1,n-1): if a[i][j]==a[i-1][j]==a[i][j+1]==a[i+1][j]==a[i][j-1]=='#': a[i][j]=a[i-1][j]=a[i][j+1]=a[i+1][j]=a[i][j-1]='.' print((sum(a[i].count('#')for i in range(n)))==0 and "YES" or "NO")
Title: Fox and Cross Time Limit: None seconds Memory Limit: None megabytes Problem Description: Fox Ciel has a board with *n* rows and *n* columns. So, the board consists of *n*<=×<=*n* cells. Each cell contains either a symbol '.', or a symbol '#'. A cross on the board is a connected set of exactly five cells of the board that looks like a cross. The picture below shows how it looks. Ciel wants to draw several (may be zero) crosses on the board. Each cross must cover exactly five cells with symbols '#', and any cell with symbol '#' must belong to some cross. No two crosses can share a cell. Please, tell Ciel if she can draw the crosses in the described way. Input Specification: The first line contains an integer *n* (3<=≤<=*n*<=≤<=100) — the size of the board. Each of the next *n* lines describes one row of the board. The *i*-th line describes the *i*-th row of the board and consists of *n* characters. Each character is either a symbol '.', or a symbol '#'. Output Specification: Output a single line with "YES" if Ciel can draw the crosses in the described way. Otherwise output a single line with "NO". Demo Input: ['5\n.#...\n####.\n.####\n...#.\n.....\n', '4\n####\n####\n####\n####\n', '6\n.#....\n####..\n.####.\n.#.##.\n######\n.#..#.\n', '6\n.#..#.\n######\n.####.\n.####.\n######\n.#..#.\n', '3\n...\n...\n...\n'] Demo Output: ['YES\n', 'NO\n', 'YES\n', 'NO\n', 'YES\n'] Note: In example 1, you can draw two crosses. The picture below shows what they look like. In example 2, the board contains 16 cells with '#', but each cross contains 5. Since 16 is not a multiple of 5, so it's impossible to cover all.
```python #fdf_2791 n = int(input()) a = [list(input()) for i in range(n)] for i in range(1,n-1): for j in range(1,n-1): if a[i][j]==a[i-1][j]==a[i][j+1]==a[i+1][j]==a[i][j-1]=='#': a[i][j]=a[i-1][j]=a[i][j+1]=a[i+1][j]=a[i][j-1]='.' print((sum(a[i].count('#')for i in range(n)))==0 and "YES" or "NO") ```
3
1
A
Theatre Square
PROGRAMMING
1,000
[ "math" ]
A. Theatre Square
1
256
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
Write the needed number of flagstones.
[ "6 6 4\n" ]
[ "4\n" ]
none
0
[ { "input": "6 6 4", "output": "4" }, { "input": "1 1 1", "output": "1" }, { "input": "2 1 1", "output": "2" }, { "input": "1 2 1", "output": "2" }, { "input": "2 2 1", "output": "4" }, { "input": "2 1 2", "output": "1" }, { "input": "1 1 3", "output": "1" }, { "input": "2 3 4", "output": "1" }, { "input": "1000000000 1000000000 1", "output": "1000000000000000000" }, { "input": "12 13 4", "output": "12" }, { "input": "222 332 5", "output": "3015" }, { "input": "1000 1000 10", "output": "10000" }, { "input": "1001 1000 10", "output": "10100" }, { "input": "100 10001 1000000000", "output": "1" }, { "input": "1000000000 1000000000 1000000000", "output": "1" }, { "input": "1000000000 1000000000 999999999", "output": "4" }, { "input": "1000000000 1000000000 192", "output": "27126743055556" }, { "input": "1000000000 987654321 1", "output": "987654321000000000" }, { "input": "456784567 1000000000 51", "output": "175618850864484" }, { "input": "39916800 134217728 40320", "output": "3295710" } ]
1,681,678,386
2,147,483,647
Python 3
OK
TESTS
20
62
0
w,n,a = input().split() w = int(w) n = int(n) a = int(a) if (w > a and w % a > 0): wid = int((w/a) // 1 + 1) elif (w % a == 0): wid = w / a else: wid = 1 if (n > a and n % a > 0): leng = int((n/a) // 1 + 1) elif (n % a ==0): leng = n / a else: leng = 1 print (int(wid * leng))
Title: Theatre Square Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square. Input Specification: The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109). Output Specification: Write the needed number of flagstones. Demo Input: ['6 6 4\n'] Demo Output: ['4\n'] Note: none
```python w,n,a = input().split() w = int(w) n = int(n) a = int(a) if (w > a and w % a > 0): wid = int((w/a) // 1 + 1) elif (w % a == 0): wid = w / a else: wid = 1 if (n > a and n % a > 0): leng = int((n/a) // 1 + 1) elif (n % a ==0): leng = n / a else: leng = 1 print (int(wid * leng)) ```
3.969
581
A
Vasya the Hipster
PROGRAMMING
800
[ "implementation", "math" ]
null
null
One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks. According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot. Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them. Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got. Can you help him?
The single line of the input contains two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100) — the number of red and blue socks that Vasya's got.
Print two space-separated integers — the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got. Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day.
[ "3 1\n", "2 3\n", "7 3\n" ]
[ "1 1\n", "2 0\n", "3 2\n" ]
In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
500
[ { "input": "3 1", "output": "1 1" }, { "input": "2 3", "output": "2 0" }, { "input": "7 3", "output": "3 2" }, { "input": "100 100", "output": "100 0" }, { "input": "4 10", "output": "4 3" }, { "input": "6 10", "output": "6 2" }, { "input": "6 11", "output": "6 2" }, { "input": "10 40", "output": "10 15" }, { "input": "11 56", "output": "11 22" }, { "input": "34 30", "output": "30 2" }, { "input": "33 33", "output": "33 0" }, { "input": "100 45", "output": "45 27" }, { "input": "100 23", "output": "23 38" }, { "input": "45 12", "output": "12 16" }, { "input": "1 1", "output": "1 0" }, { "input": "1 100", "output": "1 49" }, { "input": "100 1", "output": "1 49" }, { "input": "68 59", "output": "59 4" }, { "input": "45 99", "output": "45 27" }, { "input": "99 100", "output": "99 0" }, { "input": "100 98", "output": "98 1" }, { "input": "59 12", "output": "12 23" }, { "input": "86 4", "output": "4 41" }, { "input": "68 21", "output": "21 23" }, { "input": "100 11", "output": "11 44" }, { "input": "100 10", "output": "10 45" }, { "input": "15 45", "output": "15 15" }, { "input": "11 32", "output": "11 10" }, { "input": "34 96", "output": "34 31" }, { "input": "89 89", "output": "89 0" } ]
1,664,334,846
2,147,483,647
Python 3
OK
TESTS
30
46
0
from math import floor a, b = map(int, input().split()) print(min(a, b), int(abs(a-b)/2))
Title: Vasya the Hipster Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks. According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot. Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them. Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got. Can you help him? Input Specification: The single line of the input contains two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100) — the number of red and blue socks that Vasya's got. Output Specification: Print two space-separated integers — the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got. Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day. Demo Input: ['3 1\n', '2 3\n', '7 3\n'] Demo Output: ['1 1\n', '2 0\n', '3 2\n'] Note: In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
```python from math import floor a, b = map(int, input().split()) print(min(a, b), int(abs(a-b)/2)) ```
3
276
B
Little Girl and Game
PROGRAMMING
1,300
[ "games", "greedy" ]
null
null
The Little Girl loves problems on games very much. Here's one of them. Two players have got a string *s*, consisting of lowercase English letters. They play a game that is described by the following rules: - The players move in turns; In one move the player can remove an arbitrary letter from string *s*. - If the player before his turn can reorder the letters in string *s* so as to get a palindrome, this player wins. A palindrome is a string that reads the same both ways (from left to right, and vice versa). For example, string "abba" is a palindrome and string "abc" isn't. Determine which player will win, provided that both sides play optimally well — the one who moves first or the one who moves second.
The input contains a single line, containing string *s* (1<=≤<=|*s*|<=<=≤<=<=103). String *s* consists of lowercase English letters.
In a single line print word "First" if the first player wins (provided that both players play optimally well). Otherwise, print word "Second". Print the words without the quotes.
[ "aba\n", "abca\n" ]
[ "First\n", "Second\n" ]
none
1,000
[ { "input": "aba", "output": "First" }, { "input": "abca", "output": "Second" }, { "input": "aabb", "output": "First" }, { "input": "ctjxzuimsxnarlciuynqeoqmmbqtagszuo", "output": "Second" }, { "input": "gevqgtaorjixsxnbcoybr", "output": "First" }, { "input": "xvhtcbtouuddhylxhplgjxwlo", "output": "First" }, { "input": "knaxhkbokmtfvnjvlsbrfoefpjpkqwlumeqqbeohodnwevhllkylposdpjuoizyunuxivzrjofiyxxiliuwhkjqpkqxukxroivfhikxjdtwcqngqswptdwrywxszxrqojjphzwzxqftnfhkapeejdgckfyrxtpuipfljsjwgpjfatmxpylpnerllshuvkbomlpghjrxcgxvktgeyuhrcwgvdmppqnkdmjtxukzlzqhfbgrishuhkyggkpstvqabpxoqjuovwjwcmazmvpfpnljdgpokpatjnvwacotkvxheorzbsrazldsquijzkmtmqahakjrjvzkquvayxpqrmqqcknilpqpjapagezonfpz", "output": "Second" }, { "input": "desktciwoidfuswycratvovutcgjrcyzmilsmadzaegseetexygedzxdmorxzxgiqhcuppshcsjcozkopebegfmxzxxagzwoymlghgjexcgfojychyt", "output": "First" }, { "input": "gfhuidxgxpxduqrfnqrnefgtyxgmrtehmddjkddwdiayyilaknxhlxszeslnsjpcrwnoqubmbpcehiftteirkfvbtfyibiikdaxmondnawtvqccctdxrjcfxqwqhvvrqmhqflbzskrayvruqvqijrmikucwzodxvufwxpxxjxlifdjzxrttjzatafkbzsjupsiefmipdufqltedjlytphzppoevxawjdhbxgennevbvdgpoeihasycctyddenzypoprchkoioouhcexjqwjflxvkgpgjatstlmledxasecfhwvabzwviywsiaryqrxyeceefblherqjevdzkfxslqiytwzz", "output": "First" }, { "input": "fezzkpyctjvvqtncmmjsitrxaliyhirspnjjngvzdoudrkkvvdiwcwtcxobpobzukegtcrwsgxxzlcphdxkbxdximqbycaicfdeqlvzboptfimkzvjzdsvahorqqhcirpkhtwjkplitpacpkpbhnxtoxuoqsxcxnhtrmzvexmpvlethbkvmlzftimjnidrzvcunbpysvukzgwghjmwrvstsunaocnoqohcsggtrwxiworkliqejajewbrtdwgnyynpupbrrvtfqtlaaq", "output": "Second" }, { "input": "tsvxmeixijyavdalmrvscwohzubhhgsocdvnjmjtctojbxxpezzbgfltixwgzmkfwdnlhidhrdgyajggmrvmwaoydodjmzqvgabyszfqcuhwdncyfqvmackvijgpjyiauxljvvwgiofdxccwmybdfcfcrqppbvbagmnvvvhngxauwbpourviyfokwjweypzzrrzjcmddnpoaqgqfgglssjnlshrerfffmrwhapzknxveiqixflykjbnpivogtdpyjakwrdoklsbvbkjhdojfnuwbpcfdycwxecysbyjfvoykxsxgg", "output": "First" }, { "input": "upgqmhfmfnodsyosgqswugfvpdxhtkxvhlsxrjiqlojchoddxkpsamwmuvopdbncymcgrkurwlxerexgswricuqxhvqvgekeofkgqabypamozmyjyfvpifsaotnyzqydcenphcsmplekinwkmwzpjnlapfdbhxjdcnarlgkfgxzfbpgsuxqfyhnxjhtojrlnprnxprfbkkcyriqztjeeepkzgzcaiutvbqqofyhddfebozhvtvrigtidxqmydjxegxipakzjcnenjkdroyjmxugj", "output": "Second" }, { "input": "aaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbccccccccccccccccccccddddddddddeeeeeeeeeeffffgggghhhhiiiijjjjqqqqwwwweeeerrrrttttyyyyuuuuiiiiooooppppaaaassssddddffffgggghhhhjjjjkkkkllllzzzzxxxxccccvvvvbbbbnnnnmmmm", "output": "First" }, { "input": "vnvtvnxjrtffdhrfvczzoyeokjabxcilmmsrhwuakghvuabcmfpmblyroodmhfivmhqoiqhapoglwaluewhqkunzitmvijaictjdncivccedfpaezcnpwemlohbhjjlqsonuclaumgbzjamsrhuzqdqtitygggsnruuccdtxkgbdd", "output": "First" }, { "input": "vqdtkbvlbdyndheoiiwqhnvcmmhnhsmwwrvesnpdfxvprqbwzbodoihrywagphlsrcbtnvppjsquuuzkjazaenienjiyctyajsqdfsdiedzugkymgzllvpxfetkwfabbiotjcknzdwsvmbbuqrxrulvgljagvxdmfsqtcczhifhoghqgffkbviphbabwiaqburerfkbqfjbptkwlahysrrfwjbqfnrgnsnsukqqcxxwqtuhvdzqmpfwrbqzdwxcaifuyhvojgurmchh", "output": "First" }, { "input": "hxueikegwnrctlciwguepdsgupguykrntbszeqzzbpdlouwnmqgzcxejidstxyxhdlnttnibxstduwiflouzfswfikdudkazoefawm", "output": "Second" }, { "input": "ershkhsywqftixappwqzoojtnamvqjbyfauvuubwpctspioqusnnivwsiyszfhlrskbswaiaczurygcioonjcndntwvrlaejyrghfnecltqytfmkvjxuujifgtujrqsisdawpwgttxynewiqhdhronamabysvpxankxeybcjqttbqnciwuqiehzyfjoedaradqnfthuuwrezwrkjiytpgwfwbslawbiezdbdltenjlaygwaxddplgseiaojndqjcopvolqbvnacuvfvirzbrnlnyjixngeevcggmirzatenjihpgnyfjhgsjgzepohbyhmzbatfwuorwutavlqsogrvcjpqziuifrhurq", "output": "First" }, { "input": "qilwpsuxogazrfgfznngwklnioueuccyjfatjoizcctgsweitzofwkyjustizbopzwtaqxbtovkdrxeplukrcuozhpymldstbbfynkgsmafigetvzkxloxqtphvtwkgfjkiczttcsxkjpsoutdpzxytrsqgjtbdljjrbmkudrkodfvcwkcuggbsthxdyogeeyfuyhmnwgyuatfkvchavpzadfacckdurlbqjkthqbnirzzbpusxcenkpgtizayjmsahvobobudfeaewcqmrlxxnocqzmkessnguxkiccrxyvnxxlqnqfwuzmupk", "output": "First" }, { "input": "opfokvwzpllctflkphutcrkferbjyyrasqqkrcvoymyrxwaudgsugcqveccymdplxmtlzfoptmrapfeizpnnhbzlkuyznwacnswibxhqunazbhdvrlidghisuqunstbuevjzimvlfvopgqxrvahhngnaumgywscfrfwfpnfxwhfrelbunmedvkssykwjyartxjiplerntzkpiiaalijiwhyuhxlvhxpkgfypvrpqqsacuwocdampnnhvibsbolyduvscsjfayxpldyvqzjbqojjxdvxtctwtifcdfcaoonzbgegyllngwvjivtxeezoabhsihcuvgvdsgjtzbzwovjshvwrljkxavowovzrfpdufpogdtujkerdorpboufrxhyswirjehgsxthlvjufvahdpeajidqipwaxokbeycrievgcfkyuyavaq", "output": "Second" }, { "input": "a", "output": "First" }, { "input": "ab", "output": "Second" }, { "input": "abacaba", "output": "First" }, { "input": "abazaba", "output": "First" }, { "input": "zz", "output": "First" }, { "input": "aassddxyz", "output": "First" }, { "input": "abcdefghijklmnopqrstuvwxyz", "output": "Second" }, { "input": "aabc", "output": "Second" }, { "input": "abcabc", "output": "First" }, { "input": "aaabbbccdd", "output": "Second" }, { "input": "aabbcccc", "output": "First" } ]
1,652,078,204
2,147,483,647
PyPy 3-64
OK
TESTS
51
124
0
d = {chr(ord('a') + i) : 0 for i in range(26)} s = input() for i in s: d[i] += 1 o = 0 for i in d.keys(): if(d[i] % 2): o += 1 if(o % 2 or o == 0): print("First") else: print("Second")
Title: Little Girl and Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: The Little Girl loves problems on games very much. Here's one of them. Two players have got a string *s*, consisting of lowercase English letters. They play a game that is described by the following rules: - The players move in turns; In one move the player can remove an arbitrary letter from string *s*. - If the player before his turn can reorder the letters in string *s* so as to get a palindrome, this player wins. A palindrome is a string that reads the same both ways (from left to right, and vice versa). For example, string "abba" is a palindrome and string "abc" isn't. Determine which player will win, provided that both sides play optimally well — the one who moves first or the one who moves second. Input Specification: The input contains a single line, containing string *s* (1<=≤<=|*s*|<=<=≤<=<=103). String *s* consists of lowercase English letters. Output Specification: In a single line print word "First" if the first player wins (provided that both players play optimally well). Otherwise, print word "Second". Print the words without the quotes. Demo Input: ['aba\n', 'abca\n'] Demo Output: ['First\n', 'Second\n'] Note: none
```python d = {chr(ord('a') + i) : 0 for i in range(26)} s = input() for i in s: d[i] += 1 o = 0 for i in d.keys(): if(d[i] % 2): o += 1 if(o % 2 or o == 0): print("First") else: print("Second") ```
3
981
C
Useful Decomposition
PROGRAMMING
1,400
[ "implementation", "trees" ]
null
null
Ramesses knows a lot about problems involving trees (undirected connected graphs without cycles)! He created a new useful tree decomposition, but he does not know how to construct it, so he asked you for help! The decomposition is the splitting the edges of the tree in some simple paths in such a way that each two paths have at least one common vertex. Each edge of the tree should be in exactly one path. Help Remesses, find such a decomposition of the tree or derermine that there is no such decomposition.
The first line contains a single integer $n$ ($2 \leq n \leq 10^{5}$) the number of nodes in the tree. Each of the next $n<=-<=1$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq n$, $a_i \neq b_i$) — the edges of the tree. It is guaranteed that the given edges form a tree.
If there are no decompositions, print the only line containing "No". Otherwise in the first line print "Yes", and in the second line print the number of paths in the decomposition $m$. Each of the next $m$ lines should contain two integers $u_i$, $v_i$ ($1 \leq u_i, v_i \leq n$, $u_i \neq v_i$) denoting that one of the paths in the decomposition is the simple path between nodes $u_i$ and $v_i$. Each pair of paths in the decomposition should have at least one common vertex, and each edge of the tree should be presented in exactly one path. You can print the paths and the ends of each path in arbitrary order. If there are multiple decompositions, print any.
[ "4\n1 2\n2 3\n3 4\n", "6\n1 2\n2 3\n3 4\n2 5\n3 6\n", "5\n1 2\n1 3\n1 4\n1 5\n" ]
[ "Yes\n1\n1 4\n", "No\n", "Yes\n4\n1 2\n1 3\n1 4\n1 5\n" ]
The tree from the first example is shown on the picture below: <img class="tex-graphics" src="https://espresso.codeforces.com/9eb4b4c143d3ad267ae05d1e43341bd368b3088b.png" style="max-width: 100.0%;max-height: 100.0%;"/> The number next to each edge corresponds to the path number in the decomposition. It is easy to see that this decomposition suits the required conditions. The tree from the second example is shown on the picture below: <img class="tex-graphics" src="https://espresso.codeforces.com/20704b97182d9bcde3321c00a16edcae4d772d93.png" style="max-width: 100.0%;max-height: 100.0%;"/> We can show that there are no valid decompositions of this tree. The tree from the third example is shown on the picture below: <img class="tex-graphics" src="https://espresso.codeforces.com/357ff9496a4ed4746401160ee6ee63f5d57d81b9.png" style="max-width: 100.0%;max-height: 100.0%;"/> The number next to each edge corresponds to the path number in the decomposition. It is easy to see that this decomposition suits the required conditions.
1,250
[ { "input": "4\n1 2\n2 3\n3 4", "output": "Yes\n1\n1 4" }, { "input": "6\n1 2\n2 3\n3 4\n2 5\n3 6", "output": "No" }, { "input": "5\n1 2\n1 3\n1 4\n1 5", "output": "Yes\n4\n1 2\n1 3\n1 4\n1 5" }, { "input": "2\n1 2", "output": "Yes\n1\n1 2" }, { "input": "8\n1 2\n1 3\n1 4\n1 8\n7 8\n6 8\n5 8", "output": "No" }, { "input": "9\n1 2\n1 3\n1 4\n1 5\n1 6\n6 7\n7 8\n7 9", "output": "No" }, { "input": "3\n2 3\n1 2", "output": "Yes\n1\n1 3" } ]
1,527,435,235
2,635
Python 3
WRONG_ANSWER
PRETESTS
0
93
0
n=int(input()) g=[0 for i in range(n)] for i in range(n-1): a,b=map(int,input().split()) g[a-1]+=1 g[b-1]+=1 q=0 k=0 kind=0 m=0 for i in range(n): if g[i]==1: m+=1 if g[i]>2: if g[i]>k: kind=i k=g[i] q+=1 if q>1: print('NO') else: print('YES') if k>2: print(m) for i in range(n): if g[i]==1: print(kind+1,i+1) else: print(1) for i in range(n): if g[i]==1: print(i+1,end=' ')
Title: Useful Decomposition Time Limit: None seconds Memory Limit: None megabytes Problem Description: Ramesses knows a lot about problems involving trees (undirected connected graphs without cycles)! He created a new useful tree decomposition, but he does not know how to construct it, so he asked you for help! The decomposition is the splitting the edges of the tree in some simple paths in such a way that each two paths have at least one common vertex. Each edge of the tree should be in exactly one path. Help Remesses, find such a decomposition of the tree or derermine that there is no such decomposition. Input Specification: The first line contains a single integer $n$ ($2 \leq n \leq 10^{5}$) the number of nodes in the tree. Each of the next $n<=-<=1$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq n$, $a_i \neq b_i$) — the edges of the tree. It is guaranteed that the given edges form a tree. Output Specification: If there are no decompositions, print the only line containing "No". Otherwise in the first line print "Yes", and in the second line print the number of paths in the decomposition $m$. Each of the next $m$ lines should contain two integers $u_i$, $v_i$ ($1 \leq u_i, v_i \leq n$, $u_i \neq v_i$) denoting that one of the paths in the decomposition is the simple path between nodes $u_i$ and $v_i$. Each pair of paths in the decomposition should have at least one common vertex, and each edge of the tree should be presented in exactly one path. You can print the paths and the ends of each path in arbitrary order. If there are multiple decompositions, print any. Demo Input: ['4\n1 2\n2 3\n3 4\n', '6\n1 2\n2 3\n3 4\n2 5\n3 6\n', '5\n1 2\n1 3\n1 4\n1 5\n'] Demo Output: ['Yes\n1\n1 4\n', 'No\n', 'Yes\n4\n1 2\n1 3\n1 4\n1 5\n'] Note: The tree from the first example is shown on the picture below: <img class="tex-graphics" src="https://espresso.codeforces.com/9eb4b4c143d3ad267ae05d1e43341bd368b3088b.png" style="max-width: 100.0%;max-height: 100.0%;"/> The number next to each edge corresponds to the path number in the decomposition. It is easy to see that this decomposition suits the required conditions. The tree from the second example is shown on the picture below: <img class="tex-graphics" src="https://espresso.codeforces.com/20704b97182d9bcde3321c00a16edcae4d772d93.png" style="max-width: 100.0%;max-height: 100.0%;"/> We can show that there are no valid decompositions of this tree. The tree from the third example is shown on the picture below: <img class="tex-graphics" src="https://espresso.codeforces.com/357ff9496a4ed4746401160ee6ee63f5d57d81b9.png" style="max-width: 100.0%;max-height: 100.0%;"/> The number next to each edge corresponds to the path number in the decomposition. It is easy to see that this decomposition suits the required conditions.
```python n=int(input()) g=[0 for i in range(n)] for i in range(n-1): a,b=map(int,input().split()) g[a-1]+=1 g[b-1]+=1 q=0 k=0 kind=0 m=0 for i in range(n): if g[i]==1: m+=1 if g[i]>2: if g[i]>k: kind=i k=g[i] q+=1 if q>1: print('NO') else: print('YES') if k>2: print(m) for i in range(n): if g[i]==1: print(kind+1,i+1) else: print(1) for i in range(n): if g[i]==1: print(i+1,end=' ') ```
0
180
C
Letter
PROGRAMMING
1,400
[ "dp" ]
null
null
Patrick has just finished writing a message to his sweetheart Stacey when he noticed that the message didn't look fancy. Patrick was nervous while writing the message, so some of the letters there were lowercase and some of them were uppercase. Patrick believes that a message is fancy if any uppercase letter stands to the left of any lowercase one. In other words, this rule describes the strings where first go zero or more uppercase letters, and then — zero or more lowercase letters. To make the message fancy, Patrick can erase some letter and add the same letter in the same place in the opposite case (that is, he can replace an uppercase letter with the lowercase one and vice versa). Patrick got interested in the following question: what minimum number of actions do we need to make a message fancy? Changing a letter's case in the message counts as one action. Patrick cannot perform any other actions.
The only line of the input contains a non-empty string consisting of uppercase and lowercase letters. The string's length does not exceed 105.
Print a single number — the least number of actions needed to make the message fancy.
[ "PRuvetSTAaYA\n", "OYPROSTIYAOPECHATALSYAPRIVETSTASYA\n", "helloworld\n" ]
[ "5\n", "0\n", "0\n" ]
none
0
[ { "input": "PRuvetSTAaYA", "output": "5" }, { "input": "OYPROSTIYAOPECHATALSYAPRIVETSTASYA", "output": "0" }, { "input": "helloworld", "output": "0" }, { "input": "P", "output": "0" }, { "input": "t", "output": "0" }, { "input": "XdJ", "output": "1" }, { "input": "FSFlNEelYY", "output": "3" }, { "input": "lgtyasficu", "output": "0" }, { "input": "WYKUDTDDBT", "output": "0" }, { "input": "yysxwlyqboatikfnpxczmpijziiojbvadlfozjqldssffcxdegyxfrvohoxvgsrvlzjlkcuffoeisrpvagxtbkapkpzcafadzzjd", "output": "0" }, { "input": "mnAkOBuKxaiJwXhKnlcCvjxYXGXDoIqfUYkiLrdSYWhMemgWFzsgpoKOtHqooxbLYFuABWQSXuHdbyPVWyrkeEfqOsnEBikiqhfu", "output": "43" }, { "input": "MMVESdOCALHJCTBTUWWQRGUUVTTTABKKAAdIINAdKLRLLVLODHDXDPMcQfUhPNHFBJSDRGsHZNORSCPNvKOOIuZnZAmTPUCoPNlR", "output": "13" }, { "input": "MMbJIBhgFXPVpdQHLkWJkAHFIfJSpITTCRzRCzvRPRYECCheOknfINZWuKATDBOrEVKTcWXiYPjtzQMGUSGPNTMCUrvYCSWQHqAi", "output": "27" }, { "input": "ZnqXEBOABXVbHRFFqDLWpWBBLqZIagmbRAYMDKJAYyFQXnPYwvDyRXKHLQnMLHGEOnRKmXtGqyQkoBCSmgKPcEIEugwJyxDOtTVn", "output": "31" } ]
1,613,066,186
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
92
0
s=input() x,y=0,0 for i in s: if s.islower(): x+=1 elif x>0: y+=1 x-=1 print(y)
Title: Letter Time Limit: None seconds Memory Limit: None megabytes Problem Description: Patrick has just finished writing a message to his sweetheart Stacey when he noticed that the message didn't look fancy. Patrick was nervous while writing the message, so some of the letters there were lowercase and some of them were uppercase. Patrick believes that a message is fancy if any uppercase letter stands to the left of any lowercase one. In other words, this rule describes the strings where first go zero or more uppercase letters, and then — zero or more lowercase letters. To make the message fancy, Patrick can erase some letter and add the same letter in the same place in the opposite case (that is, he can replace an uppercase letter with the lowercase one and vice versa). Patrick got interested in the following question: what minimum number of actions do we need to make a message fancy? Changing a letter's case in the message counts as one action. Patrick cannot perform any other actions. Input Specification: The only line of the input contains a non-empty string consisting of uppercase and lowercase letters. The string's length does not exceed 105. Output Specification: Print a single number — the least number of actions needed to make the message fancy. Demo Input: ['PRuvetSTAaYA\n', 'OYPROSTIYAOPECHATALSYAPRIVETSTASYA\n', 'helloworld\n'] Demo Output: ['5\n', '0\n', '0\n'] Note: none
```python s=input() x,y=0,0 for i in s: if s.islower(): x+=1 elif x>0: y+=1 x-=1 print(y) ```
0
808
B
Average Sleep Time
PROGRAMMING
1,300
[ "data structures", "implementation", "math" ]
null
null
It's been almost a week since Polycarp couldn't get rid of insomnia. And as you may already know, one week in Berland lasts *k* days! When Polycarp went to a doctor with his problem, the doctor asked him about his sleeping schedule (more specifically, the average amount of hours of sleep per week). Luckily, Polycarp kept records of sleep times for the last *n* days. So now he has a sequence *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* is the sleep time on the *i*-th day. The number of records is so large that Polycarp is unable to calculate the average value by himself. Thus he is asking you to help him with the calculations. To get the average Polycarp is going to consider *k* consecutive days as a week. So there will be *n*<=-<=*k*<=+<=1 weeks to take into consideration. For example, if *k*<==<=2, *n*<==<=3 and *a*<==<=[3,<=4,<=7], then the result is . You should write a program which will calculate average sleep times of Polycarp over all weeks.
The first line contains two integer numbers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=2·105). The second line contains *n* integer numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=105).
Output average sleeping time over all weeks. The answer is considered to be correct if its absolute or relative error does not exceed 10<=-<=6. In particular, it is enough to output real number with at least 6 digits after the decimal point.
[ "3 2\n3 4 7\n", "1 1\n10\n", "8 2\n1 2 4 100000 123 456 789 1\n" ]
[ "9.0000000000\n", "10.0000000000\n", "28964.2857142857\n" ]
In the third example there are *n* - *k* + 1 = 7 weeks, so the answer is sums of all weeks divided by 7.
0
[ { "input": "3 2\n3 4 7", "output": "9.0000000000" }, { "input": "1 1\n10", "output": "10.0000000000" }, { "input": "8 2\n1 2 4 100000 123 456 789 1", "output": "28964.2857142857" }, { "input": "1 1\n1", "output": "1.0000000000" }, { "input": "1 1\n100000", "output": "100000.0000000000" }, { "input": "3 1\n1 2 3", "output": "2.0000000000" }, { "input": "10 4\n11 3 5 20 12 7 9 2 2 20", "output": "36.2857142857" }, { "input": "10 5\n15 9 3 2 17 10 9 18 4 19", "output": "50.3333333333" }, { "input": "10 6\n19 3 20 16 14 10 1 13 7 3", "output": "65.8000000000" }, { "input": "10 7\n8 16 2 13 15 9 5 13 9 2", "output": "68.2500000000" }, { "input": "10 4\n127 1459 718 1183 880 1044 1857 1340 725 1496", "output": "4574.4285714286" }, { "input": "10 5\n1384 1129 1780 1960 1567 1928 12 1523 1165 344", "output": "6931.3333333333" } ]
1,495,278,539
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
5
46
0
inputnumber,interval=list(map(int,input().split())) elementara=list(map(int,input().split())) answer=0 loop1=0 for i in range(len(elementara)): if i<(interval-1): answer+=(elementara[i])*(i+1) #print(elementara[i],answer) elif i>((len(elementara))-interval): answer += (elementara[i]) * ((len(elementara)-i)) #print(elementara[i], answer) else: answer+=(interval*(elementara[i])) #print(elementara[i]) #print(answer/(inputnumber-1) if inputnumber==1: print('{0:.7f}'.format(answer / (inputnumber))) else: print ('{0:.7f}'.format(answer/(inputnumber-1)))
Title: Average Sleep Time Time Limit: None seconds Memory Limit: None megabytes Problem Description: It's been almost a week since Polycarp couldn't get rid of insomnia. And as you may already know, one week in Berland lasts *k* days! When Polycarp went to a doctor with his problem, the doctor asked him about his sleeping schedule (more specifically, the average amount of hours of sleep per week). Luckily, Polycarp kept records of sleep times for the last *n* days. So now he has a sequence *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* is the sleep time on the *i*-th day. The number of records is so large that Polycarp is unable to calculate the average value by himself. Thus he is asking you to help him with the calculations. To get the average Polycarp is going to consider *k* consecutive days as a week. So there will be *n*<=-<=*k*<=+<=1 weeks to take into consideration. For example, if *k*<==<=2, *n*<==<=3 and *a*<==<=[3,<=4,<=7], then the result is . You should write a program which will calculate average sleep times of Polycarp over all weeks. Input Specification: The first line contains two integer numbers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=2·105). The second line contains *n* integer numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=105). Output Specification: Output average sleeping time over all weeks. The answer is considered to be correct if its absolute or relative error does not exceed 10<=-<=6. In particular, it is enough to output real number with at least 6 digits after the decimal point. Demo Input: ['3 2\n3 4 7\n', '1 1\n10\n', '8 2\n1 2 4 100000 123 456 789 1\n'] Demo Output: ['9.0000000000\n', '10.0000000000\n', '28964.2857142857\n'] Note: In the third example there are *n* - *k* + 1 = 7 weeks, so the answer is sums of all weeks divided by 7.
```python inputnumber,interval=list(map(int,input().split())) elementara=list(map(int,input().split())) answer=0 loop1=0 for i in range(len(elementara)): if i<(interval-1): answer+=(elementara[i])*(i+1) #print(elementara[i],answer) elif i>((len(elementara))-interval): answer += (elementara[i]) * ((len(elementara)-i)) #print(elementara[i], answer) else: answer+=(interval*(elementara[i])) #print(elementara[i]) #print(answer/(inputnumber-1) if inputnumber==1: print('{0:.7f}'.format(answer / (inputnumber))) else: print ('{0:.7f}'.format(answer/(inputnumber-1))) ```
0
794
A
Bank Robbery
PROGRAMMING
800
[ "brute force", "implementation" ]
null
null
A robber has attempted to rob a bank but failed to complete his task. However, he had managed to open all the safes. Oleg the bank client loves money (who doesn't), and decides to take advantage of this failed robbery and steal some money from the safes. There are many safes arranged in a line, where the *i*-th safe from the left is called safe *i*. There are *n* banknotes left in all the safes in total. The *i*-th banknote is in safe *x**i*. Oleg is now at safe *a*. There are two security guards, one of which guards the safe *b* such that *b*<=&lt;<=*a*, i.e. the first guard is to the left of Oleg. The other guard guards the safe *c* so that *c*<=&gt;<=*a*, i.e. he is to the right of Oleg. The two guards are very lazy, so they do not move. In every second, Oleg can either take all the banknotes from the current safe or move to any of the neighboring safes. However, he cannot visit any safe that is guarded by security guards at any time, becaues he might be charged for stealing. Determine the maximum amount of banknotes Oleg can gather.
The first line of input contains three space-separated integers, *a*, *b* and *c* (1<=≤<=*b*<=&lt;<=*a*<=&lt;<=*c*<=≤<=109), denoting the positions of Oleg, the first security guard and the second security guard, respectively. The next line of input contains a single integer *n* (1<=≤<=*n*<=≤<=105), denoting the number of banknotes. The next line of input contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (1<=≤<=*x**i*<=≤<=109), denoting that the *i*-th banknote is located in the *x**i*-th safe. Note that *x**i* are not guaranteed to be distinct.
Output a single integer: the maximum number of banknotes Oleg can take.
[ "5 3 7\n8\n4 7 5 5 3 6 2 8\n", "6 5 7\n5\n1 5 7 92 3\n" ]
[ "4\n", "0\n" ]
In the first example Oleg can take the banknotes in positions 4, 5, 6 (note that there are 2 banknotes at position 5). Oleg can't take the banknotes in safes 7 and 8 because he can't run into the second security guard. Similarly, Oleg cannot take the banknotes at positions 3 and 2 because he can't run into the first security guard. Thus, he can take a maximum of 4 banknotes. For the second sample, Oleg can't take any banknotes without bumping into any of the security guards.
500
[ { "input": "5 3 7\n8\n4 7 5 5 3 6 2 8", "output": "4" }, { "input": "6 5 7\n5\n1 5 7 92 3", "output": "0" }, { "input": "3 2 4\n1\n3", "output": "1" }, { "input": "5 3 8\n12\n8 3 4 5 7 6 8 3 5 4 7 6", "output": "8" }, { "input": "7 3 10\n5\n3 3 3 3 3", "output": "0" }, { "input": "3 2 5\n4\n1 3 4 5", "output": "2" }, { "input": "3 2 4\n1\n1", "output": "0" }, { "input": "6 4 8\n1\n4", "output": "0" }, { "input": "2 1 3\n1\n3", "output": "0" } ]
1,495,142,019
2,147,483,647
Python 3
OK
TESTS
46
170
7,577,600
a, b, c = map(int, input().split()); n = int(input()) print(sum(1 for x in input().split() if int(x) in range(b + 1, c)))
Title: Bank Robbery Time Limit: None seconds Memory Limit: None megabytes Problem Description: A robber has attempted to rob a bank but failed to complete his task. However, he had managed to open all the safes. Oleg the bank client loves money (who doesn't), and decides to take advantage of this failed robbery and steal some money from the safes. There are many safes arranged in a line, where the *i*-th safe from the left is called safe *i*. There are *n* banknotes left in all the safes in total. The *i*-th banknote is in safe *x**i*. Oleg is now at safe *a*. There are two security guards, one of which guards the safe *b* such that *b*<=&lt;<=*a*, i.e. the first guard is to the left of Oleg. The other guard guards the safe *c* so that *c*<=&gt;<=*a*, i.e. he is to the right of Oleg. The two guards are very lazy, so they do not move. In every second, Oleg can either take all the banknotes from the current safe or move to any of the neighboring safes. However, he cannot visit any safe that is guarded by security guards at any time, becaues he might be charged for stealing. Determine the maximum amount of banknotes Oleg can gather. Input Specification: The first line of input contains three space-separated integers, *a*, *b* and *c* (1<=≤<=*b*<=&lt;<=*a*<=&lt;<=*c*<=≤<=109), denoting the positions of Oleg, the first security guard and the second security guard, respectively. The next line of input contains a single integer *n* (1<=≤<=*n*<=≤<=105), denoting the number of banknotes. The next line of input contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (1<=≤<=*x**i*<=≤<=109), denoting that the *i*-th banknote is located in the *x**i*-th safe. Note that *x**i* are not guaranteed to be distinct. Output Specification: Output a single integer: the maximum number of banknotes Oleg can take. Demo Input: ['5 3 7\n8\n4 7 5 5 3 6 2 8\n', '6 5 7\n5\n1 5 7 92 3\n'] Demo Output: ['4\n', '0\n'] Note: In the first example Oleg can take the banknotes in positions 4, 5, 6 (note that there are 2 banknotes at position 5). Oleg can't take the banknotes in safes 7 and 8 because he can't run into the second security guard. Similarly, Oleg cannot take the banknotes at positions 3 and 2 because he can't run into the first security guard. Thus, he can take a maximum of 4 banknotes. For the second sample, Oleg can't take any banknotes without bumping into any of the security guards.
```python a, b, c = map(int, input().split()); n = int(input()) print(sum(1 for x in input().split() if int(x) in range(b + 1, c))) ```
3
288
C
Polo the Penguin and XOR operation
PROGRAMMING
1,700
[ "implementation", "math" ]
null
null
Little penguin Polo likes permutations. But most of all he likes permutations of integers from 0 to *n*, inclusive. For permutation *p*<==<=*p*0,<=*p*1,<=...,<=*p**n*, Polo has defined its beauty — number . Expression means applying the operation of bitwise excluding "OR" to numbers *x* and *y*. This operation exists in all modern programming languages, for example, in language C++ and Java it is represented as "^" and in Pascal — as "xor". Help him find among all permutations of integers from 0 to *n* the permutation with the maximum beauty.
The single line contains a positive integer *n* (1<=≤<=*n*<=≤<=106).
In the first line print integer *m* the maximum possible beauty. In the second line print any permutation of integers from 0 to *n* with the beauty equal to *m*. If there are several suitable permutations, you are allowed to print any of them.
[ "4\n" ]
[ "20\n0 2 1 4 3\n" ]
none
1,500
[ { "input": "4", "output": "20\n0 2 1 4 3" }, { "input": "7", "output": "56\n7 6 5 4 3 2 1 0" }, { "input": "1", "output": "2\n1 0" }, { "input": "2", "output": "6\n0 2 1" }, { "input": "3", "output": "12\n3 2 1 0" }, { "input": "8", "output": "72\n0 6 5 4 3 2 1 8 7" }, { "input": "10", "output": "110\n0 2 1 4 3 10 9 8 7 6 5" }, { "input": "47", "output": "2256\n15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16" }, { "input": "74", "output": "5550\n0 2 1 4 3 10 9 8 7 6 5 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53" }, { "input": "99", "output": "9900\n3 2 1 0 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28" }, { "input": "128", "output": "16512\n0 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 128 127" }, { "input": "257", "output": "66306\n1 0 253 252 251 250 249 248 247 246 245 244 243 242 241 240 239 238 237 236 235 234 233 232 231 230 229 228 227 226 225 224 223 222 221 220 219 218 217 216 215 214 213 212 211 210 209 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 ..." }, { "input": "1000000", "output": "1000001000000\n0 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 64 63 446 445 444 443 442 441 440 439 438 437 436 435 434 433 432 431 430 429 428 427 426 425 424 423 422 421 420 419 418 417 416 415 414 413 412 411 410 409 408 407 406 405 404 403 402 401 400 399 398 397 396 395 394 393 392 391 390 389 388 387 386 385 384 383 382 381 380 379 378 377 376 375 374 373 372 371 370 369..." }, { "input": "77845", "output": "6059921870\n1 0 5 4 3 2 9 8 7 6 21 20 19 18 17 16 15 14 13 12 11 10 4073 4072 4071 4070 4069 4068 4067 4066 4065 4064 4063 4062 4061 4060 4059 4058 4057 4056 4055 4054 4053 4052 4051 4050 4049 4048 4047 4046 4045 4044 4043 4042 4041 4040 4039 4038 4037 4036 4035 4034 4033 4032 4031 4030 4029 4028 4027 4026 4025 4024 4023 4022 4021 4020 4019 4018 4017 4016 4015 4014 4013 4012 4011 4010 4009 4008 4007 4006 4005 4004 4003 4002 4001 4000 3999 3998 3997 3996 3995 3994 3993 3992 3991 3990 3989 3988 3987 3986 398..." }, { "input": "100000", "output": "10000100000\n0 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 32 31 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105..." }, { "input": "100001", "output": "10000300002\n1 0 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 33 32 31 30 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 10..." }, { "input": "999999", "output": "999999000000\n63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 447 446 445 444 443 442 441 440 439 438 437 436 435 434 433 432 431 430 429 428 427 426 425 424 423 422 421 420 419 418 417 416 415 414 413 412 411 410 409 408 407 406 405 404 403 402 401 400 399 398 397 396 395 394 393 392 391 390 389 388 387 386 385 384 383 382 381 380 379 378 377 376 375 374 373 372 371 370 369..." }, { "input": "777777", "output": "604937839506\n1 0 13 12 11 10 9 8 7 6 5 4 3 2 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 461 460 459 458 457 456 455 454 453 452 451 450 449 448 447 446 445 444 443 442 441 440 439 438 437 436 435 434 433 432 431 430 429 428 427 426 425 424 423 422 421 420 419 418 417 416 415 414 413 412 411 410 409 408 407 406 405 404 403 402 401 400 399 398 397 396 395 394 393 392 391 390 389 388 387 386 385 384 383 382 381 380 379 378 377 376 375 374 373 3..." }, { "input": "687500", "output": "472656937500\n0 2 1 12 11 10 9 8 7 6 5 4 3 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 396 395 394 393 392 391 390 389 388 387 386 385 384 383 382 381 380 379 378 377 376 375 374 373 372 371 370 369 368 367 366 365 364 363 362 361 360..." }, { "input": "17", "output": "306\n1 0 13 12 11 10 9 8 7 6 5 4 3 2 17 16 15 14" }, { "input": "18", "output": "342\n0 2 1 12 11 10 9 8 7 6 5 4 3 18 17 16 15 14 13" }, { "input": "19", "output": "380\n3 2 1 0 11 10 9 8 7 6 5 4 19 18 17 16 15 14 13 12" }, { "input": "20", "output": "420\n0 2 1 4 3 10 9 8 7 6 5 20 19 18 17 16 15 14 13 12 11" }, { "input": "4587", "output": "21045156\n3 2 1 0 11 10 9 8 7 6 5 4 19 18 17 16 15 14 13 12 491 490 489 488 487 486 485 484 483 482 481 480 479 478 477 476 475 474 473 472 471 470 469 468 467 466 465 464 463 462 461 460 459 458 457 456 455 454 453 452 451 450 449 448 447 446 445 444 443 442 441 440 439 438 437 436 435 434 433 432 431 430 429 428 427 426 425 424 423 422 421 420 419 418 417 416 415 414 413 412 411 410 409 408 407 406 405 404 403 402 401 400 399 398 397 396 395 394 393 392 391 390 389 388 387 386 385 384 383 382 381 380 379..." }, { "input": "15475", "output": "239491100\n3 2 1 0 11 10 9 8 7 6 5 4 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 907 906 905 904 903 902 901 900 899 898 897 896 895 894 893 892 891 890 889 888 887 886 885 884 883 882 881 880 879 878 877 876 875 874 873 872 87..." }, { "input": "68450", "output": "4685470950\n0 2 1 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 ..." }, { "input": "6100", "output": "37216100\n0 2 1 4 3 10 9 8 7 6 5 20 19 18 17 16 15 14 13 12 11 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 1987 1986 1985 1984 1983 1982 1981 1980 1979 1978 1977 1976 1975 1974 1973 1972 1971 1970 1969 1968 1967 1966 1965 1964 1963 1962 1961 1960 1959 1958 1957 1956 1955 1954 1953 1952 1951 1950 1949 1948 1947 1946 1945 1944 1943 1942 1941 1940 1939 1938 1937 1936 1935 1934 1933 1932 1931 1930 1929 19..." }, { "input": "1047", "output": "1097256\n7 6 5 4 3 2 1 0 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 999 998 997 996 995 994 993 992 991 990 989 988 987 986 985 984 983 982 981 980 979 978 977 976 975 974 973 972 971 970 969 968 967 966 965 964 963 962 961 960 959 958 957 956 955 954 953 952 951 950 949 948 947 946 945 944 943 942 941 940 939 938 937 936 935 934 933 932 931 930 929 928 927 926 925 924 923 922 921 920 919 918 917 916 915 914 913 912 911 910 909 908 907 906 905 904 903 902 901 900 899 898 897 896 895 894 893 892 891 890 ..." }, { "input": "670041", "output": "448955611722\n1 0 5 4 3 2 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 37 36 35 34 33 32 31 30 29 28 27 26 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 1..." }, { "input": "875495", "output": "766492370520\n7 6 5 4 3 2 1 0 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 999 998 997 996 995 994 993 992 991 990 989 988 987 986 985 984 983 982 981 980 979 978 977 976 975 974 973 972 971 970 969 968 967 966 965 964 963 962 961 960 959 958 957 956 955 954 953 952 951 950 949 948 947 946 945 944 943 942 941 940 939 938 937 936 935 934 933 932 931 930 929 928 927 926 925 924 923 922 921 920 919 918 917 916 915 914 913 912 911 910 909 908 907 906 905 904 903 902 901 900 899 898 897 896 895 894 893 892 891..." }, { "input": "687548", "output": "472722939852\n0 2 1 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 66 65 64 63 62 61 444 443 442 441 440 439 438 437 436 435 434 433 432 431 430 429 428 427 426 425 424 423 422 421 420 419 418 417 416 415 414 413 412 411 410 409 408 407 406 405 404 403 402 401 400 399 398 397 396 395 394 393 392 391 390 389 388 387 386 385 384 383 382 381 380 379 378 377 376 375 374 373 372 371 370 369 36..." }, { "input": "154781", "output": "23957312742\n1 0 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 10..." }, { "input": "684501", "output": "468542303502\n1 0 5 4 3 2 9 8 7 6 21 20 19 18 17 16 15 14 13 12 11 10 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 469 468 467 466 465 464 463 462 461 460 459 458 457 456 455 454 453 452 451 450 449 448 447 446 445 444 443 442 441 440 439 438 437 436 435 434 433 432 431 430 429 428 427 426 425 424 423 422 421 420 419 418 417 416 415 414 413 412 411 410 409 408 407 406 405 404 403 402 401 400 399 398 397 396 395 394 393 392 391 390 389 388 387 386 385 384 383 382 381 380 379 378 377 376 375 3..." }, { "input": "754810", "output": "569738890910\n0 2 1 4 3 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 900 899 898 897 896 895 894 893 892 891 890 889 888 887 886 885 884 883 882 881 880 879 878 877 876 875 874 873 872..." }, { "input": "987548", "output": "975252039852\n0 2 1 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 412 411 410 409 408 407 406 405 404 403 402 401 400 399 398 397 396 395 394 393 392 391 390 389 388 387 386 385 384 383 382 381 380 379 378 377 376 375 374 373 372 371 370 369 368 367 366 365 364 363 362 361 36..." }, { "input": "348754", "output": "121629701270\n0 2 1 12 11 10 9 8 7 6 5 4 3 18 17 16 15 14 13 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 428 427 426 425 424 423 422 421 420 419 418 417 416 415 414 413 412 411 410 409 408 407 406 405 404 403 402 401 400 399 398 397 396 395 394 393 392 391 390 389 388 387 386 385 384 383 382 381 380 379 378 377 376 375 374 373 372 371 370 369 368 367 366 365 36..." }, { "input": "20", "output": "420\n0 2 1 4 3 10 9 8 7 6 5 20 19 18 17 16 15 14 13 12 11" }, { "input": "11", "output": "132\n3 2 1 0 11 10 9 8 7 6 5 4" }, { "input": "12", "output": "156\n0 2 1 12 11 10 9 8 7 6 5 4 3" }, { "input": "13", "output": "182\n1 0 13 12 11 10 9 8 7 6 5 4 3 2" }, { "input": "14", "output": "210\n0 14 13 12 11 10 9 8 7 6 5 4 3 2 1" }, { "input": "15", "output": "240\n15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0" } ]
1,634,498,031
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
12
2,000
27,955,200
n = int(input()) ans = [0]*(n+1) used = [False]*(n+1) mask = (1<<10) -1 for i in range(n,-1,-1): while (mask^i)>n or used[mask^i]==True: mask = mask>>1 ans[i]=mask^i used[mask^i]=True print(n*(n+1)) print(*ans)
Title: Polo the Penguin and XOR operation Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little penguin Polo likes permutations. But most of all he likes permutations of integers from 0 to *n*, inclusive. For permutation *p*<==<=*p*0,<=*p*1,<=...,<=*p**n*, Polo has defined its beauty — number . Expression means applying the operation of bitwise excluding "OR" to numbers *x* and *y*. This operation exists in all modern programming languages, for example, in language C++ and Java it is represented as "^" and in Pascal — as "xor". Help him find among all permutations of integers from 0 to *n* the permutation with the maximum beauty. Input Specification: The single line contains a positive integer *n* (1<=≤<=*n*<=≤<=106). Output Specification: In the first line print integer *m* the maximum possible beauty. In the second line print any permutation of integers from 0 to *n* with the beauty equal to *m*. If there are several suitable permutations, you are allowed to print any of them. Demo Input: ['4\n'] Demo Output: ['20\n0 2 1 4 3\n'] Note: none
```python n = int(input()) ans = [0]*(n+1) used = [False]*(n+1) mask = (1<<10) -1 for i in range(n,-1,-1): while (mask^i)>n or used[mask^i]==True: mask = mask>>1 ans[i]=mask^i used[mask^i]=True print(n*(n+1)) print(*ans) ```
0