contestId
int64 0
1.01k
| index
stringclasses 57
values | name
stringlengths 2
58
| type
stringclasses 2
values | rating
int64 0
3.5k
| tags
listlengths 0
11
| title
stringclasses 522
values | time-limit
stringclasses 8
values | memory-limit
stringclasses 8
values | problem-description
stringlengths 0
7.15k
| input-specification
stringlengths 0
2.05k
| output-specification
stringlengths 0
1.5k
| demo-input
listlengths 0
7
| demo-output
listlengths 0
7
| note
stringlengths 0
5.24k
| points
float64 0
425k
| test_cases
listlengths 0
402
| creationTimeSeconds
int64 1.37B
1.7B
| relativeTimeSeconds
int64 8
2.15B
| programmingLanguage
stringclasses 3
values | verdict
stringclasses 14
values | testset
stringclasses 12
values | passedTestCount
int64 0
1k
| timeConsumedMillis
int64 0
15k
| memoryConsumedBytes
int64 0
805M
| code
stringlengths 3
65.5k
| prompt
stringlengths 262
8.2k
| response
stringlengths 17
65.5k
| score
float64 -1
3.99
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
602
|
A
|
Two Bases
|
PROGRAMMING
| 1,100
|
[
"brute force",
"implementation"
] | null | null |
After seeing the "ALL YOUR BASE ARE BELONG TO US" meme for the first time, numbers *X* and *Y* realised that they have different bases, which complicated their relations.
You're given a number *X* represented in base *b**x* and a number *Y* represented in base *b**y*. Compare those two numbers.
|
The first line of the input contains two space-separated integers *n* and *b**x* (1<=≤<=*n*<=≤<=10, 2<=≤<=*b**x*<=≤<=40), where *n* is the number of digits in the *b**x*-based representation of *X*.
The second line contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=<<=*b**x*) — the digits of *X*. They are given in the order from the most significant digit to the least significant one.
The following two lines describe *Y* in the same way: the third line contains two space-separated integers *m* and *b**y* (1<=≤<=*m*<=≤<=10, 2<=≤<=*b**y*<=≤<=40, *b**x*<=≠<=*b**y*), where *m* is the number of digits in the *b**y*-based representation of *Y*, and the fourth line contains *m* space-separated integers *y*1,<=*y*2,<=...,<=*y**m* (0<=≤<=*y**i*<=<<=*b**y*) — the digits of *Y*.
There will be no leading zeroes. Both *X* and *Y* will be positive. All digits of both numbers are given in the standard decimal numeral system.
|
Output a single character (quotes for clarity):
- '<' if *X*<=<<=*Y* - '>' if *X*<=><=*Y* - '=' if *X*<==<=*Y*
|
[
"6 2\n1 0 1 1 1 1\n2 10\n4 7\n",
"3 3\n1 0 2\n2 5\n2 4\n",
"7 16\n15 15 4 0 0 7 10\n7 9\n4 8 0 3 1 5 0\n"
] |
[
"=\n",
"<\n",
">\n"
] |
In the first sample, *X* = 101111<sub class="lower-index">2</sub> = 47<sub class="lower-index">10</sub> = *Y*.
In the second sample, *X* = 102<sub class="lower-index">3</sub> = 21<sub class="lower-index">5</sub> and *Y* = 24<sub class="lower-index">5</sub> = 112<sub class="lower-index">3</sub>, thus *X* < *Y*.
In the third sample, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/603a342b0ae3e56fed542d1c50c0a5ff6ce2cbaa.png" style="max-width: 100.0%;max-height: 100.0%;"/> and *Y* = 4803150<sub class="lower-index">9</sub>. We may notice that *X* starts with much larger digits and *b*<sub class="lower-index">*x*</sub> is much larger than *b*<sub class="lower-index">*y*</sub>, so *X* is clearly larger than *Y*.
| 500
|
[
{
"input": "6 2\n1 0 1 1 1 1\n2 10\n4 7",
"output": "="
},
{
"input": "3 3\n1 0 2\n2 5\n2 4",
"output": "<"
},
{
"input": "7 16\n15 15 4 0 0 7 10\n7 9\n4 8 0 3 1 5 0",
"output": ">"
},
{
"input": "2 2\n1 0\n2 3\n1 0",
"output": "<"
},
{
"input": "2 2\n1 0\n1 3\n1",
"output": ">"
},
{
"input": "10 2\n1 0 1 0 1 0 1 0 1 0\n10 3\n2 2 2 2 2 2 2 2 2 2",
"output": "<"
},
{
"input": "10 16\n15 15 4 0 0 0 0 7 10 9\n7 9\n4 8 0 3 1 5 0",
"output": ">"
},
{
"input": "5 5\n4 4 4 4 4\n4 6\n5 5 5 5",
"output": ">"
},
{
"input": "2 8\n1 0\n4 2\n1 0 0 0",
"output": "="
},
{
"input": "5 2\n1 0 0 0 1\n6 8\n1 4 7 2 0 0",
"output": "<"
},
{
"input": "6 7\n1 1 2 1 2 1\n6 6\n2 3 2 2 2 2",
"output": "="
},
{
"input": "9 35\n34 3 20 29 27 30 2 8 5\n7 33\n17 3 22 31 1 11 6",
"output": ">"
},
{
"input": "1 8\n5\n9 27\n23 23 23 23 23 23 23 23 23",
"output": "<"
},
{
"input": "4 7\n3 0 6 6\n3 11\n7 10 10",
"output": ">"
},
{
"input": "1 40\n1\n2 5\n1 0",
"output": "<"
},
{
"input": "1 36\n35\n4 5\n2 4 4 1",
"output": "<"
},
{
"input": "1 30\n1\n1 31\n1",
"output": "="
},
{
"input": "1 3\n1\n1 2\n1",
"output": "="
},
{
"input": "1 2\n1\n1 40\n1",
"output": "="
},
{
"input": "6 29\n1 1 1 1 1 1\n10 21\n1 1 1 1 1 1 1 1 1 1",
"output": "<"
},
{
"input": "3 5\n1 0 0\n3 3\n2 2 2",
"output": "<"
},
{
"input": "2 8\n1 0\n2 3\n2 2",
"output": "="
},
{
"input": "2 4\n3 3\n2 15\n1 0",
"output": "="
},
{
"input": "2 35\n1 0\n2 6\n5 5",
"output": "="
},
{
"input": "2 6\n5 5\n2 34\n1 0",
"output": ">"
},
{
"input": "2 7\n1 0\n2 3\n2 2",
"output": "<"
},
{
"input": "2 2\n1 0\n1 3\n2",
"output": "="
},
{
"input": "2 9\n5 5\n4 3\n1 0 0 0",
"output": ">"
},
{
"input": "1 24\n6\n3 9\n1 1 1",
"output": "<"
},
{
"input": "5 37\n9 9 9 9 9\n6 27\n13 0 0 0 0 0",
"output": "<"
},
{
"input": "10 2\n1 1 1 1 1 1 1 1 1 1\n10 34\n14 14 14 14 14 14 14 14 14 14",
"output": "<"
},
{
"input": "7 26\n8 0 0 0 0 0 0\n9 9\n3 3 3 3 3 3 3 3 3",
"output": ">"
},
{
"input": "2 40\n2 0\n5 13\n4 0 0 0 0",
"output": "<"
},
{
"input": "1 22\n15\n10 14\n3 3 3 3 3 3 3 3 3 3",
"output": "<"
},
{
"input": "10 22\n3 3 3 3 3 3 3 3 3 3\n3 40\n19 19 19",
"output": ">"
},
{
"input": "2 29\n11 11\n6 26\n11 11 11 11 11 11",
"output": "<"
},
{
"input": "5 3\n1 0 0 0 0\n4 27\n1 0 0 0",
"output": "<"
},
{
"input": "10 3\n1 0 0 0 0 0 0 0 0 0\n8 13\n1 0 0 0 0 0 0 0",
"output": "<"
},
{
"input": "4 20\n1 1 1 1\n5 22\n1 1 1 1 1",
"output": "<"
},
{
"input": "10 39\n34 2 24 34 11 6 33 12 22 21\n10 36\n25 35 17 24 30 0 1 32 14 35",
"output": ">"
},
{
"input": "10 39\n35 12 31 35 28 27 25 8 22 25\n10 40\n23 21 18 12 15 29 38 32 4 8",
"output": ">"
},
{
"input": "10 38\n16 19 37 32 16 7 14 33 16 11\n10 39\n10 27 35 15 31 15 17 16 38 35",
"output": ">"
},
{
"input": "10 39\n20 12 10 32 24 14 37 35 10 38\n9 40\n1 13 0 10 22 20 1 5 35",
"output": ">"
},
{
"input": "10 40\n18 1 2 25 28 2 10 2 17 37\n10 39\n37 8 12 8 21 11 23 11 25 21",
"output": "<"
},
{
"input": "9 39\n10 20 16 36 30 29 28 9 8\n9 38\n12 36 10 22 6 3 19 12 34",
"output": "="
},
{
"input": "7 39\n28 16 13 25 19 23 4\n7 38\n33 8 2 19 3 21 14",
"output": "="
},
{
"input": "10 16\n15 15 4 0 0 0 0 7 10 9\n10 9\n4 8 0 3 1 5 4 8 1 0",
"output": ">"
},
{
"input": "7 22\n1 13 9 16 7 13 3\n4 4\n3 0 2 1",
"output": ">"
},
{
"input": "10 29\n10 19 8 27 1 24 13 15 13 26\n2 28\n20 14",
"output": ">"
},
{
"input": "6 16\n2 13 7 13 15 6\n10 22\n17 17 21 9 16 11 4 4 13 17",
"output": "<"
},
{
"input": "8 26\n6 6 17 25 24 8 8 25\n4 27\n24 7 5 24",
"output": ">"
},
{
"input": "10 23\n5 21 4 15 12 7 10 7 16 21\n4 17\n3 11 1 14",
"output": ">"
},
{
"input": "10 21\n4 7 7 2 13 7 19 19 18 19\n3 31\n6 11 28",
"output": ">"
},
{
"input": "1 30\n9\n7 37\n20 11 18 14 0 36 27",
"output": "<"
},
{
"input": "5 35\n22 18 28 29 11\n2 3\n2 0",
"output": ">"
},
{
"input": "7 29\n14 26 14 22 11 11 8\n6 28\n2 12 10 17 0 14",
"output": ">"
},
{
"input": "2 37\n25 2\n3 26\n13 13 12",
"output": "<"
},
{
"input": "8 8\n4 0 4 3 4 1 5 6\n8 24\n19 8 15 6 10 7 2 18",
"output": "<"
},
{
"input": "4 22\n18 16 1 2\n10 26\n23 0 12 24 16 2 24 25 1 11",
"output": "<"
},
{
"input": "7 31\n14 6 16 6 26 18 17\n7 24\n22 10 4 5 14 6 9",
"output": ">"
},
{
"input": "10 29\n15 22 0 5 11 12 17 22 4 27\n4 22\n9 2 8 14",
"output": ">"
},
{
"input": "2 10\n6 0\n10 26\n16 14 8 18 24 4 9 5 22 25",
"output": "<"
},
{
"input": "7 2\n1 0 0 0 1 0 1\n9 6\n1 1 5 1 2 5 3 5 3",
"output": "<"
},
{
"input": "3 9\n2 5 4\n1 19\n15",
"output": ">"
},
{
"input": "6 16\n4 9 13 4 2 8\n4 10\n3 5 2 4",
"output": ">"
},
{
"input": "2 12\n1 4\n8 16\n4 4 10 6 15 10 8 15",
"output": "<"
},
{
"input": "3 19\n9 18 16\n4 10\n4 3 5 4",
"output": "<"
},
{
"input": "7 3\n1 1 2 1 2 0 2\n2 2\n1 0",
"output": ">"
},
{
"input": "3 2\n1 1 1\n1 3\n1",
"output": ">"
},
{
"input": "4 4\n1 3 1 3\n9 3\n1 1 0 1 2 2 2 2 1",
"output": "<"
},
{
"input": "9 3\n1 0 0 1 1 0 0 1 2\n6 4\n1 2 0 1 3 2",
"output": ">"
},
{
"input": "3 5\n1 1 3\n10 4\n3 3 2 3 0 0 0 3 1 1",
"output": "<"
},
{
"input": "6 4\n3 3 2 2 0 2\n6 5\n1 1 1 1 0 3",
"output": ">"
},
{
"input": "6 5\n4 4 4 3 1 3\n7 6\n4 2 2 2 5 0 4",
"output": "<"
},
{
"input": "2 5\n3 3\n6 6\n4 2 0 1 1 0",
"output": "<"
},
{
"input": "10 6\n3 5 4 2 4 2 3 5 4 2\n10 7\n3 2 1 1 3 1 0 3 4 5",
"output": "<"
},
{
"input": "9 7\n2 0 3 2 6 6 1 4 3\n9 6\n4 4 1 1 4 5 5 0 2",
"output": ">"
},
{
"input": "1 7\n2\n4 8\n3 2 3 2",
"output": "<"
},
{
"input": "2 8\n4 1\n1 7\n1",
"output": ">"
},
{
"input": "1 10\n7\n3 9\n2 1 7",
"output": "<"
},
{
"input": "9 9\n2 2 3 6 3 6 3 8 4\n6 10\n4 7 7 0 3 8",
"output": ">"
},
{
"input": "3 11\n6 5 2\n8 10\n5 0 1 8 3 5 1 4",
"output": "<"
},
{
"input": "6 11\n10 6 1 0 2 2\n9 10\n4 3 4 1 1 6 3 4 1",
"output": "<"
},
{
"input": "2 19\n4 8\n8 18\n7 8 6 8 4 11 9 1",
"output": "<"
},
{
"input": "2 24\n20 9\n10 23\n21 10 15 11 6 8 20 16 14 11",
"output": "<"
},
{
"input": "8 36\n23 5 27 1 10 7 26 27\n10 35\n28 33 9 22 10 28 26 4 27 29",
"output": "<"
},
{
"input": "6 37\n22 15 14 10 1 8\n6 36\n18 5 28 10 1 17",
"output": ">"
},
{
"input": "5 38\n1 31 2 21 21\n9 37\n8 36 32 30 13 9 24 2 35",
"output": "<"
},
{
"input": "3 39\n27 4 3\n8 38\n32 15 11 34 35 27 30 15",
"output": "<"
},
{
"input": "2 40\n22 38\n5 39\n8 9 32 4 1",
"output": "<"
},
{
"input": "9 37\n1 35 7 33 20 21 26 24 5\n10 40\n39 4 11 9 33 12 26 32 11 8",
"output": "<"
},
{
"input": "4 39\n13 25 23 35\n6 38\n19 36 20 4 12 33",
"output": "<"
},
{
"input": "5 37\n29 29 5 7 27\n3 39\n13 1 10",
"output": ">"
},
{
"input": "7 28\n1 10 7 0 13 14 11\n6 38\n8 11 27 5 14 35",
"output": "="
},
{
"input": "2 34\n1 32\n2 33\n2 0",
"output": "="
},
{
"input": "7 5\n4 0 4 1 3 0 4\n4 35\n1 18 7 34",
"output": "="
},
{
"input": "9 34\n5 8 4 4 26 1 30 5 24\n10 27\n1 6 3 10 8 13 22 3 12 8",
"output": "="
},
{
"input": "10 36\n1 13 13 23 31 35 5 32 18 21\n9 38\n32 1 20 14 12 37 13 15 23",
"output": "="
},
{
"input": "10 40\n1 1 14 5 6 3 3 11 3 25\n10 39\n1 11 24 33 25 34 38 29 27 33",
"output": "="
},
{
"input": "9 37\n2 6 1 9 19 6 11 28 35\n9 40\n1 6 14 37 1 8 31 4 9",
"output": "="
},
{
"input": "4 5\n1 4 2 0\n4 4\n3 2 2 3",
"output": "="
},
{
"input": "6 4\n1 1 1 2 2 2\n7 3\n1 2 2 0 1 0 0",
"output": "="
},
{
"input": "2 5\n3 3\n5 2\n1 0 0 1 0",
"output": "="
},
{
"input": "1 9\n2\n1 10\n2",
"output": "="
},
{
"input": "6 19\n4 9 14 1 3 1\n8 10\n1 1 1 7 3 7 3 0",
"output": "="
},
{
"input": "7 15\n8 5 8 10 13 6 13\n8 13\n1 6 9 10 12 3 12 8",
"output": "="
},
{
"input": "8 18\n1 1 4 15 7 4 9 3\n8 17\n1 10 2 10 3 11 14 10",
"output": "="
},
{
"input": "8 21\n5 19 0 14 13 13 10 5\n10 13\n1 0 0 6 11 10 8 2 8 1",
"output": "="
},
{
"input": "8 28\n3 1 10 19 10 14 21 15\n8 21\n14 0 18 13 2 1 18 6",
"output": ">"
},
{
"input": "7 34\n21 22 28 16 30 4 27\n7 26\n5 13 21 10 8 12 10",
"output": ">"
},
{
"input": "6 26\n7 6 4 18 6 1\n6 25\n5 3 11 1 8 15",
"output": ">"
},
{
"input": "10 31\n6 27 17 22 14 16 25 9 13 26\n10 39\n6 1 3 26 12 32 28 19 9 19",
"output": "<"
},
{
"input": "3 5\n2 2 3\n3 6\n4 3 5",
"output": "<"
},
{
"input": "2 24\n4 18\n2 40\n29 24",
"output": "<"
},
{
"input": "5 38\n2 24 34 14 17\n8 34\n4 24 31 2 14 15 8 15",
"output": "<"
},
{
"input": "9 40\n39 39 39 39 39 39 39 39 39\n6 35\n34 34 34 34 34 34",
"output": ">"
},
{
"input": "10 40\n39 39 39 39 39 39 39 39 39 39\n10 8\n7 7 7 7 7 7 7 7 7 7",
"output": ">"
},
{
"input": "10 40\n39 39 39 39 39 39 39 39 39 39\n10 39\n38 38 38 38 38 38 38 38 38 38",
"output": ">"
}
] | 1,630,611,364
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 118
| 109
| 20,172,800
|
import math
def from_vase_to_decimal(b, l):
counter = 0
for i in range(len(l)):
j = len(l) - 1 - i
counter += l[j] * (b ** i)
return counter
def main_function():
n, b_x = [int(i) for i in input().split(" ")]
x = [int(i) for i in input().split(" ")]
m, b_y = [int(i) for i in input().split(" ")]
y = [int(i) for i in input().split(" ")]
x_10 = from_vase_to_decimal(b_x, x)
y_10 = from_vase_to_decimal(b_y, y)
if x_10 > y_10:
print(">")
elif x_10 == y_10:
print("=")
else:
print("<")
main_function()
|
Title: Two Bases
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
After seeing the "ALL YOUR BASE ARE BELONG TO US" meme for the first time, numbers *X* and *Y* realised that they have different bases, which complicated their relations.
You're given a number *X* represented in base *b**x* and a number *Y* represented in base *b**y*. Compare those two numbers.
Input Specification:
The first line of the input contains two space-separated integers *n* and *b**x* (1<=≤<=*n*<=≤<=10, 2<=≤<=*b**x*<=≤<=40), where *n* is the number of digits in the *b**x*-based representation of *X*.
The second line contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=<<=*b**x*) — the digits of *X*. They are given in the order from the most significant digit to the least significant one.
The following two lines describe *Y* in the same way: the third line contains two space-separated integers *m* and *b**y* (1<=≤<=*m*<=≤<=10, 2<=≤<=*b**y*<=≤<=40, *b**x*<=≠<=*b**y*), where *m* is the number of digits in the *b**y*-based representation of *Y*, and the fourth line contains *m* space-separated integers *y*1,<=*y*2,<=...,<=*y**m* (0<=≤<=*y**i*<=<<=*b**y*) — the digits of *Y*.
There will be no leading zeroes. Both *X* and *Y* will be positive. All digits of both numbers are given in the standard decimal numeral system.
Output Specification:
Output a single character (quotes for clarity):
- '<' if *X*<=<<=*Y* - '>' if *X*<=><=*Y* - '=' if *X*<==<=*Y*
Demo Input:
['6 2\n1 0 1 1 1 1\n2 10\n4 7\n', '3 3\n1 0 2\n2 5\n2 4\n', '7 16\n15 15 4 0 0 7 10\n7 9\n4 8 0 3 1 5 0\n']
Demo Output:
['=\n', '<\n', '>\n']
Note:
In the first sample, *X* = 101111<sub class="lower-index">2</sub> = 47<sub class="lower-index">10</sub> = *Y*.
In the second sample, *X* = 102<sub class="lower-index">3</sub> = 21<sub class="lower-index">5</sub> and *Y* = 24<sub class="lower-index">5</sub> = 112<sub class="lower-index">3</sub>, thus *X* < *Y*.
In the third sample, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/603a342b0ae3e56fed542d1c50c0a5ff6ce2cbaa.png" style="max-width: 100.0%;max-height: 100.0%;"/> and *Y* = 4803150<sub class="lower-index">9</sub>. We may notice that *X* starts with much larger digits and *b*<sub class="lower-index">*x*</sub> is much larger than *b*<sub class="lower-index">*y*</sub>, so *X* is clearly larger than *Y*.
|
```python
import math
def from_vase_to_decimal(b, l):
counter = 0
for i in range(len(l)):
j = len(l) - 1 - i
counter += l[j] * (b ** i)
return counter
def main_function():
n, b_x = [int(i) for i in input().split(" ")]
x = [int(i) for i in input().split(" ")]
m, b_y = [int(i) for i in input().split(" ")]
y = [int(i) for i in input().split(" ")]
x_10 = from_vase_to_decimal(b_x, x)
y_10 = from_vase_to_decimal(b_y, y)
if x_10 > y_10:
print(">")
elif x_10 == y_10:
print("=")
else:
print("<")
main_function()
```
| 3
|
|
509
|
A
|
Maximum in Table
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation"
] | null | null |
An *n*<=×<=*n* table *a* is defined as follows:
- The first row and the first column contain ones, that is: *a**i*,<=1<==<=*a*1,<=*i*<==<=1 for all *i*<==<=1,<=2,<=...,<=*n*. - Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula *a**i*,<=*j*<==<=*a**i*<=-<=1,<=*j*<=+<=*a**i*,<=*j*<=-<=1.
These conditions define all the values in the table.
You are given a number *n*. You need to determine the maximum value in the *n*<=×<=*n* table defined by the rules above.
|
The only line of input contains a positive integer *n* (1<=≤<=*n*<=≤<=10) — the number of rows and columns of the table.
|
Print a single line containing a positive integer *m* — the maximum value in the table.
|
[
"1\n",
"5\n"
] |
[
"1",
"70"
] |
In the second test the rows of the table look as follows:
| 0
|
[
{
"input": "1",
"output": "1"
},
{
"input": "5",
"output": "70"
},
{
"input": "2",
"output": "2"
},
{
"input": "3",
"output": "6"
},
{
"input": "4",
"output": "20"
},
{
"input": "6",
"output": "252"
},
{
"input": "7",
"output": "924"
},
{
"input": "9",
"output": "12870"
},
{
"input": "10",
"output": "48620"
},
{
"input": "8",
"output": "3432"
}
] | 1,626,839,602
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 10
| 77
| 6,963,200
|
n = int(input())
maxnum = 1
li = [[1 for i in range(n)] for i in range(n)]
for i in range(n):
for j in range(n):
if i>=1 and j >=1:
num = li[i-1][j]+li[i][j-1]
li[i][j]=num
maxnum = max(num,maxnum)
print(maxnum)
|
Title: Maximum in Table
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
An *n*<=×<=*n* table *a* is defined as follows:
- The first row and the first column contain ones, that is: *a**i*,<=1<==<=*a*1,<=*i*<==<=1 for all *i*<==<=1,<=2,<=...,<=*n*. - Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula *a**i*,<=*j*<==<=*a**i*<=-<=1,<=*j*<=+<=*a**i*,<=*j*<=-<=1.
These conditions define all the values in the table.
You are given a number *n*. You need to determine the maximum value in the *n*<=×<=*n* table defined by the rules above.
Input Specification:
The only line of input contains a positive integer *n* (1<=≤<=*n*<=≤<=10) — the number of rows and columns of the table.
Output Specification:
Print a single line containing a positive integer *m* — the maximum value in the table.
Demo Input:
['1\n', '5\n']
Demo Output:
['1', '70']
Note:
In the second test the rows of the table look as follows:
|
```python
n = int(input())
maxnum = 1
li = [[1 for i in range(n)] for i in range(n)]
for i in range(n):
for j in range(n):
if i>=1 and j >=1:
num = li[i-1][j]+li[i][j-1]
li[i][j]=num
maxnum = max(num,maxnum)
print(maxnum)
```
| 3
|
|
227
|
B
|
Effective Approach
|
PROGRAMMING
| 1,100
|
[
"implementation"
] | null | null |
Once at a team training Vasya, Petya and Sasha got a problem on implementing linear search in an array.
According to the boys, linear search works as follows. The array elements in a pre-selected order are in turn compared with the number that you need to find. Once you find the array element that is equal to the required one, the search ends. The efficiency of the algorithm is the number of performed comparisons. The fewer comparisons the linear search has made, the more effective it is.
Vasya believes that a linear search would work better if it sequentially iterates through the elements, starting with the 1-st one (in this problem we consider the elements of the array indexed from 1 to *n*) and ending with the *n*-th one. And Petya says that Vasya is wrong: the search will need less comparisons if it sequentially iterates the elements starting from the *n*-th and ending with the 1-st one. Sasha argues that the two approaches are equivalent.
To finally begin the task, the teammates decided to settle the debate and compare the two approaches on an example. For this, they took an array that is a permutation of integers from 1 to *n*, and generated *m* queries of the form: find element with value *b**i* in the array. They want to calculate for both approaches how many comparisons in total the linear search will need to respond to all queries. If the first search needs fewer comparisons, then the winner of the dispute is Vasya. If the second one does, then the winner is Petya. If both approaches make the same number of comparisons, then Sasha's got the upper hand.
But the problem is, linear search is too slow. That's why the boys aren't going to find out who is right before the end of the training, unless you come in here. Help them to determine who will win the dispute.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of elements in the array. The second line contains *n* distinct space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — the elements of array.
The third line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of queries. The last line contains *m* space-separated integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=*n*) — the search queries. Note that the queries can repeat.
|
Print two integers, showing how many comparisons Vasya's approach needs and how many comparisons Petya's approach needs. Separate the numbers by spaces.
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier.
|
[
"2\n1 2\n1\n1\n",
"2\n2 1\n1\n1\n",
"3\n3 1 2\n3\n1 2 3\n"
] |
[
"1 2\n",
"2 1\n",
"6 6\n"
] |
In the first sample Vasya's approach will make one comparison (it starts with the 1-st element and immediately finds the required number), and Petya's approach makes two comparisons (first he compares with the 2-nd array element, doesn't find the search item and compares with the 1-st element).
In the second sample, on the contrary, Vasya's approach will need two comparisons (first with 1-st element, and then with the 2-nd), and Petya's approach will find the required value in one comparison (the first comparison with the 2-nd element).
| 1,000
|
[
{
"input": "2\n1 2\n1\n1",
"output": "1 2"
},
{
"input": "2\n2 1\n1\n1",
"output": "2 1"
},
{
"input": "3\n3 1 2\n3\n1 2 3",
"output": "6 6"
},
{
"input": "9\n2 9 3 1 6 4 7 8 5\n9\n5 1 5 2 8 4 4 4 5",
"output": "58 32"
},
{
"input": "10\n3 10 9 2 7 6 5 8 4 1\n1\n4",
"output": "9 2"
},
{
"input": "10\n5 2 10 8 3 1 9 7 6 4\n9\n2 5 9 2 3 2 5 9 8",
"output": "31 68"
},
{
"input": "9\n3 8 4 7 1 2 5 6 9\n3\n2 7 1",
"output": "15 15"
},
{
"input": "9\n5 3 8 4 2 6 1 7 9\n4\n6 1 9 2",
"output": "27 13"
},
{
"input": "4\n1 3 2 4\n4\n3 1 2 3",
"output": "8 12"
},
{
"input": "3\n1 2 3\n8\n3 2 1 1 2 3 1 2",
"output": "15 17"
}
] | 1,620,032,749
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 2
| 124
| 0
|
n = int(input())
a = list(map(int, input().split()))
b = a[::-1]
b.append(9)
t = int(input())
q = list(map(int, input().split()))
for i in range(t):
print(a.index(q[i])+1, b.index(q[i])+1)
|
Title: Effective Approach
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Once at a team training Vasya, Petya and Sasha got a problem on implementing linear search in an array.
According to the boys, linear search works as follows. The array elements in a pre-selected order are in turn compared with the number that you need to find. Once you find the array element that is equal to the required one, the search ends. The efficiency of the algorithm is the number of performed comparisons. The fewer comparisons the linear search has made, the more effective it is.
Vasya believes that a linear search would work better if it sequentially iterates through the elements, starting with the 1-st one (in this problem we consider the elements of the array indexed from 1 to *n*) and ending with the *n*-th one. And Petya says that Vasya is wrong: the search will need less comparisons if it sequentially iterates the elements starting from the *n*-th and ending with the 1-st one. Sasha argues that the two approaches are equivalent.
To finally begin the task, the teammates decided to settle the debate and compare the two approaches on an example. For this, they took an array that is a permutation of integers from 1 to *n*, and generated *m* queries of the form: find element with value *b**i* in the array. They want to calculate for both approaches how many comparisons in total the linear search will need to respond to all queries. If the first search needs fewer comparisons, then the winner of the dispute is Vasya. If the second one does, then the winner is Petya. If both approaches make the same number of comparisons, then Sasha's got the upper hand.
But the problem is, linear search is too slow. That's why the boys aren't going to find out who is right before the end of the training, unless you come in here. Help them to determine who will win the dispute.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of elements in the array. The second line contains *n* distinct space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — the elements of array.
The third line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of queries. The last line contains *m* space-separated integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=*n*) — the search queries. Note that the queries can repeat.
Output Specification:
Print two integers, showing how many comparisons Vasya's approach needs and how many comparisons Petya's approach needs. Separate the numbers by spaces.
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier.
Demo Input:
['2\n1 2\n1\n1\n', '2\n2 1\n1\n1\n', '3\n3 1 2\n3\n1 2 3\n']
Demo Output:
['1 2\n', '2 1\n', '6 6\n']
Note:
In the first sample Vasya's approach will make one comparison (it starts with the 1-st element and immediately finds the required number), and Petya's approach makes two comparisons (first he compares with the 2-nd array element, doesn't find the search item and compares with the 1-st element).
In the second sample, on the contrary, Vasya's approach will need two comparisons (first with 1-st element, and then with the 2-nd), and Petya's approach will find the required value in one comparison (the first comparison with the 2-nd element).
|
```python
n = int(input())
a = list(map(int, input().split()))
b = a[::-1]
b.append(9)
t = int(input())
q = list(map(int, input().split()))
for i in range(t):
print(a.index(q[i])+1, b.index(q[i])+1)
```
| 0
|
|
472
|
A
|
Design Tutorial: Learn from Math
|
PROGRAMMING
| 800
|
[
"math",
"number theory"
] | null | null |
One way to create a task is to learn from math. You can generate some random math statement or modify some theorems to get something new and build a new task from that.
For example, there is a statement called the "Goldbach's conjecture". It says: "each even number no less than four can be expressed as the sum of two primes". Let's modify it. How about a statement like that: "each integer no less than 12 can be expressed as the sum of two composite numbers." Not like the Goldbach's conjecture, I can prove this theorem.
You are given an integer *n* no less than 12, express it as a sum of two composite numbers.
|
The only line contains an integer *n* (12<=≤<=*n*<=≤<=106).
|
Output two composite integers *x* and *y* (1<=<<=*x*,<=*y*<=<<=*n*) such that *x*<=+<=*y*<==<=*n*. If there are multiple solutions, you can output any of them.
|
[
"12\n",
"15\n",
"23\n",
"1000000\n"
] |
[
"4 8\n",
"6 9\n",
"8 15\n",
"500000 500000\n"
] |
In the first example, 12 = 4 + 8 and both 4, 8 are composite numbers. You can output "6 6" or "8 4" as well.
In the second example, 15 = 6 + 9. Note that you can't output "1 14" because 1 is not a composite number.
| 500
|
[
{
"input": "12",
"output": "4 8"
},
{
"input": "15",
"output": "6 9"
},
{
"input": "23",
"output": "8 15"
},
{
"input": "1000000",
"output": "500000 500000"
},
{
"input": "63874",
"output": "4 63870"
},
{
"input": "14568",
"output": "4 14564"
},
{
"input": "192",
"output": "4 188"
},
{
"input": "86",
"output": "4 82"
},
{
"input": "46220",
"output": "4 46216"
},
{
"input": "57114",
"output": "4 57110"
},
{
"input": "869",
"output": "4 865"
},
{
"input": "738457",
"output": "4 738453"
},
{
"input": "58113",
"output": "6 58107"
},
{
"input": "4864",
"output": "4 4860"
},
{
"input": "15",
"output": "6 9"
},
{
"input": "74752",
"output": "4 74748"
},
{
"input": "6073",
"output": "4 6069"
},
{
"input": "1289",
"output": "4 1285"
},
{
"input": "20",
"output": "4 16"
},
{
"input": "58134",
"output": "4 58130"
},
{
"input": "57756",
"output": "4 57752"
},
{
"input": "765",
"output": "6 759"
},
{
"input": "59",
"output": "4 55"
},
{
"input": "991666",
"output": "4 991662"
},
{
"input": "70761",
"output": "4 70757"
},
{
"input": "13",
"output": "4 9"
},
{
"input": "999999",
"output": "4 999995"
},
{
"input": "17",
"output": "8 9"
},
{
"input": "21",
"output": "6 15"
},
{
"input": "19",
"output": "4 15"
},
{
"input": "100007",
"output": "6 100001"
},
{
"input": "999987",
"output": "6 999981"
},
{
"input": "22",
"output": "4 18"
}
] | 1,665,987,258
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 33
| 77
| 0
|
def isPrime(num):
if(num <= 1):
return False
if (num <= 3):
return True
loop = int(num**0.5)
if (num % 2 == 0 or num % 3 == 0):
return False
for i in range(5, loop+1, 6):
if (num % i == 0 or num % (i + 2) == 0):
return False
return True
def designTutorialLearnFromMath():
n = int(input())
if(n%4==0):
print(int(n/2), int(n/2))
return
else:
medium = int(n/2)
remainder = n - medium
while(isPrime(medium)==True or isPrime(remainder)==True):
medium -=1
remainder +=1
print(medium, remainder)
return
designTutorialLearnFromMath()
|
Title: Design Tutorial: Learn from Math
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One way to create a task is to learn from math. You can generate some random math statement or modify some theorems to get something new and build a new task from that.
For example, there is a statement called the "Goldbach's conjecture". It says: "each even number no less than four can be expressed as the sum of two primes". Let's modify it. How about a statement like that: "each integer no less than 12 can be expressed as the sum of two composite numbers." Not like the Goldbach's conjecture, I can prove this theorem.
You are given an integer *n* no less than 12, express it as a sum of two composite numbers.
Input Specification:
The only line contains an integer *n* (12<=≤<=*n*<=≤<=106).
Output Specification:
Output two composite integers *x* and *y* (1<=<<=*x*,<=*y*<=<<=*n*) such that *x*<=+<=*y*<==<=*n*. If there are multiple solutions, you can output any of them.
Demo Input:
['12\n', '15\n', '23\n', '1000000\n']
Demo Output:
['4 8\n', '6 9\n', '8 15\n', '500000 500000\n']
Note:
In the first example, 12 = 4 + 8 and both 4, 8 are composite numbers. You can output "6 6" or "8 4" as well.
In the second example, 15 = 6 + 9. Note that you can't output "1 14" because 1 is not a composite number.
|
```python
def isPrime(num):
if(num <= 1):
return False
if (num <= 3):
return True
loop = int(num**0.5)
if (num % 2 == 0 or num % 3 == 0):
return False
for i in range(5, loop+1, 6):
if (num % i == 0 or num % (i + 2) == 0):
return False
return True
def designTutorialLearnFromMath():
n = int(input())
if(n%4==0):
print(int(n/2), int(n/2))
return
else:
medium = int(n/2)
remainder = n - medium
while(isPrime(medium)==True or isPrime(remainder)==True):
medium -=1
remainder +=1
print(medium, remainder)
return
designTutorialLearnFromMath()
```
| 3
|
|
114
|
A
|
Cifera
|
PROGRAMMING
| 1,000
|
[
"math"
] | null | null |
When Petya went to school, he got interested in large numbers and what they were called in ancient times. For instance, he learned that the Russian word "tma" (which now means "too much to be counted") used to stand for a thousand and "tma tmyschaya" (which literally means "the tma of tmas") used to stand for a million.
Petya wanted to modernize the words we use for numbers and invented a word petricium that represents number *k*. Moreover, petricium la petricium stands for number *k*2, petricium la petricium la petricium stands for *k*3 and so on. All numbers of this form are called petriciumus cifera, and the number's importance is the number of articles la in its title.
Petya's invention brought on a challenge that needed to be solved quickly: does some number *l* belong to the set petriciumus cifera? As Petya is a very busy schoolboy he needs to automate the process, he asked you to solve it.
|
The first input line contains integer number *k*, the second line contains integer number *l* (2<=≤<=*k*,<=*l*<=≤<=231<=-<=1).
|
You should print in the first line of the output "YES", if the number belongs to the set petriciumus cifera and otherwise print "NO". If the number belongs to the set, then print on the seconds line the only number — the importance of number *l*.
|
[
"5\n25\n",
"3\n8\n"
] |
[
"YES\n1\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "5\n25",
"output": "YES\n1"
},
{
"input": "3\n8",
"output": "NO"
},
{
"input": "123\n123",
"output": "YES\n0"
},
{
"input": "99\n970300",
"output": "NO"
},
{
"input": "1000\n6666666",
"output": "NO"
},
{
"input": "59\n3571",
"output": "NO"
},
{
"input": "256\n16777217",
"output": "NO"
},
{
"input": "4638\n21511044",
"output": "YES\n1"
},
{
"input": "24\n191102976",
"output": "YES\n5"
},
{
"input": "52010\n557556453",
"output": "NO"
},
{
"input": "61703211\n1750753082",
"output": "NO"
},
{
"input": "137\n2571353",
"output": "YES\n2"
},
{
"input": "8758\n1746157336",
"output": "NO"
},
{
"input": "2\n64",
"output": "YES\n5"
},
{
"input": "96\n884736",
"output": "YES\n2"
},
{
"input": "1094841453\n1656354409",
"output": "NO"
},
{
"input": "1154413\n1229512809",
"output": "NO"
},
{
"input": "2442144\n505226241",
"output": "NO"
},
{
"input": "11548057\n1033418098",
"output": "NO"
},
{
"input": "581\n196122941",
"output": "YES\n2"
},
{
"input": "146\n1913781536",
"output": "NO"
},
{
"input": "945916\n1403881488",
"output": "NO"
},
{
"input": "68269\n365689065",
"output": "NO"
},
{
"input": "30\n900",
"output": "YES\n1"
},
{
"input": "6\n1296",
"output": "YES\n3"
},
{
"input": "1470193122\n1420950405",
"output": "NO"
},
{
"input": "90750\n1793111557",
"output": "NO"
},
{
"input": "1950054\n1664545956",
"output": "NO"
},
{
"input": "6767692\n123762320",
"output": "NO"
},
{
"input": "1437134\n1622348229",
"output": "NO"
},
{
"input": "444103\n1806462642",
"output": "NO"
},
{
"input": "2592\n6718464",
"output": "YES\n1"
},
{
"input": "50141\n366636234",
"output": "NO"
},
{
"input": "835\n582182875",
"output": "YES\n2"
},
{
"input": "156604\n902492689",
"output": "NO"
},
{
"input": "27385965\n1742270058",
"output": "NO"
},
{
"input": "3\n9",
"output": "YES\n1"
},
{
"input": "35\n1838265625",
"output": "YES\n5"
},
{
"input": "8\n4096",
"output": "YES\n3"
},
{
"input": "85955\n945811082",
"output": "NO"
},
{
"input": "54958832\n956670209",
"output": "NO"
},
{
"input": "1475381\n1348159738",
"output": "NO"
},
{
"input": "7313241\n413670642",
"output": "NO"
},
{
"input": "582470\n2116368165",
"output": "NO"
},
{
"input": "26859739\n595086170",
"output": "NO"
},
{
"input": "249766393\n1582130",
"output": "NO"
},
{
"input": "11734\n137686756",
"output": "YES\n1"
},
{
"input": "925093\n1098566745",
"output": "NO"
},
{
"input": "40\n1600",
"output": "YES\n1"
},
{
"input": "2147483647\n2147483647",
"output": "YES\n0"
},
{
"input": "2147483646\n2147483647",
"output": "NO"
},
{
"input": "2147483647\n2147483646",
"output": "NO"
},
{
"input": "2\n2147483647",
"output": "NO"
},
{
"input": "2\n1073741825",
"output": "NO"
},
{
"input": "2\n1073741824",
"output": "YES\n29"
},
{
"input": "10000\n10",
"output": "NO"
},
{
"input": "10\n10000",
"output": "YES\n3"
},
{
"input": "10\n2000000000",
"output": "NO"
},
{
"input": "10\n1000000000",
"output": "YES\n8"
},
{
"input": "5\n1808548329",
"output": "NO"
},
{
"input": "2\n2147483646",
"output": "NO"
},
{
"input": "25\n125",
"output": "NO"
},
{
"input": "6\n18",
"output": "NO"
},
{
"input": "5\n30",
"output": "NO"
}
] | 1,628,050,011
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 11
| 154
| 6,758,400
|
import math
k = int(input())
l = int(input())
a = math.log(l)//math.log(k)
b = math.log(l)/math.log(k)
if a==b:
print("YES")
print(int(a-1))
else:
print("NO")
|
Title: Cifera
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
When Petya went to school, he got interested in large numbers and what they were called in ancient times. For instance, he learned that the Russian word "tma" (which now means "too much to be counted") used to stand for a thousand and "tma tmyschaya" (which literally means "the tma of tmas") used to stand for a million.
Petya wanted to modernize the words we use for numbers and invented a word petricium that represents number *k*. Moreover, petricium la petricium stands for number *k*2, petricium la petricium la petricium stands for *k*3 and so on. All numbers of this form are called petriciumus cifera, and the number's importance is the number of articles la in its title.
Petya's invention brought on a challenge that needed to be solved quickly: does some number *l* belong to the set petriciumus cifera? As Petya is a very busy schoolboy he needs to automate the process, he asked you to solve it.
Input Specification:
The first input line contains integer number *k*, the second line contains integer number *l* (2<=≤<=*k*,<=*l*<=≤<=231<=-<=1).
Output Specification:
You should print in the first line of the output "YES", if the number belongs to the set petriciumus cifera and otherwise print "NO". If the number belongs to the set, then print on the seconds line the only number — the importance of number *l*.
Demo Input:
['5\n25\n', '3\n8\n']
Demo Output:
['YES\n1\n', 'NO\n']
Note:
none
|
```python
import math
k = int(input())
l = int(input())
a = math.log(l)//math.log(k)
b = math.log(l)/math.log(k)
if a==b:
print("YES")
print(int(a-1))
else:
print("NO")
```
| 0
|
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
Три брата договорились о встрече. Пронумеруем братьев следующим образом: пусть старший брат имеет номер 1, средний брат имеет номер 2, а младший брат — номер 3.
Когда пришло время встречи, один из братьев опоздал. По заданным номерам двух братьев, которые пришли вовремя, вам предстоит определить номер опоздавшего брата.
|
В первой строке входных данных следуют два различных целых числа *a* и *b* (1<=≤<=*a*,<=*b*<=≤<=3, *a*<=≠<=*b*) — номера братьев, которые пришли на встречу вовремя. Номера даны в произвольном порядке.
|
Выведите единственное целое число — номер брата, который опоздал на встречу.
|
[
"3 1\n"
] |
[
"2\n"
] |
none
| 0
|
[
{
"input": "3 1",
"output": "2"
},
{
"input": "2 1",
"output": "3"
},
{
"input": "2 3",
"output": "1"
},
{
"input": "1 2",
"output": "3"
},
{
"input": "1 3",
"output": "2"
},
{
"input": "3 2",
"output": "1"
}
] | 1,458,569,064
| 264
|
Python 3
|
OK
|
TESTS
| 6
| 77
| 4,608,000
|
a = [int(i) for i in input().split()]
print(6-a[0]-a[1])
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Три брата договорились о встрече. Пронумеруем братьев следующим образом: пусть старший брат имеет номер 1, средний брат имеет номер 2, а младший брат — номер 3.
Когда пришло время встречи, один из братьев опоздал. По заданным номерам двух братьев, которые пришли вовремя, вам предстоит определить номер опоздавшего брата.
Input Specification:
В первой строке входных данных следуют два различных целых числа *a* и *b* (1<=≤<=*a*,<=*b*<=≤<=3, *a*<=≠<=*b*) — номера братьев, которые пришли на встречу вовремя. Номера даны в произвольном порядке.
Output Specification:
Выведите единственное целое число — номер брата, который опоздал на встречу.
Demo Input:
['3 1\n']
Demo Output:
['2\n']
Note:
none
|
```python
a = [int(i) for i in input().split()]
print(6-a[0]-a[1])
```
| 3
|
|
5
|
A
|
Chat Servers Outgoing Traffic
|
PROGRAMMING
| 1,000
|
[
"implementation"
] |
A. Chat Server's Outgoing Traffic
|
1
|
64
|
Polycarp is working on a new project called "Polychat". Following modern tendencies in IT, he decided, that this project should contain chat as well. To achieve this goal, Polycarp has spent several hours in front of his laptop and implemented a chat server that can process three types of commands:
- Include a person to the chat ('Add' command). - Remove a person from the chat ('Remove' command). - Send a message from a person to all people, who are currently in the chat, including the one, who sends the message ('Send' command).
Now Polycarp wants to find out the amount of outgoing traffic that the server will produce while processing a particular set of commands.
Polycarp knows that chat server sends no traffic for 'Add' and 'Remove' commands. When 'Send' command is processed, server sends *l* bytes to each participant of the chat, where *l* is the length of the message.
As Polycarp has no time, he is asking for your help in solving this problem.
|
Input file will contain not more than 100 commands, each in its own line. No line will exceed 100 characters. Formats of the commands will be the following:
- +<name> for 'Add' command. - -<name> for 'Remove' command. - <sender_name>:<message_text> for 'Send' command.
<name> and <sender_name> is a non-empty sequence of Latin letters and digits. <message_text> can contain letters, digits and spaces, but can't start or end with a space. <message_text> can be an empty line.
It is guaranteed, that input data are correct, i.e. there will be no 'Add' command if person with such a name is already in the chat, there will be no 'Remove' command if there is no person with such a name in the chat etc.
All names are case-sensitive.
|
Print a single number — answer to the problem.
|
[
"+Mike\nMike:hello\n+Kate\n+Dmitry\n-Dmitry\nKate:hi\n-Kate\n",
"+Mike\n-Mike\n+Mike\nMike:Hi I am here\n-Mike\n+Kate\n-Kate\n"
] |
[
"9\n",
"14\n"
] |
none
| 0
|
[
{
"input": "+Mike\nMike:hello\n+Kate\n+Dmitry\n-Dmitry\nKate:hi\n-Kate",
"output": "9"
},
{
"input": "+Mike\n-Mike\n+Mike\nMike:Hi I am here\n-Mike\n+Kate\n-Kate",
"output": "14"
},
{
"input": "+Dmitry\n+Mike\nDmitry:All letters will be used\nDmitry:qwertyuiopasdfghjklzxcvbnm QWERTYUIOPASDFGHJKLZXCVBNM\nDmitry:And digits too\nDmitry:1234567890 0987654321\n-Dmitry",
"output": "224"
},
{
"input": "+Dmitry\n+Mike\n+Kate\nDmitry:",
"output": "0"
},
{
"input": "+Dmitry\nDmitry:No phrases with spaces at the beginning and at the end\n+Mike\nDmitry:spaces spaces\n-Dmitry",
"output": "86"
},
{
"input": "+XqD\n+aT537\nXqD:x6ZPjMR1DDKG2\nXqD:lLCriywPnB\n-XqD",
"output": "46"
},
{
"input": "+8UjgAJ\n8UjgAJ:02hR7UBc1tqqfL\n-8UjgAJ\n+zdi\n-zdi",
"output": "14"
},
{
"input": "+6JPKkgXDrA\n+j6JHjv70An\n+QGtsceK0zJ\n6JPKkgXDrA:o4\n+CSmwi9zDra\nQGtsceK0zJ:Zl\nQGtsceK0zJ:0\nj6JHjv70An:7\nj6JHjv70An:B\nQGtsceK0zJ:OO",
"output": "34"
},
{
"input": "+1aLNq9S7uLV\n-1aLNq9S7uLV\n+O9ykq3xDJv\n-O9ykq3xDJv\n+54Yq1xJq14F\n+0zJ5Vo0RDZ\n-54Yq1xJq14F\n-0zJ5Vo0RDZ\n+lxlH7sdolyL\n-lxlH7sdolyL",
"output": "0"
},
{
"input": "+qlHEc2AuYy\nqlHEc2AuYy:YYRwD0 edNZgpE nGfOguRWnMYpTpGUVM aXDKGXo1Gv1tHL9\nqlHEc2AuYy:yvh3GsPcImqrvoUcBNQcP6ezwpU0 xAVltaKZp94VKiNao\nqlHEc2AuYy:zuCO6Opey L eu7lTwysaSk00zjpv zrDfbt8l hpHfu\n+pErDMxgVgh\nqlHEc2AuYy:I1FLis mmQbZtd8Ui7y 1vcax6yZBMhVRdD6Ahlq7MNCw\nqlHEc2AuYy:lz MFUNJZhlqBYckHUDlNhLiEkmecRh1o0t7alXBvCRVEFVx\npErDMxgVgh:jCyMbu1dkuEj5TzbBOjyUhpfC50cL8R900Je3R KxRgAI dT\nqlHEc2AuYy:62b47eabo2hf vSUD7KioN ZHki6WB6gh3u GKv5rgwyfF\npErDMxgVgh:zD5 9 ympl4wR gy7a7eAGAn5xVdGP9FbL6hRCZAR6O4pT6zb",
"output": "615"
},
{
"input": "+adabacaba0",
"output": "0"
},
{
"input": "+acabadab\n+caba0aba",
"output": "0"
},
{
"input": "+dabaca\n-dabaca\n+aba0ab",
"output": "0"
},
{
"input": "+cab\n+abac\n-abac\n+baca",
"output": "0"
},
{
"input": "+cabadabac\n-cabadabac\n+abacaba1ab\n-abacaba1ab\n+ba0abaca",
"output": "0"
},
{
"input": "+adabacaba\n-adabacaba\n+aca\naca:caba\n-aca\n+bacaba\n-bacaba\n+aba\n-aba\n+bad",
"output": "4"
},
{
"input": "+acabadab\n-acabadab\n+aba0abacab\n+baca\n+abacaba0ab\n-baca\n-abacaba0ab\n-aba0abacab\n+cab\n-cab\n+abacabada\n-abacabada\n+badabaca\n-badabaca\n+badaba",
"output": "0"
},
{
"input": "+badabac\nbadabac:abacabad\n-badabac\n+0ab\n-0ab\n+dabacab\n-dabacab\n+a0ab\n-a0ab\n+0abaca\n-0abaca\n+dabac\n-dabac\n+abaca\n-abaca\n+bacabada\n-bacabada\n+aca\n-aca\n+abadabaca\n-abadabaca\n+acaba\n-acaba\n+abacabadab\n-abacabadab",
"output": "8"
}
] | 1,673,081,683
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 30
| 0
|
# LUOGU_RID: 98939436
a,su=[],0
while True:
s=input()
if s[0]=='+':a.append(s[1:])
elif s[0]=='-':a.remove(s[1:])
else:
st=s.split(':')[1]
su+=len(st)*len(a)
print(su)
|
Title: Chat Servers Outgoing Traffic
Time Limit: 1 seconds
Memory Limit: 64 megabytes
Problem Description:
Polycarp is working on a new project called "Polychat". Following modern tendencies in IT, he decided, that this project should contain chat as well. To achieve this goal, Polycarp has spent several hours in front of his laptop and implemented a chat server that can process three types of commands:
- Include a person to the chat ('Add' command). - Remove a person from the chat ('Remove' command). - Send a message from a person to all people, who are currently in the chat, including the one, who sends the message ('Send' command).
Now Polycarp wants to find out the amount of outgoing traffic that the server will produce while processing a particular set of commands.
Polycarp knows that chat server sends no traffic for 'Add' and 'Remove' commands. When 'Send' command is processed, server sends *l* bytes to each participant of the chat, where *l* is the length of the message.
As Polycarp has no time, he is asking for your help in solving this problem.
Input Specification:
Input file will contain not more than 100 commands, each in its own line. No line will exceed 100 characters. Formats of the commands will be the following:
- +<name> for 'Add' command. - -<name> for 'Remove' command. - <sender_name>:<message_text> for 'Send' command.
<name> and <sender_name> is a non-empty sequence of Latin letters and digits. <message_text> can contain letters, digits and spaces, but can't start or end with a space. <message_text> can be an empty line.
It is guaranteed, that input data are correct, i.e. there will be no 'Add' command if person with such a name is already in the chat, there will be no 'Remove' command if there is no person with such a name in the chat etc.
All names are case-sensitive.
Output Specification:
Print a single number — answer to the problem.
Demo Input:
['+Mike\nMike:hello\n+Kate\n+Dmitry\n-Dmitry\nKate:hi\n-Kate\n', '+Mike\n-Mike\n+Mike\nMike:Hi I am here\n-Mike\n+Kate\n-Kate\n']
Demo Output:
['9\n', '14\n']
Note:
none
|
```python
# LUOGU_RID: 98939436
a,su=[],0
while True:
s=input()
if s[0]=='+':a.append(s[1:])
elif s[0]=='-':a.remove(s[1:])
else:
st=s.split(':')[1]
su+=len(st)*len(a)
print(su)
```
| -1
|
146
|
A
|
Lucky Ticket
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Petya loves lucky numbers very much. Everybody knows that lucky numbers are positive integers whose decimal record contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
Petya loves tickets very much. As we know, each ticket has a number that is a positive integer. Its length equals *n* (*n* is always even). Petya calls a ticket lucky if the ticket's number is a lucky number and the sum of digits in the first half (the sum of the first *n*<=/<=2 digits) equals the sum of digits in the second half (the sum of the last *n*<=/<=2 digits). Check if the given ticket is lucky.
|
The first line contains an even integer *n* (2<=≤<=*n*<=≤<=50) — the length of the ticket number that needs to be checked. The second line contains an integer whose length equals exactly *n* — the ticket number. The number may contain leading zeros.
|
On the first line print "YES" if the given ticket number is lucky. Otherwise, print "NO" (without the quotes).
|
[
"2\n47\n",
"4\n4738\n",
"4\n4774\n"
] |
[
"NO\n",
"NO\n",
"YES\n"
] |
In the first sample the sum of digits in the first half does not equal the sum of digits in the second half (4 ≠ 7).
In the second sample the ticket number is not the lucky number.
| 500
|
[
{
"input": "2\n47",
"output": "NO"
},
{
"input": "4\n4738",
"output": "NO"
},
{
"input": "4\n4774",
"output": "YES"
},
{
"input": "4\n4570",
"output": "NO"
},
{
"input": "6\n477477",
"output": "YES"
},
{
"input": "6\n777777",
"output": "YES"
},
{
"input": "20\n44444444444444444444",
"output": "YES"
},
{
"input": "2\n44",
"output": "YES"
},
{
"input": "10\n4745474547",
"output": "NO"
},
{
"input": "14\n77770004444444",
"output": "NO"
},
{
"input": "10\n4747777744",
"output": "YES"
},
{
"input": "10\n1234567890",
"output": "NO"
},
{
"input": "50\n44444444444444444444444444444444444444444444444444",
"output": "YES"
},
{
"input": "50\n44444444444444444444444444444444444444444444444447",
"output": "NO"
},
{
"input": "50\n74444444444444444444444444444444444444444444444444",
"output": "NO"
},
{
"input": "50\n07777777777777777777777777777777777777777777777770",
"output": "NO"
},
{
"input": "50\n77777777777777777777777777777777777777777777777777",
"output": "YES"
},
{
"input": "50\n44747747774474747747747447777447774747447477444474",
"output": "YES"
},
{
"input": "48\n447474444777444474747747744774447444747474774474",
"output": "YES"
},
{
"input": "32\n74474474777444474444747774474774",
"output": "YES"
},
{
"input": "40\n4747777444447747777447447747447474774777",
"output": "YES"
},
{
"input": "10\n4477477444",
"output": "YES"
},
{
"input": "18\n447747474447744747",
"output": "YES"
},
{
"input": "26\n44747744444774744774474447",
"output": "YES"
},
{
"input": "50\n44707747774474747747747447777447774747447477444474",
"output": "NO"
},
{
"input": "40\n4747777444447737777447447747447474774777",
"output": "NO"
},
{
"input": "36\n764477744747444444447747747474744444",
"output": "NO"
},
{
"input": "22\n4477407474777477744447",
"output": "NO"
},
{
"input": "32\n74274474777444474444747774474774",
"output": "NO"
},
{
"input": "16\n4744447974444747",
"output": "NO"
},
{
"input": "2\n11",
"output": "NO"
},
{
"input": "2\n22",
"output": "NO"
},
{
"input": "2\n33",
"output": "NO"
},
{
"input": "2\n74",
"output": "NO"
},
{
"input": "2\n55",
"output": "NO"
},
{
"input": "2\n66",
"output": "NO"
},
{
"input": "2\n77",
"output": "YES"
},
{
"input": "2\n88",
"output": "NO"
},
{
"input": "2\n99",
"output": "NO"
},
{
"input": "4\n4004",
"output": "NO"
},
{
"input": "14\n00077774444444",
"output": "NO"
},
{
"input": "6\n004444",
"output": "NO"
},
{
"input": "4\n0044",
"output": "NO"
},
{
"input": "14\n77771114444444",
"output": "NO"
},
{
"input": "14\n44444447777000",
"output": "NO"
},
{
"input": "6\n004774",
"output": "NO"
}
] | 1,567,776,869
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 46
| 280
| 0
|
n = int(input())
a = input()
if a.count('4') + a.count('7') == len(a) and sum(list(map(int, a[:len(a) // 2]))) == sum(list(map(int, a[len(a) // 2:]))):
print("YES")
else:
print("NO")
# CodeForcesian
# ♥
|
Title: Lucky Ticket
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Petya loves lucky numbers very much. Everybody knows that lucky numbers are positive integers whose decimal record contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
Petya loves tickets very much. As we know, each ticket has a number that is a positive integer. Its length equals *n* (*n* is always even). Petya calls a ticket lucky if the ticket's number is a lucky number and the sum of digits in the first half (the sum of the first *n*<=/<=2 digits) equals the sum of digits in the second half (the sum of the last *n*<=/<=2 digits). Check if the given ticket is lucky.
Input Specification:
The first line contains an even integer *n* (2<=≤<=*n*<=≤<=50) — the length of the ticket number that needs to be checked. The second line contains an integer whose length equals exactly *n* — the ticket number. The number may contain leading zeros.
Output Specification:
On the first line print "YES" if the given ticket number is lucky. Otherwise, print "NO" (without the quotes).
Demo Input:
['2\n47\n', '4\n4738\n', '4\n4774\n']
Demo Output:
['NO\n', 'NO\n', 'YES\n']
Note:
In the first sample the sum of digits in the first half does not equal the sum of digits in the second half (4 ≠ 7).
In the second sample the ticket number is not the lucky number.
|
```python
n = int(input())
a = input()
if a.count('4') + a.count('7') == len(a) and sum(list(map(int, a[:len(a) // 2]))) == sum(list(map(int, a[len(a) // 2:]))):
print("YES")
else:
print("NO")
# CodeForcesian
# ♥
```
| 3
|
|
755
|
B
|
PolandBall and Game
|
PROGRAMMING
| 1,100
|
[
"binary search",
"data structures",
"games",
"greedy",
"sortings",
"strings"
] | null | null |
PolandBall is playing a game with EnemyBall. The rules are simple. Players have to say words in turns. You cannot say a word which was already said. PolandBall starts. The Ball which can't say a new word loses.
You're given two lists of words familiar to PolandBall and EnemyBall. Can you determine who wins the game, if both play optimally?
|
The first input line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=103) — number of words PolandBall and EnemyBall know, respectively.
Then *n* strings follow, one per line — words familiar to PolandBall.
Then *m* strings follow, one per line — words familiar to EnemyBall.
Note that one Ball cannot know a word more than once (strings are unique), but some words can be known by both players.
Each word is non-empty and consists of no more than 500 lowercase English alphabet letters.
|
In a single line of print the answer — "YES" if PolandBall wins and "NO" otherwise. Both Balls play optimally.
|
[
"5 1\npolandball\nis\na\ncool\ncharacter\nnope\n",
"2 2\nkremowka\nwadowicka\nkremowka\nwiedenska\n",
"1 2\na\na\nb\n"
] |
[
"YES",
"YES",
"NO"
] |
In the first example PolandBall knows much more words and wins effortlessly.
In the second example if PolandBall says kremowka first, then EnemyBall cannot use that word anymore. EnemyBall can only say wiedenska. PolandBall says wadowicka and wins.
| 1,000
|
[
{
"input": "5 1\npolandball\nis\na\ncool\ncharacter\nnope",
"output": "YES"
},
{
"input": "2 2\nkremowka\nwadowicka\nkremowka\nwiedenska",
"output": "YES"
},
{
"input": "1 2\na\na\nb",
"output": "NO"
},
{
"input": "2 2\na\nb\nb\nc",
"output": "YES"
},
{
"input": "2 1\nc\na\na",
"output": "YES"
},
{
"input": "3 3\nab\nbc\ncd\ncd\ndf\nfg",
"output": "YES"
},
{
"input": "3 3\nc\na\nb\na\nd\ng",
"output": "YES"
},
{
"input": "1 1\naa\naa",
"output": "YES"
},
{
"input": "2 1\na\nb\na",
"output": "YES"
},
{
"input": "6 5\na\nb\nc\nd\ne\nf\nf\ne\nd\nz\ny",
"output": "YES"
},
{
"input": "3 2\na\nb\nc\nd\ne",
"output": "YES"
}
] | 1,625,778,566
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 1
| 77
| 0
|
nwords = list(map(int, input().split()))
n = nwords[0]
m = nwords[1]
poland_ball = []
enemy_ball = []
for i in range(n):
word = input()
poland_ball.append(word)
for j in range(m):
wrod = input()
enemy_ball.append(word)
common = []
for w in poland_ball:
if (w in enemy_ball):
common.append(w)
if (m == 1 and n != 1):
print("YES")
elif (n == 1 and m != 1):
print("NO")
elif (n == 1 and m == 1):
if len(common) == 1:
print("YES")
else:
print("NO")
else:
new_n = n - len(common)
new_m = m - len(common)
if (new_n > new_m):
print("YES")
elif (new_m > new_n):
print("NO")
else:
print("NO")
|
Title: PolandBall and Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
PolandBall is playing a game with EnemyBall. The rules are simple. Players have to say words in turns. You cannot say a word which was already said. PolandBall starts. The Ball which can't say a new word loses.
You're given two lists of words familiar to PolandBall and EnemyBall. Can you determine who wins the game, if both play optimally?
Input Specification:
The first input line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=103) — number of words PolandBall and EnemyBall know, respectively.
Then *n* strings follow, one per line — words familiar to PolandBall.
Then *m* strings follow, one per line — words familiar to EnemyBall.
Note that one Ball cannot know a word more than once (strings are unique), but some words can be known by both players.
Each word is non-empty and consists of no more than 500 lowercase English alphabet letters.
Output Specification:
In a single line of print the answer — "YES" if PolandBall wins and "NO" otherwise. Both Balls play optimally.
Demo Input:
['5 1\npolandball\nis\na\ncool\ncharacter\nnope\n', '2 2\nkremowka\nwadowicka\nkremowka\nwiedenska\n', '1 2\na\na\nb\n']
Demo Output:
['YES', 'YES', 'NO']
Note:
In the first example PolandBall knows much more words and wins effortlessly.
In the second example if PolandBall says kremowka first, then EnemyBall cannot use that word anymore. EnemyBall can only say wiedenska. PolandBall says wadowicka and wins.
|
```python
nwords = list(map(int, input().split()))
n = nwords[0]
m = nwords[1]
poland_ball = []
enemy_ball = []
for i in range(n):
word = input()
poland_ball.append(word)
for j in range(m):
wrod = input()
enemy_ball.append(word)
common = []
for w in poland_ball:
if (w in enemy_ball):
common.append(w)
if (m == 1 and n != 1):
print("YES")
elif (n == 1 and m != 1):
print("NO")
elif (n == 1 and m == 1):
if len(common) == 1:
print("YES")
else:
print("NO")
else:
new_n = n - len(common)
new_m = m - len(common)
if (new_n > new_m):
print("YES")
elif (new_m > new_n):
print("NO")
else:
print("NO")
```
| 0
|
|
332
|
A
|
Down the Hatch!
|
PROGRAMMING
| 1,300
|
[
"implementation"
] | null | null |
Everybody knows that the Berland citizens are keen on health, especially students. Berland students are so tough that all they drink is orange juice!
Yesterday one student, Vasya and his mates made some barbecue and they drank this healthy drink only. After they ran out of the first barrel of juice, they decided to play a simple game. All *n* people who came to the barbecue sat in a circle (thus each person received a unique index *b**i* from 0 to *n*<=-<=1). The person number 0 started the game (this time it was Vasya). All turns in the game were numbered by integers starting from 1. If the *j*-th turn was made by the person with index *b**i*, then this person acted like that:
1. he pointed at the person with index (*b**i*<=+<=1) *mod* *n* either with an elbow or with a nod (*x* *mod* *y* is the remainder after dividing *x* by *y*); 1. if *j*<=≥<=4 and the players who had turns number *j*<=-<=1, *j*<=-<=2, *j*<=-<=3, made during their turns the same moves as player *b**i* on the current turn, then he had drunk a glass of juice; 1. the turn went to person number (*b**i*<=+<=1) *mod* *n*.
The person who was pointed on the last turn did not make any actions.
The problem was, Vasya's drunk too much juice and can't remember the goal of the game. However, Vasya's got the recorded sequence of all the participants' actions (including himself). Now Vasya wants to find out the maximum amount of juice he could drink if he played optimally well (the other players' actions do not change). Help him.
You can assume that in any scenario, there is enough juice for everybody.
|
The first line contains a single integer *n* (4<=≤<=*n*<=≤<=2000) — the number of participants in the game. The second line describes the actual game: the *i*-th character of this line equals 'a', if the participant who moved *i*-th pointed at the next person with his elbow, and 'b', if the participant pointed with a nod. The game continued for at least 1 and at most 2000 turns.
|
Print a single integer — the number of glasses of juice Vasya could have drunk if he had played optimally well.
|
[
"4\nabbba\n",
"4\nabbab\n"
] |
[
"1\n",
"0\n"
] |
In both samples Vasya has got two turns — 1 and 5. In the first sample, Vasya could have drunk a glass of juice during the fifth turn if he had pointed at the next person with a nod. In this case, the sequence of moves would look like "abbbb". In the second sample Vasya wouldn't drink a single glass of juice as the moves performed during turns 3 and 4 are different.
| 500
|
[
{
"input": "4\nabbba",
"output": "1"
},
{
"input": "4\nabbab",
"output": "0"
},
{
"input": "4\naaa",
"output": "0"
},
{
"input": "4\naab",
"output": "0"
},
{
"input": "4\naabaabbba",
"output": "1"
},
{
"input": "6\naaaaaaaaaaaaaaaa",
"output": "2"
},
{
"input": "7\nabbbaaabbbaaaab",
"output": "2"
},
{
"input": "9\naaaabaaaaa",
"output": "1"
},
{
"input": "4\na",
"output": "0"
},
{
"input": "4\nb",
"output": "0"
},
{
"input": "4\nab",
"output": "0"
},
{
"input": "4\nbb",
"output": "0"
},
{
"input": "4\naba",
"output": "0"
},
{
"input": "4\nbbb",
"output": "0"
},
{
"input": "4\nabab",
"output": "0"
},
{
"input": "4\nabaa",
"output": "0"
},
{
"input": "4\nabbbaaabba",
"output": "1"
},
{
"input": "4\nababba",
"output": "0"
},
{
"input": "4\naaaaaa",
"output": "1"
},
{
"input": "5\nbbbbaabaaa",
"output": "0"
},
{
"input": "2000\na",
"output": "0"
},
{
"input": "2000\naabaaabaabababbbbbbabbbbb",
"output": "0"
},
{
"input": "4\nabbb",
"output": "0"
},
{
"input": "5\nbbbbb",
"output": "0"
}
] | 1,374,748,254
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 4
| 78
| 0
|
n = int(input())
s = input()
i = n
ans = 0
while i < len(s):
if s[n - 1] == s[n - 2] and s[n - 2] == s[n - 3]:
ans += 1
i += n
print(ans)
|
Title: Down the Hatch!
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Everybody knows that the Berland citizens are keen on health, especially students. Berland students are so tough that all they drink is orange juice!
Yesterday one student, Vasya and his mates made some barbecue and they drank this healthy drink only. After they ran out of the first barrel of juice, they decided to play a simple game. All *n* people who came to the barbecue sat in a circle (thus each person received a unique index *b**i* from 0 to *n*<=-<=1). The person number 0 started the game (this time it was Vasya). All turns in the game were numbered by integers starting from 1. If the *j*-th turn was made by the person with index *b**i*, then this person acted like that:
1. he pointed at the person with index (*b**i*<=+<=1) *mod* *n* either with an elbow or with a nod (*x* *mod* *y* is the remainder after dividing *x* by *y*); 1. if *j*<=≥<=4 and the players who had turns number *j*<=-<=1, *j*<=-<=2, *j*<=-<=3, made during their turns the same moves as player *b**i* on the current turn, then he had drunk a glass of juice; 1. the turn went to person number (*b**i*<=+<=1) *mod* *n*.
The person who was pointed on the last turn did not make any actions.
The problem was, Vasya's drunk too much juice and can't remember the goal of the game. However, Vasya's got the recorded sequence of all the participants' actions (including himself). Now Vasya wants to find out the maximum amount of juice he could drink if he played optimally well (the other players' actions do not change). Help him.
You can assume that in any scenario, there is enough juice for everybody.
Input Specification:
The first line contains a single integer *n* (4<=≤<=*n*<=≤<=2000) — the number of participants in the game. The second line describes the actual game: the *i*-th character of this line equals 'a', if the participant who moved *i*-th pointed at the next person with his elbow, and 'b', if the participant pointed with a nod. The game continued for at least 1 and at most 2000 turns.
Output Specification:
Print a single integer — the number of glasses of juice Vasya could have drunk if he had played optimally well.
Demo Input:
['4\nabbba\n', '4\nabbab\n']
Demo Output:
['1\n', '0\n']
Note:
In both samples Vasya has got two turns — 1 and 5. In the first sample, Vasya could have drunk a glass of juice during the fifth turn if he had pointed at the next person with a nod. In this case, the sequence of moves would look like "abbbb". In the second sample Vasya wouldn't drink a single glass of juice as the moves performed during turns 3 and 4 are different.
|
```python
n = int(input())
s = input()
i = n
ans = 0
while i < len(s):
if s[n - 1] == s[n - 2] and s[n - 2] == s[n - 3]:
ans += 1
i += n
print(ans)
```
| 0
|
|
743
|
B
|
Chloe and the sequence
|
PROGRAMMING
| 1,200
|
[
"binary search",
"bitmasks",
"constructive algorithms",
"implementation"
] | null | null |
Chloe, the same as Vladik, is a competitive programmer. She didn't have any problems to get to the olympiad like Vladik, but she was confused by the task proposed on the olympiad.
Let's consider the following algorithm of generating a sequence of integers. Initially we have a sequence consisting of a single element equal to 1. Then we perform (*n*<=-<=1) steps. On each step we take the sequence we've got on the previous step, append it to the end of itself and insert in the middle the minimum positive integer we haven't used before. For example, we get the sequence [1,<=2,<=1] after the first step, the sequence [1,<=2,<=1,<=3,<=1,<=2,<=1] after the second step.
The task is to find the value of the element with index *k* (the elements are numbered from 1) in the obtained sequence, i. e. after (*n*<=-<=1) steps.
Please help Chloe to solve the problem!
|
The only line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=50, 1<=≤<=*k*<=≤<=2*n*<=-<=1).
|
Print single integer — the integer at the *k*-th position in the obtained sequence.
|
[
"3 2\n",
"4 8\n"
] |
[
"2",
"4"
] |
In the first sample the obtained sequence is [1, 2, 1, 3, 1, 2, 1]. The number on the second position is 2.
In the second sample the obtained sequence is [1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1]. The number on the eighth position is 4.
| 1,000
|
[
{
"input": "3 2",
"output": "2"
},
{
"input": "4 8",
"output": "4"
},
{
"input": "5 27",
"output": "1"
},
{
"input": "7 44",
"output": "3"
},
{
"input": "15 18432",
"output": "12"
},
{
"input": "20 259676",
"output": "3"
},
{
"input": "30 671088640",
"output": "28"
},
{
"input": "38 137438953472",
"output": "38"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "3 3",
"output": "1"
},
{
"input": "4 12",
"output": "3"
},
{
"input": "8 224",
"output": "6"
},
{
"input": "13 1368",
"output": "4"
},
{
"input": "16 49152",
"output": "15"
},
{
"input": "19 1024",
"output": "11"
},
{
"input": "24 15204352",
"output": "20"
},
{
"input": "27 6586544",
"output": "5"
},
{
"input": "31 536870912",
"output": "30"
},
{
"input": "38 94489280512",
"output": "34"
},
{
"input": "42 215268308020",
"output": "3"
},
{
"input": "42 3452074721280",
"output": "21"
},
{
"input": "46 34394312982528",
"output": "15"
},
{
"input": "48 133865540681728",
"output": "39"
},
{
"input": "49 76541041985542",
"output": "2"
},
{
"input": "49 104822971826176",
"output": "34"
},
{
"input": "49 351843720888320",
"output": "47"
},
{
"input": "50 743042492421629",
"output": "1"
},
{
"input": "50 666266740436818",
"output": "2"
},
{
"input": "50 704239287953456",
"output": "5"
},
{
"input": "50 116938486513664",
"output": "17"
},
{
"input": "50 806423059496960",
"output": "37"
},
{
"input": "50 985162418487296",
"output": "48"
},
{
"input": "50 844424930131968",
"output": "49"
},
{
"input": "50 562949953421312",
"output": "50"
},
{
"input": "50 1",
"output": "1"
},
{
"input": "50 1125899906842623",
"output": "1"
},
{
"input": "50 1125899906842620",
"output": "3"
},
{
"input": "39 549755813887",
"output": "1"
},
{
"input": "50 100000000000",
"output": "12"
}
] | 1,593,395,929
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 3
| 124
| 20,172,800
|
n,k=map(int,input().split())
if k%2!=0:
print(1)
else:
c=0
while k>1:
k=k//2
c+=1
print(c+1)
|
Title: Chloe and the sequence
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Chloe, the same as Vladik, is a competitive programmer. She didn't have any problems to get to the olympiad like Vladik, but she was confused by the task proposed on the olympiad.
Let's consider the following algorithm of generating a sequence of integers. Initially we have a sequence consisting of a single element equal to 1. Then we perform (*n*<=-<=1) steps. On each step we take the sequence we've got on the previous step, append it to the end of itself and insert in the middle the minimum positive integer we haven't used before. For example, we get the sequence [1,<=2,<=1] after the first step, the sequence [1,<=2,<=1,<=3,<=1,<=2,<=1] after the second step.
The task is to find the value of the element with index *k* (the elements are numbered from 1) in the obtained sequence, i. e. after (*n*<=-<=1) steps.
Please help Chloe to solve the problem!
Input Specification:
The only line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=50, 1<=≤<=*k*<=≤<=2*n*<=-<=1).
Output Specification:
Print single integer — the integer at the *k*-th position in the obtained sequence.
Demo Input:
['3 2\n', '4 8\n']
Demo Output:
['2', '4']
Note:
In the first sample the obtained sequence is [1, 2, 1, 3, 1, 2, 1]. The number on the second position is 2.
In the second sample the obtained sequence is [1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1]. The number on the eighth position is 4.
|
```python
n,k=map(int,input().split())
if k%2!=0:
print(1)
else:
c=0
while k>1:
k=k//2
c+=1
print(c+1)
```
| 0
|
|
577
|
B
|
Modulo Sum
|
PROGRAMMING
| 1,900
|
[
"combinatorics",
"data structures",
"dp",
"two pointers"
] | null | null |
You are given a sequence of numbers *a*1,<=*a*2,<=...,<=*a**n*, and a number *m*.
Check if it is possible to choose a non-empty subsequence *a**i**j* such that the sum of numbers in this subsequence is divisible by *m*.
|
The first line contains two numbers, *n* and *m* (1<=≤<=*n*<=≤<=106, 2<=≤<=*m*<=≤<=103) — the size of the original sequence and the number such that sum should be divisible by it.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=109).
|
In the single line print either "YES" (without the quotes) if there exists the sought subsequence, or "NO" (without the quotes), if such subsequence doesn't exist.
|
[
"3 5\n1 2 3\n",
"1 6\n5\n",
"4 6\n3 1 1 3\n",
"6 6\n5 5 5 5 5 5\n"
] |
[
"YES\n",
"NO\n",
"YES\n",
"YES\n"
] |
In the first sample test you can choose numbers 2 and 3, the sum of which is divisible by 5.
In the second sample test the single non-empty subsequence of numbers is a single number 5. Number 5 is not divisible by 6, that is, the sought subsequence doesn't exist.
In the third sample test you need to choose two numbers 3 on the ends.
In the fourth sample test you can take the whole subsequence.
| 1,250
|
[
{
"input": "3 5\n1 2 3",
"output": "YES"
},
{
"input": "1 6\n5",
"output": "NO"
},
{
"input": "4 6\n3 1 1 3",
"output": "YES"
},
{
"input": "6 6\n5 5 5 5 5 5",
"output": "YES"
},
{
"input": "4 5\n1 1 1 1",
"output": "NO"
},
{
"input": "5 5\n1 1 1 1 1",
"output": "YES"
},
{
"input": "4 7\n1 2 3 3",
"output": "YES"
},
{
"input": "1 47\n0",
"output": "YES"
},
{
"input": "2 47\n1 0",
"output": "YES"
},
{
"input": "9 11\n8 8 8 8 8 8 8 8 5",
"output": "NO"
},
{
"input": "10 11\n8 8 8 8 8 8 8 8 7 8",
"output": "YES"
},
{
"input": "3 5\n2 1 3",
"output": "YES"
},
{
"input": "100 968\n966 966 967 966 967 967 967 967 966 966 966 967 966 966 966 967 967 966 966 967 967 967 967 966 967 967 967 967 563 967 967 967 600 967 967 966 967 966 967 966 967 966 967 966 966 966 967 966 967 966 966 967 967 193 966 966 967 966 967 967 967 966 967 966 966 580 966 967 966 966 967 966 966 966 967 967 967 967 966 967 967 966 966 966 967 967 966 966 967 966 966 966 967 966 966 967 966 967 966 966",
"output": "YES"
},
{
"input": "100 951\n950 949 949 949 949 950 950 949 949 950 950 949 949 949 496 949 950 949 950 159 950 949 949 950 950 949 950 949 949 950 949 950 949 949 950 949 950 950 950 950 949 949 949 949 949 950 950 950 950 950 950 950 949 950 949 949 950 949 950 950 949 950 950 950 949 950 949 950 950 950 950 949 949 950 950 949 950 950 950 950 949 950 950 949 949 635 612 949 949 949 949 949 949 949 950 949 949 950 949 950",
"output": "YES"
},
{
"input": "100 940\n1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 1 403 2 2 1 1 1 2 2 2 1 2 2 1 1 2 2 1 1 1 1 2 1 2 691 1 2 1 1 1 1 1 2 2 2 2 2 1 2 1 1 1 1 1 1 2 2 1 2 2 1 1 1 2 1 2 1 1 2 2 1 1 2 786 1",
"output": "YES"
},
{
"input": "100 917\n2 1 2 2 2 1 1 2 2 2 1 1 1 2 1 2 2 1 2 1 1 1 1 1 1 2 1 1 1 2 1 1 2 1 1 1 1 2 1 2 340 2 399 2 1 2 2 2 2 178 1 1 2 1 1 1 2 2 1 2 2 2 1 2 1 1 1 1 1 1 2 1 1 1 2 2 1 1 2 2 2 1 2 2 2 2 1 2 1 2 2 2 2 2 1 1 2 2 2 2",
"output": "YES"
},
{
"input": "1 2\n1000000000",
"output": "YES"
}
] | 1,693,250,876
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 9
| 93
| 0
|
n, m = map(int, input().split())
a = list(map(int, input().split()))
sum = 0
t = True
if a[0] == 0:
print('YES')
t = False
for i in range(n):
sum = a[i]
if not t:
break
for j in range(i+1, n):
c = a[i]+a[j]
sum += a[j]
if a[j] == 0:
print('YES')
t = False
break
if sum % m == 0 or c % m == 0:
print('YES')
t = False
break
if sum > m:
if sum - m in a:
print('YES')
t = False
break
if t:
print('NO')
|
Title: Modulo Sum
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given a sequence of numbers *a*1,<=*a*2,<=...,<=*a**n*, and a number *m*.
Check if it is possible to choose a non-empty subsequence *a**i**j* such that the sum of numbers in this subsequence is divisible by *m*.
Input Specification:
The first line contains two numbers, *n* and *m* (1<=≤<=*n*<=≤<=106, 2<=≤<=*m*<=≤<=103) — the size of the original sequence and the number such that sum should be divisible by it.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=109).
Output Specification:
In the single line print either "YES" (without the quotes) if there exists the sought subsequence, or "NO" (without the quotes), if such subsequence doesn't exist.
Demo Input:
['3 5\n1 2 3\n', '1 6\n5\n', '4 6\n3 1 1 3\n', '6 6\n5 5 5 5 5 5\n']
Demo Output:
['YES\n', 'NO\n', 'YES\n', 'YES\n']
Note:
In the first sample test you can choose numbers 2 and 3, the sum of which is divisible by 5.
In the second sample test the single non-empty subsequence of numbers is a single number 5. Number 5 is not divisible by 6, that is, the sought subsequence doesn't exist.
In the third sample test you need to choose two numbers 3 on the ends.
In the fourth sample test you can take the whole subsequence.
|
```python
n, m = map(int, input().split())
a = list(map(int, input().split()))
sum = 0
t = True
if a[0] == 0:
print('YES')
t = False
for i in range(n):
sum = a[i]
if not t:
break
for j in range(i+1, n):
c = a[i]+a[j]
sum += a[j]
if a[j] == 0:
print('YES')
t = False
break
if sum % m == 0 or c % m == 0:
print('YES')
t = False
break
if sum > m:
if sum - m in a:
print('YES')
t = False
break
if t:
print('NO')
```
| 0
|
|
990
|
C
|
Bracket Sequences Concatenation Problem
|
PROGRAMMING
| 1,500
|
[
"implementation"
] | null | null |
A bracket sequence is a string containing only characters "(" and ")".
A regular bracket sequence is a bracket sequence that can be transformed into a correct arithmetic expression by inserting characters "1" and "+" between the original characters of the sequence. For example, bracket sequences "()()", "(())" are regular (the resulting expressions are: "(1)+(1)", "((1+1)+1)"), and ")(" and "(" are not.
You are given $n$ bracket sequences $s_1, s_2, \dots , s_n$. Calculate the number of pairs $i, j \, (1 \le i, j \le n)$ such that the bracket sequence $s_i + s_j$ is a regular bracket sequence. Operation $+$ means concatenation i.e. "()(" + ")()" = "()()()".
If $s_i + s_j$ and $s_j + s_i$ are regular bracket sequences and $i \ne j$, then both pairs $(i, j)$ and $(j, i)$ must be counted in the answer. Also, if $s_i + s_i$ is a regular bracket sequence, the pair $(i, i)$ must be counted in the answer.
|
The first line contains one integer $n \, (1 \le n \le 3 \cdot 10^5)$ — the number of bracket sequences. The following $n$ lines contain bracket sequences — non-empty strings consisting only of characters "(" and ")". The sum of lengths of all bracket sequences does not exceed $3 \cdot 10^5$.
|
In the single line print a single integer — the number of pairs $i, j \, (1 \le i, j \le n)$ such that the bracket sequence $s_i + s_j$ is a regular bracket sequence.
|
[
"3\n)\n()\n(\n",
"2\n()\n()\n"
] |
[
"2\n",
"4\n"
] |
In the first example, suitable pairs are $(3, 1)$ and $(2, 2)$.
In the second example, any pair is suitable, namely $(1, 1), (1, 2), (2, 1), (2, 2)$.
| 0
|
[
{
"input": "3\n)\n()\n(",
"output": "2"
},
{
"input": "2\n()\n()",
"output": "4"
},
{
"input": "7\n()(\n)\n)(\n())\n(((\n()()()\n()",
"output": "6"
},
{
"input": "6\n(\n((\n(((\n))))\n)))))\n))))))",
"output": "0"
},
{
"input": "9\n(()\n((())\n(\n)\n(()()(()())))\n)\n)(()(\n)())(\n)()(",
"output": "9"
},
{
"input": "2\n(((((((((()\n)))))))))",
"output": "1"
},
{
"input": "1\n)(",
"output": "0"
},
{
"input": "1\n()",
"output": "1"
},
{
"input": "2\n(((\n)))",
"output": "1"
},
{
"input": "10\n()()(\n)((\n)()(((()(\n(((()(\n)(()((\n))\n()()()()\n))()))((\n)\n))())(",
"output": "2"
},
{
"input": "3\n)())(\n()(()(\n(((",
"output": "0"
},
{
"input": "2\n((((((((((((((((((((((((\n))))))))))))))))))))))))",
"output": "1"
},
{
"input": "2\n((\n))",
"output": "1"
}
] | 1,528,629,997
| 4,897
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 5
| 2,000
| 6,144,000
|
def prov(s):
count = 0
for c in s:
if c == '(':
count += 1
else:
count -= 1
if count < 0:
return False
return not count
n = int(input())
a = []
for i in range(n):
a.append(input())
k = 0
for i in range(n):
for j in range(n):
s = a[i] + a[j]
if prov(s):
k += 1
print(k)
|
Title: Bracket Sequences Concatenation Problem
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A bracket sequence is a string containing only characters "(" and ")".
A regular bracket sequence is a bracket sequence that can be transformed into a correct arithmetic expression by inserting characters "1" and "+" between the original characters of the sequence. For example, bracket sequences "()()", "(())" are regular (the resulting expressions are: "(1)+(1)", "((1+1)+1)"), and ")(" and "(" are not.
You are given $n$ bracket sequences $s_1, s_2, \dots , s_n$. Calculate the number of pairs $i, j \, (1 \le i, j \le n)$ such that the bracket sequence $s_i + s_j$ is a regular bracket sequence. Operation $+$ means concatenation i.e. "()(" + ")()" = "()()()".
If $s_i + s_j$ and $s_j + s_i$ are regular bracket sequences and $i \ne j$, then both pairs $(i, j)$ and $(j, i)$ must be counted in the answer. Also, if $s_i + s_i$ is a regular bracket sequence, the pair $(i, i)$ must be counted in the answer.
Input Specification:
The first line contains one integer $n \, (1 \le n \le 3 \cdot 10^5)$ — the number of bracket sequences. The following $n$ lines contain bracket sequences — non-empty strings consisting only of characters "(" and ")". The sum of lengths of all bracket sequences does not exceed $3 \cdot 10^5$.
Output Specification:
In the single line print a single integer — the number of pairs $i, j \, (1 \le i, j \le n)$ such that the bracket sequence $s_i + s_j$ is a regular bracket sequence.
Demo Input:
['3\n)\n()\n(\n', '2\n()\n()\n']
Demo Output:
['2\n', '4\n']
Note:
In the first example, suitable pairs are $(3, 1)$ and $(2, 2)$.
In the second example, any pair is suitable, namely $(1, 1), (1, 2), (2, 1), (2, 2)$.
|
```python
def prov(s):
count = 0
for c in s:
if c == '(':
count += 1
else:
count -= 1
if count < 0:
return False
return not count
n = int(input())
a = []
for i in range(n):
a.append(input())
k = 0
for i in range(n):
for j in range(n):
s = a[i] + a[j]
if prov(s):
k += 1
print(k)
```
| 0
|
|
510
|
E
|
Fox And Dinner
|
PROGRAMMING
| 2,300
|
[
"flows"
] | null | null |
Fox Ciel is participating in a party in Prime Kingdom. There are *n* foxes there (include Fox Ciel). The i-th fox is *a**i* years old.
They will have dinner around some round tables. You want to distribute foxes such that:
1. Each fox is sitting at some table. 1. Each table has at least 3 foxes sitting around it. 1. The sum of ages of any two adjacent foxes around each table should be a prime number.
If *k* foxes *f*1, *f*2, ..., *f**k* are sitting around table in clockwise order, then for 1<=≤<=*i*<=≤<=*k*<=-<=1: *f**i* and *f**i*<=+<=1 are adjacent, and *f*1 and *f**k* are also adjacent.
If it is possible to distribute the foxes in the desired manner, find out a way to do that.
|
The first line contains single integer *n* (3<=≤<=*n*<=≤<=200): the number of foxes in this party.
The second line contains *n* integers *a**i* (2<=≤<=*a**i*<=≤<=104).
|
If it is impossible to do this, output "Impossible".
Otherwise, in the first line output an integer *m* (): the number of tables.
Then output *m* lines, each line should start with an integer *k* -=– the number of foxes around that table, and then *k* numbers — indices of fox sitting around that table in clockwise order.
If there are several possible arrangements, output any of them.
|
[
"4\n3 4 8 9\n",
"5\n2 2 2 2 2\n",
"12\n2 3 4 5 6 7 8 9 10 11 12 13\n",
"24\n2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25\n"
] |
[
"1\n4 1 2 4 3\n",
"Impossible\n",
"1\n12 1 2 3 6 5 12 9 8 7 10 11 4\n",
"3\n6 1 2 3 6 5 4\n10 7 8 9 12 15 14 13 16 11 10\n8 17 18 23 22 19 20 21 24\n"
] |
In example 1, they can sit around one table, their ages are: 3-8-9-4, adjacent sums are: 11, 17, 13 and 7, all those integers are primes.
In example 2, it is not possible: the sum of 2+2 = 4 is not a prime number.
| 2,500
|
[
{
"input": "4\n3 4 8 9",
"output": "1\n4 1 2 4 3"
},
{
"input": "5\n2 2 2 2 2",
"output": "Impossible"
},
{
"input": "12\n2 3 4 5 6 7 8 9 10 11 12 13",
"output": "1\n12 1 2 3 6 5 12 9 8 7 10 11 4"
},
{
"input": "24\n2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25",
"output": "3\n6 1 2 3 6 5 4\n10 7 8 9 12 15 14 13 16 11 10\n8 17 18 23 22 19 20 21 24"
},
{
"input": "4\n2 2 9973 9967",
"output": "Impossible"
},
{
"input": "30\n2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31",
"output": "3\n16 1 2 3 26 19 22 23 28 29 30 27 24 21 20 25 4\n6 5 6 9 8 7 10\n8 11 16 13 14 15 12 17 18"
},
{
"input": "20\n76 38 74 176 106 134 12 88 66 178 63 105 199 99 29 67 135 29 101 47",
"output": "Impossible"
},
{
"input": "20\n12 4 12 12 2 10 4 12 18 14 21 21 15 7 17 11 5 11 3 13",
"output": "3\n6 1 14 3 16 4 15\n10 2 13 10 17 8 18 9 20 7 19\n4 5 11 6 12"
},
{
"input": "152\n29 23 17 25 13 29 29 29 25 23 25 29 19 25 13 25 13 23 21 27 15 29 29 25 27 17 17 19 25 19 13 19 15 13 19 13 17 17 19 17 17 13 25 21 17 13 21 17 25 21 19 23 17 17 29 15 15 17 25 13 25 13 21 13 19 19 13 13 21 25 23 19 19 21 29 29 26 30 22 20 22 28 24 28 18 16 22 18 16 20 12 26 16 20 12 24 20 28 16 16 16 16 12 20 22 12 20 12 22 18 22 12 22 22 24 22 30 28 20 24 30 14 18 12 16 14 18 18 16 22 16 20 20 20 28 30 20 24 12 24 24 28 22 30 24 18 12 20 22 24 12 12",
"output": "17\n30 1 126 45 122 41 120 42 121 46 123 51 124 48 77 58 134 63 137 69 143 66 142 65 141 64 140 62 138 60 136\n40 2 80 3 92 74 149 73 81 4 82 5 84 9 86 11 87 13 91 14 89 15 88 18 90 10 85 12 83 8 78 7 150 6 147 72 79 70 146 71 148\n12 16 93 17 98 21 99 24 103 23 96 22 95\n4 19 94 20 97\n4 25 100 31 101\n4 26 104 27 107\n4 28 105 29 106\n18 30 108 37 112 38 117 40 115 39 118 43 114 35 113 33 111 32 109\n4 34 102 36 110\n4 44 116 47 119\n4 49 125 50 129\n4 52 127 55 128\n4 53 132 54 133\n4 56 130 57 131\n4 5..."
},
{
"input": "92\n5 5 3 5 3 3 5 3 5 3 5 5 5 3 3 5 3 5 3 5 3 5 3 5 3 3 3 5 3 5 5 5 5 5 5 3 5 3 3 5 3 5 5 3 3 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4",
"output": "Impossible"
},
{
"input": "15\n3 3 3 3 3 3 3 4 2 4 2 2 2 4 2",
"output": "Impossible"
},
{
"input": "88\n29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 28 28 30 30 28 28 30 28 28 28 30 30 30 30 28 30 30 28 28 28 30 28 30 30 30 30 28 30 30 30 28 30 28 28 28 30 30 30 30 28 30 28 30 28",
"output": "Impossible"
},
{
"input": "52\n11 33 37 51 27 59 57 55 73 67 13 47 45 39 27 21 23 61 37 35 39 63 69 53 61 55 44 34 64 30 54 48 32 66 32 62 50 44 38 24 22 30 14 54 12 28 40 40 50 54 64 56",
"output": "4\n10 1 33 4 52 2 28 22 51 21 49\n10 3 29 10 30 6 32 8 31 9 34\n28 5 35 7 37 14 38 15 43 17 27 24 50 26 46 18 45 20 44 12 40 11 42 19 41 16 39 13 36\n4 23 47 25 48"
},
{
"input": "102\n87 73 87 81 71 83 71 91 75 87 87 79 77 85 83 71 91 83 85 81 79 81 81 91 91 87 79 81 91 81 77 87 71 87 91 89 89 77 87 91 87 75 83 87 75 73 83 81 79 77 91 76 76 88 82 88 78 86 72 84 86 72 74 74 88 84 86 80 84 90 80 88 84 82 80 84 74 72 86 86 76 82 80 86 74 84 88 74 82 90 72 86 72 80 80 82 86 88 82 78 72 88",
"output": "8\n4 1 94 44 95\n72 2 60 49 102 51 101 50 63 9 64 13 68 11 58 20 55 4 53 10 52 3 97 5 57 7 100 46 90 43 88 37 86 36 85 31 79 28 74 25 78 27 87 29 82 30 89 35 91 38 93 40 96 48 99 45 98 42 56 21 54 24 72 19 65 17 70 47 73 15 77 18 76\n4 6 66 12 69\n4 8 59 14 62\n4 16 71 26 75\n4 22 61 23 67\n6 32 80 33 83 34 81\n4 39 84 41 92"
},
{
"input": "10\n119 289 109 185 251 184 224 588 360 518",
"output": "Impossible"
},
{
"input": "76\n7 7 9 9 9 11 9 11 7 7 9 7 9 9 9 7 11 11 7 11 7 11 7 7 9 11 7 7 7 7 11 7 9 11 11 9 9 11 8 10 8 8 8 10 10 10 10 8 8 8 8 10 10 10 8 8 8 10 8 8 8 8 8 8 10 8 8 10 10 10 10 10 8 10 10 10",
"output": "9\n4 1 40 2 76\n4 3 41 4 42\n44 5 43 6 48 7 49 8 50 11 51 13 55 14 56 15 57 17 59 18 60 20 61 22 62 26 63 25 65 24 58 23 54 21 53 19 52 16 47 12 46 10 45 9 44\n4 27 68 28 69\n4 29 70 30 71\n4 31 64 34 66\n4 32 72 33 74\n4 35 67 38 73\n4 36 39 37 75"
},
{
"input": "12\n1751 1909 1655 1583 1867 1841 1740 1584 1518 1806 1664 1518",
"output": "Impossible"
},
{
"input": "146\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 4 2 4 2 4 2 4 2 2 2 4 2 4 2 4 4 2 4 4 2 2 4 2 2 2 4 4 2 2 2 2 2 2 2 4 4 4 4 4 2 2 4 2 2 2 2 4 4 2 4 4 2 2 2 2 2 2 4 4 4 4 4 4 2 2 2 2 2 2 4 4 4",
"output": "36\n6 1 74 73 145 72 146\n4 2 75 3 76\n4 4 77 5 78\n4 6 79 7 80\n4 8 81 9 82\n4 10 83 11 84\n4 12 85 13 86\n4 14 87 15 88\n4 16 89 17 90\n4 18 91 19 92\n4 20 93 21 94\n4 22 95 23 96\n4 24 97 25 98\n4 26 99 27 100\n4 28 101 29 102\n4 30 103 31 104\n4 32 105 33 106\n4 34 107 35 108\n4 36 109 37 110\n4 38 111 39 112\n4 40 113 41 114\n4 42 115 43 116\n4 44 117 45 118\n4 46 119 47 120\n4 48 121 49 122\n4 50 123 51 124\n4 52 125 53 126\n4 54 127 55 128\n4 56 129 57 130\n4 58 131 59 132\n4 60 133 61 134\n4 62 135..."
},
{
"input": "78\n159 575 713 275 463 365 461 537 301 439 669 165 555 267 571 383 495 375 321 605 367 481 619 675 115 193 447 303 263 421 189 491 591 673 635 309 301 391 379 736 652 704 634 258 708 206 476 408 702 630 650 236 546 328 348 86 96 628 668 426 640 170 434 486 168 640 260 426 186 272 650 616 252 372 442 178 266 464",
"output": "1\n78 1 42 2 69 30 66 27 63 24 58 17 59 16 53 15 55 23 61 14 52 19 62 11 54 13 47 12 77 32 74 4 49 7 50 10 41 37 75 39 76 38 73 35 70 33 40 34 72 28 71 31 78 36 67 29 44 3 65 25 68 26 60 22 64 21 57 20 56 18 43 5 45 9 48 6 46 8 51"
},
{
"input": "10\n5 5 7 7 5 6 6 6 6 6",
"output": "2\n6 1 6 5 9 4 10\n4 2 7 3 8"
},
{
"input": "148\n73 53 49 49 65 69 61 67 57 55 53 57 57 59 69 59 71 55 71 49 51 67 57 73 71 55 59 59 61 55 73 69 63 55 59 51 69 73 67 55 61 53 49 69 53 63 71 71 65 63 61 63 65 69 61 63 63 71 71 65 57 63 61 69 49 53 59 51 73 61 55 73 63 65 70 68 68 66 64 56 68 50 68 56 68 70 68 54 70 60 62 68 64 56 52 66 66 64 72 58 70 58 52 50 56 50 56 50 50 72 70 64 50 62 58 70 72 62 62 72 64 52 50 54 56 54 72 64 62 62 72 70 66 70 62 64 50 72 62 58 58 58 56 72 58 52 60 72",
"output": "13\n76 1 133 63 134 70 75 7 78 5 139 60 138 67 83 64 81 54 135 53 131 49 130 44 129 37 119 36 118 32 114 21 95 23 101 22 99 27 104 28 106 33 108 42 109 46 112 38 115 34 117 35 110 30 103 29 111 41 116 51 122 55 132 61 125 59 76 62 137 73 77 57 123 56 128 3 136\n4 2 80 9 82\n26 4 79 8 90 11 84 12 86 13 89 15 91 6 85 14 87 16 88 18 146 71 148 74 144 10 140\n4 17 92 19 94\n4 20 93 24 98\n4 25 96 47 97\n4 26 100 31 102\n4 39 120 40 127\n4 43 124 45 126\n4 48 105 58 107\n4 50 113 52 121\n6 65 141 68 143 66 147\n..."
},
{
"input": "80\n5599 5365 6251 3777 6887 5077 4987 6925 3663 5457 5063 4077 3531 6359 4293 6305 4585 3641 6737 6403 6863 4839 3765 3767 5807 6657 7275 5625 3635 3939 7035 6945 7167 5023 5949 4295 4899 4595 5725 3863 3750 4020 5096 5232 6566 6194 5524 3702 6876 4464 3720 5782 5160 3712 7028 6204 5378 5896 5494 7084 5290 6784 6408 5410 4260 5082 4210 5336 4110 5064 3664 4964 5202 5410 5634 3990 5034 6774 4956 4806",
"output": "5\n40 1 41 21 77 6 49 7 42 3 44 5 50 2 79 38 78 36 75 34 76 24 73 29 46 31 57 27 58 26 62 28 72 32 68 33 43 18 80 39 70\n28 4 45 40 56 19 69 20 65 25 66 8 48 16 63 17 59 22 60 12 54 23 52 10 74 30 64 13 61\n4 9 47 15 55\n4 11 51 14 53\n4 35 67 37 71"
},
{
"input": "16\n5 7 7 7 11 11 9 5 4 6 6 10 6 4 10 6",
"output": "4\n4 1 10 5 11\n4 2 9 3 12\n4 4 14 7 15\n4 6 13 8 16"
},
{
"input": "74\n3 3 5 3 5 5 3 5 3 3 5 5 3 5 3 3 3 3 3 3 3 5 5 3 5 3 5 3 3 5 5 5 5 3 3 5 3 4 6 6 6 6 4 4 4 6 6 6 6 4 6 4 4 6 6 4 6 4 4 6 6 4 4 4 6 4 4 4 4 6 4 4 4 4",
"output": "18\n6 1 38 37 73 35 74\n4 2 43 4 44\n4 3 39 5 40\n4 6 41 8 42\n4 7 45 9 50\n4 10 52 13 53\n4 11 46 12 47\n4 14 48 22 49\n4 15 56 16 58\n4 17 59 18 62\n4 19 63 20 64\n4 21 66 24 67\n4 23 51 25 54\n4 26 68 28 69\n4 27 55 30 57\n4 29 71 34 72\n4 31 60 32 61\n4 33 65 36 70"
},
{
"input": "70\n763 657 799 713 667 531 829 675 799 721 741 549 793 553 723 579 853 713 835 833 581 801 683 551 617 733 611 699 607 565 579 693 897 543 607 848 774 602 544 846 710 722 568 740 548 702 908 572 572 806 834 794 648 770 908 778 748 692 704 624 580 746 780 666 678 822 834 640 548 788",
"output": "4\n6 1 57 26 67 30 64\n6 2 48 6 49 16 52\n52 3 53 20 63 5 60 19 56 13 51 25 50 8 47 18 54 33 59 31 70 32 62 34 69 23 36 21 42 22 58 11 45 12 44 4 41 15 43 10 46 7 39 14 40 17 37 35 61 29 66 9 68\n6 24 55 28 38 27 65"
},
{
"input": "98\n5 5 3 3 3 3 3 5 3 5 3 5 3 3 5 5 5 5 3 5 5 3 3 5 3 3 5 3 3 3 5 5 3 5 3 3 3 5 5 5 3 5 5 5 3 5 5 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4",
"output": "Impossible"
},
{
"input": "30\n25 43 41 17 15 29 29 39 17 19 23 9 39 19 25 26 32 38 12 42 44 44 12 22 26 20 34 12 30 16",
"output": "1\n30 1 20 6 19 4 16 9 25 5 18 3 17 13 26 12 24 10 23 7 21 8 22 11 29 2 30 15 28 14 27"
},
{
"input": "90\n11 9 11 9 9 11 9 9 11 9 11 9 11 11 9 11 11 11 11 9 9 11 11 11 9 9 9 11 11 9 11 11 9 11 9 9 11 11 11 11 9 11 11 11 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10",
"output": "Impossible"
},
{
"input": "6\n681 673 659 656 650 644",
"output": "Impossible"
},
{
"input": "38\n5 7 7 5 7 7 7 5 7 5 7 5 7 5 7 7 5 7 7 4 6 4 8 4 4 8 4 8 4 6 6 8 6 8 6 4 8 6",
"output": "1\n38 1 23 4 26 8 28 10 32 12 34 14 37 17 35 16 33 15 31 13 30 11 29 9 27 7 25 6 24 5 22 3 21 2 20 19 36 18 38"
},
{
"input": "81\n7627 7425 8929 7617 5649 7853 4747 6267 4997 6447 5411 7707 5169 5789 8011 9129 8045 7463 6139 8263 7547 7453 7993 8343 5611 7039 9001 5569 9189 7957 5537 8757 8795 4963 9149 5845 9203 5459 8501 7273 9152 7472 8050 8568 6730 8638 4938 9000 9230 5464 5950 6090 7394 5916 4890 6246 4816 4920 8638 4706 6308 6816 7570 8940 5060 7368 5252 6526 9072 5168 7420 5336 4734 8076 7048 8504 5696 9266 8966 7416 5162",
"output": "Impossible"
},
{
"input": "98\n575 581 569 571 571 583 573 581 569 589 579 575 575 577 585 569 569 571 581 577 583 573 575 589 585 569 579 585 585 579 579 577 575 575 577 585 583 569 571 589 571 583 569 587 575 585 585 583 581 572 568 568 576 580 582 570 576 580 582 588 572 584 576 580 576 582 568 574 588 580 572 586 568 574 578 568 568 584 576 588 588 574 578 586 588 570 568 568 568 580 586 576 574 586 582 584 570 572",
"output": "11\n32 1 60 42 51 21 89 37 88 36 87 29 77 28 76 25 52 48 67 6 73 15 72 20 79 14 53 34 85 45 92 44 63\n10 2 56 8 50 11 61 19 86 49 97\n14 3 59 26 62 17 55 16 96 43 95 9 78 38 66\n10 4 64 18 58 41 70 39 54 5 90\n4 7 75 22 83\n4 10 82 40 93\n4 12 65 13 69\n4 23 80 33 81\n8 24 68 31 98 30 71 27 74\n4 32 57 35 84\n4 46 91 47 94"
},
{
"input": "124\n135 161 147 135 137 153 145 159 147 129 131 157 163 161 127 129 141 133 133 151 147 169 159 137 137 153 165 137 139 151 149 161 157 149 147 139 145 129 159 155 133 129 139 151 155 145 135 155 135 137 157 141 169 151 163 151 159 129 171 169 129 159 154 142 158 152 172 142 172 164 142 158 156 128 144 128 140 160 154 144 126 140 166 134 146 148 130 166 160 168 172 138 148 126 138 144 156 130 172 130 164 136 130 132 142 126 138 164 158 154 166 160 164 168 128 160 162 168 158 172 150 130 132 172",
"output": "9\n88 1 68 56 64 54 117 60 118 53 114 46 111 3 70 9 122 55 121 51 116 59 112 44 104 50 106 45 65 40 95 37 99 39 93 27 91 23 86 22 92 29 98 30 94 33 97 2 123 5 75 13 63 12 81 24 82 25 84 28 85 32 73 14 66 11 107 43 110 42 108 38 101 35 100 36 103 41 102 47 105 52 67 7 69 8 72 4 71\n4 6 74 10 76\n6 15 79 16 77 17 83\n4 18 78 19 80\n6 20 87 26 89 21 88\n4 31 90 34 96\n4 48 109 49 119\n4 57 120 62 124\n4 58 113 61 115"
},
{
"input": "60\n9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 8 10 10 10 10 8 10 10 8 10 8 8 10 8 8 10 10 10 8 8 8 8 10 8 10 8 8 8 8 10",
"output": "15\n4 1 31 2 32\n4 3 33 4 34\n4 5 35 6 36\n4 7 37 8 38\n4 9 39 10 40\n4 11 41 12 42\n4 13 43 14 44\n4 15 45 16 46\n4 17 47 18 48\n4 19 49 20 50\n4 21 51 22 52\n4 23 53 24 54\n4 25 55 26 56\n4 27 57 28 58\n4 29 59 30 60"
},
{
"input": "62\n37 45 41 45 49 37 47 41 39 43 43 39 45 41 43 47 37 41 47 37 47 49 43 39 37 45 45 47 37 47 43 34 42 36 48 36 44 48 44 46 48 44 44 48 36 42 40 38 36 48 48 38 46 48 34 34 46 42 34 36 34 36",
"output": "Impossible"
},
{
"input": "128\n3 3 5 3 5 3 5 3 5 5 3 5 3 5 3 5 3 5 5 5 5 5 5 5 5 3 3 3 5 3 5 3 3 3 3 5 3 5 5 3 3 3 3 5 5 5 5 3 5 3 3 5 5 3 5 3 3 5 3 3 5 3 3 3 6 6 6 4 4 4 4 4 6 6 6 6 6 6 4 6 6 4 6 6 4 4 4 6 4 6 6 4 6 4 4 6 4 4 6 4 6 4 6 6 6 6 6 6 4 6 4 6 6 4 4 6 4 6 6 4 6 4 6 4 6 6 4 6",
"output": "Impossible"
},
{
"input": "60\n633 713 645 745 641 685 731 645 655 633 703 715 633 739 657 755 657 671 567 699 743 737 667 701 649 721 671 699 697 675 570 570 570 648 684 732 598 558 674 766 720 692 702 756 756 646 568 630 668 742 604 628 628 764 636 600 678 734 638 758",
"output": "3\n48 1 49 13 47 14 52 20 51 6 55 27 60 30 42 19 46 17 50 15 40 12 36 24 38 9 34 5 41 11 37 10 39 3 54 8 59 21 48 22 45 18 44 16 57 25 53 28 58\n4 2 32 23 33\n8 4 35 29 56 26 31 7 43"
},
{
"input": "178\n5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6",
"output": "44\n6 1 90 89 177 88 178\n4 2 91 3 92\n4 4 93 5 94\n4 6 95 7 96\n4 8 97 9 98\n4 10 99 11 100\n4 12 101 13 102\n4 14 103 15 104\n4 16 105 17 106\n4 18 107 19 108\n4 20 109 21 110\n4 22 111 23 112\n4 24 113 25 114\n4 26 115 27 116\n4 28 117 29 118\n4 30 119 31 120\n4 32 121 33 122\n4 34 123 35 124\n4 36 125 37 126\n4 38 127 39 128\n4 40 129 41 130\n4 42 131 43 132\n4 44 133 45 134\n4 46 135 47 136\n4 48 137 49 138\n4 50 139 51 140\n4 52 141 53 142\n4 54 143 55 144\n4 56 145 57 146\n4 58 147 59 148\n4 60 149 ..."
}
] | 1,691,664,736
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 0
| 46
| 0
|
print("_RANDOM_GUESS_1691664736.909063")# 1691664736.9090793
|
Title: Fox And Dinner
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Fox Ciel is participating in a party in Prime Kingdom. There are *n* foxes there (include Fox Ciel). The i-th fox is *a**i* years old.
They will have dinner around some round tables. You want to distribute foxes such that:
1. Each fox is sitting at some table. 1. Each table has at least 3 foxes sitting around it. 1. The sum of ages of any two adjacent foxes around each table should be a prime number.
If *k* foxes *f*1, *f*2, ..., *f**k* are sitting around table in clockwise order, then for 1<=≤<=*i*<=≤<=*k*<=-<=1: *f**i* and *f**i*<=+<=1 are adjacent, and *f*1 and *f**k* are also adjacent.
If it is possible to distribute the foxes in the desired manner, find out a way to do that.
Input Specification:
The first line contains single integer *n* (3<=≤<=*n*<=≤<=200): the number of foxes in this party.
The second line contains *n* integers *a**i* (2<=≤<=*a**i*<=≤<=104).
Output Specification:
If it is impossible to do this, output "Impossible".
Otherwise, in the first line output an integer *m* (): the number of tables.
Then output *m* lines, each line should start with an integer *k* -=– the number of foxes around that table, and then *k* numbers — indices of fox sitting around that table in clockwise order.
If there are several possible arrangements, output any of them.
Demo Input:
['4\n3 4 8 9\n', '5\n2 2 2 2 2\n', '12\n2 3 4 5 6 7 8 9 10 11 12 13\n', '24\n2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25\n']
Demo Output:
['1\n4 1 2 4 3\n', 'Impossible\n', '1\n12 1 2 3 6 5 12 9 8 7 10 11 4\n', '3\n6 1 2 3 6 5 4\n10 7 8 9 12 15 14 13 16 11 10\n8 17 18 23 22 19 20 21 24\n']
Note:
In example 1, they can sit around one table, their ages are: 3-8-9-4, adjacent sums are: 11, 17, 13 and 7, all those integers are primes.
In example 2, it is not possible: the sum of 2+2 = 4 is not a prime number.
|
```python
print("_RANDOM_GUESS_1691664736.909063")# 1691664736.9090793
```
| 0
|
|
993
|
A
|
Two Squares
|
PROGRAMMING
| 1,600
|
[
"geometry",
"implementation"
] | null | null |
You are given two squares, one with sides parallel to the coordinate axes, and another one with sides at 45 degrees to the coordinate axes. Find whether the two squares intersect.
The interior of the square is considered to be part of the square, i.e. if one square is completely inside another, they intersect. If the two squares only share one common point, they are also considered to intersect.
|
The input data consists of two lines, one for each square, both containing 4 pairs of integers. Each pair represents coordinates of one vertex of the square. Coordinates within each line are either in clockwise or counterclockwise order.
The first line contains the coordinates of the square with sides parallel to the coordinate axes, the second line contains the coordinates of the square at 45 degrees.
All the values are integer and between $-100$ and $100$.
|
Print "Yes" if squares intersect, otherwise print "No".
You can print each letter in any case (upper or lower).
|
[
"0 0 6 0 6 6 0 6\n1 3 3 5 5 3 3 1\n",
"0 0 6 0 6 6 0 6\n7 3 9 5 11 3 9 1\n",
"6 0 6 6 0 6 0 0\n7 4 4 7 7 10 10 7\n"
] |
[
"YES\n",
"NO\n",
"YES\n"
] |
In the first example the second square lies entirely within the first square, so they do intersect.
In the second sample squares do not have any points in common.
Here are images corresponding to the samples:
| 500
|
[
{
"input": "0 0 6 0 6 6 0 6\n1 3 3 5 5 3 3 1",
"output": "YES"
},
{
"input": "0 0 6 0 6 6 0 6\n7 3 9 5 11 3 9 1",
"output": "NO"
},
{
"input": "6 0 6 6 0 6 0 0\n7 4 4 7 7 10 10 7",
"output": "YES"
},
{
"input": "0 0 6 0 6 6 0 6\n8 4 4 8 8 12 12 8",
"output": "YES"
},
{
"input": "2 2 4 2 4 4 2 4\n0 3 3 6 6 3 3 0",
"output": "YES"
},
{
"input": "-5 -5 5 -5 5 5 -5 5\n-5 7 0 2 5 7 0 12",
"output": "YES"
},
{
"input": "-5 -5 5 -5 5 5 -5 5\n-5 12 0 7 5 12 0 17",
"output": "NO"
},
{
"input": "-5 -5 5 -5 5 5 -5 5\n6 0 0 6 -6 0 0 -6",
"output": "YES"
},
{
"input": "-100 -100 100 -100 100 100 -100 100\n-100 0 0 -100 100 0 0 100",
"output": "YES"
},
{
"input": "92 1 92 98 -5 98 -5 1\n44 60 56 48 44 36 32 48",
"output": "YES"
},
{
"input": "-12 -54 -12 33 -99 33 -99 -54\n-77 -40 -86 -31 -77 -22 -68 -31",
"output": "YES"
},
{
"input": "3 45 19 45 19 61 3 61\n-29 45 -13 29 3 45 -13 61",
"output": "YES"
},
{
"input": "79 -19 79 15 45 15 45 -19\n-1 24 -29 52 -1 80 27 52",
"output": "NO"
},
{
"input": "75 -57 75 -21 39 -21 39 -57\n10 -42 -32 0 10 42 52 0",
"output": "NO"
},
{
"input": "-11 53 9 53 9 73 -11 73\n-10 9 -43 42 -10 75 23 42",
"output": "YES"
},
{
"input": "-10 -36 -10 27 -73 27 -73 -36\n44 -28 71 -55 44 -82 17 -55",
"output": "NO"
},
{
"input": "-63 -15 6 -15 6 54 -63 54\n15 -13 -8 10 15 33 38 10",
"output": "YES"
},
{
"input": "47 15 51 15 51 19 47 19\n19 0 -27 46 19 92 65 46",
"output": "NO"
},
{
"input": "87 -5 87 79 3 79 3 -5\n36 36 78 -6 36 -48 -6 -6",
"output": "YES"
},
{
"input": "-4 56 10 56 10 70 -4 70\n-11 47 -35 71 -11 95 13 71",
"output": "YES"
},
{
"input": "-41 6 -41 8 -43 8 -43 6\n-7 27 43 -23 -7 -73 -57 -23",
"output": "NO"
},
{
"input": "44 -58 44 7 -21 7 -21 -58\n22 19 47 -6 22 -31 -3 -6",
"output": "YES"
},
{
"input": "-37 -63 49 -63 49 23 -37 23\n-52 68 -21 37 -52 6 -83 37",
"output": "YES"
},
{
"input": "93 20 93 55 58 55 58 20\n61 -17 39 5 61 27 83 5",
"output": "YES"
},
{
"input": "-7 4 -7 58 -61 58 -61 4\n-28 45 -17 34 -28 23 -39 34",
"output": "YES"
},
{
"input": "24 -79 87 -79 87 -16 24 -16\n-59 21 -85 47 -59 73 -33 47",
"output": "NO"
},
{
"input": "-68 -15 6 -15 6 59 -68 59\n48 -18 57 -27 48 -36 39 -27",
"output": "NO"
},
{
"input": "25 1 25 91 -65 91 -65 1\n24 3 15 12 24 21 33 12",
"output": "YES"
},
{
"input": "55 24 73 24 73 42 55 42\n49 17 10 56 49 95 88 56",
"output": "YES"
},
{
"input": "69 -65 69 -28 32 -28 32 -65\n-1 50 43 6 -1 -38 -45 6",
"output": "NO"
},
{
"input": "86 -26 86 18 42 18 42 -26\n3 -22 -40 21 3 64 46 21",
"output": "YES"
},
{
"input": "52 -47 52 -30 35 -30 35 -47\n49 -22 64 -37 49 -52 34 -37",
"output": "YES"
},
{
"input": "27 -59 27 9 -41 9 -41 -59\n-10 -17 2 -29 -10 -41 -22 -29",
"output": "YES"
},
{
"input": "-90 2 0 2 0 92 -90 92\n-66 31 -86 51 -66 71 -46 51",
"output": "YES"
},
{
"input": "-93 -86 -85 -86 -85 -78 -93 -78\n-13 61 0 48 -13 35 -26 48",
"output": "NO"
},
{
"input": "-3 -45 85 -45 85 43 -3 43\n-22 0 -66 44 -22 88 22 44",
"output": "YES"
},
{
"input": "-27 -73 72 -73 72 26 -27 26\n58 11 100 -31 58 -73 16 -31",
"output": "YES"
},
{
"input": "-40 -31 8 -31 8 17 -40 17\n0 18 -35 53 0 88 35 53",
"output": "NO"
},
{
"input": "-15 -63 -15 7 -85 7 -85 -63\n-35 -40 -33 -42 -35 -44 -37 -42",
"output": "YES"
},
{
"input": "-100 -100 -100 100 100 100 100 -100\n-100 0 0 100 100 0 0 -100",
"output": "YES"
},
{
"input": "67 33 67 67 33 67 33 33\n43 11 9 45 43 79 77 45",
"output": "YES"
},
{
"input": "14 8 9 8 9 3 14 3\n-2 -13 14 3 30 -13 14 -29",
"output": "YES"
},
{
"input": "4 3 7 3 7 6 4 6\n7 29 20 16 7 3 -6 16",
"output": "YES"
},
{
"input": "14 30 3 30 3 19 14 19\n19 -13 11 -5 19 3 27 -5",
"output": "NO"
},
{
"input": "-54 3 -50 3 -50 -1 -54 -1\n3 -50 -6 -41 -15 -50 -6 -59",
"output": "NO"
},
{
"input": "3 8 3 -10 21 -10 21 8\n-9 2 -21 -10 -9 -22 3 -10",
"output": "YES"
},
{
"input": "-35 3 -21 3 -21 -11 -35 -11\n-8 -10 3 -21 -8 -32 -19 -21",
"output": "NO"
},
{
"input": "-5 -23 -5 -31 3 -31 3 -23\n-7 -23 -2 -28 3 -23 -2 -18",
"output": "YES"
},
{
"input": "3 20 10 20 10 13 3 13\n3 20 21 38 39 20 21 2",
"output": "YES"
},
{
"input": "25 3 16 3 16 12 25 12\n21 -2 16 -7 11 -2 16 3",
"output": "YES"
},
{
"input": "-1 18 -1 3 14 3 14 18\n14 3 19 8 14 13 9 8",
"output": "YES"
},
{
"input": "-44 -17 -64 -17 -64 3 -44 3\n-56 15 -44 27 -32 15 -44 3",
"output": "YES"
},
{
"input": "17 3 2 3 2 18 17 18\n22 23 2 3 -18 23 2 43",
"output": "YES"
},
{
"input": "3 -22 3 -36 -11 -36 -11 -22\n11 -44 19 -36 11 -28 3 -36",
"output": "YES"
},
{
"input": "3 45 3 48 0 48 0 45\n13 38 4 47 13 56 22 47",
"output": "NO"
},
{
"input": "3 -10 2 -10 2 -9 3 -9\n38 -10 20 -28 2 -10 20 8",
"output": "YES"
},
{
"input": "-66 3 -47 3 -47 22 -66 22\n-52 -2 -45 5 -52 12 -59 5",
"output": "YES"
},
{
"input": "3 37 -1 37 -1 41 3 41\n6 31 9 34 6 37 3 34",
"output": "NO"
},
{
"input": "13 1 15 1 15 3 13 3\n13 19 21 11 13 3 5 11",
"output": "YES"
},
{
"input": "20 8 3 8 3 -9 20 -9\n2 -11 3 -10 2 -9 1 -10",
"output": "NO"
},
{
"input": "3 41 3 21 -17 21 -17 41\n26 12 10 28 26 44 42 28",
"output": "NO"
},
{
"input": "11 11 11 3 3 3 3 11\n-12 26 -27 11 -12 -4 3 11",
"output": "YES"
},
{
"input": "-29 3 -29 12 -38 12 -38 3\n-35 9 -29 15 -23 9 -29 3",
"output": "YES"
},
{
"input": "3 -32 1 -32 1 -30 3 -30\n4 -32 -16 -52 -36 -32 -16 -12",
"output": "YES"
},
{
"input": "-16 -10 -16 9 3 9 3 -10\n-8 -1 2 9 12 -1 2 -11",
"output": "YES"
},
{
"input": "3 -42 -5 -42 -5 -34 3 -34\n-8 -54 -19 -43 -8 -32 3 -43",
"output": "YES"
},
{
"input": "-47 3 -37 3 -37 -7 -47 -7\n-37 3 -33 -1 -37 -5 -41 -1",
"output": "YES"
},
{
"input": "10 3 12 3 12 5 10 5\n12 4 20 12 12 20 4 12",
"output": "YES"
},
{
"input": "3 -41 -9 -41 -9 -53 3 -53\n18 -16 38 -36 18 -56 -2 -36",
"output": "YES"
},
{
"input": "3 40 2 40 2 41 3 41\n22 39 13 48 4 39 13 30",
"output": "NO"
},
{
"input": "21 26 21 44 3 44 3 26\n-20 38 -32 26 -20 14 -8 26",
"output": "NO"
},
{
"input": "0 7 3 7 3 10 0 10\n3 9 -17 29 -37 9 -17 -11",
"output": "YES"
},
{
"input": "3 21 3 18 6 18 6 21\n-27 18 -11 2 5 18 -11 34",
"output": "YES"
},
{
"input": "-29 13 -39 13 -39 3 -29 3\n-36 -4 -50 -18 -36 -32 -22 -18",
"output": "NO"
},
{
"input": "3 -26 -2 -26 -2 -21 3 -21\n-5 -37 -16 -26 -5 -15 6 -26",
"output": "YES"
},
{
"input": "3 9 -1 9 -1 13 3 13\n-9 17 -1 9 -9 1 -17 9",
"output": "YES"
},
{
"input": "48 8 43 8 43 3 48 3\n31 -4 43 8 55 -4 43 -16",
"output": "YES"
},
{
"input": "-3 1 3 1 3 -5 -3 -5\n20 -22 3 -5 20 12 37 -5",
"output": "YES"
},
{
"input": "14 3 14 -16 -5 -16 -5 3\n14 2 15 1 14 0 13 1",
"output": "YES"
},
{
"input": "-10 12 -10 -1 3 -1 3 12\n1 10 -2 7 -5 10 -2 13",
"output": "YES"
},
{
"input": "39 21 21 21 21 3 39 3\n27 3 47 -17 27 -37 7 -17",
"output": "YES"
},
{
"input": "3 1 3 17 -13 17 -13 1\n17 20 10 27 3 20 10 13",
"output": "NO"
},
{
"input": "15 -18 3 -18 3 -6 15 -6\n29 -1 16 -14 3 -1 16 12",
"output": "YES"
},
{
"input": "41 -6 41 3 32 3 32 -6\n33 3 35 5 33 7 31 5",
"output": "YES"
},
{
"input": "7 35 3 35 3 39 7 39\n23 15 3 35 23 55 43 35",
"output": "YES"
},
{
"input": "19 19 35 19 35 3 19 3\n25 -9 16 -18 7 -9 16 0",
"output": "NO"
},
{
"input": "-20 3 -20 9 -26 9 -26 3\n-19 4 -21 2 -19 0 -17 2",
"output": "YES"
},
{
"input": "13 3 22 3 22 -6 13 -6\n26 3 22 -1 18 3 22 7",
"output": "YES"
},
{
"input": "-4 -8 -4 -15 3 -15 3 -8\n-10 5 -27 -12 -10 -29 7 -12",
"output": "YES"
},
{
"input": "3 15 7 15 7 19 3 19\n-12 30 -23 19 -12 8 -1 19",
"output": "NO"
},
{
"input": "-12 3 5 3 5 -14 -12 -14\n-14 22 5 3 24 22 5 41",
"output": "YES"
},
{
"input": "-37 3 -17 3 -17 -17 -37 -17\n-9 -41 9 -23 -9 -5 -27 -23",
"output": "YES"
},
{
"input": "3 57 3 45 -9 45 -9 57\n8 50 21 37 8 24 -5 37",
"output": "YES"
},
{
"input": "42 3 42 -6 33 -6 33 3\n42 4 41 3 40 4 41 5",
"output": "YES"
},
{
"input": "3 59 3 45 -11 45 -11 59\n-2 50 -8 44 -2 38 4 44",
"output": "YES"
},
{
"input": "-51 3 -39 3 -39 15 -51 15\n-39 14 -53 0 -39 -14 -25 0",
"output": "YES"
},
{
"input": "-7 -15 -7 3 11 3 11 -15\n15 -1 22 -8 15 -15 8 -8",
"output": "YES"
},
{
"input": "3 -39 14 -39 14 -50 3 -50\n17 -39 5 -27 -7 -39 5 -51",
"output": "YES"
},
{
"input": "91 -27 91 29 35 29 35 -27\n59 39 95 3 59 -33 23 3",
"output": "YES"
},
{
"input": "-81 -60 -31 -60 -31 -10 -81 -10\n-58 -68 -95 -31 -58 6 -21 -31",
"output": "YES"
},
{
"input": "78 -59 78 -2 21 -2 21 -59\n48 1 86 -37 48 -75 10 -37",
"output": "YES"
},
{
"input": "-38 -26 32 -26 32 44 -38 44\n2 -27 -44 19 2 65 48 19",
"output": "YES"
},
{
"input": "73 -54 73 -4 23 -4 23 -54\n47 1 77 -29 47 -59 17 -29",
"output": "YES"
},
{
"input": "-6 -25 46 -25 46 27 -6 27\n21 -43 -21 -1 21 41 63 -1",
"output": "YES"
},
{
"input": "-17 -91 -17 -27 -81 -27 -81 -91\n-48 -21 -12 -57 -48 -93 -84 -57",
"output": "YES"
},
{
"input": "-7 16 43 16 43 66 -7 66\n18 -7 -27 38 18 83 63 38",
"output": "YES"
},
{
"input": "-46 11 16 11 16 73 -46 73\n-18 -8 -67 41 -18 90 31 41",
"output": "YES"
},
{
"input": "-33 -64 25 -64 25 -6 -33 -6\n-5 -74 -51 -28 -5 18 41 -28",
"output": "YES"
},
{
"input": "99 -100 100 -100 100 -99 99 -99\n99 -99 100 -98 99 -97 98 -98",
"output": "YES"
},
{
"input": "-100 -100 -100 -99 -99 -99 -99 -100\n-10 -10 -9 -9 -10 -8 -11 -9",
"output": "NO"
},
{
"input": "-4 3 -3 3 -3 4 -4 4\n0 -4 4 0 0 4 -4 0",
"output": "NO"
},
{
"input": "0 0 10 0 10 10 0 10\n11 9 13 7 15 9 13 11",
"output": "NO"
},
{
"input": "1 1 1 6 6 6 6 1\n5 8 8 11 11 8 8 5",
"output": "NO"
},
{
"input": "99 99 99 100 100 100 100 99\n-100 0 0 100 100 0 0 -100",
"output": "NO"
},
{
"input": "0 0 0 2 2 2 2 0\n5 1 9 5 5 9 1 5",
"output": "NO"
},
{
"input": "3 2 3 3 4 3 4 2\n0 4 4 0 0 -4 -4 0",
"output": "NO"
},
{
"input": "0 0 2 0 2 2 0 2\n4 1 7 4 4 7 1 4",
"output": "NO"
},
{
"input": "3 6 3 8 5 8 5 6\n2 9 4 11 6 9 4 7",
"output": "YES"
},
{
"input": "0 0 10 0 10 10 0 10\n-1 5 5 -1 11 5 5 11",
"output": "YES"
},
{
"input": "0 0 1 0 1 1 0 1\n3 0 6 3 3 6 0 3",
"output": "NO"
},
{
"input": "3 7 4 7 4 6 3 6\n0 0 10 10 20 0 10 -10",
"output": "NO"
},
{
"input": "0 0 0 1 1 1 1 0\n0 3 3 6 6 3 3 0",
"output": "NO"
},
{
"input": "0 0 0 4 4 4 4 0\n3 6 7 10 11 6 7 2",
"output": "NO"
},
{
"input": "0 0 0 1 1 1 1 0\n0 10 10 0 20 10 10 20",
"output": "NO"
}
] | 1,536,069,357
| 237
|
Python 3
|
OK
|
TESTS
| 124
| 124
| 0
|
def rf():
cs = list(map(int, input().split(' ')))
cs = list(zip(cs[0::2], cs[1::2]))
return cs
# Cross product of vectors (p1-p) and (p2-p)
def cross(p, p1, p2):
return (p2[1] - p[1]) * (p1[0] - p[0]) - (p2[0] - p[0]) * (p1[1] - p[1])
# p = (x, y)
# f = [(x1, y1), (x2, y2), ...]
def inside(p, f):
os = 0
total = 0
for i in range(len(f)):
p1 = f[i]
p2 = f[(i+1)%len(f)]
delta = cross(p, p1, p2)
os += delta
total += abs(delta)
os = abs(os)
return os == total
fs = [rf(), rf()]
res = False
for f1, f2 in [fs, fs[::-1]]:
for p in f1:
if inside(p, f2):
res = True
if inside( ( (f1[0][0] + f1[2][0]) // 2, (f1[0][1] + f1[2][1]) // 2 ), f2 ):
res = True
print(['NO', 'YES'][res])
|
Title: Two Squares
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given two squares, one with sides parallel to the coordinate axes, and another one with sides at 45 degrees to the coordinate axes. Find whether the two squares intersect.
The interior of the square is considered to be part of the square, i.e. if one square is completely inside another, they intersect. If the two squares only share one common point, they are also considered to intersect.
Input Specification:
The input data consists of two lines, one for each square, both containing 4 pairs of integers. Each pair represents coordinates of one vertex of the square. Coordinates within each line are either in clockwise or counterclockwise order.
The first line contains the coordinates of the square with sides parallel to the coordinate axes, the second line contains the coordinates of the square at 45 degrees.
All the values are integer and between $-100$ and $100$.
Output Specification:
Print "Yes" if squares intersect, otherwise print "No".
You can print each letter in any case (upper or lower).
Demo Input:
['0 0 6 0 6 6 0 6\n1 3 3 5 5 3 3 1\n', '0 0 6 0 6 6 0 6\n7 3 9 5 11 3 9 1\n', '6 0 6 6 0 6 0 0\n7 4 4 7 7 10 10 7\n']
Demo Output:
['YES\n', 'NO\n', 'YES\n']
Note:
In the first example the second square lies entirely within the first square, so they do intersect.
In the second sample squares do not have any points in common.
Here are images corresponding to the samples:
|
```python
def rf():
cs = list(map(int, input().split(' ')))
cs = list(zip(cs[0::2], cs[1::2]))
return cs
# Cross product of vectors (p1-p) and (p2-p)
def cross(p, p1, p2):
return (p2[1] - p[1]) * (p1[0] - p[0]) - (p2[0] - p[0]) * (p1[1] - p[1])
# p = (x, y)
# f = [(x1, y1), (x2, y2), ...]
def inside(p, f):
os = 0
total = 0
for i in range(len(f)):
p1 = f[i]
p2 = f[(i+1)%len(f)]
delta = cross(p, p1, p2)
os += delta
total += abs(delta)
os = abs(os)
return os == total
fs = [rf(), rf()]
res = False
for f1, f2 in [fs, fs[::-1]]:
for p in f1:
if inside(p, f2):
res = True
if inside( ( (f1[0][0] + f1[2][0]) // 2, (f1[0][1] + f1[2][1]) // 2 ), f2 ):
res = True
print(['NO', 'YES'][res])
```
| 3
|
|
302
|
A
|
Eugeny and Array
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Eugeny has array *a*<==<=*a*1,<=*a*2,<=...,<=*a**n*, consisting of *n* integers. Each integer *a**i* equals to -1, or to 1. Also, he has *m* queries:
- Query number *i* is given as a pair of integers *l**i*, *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*). - The response to the query will be integer 1, if the elements of array *a* can be rearranged so as the sum *a**l**i*<=+<=*a**l**i*<=+<=1<=+<=...<=+<=*a**r**i*<==<=0, otherwise the response to the query will be integer 0.
Help Eugeny, answer all his queries.
|
The first line contains integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=2·105). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (*a**i*<==<=-1,<=1). Next *m* lines contain Eugene's queries. The *i*-th line contains integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*).
|
Print *m* integers — the responses to Eugene's queries in the order they occur in the input.
|
[
"2 3\n1 -1\n1 1\n1 2\n2 2\n",
"5 5\n-1 1 1 1 -1\n1 1\n2 3\n3 5\n2 5\n1 5\n"
] |
[
"0\n1\n0\n",
"0\n1\n0\n1\n0\n"
] |
none
| 500
|
[
{
"input": "2 3\n1 -1\n1 1\n1 2\n2 2",
"output": "0\n1\n0"
},
{
"input": "5 5\n-1 1 1 1 -1\n1 1\n2 3\n3 5\n2 5\n1 5",
"output": "0\n1\n0\n1\n0"
},
{
"input": "3 3\n1 1 1\n2 2\n1 1\n1 1",
"output": "0\n0\n0"
},
{
"input": "4 4\n-1 -1 -1 -1\n1 3\n1 2\n1 2\n1 1",
"output": "0\n0\n0\n0"
},
{
"input": "5 5\n-1 -1 -1 -1 -1\n1 1\n1 1\n3 4\n1 1\n1 4",
"output": "0\n0\n0\n0\n0"
},
{
"input": "6 6\n-1 -1 1 -1 -1 1\n1 1\n3 4\n1 1\n1 1\n1 3\n1 4",
"output": "0\n1\n0\n0\n0\n1"
},
{
"input": "7 7\n-1 -1 -1 1 -1 -1 -1\n1 1\n2 7\n1 3\n1 5\n4 7\n1 7\n6 7",
"output": "0\n0\n0\n0\n0\n0\n1"
},
{
"input": "8 8\n1 1 1 1 1 1 1 1\n5 8\n2 6\n2 3\n1 7\n7 7\n1 6\n1 8\n1 3",
"output": "0\n0\n0\n0\n0\n0\n0\n0"
},
{
"input": "9 9\n-1 1 1 1 1 1 1 1 1\n1 7\n5 6\n1 4\n1 1\n1 1\n6 8\n1 1\n6 7\n3 5",
"output": "0\n1\n0\n0\n0\n0\n0\n1\n0"
},
{
"input": "10 10\n-1 1 -1 1 -1 -1 -1 -1 -1 -1\n6 7\n2 5\n3 6\n1 3\n3 5\n4 5\n3 4\n1 6\n1 1\n1 1",
"output": "1\n1\n1\n0\n0\n1\n1\n0\n0\n0"
},
{
"input": "1 1\n-1\n1 1",
"output": "0"
},
{
"input": "1 1\n1\n1 1",
"output": "0"
}
] | 1,633,530,972
| 2,147,483,647
|
PyPy 3
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
#include <iostream>
using namespace std;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
int n, m, k = 0, l, r;
cin >> n >> m;
for (int i = 0; i < n; i++) {
cin >> l;
k += (l == 1);
}
k = min(k, n - k) * 2;
for (int i = 0; i < m; i++) {
cin >> l >> r;
cout << ((r - l) % 2 && r - l < k) << "\n";
}
return 0;
}
|
Title: Eugeny and Array
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Eugeny has array *a*<==<=*a*1,<=*a*2,<=...,<=*a**n*, consisting of *n* integers. Each integer *a**i* equals to -1, or to 1. Also, he has *m* queries:
- Query number *i* is given as a pair of integers *l**i*, *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*). - The response to the query will be integer 1, if the elements of array *a* can be rearranged so as the sum *a**l**i*<=+<=*a**l**i*<=+<=1<=+<=...<=+<=*a**r**i*<==<=0, otherwise the response to the query will be integer 0.
Help Eugeny, answer all his queries.
Input Specification:
The first line contains integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=2·105). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (*a**i*<==<=-1,<=1). Next *m* lines contain Eugene's queries. The *i*-th line contains integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*).
Output Specification:
Print *m* integers — the responses to Eugene's queries in the order they occur in the input.
Demo Input:
['2 3\n1 -1\n1 1\n1 2\n2 2\n', '5 5\n-1 1 1 1 -1\n1 1\n2 3\n3 5\n2 5\n1 5\n']
Demo Output:
['0\n1\n0\n', '0\n1\n0\n1\n0\n']
Note:
none
|
```python
#include <iostream>
using namespace std;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
int n, m, k = 0, l, r;
cin >> n >> m;
for (int i = 0; i < n; i++) {
cin >> l;
k += (l == 1);
}
k = min(k, n - k) * 2;
for (int i = 0; i < m; i++) {
cin >> l >> r;
cout << ((r - l) % 2 && r - l < k) << "\n";
}
return 0;
}
```
| -1
|
|
445
|
A
|
DZY Loves Chessboard
|
PROGRAMMING
| 1,200
|
[
"dfs and similar",
"implementation"
] | null | null |
DZY loves chessboard, and he enjoys playing with it.
He has a chessboard of *n* rows and *m* columns. Some cells of the chessboard are bad, others are good. For every good cell, DZY wants to put a chessman on it. Each chessman is either white or black. After putting all chessmen, DZY wants that no two chessmen with the same color are on two adjacent cells. Two cells are adjacent if and only if they share a common edge.
You task is to find any suitable placement of chessmen on the given chessboard.
|
The first line contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100).
Each of the next *n* lines contains a string of *m* characters: the *j*-th character of the *i*-th string is either "." or "-". A "." means that the corresponding cell (in the *i*-th row and the *j*-th column) is good, while a "-" means it is bad.
|
Output must contain *n* lines, each line must contain a string of *m* characters. The *j*-th character of the *i*-th string should be either "W", "B" or "-". Character "W" means the chessman on the cell is white, "B" means it is black, "-" means the cell is a bad cell.
If multiple answers exist, print any of them. It is guaranteed that at least one answer exists.
|
[
"1 1\n.\n",
"2 2\n..\n..\n",
"3 3\n.-.\n---\n--."
] |
[
"B\n",
"BW\nWB\n",
"B-B\n---\n--B"
] |
In the first sample, DZY puts a single black chessman. Of course putting a white one is also OK.
In the second sample, all 4 cells are good. No two same chessmen share an edge in the sample output.
In the third sample, no good cells are adjacent. So you can just put 3 chessmen, no matter what their colors are.
| 500
|
[
{
"input": "1 1\n.",
"output": "B"
},
{
"input": "2 2\n..\n..",
"output": "BW\nWB"
},
{
"input": "3 3\n.-.\n---\n--.",
"output": "B-B\n---\n--B"
},
{
"input": "3 1\n-\n.\n.",
"output": "-\nW\nB"
},
{
"input": "11 11\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------",
"output": "-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------"
},
{
"input": "1 1\n-",
"output": "-"
},
{
"input": "4 2\n..\n..\n..\n..",
"output": "BW\nWB\nBW\nWB"
},
{
"input": "5 1\n.\n.\n.\n.\n.",
"output": "B\nW\nB\nW\nB"
}
] | 1,609,656,773
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 1
| 124
| 0
|
row,col = map(int,input().split())
matt=[]
for i in range(row):
matt.append(list(input()))
sol =[[0 for i in range(col)]for j in range(row)]
for i in range(row-1,-1,-1):
for j in range(col):
if matt[i][j]=='-':
sol[i][j]='-'
else:
if i==row-1:
if j==0:
sol[i][j]='W'
else:
if sol[i][j-1]=='W':
sol[i][j]='B'
else:
sol[i][j]='W'
else:
if j==0:
if sol[i+1][j]=='W':
sol[i][j]='B'
else:
sol[i][j]='W'
else:
if sol[i][j-1]=='W':
sol[i][j]='B'
else:
sol[i][j]='W'
for i in sol:
for j in i:
print(j,end=' ')
print()
|
Title: DZY Loves Chessboard
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
DZY loves chessboard, and he enjoys playing with it.
He has a chessboard of *n* rows and *m* columns. Some cells of the chessboard are bad, others are good. For every good cell, DZY wants to put a chessman on it. Each chessman is either white or black. After putting all chessmen, DZY wants that no two chessmen with the same color are on two adjacent cells. Two cells are adjacent if and only if they share a common edge.
You task is to find any suitable placement of chessmen on the given chessboard.
Input Specification:
The first line contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100).
Each of the next *n* lines contains a string of *m* characters: the *j*-th character of the *i*-th string is either "." or "-". A "." means that the corresponding cell (in the *i*-th row and the *j*-th column) is good, while a "-" means it is bad.
Output Specification:
Output must contain *n* lines, each line must contain a string of *m* characters. The *j*-th character of the *i*-th string should be either "W", "B" or "-". Character "W" means the chessman on the cell is white, "B" means it is black, "-" means the cell is a bad cell.
If multiple answers exist, print any of them. It is guaranteed that at least one answer exists.
Demo Input:
['1 1\n.\n', '2 2\n..\n..\n', '3 3\n.-.\n---\n--.']
Demo Output:
['B\n', 'BW\nWB\n', 'B-B\n---\n--B']
Note:
In the first sample, DZY puts a single black chessman. Of course putting a white one is also OK.
In the second sample, all 4 cells are good. No two same chessmen share an edge in the sample output.
In the third sample, no good cells are adjacent. So you can just put 3 chessmen, no matter what their colors are.
|
```python
row,col = map(int,input().split())
matt=[]
for i in range(row):
matt.append(list(input()))
sol =[[0 for i in range(col)]for j in range(row)]
for i in range(row-1,-1,-1):
for j in range(col):
if matt[i][j]=='-':
sol[i][j]='-'
else:
if i==row-1:
if j==0:
sol[i][j]='W'
else:
if sol[i][j-1]=='W':
sol[i][j]='B'
else:
sol[i][j]='W'
else:
if j==0:
if sol[i+1][j]=='W':
sol[i][j]='B'
else:
sol[i][j]='W'
else:
if sol[i][j-1]=='W':
sol[i][j]='B'
else:
sol[i][j]='W'
for i in sol:
for j in i:
print(j,end=' ')
print()
```
| 0
|
|
920
|
A
|
Water The Garden
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
It is winter now, and Max decided it's about time he watered the garden.
The garden can be represented as *n* consecutive garden beds, numbered from 1 to *n*. *k* beds contain water taps (*i*-th tap is located in the bed *x**i*), which, if turned on, start delivering water to neighbouring beds. If the tap on the bed *x**i* is turned on, then after one second has passed, the bed *x**i* will be watered; after two seconds have passed, the beds from the segment [*x**i*<=-<=1,<=*x**i*<=+<=1] will be watered (if they exist); after *j* seconds have passed (*j* is an integer number), the beds from the segment [*x**i*<=-<=(*j*<=-<=1),<=*x**i*<=+<=(*j*<=-<=1)] will be watered (if they exist). Nothing changes during the seconds, so, for example, we can't say that the segment [*x**i*<=-<=2.5,<=*x**i*<=+<=2.5] will be watered after 2.5 seconds have passed; only the segment [*x**i*<=-<=2,<=*x**i*<=+<=2] will be watered at that moment.
Max wants to turn on all the water taps at the same moment, and now he wonders, what is the minimum number of seconds that have to pass after he turns on some taps until the whole garden is watered. Help him to find the answer!
|
The first line contains one integer *t* — the number of test cases to solve (1<=≤<=*t*<=≤<=200).
Then *t* test cases follow. The first line of each test case contains two integers *n* and *k* (1<=≤<=*n*<=≤<=200, 1<=≤<=*k*<=≤<=*n*) — the number of garden beds and water taps, respectively.
Next line contains *k* integers *x**i* (1<=≤<=*x**i*<=≤<=*n*) — the location of *i*-th water tap. It is guaranteed that for each condition *x**i*<=-<=1<=<<=*x**i* holds.
It is guaranteed that the sum of *n* over all test cases doesn't exceed 200.
Note that in hacks you have to set *t*<==<=1.
|
For each test case print one integer — the minimum number of seconds that have to pass after Max turns on some of the water taps, until the whole garden is watered.
|
[
"3\n5 1\n3\n3 3\n1 2 3\n4 1\n1\n"
] |
[
"3\n1\n4\n"
] |
The first example consists of 3 tests:
1. There are 5 garden beds, and a water tap in the bed 3. If we turn it on, then after 1 second passes, only bed 3 will be watered; after 2 seconds pass, beds [1, 3] will be watered, and after 3 seconds pass, everything will be watered. 1. There are 3 garden beds, and there is a water tap in each one. If we turn all of them on, then everything will be watered after 1 second passes. 1. There are 4 garden beds, and only one tap in the bed 1. It will take 4 seconds to water, for example, bed 4.
| 0
|
[
{
"input": "3\n5 1\n3\n3 3\n1 2 3\n4 1\n1",
"output": "3\n1\n4"
},
{
"input": "26\n1 1\n1\n2 1\n2\n2 1\n1\n2 2\n1 2\n3 1\n3\n3 1\n2\n3 2\n2 3\n3 1\n1\n3 2\n1 3\n3 2\n1 2\n3 3\n1 2 3\n4 1\n4\n4 1\n3\n4 2\n3 4\n4 1\n2\n4 2\n2 4\n4 2\n2 3\n4 3\n2 3 4\n4 1\n1\n4 2\n1 4\n4 2\n1 3\n4 3\n1 3 4\n4 2\n1 2\n4 3\n1 2 4\n4 3\n1 2 3\n4 4\n1 2 3 4",
"output": "1\n2\n2\n1\n3\n2\n2\n3\n2\n2\n1\n4\n3\n3\n3\n2\n2\n2\n4\n2\n2\n2\n3\n2\n2\n1"
},
{
"input": "31\n5 1\n5\n5 1\n4\n5 2\n4 5\n5 1\n3\n5 2\n3 5\n5 2\n3 4\n5 3\n3 4 5\n5 1\n2\n5 2\n2 5\n5 2\n2 4\n5 3\n2 4 5\n5 2\n2 3\n5 3\n2 3 5\n5 3\n2 3 4\n5 4\n2 3 4 5\n5 1\n1\n5 2\n1 5\n5 2\n1 4\n5 3\n1 4 5\n5 2\n1 3\n5 3\n1 3 5\n5 3\n1 3 4\n5 4\n1 3 4 5\n5 2\n1 2\n5 3\n1 2 5\n5 3\n1 2 4\n5 4\n1 2 4 5\n5 3\n1 2 3\n5 4\n1 2 3 5\n5 4\n1 2 3 4\n5 5\n1 2 3 4 5",
"output": "5\n4\n4\n3\n3\n3\n3\n4\n2\n2\n2\n3\n2\n2\n2\n5\n3\n2\n2\n3\n2\n2\n2\n4\n2\n2\n2\n3\n2\n2\n1"
},
{
"input": "1\n200 1\n200",
"output": "200"
},
{
"input": "1\n5 1\n5",
"output": "5"
},
{
"input": "1\n177 99\n1 4 7 10 11 13 14 15 16 17 19 21 22 24 25 26 27 28 32 34 35 38 39 40 42 45 46 52 54 55 57 58 59 60 62 64 65 67 70 71 74 77 78 79 80 81 83 84 88 92 93 94 95 100 101 102 104 106 107 108 109 110 112 113 114 115 116 118 122 123 124 125 127 128 129 130 134 135 137 138 139 140 142 146 148 149 154 158 160 161 162 165 166 167 169 171 172 173 176",
"output": "4"
},
{
"input": "1\n69 12\n5 7 10 11 12 18 20 27 28 31 47 67",
"output": "11"
},
{
"input": "1\n74 7\n19 39 40 47 55 57 61",
"output": "19"
},
{
"input": "1\n170 11\n14 18 37 39 80 83 103 112 124 127 131",
"output": "40"
},
{
"input": "1\n200 1\n8",
"output": "193"
},
{
"input": "1\n155 53\n2 3 7 9 10 11 12 20 24 26 28 31 38 39 40 51 53 56 58 63 65 66 69 70 72 74 79 81 83 88 90 92 100 103 104 106 111 113 114 115 116 121 124 126 127 128 133 136 142 143 145 148 150",
"output": "6"
},
{
"input": "1\n161 69\n2 5 8 11 12 13 17 18 23 25 28 29 30 33 34 35 36 38 39 44 45 49 52 53 56 57 58 60 62 70 71 74 76 77 82 83 86 90 94 95 97 104 105 108 109 112 113 118 120 123 126 127 132 135 137 139 140 141 142 143 144 146 147 148 151 152 153 154 161",
"output": "5"
},
{
"input": "1\n8 4\n1 2 3 7",
"output": "3"
},
{
"input": "1\n12 2\n5 12",
"output": "5"
},
{
"input": "1\n13 2\n6 12",
"output": "6"
},
{
"input": "1\n13 2\n8 13",
"output": "8"
},
{
"input": "1\n10 4\n1 2 3 5",
"output": "6"
},
{
"input": "1\n200 2\n50 150",
"output": "51"
},
{
"input": "1\n110 2\n1 110",
"output": "55"
}
] | 1,598,272,847
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 1
| 93
| 6,963,200
|
import math
t = int(input())
inputs =[]
for _ in range(t):
line = input().split(" ")
n,k = int(line[0]), int(line[1])
xs = [int(i) for i in input().split(" ")]
inputs.append([n,k,xs])
for ele in inputs:
n, k, xs = ele
result = 0
for i in range(k):
if i == 0:
result = max(result, xs[i]-0)
if i == k-1:
result = max(result,n+1-xs[i])
else:
result = max(result,math.floor((xs[i]-xs[i-1])/2)+1)
print(result)
|
Title: Water The Garden
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
It is winter now, and Max decided it's about time he watered the garden.
The garden can be represented as *n* consecutive garden beds, numbered from 1 to *n*. *k* beds contain water taps (*i*-th tap is located in the bed *x**i*), which, if turned on, start delivering water to neighbouring beds. If the tap on the bed *x**i* is turned on, then after one second has passed, the bed *x**i* will be watered; after two seconds have passed, the beds from the segment [*x**i*<=-<=1,<=*x**i*<=+<=1] will be watered (if they exist); after *j* seconds have passed (*j* is an integer number), the beds from the segment [*x**i*<=-<=(*j*<=-<=1),<=*x**i*<=+<=(*j*<=-<=1)] will be watered (if they exist). Nothing changes during the seconds, so, for example, we can't say that the segment [*x**i*<=-<=2.5,<=*x**i*<=+<=2.5] will be watered after 2.5 seconds have passed; only the segment [*x**i*<=-<=2,<=*x**i*<=+<=2] will be watered at that moment.
Max wants to turn on all the water taps at the same moment, and now he wonders, what is the minimum number of seconds that have to pass after he turns on some taps until the whole garden is watered. Help him to find the answer!
Input Specification:
The first line contains one integer *t* — the number of test cases to solve (1<=≤<=*t*<=≤<=200).
Then *t* test cases follow. The first line of each test case contains two integers *n* and *k* (1<=≤<=*n*<=≤<=200, 1<=≤<=*k*<=≤<=*n*) — the number of garden beds and water taps, respectively.
Next line contains *k* integers *x**i* (1<=≤<=*x**i*<=≤<=*n*) — the location of *i*-th water tap. It is guaranteed that for each condition *x**i*<=-<=1<=<<=*x**i* holds.
It is guaranteed that the sum of *n* over all test cases doesn't exceed 200.
Note that in hacks you have to set *t*<==<=1.
Output Specification:
For each test case print one integer — the minimum number of seconds that have to pass after Max turns on some of the water taps, until the whole garden is watered.
Demo Input:
['3\n5 1\n3\n3 3\n1 2 3\n4 1\n1\n']
Demo Output:
['3\n1\n4\n']
Note:
The first example consists of 3 tests:
1. There are 5 garden beds, and a water tap in the bed 3. If we turn it on, then after 1 second passes, only bed 3 will be watered; after 2 seconds pass, beds [1, 3] will be watered, and after 3 seconds pass, everything will be watered. 1. There are 3 garden beds, and there is a water tap in each one. If we turn all of them on, then everything will be watered after 1 second passes. 1. There are 4 garden beds, and only one tap in the bed 1. It will take 4 seconds to water, for example, bed 4.
|
```python
import math
t = int(input())
inputs =[]
for _ in range(t):
line = input().split(" ")
n,k = int(line[0]), int(line[1])
xs = [int(i) for i in input().split(" ")]
inputs.append([n,k,xs])
for ele in inputs:
n, k, xs = ele
result = 0
for i in range(k):
if i == 0:
result = max(result, xs[i]-0)
if i == k-1:
result = max(result,n+1-xs[i])
else:
result = max(result,math.floor((xs[i]-xs[i-1])/2)+1)
print(result)
```
| 0
|
|
931
|
A
|
Friends Meeting
|
PROGRAMMING
| 800
|
[
"brute force",
"greedy",
"implementation",
"math"
] | null | null |
Two friends are on the coordinate axis *Ox* in points with integer coordinates. One of them is in the point *x*1<==<=*a*, another one is in the point *x*2<==<=*b*.
Each of the friends can move by one along the line in any direction unlimited number of times. When a friend moves, the tiredness of a friend changes according to the following rules: the first move increases the tiredness by 1, the second move increases the tiredness by 2, the third — by 3 and so on. For example, if a friend moves first to the left, then to the right (returning to the same point), and then again to the left his tiredness becomes equal to 1<=+<=2<=+<=3<==<=6.
The friends want to meet in a integer point. Determine the minimum total tiredness they should gain, if they meet in the same point.
|
The first line contains a single integer *a* (1<=≤<=*a*<=≤<=1000) — the initial position of the first friend.
The second line contains a single integer *b* (1<=≤<=*b*<=≤<=1000) — the initial position of the second friend.
It is guaranteed that *a*<=≠<=*b*.
|
Print the minimum possible total tiredness if the friends meet in the same point.
|
[
"3\n4\n",
"101\n99\n",
"5\n10\n"
] |
[
"1\n",
"2\n",
"9\n"
] |
In the first example the first friend should move by one to the right (then the meeting happens at point 4), or the second friend should move by one to the left (then the meeting happens at point 3). In both cases, the total tiredness becomes 1.
In the second example the first friend should move by one to the left, and the second friend should move by one to the right. Then they meet in the point 100, and the total tiredness becomes 1 + 1 = 2.
In the third example one of the optimal ways is the following. The first friend should move three times to the right, and the second friend — two times to the left. Thus the friends meet in the point 8, and the total tiredness becomes 1 + 2 + 3 + 1 + 2 = 9.
| 500
|
[
{
"input": "3\n4",
"output": "1"
},
{
"input": "101\n99",
"output": "2"
},
{
"input": "5\n10",
"output": "9"
},
{
"input": "1\n2",
"output": "1"
},
{
"input": "1\n1000",
"output": "250000"
},
{
"input": "999\n1000",
"output": "1"
},
{
"input": "1000\n999",
"output": "1"
},
{
"input": "1000\n1",
"output": "250000"
},
{
"input": "2\n1",
"output": "1"
},
{
"input": "2\n999",
"output": "249001"
},
{
"input": "2\n998",
"output": "248502"
},
{
"input": "999\n2",
"output": "249001"
},
{
"input": "998\n2",
"output": "248502"
},
{
"input": "2\n1000",
"output": "249500"
},
{
"input": "1000\n2",
"output": "249500"
},
{
"input": "1\n999",
"output": "249500"
},
{
"input": "999\n1",
"output": "249500"
},
{
"input": "188\n762",
"output": "82656"
},
{
"input": "596\n777",
"output": "8281"
},
{
"input": "773\n70",
"output": "123904"
},
{
"input": "825\n729",
"output": "2352"
},
{
"input": "944\n348",
"output": "89102"
},
{
"input": "352\n445",
"output": "2209"
},
{
"input": "529\n656",
"output": "4096"
},
{
"input": "19\n315",
"output": "22052"
},
{
"input": "138\n370",
"output": "13572"
},
{
"input": "546\n593",
"output": "576"
},
{
"input": "285\n242",
"output": "484"
},
{
"input": "773\n901",
"output": "4160"
},
{
"input": "892\n520",
"output": "34782"
},
{
"input": "864\n179",
"output": "117649"
},
{
"input": "479\n470",
"output": "25"
},
{
"input": "967\n487",
"output": "57840"
},
{
"input": "648\n106",
"output": "73712"
},
{
"input": "58\n765",
"output": "125316"
},
{
"input": "235\n56",
"output": "8100"
},
{
"input": "285\n153",
"output": "4422"
},
{
"input": "943\n13",
"output": "216690"
},
{
"input": "675\n541",
"output": "4556"
},
{
"input": "4\n912",
"output": "206570"
}
] | 1,600,244,090
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 40
| 140
| 0
|
a,b=int(input()),int(input())
d=min(a,b)+abs(a-b)//2
tiredness=0
for i in range(1,abs(d-a)+1):
tiredness+=i
for i in range(1,abs(d-b)+1):
tiredness+=i
print(tiredness)
|
Title: Friends Meeting
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Two friends are on the coordinate axis *Ox* in points with integer coordinates. One of them is in the point *x*1<==<=*a*, another one is in the point *x*2<==<=*b*.
Each of the friends can move by one along the line in any direction unlimited number of times. When a friend moves, the tiredness of a friend changes according to the following rules: the first move increases the tiredness by 1, the second move increases the tiredness by 2, the third — by 3 and so on. For example, if a friend moves first to the left, then to the right (returning to the same point), and then again to the left his tiredness becomes equal to 1<=+<=2<=+<=3<==<=6.
The friends want to meet in a integer point. Determine the minimum total tiredness they should gain, if they meet in the same point.
Input Specification:
The first line contains a single integer *a* (1<=≤<=*a*<=≤<=1000) — the initial position of the first friend.
The second line contains a single integer *b* (1<=≤<=*b*<=≤<=1000) — the initial position of the second friend.
It is guaranteed that *a*<=≠<=*b*.
Output Specification:
Print the minimum possible total tiredness if the friends meet in the same point.
Demo Input:
['3\n4\n', '101\n99\n', '5\n10\n']
Demo Output:
['1\n', '2\n', '9\n']
Note:
In the first example the first friend should move by one to the right (then the meeting happens at point 4), or the second friend should move by one to the left (then the meeting happens at point 3). In both cases, the total tiredness becomes 1.
In the second example the first friend should move by one to the left, and the second friend should move by one to the right. Then they meet in the point 100, and the total tiredness becomes 1 + 1 = 2.
In the third example one of the optimal ways is the following. The first friend should move three times to the right, and the second friend — two times to the left. Thus the friends meet in the point 8, and the total tiredness becomes 1 + 2 + 3 + 1 + 2 = 9.
|
```python
a,b=int(input()),int(input())
d=min(a,b)+abs(a-b)//2
tiredness=0
for i in range(1,abs(d-a)+1):
tiredness+=i
for i in range(1,abs(d-b)+1):
tiredness+=i
print(tiredness)
```
| 3
|
|
959
|
A
|
Mahmoud and Ehab and the even-odd game
|
PROGRAMMING
| 800
|
[
"games",
"math"
] | null | null |
Mahmoud and Ehab play a game called the even-odd game. Ehab chooses his favorite integer *n* and then they take turns, starting from Mahmoud. In each player's turn, he has to choose an integer *a* and subtract it from *n* such that:
- 1<=≤<=*a*<=≤<=*n*. - If it's Mahmoud's turn, *a* has to be even, but if it's Ehab's turn, *a* has to be odd.
If the current player can't choose any number satisfying the conditions, he loses. Can you determine the winner if they both play optimally?
|
The only line contains an integer *n* (1<=≤<=*n*<=≤<=109), the number at the beginning of the game.
|
Output "Mahmoud" (without quotes) if Mahmoud wins and "Ehab" (without quotes) otherwise.
|
[
"1\n",
"2\n"
] |
[
"Ehab",
"Mahmoud"
] |
In the first sample, Mahmoud can't choose any integer *a* initially because there is no positive even integer less than or equal to 1 so Ehab wins.
In the second sample, Mahmoud has to choose *a* = 2 and subtract it from *n*. It's Ehab's turn and *n* = 0. There is no positive odd integer less than or equal to 0 so Mahmoud wins.
| 500
|
[
{
"input": "1",
"output": "Ehab"
},
{
"input": "2",
"output": "Mahmoud"
},
{
"input": "10000",
"output": "Mahmoud"
},
{
"input": "33333",
"output": "Ehab"
},
{
"input": "5",
"output": "Ehab"
},
{
"input": "1000000000",
"output": "Mahmoud"
},
{
"input": "999999999",
"output": "Ehab"
},
{
"input": "123123123",
"output": "Ehab"
},
{
"input": "22222221",
"output": "Ehab"
},
{
"input": "22222220",
"output": "Mahmoud"
},
{
"input": "3",
"output": "Ehab"
},
{
"input": "4",
"output": "Mahmoud"
},
{
"input": "6",
"output": "Mahmoud"
},
{
"input": "7",
"output": "Ehab"
},
{
"input": "8",
"output": "Mahmoud"
},
{
"input": "9",
"output": "Ehab"
},
{
"input": "10",
"output": "Mahmoud"
},
{
"input": "536870912",
"output": "Mahmoud"
},
{
"input": "536870913",
"output": "Ehab"
},
{
"input": "536870911",
"output": "Ehab"
}
] | 1,618,988,326
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 1
| 46
| 0
|
n=int(input())
m=0;e=0
for i in range(n):
if n%2==0:
print("Mahmoud")
else:
print("Ehab")
|
Title: Mahmoud and Ehab and the even-odd game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Mahmoud and Ehab play a game called the even-odd game. Ehab chooses his favorite integer *n* and then they take turns, starting from Mahmoud. In each player's turn, he has to choose an integer *a* and subtract it from *n* such that:
- 1<=≤<=*a*<=≤<=*n*. - If it's Mahmoud's turn, *a* has to be even, but if it's Ehab's turn, *a* has to be odd.
If the current player can't choose any number satisfying the conditions, he loses. Can you determine the winner if they both play optimally?
Input Specification:
The only line contains an integer *n* (1<=≤<=*n*<=≤<=109), the number at the beginning of the game.
Output Specification:
Output "Mahmoud" (without quotes) if Mahmoud wins and "Ehab" (without quotes) otherwise.
Demo Input:
['1\n', '2\n']
Demo Output:
['Ehab', 'Mahmoud']
Note:
In the first sample, Mahmoud can't choose any integer *a* initially because there is no positive even integer less than or equal to 1 so Ehab wins.
In the second sample, Mahmoud has to choose *a* = 2 and subtract it from *n*. It's Ehab's turn and *n* = 0. There is no positive odd integer less than or equal to 0 so Mahmoud wins.
|
```python
n=int(input())
m=0;e=0
for i in range(n):
if n%2==0:
print("Mahmoud")
else:
print("Ehab")
```
| 0
|
|
525
|
C
|
Ilya and Sticks
|
PROGRAMMING
| 1,600
|
[
"greedy",
"math",
"sortings"
] | null | null |
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of *n* sticks and an instrument. Each stick is characterized by its length *l**i*.
Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed.
Sticks with lengths *a*1, *a*2, *a*3 and *a*4 can make a rectangle if the following properties are observed:
- *a*1<=≤<=*a*2<=≤<=*a*3<=≤<=*a*4 - *a*1<==<=*a*2 - *a*3<==<=*a*4
A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7.
Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4.
You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks?
|
The first line of the input contains a positive integer *n* (1<=≤<=*n*<=≤<=105) — the number of the available sticks.
The second line of the input contains *n* positive integers *l**i* (2<=≤<=*l**i*<=≤<=106) — the lengths of the sticks.
|
The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks.
|
[
"4\n2 4 4 2\n",
"4\n2 2 3 5\n",
"4\n100003 100004 100005 100006\n"
] |
[
"8\n",
"0\n",
"10000800015\n"
] |
none
| 1,000
|
[
{
"input": "4\n2 4 4 2",
"output": "8"
},
{
"input": "4\n2 2 3 5",
"output": "0"
},
{
"input": "4\n100003 100004 100005 100006",
"output": "10000800015"
},
{
"input": "8\n5 3 3 3 3 4 4 4",
"output": "25"
},
{
"input": "10\n123 124 123 124 2 2 2 2 9 9",
"output": "15270"
},
{
"input": "8\n10 10 10 10 11 10 11 10",
"output": "210"
},
{
"input": "1\n1000000",
"output": "0"
},
{
"input": "10\n10519 10519 10520 10520 10520 10521 10521 10521 10522 10523",
"output": "221372362"
},
{
"input": "100\n4116 4116 4117 4117 4117 4117 4118 4119 4119 4119 4119 4120 4120 4120 4120 4121 4122 4123 4123 4123 4123 4124 4124 4124 4124 4125 4126 4126 4126 4126 4127 4127 4127 4127 4128 4128 4128 4128 4129 4129 4130 4130 4131 4132 4133 4133 4134 4134 4135 4135 4136 4137 4137 4137 4138 4139 4140 4140 4141 4141 4142 4143 4143 4143 4144 4144 4144 4144 4145 4145 4145 4146 4146 4146 4147 4147 4147 4147 4148 4148 4148 4149 4149 4149 4150 4151 4151 4151 4152 4152 4153 4153 4154 4154 4155 4155 4155 4155 4156 4156",
"output": "427591742"
},
{
"input": "10\n402840 873316 567766 493234 711262 291654 683001 496971 64909 190173",
"output": "0"
},
{
"input": "45\n1800 4967 1094 551 871 3505 846 960 4868 4304 2112 496 2293 2128 2430 2119 4497 2159 774 4520 3535 1013 452 1458 1895 1191 958 1133 416 2613 4172 3926 1665 4237 539 101 2448 1212 2631 4530 3026 412 1006 2515 1922",
"output": "0"
},
{
"input": "69\n2367 2018 3511 1047 1789 2332 1082 4678 2036 4108 2357 339 536 2272 3638 2588 754 3795 375 506 3243 1033 4531 1216 4266 2547 3540 4642 1256 2248 4705 14 629 876 2304 1673 4186 2356 3172 2664 3896 552 4293 1507 3307 2661 3143 4565 58 1298 4380 2738 917 2054 2676 4464 1314 3752 3378 1823 4219 3142 4258 1833 886 4286 4040 1070 2206",
"output": "7402552"
},
{
"input": "93\n13 2633 3005 1516 2681 3262 1318 1935 665 2450 2601 1644 214 929 4873 955 1983 3945 3488 2927 1516 1026 2150 974 150 2442 2610 1664 636 3369 266 2536 3132 2515 2582 1169 4462 4961 200 2848 4793 2795 4657 474 2640 2488 378 544 1805 1390 1548 2683 1474 4027 1724 2078 183 3717 1727 1780 552 2905 4260 1444 2906 3779 400 1491 1467 4480 3680 2539 4681 2875 4021 2711 106 853 3094 4531 4066 372 2129 2577 3996 2350 943 4478 3058 3333 4592 232 2780",
"output": "4403980"
},
{
"input": "21\n580 3221 3987 2012 35 629 1554 654 756 2254 4307 2948 3457 4612 4620 4320 1777 556 3088 348 1250",
"output": "0"
},
{
"input": "45\n4685 272 3481 3942 952 3020 329 4371 2923 2057 4526 2791 1674 3269 829 2713 3006 2166 1228 2795 983 1065 3875 4028 3429 3720 697 734 4393 1176 2820 1173 4598 2281 2549 4341 1504 172 4230 1193 3022 3742 1232 3433 1871",
"output": "0"
},
{
"input": "69\n3766 2348 4437 4438 3305 386 2026 1629 1552 400 4770 4069 4916 1926 2037 1079 2801 854 803 216 2152 4622 1494 3786 775 3615 4766 2781 235 836 1892 2234 3563 1843 4314 3836 320 2776 4796 1378 380 2421 3057 964 4717 1122 620 530 3455 1639 1618 3109 3120 564 2382 1995 1173 4510 286 1088 218 734 2779 3738 456 1668 4476 2780 3555",
"output": "12334860"
},
{
"input": "4\n2 2 2 4",
"output": "0"
},
{
"input": "8\n10 10 10 11 14 14 14 16",
"output": "140"
},
{
"input": "2\n2 3",
"output": "0"
},
{
"input": "3\n2 3 5",
"output": "0"
},
{
"input": "8\n2 1000000 2 1000000 2 1000000 2 1000000",
"output": "1000000000004"
},
{
"input": "4\n2 4 6 8",
"output": "0"
},
{
"input": "4\n2 3 6 8",
"output": "0"
},
{
"input": "5\n2 2 3 4 5",
"output": "8"
},
{
"input": "5\n1000000 999999 999999 999999 999999",
"output": "999998000001"
},
{
"input": "6\n2 2 2 2 2 2",
"output": "4"
},
{
"input": "4\n2 4 5 5",
"output": "0"
},
{
"input": "20\n4 4 8 4 5 6 7 4 5 4 6 4 4 5 7 6 5 8 8 4",
"output": "149"
},
{
"input": "10\n8 4 6 6 8 5 7 7 6 8",
"output": "92"
},
{
"input": "11\n4 4 9 9 3 8 8 8 6 4 3",
"output": "84"
},
{
"input": "8\n2 3 3 4 4 5 5 5",
"output": "26"
},
{
"input": "4\n3 3 3 2",
"output": "6"
},
{
"input": "5\n3 3 10 100 100",
"output": "300"
},
{
"input": "8\n9 9 9 8 8 7 7 6",
"output": "114"
},
{
"input": "4\n5 6 6 7",
"output": "30"
},
{
"input": "5\n9 9 5 2 2",
"output": "18"
},
{
"input": "6\n3 4 100 200 1001 1002",
"output": "3003"
},
{
"input": "6\n3 4 5 100 101 102",
"output": "404"
},
{
"input": "5\n2 2 4 6 6",
"output": "12"
},
{
"input": "6\n2 3 8 10 13 14",
"output": "26"
},
{
"input": "7\n2 2 2 2 2 2 2",
"output": "4"
},
{
"input": "5\n5 2 2 2 2",
"output": "4"
},
{
"input": "6\n3 4 100 200 1000 1001",
"output": "3000"
},
{
"input": "5\n5 5 7 9 9",
"output": "45"
},
{
"input": "5\n8 8 7 4 4",
"output": "32"
},
{
"input": "5\n2 2 5 8 9",
"output": "16"
},
{
"input": "5\n4 4 4 2 2",
"output": "8"
},
{
"input": "5\n3 10 100 1000 10000",
"output": "0"
},
{
"input": "6\n10 10 7 4 2 2",
"output": "20"
},
{
"input": "6\n5 5 7 9 10 10",
"output": "50"
},
{
"input": "7\n10 10 7 5 3 2 2",
"output": "20"
},
{
"input": "7\n10 9 9 9 9 2 2",
"output": "81"
}
] | 1,450,387,246
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 46
| 0
|
from sys import stdin, stdout
def rectangular(n, array):
i = 1
sum = 0
crutch = 0
if n < 4:
return 0
array.sort()
array.reverse()
while i <= n:
if array[i-1] - array[i] <= 1:
if crutch == 0:
crutch = array[i]
i += 1
else:
sum += crutch * array[i]
crutch = 0
i += 1
i += 1
return sum
|
Title: Ilya and Sticks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of *n* sticks and an instrument. Each stick is characterized by its length *l**i*.
Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed.
Sticks with lengths *a*1, *a*2, *a*3 and *a*4 can make a rectangle if the following properties are observed:
- *a*1<=≤<=*a*2<=≤<=*a*3<=≤<=*a*4 - *a*1<==<=*a*2 - *a*3<==<=*a*4
A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7.
Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4.
You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks?
Input Specification:
The first line of the input contains a positive integer *n* (1<=≤<=*n*<=≤<=105) — the number of the available sticks.
The second line of the input contains *n* positive integers *l**i* (2<=≤<=*l**i*<=≤<=106) — the lengths of the sticks.
Output Specification:
The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks.
Demo Input:
['4\n2 4 4 2\n', '4\n2 2 3 5\n', '4\n100003 100004 100005 100006\n']
Demo Output:
['8\n', '0\n', '10000800015\n']
Note:
none
|
```python
from sys import stdin, stdout
def rectangular(n, array):
i = 1
sum = 0
crutch = 0
if n < 4:
return 0
array.sort()
array.reverse()
while i <= n:
if array[i-1] - array[i] <= 1:
if crutch == 0:
crutch = array[i]
i += 1
else:
sum += crutch * array[i]
crutch = 0
i += 1
i += 1
return sum
```
| 0
|
|
670
|
A
|
Holidays
|
PROGRAMMING
| 900
|
[
"brute force",
"constructive algorithms",
"greedy",
"math"
] | null | null |
On the planet Mars a year lasts exactly *n* days (there are no leap years on Mars). But Martians have the same weeks as earthlings — 5 work days and then 2 days off. Your task is to determine the minimum possible and the maximum possible number of days off per year on Mars.
|
The first line of the input contains a positive integer *n* (1<=≤<=*n*<=≤<=1<=000<=000) — the number of days in a year on Mars.
|
Print two integers — the minimum possible and the maximum possible number of days off per year on Mars.
|
[
"14\n",
"2\n"
] |
[
"4 4\n",
"0 2\n"
] |
In the first sample there are 14 days in a year on Mars, and therefore independently of the day a year starts with there will be exactly 4 days off .
In the second sample there are only 2 days in a year on Mars, and they can both be either work days or days off.
| 500
|
[
{
"input": "14",
"output": "4 4"
},
{
"input": "2",
"output": "0 2"
},
{
"input": "1",
"output": "0 1"
},
{
"input": "3",
"output": "0 2"
},
{
"input": "4",
"output": "0 2"
},
{
"input": "5",
"output": "0 2"
},
{
"input": "6",
"output": "1 2"
},
{
"input": "7",
"output": "2 2"
},
{
"input": "8",
"output": "2 3"
},
{
"input": "9",
"output": "2 4"
},
{
"input": "10",
"output": "2 4"
},
{
"input": "11",
"output": "2 4"
},
{
"input": "12",
"output": "2 4"
},
{
"input": "13",
"output": "3 4"
},
{
"input": "1000000",
"output": "285714 285715"
},
{
"input": "16",
"output": "4 6"
},
{
"input": "17",
"output": "4 6"
},
{
"input": "18",
"output": "4 6"
},
{
"input": "19",
"output": "4 6"
},
{
"input": "20",
"output": "5 6"
},
{
"input": "21",
"output": "6 6"
},
{
"input": "22",
"output": "6 7"
},
{
"input": "23",
"output": "6 8"
},
{
"input": "24",
"output": "6 8"
},
{
"input": "25",
"output": "6 8"
},
{
"input": "26",
"output": "6 8"
},
{
"input": "27",
"output": "7 8"
},
{
"input": "28",
"output": "8 8"
},
{
"input": "29",
"output": "8 9"
},
{
"input": "30",
"output": "8 10"
},
{
"input": "100",
"output": "28 30"
},
{
"input": "99",
"output": "28 29"
},
{
"input": "98",
"output": "28 28"
},
{
"input": "97",
"output": "27 28"
},
{
"input": "96",
"output": "26 28"
},
{
"input": "95",
"output": "26 28"
},
{
"input": "94",
"output": "26 28"
},
{
"input": "93",
"output": "26 28"
},
{
"input": "92",
"output": "26 27"
},
{
"input": "91",
"output": "26 26"
},
{
"input": "90",
"output": "25 26"
},
{
"input": "89",
"output": "24 26"
},
{
"input": "88",
"output": "24 26"
},
{
"input": "87",
"output": "24 26"
},
{
"input": "86",
"output": "24 26"
},
{
"input": "85",
"output": "24 25"
},
{
"input": "84",
"output": "24 24"
},
{
"input": "83",
"output": "23 24"
},
{
"input": "82",
"output": "22 24"
},
{
"input": "81",
"output": "22 24"
},
{
"input": "80",
"output": "22 24"
},
{
"input": "1000",
"output": "285 286"
},
{
"input": "999",
"output": "284 286"
},
{
"input": "998",
"output": "284 286"
},
{
"input": "997",
"output": "284 286"
},
{
"input": "996",
"output": "284 286"
},
{
"input": "995",
"output": "284 285"
},
{
"input": "994",
"output": "284 284"
},
{
"input": "993",
"output": "283 284"
},
{
"input": "992",
"output": "282 284"
},
{
"input": "991",
"output": "282 284"
},
{
"input": "990",
"output": "282 284"
},
{
"input": "989",
"output": "282 284"
},
{
"input": "988",
"output": "282 283"
},
{
"input": "987",
"output": "282 282"
},
{
"input": "986",
"output": "281 282"
},
{
"input": "985",
"output": "280 282"
},
{
"input": "984",
"output": "280 282"
},
{
"input": "983",
"output": "280 282"
},
{
"input": "982",
"output": "280 282"
},
{
"input": "981",
"output": "280 281"
},
{
"input": "980",
"output": "280 280"
},
{
"input": "10000",
"output": "2856 2858"
},
{
"input": "9999",
"output": "2856 2858"
},
{
"input": "9998",
"output": "2856 2858"
},
{
"input": "9997",
"output": "2856 2857"
},
{
"input": "9996",
"output": "2856 2856"
},
{
"input": "9995",
"output": "2855 2856"
},
{
"input": "9994",
"output": "2854 2856"
},
{
"input": "9993",
"output": "2854 2856"
},
{
"input": "9992",
"output": "2854 2856"
},
{
"input": "9991",
"output": "2854 2856"
},
{
"input": "9990",
"output": "2854 2855"
},
{
"input": "9989",
"output": "2854 2854"
},
{
"input": "9988",
"output": "2853 2854"
},
{
"input": "9987",
"output": "2852 2854"
},
{
"input": "9986",
"output": "2852 2854"
},
{
"input": "9985",
"output": "2852 2854"
},
{
"input": "9984",
"output": "2852 2854"
},
{
"input": "9983",
"output": "2852 2853"
},
{
"input": "9982",
"output": "2852 2852"
},
{
"input": "9981",
"output": "2851 2852"
},
{
"input": "9980",
"output": "2850 2852"
},
{
"input": "100000",
"output": "28570 28572"
},
{
"input": "99999",
"output": "28570 28572"
},
{
"input": "99998",
"output": "28570 28572"
},
{
"input": "99997",
"output": "28570 28572"
},
{
"input": "99996",
"output": "28570 28571"
},
{
"input": "99995",
"output": "28570 28570"
},
{
"input": "99994",
"output": "28569 28570"
},
{
"input": "99993",
"output": "28568 28570"
},
{
"input": "99992",
"output": "28568 28570"
},
{
"input": "99991",
"output": "28568 28570"
},
{
"input": "99990",
"output": "28568 28570"
},
{
"input": "99989",
"output": "28568 28569"
},
{
"input": "99988",
"output": "28568 28568"
},
{
"input": "99987",
"output": "28567 28568"
},
{
"input": "99986",
"output": "28566 28568"
},
{
"input": "99985",
"output": "28566 28568"
},
{
"input": "99984",
"output": "28566 28568"
},
{
"input": "99983",
"output": "28566 28568"
},
{
"input": "99982",
"output": "28566 28567"
},
{
"input": "99981",
"output": "28566 28566"
},
{
"input": "99980",
"output": "28565 28566"
},
{
"input": "999999",
"output": "285714 285714"
},
{
"input": "999998",
"output": "285713 285714"
},
{
"input": "999997",
"output": "285712 285714"
},
{
"input": "999996",
"output": "285712 285714"
},
{
"input": "999995",
"output": "285712 285714"
},
{
"input": "999994",
"output": "285712 285714"
},
{
"input": "999993",
"output": "285712 285713"
},
{
"input": "999992",
"output": "285712 285712"
},
{
"input": "999991",
"output": "285711 285712"
},
{
"input": "999990",
"output": "285710 285712"
},
{
"input": "999989",
"output": "285710 285712"
},
{
"input": "999988",
"output": "285710 285712"
},
{
"input": "999987",
"output": "285710 285712"
},
{
"input": "999986",
"output": "285710 285711"
},
{
"input": "999985",
"output": "285710 285710"
},
{
"input": "999984",
"output": "285709 285710"
},
{
"input": "999983",
"output": "285708 285710"
},
{
"input": "999982",
"output": "285708 285710"
},
{
"input": "999981",
"output": "285708 285710"
},
{
"input": "999980",
"output": "285708 285710"
},
{
"input": "234123",
"output": "66892 66893"
},
{
"input": "234122",
"output": "66892 66892"
},
{
"input": "234121",
"output": "66891 66892"
},
{
"input": "234120",
"output": "66890 66892"
},
{
"input": "234119",
"output": "66890 66892"
},
{
"input": "234118",
"output": "66890 66892"
},
{
"input": "234117",
"output": "66890 66892"
},
{
"input": "234116",
"output": "66890 66891"
},
{
"input": "234115",
"output": "66890 66890"
},
{
"input": "234114",
"output": "66889 66890"
},
{
"input": "234113",
"output": "66888 66890"
},
{
"input": "234112",
"output": "66888 66890"
},
{
"input": "234111",
"output": "66888 66890"
},
{
"input": "234110",
"output": "66888 66890"
},
{
"input": "234109",
"output": "66888 66889"
},
{
"input": "234108",
"output": "66888 66888"
},
{
"input": "234107",
"output": "66887 66888"
},
{
"input": "234106",
"output": "66886 66888"
},
{
"input": "234105",
"output": "66886 66888"
},
{
"input": "234104",
"output": "66886 66888"
},
{
"input": "234103",
"output": "66886 66888"
},
{
"input": "868531",
"output": "248151 248152"
},
{
"input": "868530",
"output": "248150 248152"
},
{
"input": "868529",
"output": "248150 248152"
},
{
"input": "868528",
"output": "248150 248152"
},
{
"input": "868527",
"output": "248150 248152"
},
{
"input": "868526",
"output": "248150 248151"
},
{
"input": "868525",
"output": "248150 248150"
},
{
"input": "868524",
"output": "248149 248150"
},
{
"input": "868523",
"output": "248148 248150"
},
{
"input": "868522",
"output": "248148 248150"
},
{
"input": "868521",
"output": "248148 248150"
},
{
"input": "868520",
"output": "248148 248150"
},
{
"input": "868519",
"output": "248148 248149"
},
{
"input": "868518",
"output": "248148 248148"
},
{
"input": "868517",
"output": "248147 248148"
},
{
"input": "868516",
"output": "248146 248148"
},
{
"input": "868515",
"output": "248146 248148"
},
{
"input": "868514",
"output": "248146 248148"
},
{
"input": "868513",
"output": "248146 248148"
},
{
"input": "868512",
"output": "248146 248147"
},
{
"input": "868511",
"output": "248146 248146"
},
{
"input": "123413",
"output": "35260 35262"
},
{
"input": "123412",
"output": "35260 35262"
},
{
"input": "123411",
"output": "35260 35261"
},
{
"input": "123410",
"output": "35260 35260"
},
{
"input": "123409",
"output": "35259 35260"
},
{
"input": "123408",
"output": "35258 35260"
},
{
"input": "123407",
"output": "35258 35260"
},
{
"input": "123406",
"output": "35258 35260"
},
{
"input": "123405",
"output": "35258 35260"
},
{
"input": "123404",
"output": "35258 35259"
},
{
"input": "123403",
"output": "35258 35258"
},
{
"input": "123402",
"output": "35257 35258"
},
{
"input": "123401",
"output": "35256 35258"
},
{
"input": "123400",
"output": "35256 35258"
},
{
"input": "123399",
"output": "35256 35258"
},
{
"input": "123398",
"output": "35256 35258"
},
{
"input": "123397",
"output": "35256 35257"
},
{
"input": "123396",
"output": "35256 35256"
},
{
"input": "123395",
"output": "35255 35256"
},
{
"input": "123394",
"output": "35254 35256"
},
{
"input": "123393",
"output": "35254 35256"
},
{
"input": "15",
"output": "4 5"
}
] | 1,654,282,378
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 198
| 46
| 0
|
n = int(input())
min_holidays = (n // 7) * 2
extra_days = (n % 7)
max_holidays = min_holidays
if extra_days == 6:
min_holidays += 1
if extra_days > 2:
max_holidays += 2
else:
max_holidays += extra_days
print(min_holidays, max_holidays)
|
Title: Holidays
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
On the planet Mars a year lasts exactly *n* days (there are no leap years on Mars). But Martians have the same weeks as earthlings — 5 work days and then 2 days off. Your task is to determine the minimum possible and the maximum possible number of days off per year on Mars.
Input Specification:
The first line of the input contains a positive integer *n* (1<=≤<=*n*<=≤<=1<=000<=000) — the number of days in a year on Mars.
Output Specification:
Print two integers — the minimum possible and the maximum possible number of days off per year on Mars.
Demo Input:
['14\n', '2\n']
Demo Output:
['4 4\n', '0 2\n']
Note:
In the first sample there are 14 days in a year on Mars, and therefore independently of the day a year starts with there will be exactly 4 days off .
In the second sample there are only 2 days in a year on Mars, and they can both be either work days or days off.
|
```python
n = int(input())
min_holidays = (n // 7) * 2
extra_days = (n % 7)
max_holidays = min_holidays
if extra_days == 6:
min_holidays += 1
if extra_days > 2:
max_holidays += 2
else:
max_holidays += extra_days
print(min_holidays, max_holidays)
```
| 3
|
|
350
|
A
|
TL
|
PROGRAMMING
| 1,200
|
[
"brute force",
"greedy",
"implementation"
] | null | null |
Valera wanted to prepare a Codesecrof round. He's already got one problem and he wants to set a time limit (TL) on it.
Valera has written *n* correct solutions. For each correct solution, he knows its running time (in seconds). Valera has also wrote *m* wrong solutions and for each wrong solution he knows its running time (in seconds).
Let's suppose that Valera will set *v* seconds TL in the problem. Then we can say that a solution passes the system testing if its running time is at most *v* seconds. We can also say that a solution passes the system testing with some "extra" time if for its running time, *a* seconds, an inequality 2*a*<=≤<=*v* holds.
As a result, Valera decided to set *v* seconds TL, that the following conditions are met:
1. *v* is a positive integer; 1. all correct solutions pass the system testing; 1. at least one correct solution passes the system testing with some "extra" time; 1. all wrong solutions do not pass the system testing; 1. value *v* is minimum among all TLs, for which points 1, 2, 3, 4 hold.
Help Valera and find the most suitable TL or else state that such TL doesn't exist.
|
The first line contains two integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100). The second line contains *n* space-separated positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100) — the running time of each of the *n* correct solutions in seconds. The third line contains *m* space-separated positive integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=100) — the running time of each of *m* wrong solutions in seconds.
|
If there is a valid TL value, print it. Otherwise, print -1.
|
[
"3 6\n4 5 2\n8 9 6 10 7 11\n",
"3 1\n3 4 5\n6\n"
] |
[
"5",
"-1\n"
] |
none
| 500
|
[
{
"input": "3 6\n4 5 2\n8 9 6 10 7 11",
"output": "5"
},
{
"input": "3 1\n3 4 5\n6",
"output": "-1"
},
{
"input": "2 5\n45 99\n49 41 77 83 45",
"output": "-1"
},
{
"input": "50 50\n18 13 5 34 10 36 36 12 15 11 16 17 14 36 23 45 32 24 31 18 24 32 7 1 31 3 49 8 16 23 3 39 47 43 42 38 40 22 41 1 49 47 9 8 19 15 29 30 16 18\n91 58 86 51 94 94 73 84 98 69 74 56 52 80 88 61 53 99 88 50 55 95 65 84 87 79 51 52 69 60 74 73 93 61 73 59 64 56 95 78 86 72 79 70 93 78 54 61 71 50",
"output": "49"
},
{
"input": "55 44\n93 17 74 15 34 16 41 80 26 54 94 94 86 93 20 44 63 72 39 43 67 4 37 49 76 94 5 51 64 74 11 47 77 97 57 30 42 72 71 26 8 14 67 64 49 57 30 23 40 4 76 78 87 78 79\n38 55 17 65 26 7 36 65 48 28 49 93 18 98 31 90 26 57 1 26 88 56 48 56 23 13 8 67 80 2 51 3 21 33 20 54 2 45 21 36 3 98 62 2",
"output": "-1"
},
{
"input": "32 100\n30 8 4 35 18 41 18 12 33 39 39 18 39 19 33 46 45 33 34 27 14 39 40 21 38 9 42 35 27 10 14 14\n65 49 89 64 47 78 59 52 73 51 84 82 88 63 91 99 67 87 53 99 75 47 85 82 58 47 80 50 65 91 83 90 77 52 100 88 97 74 98 99 50 93 65 61 65 65 65 96 61 51 84 67 79 90 92 83 100 100 100 95 80 54 77 51 98 64 74 62 60 96 73 74 94 55 89 60 92 65 74 79 66 81 53 47 71 51 54 85 74 97 68 72 88 94 100 85 65 63 65 90",
"output": "46"
},
{
"input": "1 50\n7\n65 52 99 78 71 19 96 72 80 15 50 94 20 35 79 95 44 41 45 53 77 50 74 66 59 96 26 84 27 48 56 84 36 78 89 81 67 34 79 74 99 47 93 92 90 96 72 28 78 66",
"output": "14"
},
{
"input": "1 1\n4\n9",
"output": "8"
},
{
"input": "1 1\n2\n4",
"output": "-1"
},
{
"input": "22 56\n49 20 42 68 15 46 98 78 82 8 7 33 50 30 75 96 36 88 35 99 19 87\n15 18 81 24 35 89 25 32 23 3 48 24 52 69 18 32 23 61 48 98 50 38 5 17 70 20 38 32 49 54 68 11 51 81 46 22 19 59 29 38 45 83 18 13 91 17 84 62 25 60 97 32 23 13 83 58",
"output": "-1"
},
{
"input": "1 1\n50\n100",
"output": "-1"
},
{
"input": "1 1\n49\n100",
"output": "98"
},
{
"input": "1 1\n100\n100",
"output": "-1"
},
{
"input": "1 1\n99\n100",
"output": "-1"
},
{
"input": "8 4\n1 2 49 99 99 95 78 98\n100 100 100 100",
"output": "99"
},
{
"input": "68 85\n43 55 2 4 72 45 19 56 53 81 18 90 11 87 47 8 94 88 24 4 67 9 21 70 25 66 65 27 46 13 8 51 65 99 37 43 71 59 71 79 32 56 49 43 57 85 95 81 40 28 60 36 72 81 60 40 16 78 61 37 29 26 15 95 70 27 50 97\n6 6 48 72 54 31 1 50 29 64 93 9 29 93 66 63 25 90 52 1 66 13 70 30 24 87 32 90 84 72 44 13 25 45 31 16 92 60 87 40 62 7 20 63 86 78 73 88 5 36 74 100 64 34 9 5 62 29 58 48 81 46 84 56 27 1 60 14 54 88 31 93 62 7 9 69 27 48 10 5 33 10 53 66 2",
"output": "-1"
},
{
"input": "5 100\n1 1 1 1 1\n77 53 38 29 97 33 64 17 78 100 27 12 42 44 20 24 44 68 58 57 65 90 8 24 4 6 74 68 61 43 25 69 8 62 36 85 67 48 69 30 35 41 42 12 87 66 50 92 53 76 38 67 85 7 80 78 53 76 94 8 37 50 4 100 4 71 10 48 34 47 83 42 25 81 64 72 25 51 53 75 43 98 53 77 94 38 81 15 89 91 72 76 7 36 27 41 88 18 19 75",
"output": "2"
},
{
"input": "3 3\n2 3 4\n8 9 10",
"output": "4"
},
{
"input": "2 1\n2 3\n15",
"output": "4"
},
{
"input": "2 1\n2 4\n4",
"output": "-1"
},
{
"input": "2 3\n4 5\n10 11 12",
"output": "8"
},
{
"input": "3 1\n2 3 3\n5",
"output": "4"
},
{
"input": "2 1\n9 10\n100",
"output": "18"
},
{
"input": "3 3\n3 12 15\n7 8 9",
"output": "-1"
},
{
"input": "2 2\n3 5\n7 8",
"output": "6"
},
{
"input": "3 3\n4 5 6\n10 11 12",
"output": "8"
},
{
"input": "3 5\n2 3 3\n6 6 6 6 2",
"output": "-1"
},
{
"input": "3 6\n4 5 3\n8 9 7 10 7 11",
"output": "6"
},
{
"input": "3 6\n4 5 2\n8 9 6 10 7 4",
"output": "-1"
},
{
"input": "2 1\n4 6\n10",
"output": "8"
},
{
"input": "1 2\n1\n3 1",
"output": "-1"
},
{
"input": "2 1\n5 6\n20",
"output": "10"
},
{
"input": "2 1\n1 5\n5",
"output": "-1"
},
{
"input": "3 2\n10 20 30\n30 40",
"output": "-1"
},
{
"input": "2 2\n5 6\n7 100",
"output": "-1"
},
{
"input": "2 1\n2 5\n7",
"output": "5"
},
{
"input": "1 1\n5\n20",
"output": "10"
},
{
"input": "2 1\n10 11\n100",
"output": "20"
},
{
"input": "1 1\n1\n10",
"output": "2"
},
{
"input": "1 1\n10\n100",
"output": "20"
}
] | 1,587,209,685
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 45
| 280
| 0
|
n,k = list(map(int,input().split(" ")))
valid = list(map(int,input().split(" ")))
invalid = list(map(int,input().split(" ")))
minValid = min(valid)
maxValid = max(valid)
minInvalid = min(invalid)
if maxValid < minInvalid and maxValid > 0:
if 2*minValid <= maxValid:
print(maxValid)
elif 2*minValid < minInvalid:
print(2*minValid)
else:
print("-1")
else:
print("-1")
|
Title: TL
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Valera wanted to prepare a Codesecrof round. He's already got one problem and he wants to set a time limit (TL) on it.
Valera has written *n* correct solutions. For each correct solution, he knows its running time (in seconds). Valera has also wrote *m* wrong solutions and for each wrong solution he knows its running time (in seconds).
Let's suppose that Valera will set *v* seconds TL in the problem. Then we can say that a solution passes the system testing if its running time is at most *v* seconds. We can also say that a solution passes the system testing with some "extra" time if for its running time, *a* seconds, an inequality 2*a*<=≤<=*v* holds.
As a result, Valera decided to set *v* seconds TL, that the following conditions are met:
1. *v* is a positive integer; 1. all correct solutions pass the system testing; 1. at least one correct solution passes the system testing with some "extra" time; 1. all wrong solutions do not pass the system testing; 1. value *v* is minimum among all TLs, for which points 1, 2, 3, 4 hold.
Help Valera and find the most suitable TL or else state that such TL doesn't exist.
Input Specification:
The first line contains two integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100). The second line contains *n* space-separated positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100) — the running time of each of the *n* correct solutions in seconds. The third line contains *m* space-separated positive integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=100) — the running time of each of *m* wrong solutions in seconds.
Output Specification:
If there is a valid TL value, print it. Otherwise, print -1.
Demo Input:
['3 6\n4 5 2\n8 9 6 10 7 11\n', '3 1\n3 4 5\n6\n']
Demo Output:
['5', '-1\n']
Note:
none
|
```python
n,k = list(map(int,input().split(" ")))
valid = list(map(int,input().split(" ")))
invalid = list(map(int,input().split(" ")))
minValid = min(valid)
maxValid = max(valid)
minInvalid = min(invalid)
if maxValid < minInvalid and maxValid > 0:
if 2*minValid <= maxValid:
print(maxValid)
elif 2*minValid < minInvalid:
print(2*minValid)
else:
print("-1")
else:
print("-1")
```
| 3
|
|
879
|
B
|
Table Tennis
|
PROGRAMMING
| 1,200
|
[
"data structures",
"implementation"
] | null | null |
*n* people are standing in a line to play table tennis. At first, the first two players in the line play a game. Then the loser goes to the end of the line, and the winner plays with the next person from the line, and so on. They play until someone wins *k* games in a row. This player becomes the winner.
For each of the participants, you know the power to play table tennis, and for all players these values are different. In a game the player with greater power always wins. Determine who will be the winner.
|
The first line contains two integers: *n* and *k* (2<=≤<=*n*<=≤<=500, 2<=≤<=*k*<=≤<=1012) — the number of people and the number of wins.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — powers of the player. It's guaranteed that this line contains a valid permutation, i.e. all *a**i* are distinct.
|
Output a single integer — power of the winner.
|
[
"2 2\n1 2\n",
"4 2\n3 1 2 4\n",
"6 2\n6 5 3 1 2 4\n",
"2 10000000000\n2 1\n"
] |
[
"2 ",
"3 ",
"6 ",
"2\n"
] |
Games in the second sample:
3 plays with 1. 3 wins. 1 goes to the end of the line.
3 plays with 2. 3 wins. He wins twice in a row. He becomes the winner.
| 1,000
|
[
{
"input": "2 2\n1 2",
"output": "2 "
},
{
"input": "4 2\n3 1 2 4",
"output": "3 "
},
{
"input": "6 2\n6 5 3 1 2 4",
"output": "6 "
},
{
"input": "2 10000000000\n2 1",
"output": "2"
},
{
"input": "4 4\n1 3 4 2",
"output": "4 "
},
{
"input": "2 2147483648\n2 1",
"output": "2"
},
{
"input": "3 2\n1 3 2",
"output": "3 "
},
{
"input": "3 3\n1 2 3",
"output": "3 "
},
{
"input": "5 2\n2 1 3 4 5",
"output": "5 "
},
{
"input": "10 2\n7 10 5 8 9 3 4 6 1 2",
"output": "10 "
},
{
"input": "100 2\n62 70 29 14 12 87 94 78 39 92 84 91 61 49 60 33 69 37 19 82 42 8 45 97 81 43 54 67 1 22 77 58 65 17 18 28 25 57 16 90 40 13 4 21 68 35 15 76 73 93 56 95 79 47 74 75 30 71 66 99 41 24 88 83 5 6 31 96 38 80 27 46 51 53 2 86 32 9 20 100 26 36 63 7 52 55 23 3 50 59 48 89 85 44 34 64 10 72 11 98",
"output": "70 "
},
{
"input": "4 10\n2 1 3 4",
"output": "4"
},
{
"input": "10 2\n1 2 3 4 5 6 7 8 9 10",
"output": "10 "
},
{
"input": "10 2\n10 9 8 7 6 5 4 3 2 1",
"output": "10 "
},
{
"input": "4 1000000000000\n3 4 1 2",
"output": "4"
},
{
"input": "100 10\n19 55 91 50 31 23 60 84 38 1 22 51 27 76 28 98 11 44 61 63 15 93 52 3 66 16 53 36 18 62 35 85 78 37 73 64 87 74 46 26 82 69 49 33 83 89 56 67 71 25 39 94 96 17 21 6 47 68 34 42 57 81 13 10 54 2 48 80 20 77 4 5 59 30 90 95 45 75 8 88 24 41 40 14 97 32 7 9 65 70 100 99 72 58 92 29 79 12 86 43",
"output": "91 "
},
{
"input": "100 50\n2 4 82 12 47 63 52 91 87 45 53 1 17 25 64 50 9 13 22 54 21 30 43 24 38 33 68 11 41 78 99 23 28 18 58 67 79 10 71 56 49 61 26 29 59 20 90 74 5 75 89 8 39 95 72 42 66 98 44 32 88 35 92 3 97 55 65 51 77 27 81 76 84 69 73 85 19 46 62 100 60 37 7 36 57 6 14 83 40 48 16 70 96 15 31 93 80 86 94 34",
"output": "100 "
},
{
"input": "2 1000000000000\n1 2",
"output": "2"
},
{
"input": "5 2\n1 4 3 5 2",
"output": "4 "
},
{
"input": "5 2\n1 3 2 4 5",
"output": "3 "
},
{
"input": "4 1000000000000\n3 1 2 4",
"output": "4"
},
{
"input": "4 2\n1 3 2 4",
"output": "3 "
},
{
"input": "10 3\n8 1 9 2 3 10 4 5 6 7",
"output": "9 "
},
{
"input": "5 2\n2 1 4 3 5",
"output": "4 "
},
{
"input": "3 4294967297\n2 1 3",
"output": "3"
},
{
"input": "4 4294967297\n3 2 1 4",
"output": "4"
},
{
"input": "5 4294967298\n3 2 1 4 5",
"output": "5"
},
{
"input": "10 4\n5 4 7 1 2 9 3 6 8 10",
"output": "9 "
},
{
"input": "11 21474836489\n10 1 2 3 4 5 6 7 8 9 11",
"output": "11"
}
] | 1,600,725,071
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 43
| 140
| 0
|
n, k = [int(x) for x in input().split()]
power = [int(x) for x in input().split()]
achou = False
winner = 0
if k >= len(power):
winner = max(power)
achou = True
vitorias = 0
while not achou:
if power[0] > power[1]:
temp = power[0]
power.append(power[1])
power.pop(1)
else:
temp = power[1]
power.append(power[0])
power.pop(0)
if winner == temp:
vitorias += 1
else:
winner = temp
vitorias = 1
if vitorias == k:
achou = True
print(winner)
|
Title: Table Tennis
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
*n* people are standing in a line to play table tennis. At first, the first two players in the line play a game. Then the loser goes to the end of the line, and the winner plays with the next person from the line, and so on. They play until someone wins *k* games in a row. This player becomes the winner.
For each of the participants, you know the power to play table tennis, and for all players these values are different. In a game the player with greater power always wins. Determine who will be the winner.
Input Specification:
The first line contains two integers: *n* and *k* (2<=≤<=*n*<=≤<=500, 2<=≤<=*k*<=≤<=1012) — the number of people and the number of wins.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — powers of the player. It's guaranteed that this line contains a valid permutation, i.e. all *a**i* are distinct.
Output Specification:
Output a single integer — power of the winner.
Demo Input:
['2 2\n1 2\n', '4 2\n3 1 2 4\n', '6 2\n6 5 3 1 2 4\n', '2 10000000000\n2 1\n']
Demo Output:
['2 ', '3 ', '6 ', '2\n']
Note:
Games in the second sample:
3 plays with 1. 3 wins. 1 goes to the end of the line.
3 plays with 2. 3 wins. He wins twice in a row. He becomes the winner.
|
```python
n, k = [int(x) for x in input().split()]
power = [int(x) for x in input().split()]
achou = False
winner = 0
if k >= len(power):
winner = max(power)
achou = True
vitorias = 0
while not achou:
if power[0] > power[1]:
temp = power[0]
power.append(power[1])
power.pop(1)
else:
temp = power[1]
power.append(power[0])
power.pop(0)
if winner == temp:
vitorias += 1
else:
winner = temp
vitorias = 1
if vitorias == k:
achou = True
print(winner)
```
| 3
|
|
141
|
A
|
Amusing Joke
|
PROGRAMMING
| 800
|
[
"implementation",
"sortings",
"strings"
] | null | null |
So, the New Year holidays are over. Santa Claus and his colleagues can take a rest and have guests at last. When two "New Year and Christmas Men" meet, thear assistants cut out of cardboard the letters from the guest's name and the host's name in honor of this event. Then the hung the letters above the main entrance. One night, when everyone went to bed, someone took all the letters of our characters' names. Then he may have shuffled the letters and put them in one pile in front of the door.
The next morning it was impossible to find the culprit who had made the disorder. But everybody wondered whether it is possible to restore the names of the host and his guests from the letters lying at the door? That is, we need to verify that there are no extra letters, and that nobody will need to cut more letters.
Help the "New Year and Christmas Men" and their friends to cope with this problem. You are given both inscriptions that hung over the front door the previous night, and a pile of letters that were found at the front door next morning.
|
The input file consists of three lines: the first line contains the guest's name, the second line contains the name of the residence host and the third line contains letters in a pile that were found at the door in the morning. All lines are not empty and contain only uppercase Latin letters. The length of each line does not exceed 100.
|
Print "YES" without the quotes, if the letters in the pile could be permuted to make the names of the "New Year and Christmas Men". Otherwise, print "NO" without the quotes.
|
[
"SANTACLAUS\nDEDMOROZ\nSANTAMOROZDEDCLAUS\n",
"PAPAINOEL\nJOULUPUKKI\nJOULNAPAOILELUPUKKI\n",
"BABBONATALE\nFATHERCHRISTMAS\nBABCHRISTMASBONATALLEFATHER\n"
] |
[
"YES\n",
"NO\n",
"NO\n"
] |
In the first sample the letters written in the last line can be used to write the names and there won't be any extra letters left.
In the second sample letter "P" is missing from the pile and there's an extra letter "L".
In the third sample there's an extra letter "L".
| 500
|
[
{
"input": "SANTACLAUS\nDEDMOROZ\nSANTAMOROZDEDCLAUS",
"output": "YES"
},
{
"input": "PAPAINOEL\nJOULUPUKKI\nJOULNAPAOILELUPUKKI",
"output": "NO"
},
{
"input": "BABBONATALE\nFATHERCHRISTMAS\nBABCHRISTMASBONATALLEFATHER",
"output": "NO"
},
{
"input": "B\nA\nAB",
"output": "YES"
},
{
"input": "ONDOL\nJNPB\nONLNJBODP",
"output": "YES"
},
{
"input": "Y\nW\nYW",
"output": "YES"
},
{
"input": "OI\nM\nIMO",
"output": "YES"
},
{
"input": "VFQRWWWACX\nGHZJPOQUSXRAQDGOGMR\nOPAWDOUSGWWCGQXXQAZJRQRGHRMVF",
"output": "YES"
},
{
"input": "JUTCN\nPIGMZOPMEUFADQBW\nNWQGZMAIPUPOMCDUB",
"output": "NO"
},
{
"input": "Z\nO\nZOCNDOLTBZKQLTBOLDEGXRHZGTTPBJBLSJCVSVXISQZCSFDEBXRCSGBGTHWOVIXYHACAGBRYBKBJAEPIQZHVEGLYH",
"output": "NO"
},
{
"input": "IQ\nOQ\nQOQIGGKFNHJSGCGM",
"output": "NO"
},
{
"input": "ROUWANOPNIGTVMIITVMZ\nOQTUPZMTKUGY\nVTVNGZITGPUNPMQOOATUUIYIWMMKZOTR",
"output": "YES"
},
{
"input": "OVQELLOGFIOLEHXMEMBJDIGBPGEYFG\nJNKFPFFIJOFHRIFHXEWYZOPDJBZTJZKBWQTECNHRFSJPJOAPQT\nYAIPFFFEXJJNEJPLREIGODEGQZVMCOBDFKWTMWJSBEBTOFFQOHIQJLHFNXIGOHEZRZLFOKJBJPTPHPGY",
"output": "YES"
},
{
"input": "NBJGVNGUISUXQTBOBKYHQCOOVQWUXWPXBUDLXPKX\nNSFQDFUMQDQWQ\nWXKKVNTDQQFXCUQBIMQGQHSLVGWSBFYBUPOWPBDUUJUXQNOQDNXOX",
"output": "YES"
},
{
"input": "IJHHGKCXWDBRWJUPRDBZJLNTTNWKXLUGJSBWBOAUKWRAQWGFNL\nNJMWRMBCNPHXTDQQNZ\nWDNJRCLILNQRHWBANLTXWMJBPKUPGKJDJZAQWKTZFBRCTXHHBNXRGUQUNBNMWODGSJWW",
"output": "YES"
},
{
"input": "SRROWANGUGZHCIEFYMQVTWVOMDWPUZJFRDUMVFHYNHNTTGNXCJ\nDJYWGLBFCCECXFHOLORDGDCNRHPWXNHXFCXQCEZUHRRNAEKUIX\nWCUJDNYHNHYOPWMHLDCDYRWBVOGHFFUKOZTXJRXJHRGWICCMRNEVNEGQWTZPNFCSHDRFCFQDCXMHTLUGZAXOFNXNVGUEXIACRERU",
"output": "YES"
},
{
"input": "H\nJKFGHMIAHNDBMFXWYQLZRSVNOTEGCQSVUBYUOZBTNKTXPFQDCMKAGFITEUGOYDFIYQIORMFJEOJDNTFVIQEBICSNGKOSNLNXJWC\nBQSVDOGIHCHXSYNYTQFCHNJGYFIXTSOQINZOKSVQJMTKNTGFNXAVTUYEONMBQMGJLEWJOFGEARIOPKFUFCEMUBRBDNIIDFZDCLWK",
"output": "YES"
},
{
"input": "DSWNZRFVXQ\nPVULCZGOOU\nUOLVZXNUPOQRZGWFVDSCANQTCLEIE",
"output": "NO"
},
{
"input": "EUHTSCENIPXLTSBMLFHD\nIZAVSZPDLXOAGESUSE\nLXAELAZ",
"output": "NO"
},
{
"input": "WYSJFEREGELSKRQRXDXCGBODEFZVSI\nPEJKMGFLBFFDWRCRFSHVEFLEBTJCVCHRJTLDTISHPOGFWPLEWNYJLMXWIAOTYOXMV\nHXERTZWLEXTPIOTFRVMEJVYFFJLRPFMXDEBNSGCEOFFCWTKIDDGCFYSJKGLHBORWEPLDRXRSJYBGASSVCMHEEJFLVI",
"output": "NO"
},
{
"input": "EPBMDIUQAAUGLBIETKOKFLMTCVEPETWJRHHYKCKU\nHGMAETVPCFZYNNKDQXVXUALHYLOTCHM\nECGXACVKEYMCEDOTMKAUFHLHOMT",
"output": "NO"
},
{
"input": "NUBKQEJHALANSHEIFUZHYEZKKDRFHQKAJHLAOWTZIMOCWOVVDW\nEFVOBIGAUAUSQGVSNBKNOBDMINODMFSHDL\nKLAMKNTHBFFOHVKWICHBKNDDQNEISODUSDNLUSIOAVWY",
"output": "NO"
},
{
"input": "VXINHOMEQCATZUGAJEIUIZZLPYFGUTVLNBNWCUVMEENUXKBWBGZTMRJJVJDLVSLBABVCEUDDSQFHOYPYQTWVAGTWOLKYISAGHBMC\nZMRGXPZSHOGCSAECAPGVOIGCWEOWWOJXLGYRDMPXBLOKZVRACPYQLEQGFQCVYXAGBEBELUTDAYEAGPFKXRULZCKFHZCHVCWIRGPK\nRCVUXGQVNWFGRUDLLENNDQEJHYYVWMKTLOVIPELKPWCLSQPTAXAYEMGWCBXEVAIZGGDDRBRT",
"output": "NO"
},
{
"input": "PHBDHHWUUTZAHELGSGGOPOQXSXEZIXHZTOKYFBQLBDYWPVCNQSXHEAXRRPVHFJBVBYCJIFOTQTWSUOWXLKMVJJBNLGTVITWTCZZ\nFUPDLNVIHRWTEEEHOOEC\nLOUSUUSZCHJBPEWIILUOXEXRQNCJEGTOBRVZLTTZAHTKVEJSNGHFTAYGY",
"output": "NO"
},
{
"input": "GDSLNIIKTO\nJF\nPDQYFKDTNOLI",
"output": "NO"
},
{
"input": "AHOKHEKKPJLJIIWJRCGY\nORELJCSIX\nZVWPXVFWFSWOXXLIHJKPXIOKRELYE",
"output": "NO"
},
{
"input": "ZWCOJFORBPHXCOVJIDPKVECMHVHCOC\nTEV\nJVGTBFTLFVIEPCCHODOFOMCVZHWXVCPEH",
"output": "NO"
},
{
"input": "AGFIGYWJLVMYZGNQHEHWKJIAWBPUAQFERMCDROFN\nPMJNHMVNRGCYZAVRWNDSMLSZHFNYIUWFPUSKKIGU\nMCDVPPRXGUAYLSDRHRURZASXUWZSIIEZCPXUVEONKNGNWRYGOSFMCKESMVJZHWWUCHWDQMLASLNNMHAU",
"output": "NO"
},
{
"input": "XLOWVFCZSSXCSYQTIIDKHNTKNKEEDFMDZKXSPVLBIDIREDUAIN\nZKIWNDGBISDB\nSLPKLYFYSRNRMOSWYLJJDGFFENPOXYLPZFTQDANKBDNZDIIEWSUTTKYBKVICLG",
"output": "NO"
},
{
"input": "PMUKBTRKFIAYVGBKHZHUSJYSSEPEOEWPOSPJLWLOCTUYZODLTUAFCMVKGQKRRUSOMPAYOTBTFPXYAZXLOADDEJBDLYOTXJCJYTHA\nTWRRAJLCQJTKOKWCGUH\nEWDPNXVCXWCDQCOYKKSOYTFSZTOOPKPRDKFJDETKSRAJRVCPDOBWUGPYRJPUWJYWCBLKOOTUPBESTOFXZHTYLLMCAXDYAEBUTAHM",
"output": "NO"
},
{
"input": "QMIMGQRQDMJDPNFEFXSXQMCHEJKTWCTCVZPUAYICOIRYOWKUSIWXJLHDYWSBOITHTMINXFKBKAWZTXXBJIVYCRWKXNKIYKLDDXL\nV\nFWACCXBVDOJFIUAVYRALBYJKXXWIIFORRUHKHCXLDBZMXIYJWISFEAWTIQFIZSBXMKNOCQKVKRWDNDAMQSTKYLDNYVTUCGOJXJTW",
"output": "NO"
},
{
"input": "XJXPVOOQODELPPWUISSYVVXRJTYBPDHJNENQEVQNVFIXSESKXVYPVVHPMOSX\nLEXOPFPVPSZK\nZVXVPYEYOYXVOISVLXPOVHEQVXPNQJIOPFDTXEUNMPEPPHELNXKKWSVSOXSBPSJDPVJVSRFQ",
"output": "YES"
},
{
"input": "OSKFHGYNQLSRFSAHPXKGPXUHXTRBJNAQRBSSWJVEENLJCDDHFXVCUNPZAIVVO\nFNUOCXAGRRHNDJAHVVLGGEZQHWARYHENBKHP\nUOEFNWVXCUNERLKVTHAGPSHKHDYFPYWZHJKHQLSNFBJHVJANRXCNSDUGVDABGHVAOVHBJZXGRACHRXEGNRPQEAPORQSILNXFS",
"output": "YES"
},
{
"input": "VYXYVVACMLPDHONBUTQFZTRREERBLKUJYKAHZRCTRLRCLOZYWVPBRGDQPFPQIF\nFE\nRNRPEVDRLYUQFYRZBCQLCYZEABKLRXCJLKVZBVFUEYRATOMDRTHFPGOWQVTIFPPH",
"output": "YES"
},
{
"input": "WYXUZQJQNLASEGLHPMSARWMTTQMQLVAZLGHPIZTRVTCXDXBOLNXZPOFCTEHCXBZ\nBLQZRRWP\nGIQZXPLTTMNHQVWPPEAPLOCDMBSTHRCFLCQRRZXLVAOQEGZBRUZJXXZTMAWLZHSLWNQTYXB",
"output": "YES"
},
{
"input": "MKVJTSSTDGKPVVDPYSRJJYEVGKBMSIOKHLZQAEWLRIBINVRDAJIBCEITKDHUCCVY\nPUJJQFHOGZKTAVNUGKQUHMKTNHCCTI\nQVJKUSIGTSVYUMOMLEGHWYKSKQTGATTKBNTKCJKJPCAIRJIRMHKBIZISEGFHVUVQZBDERJCVAKDLNTHUDCHONDCVVJIYPP",
"output": "YES"
},
{
"input": "OKNJOEYVMZXJMLVJHCSPLUCNYGTDASKSGKKCRVIDGEIBEWRVBVRVZZTLMCJLXHJIA\nDJBFVRTARTFZOWN\nAGHNVUNJVCPLWSVYBJKZSVTFGLELZASLWTIXDDJXCZDICTVIJOTMVEYOVRNMJGRKKHRMEBORAKFCZJBR",
"output": "YES"
},
{
"input": "OQZACLPSAGYDWHFXDFYFRRXWGIEJGSXWUONAFWNFXDTGVNDEWNQPHUXUJNZWWLBPYL\nOHBKWRFDRQUAFRCMT\nWIQRYXRJQWWRUWCYXNXALKFZGXFTLOODWRDPGURFUFUQOHPWBASZNVWXNCAGHWEHFYESJNFBMNFDDAPLDGT",
"output": "YES"
},
{
"input": "OVIRQRFQOOWVDEPLCJETWQSINIOPLTLXHSQWUYUJNFBMKDNOSHNJQQCDHZOJVPRYVSV\nMYYDQKOOYPOOUELCRIT\nNZSOTVLJTTVQLFHDQEJONEOUOFOLYVSOIYUDNOSIQVIRMVOERCLMYSHPCQKIDRDOQPCUPQBWWRYYOXJWJQPNKH",
"output": "YES"
},
{
"input": "WGMBZWNMSJXNGDUQUJTCNXDSJJLYRDOPEGPQXYUGBESDLFTJRZDDCAAFGCOCYCQMDBWK\nYOBMOVYTUATTFGJLYUQD\nDYXVTLQCYFJUNJTUXPUYOPCBCLBWNSDUJRJGWDOJDSQAAMUOJWSYERDYDXYTMTOTMQCGQZDCGNFBALGGDFKZMEBG",
"output": "YES"
},
{
"input": "CWLRBPMEZCXAPUUQFXCUHAQTLPBTXUUKWVXKBHKNSSJFEXLZMXGVFHHVTPYAQYTIKXJJE\nMUFOSEUEXEQTOVLGDSCWM\nJUKEQCXOXWEHCGKFPBIGMWVJLXUONFXBYTUAXERYTXKCESKLXAEHVPZMMUFTHLXTTZSDMBJLQPEUWCVUHSQQVUASPF",
"output": "YES"
},
{
"input": "IDQRX\nWETHO\nODPDGBHVUVSSISROHQJTUKPUCLXABIZQQPPBPKOSEWGEHRSRRNBAVLYEMZISMWWGKHVTXKUGUXEFBSWOIWUHRJGMWBMHQLDZHBWA",
"output": "NO"
},
{
"input": "IXFDY\nJRMOU\nDF",
"output": "NO"
},
{
"input": "JPSPZ\nUGCUB\nJMZZZZZZZZ",
"output": "NO"
},
{
"input": "AC\nA\nBBA",
"output": "NO"
},
{
"input": "UIKWWKXLSHTOOZOVGXKYSOJEHAUEEG\nKZXQDWJJWRXFHKJDQHJK\nXMZHTFOGEXAUJXXJUYVJIFOTKLZHDKELJWERHMGAWGKWAQKEKHIDWGGZVYOHKXRPWSJDPESFJUMKQYWBYUTHQYEFZUGKQOBHYDWB",
"output": "NO"
},
{
"input": "PXWRXRPFLR\nPJRWWXIVHODV\nXW",
"output": "NO"
},
{
"input": "CHTAZVHGSHCVIBK\nEQINEBKXEPYJSAZIMLDF\nZCZZZZDZMCZZEZDZZEZZZZQZZBZZZOZZCZE",
"output": "NO"
},
{
"input": "GXPZFSELJJNDAXYRV\nUYBKPMVBSOVOJWMONLTJOJCNQKMTAHEWLHOWIIBH\nHCWNFWJPEJIWOVPTBMVCRJLSISSVNOHCKLBFMIUAIMASQWPXEYXBOXQGFEMYJLBKDCZIMJNHOJEDGGANIVYKQTUOSOVOPWHVJGXH",
"output": "NO"
},
{
"input": "LFGJCJJDUTUP\nOVSBILTIYCJCRHKCIXCETJQJJ\nGIJJTJCLTJJJ",
"output": "NO"
},
{
"input": "GIO\nPRL\nPRL",
"output": "NO"
},
{
"input": "A\nB\nABC",
"output": "NO"
},
{
"input": "KKK\nKKK\nZZZZZ",
"output": "NO"
},
{
"input": "ZMYGQLDBLAPN\nZFJBKWHROVNPSJQUDFTHOCGREUFLYIWYICD\nZMJZZEDAZANKZZZZZZEZZBZDZZZZZZKHZZFZZZDZNZMDZZA",
"output": "NO"
}
] | 1,688,801,629
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 54
| 92
| 0
|
a = str(input())
b = str(input())
c = str(input())
d = sorted(a + b)
c = sorted(c)
if d == c:
print('YES')
else:
print('NO')
# Sat Jul 08 2023 10:30:45 GMT+0300 (Moscow Standard Time)
|
Title: Amusing Joke
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
So, the New Year holidays are over. Santa Claus and his colleagues can take a rest and have guests at last. When two "New Year and Christmas Men" meet, thear assistants cut out of cardboard the letters from the guest's name and the host's name in honor of this event. Then the hung the letters above the main entrance. One night, when everyone went to bed, someone took all the letters of our characters' names. Then he may have shuffled the letters and put them in one pile in front of the door.
The next morning it was impossible to find the culprit who had made the disorder. But everybody wondered whether it is possible to restore the names of the host and his guests from the letters lying at the door? That is, we need to verify that there are no extra letters, and that nobody will need to cut more letters.
Help the "New Year and Christmas Men" and their friends to cope with this problem. You are given both inscriptions that hung over the front door the previous night, and a pile of letters that were found at the front door next morning.
Input Specification:
The input file consists of three lines: the first line contains the guest's name, the second line contains the name of the residence host and the third line contains letters in a pile that were found at the door in the morning. All lines are not empty and contain only uppercase Latin letters. The length of each line does not exceed 100.
Output Specification:
Print "YES" without the quotes, if the letters in the pile could be permuted to make the names of the "New Year and Christmas Men". Otherwise, print "NO" without the quotes.
Demo Input:
['SANTACLAUS\nDEDMOROZ\nSANTAMOROZDEDCLAUS\n', 'PAPAINOEL\nJOULUPUKKI\nJOULNAPAOILELUPUKKI\n', 'BABBONATALE\nFATHERCHRISTMAS\nBABCHRISTMASBONATALLEFATHER\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n']
Note:
In the first sample the letters written in the last line can be used to write the names and there won't be any extra letters left.
In the second sample letter "P" is missing from the pile and there's an extra letter "L".
In the third sample there's an extra letter "L".
|
```python
a = str(input())
b = str(input())
c = str(input())
d = sorted(a + b)
c = sorted(c)
if d == c:
print('YES')
else:
print('NO')
# Sat Jul 08 2023 10:30:45 GMT+0300 (Moscow Standard Time)
```
| 3
|
|
369
|
A
|
Valera and Plates
|
PROGRAMMING
| 900
|
[
"greedy",
"implementation"
] | null | null |
Valera is a lazy student. He has *m* clean bowls and *k* clean plates.
Valera has made an eating plan for the next *n* days. As Valera is lazy, he will eat exactly one dish per day. At that, in order to eat a dish, he needs exactly one clean plate or bowl. We know that Valera can cook only two types of dishes. He can eat dishes of the first type from bowls and dishes of the second type from either bowls or plates.
When Valera finishes eating, he leaves a dirty plate/bowl behind. His life philosophy doesn't let him eat from dirty kitchenware. So sometimes he needs to wash his plate/bowl before eating. Find the minimum number of times Valera will need to wash a plate/bowl, if he acts optimally.
|
The first line of the input contains three integers *n*, *m*, *k* (1<=≤<=*n*,<=*m*,<=*k*<=≤<=1000) — the number of the planned days, the number of clean bowls and the number of clean plates.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=2). If *a**i* equals one, then on day *i* Valera will eat a first type dish. If *a**i* equals two, then on day *i* Valera will eat a second type dish.
|
Print a single integer — the minimum number of times Valera will need to wash a plate/bowl.
|
[
"3 1 1\n1 2 1\n",
"4 3 1\n1 1 1 1\n",
"3 1 2\n2 2 2\n",
"8 2 2\n1 2 1 2 1 2 1 2\n"
] |
[
"1\n",
"1\n",
"0\n",
"4\n"
] |
In the first sample Valera will wash a bowl only on the third day, so the answer is one.
In the second sample, Valera will have the first type of the dish during all four days, and since there are only three bowls, he will wash a bowl exactly once.
In the third sample, Valera will have the second type of dish for all three days, and as they can be eaten from either a plate or a bowl, he will never need to wash a plate/bowl.
| 500
|
[
{
"input": "3 1 1\n1 2 1",
"output": "1"
},
{
"input": "4 3 1\n1 1 1 1",
"output": "1"
},
{
"input": "3 1 2\n2 2 2",
"output": "0"
},
{
"input": "8 2 2\n1 2 1 2 1 2 1 2",
"output": "4"
},
{
"input": "2 100 100\n2 2",
"output": "0"
},
{
"input": "1 1 1\n2",
"output": "0"
},
{
"input": "233 100 1\n2 2 1 1 1 2 2 2 2 1 1 2 2 2 1 2 2 1 1 1 2 2 1 1 1 1 2 1 2 2 1 1 2 2 1 2 2 1 2 1 2 1 2 2 2 1 1 1 1 2 1 2 1 1 2 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 2 2 2 1 1 2 2 1 1 1 1 2 1 1 2 1 2 2 2 1 1 1 2 2 2 1 1 1 1 2 1 2 1 1 1 1 2 2 2 1 1 2 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 2 1 2 1 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 1 1 2 2 1 2 2 2 2 2 2 1 2 2 2 2 2 1 1 2 2 2 2 2 2 1 1 1 2 1 2 2 2 2 2 2 2 2 1 1 2 1 2 1 2 2",
"output": "132"
},
{
"input": "123 100 1\n2 2 2 1 1 2 2 2 2 1 1 2 2 2 1 2 2 2 2 1 2 2 2 1 1 1 2 2 2 2 1 2 2 2 2 2 2 1 2 1 2 1 2 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 2 2 1 1 1 1 2 1 2 2 1 2 2 2 1 1 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 1 1 2 1 2 1 2 1 1 1",
"output": "22"
},
{
"input": "188 100 1\n2 2 1 1 1 2 2 2 2 1 1 2 2 2 1 2 2 1 1 1 2 2 1 1 1 1 2 1 2 2 1 1 2 2 1 2 2 1 2 1 2 1 2 2 2 1 1 1 1 2 1 2 1 1 2 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 2 2 2 1 1 2 2 1 1 1 1 2 1 1 2 1 2 2 2 1 1 1 2 2 2 1 1 1 1 2 1 2 1 1 1 1 2 2 2 1 1 2 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 2 1 2 1 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 1",
"output": "87"
},
{
"input": "3 1 2\n1 1 1",
"output": "2"
},
{
"input": "3 2 2\n1 1 1",
"output": "1"
},
{
"input": "3 2 1\n1 1 1",
"output": "1"
},
{
"input": "3 1 1\n1 1 1",
"output": "2"
},
{
"input": "5 1 2\n2 2 2 2 2",
"output": "2"
},
{
"input": "5 2 2\n2 2 2 2 2",
"output": "1"
},
{
"input": "5 2 1\n2 2 2 2 2",
"output": "2"
},
{
"input": "5 1 1\n2 2 2 2 2",
"output": "3"
},
{
"input": "1 1 2\n2",
"output": "0"
},
{
"input": "1 2 2\n2",
"output": "0"
},
{
"input": "1 2 1\n2",
"output": "0"
},
{
"input": "1 1 1\n2",
"output": "0"
},
{
"input": "6 3 1\n1 1 2 2 2 2",
"output": "2"
},
{
"input": "100 40 20\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "40"
},
{
"input": "7 5 2\n2 2 1 1 1 1 1",
"output": "0"
},
{
"input": "10 4 4\n2 2 2 2 2 2 1 1 1 1",
"output": "2"
},
{
"input": "3 2 1\n2 1 1",
"output": "0"
},
{
"input": "7 6 1\n2 1 1 1 1 1 1",
"output": "0"
},
{
"input": "7 5 1\n1 1 1 2 2 2 2",
"output": "1"
},
{
"input": "5 3 1\n1 1 2 2 2",
"output": "1"
},
{
"input": "3 1 1\n2 2 2",
"output": "1"
},
{
"input": "5 2 2\n2 2 2 2 2",
"output": "1"
},
{
"input": "3 1 3\n1 1 1",
"output": "2"
},
{
"input": "5 2 1\n1 1 2 2 2",
"output": "2"
},
{
"input": "4 3 2\n2 1 1 1",
"output": "0"
},
{
"input": "4 2 1\n1 2 2 2",
"output": "1"
},
{
"input": "14 4 7\n1 1 1 2 2 2 2 2 2 2 2 2 2 2",
"output": "3"
},
{
"input": "12 10 4\n2 2 2 2 2 2 1 1 1 1 1 1",
"output": "0"
},
{
"input": "5 3 2\n2 2 1 1 1",
"output": "0"
}
] | 1,412,865,544
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 63
| 93
| 0
|
n,m,k=map(int,input().split())
s=list(map(int,input().split()))
for i in range(n):
if s[i]==2:
k-=1
else:
m-=1
if k<0:m+=k
if m<=0:print(-m)
else:print(0)
|
Title: Valera and Plates
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Valera is a lazy student. He has *m* clean bowls and *k* clean plates.
Valera has made an eating plan for the next *n* days. As Valera is lazy, he will eat exactly one dish per day. At that, in order to eat a dish, he needs exactly one clean plate or bowl. We know that Valera can cook only two types of dishes. He can eat dishes of the first type from bowls and dishes of the second type from either bowls or plates.
When Valera finishes eating, he leaves a dirty plate/bowl behind. His life philosophy doesn't let him eat from dirty kitchenware. So sometimes he needs to wash his plate/bowl before eating. Find the minimum number of times Valera will need to wash a plate/bowl, if he acts optimally.
Input Specification:
The first line of the input contains three integers *n*, *m*, *k* (1<=≤<=*n*,<=*m*,<=*k*<=≤<=1000) — the number of the planned days, the number of clean bowls and the number of clean plates.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=2). If *a**i* equals one, then on day *i* Valera will eat a first type dish. If *a**i* equals two, then on day *i* Valera will eat a second type dish.
Output Specification:
Print a single integer — the minimum number of times Valera will need to wash a plate/bowl.
Demo Input:
['3 1 1\n1 2 1\n', '4 3 1\n1 1 1 1\n', '3 1 2\n2 2 2\n', '8 2 2\n1 2 1 2 1 2 1 2\n']
Demo Output:
['1\n', '1\n', '0\n', '4\n']
Note:
In the first sample Valera will wash a bowl only on the third day, so the answer is one.
In the second sample, Valera will have the first type of the dish during all four days, and since there are only three bowls, he will wash a bowl exactly once.
In the third sample, Valera will have the second type of dish for all three days, and as they can be eaten from either a plate or a bowl, he will never need to wash a plate/bowl.
|
```python
n,m,k=map(int,input().split())
s=list(map(int,input().split()))
for i in range(n):
if s[i]==2:
k-=1
else:
m-=1
if k<0:m+=k
if m<=0:print(-m)
else:print(0)
```
| 3
|
|
747
|
A
|
Display Size
|
PROGRAMMING
| 800
|
[
"brute force",
"math"
] | null | null |
A big company decided to launch a new series of rectangular displays, and decided that the display must have exactly *n* pixels.
Your task is to determine the size of the rectangular display — the number of lines (rows) of pixels *a* and the number of columns of pixels *b*, so that:
- there are exactly *n* pixels on the display; - the number of rows does not exceed the number of columns, it means *a*<=≤<=*b*; - the difference *b*<=-<=*a* is as small as possible.
|
The first line contains the positive integer *n* (1<=≤<=*n*<=≤<=106) — the number of pixels display should have.
|
Print two integers — the number of rows and columns on the display.
|
[
"8\n",
"64\n",
"5\n",
"999999\n"
] |
[
"2 4\n",
"8 8\n",
"1 5\n",
"999 1001\n"
] |
In the first example the minimum possible difference equals 2, so on the display should be 2 rows of 4 pixels.
In the second example the minimum possible difference equals 0, so on the display should be 8 rows of 8 pixels.
In the third example the minimum possible difference equals 4, so on the display should be 1 row of 5 pixels.
| 500
|
[
{
"input": "8",
"output": "2 4"
},
{
"input": "64",
"output": "8 8"
},
{
"input": "5",
"output": "1 5"
},
{
"input": "999999",
"output": "999 1001"
},
{
"input": "716539",
"output": "97 7387"
},
{
"input": "1",
"output": "1 1"
},
{
"input": "2",
"output": "1 2"
},
{
"input": "3",
"output": "1 3"
},
{
"input": "4",
"output": "2 2"
},
{
"input": "6",
"output": "2 3"
},
{
"input": "7",
"output": "1 7"
},
{
"input": "9",
"output": "3 3"
},
{
"input": "10",
"output": "2 5"
},
{
"input": "11",
"output": "1 11"
},
{
"input": "12",
"output": "3 4"
},
{
"input": "15",
"output": "3 5"
},
{
"input": "100",
"output": "10 10"
},
{
"input": "101",
"output": "1 101"
},
{
"input": "169",
"output": "13 13"
},
{
"input": "179",
"output": "1 179"
},
{
"input": "190",
"output": "10 19"
},
{
"input": "1000",
"output": "25 40"
},
{
"input": "10000",
"output": "100 100"
},
{
"input": "10001",
"output": "73 137"
},
{
"input": "100000",
"output": "250 400"
},
{
"input": "100001",
"output": "11 9091"
},
{
"input": "1000000",
"output": "1000 1000"
},
{
"input": "999983",
"output": "1 999983"
},
{
"input": "524288",
"output": "512 1024"
},
{
"input": "954493",
"output": "971 983"
},
{
"input": "966289",
"output": "983 983"
},
{
"input": "944663",
"output": "961 983"
},
{
"input": "912673",
"output": "97 9409"
},
{
"input": "732641",
"output": "679 1079"
},
{
"input": "232897",
"output": "343 679"
},
{
"input": "16807",
"output": "49 343"
},
{
"input": "999958",
"output": "2 499979"
},
{
"input": "990151",
"output": "1 990151"
},
{
"input": "997002",
"output": "998 999"
},
{
"input": "20",
"output": "4 5"
},
{
"input": "20261",
"output": "1 20261"
},
{
"input": "999123",
"output": "3 333041"
},
{
"input": "901841",
"output": "1 901841"
}
] | 1,634,252,424
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 2
| 62
| 921,600
|
import logging
l = logging.Logger("")
h = logging.StreamHandler()
f = logging.Formatter(fmt="[{filename}:{lineno}] {msg}", style="{")
h.setFormatter(f)
l.addHandler(h)
bug = l.info
# To disable uncomment the next line
# bug = lambda x:None
# teste=(1,2,3,4)
# bug(f'{teste=}')
# bug(f'{2*teste=}')
# -------------------------------------------------------------------- #
from math import sqrt
def main():
n = int(input())
d = []
for i in range(1, int(sqrt(n)) + 1):
if n % i == 0:
d.append(i)
s = (n // d[0]) - d[0]
for i in d:
if abs((n // i) - i) < s:
s = i
print(s, n // s)
if __name__ == '__main__':
main()
|
Title: Display Size
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A big company decided to launch a new series of rectangular displays, and decided that the display must have exactly *n* pixels.
Your task is to determine the size of the rectangular display — the number of lines (rows) of pixels *a* and the number of columns of pixels *b*, so that:
- there are exactly *n* pixels on the display; - the number of rows does not exceed the number of columns, it means *a*<=≤<=*b*; - the difference *b*<=-<=*a* is as small as possible.
Input Specification:
The first line contains the positive integer *n* (1<=≤<=*n*<=≤<=106) — the number of pixels display should have.
Output Specification:
Print two integers — the number of rows and columns on the display.
Demo Input:
['8\n', '64\n', '5\n', '999999\n']
Demo Output:
['2 4\n', '8 8\n', '1 5\n', '999 1001\n']
Note:
In the first example the minimum possible difference equals 2, so on the display should be 2 rows of 4 pixels.
In the second example the minimum possible difference equals 0, so on the display should be 8 rows of 8 pixels.
In the third example the minimum possible difference equals 4, so on the display should be 1 row of 5 pixels.
|
```python
import logging
l = logging.Logger("")
h = logging.StreamHandler()
f = logging.Formatter(fmt="[{filename}:{lineno}] {msg}", style="{")
h.setFormatter(f)
l.addHandler(h)
bug = l.info
# To disable uncomment the next line
# bug = lambda x:None
# teste=(1,2,3,4)
# bug(f'{teste=}')
# bug(f'{2*teste=}')
# -------------------------------------------------------------------- #
from math import sqrt
def main():
n = int(input())
d = []
for i in range(1, int(sqrt(n)) + 1):
if n % i == 0:
d.append(i)
s = (n // d[0]) - d[0]
for i in d:
if abs((n // i) - i) < s:
s = i
print(s, n // s)
if __name__ == '__main__':
main()
```
| 0
|
|
653
|
A
|
Bear and Three Balls
|
PROGRAMMING
| 900
|
[
"brute force",
"implementation",
"sortings"
] | null | null |
Limak is a little polar bear. He has *n* balls, the *i*-th ball has size *t**i*.
Limak wants to give one ball to each of his three friends. Giving gifts isn't easy — there are two rules Limak must obey to make friends happy:
- No two friends can get balls of the same size. - No two friends can get balls of sizes that differ by more than 2.
For example, Limak can choose balls with sizes 4, 5 and 3, or balls with sizes 90, 91 and 92. But he can't choose balls with sizes 5, 5 and 6 (two friends would get balls of the same size), and he can't choose balls with sizes 30, 31 and 33 (because sizes 30 and 33 differ by more than 2).
Your task is to check whether Limak can choose three balls that satisfy conditions above.
|
The first line of the input contains one integer *n* (3<=≤<=*n*<=≤<=50) — the number of balls Limak has.
The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=1000) where *t**i* denotes the size of the *i*-th ball.
|
Print "YES" (without quotes) if Limak can choose three balls of distinct sizes, such that any two of them differ by no more than 2. Otherwise, print "NO" (without quotes).
|
[
"4\n18 55 16 17\n",
"6\n40 41 43 44 44 44\n",
"8\n5 972 3 4 1 4 970 971\n"
] |
[
"YES\n",
"NO\n",
"YES\n"
] |
In the first sample, there are 4 balls and Limak is able to choose three of them to satisfy the rules. He must must choose balls with sizes 18, 16 and 17.
In the second sample, there is no way to give gifts to three friends without breaking the rules.
In the third sample, there is even more than one way to choose balls:
1. Choose balls with sizes 3, 4 and 5. 1. Choose balls with sizes 972, 970, 971.
| 500
|
[
{
"input": "4\n18 55 16 17",
"output": "YES"
},
{
"input": "6\n40 41 43 44 44 44",
"output": "NO"
},
{
"input": "8\n5 972 3 4 1 4 970 971",
"output": "YES"
},
{
"input": "3\n959 747 656",
"output": "NO"
},
{
"input": "4\n1 2 2 3",
"output": "YES"
},
{
"input": "50\n998 30 384 289 505 340 872 223 663 31 929 625 864 699 735 589 676 399 745 635 963 381 75 97 324 612 597 797 103 382 25 894 219 458 337 572 201 355 294 275 278 311 586 573 965 704 936 237 715 543",
"output": "NO"
},
{
"input": "50\n941 877 987 982 966 979 984 810 811 909 872 980 957 897 845 995 924 905 984 914 824 840 868 910 815 808 872 858 883 952 823 835 860 874 959 972 931 867 866 987 982 837 800 921 887 910 982 980 828 869",
"output": "YES"
},
{
"input": "3\n408 410 409",
"output": "YES"
},
{
"input": "3\n903 902 904",
"output": "YES"
},
{
"input": "3\n399 400 398",
"output": "YES"
},
{
"input": "3\n450 448 449",
"output": "YES"
},
{
"input": "3\n390 389 388",
"output": "YES"
},
{
"input": "3\n438 439 440",
"output": "YES"
},
{
"input": "11\n488 688 490 94 564 615 641 170 489 517 669",
"output": "YES"
},
{
"input": "24\n102 672 983 82 720 501 81 721 982 312 207 897 159 964 611 956 118 984 37 271 596 403 772 954",
"output": "YES"
},
{
"input": "36\n175 551 70 479 875 480 979 32 465 402 640 116 76 687 874 678 359 785 753 401 978 629 162 963 886 641 39 845 132 930 2 372 478 947 407 318",
"output": "YES"
},
{
"input": "6\n10 79 306 334 304 305",
"output": "YES"
},
{
"input": "34\n787 62 26 683 486 364 684 891 846 801 969 837 359 800 836 359 471 637 732 91 841 836 7 799 959 405 416 841 737 803 615 483 323 365",
"output": "YES"
},
{
"input": "30\n860 238 14 543 669 100 428 789 576 484 754 274 849 850 586 377 711 386 510 408 520 693 23 477 266 851 728 711 964 73",
"output": "YES"
},
{
"input": "11\n325 325 324 324 324 325 325 324 324 324 324",
"output": "NO"
},
{
"input": "7\n517 517 518 517 518 518 518",
"output": "NO"
},
{
"input": "20\n710 710 711 711 711 711 710 710 710 710 711 710 710 710 710 710 710 711 711 710",
"output": "NO"
},
{
"input": "48\n29 30 29 29 29 30 29 30 30 30 30 29 30 30 30 29 29 30 30 29 30 29 29 30 29 30 29 30 30 29 30 29 29 30 30 29 29 30 30 29 29 30 30 30 29 29 30 29",
"output": "NO"
},
{
"input": "7\n880 880 514 536 881 881 879",
"output": "YES"
},
{
"input": "15\n377 432 262 376 261 375 377 262 263 263 261 376 262 262 375",
"output": "YES"
},
{
"input": "32\n305 426 404 961 426 425 614 304 404 425 615 403 303 304 615 303 305 405 427 614 403 303 425 615 404 304 427 403 206 616 405 404",
"output": "YES"
},
{
"input": "41\n115 686 988 744 762 519 745 519 518 83 85 115 520 44 687 686 685 596 988 687 989 988 114 745 84 519 519 746 988 84 745 744 115 114 85 115 520 746 745 116 987",
"output": "YES"
},
{
"input": "47\n1 2 483 28 7 109 270 651 464 162 353 521 224 989 721 499 56 69 197 716 313 446 580 645 828 197 100 138 789 499 147 677 384 711 783 937 300 543 540 93 669 604 739 122 632 822 116",
"output": "NO"
},
{
"input": "31\n1 2 1 373 355 692 750 920 578 666 615 232 141 129 663 929 414 704 422 559 568 731 354 811 532 618 39 879 292 602 995",
"output": "NO"
},
{
"input": "50\n5 38 41 4 15 40 27 39 20 3 44 47 30 6 36 29 35 12 19 26 10 2 21 50 11 46 48 49 17 16 33 13 32 28 31 18 23 34 7 14 24 45 9 37 1 8 42 25 43 22",
"output": "YES"
},
{
"input": "50\n967 999 972 990 969 978 963 987 954 955 973 970 959 981 995 983 986 994 979 957 965 982 992 977 953 975 956 961 993 997 998 958 980 962 960 951 996 991 1000 966 971 988 976 968 989 984 974 964 985 952",
"output": "YES"
},
{
"input": "50\n850 536 761 506 842 898 857 723 583 637 536 943 895 929 890 612 832 633 696 731 553 880 710 812 665 877 915 636 711 540 748 600 554 521 813 796 568 513 543 809 798 820 928 504 999 646 907 639 550 911",
"output": "NO"
},
{
"input": "3\n3 1 2",
"output": "YES"
},
{
"input": "3\n500 999 1000",
"output": "NO"
},
{
"input": "10\n101 102 104 105 107 109 110 112 113 115",
"output": "NO"
},
{
"input": "50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "NO"
},
{
"input": "50\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000",
"output": "NO"
},
{
"input": "3\n1000 999 998",
"output": "YES"
},
{
"input": "49\n343 322 248 477 53 156 245 493 209 141 370 66 229 184 434 137 276 472 216 456 147 180 140 114 493 323 393 262 380 314 222 124 98 441 129 346 48 401 347 460 122 125 114 106 189 260 374 165 456",
"output": "NO"
},
{
"input": "20\n1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3",
"output": "YES"
},
{
"input": "3\n999 999 1000",
"output": "NO"
},
{
"input": "9\n2 4 5 13 25 100 200 300 400",
"output": "NO"
},
{
"input": "9\n1 1 1 2 2 2 3 3 3",
"output": "YES"
},
{
"input": "3\n1 1 2",
"output": "NO"
},
{
"input": "3\n998 999 1000",
"output": "YES"
},
{
"input": "12\n1 1 1 1 1 1 1 1 1 2 2 4",
"output": "NO"
},
{
"input": "4\n4 3 4 5",
"output": "YES"
},
{
"input": "6\n1 1 1 2 2 2",
"output": "NO"
},
{
"input": "3\n2 3 2",
"output": "NO"
},
{
"input": "5\n10 5 6 3 2",
"output": "NO"
},
{
"input": "3\n1 2 1",
"output": "NO"
},
{
"input": "3\n1 2 3",
"output": "YES"
},
{
"input": "4\n998 999 1000 1000",
"output": "YES"
},
{
"input": "5\n2 3 9 9 4",
"output": "YES"
},
{
"input": "4\n1 2 4 4",
"output": "NO"
},
{
"input": "3\n1 1 1",
"output": "NO"
},
{
"input": "3\n2 2 3",
"output": "NO"
},
{
"input": "7\n1 2 2 2 4 5 6",
"output": "YES"
},
{
"input": "5\n1 3 10 3 10",
"output": "NO"
},
{
"input": "3\n1 2 2",
"output": "NO"
},
{
"input": "4\n1000 1000 999 998",
"output": "YES"
},
{
"input": "3\n5 3 7",
"output": "NO"
},
{
"input": "6\n1 1 2 2 3 3",
"output": "YES"
},
{
"input": "9\n6 6 6 5 5 5 4 4 4",
"output": "YES"
},
{
"input": "7\n5 6 6 6 7 7 7",
"output": "YES"
},
{
"input": "5\n2 3 3 3 4",
"output": "YES"
},
{
"input": "5\n2 1 2 1 3",
"output": "YES"
},
{
"input": "3\n1 2 7",
"output": "NO"
},
{
"input": "3\n1000 1000 1000",
"output": "NO"
},
{
"input": "5\n1 100 2 100 3",
"output": "YES"
},
{
"input": "5\n5 4 6 5 5",
"output": "YES"
},
{
"input": "12\n1 1 1 1 2 2 2 2 3 3 3 3",
"output": "YES"
},
{
"input": "5\n9 9 1 2 3",
"output": "YES"
},
{
"input": "6\n1 2 3 1 2 3",
"output": "YES"
},
{
"input": "7\n1 1 1 1 2 3 3",
"output": "YES"
},
{
"input": "3\n13 13 13",
"output": "NO"
},
{
"input": "3\n42 42 42",
"output": "NO"
},
{
"input": "8\n1 1 1 1 2 2 2 2",
"output": "NO"
},
{
"input": "6\n1 1 1 1 2 3",
"output": "YES"
},
{
"input": "6\n1 1 2 2 6 6",
"output": "NO"
},
{
"input": "6\n1 2 5 5 5 5",
"output": "NO"
},
{
"input": "9\n1 2 3 1 2 3 1 2 3",
"output": "YES"
},
{
"input": "4\n1 2 1 100",
"output": "NO"
},
{
"input": "5\n1 1 2 2 3",
"output": "YES"
}
] | 1,465,845,560
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 46
| 4,608,000
|
a=[]
n=int(input())
for i in range(n):
b=int(input())
a.append(b)
flag=0
white_flag=0
for i in range(n):
b=a[i]
for i in range(n):
if b+1==a[i]:
flag=flag+1
if b-1==a[i]:
flag=flag+1
for i in range(n-1):
if b==a[i+1]:
flag_white=1
if white_flag!=1:
if flag==2:
print("Yes")
exit()
else:
print("No")
flag=0
|
Title: Bear and Three Balls
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Limak is a little polar bear. He has *n* balls, the *i*-th ball has size *t**i*.
Limak wants to give one ball to each of his three friends. Giving gifts isn't easy — there are two rules Limak must obey to make friends happy:
- No two friends can get balls of the same size. - No two friends can get balls of sizes that differ by more than 2.
For example, Limak can choose balls with sizes 4, 5 and 3, or balls with sizes 90, 91 and 92. But he can't choose balls with sizes 5, 5 and 6 (two friends would get balls of the same size), and he can't choose balls with sizes 30, 31 and 33 (because sizes 30 and 33 differ by more than 2).
Your task is to check whether Limak can choose three balls that satisfy conditions above.
Input Specification:
The first line of the input contains one integer *n* (3<=≤<=*n*<=≤<=50) — the number of balls Limak has.
The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=1000) where *t**i* denotes the size of the *i*-th ball.
Output Specification:
Print "YES" (without quotes) if Limak can choose three balls of distinct sizes, such that any two of them differ by no more than 2. Otherwise, print "NO" (without quotes).
Demo Input:
['4\n18 55 16 17\n', '6\n40 41 43 44 44 44\n', '8\n5 972 3 4 1 4 970 971\n']
Demo Output:
['YES\n', 'NO\n', 'YES\n']
Note:
In the first sample, there are 4 balls and Limak is able to choose three of them to satisfy the rules. He must must choose balls with sizes 18, 16 and 17.
In the second sample, there is no way to give gifts to three friends without breaking the rules.
In the third sample, there is even more than one way to choose balls:
1. Choose balls with sizes 3, 4 and 5. 1. Choose balls with sizes 972, 970, 971.
|
```python
a=[]
n=int(input())
for i in range(n):
b=int(input())
a.append(b)
flag=0
white_flag=0
for i in range(n):
b=a[i]
for i in range(n):
if b+1==a[i]:
flag=flag+1
if b-1==a[i]:
flag=flag+1
for i in range(n-1):
if b==a[i+1]:
flag_white=1
if white_flag!=1:
if flag==2:
print("Yes")
exit()
else:
print("No")
flag=0
```
| -1
|
|
750
|
A
|
New Year and Hurry
|
PROGRAMMING
| 800
|
[
"binary search",
"brute force",
"implementation",
"math"
] | null | null |
Limak is going to participate in a contest on the last day of the 2016. The contest will start at 20:00 and will last four hours, exactly until midnight. There will be *n* problems, sorted by difficulty, i.e. problem 1 is the easiest and problem *n* is the hardest. Limak knows it will take him 5·*i* minutes to solve the *i*-th problem.
Limak's friends organize a New Year's Eve party and Limak wants to be there at midnight or earlier. He needs *k* minutes to get there from his house, where he will participate in the contest first.
How many problems can Limak solve if he wants to make it to the party?
|
The only line of the input contains two integers *n* and *k* (1<=≤<=*n*<=≤<=10, 1<=≤<=*k*<=≤<=240) — the number of the problems in the contest and the number of minutes Limak needs to get to the party from his house.
|
Print one integer, denoting the maximum possible number of problems Limak can solve so that he could get to the party at midnight or earlier.
|
[
"3 222\n",
"4 190\n",
"7 1\n"
] |
[
"2\n",
"4\n",
"7\n"
] |
In the first sample, there are 3 problems and Limak needs 222 minutes to get to the party. The three problems require 5, 10 and 15 minutes respectively. Limak can spend 5 + 10 = 15 minutes to solve first two problems. Then, at 20:15 he can leave his house to get to the party at 23:57 (after 222 minutes). In this scenario Limak would solve 2 problems. He doesn't have enough time to solve 3 problems so the answer is 2.
In the second sample, Limak can solve all 4 problems in 5 + 10 + 15 + 20 = 50 minutes. At 20:50 he will leave the house and go to the party. He will get there exactly at midnight.
In the third sample, Limak needs only 1 minute to get to the party. He has enough time to solve all 7 problems.
| 500
|
[
{
"input": "3 222",
"output": "2"
},
{
"input": "4 190",
"output": "4"
},
{
"input": "7 1",
"output": "7"
},
{
"input": "10 135",
"output": "6"
},
{
"input": "10 136",
"output": "5"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "1 240",
"output": "0"
},
{
"input": "10 1",
"output": "9"
},
{
"input": "10 240",
"output": "0"
},
{
"input": "9 240",
"output": "0"
},
{
"input": "9 1",
"output": "9"
},
{
"input": "9 235",
"output": "1"
},
{
"input": "9 236",
"output": "0"
},
{
"input": "5 225",
"output": "2"
},
{
"input": "5 226",
"output": "1"
},
{
"input": "4 210",
"output": "3"
},
{
"input": "4 211",
"output": "2"
},
{
"input": "4 191",
"output": "3"
},
{
"input": "10 165",
"output": "5"
},
{
"input": "10 166",
"output": "4"
},
{
"input": "8 100",
"output": "7"
},
{
"input": "8 101",
"output": "6"
},
{
"input": "8 60",
"output": "8"
},
{
"input": "8 61",
"output": "7"
},
{
"input": "10 15",
"output": "9"
},
{
"input": "10 16",
"output": "8"
},
{
"input": "4 100",
"output": "4"
},
{
"input": "4 101",
"output": "4"
},
{
"input": "7 167",
"output": "4"
},
{
"input": "10 164",
"output": "5"
},
{
"input": "9 170",
"output": "4"
},
{
"input": "8 160",
"output": "5"
},
{
"input": "1 100",
"output": "1"
},
{
"input": "8 123",
"output": "6"
},
{
"input": "2 99",
"output": "2"
},
{
"input": "10 88",
"output": "7"
},
{
"input": "1 235",
"output": "1"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "4 240",
"output": "0"
},
{
"input": "1 55",
"output": "1"
},
{
"input": "1 240",
"output": "0"
},
{
"input": "3 240",
"output": "0"
},
{
"input": "10 240",
"output": "0"
},
{
"input": "2 240",
"output": "0"
},
{
"input": "10 1",
"output": "9"
},
{
"input": "9 1",
"output": "9"
},
{
"input": "2 236",
"output": "0"
},
{
"input": "10 2",
"output": "9"
},
{
"input": "3 239",
"output": "0"
},
{
"input": "1 237",
"output": "0"
},
{
"input": "7 8",
"output": "7"
},
{
"input": "10 235",
"output": "1"
}
] | 1,699,366,332
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 30
| 0
|
a,b = map(int,input().split(' '))
maxi = 0
i = 1
tym = 0
while i<=a:
if tym+b<=240:
print(maxi)
break
tym = tym + (5*i)
i = i + 1
maxi = maxi + 1
|
Title: New Year and Hurry
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Limak is going to participate in a contest on the last day of the 2016. The contest will start at 20:00 and will last four hours, exactly until midnight. There will be *n* problems, sorted by difficulty, i.e. problem 1 is the easiest and problem *n* is the hardest. Limak knows it will take him 5·*i* minutes to solve the *i*-th problem.
Limak's friends organize a New Year's Eve party and Limak wants to be there at midnight or earlier. He needs *k* minutes to get there from his house, where he will participate in the contest first.
How many problems can Limak solve if he wants to make it to the party?
Input Specification:
The only line of the input contains two integers *n* and *k* (1<=≤<=*n*<=≤<=10, 1<=≤<=*k*<=≤<=240) — the number of the problems in the contest and the number of minutes Limak needs to get to the party from his house.
Output Specification:
Print one integer, denoting the maximum possible number of problems Limak can solve so that he could get to the party at midnight or earlier.
Demo Input:
['3 222\n', '4 190\n', '7 1\n']
Demo Output:
['2\n', '4\n', '7\n']
Note:
In the first sample, there are 3 problems and Limak needs 222 minutes to get to the party. The three problems require 5, 10 and 15 minutes respectively. Limak can spend 5 + 10 = 15 minutes to solve first two problems. Then, at 20:15 he can leave his house to get to the party at 23:57 (after 222 minutes). In this scenario Limak would solve 2 problems. He doesn't have enough time to solve 3 problems so the answer is 2.
In the second sample, Limak can solve all 4 problems in 5 + 10 + 15 + 20 = 50 minutes. At 20:50 he will leave the house and go to the party. He will get there exactly at midnight.
In the third sample, Limak needs only 1 minute to get to the party. He has enough time to solve all 7 problems.
|
```python
a,b = map(int,input().split(' '))
maxi = 0
i = 1
tym = 0
while i<=a:
if tym+b<=240:
print(maxi)
break
tym = tym + (5*i)
i = i + 1
maxi = maxi + 1
```
| 0
|
|
44
|
A
|
Indian Summer
|
PROGRAMMING
| 900
|
[
"implementation"
] |
A. Indian Summer
|
2
|
256
|
Indian summer is such a beautiful time of the year! A girl named Alyona is walking in the forest and picking a bouquet from fallen leaves. Alyona is very choosy — she doesn't take a leaf if it matches the color and the species of the tree of one of the leaves she already has. Find out how many leaves Alyona has picked.
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of leaves Alyona has found. The next *n* lines contain the leaves' descriptions. Each leaf is characterized by the species of the tree it has fallen from and by the color. The species of the trees and colors are given in names, consisting of no more than 10 lowercase Latin letters. A name can not be an empty string. The species of a tree and the color are given in each line separated by a space.
|
Output the single number — the number of Alyona's leaves.
|
[
"5\nbirch yellow\nmaple red\nbirch yellow\nmaple yellow\nmaple green\n",
"3\noak yellow\noak yellow\noak yellow\n"
] |
[
"4\n",
"1\n"
] |
none
| 0
|
[
{
"input": "5\nbirch yellow\nmaple red\nbirch yellow\nmaple yellow\nmaple green",
"output": "4"
},
{
"input": "3\noak yellow\noak yellow\noak yellow",
"output": "1"
},
{
"input": "5\nxbnbkzn hp\nkaqkl vrgzbvqstu\nj aqidx\nhos gyul\nwefxmh tygpluae",
"output": "5"
},
{
"input": "1\nqvwli hz",
"output": "1"
},
{
"input": "4\nsrhk x\nsrhk x\nqfoe vnrjuab\nqfoe vnrjuab",
"output": "2"
},
{
"input": "4\nsddqllmmpk syded\nfprsq fnenjnaz\nn hdej\nsddqllmmpk syded",
"output": "3"
},
{
"input": "17\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw",
"output": "1"
},
{
"input": "18\nb d\nrfdb esp\nrfdb esp\nb d\nrfdb esp\nrfdb esp\nb d\nb d\nrfdb esp\nrfdb esp\nb d\nrfdb esp\nb d\nrfdb esp\nb d\nb d\nrfdb esp\nrfdb esp",
"output": "2"
},
{
"input": "13\nsvpzwtwn rykzfdce\nqweiyeck jkreouy\nhk nnli\ntwxrnbbdt vtuv\nxokqjtylly sz\nesdt dbfidjslq\ng ybqgomvw\nxcpfjmf zcqvz\nifajadhj invzueip\nvdemdnxifb hckwebmi\nsdpnhipam wvowzavh\nuqdlfskhgo vunbpghae\ne dtigwnb",
"output": "13"
},
{
"input": "20\nm vkfh\nvptikamead mvx\nitu mf\nklruxckw aqega\nekqkd enjllwol\ncc uybfdh\nimrfdngvo u\ne uh\ntwt jsslcfuogk\nbljwqsag tuqbdn\nqcv q\nasx gzhvwwmajj\nqcv q\nekqkd enjllwol\nasx gzhvwwmajj\nks vv\nkzyfi cn\ncc uybfdh\nitu mf\ncjbjhtbyvk vatwfmux",
"output": "15"
},
{
"input": "2\nab ab\na bab",
"output": "2"
}
] | 1,664,354,439
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 29
| 92
| 0
|
numnum=int(input())
arr=[]
for _ in range(numnum):
st=input()
arr.append(st)
b=set(arr)
print(len(b))
|
Title: Indian Summer
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Indian summer is such a beautiful time of the year! A girl named Alyona is walking in the forest and picking a bouquet from fallen leaves. Alyona is very choosy — she doesn't take a leaf if it matches the color and the species of the tree of one of the leaves she already has. Find out how many leaves Alyona has picked.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of leaves Alyona has found. The next *n* lines contain the leaves' descriptions. Each leaf is characterized by the species of the tree it has fallen from and by the color. The species of the trees and colors are given in names, consisting of no more than 10 lowercase Latin letters. A name can not be an empty string. The species of a tree and the color are given in each line separated by a space.
Output Specification:
Output the single number — the number of Alyona's leaves.
Demo Input:
['5\nbirch yellow\nmaple red\nbirch yellow\nmaple yellow\nmaple green\n', '3\noak yellow\noak yellow\noak yellow\n']
Demo Output:
['4\n', '1\n']
Note:
none
|
```python
numnum=int(input())
arr=[]
for _ in range(numnum):
st=input()
arr.append(st)
b=set(arr)
print(len(b))
```
| 3.977
|
264
|
A
|
Escape from Stones
|
PROGRAMMING
| 1,200
|
[
"constructive algorithms",
"data structures",
"implementation",
"two pointers"
] | null | null |
Squirrel Liss lived in a forest peacefully, but unexpected trouble happens. Stones fall from a mountain. Initially Squirrel Liss occupies an interval [0,<=1]. Next, *n* stones will fall and Liss will escape from the stones. The stones are numbered from 1 to *n* in order.
The stones always fall to the center of Liss's interval. When Liss occupies the interval [*k*<=-<=*d*,<=*k*<=+<=*d*] and a stone falls to *k*, she will escape to the left or to the right. If she escapes to the left, her new interval will be [*k*<=-<=*d*,<=*k*]. If she escapes to the right, her new interval will be [*k*,<=*k*<=+<=*d*].
You are given a string *s* of length *n*. If the *i*-th character of *s* is "l" or "r", when the *i*-th stone falls Liss will escape to the left or to the right, respectively. Find the sequence of stones' numbers from left to right after all the *n* stones falls.
|
The input consists of only one line. The only line contains the string *s* (1<=≤<=|*s*|<=≤<=106). Each character in *s* will be either "l" or "r".
|
Output *n* lines — on the *i*-th line you should print the *i*-th stone's number from the left.
|
[
"llrlr\n",
"rrlll\n",
"lrlrr\n"
] |
[
"3\n5\n4\n2\n1\n",
"1\n2\n5\n4\n3\n",
"2\n4\n5\n3\n1\n"
] |
In the first example, the positions of stones 1, 2, 3, 4, 5 will be <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/58fdb5684df807bfcb705a9da9ce175613362b7d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, respectively. So you should print the sequence: 3, 5, 4, 2, 1.
| 500
|
[
{
"input": "llrlr",
"output": "3\n5\n4\n2\n1"
},
{
"input": "rrlll",
"output": "1\n2\n5\n4\n3"
},
{
"input": "lrlrr",
"output": "2\n4\n5\n3\n1"
},
{
"input": "lllrlrllrl",
"output": "4\n6\n9\n10\n8\n7\n5\n3\n2\n1"
},
{
"input": "llrlrrrlrr",
"output": "3\n5\n6\n7\n9\n10\n8\n4\n2\n1"
},
{
"input": "rlrrrllrrr",
"output": "1\n3\n4\n5\n8\n9\n10\n7\n6\n2"
},
{
"input": "lrrlrrllrrrrllllllrr",
"output": "2\n3\n5\n6\n9\n10\n11\n12\n19\n20\n18\n17\n16\n15\n14\n13\n8\n7\n4\n1"
},
{
"input": "rlrrrlrrrllrrllrlrll",
"output": "1\n3\n4\n5\n7\n8\n9\n12\n13\n16\n18\n20\n19\n17\n15\n14\n11\n10\n6\n2"
},
{
"input": "lllrrlrlrllrrrrrllrl",
"output": "4\n5\n7\n9\n12\n13\n14\n15\n16\n19\n20\n18\n17\n11\n10\n8\n6\n3\n2\n1"
},
{
"input": "rrrllrrrlllrlllrlrrr",
"output": "1\n2\n3\n6\n7\n8\n12\n16\n18\n19\n20\n17\n15\n14\n13\n11\n10\n9\n5\n4"
},
{
"input": "rrlllrrrlrrlrrrlllrlrlrrrlllrllrrllrllrrlrlrrllllrlrrrrlrlllrlrrrlrlrllrlrlrrlrrllrrrlrlrlllrrllllrl",
"output": "1\n2\n6\n7\n8\n10\n11\n13\n14\n15\n19\n21\n23\n24\n25\n29\n32\n33\n36\n39\n40\n42\n44\n45\n50\n52\n53\n54\n55\n57\n61\n63\n64\n65\n67\n69\n72\n74\n76\n77\n79\n80\n83\n84\n85\n87\n89\n93\n94\n99\n100\n98\n97\n96\n95\n92\n91\n90\n88\n86\n82\n81\n78\n75\n73\n71\n70\n68\n66\n62\n60\n59\n58\n56\n51\n49\n48\n47\n46\n43\n41\n38\n37\n35\n34\n31\n30\n28\n27\n26\n22\n20\n18\n17\n16\n12\n9\n5\n4\n3"
},
{
"input": "llrlrlllrrllrllllrlrrlrlrrllrlrlrrlrrrrrrlllrrlrrrrrlrrrlrlrlrrlllllrrrrllrrlrlrrrllllrlrrlrrlrlrrll",
"output": "3\n5\n9\n10\n13\n18\n20\n21\n23\n25\n26\n29\n31\n33\n34\n36\n37\n38\n39\n40\n41\n45\n46\n48\n49\n50\n51\n52\n54\n55\n56\n58\n60\n62\n63\n69\n70\n71\n72\n75\n76\n78\n80\n81\n82\n87\n89\n90\n92\n93\n95\n97\n98\n100\n99\n96\n94\n91\n88\n86\n85\n84\n83\n79\n77\n74\n73\n68\n67\n66\n65\n64\n61\n59\n57\n53\n47\n44\n43\n42\n35\n32\n30\n28\n27\n24\n22\n19\n17\n16\n15\n14\n12\n11\n8\n7\n6\n4\n2\n1"
},
{
"input": "llrrrrllrrlllrlrllrlrllllllrrrrrrrrllrrrrrrllrlrrrlllrrrrrrlllllllrrlrrllrrrllllrrlllrrrlrlrrlrlrllr",
"output": "3\n4\n5\n6\n9\n10\n14\n16\n19\n21\n28\n29\n30\n31\n32\n33\n34\n35\n38\n39\n40\n41\n42\n43\n46\n48\n49\n50\n54\n55\n56\n57\n58\n59\n67\n68\n70\n71\n74\n75\n76\n81\n82\n86\n87\n88\n90\n92\n93\n95\n97\n100\n99\n98\n96\n94\n91\n89\n85\n84\n83\n80\n79\n78\n77\n73\n72\n69\n66\n65\n64\n63\n62\n61\n60\n53\n52\n51\n47\n45\n44\n37\n36\n27\n26\n25\n24\n23\n22\n20\n18\n17\n15\n13\n12\n11\n8\n7\n2\n1"
},
{
"input": "lllllrllrrlllrrrllrrrrlrrlrllllrrrrrllrlrllllllrrlrllrlrllrlrrlrlrrlrrrlrrrrllrlrrrrrrrllrllrrlrllrl",
"output": "6\n9\n10\n14\n15\n16\n19\n20\n21\n22\n24\n25\n27\n32\n33\n34\n35\n36\n39\n41\n48\n49\n51\n54\n56\n59\n61\n62\n64\n66\n67\n69\n70\n71\n73\n74\n75\n76\n79\n81\n82\n83\n84\n85\n86\n87\n90\n93\n94\n96\n99\n100\n98\n97\n95\n92\n91\n89\n88\n80\n78\n77\n72\n68\n65\n63\n60\n58\n57\n55\n53\n52\n50\n47\n46\n45\n44\n43\n42\n40\n38\n37\n31\n30\n29\n28\n26\n23\n18\n17\n13\n12\n11\n8\n7\n5\n4\n3\n2\n1"
},
{
"input": "llrlrlrlrlrlrrlllllllrllllrllrrrlllrrllrllrrlllrrlllrlrrllllrrlllrrllrrllllrrlllrlllrrrllrrrrrrllrrl",
"output": "3\n5\n7\n9\n11\n13\n14\n22\n27\n30\n31\n32\n36\n37\n40\n43\n44\n48\n49\n53\n55\n56\n61\n62\n66\n67\n70\n71\n76\n77\n81\n85\n86\n87\n90\n91\n92\n93\n94\n95\n98\n99\n100\n97\n96\n89\n88\n84\n83\n82\n80\n79\n78\n75\n74\n73\n72\n69\n68\n65\n64\n63\n60\n59\n58\n57\n54\n52\n51\n50\n47\n46\n45\n42\n41\n39\n38\n35\n34\n33\n29\n28\n26\n25\n24\n23\n21\n20\n19\n18\n17\n16\n15\n12\n10\n8\n6\n4\n2\n1"
},
{
"input": "l",
"output": "1"
},
{
"input": "r",
"output": "1"
}
] | 1,656,662,201
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 57
| 546
| 26,828,800
|
moves = input()
left, right = [], []
for i, c in enumerate(moves):
if c == 'l':
right.append(i+1)
else:
left.append(i+1)
for n in left:
print(n)
right.reverse()
for n in right:
print(n)
|
Title: Escape from Stones
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Squirrel Liss lived in a forest peacefully, but unexpected trouble happens. Stones fall from a mountain. Initially Squirrel Liss occupies an interval [0,<=1]. Next, *n* stones will fall and Liss will escape from the stones. The stones are numbered from 1 to *n* in order.
The stones always fall to the center of Liss's interval. When Liss occupies the interval [*k*<=-<=*d*,<=*k*<=+<=*d*] and a stone falls to *k*, she will escape to the left or to the right. If she escapes to the left, her new interval will be [*k*<=-<=*d*,<=*k*]. If she escapes to the right, her new interval will be [*k*,<=*k*<=+<=*d*].
You are given a string *s* of length *n*. If the *i*-th character of *s* is "l" or "r", when the *i*-th stone falls Liss will escape to the left or to the right, respectively. Find the sequence of stones' numbers from left to right after all the *n* stones falls.
Input Specification:
The input consists of only one line. The only line contains the string *s* (1<=≤<=|*s*|<=≤<=106). Each character in *s* will be either "l" or "r".
Output Specification:
Output *n* lines — on the *i*-th line you should print the *i*-th stone's number from the left.
Demo Input:
['llrlr\n', 'rrlll\n', 'lrlrr\n']
Demo Output:
['3\n5\n4\n2\n1\n', '1\n2\n5\n4\n3\n', '2\n4\n5\n3\n1\n']
Note:
In the first example, the positions of stones 1, 2, 3, 4, 5 will be <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/58fdb5684df807bfcb705a9da9ce175613362b7d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, respectively. So you should print the sequence: 3, 5, 4, 2, 1.
|
```python
moves = input()
left, right = [], []
for i, c in enumerate(moves):
if c == 'l':
right.append(i+1)
else:
left.append(i+1)
for n in left:
print(n)
right.reverse()
for n in right:
print(n)
```
| 3
|
|
69
|
A
|
Young Physicist
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math"
] |
A. Young Physicist
|
2
|
256
|
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
|
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
|
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
|
[
"3\n4 1 7\n-2 4 -1\n1 -5 -3\n",
"3\n3 -1 7\n-5 2 -4\n2 -1 -3\n"
] |
[
"NO",
"YES"
] |
none
| 500
|
[
{
"input": "3\n4 1 7\n-2 4 -1\n1 -5 -3",
"output": "NO"
},
{
"input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3",
"output": "YES"
},
{
"input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41",
"output": "NO"
},
{
"input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33",
"output": "NO"
},
{
"input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7",
"output": "NO"
},
{
"input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38",
"output": "NO"
},
{
"input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6",
"output": "YES"
},
{
"input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0",
"output": "YES"
},
{
"input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0",
"output": "YES"
},
{
"input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0",
"output": "YES"
},
{
"input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0",
"output": "YES"
},
{
"input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0",
"output": "YES"
},
{
"input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87",
"output": "YES"
},
{
"input": "3\n1 2 3\n3 2 1\n0 0 0",
"output": "NO"
},
{
"input": "2\n5 -23 12\n0 0 0",
"output": "NO"
},
{
"input": "1\n0 0 0",
"output": "YES"
},
{
"input": "1\n1 -2 0",
"output": "NO"
},
{
"input": "2\n-23 77 -86\n23 -77 86",
"output": "YES"
},
{
"input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82",
"output": "YES"
},
{
"input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0",
"output": "YES"
},
{
"input": "3\n96 49 -12\n2 -66 28\n-98 17 -16",
"output": "YES"
},
{
"input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0",
"output": "YES"
},
{
"input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53",
"output": "YES"
},
{
"input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1",
"output": "YES"
},
{
"input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0",
"output": "YES"
},
{
"input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0",
"output": "YES"
},
{
"input": "3\n0 2 -2\n1 -1 3\n-3 0 0",
"output": "NO"
}
] | 1,580,921,165
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 80
| 248
| 307,200
|
n = int(input())
c = 0
c1 = 0
for i in range(n):
nums = input()
nums = nums.split(' ')
nums = list(map(int, nums))
c1 = sum(nums)
c += c1
if c == 0:
print('YES')
else:
print('NO')
|
Title: Young Physicist
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
Input Specification:
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Output Specification:
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
Demo Input:
['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n']
Demo Output:
['NO', 'YES']
Note:
none
|
```python
n = int(input())
c = 0
c1 = 0
for i in range(n):
nums = input()
nums = nums.split(' ')
nums = list(map(int, nums))
c1 = sum(nums)
c += c1
if c == 0:
print('YES')
else:
print('NO')
```
| 0
|
79
|
B
|
Colorful Field
|
PROGRAMMING
| 1,400
|
[
"implementation",
"sortings"
] |
B. Colorful Field
|
2
|
256
|
Fox Ciel saw a large field while she was on a bus. The field was a *n*<=×<=*m* rectangle divided into 1<=×<=1 cells. Some cells were wasteland, and other each cell contained crop plants: either carrots or kiwis or grapes.
After seeing the field carefully, Ciel found that the crop plants of each cell were planted in following procedure:
- Assume that the rows are numbered 1 to *n* from top to bottom and the columns are numbered 1 to *m* from left to right, and a cell in row *i* and column *j* is represented as (*i*,<=*j*). - First, each field is either cultivated or waste. Crop plants will be planted in the cultivated cells in the order of (1,<=1)<=→<=...<=→<=(1,<=*m*)<=→<=(2,<=1)<=→<=...<=→<=(2,<=*m*)<=→<=...<=→<=(*n*,<=1)<=→<=...<=→<=(*n*,<=*m*). Waste cells will be ignored. - Crop plants (either carrots or kiwis or grapes) will be planted in each cell one after another cyclically. Carrots will be planted in the first cell, then kiwis in the second one, grapes in the third one, carrots in the forth one, kiwis in the fifth one, and so on.
The following figure will show you the example of this procedure. Here, a white square represents a cultivated cell, and a black square represents a waste cell.
Now she is wondering how to determine the crop plants in some certain cells.
|
In the first line there are four positive integers *n*,<=*m*,<=*k*,<=*t* (1<=≤<=*n*<=≤<=4·104,<=1<=≤<=*m*<=≤<=4·104,<=1<=≤<=*k*<=≤<=103,<=1<=≤<=*t*<=≤<=103), each of which represents the height of the field, the width of the field, the number of waste cells and the number of queries that ask the kind of crop plants in a certain cell.
Following each *k* lines contains two integers *a*,<=*b* (1<=≤<=*a*<=≤<=*n*,<=1<=≤<=*b*<=≤<=*m*), which denotes a cell (*a*,<=*b*) is waste. It is guaranteed that the same cell will not appear twice in this section.
Following each *t* lines contains two integers *i*,<=*j* (1<=≤<=*i*<=≤<=*n*,<=1<=≤<=*j*<=≤<=*m*), which is a query that asks you the kind of crop plants of a cell (*i*,<=*j*).
|
For each query, if the cell is waste, print Waste. Otherwise, print the name of crop plants in the cell: either Carrots or Kiwis or Grapes.
|
[
"4 5 5 6\n4 3\n1 3\n3 3\n2 5\n3 2\n1 3\n1 4\n2 3\n2 4\n1 1\n1 1\n"
] |
[
"Waste\nGrapes\nCarrots\nKiwis\nCarrots\nCarrots\n"
] |
The sample corresponds to the figure in the statement.
| 1,000
|
[
{
"input": "4 5 5 6\n4 3\n1 3\n3 3\n2 5\n3 2\n1 3\n1 4\n2 3\n2 4\n1 1\n1 1",
"output": "Waste\nGrapes\nCarrots\nKiwis\nCarrots\nCarrots"
},
{
"input": "2 3 2 2\n1 1\n2 2\n2 1\n2 2",
"output": "Grapes\nWaste"
},
{
"input": "31 31 31 4\n4 9\n16 27\n11 29\n8 28\n11 2\n10 7\n22 6\n1 25\n14 8\n9 7\n9 1\n2 3\n5 2\n21 16\n20 19\n23 14\n27 6\n25 21\n14 1\n18 14\n7 2\n19 12\n30 27\n4 27\n24 12\n25 20\n26 22\n21 17\n11 6\n5 28\n28 24\n17 30\n2 5\n30 10\n4 21",
"output": "Kiwis\nCarrots\nGrapes\nGrapes"
},
{
"input": "39898 39898 3 1\n4567 8901\n12345 23456\n24680 35679\n29292 12121",
"output": "Grapes"
},
{
"input": "1 1 1 1\n1 1\n1 1",
"output": "Waste"
},
{
"input": "1 2 1 2\n1 1\n1 2\n1 1",
"output": "Carrots\nWaste"
},
{
"input": "1 6 3 12\n1 2\n1 4\n1 6\n1 1\n1 2\n1 6\n1 2\n1 5\n1 3\n1 4\n1 5\n1 5\n1 4\n1 6\n1 3",
"output": "Carrots\nWaste\nWaste\nWaste\nGrapes\nKiwis\nWaste\nGrapes\nGrapes\nWaste\nWaste\nKiwis"
},
{
"input": "1 10 1 3\n1 5\n1 5\n1 5\n1 5",
"output": "Waste\nWaste\nWaste"
},
{
"input": "5 5 1 3\n2 2\n2 2\n2 2\n2 2",
"output": "Waste\nWaste\nWaste"
},
{
"input": "3 3 3 5\n1 1\n2 2\n3 3\n1 1\n2 2\n2 2\n2 2\n3 3",
"output": "Waste\nWaste\nWaste\nWaste\nWaste"
},
{
"input": "1 10 2 4\n1 9\n1 5\n1 5\n1 6\n1 9\n1 10",
"output": "Waste\nKiwis\nWaste\nKiwis"
},
{
"input": "5 2 2 1\n3 2\n4 2\n5 2",
"output": "Kiwis"
}
] | 1,614,612,286
| 2,147,483,647
|
PyPy 3
|
MEMORY_LIMIT_EXCEEDED
|
TESTS
| 3
| 1,060
| 268,390,400
|
n,m,k,t = map(int,input().split()) # height width black fruits
garden = []
vegetables = [1,2,3]
cnt = 0
for i in range(n):
row = []
for j in range(m):
row.append(0)
garden.append(row)
for i in range(k):
a , b = map(int,input().split())
garden[a-1][b-1] = -1
for i in range(n):
for j in range(m):
if garden[i][j]==-1:
continue
garden[i][j] = vegetables[cnt%3]
cnt+=1
for _ in range(t):
i , j = map(int,input().split())
if garden[i-1][j-1] == 1:
print("Carrots")
elif garden[i-1][j-1] == 2:
print("Kiwis")
elif garden[i-1][j-1] == 3:
print("Grapes")
else:
print("Waste")
|
Title: Colorful Field
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Fox Ciel saw a large field while she was on a bus. The field was a *n*<=×<=*m* rectangle divided into 1<=×<=1 cells. Some cells were wasteland, and other each cell contained crop plants: either carrots or kiwis or grapes.
After seeing the field carefully, Ciel found that the crop plants of each cell were planted in following procedure:
- Assume that the rows are numbered 1 to *n* from top to bottom and the columns are numbered 1 to *m* from left to right, and a cell in row *i* and column *j* is represented as (*i*,<=*j*). - First, each field is either cultivated or waste. Crop plants will be planted in the cultivated cells in the order of (1,<=1)<=→<=...<=→<=(1,<=*m*)<=→<=(2,<=1)<=→<=...<=→<=(2,<=*m*)<=→<=...<=→<=(*n*,<=1)<=→<=...<=→<=(*n*,<=*m*). Waste cells will be ignored. - Crop plants (either carrots or kiwis or grapes) will be planted in each cell one after another cyclically. Carrots will be planted in the first cell, then kiwis in the second one, grapes in the third one, carrots in the forth one, kiwis in the fifth one, and so on.
The following figure will show you the example of this procedure. Here, a white square represents a cultivated cell, and a black square represents a waste cell.
Now she is wondering how to determine the crop plants in some certain cells.
Input Specification:
In the first line there are four positive integers *n*,<=*m*,<=*k*,<=*t* (1<=≤<=*n*<=≤<=4·104,<=1<=≤<=*m*<=≤<=4·104,<=1<=≤<=*k*<=≤<=103,<=1<=≤<=*t*<=≤<=103), each of which represents the height of the field, the width of the field, the number of waste cells and the number of queries that ask the kind of crop plants in a certain cell.
Following each *k* lines contains two integers *a*,<=*b* (1<=≤<=*a*<=≤<=*n*,<=1<=≤<=*b*<=≤<=*m*), which denotes a cell (*a*,<=*b*) is waste. It is guaranteed that the same cell will not appear twice in this section.
Following each *t* lines contains two integers *i*,<=*j* (1<=≤<=*i*<=≤<=*n*,<=1<=≤<=*j*<=≤<=*m*), which is a query that asks you the kind of crop plants of a cell (*i*,<=*j*).
Output Specification:
For each query, if the cell is waste, print Waste. Otherwise, print the name of crop plants in the cell: either Carrots or Kiwis or Grapes.
Demo Input:
['4 5 5 6\n4 3\n1 3\n3 3\n2 5\n3 2\n1 3\n1 4\n2 3\n2 4\n1 1\n1 1\n']
Demo Output:
['Waste\nGrapes\nCarrots\nKiwis\nCarrots\nCarrots\n']
Note:
The sample corresponds to the figure in the statement.
|
```python
n,m,k,t = map(int,input().split()) # height width black fruits
garden = []
vegetables = [1,2,3]
cnt = 0
for i in range(n):
row = []
for j in range(m):
row.append(0)
garden.append(row)
for i in range(k):
a , b = map(int,input().split())
garden[a-1][b-1] = -1
for i in range(n):
for j in range(m):
if garden[i][j]==-1:
continue
garden[i][j] = vegetables[cnt%3]
cnt+=1
for _ in range(t):
i , j = map(int,input().split())
if garden[i-1][j-1] == 1:
print("Carrots")
elif garden[i-1][j-1] == 2:
print("Kiwis")
elif garden[i-1][j-1] == 3:
print("Grapes")
else:
print("Waste")
```
| 0
|
287
|
B
|
Pipeline
|
PROGRAMMING
| 1,700
|
[
"binary search",
"math"
] | null | null |
Vova, the Ultimate Thule new shaman, wants to build a pipeline. As there are exactly *n* houses in Ultimate Thule, Vova wants the city to have exactly *n* pipes, each such pipe should be connected to the water supply. A pipe can be connected to the water supply if there's water flowing out of it. Initially Vova has only one pipe with flowing water. Besides, Vova has several splitters.
A splitter is a construction that consists of one input (it can be connected to a water pipe) and *x* output pipes. When a splitter is connected to a water pipe, water flows from each output pipe. You can assume that the output pipes are ordinary pipes. For example, you can connect water supply to such pipe if there's water flowing out from it. At most one splitter can be connected to any water pipe.
Vova has one splitter of each kind: with 2, 3, 4, ..., *k* outputs. Help Vova use the minimum number of splitters to build the required pipeline or otherwise state that it's impossible.
Vova needs the pipeline to have exactly *n* pipes with flowing out water. Note that some of those pipes can be the output pipes of the splitters.
|
The first line contains two space-separated integers *n* and *k* (1<=≤<=*n*<=≤<=1018, 2<=≤<=*k*<=≤<=109).
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
|
Print a single integer — the minimum number of splitters needed to build the pipeline. If it is impossible to build a pipeline with the given splitters, print -1.
|
[
"4 3\n",
"5 5\n",
"8 4\n"
] |
[
"2\n",
"1\n",
"-1\n"
] |
none
| 1,500
|
[
{
"input": "4 3",
"output": "2"
},
{
"input": "5 5",
"output": "1"
},
{
"input": "8 4",
"output": "-1"
},
{
"input": "1000000000000000000 1000000000",
"output": "-1"
},
{
"input": "499999998500000001 1000000000",
"output": "999955279"
},
{
"input": "499999998500000000 1000000000",
"output": "999955279"
},
{
"input": "499999999500000000 1000000000",
"output": "999999998"
},
{
"input": "499999999500000001 1000000000",
"output": "999999999"
},
{
"input": "525 34",
"output": "25"
},
{
"input": "223265034477 726990",
"output": "440662"
},
{
"input": "15597035789572051 185473109",
"output": "128849771"
},
{
"input": "499999999500000002 1000000000",
"output": "-1"
},
{
"input": "1 1000000000",
"output": "0"
},
{
"input": "1000000000 2",
"output": "-1"
},
{
"input": "462498979 204468265",
"output": "3"
},
{
"input": "2107921 542531",
"output": "4"
},
{
"input": "131 49",
"output": "3"
},
{
"input": "20171878992939541 200857557",
"output": "200853401"
},
{
"input": "399812655947 894219",
"output": "893030"
},
{
"input": "93 17",
"output": "8"
},
{
"input": "1000000000 999999999",
"output": "2"
},
{
"input": "100000000000000000 1000000000",
"output": "105572810"
}
] | 1,696,254,062
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 22
| 31
| 0
|
def sum_n(n):
return (n * (n + 1)) // 2
def sum_range(s, e):
if s <= 1:
return sum_n(e)
return sum_n(e) - sum_n(s - 1)
def min_splitters(k, n):
st, en = 1, k
while st < en:
md = (st + en) // 2
s = sum_range(md, k)
if s == n:
return k - md + 1
if s > n:
st = md + 1
else:
en = md
return k - st + 2
if __name__ == "__main__":
n, k = map(int, input().split())
if n == 1:
print(0)
elif n <= k:
print(1)
else:
k -= 1
n -= 1
if sum_n(k) < n:
print(-1)
else:
print(min_splitters(k, n))
|
Title: Pipeline
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vova, the Ultimate Thule new shaman, wants to build a pipeline. As there are exactly *n* houses in Ultimate Thule, Vova wants the city to have exactly *n* pipes, each such pipe should be connected to the water supply. A pipe can be connected to the water supply if there's water flowing out of it. Initially Vova has only one pipe with flowing water. Besides, Vova has several splitters.
A splitter is a construction that consists of one input (it can be connected to a water pipe) and *x* output pipes. When a splitter is connected to a water pipe, water flows from each output pipe. You can assume that the output pipes are ordinary pipes. For example, you can connect water supply to such pipe if there's water flowing out from it. At most one splitter can be connected to any water pipe.
Vova has one splitter of each kind: with 2, 3, 4, ..., *k* outputs. Help Vova use the minimum number of splitters to build the required pipeline or otherwise state that it's impossible.
Vova needs the pipeline to have exactly *n* pipes with flowing out water. Note that some of those pipes can be the output pipes of the splitters.
Input Specification:
The first line contains two space-separated integers *n* and *k* (1<=≤<=*n*<=≤<=1018, 2<=≤<=*k*<=≤<=109).
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
Output Specification:
Print a single integer — the minimum number of splitters needed to build the pipeline. If it is impossible to build a pipeline with the given splitters, print -1.
Demo Input:
['4 3\n', '5 5\n', '8 4\n']
Demo Output:
['2\n', '1\n', '-1\n']
Note:
none
|
```python
def sum_n(n):
return (n * (n + 1)) // 2
def sum_range(s, e):
if s <= 1:
return sum_n(e)
return sum_n(e) - sum_n(s - 1)
def min_splitters(k, n):
st, en = 1, k
while st < en:
md = (st + en) // 2
s = sum_range(md, k)
if s == n:
return k - md + 1
if s > n:
st = md + 1
else:
en = md
return k - st + 2
if __name__ == "__main__":
n, k = map(int, input().split())
if n == 1:
print(0)
elif n <= k:
print(1)
else:
k -= 1
n -= 1
if sum_n(k) < n:
print(-1)
else:
print(min_splitters(k, n))
```
| 3
|
|
255
|
A
|
Greg's Workout
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Greg is a beginner bodybuilder. Today the gym coach gave him the training plan. All it had was *n* integers *a*1,<=*a*2,<=...,<=*a**n*. These numbers mean that Greg needs to do exactly *n* exercises today. Besides, Greg should repeat the *i*-th in order exercise *a**i* times.
Greg now only does three types of exercises: "chest" exercises, "biceps" exercises and "back" exercises. Besides, his training is cyclic, that is, the first exercise he does is a "chest" one, the second one is "biceps", the third one is "back", the fourth one is "chest", the fifth one is "biceps", and so on to the *n*-th exercise.
Now Greg wonders, which muscle will get the most exercise during his training. We know that the exercise Greg repeats the maximum number of times, trains the corresponding muscle the most. Help Greg, determine which muscle will get the most training.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=20). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=25) — the number of times Greg repeats the exercises.
|
Print word "chest" (without the quotes), if the chest gets the most exercise, "biceps" (without the quotes), if the biceps gets the most exercise and print "back" (without the quotes) if the back gets the most exercise.
It is guaranteed that the input is such that the answer to the problem is unambiguous.
|
[
"2\n2 8\n",
"3\n5 1 10\n",
"7\n3 3 2 7 9 6 8\n"
] |
[
"biceps\n",
"back\n",
"chest\n"
] |
In the first sample Greg does 2 chest, 8 biceps and zero back exercises, so the biceps gets the most exercises.
In the second sample Greg does 5 chest, 1 biceps and 10 back exercises, so the back gets the most exercises.
In the third sample Greg does 18 chest, 12 biceps and 8 back exercises, so the chest gets the most exercise.
| 500
|
[
{
"input": "2\n2 8",
"output": "biceps"
},
{
"input": "3\n5 1 10",
"output": "back"
},
{
"input": "7\n3 3 2 7 9 6 8",
"output": "chest"
},
{
"input": "4\n5 6 6 2",
"output": "chest"
},
{
"input": "5\n8 2 2 6 3",
"output": "chest"
},
{
"input": "6\n8 7 2 5 3 4",
"output": "chest"
},
{
"input": "8\n7 2 9 10 3 8 10 6",
"output": "chest"
},
{
"input": "9\n5 4 2 3 4 4 5 2 2",
"output": "chest"
},
{
"input": "10\n4 9 8 5 3 8 8 10 4 2",
"output": "biceps"
},
{
"input": "11\n10 9 7 6 1 3 9 7 1 3 5",
"output": "chest"
},
{
"input": "12\n24 22 6 16 5 21 1 7 2 19 24 5",
"output": "chest"
},
{
"input": "13\n24 10 5 7 16 17 2 7 9 20 15 2 24",
"output": "chest"
},
{
"input": "14\n13 14 19 8 5 17 9 16 15 9 5 6 3 7",
"output": "back"
},
{
"input": "15\n24 12 22 21 25 23 21 5 3 24 23 13 12 16 12",
"output": "chest"
},
{
"input": "16\n12 6 18 6 25 7 3 1 1 17 25 17 6 8 17 8",
"output": "biceps"
},
{
"input": "17\n13 8 13 4 9 21 10 10 9 22 14 23 22 7 6 14 19",
"output": "chest"
},
{
"input": "18\n1 17 13 6 11 10 25 13 24 9 21 17 3 1 17 12 25 21",
"output": "back"
},
{
"input": "19\n22 22 24 25 19 10 7 10 4 25 19 14 1 14 3 18 4 19 24",
"output": "chest"
},
{
"input": "20\n9 8 22 11 18 14 15 10 17 11 2 1 25 20 7 24 4 25 9 20",
"output": "chest"
},
{
"input": "1\n10",
"output": "chest"
},
{
"input": "2\n15 3",
"output": "chest"
},
{
"input": "3\n21 11 19",
"output": "chest"
},
{
"input": "4\n19 24 13 15",
"output": "chest"
},
{
"input": "5\n4 24 1 9 19",
"output": "biceps"
},
{
"input": "6\n6 22 24 7 15 24",
"output": "back"
},
{
"input": "7\n10 8 23 23 14 18 14",
"output": "chest"
},
{
"input": "8\n5 16 8 9 17 16 14 7",
"output": "biceps"
},
{
"input": "9\n12 3 10 23 6 4 22 13 12",
"output": "chest"
},
{
"input": "10\n1 9 20 18 20 17 7 24 23 2",
"output": "back"
},
{
"input": "11\n22 25 8 2 18 15 1 13 1 11 4",
"output": "biceps"
},
{
"input": "12\n20 12 14 2 15 6 24 3 11 8 11 14",
"output": "chest"
},
{
"input": "13\n2 18 8 8 8 20 5 22 15 2 5 19 18",
"output": "back"
},
{
"input": "14\n1 6 10 25 17 13 21 11 19 4 15 24 5 22",
"output": "biceps"
},
{
"input": "15\n13 5 25 13 17 25 19 21 23 17 12 6 14 8 6",
"output": "back"
},
{
"input": "16\n10 15 2 17 22 12 14 14 6 11 4 13 9 8 21 14",
"output": "chest"
},
{
"input": "17\n7 22 9 22 8 7 20 22 23 5 12 11 1 24 17 20 10",
"output": "biceps"
},
{
"input": "18\n18 15 4 25 5 11 21 25 12 14 25 23 19 19 13 6 9 17",
"output": "chest"
},
{
"input": "19\n3 1 3 15 15 25 10 25 23 10 9 21 13 23 19 3 24 21 14",
"output": "back"
},
{
"input": "20\n19 18 11 3 6 14 3 3 25 3 1 19 25 24 23 12 7 4 8 6",
"output": "back"
},
{
"input": "1\n19",
"output": "chest"
},
{
"input": "2\n1 7",
"output": "biceps"
},
{
"input": "3\n18 18 23",
"output": "back"
},
{
"input": "4\n12 15 1 13",
"output": "chest"
},
{
"input": "5\n11 14 25 21 21",
"output": "biceps"
},
{
"input": "6\n11 9 12 11 22 18",
"output": "biceps"
},
{
"input": "7\n11 1 16 20 21 25 20",
"output": "chest"
},
{
"input": "8\n1 2 20 9 3 22 17 4",
"output": "back"
},
{
"input": "9\n19 2 10 19 15 20 3 1 13",
"output": "back"
},
{
"input": "10\n11 2 11 8 21 16 2 3 19 9",
"output": "back"
},
{
"input": "20\n25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 24",
"output": "chest"
},
{
"input": "12\n4 24 21 3 13 24 22 13 12 21 1 15",
"output": "back"
},
{
"input": "13\n14 14 16 2 13 5 1 14 9 4 16 8 3",
"output": "biceps"
},
{
"input": "14\n1 9 15 4 11 8 25 3 9 14 13 2 1 11",
"output": "biceps"
},
{
"input": "15\n4 19 10 6 16 12 5 11 7 23 1 24 11 7 17",
"output": "back"
},
{
"input": "16\n2 8 2 8 13 22 20 12 22 23 18 13 18 22 11 17",
"output": "chest"
},
{
"input": "17\n24 5 5 16 10 8 22 6 4 13 10 10 5 23 8 20 8",
"output": "chest"
},
{
"input": "18\n14 8 9 12 11 18 24 1 14 24 18 5 12 17 1 10 1 22",
"output": "chest"
},
{
"input": "19\n21 2 10 6 9 1 24 5 2 19 10 13 10 7 19 2 6 13 24",
"output": "chest"
},
{
"input": "20\n7 1 14 17 6 6 18 13 12 3 25 4 3 19 22 24 16 14 1 23",
"output": "biceps"
},
{
"input": "1\n19",
"output": "chest"
},
{
"input": "20\n2 1 2 2 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 22",
"output": "biceps"
}
] | 1,594,290,209
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 3
| 186
| 6,963,200
|
a=int(input())
b=list(map(int, input().split()))
ch=0
bi=0
ba=0
for i in range(1,len(b)+1):
if i%2==0:
bi+=b[i-1]
elif i%3==0:
ba+=b[i-1]
else:
ch+=b[i-1]
if (ch>bi and ch>ba):
print("chest")
elif (bi>ch and bi>ba):
print("biceps")
else:
print("back")
|
Title: Greg's Workout
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Greg is a beginner bodybuilder. Today the gym coach gave him the training plan. All it had was *n* integers *a*1,<=*a*2,<=...,<=*a**n*. These numbers mean that Greg needs to do exactly *n* exercises today. Besides, Greg should repeat the *i*-th in order exercise *a**i* times.
Greg now only does three types of exercises: "chest" exercises, "biceps" exercises and "back" exercises. Besides, his training is cyclic, that is, the first exercise he does is a "chest" one, the second one is "biceps", the third one is "back", the fourth one is "chest", the fifth one is "biceps", and so on to the *n*-th exercise.
Now Greg wonders, which muscle will get the most exercise during his training. We know that the exercise Greg repeats the maximum number of times, trains the corresponding muscle the most. Help Greg, determine which muscle will get the most training.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=20). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=25) — the number of times Greg repeats the exercises.
Output Specification:
Print word "chest" (without the quotes), if the chest gets the most exercise, "biceps" (without the quotes), if the biceps gets the most exercise and print "back" (without the quotes) if the back gets the most exercise.
It is guaranteed that the input is such that the answer to the problem is unambiguous.
Demo Input:
['2\n2 8\n', '3\n5 1 10\n', '7\n3 3 2 7 9 6 8\n']
Demo Output:
['biceps\n', 'back\n', 'chest\n']
Note:
In the first sample Greg does 2 chest, 8 biceps and zero back exercises, so the biceps gets the most exercises.
In the second sample Greg does 5 chest, 1 biceps and 10 back exercises, so the back gets the most exercises.
In the third sample Greg does 18 chest, 12 biceps and 8 back exercises, so the chest gets the most exercise.
|
```python
a=int(input())
b=list(map(int, input().split()))
ch=0
bi=0
ba=0
for i in range(1,len(b)+1):
if i%2==0:
bi+=b[i-1]
elif i%3==0:
ba+=b[i-1]
else:
ch+=b[i-1]
if (ch>bi and ch>ba):
print("chest")
elif (bi>ch and bi>ba):
print("biceps")
else:
print("back")
```
| 0
|
|
443
|
A
|
Anton and Letters
|
PROGRAMMING
| 800
|
[
"constructive algorithms",
"implementation"
] | null | null |
Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line.
Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set.
|
The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space.
|
Print a single number — the number of distinct letters in Anton's set.
|
[
"{a, b, c}\n",
"{b, a, b, a}\n",
"{}\n"
] |
[
"3\n",
"2\n",
"0\n"
] |
none
| 500
|
[
{
"input": "{a, b, c}",
"output": "3"
},
{
"input": "{b, a, b, a}",
"output": "2"
},
{
"input": "{}",
"output": "0"
},
{
"input": "{a, a, c, b, b, b, c, c, c, c}",
"output": "3"
},
{
"input": "{a, c, b, b}",
"output": "3"
},
{
"input": "{a, b}",
"output": "2"
},
{
"input": "{a}",
"output": "1"
},
{
"input": "{b, a, b, a, b, c, c, b, c, b}",
"output": "3"
},
{
"input": "{e, g, c, e}",
"output": "3"
},
{
"input": "{a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a}",
"output": "1"
},
{
"input": "{a, a, b}",
"output": "2"
},
{
"input": "{a, b, b, b, a, b, a, a, a, a, a, a, b, a, b, a, a, a, a, a, b, a, b, a}",
"output": "2"
},
{
"input": "{j, u, a, c, f, w, e, w, x, t, h, p, v, n, i, l, x, n, i, b, u, c, a, a}",
"output": "16"
},
{
"input": "{x, i, w, c, p, e, h, z, k, i}",
"output": "9"
},
{
"input": "{t, k, o, x, r, d, q, j, k, e, z, w, y, r, z, s, s, e, s, b, k, i}",
"output": "15"
},
{
"input": "{y}",
"output": "1"
},
{
"input": "{x}",
"output": "1"
},
{
"input": "{b, z, a, z}",
"output": "3"
},
{
"input": "{z}",
"output": "1"
},
{
"input": "{a, z}",
"output": "2"
},
{
"input": "{a, b, z}",
"output": "3"
},
{
"input": "{s, q, z, r, t, a, b, h, j, i, o, z, r, q}",
"output": "11"
}
] | 1,697,020,314
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 27
| 46
| 0
|
s=input()
s=s[1:len(s)-1]
s=s.replace(",","",len(s))
s=s.split()
print(len(set(s)))
|
Title: Anton and Letters
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line.
Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set.
Input Specification:
The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space.
Output Specification:
Print a single number — the number of distinct letters in Anton's set.
Demo Input:
['{a, b, c}\n', '{b, a, b, a}\n', '{}\n']
Demo Output:
['3\n', '2\n', '0\n']
Note:
none
|
```python
s=input()
s=s[1:len(s)-1]
s=s.replace(",","",len(s))
s=s.split()
print(len(set(s)))
```
| 3
|
|
985
|
A
|
Chess Placing
|
PROGRAMMING
| 1,100
|
[
"implementation"
] | null | null |
You are given a chessboard of size 1<=×<=*n*. It is guaranteed that *n* is even. The chessboard is painted like this: "BWBW...BW".
Some cells of the board are occupied by the chess pieces. Each cell contains no more than one chess piece. It is known that the total number of pieces equals to .
In one step you can move one of the pieces one cell to the left or to the right. You cannot move pieces beyond the borders of the board. You also cannot move pieces to the cells that are already occupied.
Your task is to place all the pieces in the cells of the same color using the minimum number of moves (all the pieces must occupy only the black cells or only the white cells after all the moves are made).
|
The first line of the input contains one integer *n* (2<=≤<=*n*<=≤<=100, *n* is even) — the size of the chessboard.
The second line of the input contains integer numbers (1<=≤<=*p**i*<=≤<=*n*) — initial positions of the pieces. It is guaranteed that all the positions are distinct.
|
Print one integer — the minimum number of moves you have to make to place all the pieces in the cells of the same color.
|
[
"6\n1 2 6\n",
"10\n1 2 3 4 5\n"
] |
[
"2\n",
"10\n"
] |
In the first example the only possible strategy is to move the piece at the position 6 to the position 5 and move the piece at the position 2 to the position 3. Notice that if you decide to place the pieces in the white cells the minimum number of moves will be 3.
In the second example the possible strategy is to move <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/e1e06f6a15cce30628c7a2360c4ffa57a8ba0ebd.png" style="max-width: 100.0%;max-height: 100.0%;"/> in 4 moves, then <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c84dfbe0c6a917b45fc3f69467c256c4ac460eeb.png" style="max-width: 100.0%;max-height: 100.0%;"/> in 3 moves, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/598731d81393332209d914cb0bbe97d8566c887d.png" style="max-width: 100.0%;max-height: 100.0%;"/> in 2 moves and <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/29f71c065c3536e88b54429c734103ad3604f68b.png" style="max-width: 100.0%;max-height: 100.0%;"/> in 1 move.
| 0
|
[
{
"input": "6\n1 2 6",
"output": "2"
},
{
"input": "10\n1 2 3 4 5",
"output": "10"
},
{
"input": "2\n2",
"output": "0"
},
{
"input": "100\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100",
"output": "0"
},
{
"input": "100\n93 54 57 61 68 66 70 96 64 82 80 75 69 77 76 94 67 86 90 73 74 58 100 83 92 89 56 99 88 59 95 72 81 51 85 71 97 60 91 63 65 98 79 84 53 62 87 55 52 78",
"output": "1225"
},
{
"input": "100\n41 13 29 11 25 15 6 23 28 50 48 17 3 9 44 24 5 19 34 22 33 32 20 16 35 37 4 10 46 2 39 40 47 49 36 42 1 30 43 21 14 7 18 45 31 8 12 26 27 38",
"output": "1225"
},
{
"input": "96\n12 58 70 19 65 61 41 46 15 92 64 72 9 26 53 37 2 3 1 40 10 8 94 66 50 34 36 96 47 78 7 57 5 6 17 69 28 88 89 49 55 81 35 22 25 79 86 59",
"output": "152"
},
{
"input": "10\n5 6 7 8 9",
"output": "7"
},
{
"input": "20\n1 2 3 4 5 6 7 8 9 10",
"output": "45"
},
{
"input": "10\n6 7 8 9 10",
"output": "10"
},
{
"input": "10\n9 8 7 6 5",
"output": "7"
},
{
"input": "6\n1 5 6",
"output": "2"
},
{
"input": "12\n1 7 8 9 10 12",
"output": "7"
},
{
"input": "6\n1 4 5",
"output": "1"
},
{
"input": "24\n10 21 15 3 11 4 18 24 16 22 14 9",
"output": "11"
},
{
"input": "20\n3 4 6 7 8 10 11 13 14 17",
"output": "15"
},
{
"input": "10\n10 9 8 1 5",
"output": "5"
},
{
"input": "100\n84 10 26 79 58 93 67 85 7 2 99 4 47 45 75 22 32 82 65 53 63 49 42 52 12 69 86 46 25 76 40 15 13 78 8 81 62 28 60 21 27 80 98 56 3 36 54 16 50 43",
"output": "104"
},
{
"input": "10\n1 7 8 9 10",
"output": "7"
},
{
"input": "10\n1 4 6 8 10",
"output": "1"
},
{
"input": "80\n41 70 18 53 32 79 51 49 21 27 47 65 50 15 62 60 5 40 14 25 64 9 19 58 38 76 66 52 17 34 13 2 80 43 3 42 33 36 6 72",
"output": "47"
},
{
"input": "50\n27 42 41 4 10 45 44 26 49 50 17 28 2 36 18 39 23 12 21 24 19 29 22 40 37",
"output": "59"
},
{
"input": "10\n2 3 4 5 6",
"output": "7"
},
{
"input": "6\n3 5 6",
"output": "2"
},
{
"input": "100\n9 63 62 88 3 67 54 33 79 51 71 80 37 46 43 57 69 17 34 6 18 40 59 83 76 86 8 55 90 89 45 42 28 98 30 38 77 91 73 58 23 61 41 65 64 93 14 44 16 24",
"output": "160"
},
{
"input": "10\n1 6 7 8 9",
"output": "5"
},
{
"input": "6\n3 4 5",
"output": "2"
}
] | 1,609,621,601
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 4
| 109
| 0
|
def main():
n = int(input())
p = list(map(int, input().split()))
s1 = sum(abs(i * 2 + 2 - p[i]) for i in range(n // 2))
s2 = sum(abs(i * 2 + 1 - p[i]) for i in range(n // 2))
print(min(s1, s2))
if __name__ == '__main__':
main()
# Sun Jan 03 2021 00:06:40 GMT+0300 (Москва, стандартное время)
|
Title: Chess Placing
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given a chessboard of size 1<=×<=*n*. It is guaranteed that *n* is even. The chessboard is painted like this: "BWBW...BW".
Some cells of the board are occupied by the chess pieces. Each cell contains no more than one chess piece. It is known that the total number of pieces equals to .
In one step you can move one of the pieces one cell to the left or to the right. You cannot move pieces beyond the borders of the board. You also cannot move pieces to the cells that are already occupied.
Your task is to place all the pieces in the cells of the same color using the minimum number of moves (all the pieces must occupy only the black cells or only the white cells after all the moves are made).
Input Specification:
The first line of the input contains one integer *n* (2<=≤<=*n*<=≤<=100, *n* is even) — the size of the chessboard.
The second line of the input contains integer numbers (1<=≤<=*p**i*<=≤<=*n*) — initial positions of the pieces. It is guaranteed that all the positions are distinct.
Output Specification:
Print one integer — the minimum number of moves you have to make to place all the pieces in the cells of the same color.
Demo Input:
['6\n1 2 6\n', '10\n1 2 3 4 5\n']
Demo Output:
['2\n', '10\n']
Note:
In the first example the only possible strategy is to move the piece at the position 6 to the position 5 and move the piece at the position 2 to the position 3. Notice that if you decide to place the pieces in the white cells the minimum number of moves will be 3.
In the second example the possible strategy is to move <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/e1e06f6a15cce30628c7a2360c4ffa57a8ba0ebd.png" style="max-width: 100.0%;max-height: 100.0%;"/> in 4 moves, then <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c84dfbe0c6a917b45fc3f69467c256c4ac460eeb.png" style="max-width: 100.0%;max-height: 100.0%;"/> in 3 moves, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/598731d81393332209d914cb0bbe97d8566c887d.png" style="max-width: 100.0%;max-height: 100.0%;"/> in 2 moves and <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/29f71c065c3536e88b54429c734103ad3604f68b.png" style="max-width: 100.0%;max-height: 100.0%;"/> in 1 move.
|
```python
def main():
n = int(input())
p = list(map(int, input().split()))
s1 = sum(abs(i * 2 + 2 - p[i]) for i in range(n // 2))
s2 = sum(abs(i * 2 + 1 - p[i]) for i in range(n // 2))
print(min(s1, s2))
if __name__ == '__main__':
main()
# Sun Jan 03 2021 00:06:40 GMT+0300 (Москва, стандартное время)
```
| 0
|
|
765
|
B
|
Code obfuscation
|
PROGRAMMING
| 1,100
|
[
"greedy",
"implementation",
"strings"
] | null | null |
Kostya likes Codeforces contests very much. However, he is very disappointed that his solutions are frequently hacked. That's why he decided to obfuscate (intentionally make less readable) his code before upcoming contest.
To obfuscate the code, Kostya first looks at the first variable name used in his program and replaces all its occurrences with a single symbol *a*, then he looks at the second variable name that has not been replaced yet, and replaces all its occurrences with *b*, and so on. Kostya is well-mannered, so he doesn't use any one-letter names before obfuscation. Moreover, there are at most 26 unique identifiers in his programs.
You are given a list of identifiers of some program with removed spaces and line breaks. Check if this program can be a result of Kostya's obfuscation.
|
In the only line of input there is a string *S* of lowercase English letters (1<=≤<=|*S*|<=≤<=500) — the identifiers of a program with removed whitespace characters.
|
If this program can be a result of Kostya's obfuscation, print "YES" (without quotes), otherwise print "NO".
|
[
"abacaba\n",
"jinotega\n"
] |
[
"YES\n",
"NO\n"
] |
In the first sample case, one possible list of identifiers would be "number string number character number string number". Here how Kostya would obfuscate the program:
- replace all occurences of number with a, the result would be "a string a character a string a",- replace all occurences of string with b, the result would be "a b a character a b a",- replace all occurences of character with c, the result would be "a b a c a b a",- all identifiers have been replaced, thus the obfuscation is finished.
| 1,000
|
[
{
"input": "abacaba",
"output": "YES"
},
{
"input": "jinotega",
"output": "NO"
},
{
"input": "aaaaaaaaaaa",
"output": "YES"
},
{
"input": "aba",
"output": "YES"
},
{
"input": "bab",
"output": "NO"
},
{
"input": "a",
"output": "YES"
},
{
"input": "abcdefghijklmnopqrstuvwxyz",
"output": "YES"
},
{
"input": "fihyxmbnzq",
"output": "NO"
},
{
"input": "aamlaswqzotaanasdhcvjoaiwdhctezzawagkdgfffeqkyrvbcrfqgkdsvximsnvmkmjyofswmtjdoxgwamsaatngenqvsvrvwlbzuoeaolfcnmdacrmdleafbsmerwmxzyylfhemnkoayuhtpbikm",
"output": "NO"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "YES"
},
{
"input": "darbbbcwynbbbbaacbkvbakavabbbabzajlbajryaabbbccxraakgniagbtsswcfbkubdmcasccepybkaefcfsbzdddxgcjadybcfjtmqbspflqrdghgfwnccfveogdmifkociqscahdejctacwzbkhihajfilrgcjiofwfklifobozikcmvcfeqlidrgsgdfxffaaebzjxngsjxiclyolhjokqpdbfffooticxsezpgqkhhzmbmqgskkqvefzyijrwhpftcmbedmaflapmeljaudllojfpgfkpvgylaglrhrslxlprbhgknrctilngqccbddvpamhifsbmyowohczizjcbleehfrecjbqtxertnpfmalejmbxkhkkbyopuwlhkxuqellsybgcndvniyyxfoufalstdsdfjoxlnmigkqwmgojsppaannfstxytelluvvkdcezlqfsperwyjsdsmkvgjdbksswamhmoukcawiigkggztr",
"output": "NO"
},
{
"input": "bbbbbb",
"output": "NO"
},
{
"input": "aabbbd",
"output": "NO"
},
{
"input": "abdefghijklmnopqrstuvwxyz",
"output": "NO"
},
{
"input": "abcdeghijklmnopqrstuvwxyz",
"output": "NO"
},
{
"input": "abcdefghijklmnopqrsuvwxyz",
"output": "NO"
},
{
"input": "abcdefghijklmnopqrstuvwxy",
"output": "YES"
},
{
"input": "abcdefghijklmnopqrsutvwxyz",
"output": "NO"
},
{
"input": "acdef",
"output": "NO"
},
{
"input": "z",
"output": "NO"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaababaaababaabababccbabdbcbadccacdbdedabbeecbcabbdcaecdabbedddafeffaccgeacefbcahabfiiegecdbebabhhbdgfeghhbfahgagefbgghdbhadeicbdfgdchhefhigfcgdhcihecacfhadfgfejccibcjkfhbigbealjjkfldiecfdcafbamgfkbjlbifldghmiifkkglaflmjfmkfdjlbliijkgfdelklfnadbifgbmklfbqkhirhcadoadhmjrghlmelmjfpakqkdfcgqdkaeqpbcdoeqglqrarkipncckpfmajrqsfffldegbmahsfcqdfdqtrgrouqajgsojmmukptgerpanpcbejmergqtavwsvtveufdseuemwrhfmjqinxjodddnpcgqullrhmogflsxgsbapoghortiwcovejtinncozk",
"output": "NO"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "YES"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbabbbabbaaabbaaaaabaabbaa",
"output": "YES"
},
{
"input": "aababbabbaabbbbbaabababaabbbaaaaabbabbabbaabbbbabaabbaaababbaaacbbabbbbbbcbcababbccaaacbaccaccaababbccaacccaabaaccaaabacacbaabacbaacbaaabcbbbcbbaacaabcbcbccbacabbcbabcaccaaaaaabcbacabcbabbbbbabccbbcacbaaabbccbbaaaaaaaaaaaadbbbabdacabdaddddbaabbddbdabbdacbacbacaaaabbacadbcddddadaddabbdccaddbaaacbceebbceadbeaadecddbbbcaaecbdeaebaddbbdebbcbaabcacbdcdc",
"output": "YES"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbaabaabaababbbabbacacbbbacbbaaaabbccacbaabaaccbbbbbcbbbacabbccaaabbaaacabcbacbcabbbbecbecadcbacbaadeeadabeacdebccdbbcaecdbeeebbebcaaaeacdcbdeccdbbdcdebdcbdacebcecbacddeeaebcedffedfggbeedceacaecagdfedfabcfchffceachgcbicbcffeeebgcgiefcafhibhceiedgbfebbccegbehhibhhfedbaeedbghggffehggaeaidifhdhaggdjcfjhiaieaichjacedchejg",
"output": "NO"
},
{
"input": "b",
"output": "NO"
},
{
"input": "ac",
"output": "NO"
},
{
"input": "cde",
"output": "NO"
},
{
"input": "abd",
"output": "NO"
},
{
"input": "zx",
"output": "NO"
},
{
"input": "bcd",
"output": "NO"
},
{
"input": "aaac",
"output": "NO"
},
{
"input": "aacb",
"output": "NO"
},
{
"input": "acd",
"output": "NO"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaz",
"output": "NO"
},
{
"input": "abcdefghijklmnopqrstuvwxyzz",
"output": "YES"
},
{
"input": "bc",
"output": "NO"
},
{
"input": "aaaaaaaaad",
"output": "NO"
},
{
"input": "abb",
"output": "YES"
},
{
"input": "abcb",
"output": "YES"
},
{
"input": "aac",
"output": "NO"
},
{
"input": "abcbcb",
"output": "YES"
},
{
"input": "bb",
"output": "NO"
},
{
"input": "abbb",
"output": "YES"
},
{
"input": "bbb",
"output": "NO"
},
{
"input": "x",
"output": "NO"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaazz",
"output": "NO"
},
{
"input": "acbccccccccccc",
"output": "NO"
},
{
"input": "za",
"output": "NO"
},
{
"input": "ade",
"output": "NO"
},
{
"input": "bbbbbbbbbb",
"output": "NO"
},
{
"input": "bac",
"output": "NO"
},
{
"input": "bcddcb",
"output": "NO"
},
{
"input": "aaacb",
"output": "NO"
},
{
"input": "aaaaac",
"output": "NO"
},
{
"input": "aaaaaaaaaaad",
"output": "NO"
},
{
"input": "c",
"output": "NO"
},
{
"input": "abcccccccc",
"output": "YES"
},
{
"input": "aaaaaaac",
"output": "NO"
}
] | 1,674,477,077
| 2,147,483,647
|
Python 3
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
codeforces=list(input())
code=list("abcdefghijklmnopqrstuvwxyz")
if len(codeforces)==1:
if codeforces=='a:
print("YES")
else:
print("NO")
else:
while len(codeforces)>0:
if codeforces[0]==code[0]:
while code[0] in codeforces:
codeforces.remove(code[0])
code.remove(code[0])
else:
print("NO")
exit()
print("YES")
|
Title: Code obfuscation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kostya likes Codeforces contests very much. However, he is very disappointed that his solutions are frequently hacked. That's why he decided to obfuscate (intentionally make less readable) his code before upcoming contest.
To obfuscate the code, Kostya first looks at the first variable name used in his program and replaces all its occurrences with a single symbol *a*, then he looks at the second variable name that has not been replaced yet, and replaces all its occurrences with *b*, and so on. Kostya is well-mannered, so he doesn't use any one-letter names before obfuscation. Moreover, there are at most 26 unique identifiers in his programs.
You are given a list of identifiers of some program with removed spaces and line breaks. Check if this program can be a result of Kostya's obfuscation.
Input Specification:
In the only line of input there is a string *S* of lowercase English letters (1<=≤<=|*S*|<=≤<=500) — the identifiers of a program with removed whitespace characters.
Output Specification:
If this program can be a result of Kostya's obfuscation, print "YES" (without quotes), otherwise print "NO".
Demo Input:
['abacaba\n', 'jinotega\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first sample case, one possible list of identifiers would be "number string number character number string number". Here how Kostya would obfuscate the program:
- replace all occurences of number with a, the result would be "a string a character a string a",- replace all occurences of string with b, the result would be "a b a character a b a",- replace all occurences of character with c, the result would be "a b a c a b a",- all identifiers have been replaced, thus the obfuscation is finished.
|
```python
codeforces=list(input())
code=list("abcdefghijklmnopqrstuvwxyz")
if len(codeforces)==1:
if codeforces=='a:
print("YES")
else:
print("NO")
else:
while len(codeforces)>0:
if codeforces[0]==code[0]:
while code[0] in codeforces:
codeforces.remove(code[0])
code.remove(code[0])
else:
print("NO")
exit()
print("YES")
```
| -1
|
|
761
|
A
|
Dasha and Stairs
|
PROGRAMMING
| 1,000
|
[
"brute force",
"constructive algorithms",
"implementation",
"math"
] | null | null |
On her way to programming school tiger Dasha faced her first test — a huge staircase!
The steps were numbered from one to infinity. As we know, tigers are very fond of all striped things, it is possible that it has something to do with their color. So on some interval of her way she calculated two values — the number of steps with even and odd numbers.
You need to check whether there is an interval of steps from the *l*-th to the *r*-th (1<=≤<=*l*<=≤<=*r*), for which values that Dasha has found are correct.
|
In the only line you are given two integers *a*, *b* (0<=≤<=*a*,<=*b*<=≤<=100) — the number of even and odd steps, accordingly.
|
In the only line print "YES", if the interval of steps described above exists, and "NO" otherwise.
|
[
"2 3\n",
"3 1\n"
] |
[
"YES\n",
"NO\n"
] |
In the first example one of suitable intervals is from 1 to 5. The interval contains two even steps — 2 and 4, and three odd: 1, 3 and 5.
| 500
|
[
{
"input": "2 3",
"output": "YES"
},
{
"input": "3 1",
"output": "NO"
},
{
"input": "5 4",
"output": "YES"
},
{
"input": "9 9",
"output": "YES"
},
{
"input": "85 95",
"output": "NO"
},
{
"input": "0 1",
"output": "YES"
},
{
"input": "89 25",
"output": "NO"
},
{
"input": "74 73",
"output": "YES"
},
{
"input": "62 39",
"output": "NO"
},
{
"input": "57 57",
"output": "YES"
},
{
"input": "100 99",
"output": "YES"
},
{
"input": "0 0",
"output": "NO"
},
{
"input": "98 100",
"output": "NO"
},
{
"input": "99 100",
"output": "YES"
},
{
"input": "1 0",
"output": "YES"
},
{
"input": "100 0",
"output": "NO"
},
{
"input": "0 100",
"output": "NO"
},
{
"input": "100 98",
"output": "NO"
},
{
"input": "100 100",
"output": "YES"
},
{
"input": "0 5",
"output": "NO"
},
{
"input": "2 2",
"output": "YES"
}
] | 1,485,877,416
| 4,115
|
Python 3
|
OK
|
TESTS
| 21
| 62
| 4,608,000
|
a,b = tuple(map(int,input().split()))
if a == b == 0:
print("NO")
elif abs(a-b) < 2:
print("YES")
else:
print("NO")
|
Title: Dasha and Stairs
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
On her way to programming school tiger Dasha faced her first test — a huge staircase!
The steps were numbered from one to infinity. As we know, tigers are very fond of all striped things, it is possible that it has something to do with their color. So on some interval of her way she calculated two values — the number of steps with even and odd numbers.
You need to check whether there is an interval of steps from the *l*-th to the *r*-th (1<=≤<=*l*<=≤<=*r*), for which values that Dasha has found are correct.
Input Specification:
In the only line you are given two integers *a*, *b* (0<=≤<=*a*,<=*b*<=≤<=100) — the number of even and odd steps, accordingly.
Output Specification:
In the only line print "YES", if the interval of steps described above exists, and "NO" otherwise.
Demo Input:
['2 3\n', '3 1\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first example one of suitable intervals is from 1 to 5. The interval contains two even steps — 2 and 4, and three odd: 1, 3 and 5.
|
```python
a,b = tuple(map(int,input().split()))
if a == b == 0:
print("NO")
elif abs(a-b) < 2:
print("YES")
else:
print("NO")
```
| 3
|
|
600
|
B
|
Queries about less or equal elements
|
PROGRAMMING
| 1,300
|
[
"binary search",
"data structures",
"sortings",
"two pointers"
] | null | null |
You are given two arrays of integers *a* and *b*. For each element of the second array *b**j* you should find the number of elements in array *a* that are less than or equal to the value *b**j*.
|
The first line contains two integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=2·105) — the sizes of arrays *a* and *b*.
The second line contains *n* integers — the elements of array *a* (<=-<=109<=≤<=*a**i*<=≤<=109).
The third line contains *m* integers — the elements of array *b* (<=-<=109<=≤<=*b**j*<=≤<=109).
|
Print *m* integers, separated by spaces: the *j*-th of which is equal to the number of such elements in array *a* that are less than or equal to the value *b**j*.
|
[
"5 4\n1 3 5 7 9\n6 4 2 8\n",
"5 5\n1 2 1 2 5\n3 1 4 1 5\n"
] |
[
"3 2 1 4\n",
"4 2 4 2 5\n"
] |
none
| 0
|
[
{
"input": "5 4\n1 3 5 7 9\n6 4 2 8",
"output": "3 2 1 4"
},
{
"input": "5 5\n1 2 1 2 5\n3 1 4 1 5",
"output": "4 2 4 2 5"
},
{
"input": "1 1\n-1\n-2",
"output": "0"
},
{
"input": "1 1\n-80890826\n686519510",
"output": "1"
},
{
"input": "11 11\n237468511 -779187544 -174606592 193890085 404563196 -71722998 -617934776 170102710 -442808289 109833389 953091341\n994454001 322957429 216874735 -606986750 -455806318 -663190696 3793295 41395397 -929612742 -787653860 -684738874",
"output": "11 9 8 2 2 1 5 5 0 0 1"
},
{
"input": "20 22\n858276994 -568758442 -918490847 -983345984 -172435358 389604931 200224783 486556113 413281867 -258259500 -627945379 -584563643 444685477 -602481243 -370745158 965672503 630955806 -626138773 -997221880 633102929\n-61330638 -977252080 -212144219 385501731 669589742 954357160 563935906 584468977 -895883477 405774444 853372186 186056475 -964575261 -952431965 632332084 -388829939 -23011650 310957048 -770695392 977376693 321435214 199223897",
"output": "11 2 10 12 18 19 16 16 3 13 18 11 2 2 17 8 11 12 3 20 12 11"
},
{
"input": "5 9\n1 3 5 7 9\n1 2 3 4 5 6 7 8 9",
"output": "1 1 2 2 3 3 4 4 5"
},
{
"input": "22 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22\n1",
"output": "1"
},
{
"input": "5 1\n1 3 3 3 5\n3",
"output": "4"
},
{
"input": "4 5\n1 1 1 4\n1 5 5 4 3",
"output": "3 4 4 4 3"
},
{
"input": "5 4\n0 5 5 5 6\n5 1 6 3",
"output": "4 1 5 1"
},
{
"input": "1 3\n0\n-1 0 1",
"output": "0 1 1"
},
{
"input": "96 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1",
"output": "96"
},
{
"input": "7 1\n1 2 3 4 5 6 7\n1",
"output": "1"
},
{
"input": "13 13\n-1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000\n-1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000",
"output": "7 13 7 13 7 13 7 13 7 13 7 13 7"
},
{
"input": "9 5\n1 2 3 4 5 6 7 8 9\n1 2 3 4 5",
"output": "1 2 3 4 5"
},
{
"input": "3 8\n1 1 1\n1 1 1 1 1 1 1 1",
"output": "3 3 3 3 3 3 3 3"
},
{
"input": "1 1\n-11111\n-5938",
"output": "1"
},
{
"input": "1 1\n1\n400000009",
"output": "1"
},
{
"input": "1 1\n1\n300000009",
"output": "1"
},
{
"input": "1 1\n1\n200000009",
"output": "1"
},
{
"input": "1 1\n1\n200000003",
"output": "1"
}
] | 1,656,514,673
| 1,433
|
PyPy 3-64
|
OK
|
TESTS
| 60
| 389
| 27,648,000
|
import bisect
[n, m] = [int(i) for i in input().split()]
a = [int(i) for i in input().split()]
b = [int(i) for i in input().split()]
a.sort()
for ele in b:
i = bisect.bisect_right(a, ele)
print(i, end = " ")
|
Title: Queries about less or equal elements
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given two arrays of integers *a* and *b*. For each element of the second array *b**j* you should find the number of elements in array *a* that are less than or equal to the value *b**j*.
Input Specification:
The first line contains two integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=2·105) — the sizes of arrays *a* and *b*.
The second line contains *n* integers — the elements of array *a* (<=-<=109<=≤<=*a**i*<=≤<=109).
The third line contains *m* integers — the elements of array *b* (<=-<=109<=≤<=*b**j*<=≤<=109).
Output Specification:
Print *m* integers, separated by spaces: the *j*-th of which is equal to the number of such elements in array *a* that are less than or equal to the value *b**j*.
Demo Input:
['5 4\n1 3 5 7 9\n6 4 2 8\n', '5 5\n1 2 1 2 5\n3 1 4 1 5\n']
Demo Output:
['3 2 1 4\n', '4 2 4 2 5\n']
Note:
none
|
```python
import bisect
[n, m] = [int(i) for i in input().split()]
a = [int(i) for i in input().split()]
b = [int(i) for i in input().split()]
a.sort()
for ele in b:
i = bisect.bisect_right(a, ele)
print(i, end = " ")
```
| 3
|
|
981
|
G
|
Magic multisets
|
PROGRAMMING
| 2,500
|
[
"data structures"
] | null | null |
In the School of Magic in Dirtpolis a lot of interesting objects are studied on Computer Science lessons.
Consider, for example, the magic multiset. If you try to add an integer to it that is already presented in the multiset, each element in the multiset duplicates. For example, if you try to add the integer $2$ to the multiset $\{1, 2, 3, 3\}$, you will get $\{1, 1, 2, 2, 3, 3, 3, 3\}$.
If you try to add an integer that is not presented in the multiset, it is simply added to it. For example, if you try to add the integer $4$ to the multiset $\{1, 2, 3, 3\}$, you will get $\{1, 2, 3, 3, 4\}$.
Also consider an array of $n$ initially empty magic multisets, enumerated from $1$ to $n$.
You are to answer $q$ queries of the form "add an integer $x$ to all multisets with indices $l, l + 1, \ldots, r$" and "compute the sum of sizes of multisets with indices $l, l + 1, \ldots, r$". The answers for the second type queries can be large, so print the answers modulo $998244353$.
|
The first line contains two integers $n$ and $q$ ($1 \leq n, q \leq 2 \cdot 10^{5}$) — the number of magic multisets in the array and the number of queries, respectively.
The next $q$ lines describe queries, one per line. Each line starts with an integer $t$ ($1 \leq t \leq 2$) — the type of the query. If $t$ equals $1$, it is followed by three integers $l$, $r$, $x$ ($1 \leq l \leq r \leq n$, $1 \leq x \leq n$) meaning that you should add $x$ to all multisets with indices from $l$ to $r$ inclusive. If $t$ equals $2$, it is followed by two integers $l$, $r$ ($1 \leq l \leq r \leq n$) meaning that you should compute the sum of sizes of all multisets with indices from $l$ to $r$ inclusive.
|
For each query of the second type print the sum of sizes of multisets on the given segment.
The answers can be large, so print them modulo $998244353$.
|
[
"4 4\n1 1 2 1\n1 1 2 2\n1 1 4 1\n2 1 4\n",
"3 7\n1 1 1 3\n1 1 1 3\n1 1 1 2\n1 1 1 1\n2 1 1\n1 1 1 2\n2 1 1\n"
] |
[
"10\n",
"4\n8\n"
] |
In the first example after the first two queries the multisets are equal to $[\{1, 2\},\{1, 2\},\{\},\{\}]$, after the third query they are equal to $[\{1, 1, 2, 2\},\{1, 1, 2, 2\},\{1\},\{1\}]$.
In the second example the first multiset evolves as follows:
$\{\} \to \{3\} \to \{3, 3\} \to \{2, 3, 3\} \to \{1, 2, 3, 3\} \to \{1, 1, 2, 2, 3, 3, 3, 3\}$.
| 3,250
|
[] | 1,536,844,817
| 2,147,483,647
|
Python 3
|
MEMORY_LIMIT_EXCEEDED
|
TESTS
| 2
| 1,809
| 268,390,400
|
sets_input = [int(x) for x in input().split()]
map_=[]
answer=[]
for i in range(sets_input[1]):
map_.append([])
for i in range(sets_input[1]):
str_=[int (x) for x in input().split()]
if str_[0]==1:
pos=str_[1]-1
for pos in range(str_[2]):
if str_[3] not in map_[pos]:
map_[pos].append(str_[3])
else:
map_[pos]*=2
map_[pos].sort()
else:
sum=0
pos = str_[1]-1
for pos in range(str_[2]):
sum+=len(map_[pos])
answer.append(sum)
for i in answer:
print(i)
|
Title: Magic multisets
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In the School of Magic in Dirtpolis a lot of interesting objects are studied on Computer Science lessons.
Consider, for example, the magic multiset. If you try to add an integer to it that is already presented in the multiset, each element in the multiset duplicates. For example, if you try to add the integer $2$ to the multiset $\{1, 2, 3, 3\}$, you will get $\{1, 1, 2, 2, 3, 3, 3, 3\}$.
If you try to add an integer that is not presented in the multiset, it is simply added to it. For example, if you try to add the integer $4$ to the multiset $\{1, 2, 3, 3\}$, you will get $\{1, 2, 3, 3, 4\}$.
Also consider an array of $n$ initially empty magic multisets, enumerated from $1$ to $n$.
You are to answer $q$ queries of the form "add an integer $x$ to all multisets with indices $l, l + 1, \ldots, r$" and "compute the sum of sizes of multisets with indices $l, l + 1, \ldots, r$". The answers for the second type queries can be large, so print the answers modulo $998244353$.
Input Specification:
The first line contains two integers $n$ and $q$ ($1 \leq n, q \leq 2 \cdot 10^{5}$) — the number of magic multisets in the array and the number of queries, respectively.
The next $q$ lines describe queries, one per line. Each line starts with an integer $t$ ($1 \leq t \leq 2$) — the type of the query. If $t$ equals $1$, it is followed by three integers $l$, $r$, $x$ ($1 \leq l \leq r \leq n$, $1 \leq x \leq n$) meaning that you should add $x$ to all multisets with indices from $l$ to $r$ inclusive. If $t$ equals $2$, it is followed by two integers $l$, $r$ ($1 \leq l \leq r \leq n$) meaning that you should compute the sum of sizes of all multisets with indices from $l$ to $r$ inclusive.
Output Specification:
For each query of the second type print the sum of sizes of multisets on the given segment.
The answers can be large, so print them modulo $998244353$.
Demo Input:
['4 4\n1 1 2 1\n1 1 2 2\n1 1 4 1\n2 1 4\n', '3 7\n1 1 1 3\n1 1 1 3\n1 1 1 2\n1 1 1 1\n2 1 1\n1 1 1 2\n2 1 1\n']
Demo Output:
['10\n', '4\n8\n']
Note:
In the first example after the first two queries the multisets are equal to $[\{1, 2\},\{1, 2\},\{\},\{\}]$, after the third query they are equal to $[\{1, 1, 2, 2\},\{1, 1, 2, 2\},\{1\},\{1\}]$.
In the second example the first multiset evolves as follows:
$\{\} \to \{3\} \to \{3, 3\} \to \{2, 3, 3\} \to \{1, 2, 3, 3\} \to \{1, 1, 2, 2, 3, 3, 3, 3\}$.
|
```python
sets_input = [int(x) for x in input().split()]
map_=[]
answer=[]
for i in range(sets_input[1]):
map_.append([])
for i in range(sets_input[1]):
str_=[int (x) for x in input().split()]
if str_[0]==1:
pos=str_[1]-1
for pos in range(str_[2]):
if str_[3] not in map_[pos]:
map_[pos].append(str_[3])
else:
map_[pos]*=2
map_[pos].sort()
else:
sum=0
pos = str_[1]-1
for pos in range(str_[2]):
sum+=len(map_[pos])
answer.append(sum)
for i in answer:
print(i)
```
| 0
|
|
742
|
A
|
Arpa’s hard exam and Mehrdad’s naive cheat
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math",
"number theory"
] | null | null |
There exists an island called Arpa’s land, some beautiful girls live there, as ugly ones do.
Mehrdad wants to become minister of Arpa’s land. Arpa has prepared an exam. Exam has only one question, given *n*, print the last digit of 1378*n*.
Mehrdad has become quite confused and wants you to help him. Please help, although it's a naive cheat.
|
The single line of input contains one integer *n* (0<=<=≤<=<=*n*<=<=≤<=<=109).
|
Print single integer — the last digit of 1378*n*.
|
[
"1\n",
"2\n"
] |
[
"8",
"4"
] |
In the first example, last digit of 1378<sup class="upper-index">1</sup> = 1378 is 8.
In the second example, last digit of 1378<sup class="upper-index">2</sup> = 1378·1378 = 1898884 is 4.
| 500
|
[
{
"input": "1",
"output": "8"
},
{
"input": "2",
"output": "4"
},
{
"input": "1000",
"output": "6"
},
{
"input": "3",
"output": "2"
},
{
"input": "4",
"output": "6"
},
{
"input": "1000000000",
"output": "6"
},
{
"input": "5",
"output": "8"
},
{
"input": "6",
"output": "4"
},
{
"input": "999999999",
"output": "2"
},
{
"input": "1378",
"output": "4"
},
{
"input": "13781378",
"output": "4"
},
{
"input": "51202278",
"output": "4"
},
{
"input": "999999998",
"output": "4"
},
{
"input": "999999997",
"output": "8"
},
{
"input": "12193721",
"output": "8"
},
{
"input": "0",
"output": "1"
},
{
"input": "989898989",
"output": "8"
},
{
"input": "7",
"output": "2"
},
{
"input": "8",
"output": "6"
},
{
"input": "9",
"output": "8"
},
{
"input": "10",
"output": "4"
},
{
"input": "11",
"output": "2"
},
{
"input": "12",
"output": "6"
},
{
"input": "13",
"output": "8"
},
{
"input": "14",
"output": "4"
},
{
"input": "15",
"output": "2"
},
{
"input": "16",
"output": "6"
},
{
"input": "999999996",
"output": "6"
},
{
"input": "999999995",
"output": "2"
},
{
"input": "999999994",
"output": "4"
}
] | 1,685,696,538
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 13
| 46
| 0
|
n = int(input())
if n%10==0:
print(6)
else:
n = str(n)
if len(n)==1:
fd = str(8**int(n))
# print(fd)
print(fd[-1])
else:
last = n[-1]
ints = int(last)
fd = ints*8
# print(fd)
ans = str(fd)
print(ans[-1])
|
Title: Arpa’s hard exam and Mehrdad’s naive cheat
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There exists an island called Arpa’s land, some beautiful girls live there, as ugly ones do.
Mehrdad wants to become minister of Arpa’s land. Arpa has prepared an exam. Exam has only one question, given *n*, print the last digit of 1378*n*.
Mehrdad has become quite confused and wants you to help him. Please help, although it's a naive cheat.
Input Specification:
The single line of input contains one integer *n* (0<=<=≤<=<=*n*<=<=≤<=<=109).
Output Specification:
Print single integer — the last digit of 1378*n*.
Demo Input:
['1\n', '2\n']
Demo Output:
['8', '4']
Note:
In the first example, last digit of 1378<sup class="upper-index">1</sup> = 1378 is 8.
In the second example, last digit of 1378<sup class="upper-index">2</sup> = 1378·1378 = 1898884 is 4.
|
```python
n = int(input())
if n%10==0:
print(6)
else:
n = str(n)
if len(n)==1:
fd = str(8**int(n))
# print(fd)
print(fd[-1])
else:
last = n[-1]
ints = int(last)
fd = ints*8
# print(fd)
ans = str(fd)
print(ans[-1])
```
| 0
|
|
368
|
B
|
Sereja and Suffixes
|
PROGRAMMING
| 1,100
|
[
"data structures",
"dp"
] | null | null |
Sereja has an array *a*, consisting of *n* integers *a*1, *a*2, ..., *a**n*. The boy cannot sit and do nothing, he decided to study an array. Sereja took a piece of paper and wrote out *m* integers *l*1,<=*l*2,<=...,<=*l**m* (1<=≤<=*l**i*<=≤<=*n*). For each number *l**i* he wants to know how many distinct numbers are staying on the positions *l**i*, *l**i*<=+<=1, ..., *n*. Formally, he want to find the number of distinct numbers among *a**l**i*,<=*a**l**i*<=+<=1,<=...,<=*a**n*.?
Sereja wrote out the necessary array elements but the array was so large and the boy was so pressed for time. Help him, find the answer for the described question for each *l**i*.
|
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105) — the array elements.
Next *m* lines contain integers *l*1,<=*l*2,<=...,<=*l**m*. The *i*-th line contains integer *l**i* (1<=≤<=*l**i*<=≤<=*n*).
|
Print *m* lines — on the *i*-th line print the answer to the number *l**i*.
|
[
"10 10\n1 2 3 4 1 2 3 4 100000 99999\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n"
] |
[
"6\n6\n6\n6\n6\n5\n4\n3\n2\n1\n"
] |
none
| 1,000
|
[
{
"input": "10 10\n1 2 3 4 1 2 3 4 100000 99999\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10",
"output": "6\n6\n6\n6\n6\n5\n4\n3\n2\n1"
},
{
"input": "8 3\n8 6 4 3 4 2 4 8\n6\n4\n2",
"output": "3\n4\n5"
},
{
"input": "7 10\n1 3 8 6 2 2 7\n4\n2\n6\n3\n4\n4\n6\n2\n7\n4",
"output": "3\n5\n2\n4\n3\n3\n2\n5\n1\n3"
},
{
"input": "10 2\n2 6 5 7 2 2 3 2 4 8\n1\n2",
"output": "7\n7"
},
{
"input": "7 1\n68346 10956 76708 23018 84063 34833 80407\n1",
"output": "7"
},
{
"input": "2 2\n8 4\n1\n1",
"output": "2\n2"
},
{
"input": "1 5\n5\n1\n1\n1\n1\n1",
"output": "1\n1\n1\n1\n1"
},
{
"input": "4 7\n3 1 4 2\n4\n1\n2\n3\n2\n4\n4",
"output": "1\n4\n3\n2\n3\n1\n1"
},
{
"input": "4 3\n9 1 7 1\n1\n4\n2",
"output": "3\n1\n2"
},
{
"input": "8 3\n9280 6676 2720 6172 8329 10413 3975 1394\n5\n6\n7",
"output": "4\n3\n2"
},
{
"input": "1 1\n1\n1",
"output": "1"
}
] | 1,668,491,399
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 810
| 8,192,000
|
n,m=map(int,input().split())
s=[int(x) for x in input().split()]
t=set()
ans=[]
p=0
for a in reversed(s):
if a not in t:
p+=1
t.add(a)
ans.append(p)
for i in range(m):
k=n-int(input())
print(ans[k])
|
Title: Sereja and Suffixes
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Sereja has an array *a*, consisting of *n* integers *a*1, *a*2, ..., *a**n*. The boy cannot sit and do nothing, he decided to study an array. Sereja took a piece of paper and wrote out *m* integers *l*1,<=*l*2,<=...,<=*l**m* (1<=≤<=*l**i*<=≤<=*n*). For each number *l**i* he wants to know how many distinct numbers are staying on the positions *l**i*, *l**i*<=+<=1, ..., *n*. Formally, he want to find the number of distinct numbers among *a**l**i*,<=*a**l**i*<=+<=1,<=...,<=*a**n*.?
Sereja wrote out the necessary array elements but the array was so large and the boy was so pressed for time. Help him, find the answer for the described question for each *l**i*.
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105) — the array elements.
Next *m* lines contain integers *l*1,<=*l*2,<=...,<=*l**m*. The *i*-th line contains integer *l**i* (1<=≤<=*l**i*<=≤<=*n*).
Output Specification:
Print *m* lines — on the *i*-th line print the answer to the number *l**i*.
Demo Input:
['10 10\n1 2 3 4 1 2 3 4 100000 99999\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n']
Demo Output:
['6\n6\n6\n6\n6\n5\n4\n3\n2\n1\n']
Note:
none
|
```python
n,m=map(int,input().split())
s=[int(x) for x in input().split()]
t=set()
ans=[]
p=0
for a in reversed(s):
if a not in t:
p+=1
t.add(a)
ans.append(p)
for i in range(m):
k=n-int(input())
print(ans[k])
```
| 3
|
|
263
|
A
|
Beautiful Matrix
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
You've got a 5<=×<=5 matrix, consisting of 24 zeroes and a single number one. Let's index the matrix rows by numbers from 1 to 5 from top to bottom, let's index the matrix columns by numbers from 1 to 5 from left to right. In one move, you are allowed to apply one of the two following transformations to the matrix:
1. Swap two neighboring matrix rows, that is, rows with indexes *i* and *i*<=+<=1 for some integer *i* (1<=≤<=*i*<=<<=5). 1. Swap two neighboring matrix columns, that is, columns with indexes *j* and *j*<=+<=1 for some integer *j* (1<=≤<=*j*<=<<=5).
You think that a matrix looks beautiful, if the single number one of the matrix is located in its middle (in the cell that is on the intersection of the third row and the third column). Count the minimum number of moves needed to make the matrix beautiful.
|
The input consists of five lines, each line contains five integers: the *j*-th integer in the *i*-th line of the input represents the element of the matrix that is located on the intersection of the *i*-th row and the *j*-th column. It is guaranteed that the matrix consists of 24 zeroes and a single number one.
|
Print a single integer — the minimum number of moves needed to make the matrix beautiful.
|
[
"0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n",
"0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n"
] |
[
"3\n",
"1\n"
] |
none
| 500
|
[
{
"input": "0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "0"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1",
"output": "4"
},
{
"input": "0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "4"
},
{
"input": "0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "4"
},
{
"input": "0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0",
"output": "4"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0",
"output": "3"
}
] | 1,697,292,318
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 25
| 92
| 0
|
t = 5
content = []
for i in range(t):
contents = [int(x) for x in input().split(' ')]
content.append(contents)
index1 = 0
moves = 0
for i in range(t):
if sum(content[i]):
index1 = i
moves += abs(index1-2)
moves += abs(content[index1].index(1)-2)
print(moves)
|
Title: Beautiful Matrix
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You've got a 5<=×<=5 matrix, consisting of 24 zeroes and a single number one. Let's index the matrix rows by numbers from 1 to 5 from top to bottom, let's index the matrix columns by numbers from 1 to 5 from left to right. In one move, you are allowed to apply one of the two following transformations to the matrix:
1. Swap two neighboring matrix rows, that is, rows with indexes *i* and *i*<=+<=1 for some integer *i* (1<=≤<=*i*<=<<=5). 1. Swap two neighboring matrix columns, that is, columns with indexes *j* and *j*<=+<=1 for some integer *j* (1<=≤<=*j*<=<<=5).
You think that a matrix looks beautiful, if the single number one of the matrix is located in its middle (in the cell that is on the intersection of the third row and the third column). Count the minimum number of moves needed to make the matrix beautiful.
Input Specification:
The input consists of five lines, each line contains five integers: the *j*-th integer in the *i*-th line of the input represents the element of the matrix that is located on the intersection of the *i*-th row and the *j*-th column. It is guaranteed that the matrix consists of 24 zeroes and a single number one.
Output Specification:
Print a single integer — the minimum number of moves needed to make the matrix beautiful.
Demo Input:
['0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n', '0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n']
Demo Output:
['3\n', '1\n']
Note:
none
|
```python
t = 5
content = []
for i in range(t):
contents = [int(x) for x in input().split(' ')]
content.append(contents)
index1 = 0
moves = 0
for i in range(t):
if sum(content[i]):
index1 = i
moves += abs(index1-2)
moves += abs(content[index1].index(1)-2)
print(moves)
```
| 3
|
|
463
|
C
|
Gargari and Bishops
|
PROGRAMMING
| 1,900
|
[
"greedy",
"hashing",
"implementation"
] | null | null |
Gargari is jealous that his friend Caisa won the game from the previous problem. He wants to prove that he is a genius.
He has a *n*<=×<=*n* chessboard. Each cell of the chessboard has a number written on it. Gargari wants to place two bishops on the chessboard in such a way that there is no cell that is attacked by both of them. Consider a cell with number *x* written on it, if this cell is attacked by one of the bishops Gargari will get *x* dollars for it. Tell Gargari, how to place bishops on the chessboard to get maximum amount of money.
We assume a cell is attacked by a bishop, if the cell is located on the same diagonal with the bishop (the cell, where the bishop is, also considered attacked by it).
|
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=2000). Each of the next *n* lines contains *n* integers *a**ij* (0<=≤<=*a**ij*<=≤<=109) — description of the chessboard.
|
On the first line print the maximal number of dollars Gargari will get. On the next line print four integers: *x*1,<=*y*1,<=*x*2,<=*y*2 (1<=≤<=*x*1,<=*y*1,<=*x*2,<=*y*2<=≤<=*n*), where *x**i* is the number of the row where the *i*-th bishop should be placed, *y**i* is the number of the column where the *i*-th bishop should be placed. Consider rows are numbered from 1 to *n* from top to bottom, and columns are numbered from 1 to *n* from left to right.
If there are several optimal solutions, you can print any of them.
|
[
"4\n1 1 1 1\n2 1 1 0\n1 1 1 0\n1 0 0 1\n"
] |
[
"12\n2 2 3 2\n"
] |
none
| 1,500
|
[
{
"input": "4\n1 1 1 1\n2 1 1 0\n1 1 1 0\n1 0 0 1",
"output": "12\n2 2 3 2"
},
{
"input": "10\n48 43 75 80 32 30 65 31 18 91\n99 5 12 43 26 90 54 91 4 88\n8 87 68 95 73 37 53 46 53 90\n50 1 85 24 32 16 5 48 98 74\n38 49 78 2 91 3 43 96 93 46\n35 100 84 2 94 56 90 98 54 43\n88 3 95 72 78 78 87 82 25 37\n8 15 85 85 68 27 40 10 22 84\n7 8 36 90 10 81 98 51 79 51\n93 66 53 39 89 30 16 27 63 93",
"output": "2242\n6 6 7 6"
},
{
"input": "10\n0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0",
"output": "0\n1 1 1 2"
},
{
"input": "15\n2 6 9 4 8 9 10 10 3 8 8 4 4 8 7\n10 9 2 6 8 10 5 2 8 4 9 6 9 10 10\n3 1 5 1 6 5 1 6 4 4 3 3 9 8 10\n5 7 10 6 4 9 6 8 1 5 4 9 10 4 8\n9 6 10 5 8 6 9 9 3 4 4 7 6 2 4\n8 6 10 7 3 3 8 10 3 8 4 8 8 3 1\n7 3 6 8 8 5 5 8 3 7 2 6 3 9 7\n6 8 4 7 7 7 10 4 6 4 3 10 1 10 2\n1 6 7 8 3 4 2 8 1 7 4 4 4 9 5\n3 4 4 6 1 10 2 2 5 8 7 7 7 7 6\n10 9 3 6 8 6 1 9 5 4 7 10 7 1 8\n3 3 4 9 8 6 10 2 9 5 9 5 3 7 3\n1 8 1 3 4 8 10 4 8 4 7 5 4 6 7\n3 10 9 6 8 8 1 8 9 9 4 9 5 6 5\n7 6 3 9 9 8 6 10 3 6 4 2 10 9 7",
"output": "361\n7 9 9 8"
},
{
"input": "8\n3 6 9 2 2 1 4 2\n1 4 10 1 1 10 1 4\n3 8 9 1 8 4 4 4\n5 8 10 5 5 6 4 7\n3 2 10 6 5 3 8 5\n6 7 5 8 8 5 4 2\n4 4 3 1 8 8 5 4\n5 6 8 9 3 1 8 5",
"output": "159\n4 4 5 4"
},
{
"input": "13\n9 9 3 3 5 6 8 2 6 1 10 3 8\n10 4 9 2 10 3 5 10 10 7 10 7 3\n5 8 4 1 10 2 1 2 4 7 9 1 10\n6 3 10 10 10 1 3 10 4 4 2 10 4\n1 7 5 7 9 9 7 4 1 8 5 4 1\n10 10 9 2 2 6 4 1 5 5 1 9 4\n4 2 5 5 7 8 1 2 6 1 2 4 6\n5 1 10 8 1 1 9 1 2 10 6 7 2\n2 1 2 10 4 7 4 1 4 10 10 4 3\n7 7 5 1 2 1 1 4 8 2 4 8 2\n8 8 8 4 1 1 7 3 1 10 1 4 2\n4 5 1 10 8 8 8 4 10 9 4 10 4\n3 1 10 10 5 7 9 4 2 10 4 8 4",
"output": "280\n6 6 7 6"
},
{
"input": "9\n3 9 6 1 7 6 2 8 4\n5 4 1 1 7 2 7 4 10\n7 9 9 4 6 2 7 2 8\n5 7 7 4 9 5 9 1 3\n7 3 10 2 9 4 2 1 2\n5 8 7 4 6 6 2 2 3\n4 8 4 3 4 2 1 8 10\n5 8 2 8 4 4 7 5 4\n2 8 7 4 3 6 10 8 1",
"output": "181\n5 4 6 4"
}
] | 1,697,280,777
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 31
| 0
|
n = int(input())
chessboard = []
for _ in range(n):
row = list(map(int, input().split()))
chessboard.append(row)
# Initialize variables to keep track of the best positions and maximum sum
max_sum = -1
pos1 = (0, 0)
pos2 = (0, 0)
# Calculate the sums for the main diagonal
for i in range(n):
for j in range(n):
if i == j:
continue
current_sum = chessboard[i][i] + chessboard[j][j]
if current_sum > max_sum:
max_sum = current_sum
pos1 = (i, i)
pos2 = (j, j)
# Calculate the sums for the counter-diagonal
for i in range(n):
j = n - i - 1
current_sum = chessboard[i][j] + chessboard[j][i]
if current_sum > max_sum:
max_sum = current_sum
pos1 = (i, j)
pos2 = (j, i)
# Output the results
print(max_sum)
print(pos1[0] + 1, pos1[1] + 1, pos2[0] + 1, pos2[1] + 1)
|
Title: Gargari and Bishops
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Gargari is jealous that his friend Caisa won the game from the previous problem. He wants to prove that he is a genius.
He has a *n*<=×<=*n* chessboard. Each cell of the chessboard has a number written on it. Gargari wants to place two bishops on the chessboard in such a way that there is no cell that is attacked by both of them. Consider a cell with number *x* written on it, if this cell is attacked by one of the bishops Gargari will get *x* dollars for it. Tell Gargari, how to place bishops on the chessboard to get maximum amount of money.
We assume a cell is attacked by a bishop, if the cell is located on the same diagonal with the bishop (the cell, where the bishop is, also considered attacked by it).
Input Specification:
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=2000). Each of the next *n* lines contains *n* integers *a**ij* (0<=≤<=*a**ij*<=≤<=109) — description of the chessboard.
Output Specification:
On the first line print the maximal number of dollars Gargari will get. On the next line print four integers: *x*1,<=*y*1,<=*x*2,<=*y*2 (1<=≤<=*x*1,<=*y*1,<=*x*2,<=*y*2<=≤<=*n*), where *x**i* is the number of the row where the *i*-th bishop should be placed, *y**i* is the number of the column where the *i*-th bishop should be placed. Consider rows are numbered from 1 to *n* from top to bottom, and columns are numbered from 1 to *n* from left to right.
If there are several optimal solutions, you can print any of them.
Demo Input:
['4\n1 1 1 1\n2 1 1 0\n1 1 1 0\n1 0 0 1\n']
Demo Output:
['12\n2 2 3 2\n']
Note:
none
|
```python
n = int(input())
chessboard = []
for _ in range(n):
row = list(map(int, input().split()))
chessboard.append(row)
# Initialize variables to keep track of the best positions and maximum sum
max_sum = -1
pos1 = (0, 0)
pos2 = (0, 0)
# Calculate the sums for the main diagonal
for i in range(n):
for j in range(n):
if i == j:
continue
current_sum = chessboard[i][i] + chessboard[j][j]
if current_sum > max_sum:
max_sum = current_sum
pos1 = (i, i)
pos2 = (j, j)
# Calculate the sums for the counter-diagonal
for i in range(n):
j = n - i - 1
current_sum = chessboard[i][j] + chessboard[j][i]
if current_sum > max_sum:
max_sum = current_sum
pos1 = (i, j)
pos2 = (j, i)
# Output the results
print(max_sum)
print(pos1[0] + 1, pos1[1] + 1, pos2[0] + 1, pos2[1] + 1)
```
| 0
|
|
431
|
A
|
Black Square
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Quite recently, a very smart student named Jury decided that lectures are boring, so he downloaded a game called "Black Square" on his super cool touchscreen phone.
In this game, the phone's screen is divided into four vertical strips. Each second, a black square appears on some of the strips. According to the rules of the game, Jury must use this second to touch the corresponding strip to make the square go away. As Jury is both smart and lazy, he counted that he wastes exactly *a**i* calories on touching the *i*-th strip.
You've got a string *s*, describing the process of the game and numbers *a*1,<=*a*2,<=*a*3,<=*a*4. Calculate how many calories Jury needs to destroy all the squares?
|
The first line contains four space-separated integers *a*1, *a*2, *a*3, *a*4 (0<=≤<=*a*1,<=*a*2,<=*a*3,<=*a*4<=≤<=104).
The second line contains string *s* (1<=≤<=|*s*|<=≤<=105), where the *і*-th character of the string equals "1", if on the *i*-th second of the game the square appears on the first strip, "2", if it appears on the second strip, "3", if it appears on the third strip, "4", if it appears on the fourth strip.
|
Print a single integer — the total number of calories that Jury wastes.
|
[
"1 2 3 4\n123214\n",
"1 5 3 2\n11221\n"
] |
[
"13\n",
"13\n"
] |
none
| 500
|
[
{
"input": "1 2 3 4\n123214",
"output": "13"
},
{
"input": "1 5 3 2\n11221",
"output": "13"
},
{
"input": "5 5 5 1\n3422",
"output": "16"
},
{
"input": "4 3 2 1\n2",
"output": "3"
},
{
"input": "5651 6882 6954 4733\n2442313421",
"output": "60055"
},
{
"input": "0 0 0 0\n4132",
"output": "0"
},
{
"input": "3163 5778 83 7640\n11141442444",
"output": "64270"
},
{
"input": "1809 1302 7164 6122\n3144121413113111223311232232114144321414421243443243422322144324121433444342231344234443332241322442",
"output": "420780"
},
{
"input": "0 0 0 0\n1",
"output": "0"
},
{
"input": "1 2 3 4\n4",
"output": "4"
},
{
"input": "2343 7653 1242 5432\n1",
"output": "2343"
},
{
"input": "2343 7653 1242 5432\n2",
"output": "7653"
},
{
"input": "2343 7653 1242 5432\n3",
"output": "1242"
},
{
"input": "2343 7653 1242 5432\n4",
"output": "5432"
},
{
"input": "1 2 3 4\n123412",
"output": "13"
},
{
"input": "50 50 50 50\n11111111111111111111111111111111111111111111111111111",
"output": "2650"
},
{
"input": "1 2 3 4\n11111111111111111111111111111111111111111111111111",
"output": "50"
},
{
"input": "1 2 3 4\n23123231321231231231231231221232123121312321",
"output": "87"
},
{
"input": "1 2 3 4\n1111111111111222222222233333333333444444444444444",
"output": "126"
},
{
"input": "2 3 1 4\n121321232412342112312313213123123412131231231232",
"output": "105"
}
] | 1,665,497,616
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 31
| 0
|
a1, a2, a3, a4 = map(int, input().split())
s = input()
s_l = [int(i) for i in s]
s1 = x.count(1)
s2 = x.count(2)
s3 = x.count(3)
s4 = x.count(4)
a = s1 * a1
b = s2 * a2
c = s3 * a3
d = s4 * a4
print(a + b + c + d)
|
Title: Black Square
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Quite recently, a very smart student named Jury decided that lectures are boring, so he downloaded a game called "Black Square" on his super cool touchscreen phone.
In this game, the phone's screen is divided into four vertical strips. Each second, a black square appears on some of the strips. According to the rules of the game, Jury must use this second to touch the corresponding strip to make the square go away. As Jury is both smart and lazy, he counted that he wastes exactly *a**i* calories on touching the *i*-th strip.
You've got a string *s*, describing the process of the game and numbers *a*1,<=*a*2,<=*a*3,<=*a*4. Calculate how many calories Jury needs to destroy all the squares?
Input Specification:
The first line contains four space-separated integers *a*1, *a*2, *a*3, *a*4 (0<=≤<=*a*1,<=*a*2,<=*a*3,<=*a*4<=≤<=104).
The second line contains string *s* (1<=≤<=|*s*|<=≤<=105), where the *і*-th character of the string equals "1", if on the *i*-th second of the game the square appears on the first strip, "2", if it appears on the second strip, "3", if it appears on the third strip, "4", if it appears on the fourth strip.
Output Specification:
Print a single integer — the total number of calories that Jury wastes.
Demo Input:
['1 2 3 4\n123214\n', '1 5 3 2\n11221\n']
Demo Output:
['13\n', '13\n']
Note:
none
|
```python
a1, a2, a3, a4 = map(int, input().split())
s = input()
s_l = [int(i) for i in s]
s1 = x.count(1)
s2 = x.count(2)
s3 = x.count(3)
s4 = x.count(4)
a = s1 * a1
b = s2 * a2
c = s3 * a3
d = s4 * a4
print(a + b + c + d)
```
| -1
|
|
218
|
B
|
Airport
|
PROGRAMMING
| 1,100
|
[
"implementation"
] | null | null |
Lolek and Bolek are about to travel abroad by plane. The local airport has a special "Choose Your Plane" offer. The offer's conditions are as follows:
- it is up to a passenger to choose a plane to fly on; - if the chosen plane has *x* (*x*<=><=0) empty seats at the given moment, then the ticket for such a plane costs *x* zlotys (units of Polish currency).
The only ticket office of the airport already has a queue of *n* passengers in front of it. Lolek and Bolek have not stood in the queue yet, but they are already wondering what is the maximum and the minimum number of zlotys the airport administration can earn if all *n* passengers buy tickets according to the conditions of this offer?
The passengers buy tickets in turn, the first person in the queue goes first, then goes the second one, and so on up to *n*-th person.
|
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1000) — the number of passengers in the queue and the number of planes in the airport, correspondingly. The next line contains *m* integers *a*1,<=*a*2,<=...,<=*a**m* (1<=≤<=*a**i*<=≤<=1000) — *a**i* stands for the number of empty seats in the *i*-th plane before the ticket office starts selling tickets.
The numbers in the lines are separated by a space. It is guaranteed that there are at least *n* empty seats in total.
|
Print two integers — the maximum and the minimum number of zlotys that the airport administration can earn, correspondingly.
|
[
"4 3\n2 1 1\n",
"4 3\n2 2 2\n"
] |
[
"5 5\n",
"7 6\n"
] |
In the first test sample the number of passengers is equal to the number of empty seats, so regardless of the way the planes are chosen, the administration will earn the same sum.
In the second sample the sum is maximized if the 1-st person in the queue buys a ticket to the 1-st plane, the 2-nd person — to the 2-nd plane, the 3-rd person — to the 3-rd plane, the 4-th person — to the 1-st plane. The sum is minimized if the 1-st person in the queue buys a ticket to the 1-st plane, the 2-nd person — to the 1-st plane, the 3-rd person — to the 2-nd plane, the 4-th person — to the 2-nd plane.
| 500
|
[
{
"input": "4 3\n2 1 1",
"output": "5 5"
},
{
"input": "4 3\n2 2 2",
"output": "7 6"
},
{
"input": "10 5\n10 3 3 1 2",
"output": "58 26"
},
{
"input": "10 1\n10",
"output": "55 55"
},
{
"input": "10 1\n100",
"output": "955 955"
},
{
"input": "10 2\n4 7",
"output": "37 37"
},
{
"input": "40 10\n1 2 3 4 5 6 7 10 10 10",
"output": "223 158"
},
{
"input": "1 1\n6",
"output": "6 6"
},
{
"input": "1 2\n10 9",
"output": "10 9"
},
{
"input": "2 1\n7",
"output": "13 13"
},
{
"input": "2 2\n7 2",
"output": "13 3"
},
{
"input": "3 2\n4 7",
"output": "18 9"
},
{
"input": "3 3\n2 1 1",
"output": "4 4"
},
{
"input": "3 3\n2 1 1",
"output": "4 4"
},
{
"input": "10 10\n3 1 2 2 1 1 2 1 2 3",
"output": "20 13"
},
{
"input": "10 2\n7 3",
"output": "34 34"
},
{
"input": "10 1\n19",
"output": "145 145"
},
{
"input": "100 3\n29 36 35",
"output": "1731 1731"
},
{
"input": "100 5\n3 38 36 35 2",
"output": "2019 1941"
},
{
"input": "510 132\n50 76 77 69 94 30 47 65 14 62 18 121 26 35 49 17 105 93 47 16 78 3 7 74 7 37 30 36 30 83 71 113 7 58 86 10 65 57 34 102 55 44 43 47 106 44 115 75 109 70 47 45 16 57 62 55 20 88 74 40 45 84 41 1 9 53 65 25 67 31 115 2 63 51 123 70 65 65 18 14 75 14 103 26 117 105 36 104 81 37 35 61 44 90 71 70 88 89 26 21 64 77 89 16 87 99 13 79 27 3 46 120 116 11 14 17 32 70 113 94 108 57 29 100 53 48 44 29 70 30 32 62",
"output": "50279 5479"
},
{
"input": "510 123\n5 2 3 2 5 7 2 3 1 3 6 6 3 1 5 3 5 6 2 2 1 5 5 5 2 2 3 1 6 3 5 8 4 6 1 5 4 5 1 6 5 5 3 6 4 1 6 1 3 5 2 7 5 2 4 4 5 6 5 5 4 3 4 6 5 4 4 3 5 8 5 5 6 3 1 7 4 4 3 3 5 3 6 3 3 6 2 5 3 2 4 5 4 5 2 2 4 4 4 7 3 4 6 5 3 6 4 7 1 6 5 7 6 5 7 3 7 4 4 1 6 6 4",
"output": "1501 1501"
},
{
"input": "610 33\n15 44 8 8 17 11 39 39 38 25 17 36 17 25 21 37 10 11 34 30 29 50 29 50 4 20 32 13 41 14 2 11 2",
"output": "12204 8871"
}
] | 1,521,354,154
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 156
| 7,270,400
|
import fileinput
def straight(nmin, nmax):
n = 0
for i in range(nmin, nmax+1):
n = n + i
return n
c = 0
for line in fileinput.input():
#n = int(line.strip())
if(c == 2):
min = 0
queueMin = queue
for i in range(len(l)):
if(queueMin > l[i]):
queueMin -= l[i]
min += straight(1, l[i])
else:
min += straight(l[i]-queueMin, l[i])
break
dist = 1
max = 0
for i in range(len(l)-1, 0, -1):
if (l[i-1] == l[i]):
dist += 1
continue
if (queue > (l[i]-l[i-1]) * dist):
max += straight(l[i-1]+1, l[i]) * dist
queue -= (l[i] - l[i-1]) * dist
dist += 1
else:
tostraight = int(queue / dist)
tofill = queue % dist
max += straight(l[i]+1-tostraight, l[i]) * dist
max += (l[i]-tostraight)*tofill
queue = 0
break
if (queue != 0):
dist = len(l)
tostraight = int(queue / dist)
tofill = queue % dist
max += straight(l[i]+1-tostraight, l[i]) * dist
max += (l[i]-tostraight)*tofill
print(max,min)
elif(c == 1):
li = line.strip().split()
l = []
for i in li:
l.append(int(i))
l.sort()
else:
queue, plane = line.strip().split()
queue = int(queue)
plane = int(plane)
c = (c + 1) % 3
|
Title: Airport
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Lolek and Bolek are about to travel abroad by plane. The local airport has a special "Choose Your Plane" offer. The offer's conditions are as follows:
- it is up to a passenger to choose a plane to fly on; - if the chosen plane has *x* (*x*<=><=0) empty seats at the given moment, then the ticket for such a plane costs *x* zlotys (units of Polish currency).
The only ticket office of the airport already has a queue of *n* passengers in front of it. Lolek and Bolek have not stood in the queue yet, but they are already wondering what is the maximum and the minimum number of zlotys the airport administration can earn if all *n* passengers buy tickets according to the conditions of this offer?
The passengers buy tickets in turn, the first person in the queue goes first, then goes the second one, and so on up to *n*-th person.
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1000) — the number of passengers in the queue and the number of planes in the airport, correspondingly. The next line contains *m* integers *a*1,<=*a*2,<=...,<=*a**m* (1<=≤<=*a**i*<=≤<=1000) — *a**i* stands for the number of empty seats in the *i*-th plane before the ticket office starts selling tickets.
The numbers in the lines are separated by a space. It is guaranteed that there are at least *n* empty seats in total.
Output Specification:
Print two integers — the maximum and the minimum number of zlotys that the airport administration can earn, correspondingly.
Demo Input:
['4 3\n2 1 1\n', '4 3\n2 2 2\n']
Demo Output:
['5 5\n', '7 6\n']
Note:
In the first test sample the number of passengers is equal to the number of empty seats, so regardless of the way the planes are chosen, the administration will earn the same sum.
In the second sample the sum is maximized if the 1-st person in the queue buys a ticket to the 1-st plane, the 2-nd person — to the 2-nd plane, the 3-rd person — to the 3-rd plane, the 4-th person — to the 1-st plane. The sum is minimized if the 1-st person in the queue buys a ticket to the 1-st plane, the 2-nd person — to the 1-st plane, the 3-rd person — to the 2-nd plane, the 4-th person — to the 2-nd plane.
|
```python
import fileinput
def straight(nmin, nmax):
n = 0
for i in range(nmin, nmax+1):
n = n + i
return n
c = 0
for line in fileinput.input():
#n = int(line.strip())
if(c == 2):
min = 0
queueMin = queue
for i in range(len(l)):
if(queueMin > l[i]):
queueMin -= l[i]
min += straight(1, l[i])
else:
min += straight(l[i]-queueMin, l[i])
break
dist = 1
max = 0
for i in range(len(l)-1, 0, -1):
if (l[i-1] == l[i]):
dist += 1
continue
if (queue > (l[i]-l[i-1]) * dist):
max += straight(l[i-1]+1, l[i]) * dist
queue -= (l[i] - l[i-1]) * dist
dist += 1
else:
tostraight = int(queue / dist)
tofill = queue % dist
max += straight(l[i]+1-tostraight, l[i]) * dist
max += (l[i]-tostraight)*tofill
queue = 0
break
if (queue != 0):
dist = len(l)
tostraight = int(queue / dist)
tofill = queue % dist
max += straight(l[i]+1-tostraight, l[i]) * dist
max += (l[i]-tostraight)*tofill
print(max,min)
elif(c == 1):
li = line.strip().split()
l = []
for i in li:
l.append(int(i))
l.sort()
else:
queue, plane = line.strip().split()
queue = int(queue)
plane = int(plane)
c = (c + 1) % 3
```
| 0
|
|
734
|
A
|
Anton and Danik
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] | null | null |
Anton likes to play chess, and so does his friend Danik.
Once they have played *n* games in a row. For each game it's known who was the winner — Anton or Danik. None of the games ended with a tie.
Now Anton wonders, who won more games, he or Danik? Help him determine this.
|
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of games played.
The second line contains a string *s*, consisting of *n* uppercase English letters 'A' and 'D' — the outcome of each of the games. The *i*-th character of the string is equal to 'A' if the Anton won the *i*-th game and 'D' if Danik won the *i*-th game.
|
If Anton won more games than Danik, print "Anton" (without quotes) in the only line of the output.
If Danik won more games than Anton, print "Danik" (without quotes) in the only line of the output.
If Anton and Danik won the same number of games, print "Friendship" (without quotes).
|
[
"6\nADAAAA\n",
"7\nDDDAADA\n",
"6\nDADADA\n"
] |
[
"Anton\n",
"Danik\n",
"Friendship\n"
] |
In the first sample, Anton won 6 games, while Danik — only 1. Hence, the answer is "Anton".
In the second sample, Anton won 3 games and Danik won 4 games, so the answer is "Danik".
In the third sample, both Anton and Danik won 3 games and the answer is "Friendship".
| 500
|
[
{
"input": "6\nADAAAA",
"output": "Anton"
},
{
"input": "7\nDDDAADA",
"output": "Danik"
},
{
"input": "6\nDADADA",
"output": "Friendship"
},
{
"input": "10\nDDDDADDADD",
"output": "Danik"
},
{
"input": "40\nAAAAAAAAADDAAAAAAAAAAADADDAAAAAAAAAAADAA",
"output": "Anton"
},
{
"input": "200\nDDDDDDDADDDDDDAADADAADAAADAADADAAADDDADDDDDDADDDAADDDAADADDDDDADDDAAAADAAADDDDDAAADAADDDAAAADDADADDDAADDAADAAADAADAAAADDAADDADAAAADADDDAAAAAADDAADAADAADADDDAAADAAAADADDADAAAAAADADADDDADDDAADDADDDAAAAD",
"output": "Friendship"
},
{
"input": "1\nA",
"output": "Anton"
},
{
"input": "1\nD",
"output": "Danik"
},
{
"input": "2\nDA",
"output": "Friendship"
},
{
"input": "4\nDADA",
"output": "Friendship"
},
{
"input": "4\nDAAD",
"output": "Friendship"
},
{
"input": "3\nADD",
"output": "Danik"
},
{
"input": "3\nDAD",
"output": "Danik"
},
{
"input": "2\nDA",
"output": "Friendship"
},
{
"input": "379\nAADAAAAAADDAAAAAADAADADADDAAAAADADDAADAAAADDDADAAAAAAADAADAAAAAAADAAAAAAAAADAAAAAAADAAAAAAAAAAADDDADAAAAAAAADAADADAAAADAAAAAAAAAAAAAAAAADAAAADDDAADAAAAAAADAAADAAADAADDDADDAAADAAAAAADDDADDDAAADAAAADAAAAAAAAADAAADAAAAAAAAADAAAAAAAAAAAAAAAAAADADAAAAAAAAAAADAAAAADAAAADAAAAAAAAAAAAADADAADAAAAAAAADAADAAAAAAAADAAAAAAAADDDAAAAAADAAADAAAAAADAADAAAAAADAAAADADAADAAAAAADAAAADAADDAADAADAAA",
"output": "Anton"
}
] | 1,694,520,829
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 6
| 1,000
| 102,400
|
n=int(input())
l=input()
a=0
d=0
for i in l:
a+=l.count('A')
d+=l.count('D')
if(a>d):
print("Anton")
elif(d>a):
print("Danik")
else:
print("Friendship")
|
Title: Anton and Danik
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Anton likes to play chess, and so does his friend Danik.
Once they have played *n* games in a row. For each game it's known who was the winner — Anton or Danik. None of the games ended with a tie.
Now Anton wonders, who won more games, he or Danik? Help him determine this.
Input Specification:
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of games played.
The second line contains a string *s*, consisting of *n* uppercase English letters 'A' and 'D' — the outcome of each of the games. The *i*-th character of the string is equal to 'A' if the Anton won the *i*-th game and 'D' if Danik won the *i*-th game.
Output Specification:
If Anton won more games than Danik, print "Anton" (without quotes) in the only line of the output.
If Danik won more games than Anton, print "Danik" (without quotes) in the only line of the output.
If Anton and Danik won the same number of games, print "Friendship" (without quotes).
Demo Input:
['6\nADAAAA\n', '7\nDDDAADA\n', '6\nDADADA\n']
Demo Output:
['Anton\n', 'Danik\n', 'Friendship\n']
Note:
In the first sample, Anton won 6 games, while Danik — only 1. Hence, the answer is "Anton".
In the second sample, Anton won 3 games and Danik won 4 games, so the answer is "Danik".
In the third sample, both Anton and Danik won 3 games and the answer is "Friendship".
|
```python
n=int(input())
l=input()
a=0
d=0
for i in l:
a+=l.count('A')
d+=l.count('D')
if(a>d):
print("Anton")
elif(d>a):
print("Danik")
else:
print("Friendship")
```
| 0
|
|
69
|
A
|
Young Physicist
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math"
] |
A. Young Physicist
|
2
|
256
|
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
|
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
|
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
|
[
"3\n4 1 7\n-2 4 -1\n1 -5 -3\n",
"3\n3 -1 7\n-5 2 -4\n2 -1 -3\n"
] |
[
"NO",
"YES"
] |
none
| 500
|
[
{
"input": "3\n4 1 7\n-2 4 -1\n1 -5 -3",
"output": "NO"
},
{
"input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3",
"output": "YES"
},
{
"input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41",
"output": "NO"
},
{
"input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33",
"output": "NO"
},
{
"input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7",
"output": "NO"
},
{
"input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38",
"output": "NO"
},
{
"input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6",
"output": "YES"
},
{
"input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0",
"output": "YES"
},
{
"input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0",
"output": "YES"
},
{
"input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0",
"output": "YES"
},
{
"input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0",
"output": "YES"
},
{
"input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0",
"output": "YES"
},
{
"input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87",
"output": "YES"
},
{
"input": "3\n1 2 3\n3 2 1\n0 0 0",
"output": "NO"
},
{
"input": "2\n5 -23 12\n0 0 0",
"output": "NO"
},
{
"input": "1\n0 0 0",
"output": "YES"
},
{
"input": "1\n1 -2 0",
"output": "NO"
},
{
"input": "2\n-23 77 -86\n23 -77 86",
"output": "YES"
},
{
"input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82",
"output": "YES"
},
{
"input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0",
"output": "YES"
},
{
"input": "3\n96 49 -12\n2 -66 28\n-98 17 -16",
"output": "YES"
},
{
"input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0",
"output": "YES"
},
{
"input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53",
"output": "YES"
},
{
"input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1",
"output": "YES"
},
{
"input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0",
"output": "YES"
},
{
"input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0",
"output": "YES"
},
{
"input": "3\n0 2 -2\n1 -1 3\n-3 0 0",
"output": "NO"
}
] | 1,647,444,784
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 81
| 92
| 0
|
n=int(input())
l=[]
for i in range(n):
r=list(map(int,input().split()))
l.append(r)
c=0
for i in range(3):
s=0
for j in range(n):
s=s+l[j][i]
if s==0:
c=c+1
if c==3:
print("YES")
else:
print("NO")
|
Title: Young Physicist
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
Input Specification:
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Output Specification:
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
Demo Input:
['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n']
Demo Output:
['NO', 'YES']
Note:
none
|
```python
n=int(input())
l=[]
for i in range(n):
r=list(map(int,input().split()))
l.append(r)
c=0
for i in range(3):
s=0
for j in range(n):
s=s+l[j][i]
if s==0:
c=c+1
if c==3:
print("YES")
else:
print("NO")
```
| 3.977
|
870
|
A
|
Search for Pretty Integers
|
PROGRAMMING
| 900
|
[
"brute force",
"implementation"
] | null | null |
You are given two lists of non-zero digits.
Let's call an integer pretty if its (base 10) representation has at least one digit from the first list and at least one digit from the second list. What is the smallest positive pretty integer?
|
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=9) — the lengths of the first and the second lists, respectively.
The second line contains *n* distinct digits *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=9) — the elements of the first list.
The third line contains *m* distinct digits *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=9) — the elements of the second list.
|
Print the smallest pretty integer.
|
[
"2 3\n4 2\n5 7 6\n",
"8 8\n1 2 3 4 5 6 7 8\n8 7 6 5 4 3 2 1\n"
] |
[
"25\n",
"1\n"
] |
In the first example 25, 46, 24567 are pretty, as well as many other integers. The smallest among them is 25. 42 and 24 are not pretty because they don't have digits from the second list.
In the second example all integers that have at least one digit different from 9 are pretty. It's obvious that the smallest among them is 1, because it's the smallest positive integer.
| 500
|
[
{
"input": "2 3\n4 2\n5 7 6",
"output": "25"
},
{
"input": "8 8\n1 2 3 4 5 6 7 8\n8 7 6 5 4 3 2 1",
"output": "1"
},
{
"input": "1 1\n9\n1",
"output": "19"
},
{
"input": "9 1\n5 4 2 3 6 1 7 9 8\n9",
"output": "9"
},
{
"input": "5 3\n7 2 5 8 6\n3 1 9",
"output": "12"
},
{
"input": "4 5\n5 2 6 4\n8 9 1 3 7",
"output": "12"
},
{
"input": "5 9\n4 2 1 6 7\n2 3 4 5 6 7 8 9 1",
"output": "1"
},
{
"input": "9 9\n5 4 3 2 1 6 7 8 9\n3 2 1 5 4 7 8 9 6",
"output": "1"
},
{
"input": "9 5\n2 3 4 5 6 7 8 9 1\n4 2 1 6 7",
"output": "1"
},
{
"input": "9 9\n1 2 3 4 5 6 7 8 9\n1 2 3 4 5 6 7 8 9",
"output": "1"
},
{
"input": "9 9\n1 2 3 4 5 6 7 8 9\n9 8 7 6 5 4 3 2 1",
"output": "1"
},
{
"input": "9 9\n9 8 7 6 5 4 3 2 1\n1 2 3 4 5 6 7 8 9",
"output": "1"
},
{
"input": "9 9\n9 8 7 6 5 4 3 2 1\n9 8 7 6 5 4 3 2 1",
"output": "1"
},
{
"input": "1 1\n8\n9",
"output": "89"
},
{
"input": "1 1\n9\n8",
"output": "89"
},
{
"input": "1 1\n1\n2",
"output": "12"
},
{
"input": "1 1\n2\n1",
"output": "12"
},
{
"input": "1 1\n9\n9",
"output": "9"
},
{
"input": "1 1\n1\n1",
"output": "1"
},
{
"input": "4 5\n3 2 4 5\n1 6 5 9 8",
"output": "5"
},
{
"input": "3 2\n4 5 6\n1 5",
"output": "5"
},
{
"input": "5 4\n1 3 5 6 7\n2 4 3 9",
"output": "3"
},
{
"input": "5 5\n1 3 5 7 9\n2 4 6 8 9",
"output": "9"
},
{
"input": "2 2\n1 8\n2 8",
"output": "8"
},
{
"input": "5 5\n5 6 7 8 9\n1 2 3 4 5",
"output": "5"
},
{
"input": "5 5\n1 2 3 4 5\n1 2 3 4 5",
"output": "1"
},
{
"input": "5 5\n1 2 3 4 5\n2 3 4 5 6",
"output": "2"
},
{
"input": "2 2\n1 5\n2 5",
"output": "5"
},
{
"input": "4 4\n1 3 5 8\n2 4 6 8",
"output": "8"
},
{
"input": "3 3\n1 5 3\n2 5 7",
"output": "5"
},
{
"input": "3 3\n3 6 8\n2 6 9",
"output": "6"
},
{
"input": "2 2\n1 4\n2 4",
"output": "4"
},
{
"input": "5 3\n3 4 5 6 7\n1 5 9",
"output": "5"
},
{
"input": "4 4\n1 2 3 4\n2 5 6 7",
"output": "2"
},
{
"input": "5 5\n1 2 3 4 5\n9 2 1 7 5",
"output": "1"
},
{
"input": "2 2\n1 3\n2 3",
"output": "3"
},
{
"input": "3 3\n3 2 1\n3 2 1",
"output": "1"
},
{
"input": "3 3\n1 3 5\n2 3 6",
"output": "3"
},
{
"input": "3 3\n5 6 7\n5 6 7",
"output": "5"
},
{
"input": "1 2\n5\n2 5",
"output": "5"
},
{
"input": "3 3\n2 4 9\n7 8 9",
"output": "9"
},
{
"input": "3 3\n1 2 4\n3 4 5",
"output": "4"
},
{
"input": "3 2\n1 4 9\n2 4",
"output": "4"
},
{
"input": "3 3\n3 5 6\n1 5 9",
"output": "5"
},
{
"input": "3 2\n1 2 4\n3 4",
"output": "4"
},
{
"input": "2 4\n8 9\n1 2 3 9",
"output": "9"
},
{
"input": "1 2\n9\n8 9",
"output": "9"
},
{
"input": "3 2\n1 2 4\n4 2",
"output": "2"
},
{
"input": "2 3\n4 5\n1 3 5",
"output": "5"
},
{
"input": "3 2\n1 2 3\n2 3",
"output": "2"
},
{
"input": "4 3\n1 3 5 9\n2 8 9",
"output": "9"
},
{
"input": "2 2\n1 9\n9 2",
"output": "9"
}
] | 1,544,180,007
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 3
| 108
| 0
|
_ = input()
a = [int(i) for i in input().split()]
b = [int(i) for i in input().split()]
a, b = min(a), min(b)
if a == b:
print(a)
else:
print(str(min(a, b)) + str(max(a, b)))
|
Title: Search for Pretty Integers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given two lists of non-zero digits.
Let's call an integer pretty if its (base 10) representation has at least one digit from the first list and at least one digit from the second list. What is the smallest positive pretty integer?
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=9) — the lengths of the first and the second lists, respectively.
The second line contains *n* distinct digits *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=9) — the elements of the first list.
The third line contains *m* distinct digits *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=9) — the elements of the second list.
Output Specification:
Print the smallest pretty integer.
Demo Input:
['2 3\n4 2\n5 7 6\n', '8 8\n1 2 3 4 5 6 7 8\n8 7 6 5 4 3 2 1\n']
Demo Output:
['25\n', '1\n']
Note:
In the first example 25, 46, 24567 are pretty, as well as many other integers. The smallest among them is 25. 42 and 24 are not pretty because they don't have digits from the second list.
In the second example all integers that have at least one digit different from 9 are pretty. It's obvious that the smallest among them is 1, because it's the smallest positive integer.
|
```python
_ = input()
a = [int(i) for i in input().split()]
b = [int(i) for i in input().split()]
a, b = min(a), min(b)
if a == b:
print(a)
else:
print(str(min(a, b)) + str(max(a, b)))
```
| 0
|
|
651
|
A
|
Joysticks
|
PROGRAMMING
| 1,100
|
[
"dp",
"greedy",
"implementation",
"math"
] | null | null |
Friends are going to play console. They have two joysticks and only one charger for them. Initially first joystick is charged at *a*1 percent and second one is charged at *a*2 percent. You can connect charger to a joystick only at the beginning of each minute. In one minute joystick either discharges by 2 percent (if not connected to a charger) or charges by 1 percent (if connected to a charger).
Game continues while both joysticks have a positive charge. Hence, if at the beginning of minute some joystick is charged by 1 percent, it has to be connected to a charger, otherwise the game stops. If some joystick completely discharges (its charge turns to 0), the game also stops.
Determine the maximum number of minutes that game can last. It is prohibited to pause the game, i. e. at each moment both joysticks should be enabled. It is allowed for joystick to be charged by more than 100 percent.
|
The first line of the input contains two positive integers *a*1 and *a*2 (1<=≤<=*a*1,<=*a*2<=≤<=100), the initial charge level of first and second joystick respectively.
|
Output the only integer, the maximum number of minutes that the game can last. Game continues until some joystick is discharged.
|
[
"3 5\n",
"4 4\n"
] |
[
"6\n",
"5\n"
] |
In the first sample game lasts for 6 minute by using the following algorithm:
- at the beginning of the first minute connect first joystick to the charger, by the end of this minute first joystick is at 4%, second is at 3%; - continue the game without changing charger, by the end of the second minute the first joystick is at 5%, second is at 1%; - at the beginning of the third minute connect second joystick to the charger, after this minute the first joystick is at 3%, the second one is at 2%; - continue the game without changing charger, by the end of the fourth minute first joystick is at 1%, second one is at 3%; - at the beginning of the fifth minute connect first joystick to the charger, after this minute the first joystick is at 2%, the second one is at 1%; - at the beginning of the sixth minute connect second joystick to the charger, after this minute the first joystick is at 0%, the second one is at 2%.
After that the first joystick is completely discharged and the game is stopped.
| 500
|
[
{
"input": "3 5",
"output": "6"
},
{
"input": "4 4",
"output": "5"
},
{
"input": "100 100",
"output": "197"
},
{
"input": "1 100",
"output": "98"
},
{
"input": "100 1",
"output": "98"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "8 8",
"output": "13"
},
{
"input": "7 2",
"output": "7"
},
{
"input": "24 15",
"output": "36"
},
{
"input": "19 30",
"output": "47"
},
{
"input": "15 31",
"output": "44"
},
{
"input": "14 15",
"output": "27"
},
{
"input": "58 33",
"output": "89"
},
{
"input": "15 25",
"output": "38"
},
{
"input": "59 45",
"output": "102"
},
{
"input": "3 73",
"output": "74"
},
{
"input": "48 1",
"output": "47"
},
{
"input": "100 25",
"output": "122"
},
{
"input": "40 49",
"output": "86"
},
{
"input": "85 73",
"output": "155"
},
{
"input": "29 1",
"output": "28"
},
{
"input": "74 25",
"output": "97"
},
{
"input": "24 57",
"output": "78"
},
{
"input": "23 12",
"output": "33"
},
{
"input": "2 99",
"output": "99"
},
{
"input": "98 2",
"output": "97"
},
{
"input": "2 97",
"output": "97"
},
{
"input": "30 54",
"output": "81"
},
{
"input": "32 53",
"output": "82"
},
{
"input": "32 54",
"output": "84"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "2 1",
"output": "1"
},
{
"input": "2 2",
"output": "1"
},
{
"input": "1 3",
"output": "2"
},
{
"input": "3 1",
"output": "2"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "3 2",
"output": "3"
}
] | 1,651,105,355
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 2
| 31
| 0
|
'''
# Submitted By [email protected]
Don't Copy This Code, Try To Solve It By Yourself
'''
# Problem Name = "Joysticks"
# Class: A
def Solve():
a, b=map(int, input().split())
if a%2==0 and b%2==0:
print(int((a+b)/2+1))
else:
print(int((a+b)//2+2))
if __name__ == "__main__":
Solve()
|
Title: Joysticks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Friends are going to play console. They have two joysticks and only one charger for them. Initially first joystick is charged at *a*1 percent and second one is charged at *a*2 percent. You can connect charger to a joystick only at the beginning of each minute. In one minute joystick either discharges by 2 percent (if not connected to a charger) or charges by 1 percent (if connected to a charger).
Game continues while both joysticks have a positive charge. Hence, if at the beginning of minute some joystick is charged by 1 percent, it has to be connected to a charger, otherwise the game stops. If some joystick completely discharges (its charge turns to 0), the game also stops.
Determine the maximum number of minutes that game can last. It is prohibited to pause the game, i. e. at each moment both joysticks should be enabled. It is allowed for joystick to be charged by more than 100 percent.
Input Specification:
The first line of the input contains two positive integers *a*1 and *a*2 (1<=≤<=*a*1,<=*a*2<=≤<=100), the initial charge level of first and second joystick respectively.
Output Specification:
Output the only integer, the maximum number of minutes that the game can last. Game continues until some joystick is discharged.
Demo Input:
['3 5\n', '4 4\n']
Demo Output:
['6\n', '5\n']
Note:
In the first sample game lasts for 6 minute by using the following algorithm:
- at the beginning of the first minute connect first joystick to the charger, by the end of this minute first joystick is at 4%, second is at 3%; - continue the game without changing charger, by the end of the second minute the first joystick is at 5%, second is at 1%; - at the beginning of the third minute connect second joystick to the charger, after this minute the first joystick is at 3%, the second one is at 2%; - continue the game without changing charger, by the end of the fourth minute first joystick is at 1%, second one is at 3%; - at the beginning of the fifth minute connect first joystick to the charger, after this minute the first joystick is at 2%, the second one is at 1%; - at the beginning of the sixth minute connect second joystick to the charger, after this minute the first joystick is at 0%, the second one is at 2%.
After that the first joystick is completely discharged and the game is stopped.
|
```python
'''
# Submitted By [email protected]
Don't Copy This Code, Try To Solve It By Yourself
'''
# Problem Name = "Joysticks"
# Class: A
def Solve():
a, b=map(int, input().split())
if a%2==0 and b%2==0:
print(int((a+b)/2+1))
else:
print(int((a+b)//2+2))
if __name__ == "__main__":
Solve()
```
| 0
|
|
41
|
A
|
Translation
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Translation
|
2
|
256
|
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
|
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
|
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
|
[
"code\nedoc\n",
"abb\naba\n",
"code\ncode\n"
] |
[
"YES\n",
"NO\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "code\nedoc",
"output": "YES"
},
{
"input": "abb\naba",
"output": "NO"
},
{
"input": "code\ncode",
"output": "NO"
},
{
"input": "abacaba\nabacaba",
"output": "YES"
},
{
"input": "q\nq",
"output": "YES"
},
{
"input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk",
"output": "NO"
},
{
"input": "z\na",
"output": "NO"
},
{
"input": "asd\ndsa",
"output": "YES"
},
{
"input": "abcdef\nfecdba",
"output": "NO"
},
{
"input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu",
"output": "NO"
},
{
"input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf",
"output": "NO"
},
{
"input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp",
"output": "NO"
},
{
"input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb",
"output": "NO"
},
{
"input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom",
"output": "NO"
},
{
"input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh",
"output": "NO"
},
{
"input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy",
"output": "NO"
},
{
"input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko",
"output": "NO"
},
{
"input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv",
"output": "NO"
},
{
"input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd",
"output": "NO"
},
{
"input": "w\nw",
"output": "YES"
},
{
"input": "vz\nzv",
"output": "YES"
},
{
"input": "ry\nyr",
"output": "YES"
},
{
"input": "xou\nuox",
"output": "YES"
},
{
"input": "axg\ngax",
"output": "NO"
},
{
"input": "zdsl\nlsdz",
"output": "YES"
},
{
"input": "kudl\nldku",
"output": "NO"
},
{
"input": "zzlzwnqlcl\nlclqnwzlzz",
"output": "YES"
},
{
"input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv",
"output": "YES"
},
{
"input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar",
"output": "NO"
},
{
"input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn",
"output": "YES"
},
{
"input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum",
"output": "YES"
},
{
"input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv",
"output": "YES"
},
{
"input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm",
"output": "NO"
},
{
"input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd",
"output": "NO"
},
{
"input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg",
"output": "YES"
},
{
"input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis",
"output": "YES"
},
{
"input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy",
"output": "NO"
},
{
"input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw",
"output": "YES"
},
{
"input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi",
"output": "YES"
},
{
"input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib",
"output": "YES"
}
] | 1,694,643,865
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 60
| 0
|
x = input()
y = list(x)
z = list(x)
n = 0
while n < int(len(x) / 2):
z[n] = y[-n - 1]
z[-n-1] = y[n]
n += 1
x = ''.join([str(elem) for elem in z])
print(x)
|
Title: Translation
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
Input Specification:
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
Output Specification:
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
Demo Input:
['code\nedoc\n', 'abb\naba\n', 'code\ncode\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n']
Note:
none
|
```python
x = input()
y = list(x)
z = list(x)
n = 0
while n < int(len(x) / 2):
z[n] = y[-n - 1]
z[-n-1] = y[n]
n += 1
x = ''.join([str(elem) for elem in z])
print(x)
```
| 0
|
493
|
A
|
Vasya and Football
|
PROGRAMMING
| 1,300
|
[
"implementation"
] | null | null |
Vasya has started watching football games. He has learned that for some fouls the players receive yellow cards, and for some fouls they receive red cards. A player who receives the second yellow card automatically receives a red card.
Vasya is watching a recorded football match now and makes notes of all the fouls that he would give a card for. Help Vasya determine all the moments in time when players would be given red cards if Vasya were the judge. For each player, Vasya wants to know only the first moment of time when he would receive a red card from Vasya.
|
The first line contains the name of the team playing at home. The second line contains the name of the team playing away. Both lines are not empty. The lengths of both lines do not exceed 20. Each line contains only of large English letters. The names of the teams are distinct.
Next follows number *n* (1<=≤<=*n*<=≤<=90) — the number of fouls.
Each of the following *n* lines contains information about a foul in the following form:
- first goes number *t* (1<=≤<=*t*<=≤<=90) — the minute when the foul occurs; - then goes letter "h" or letter "a" — if the letter is "h", then the card was given to a home team player, otherwise the card was given to an away team player; - then goes the player's number *m* (1<=≤<=*m*<=≤<=99); - then goes letter "y" or letter "r" — if the letter is "y", that means that the yellow card was given, otherwise the red card was given.
The players from different teams can have the same number. The players within one team have distinct numbers. The fouls go chronologically, no two fouls happened at the same minute.
|
For each event when a player received his first red card in a chronological order print a string containing the following information:
- The name of the team to which the player belongs; - the player's number in his team; - the minute when he received the card.
If no player received a card, then you do not need to print anything.
It is possible case that the program will not print anything to the output (if there were no red cards).
|
[
"MC\nCSKA\n9\n28 a 3 y\n62 h 25 y\n66 h 42 y\n70 h 25 y\n77 a 4 y\n79 a 25 y\n82 h 42 r\n89 h 16 y\n90 a 13 r\n"
] |
[
"MC 25 70\nMC 42 82\nCSKA 13 90\n"
] |
none
| 500
|
[
{
"input": "MC\nCSKA\n9\n28 a 3 y\n62 h 25 y\n66 h 42 y\n70 h 25 y\n77 a 4 y\n79 a 25 y\n82 h 42 r\n89 h 16 y\n90 a 13 r",
"output": "MC 25 70\nMC 42 82\nCSKA 13 90"
},
{
"input": "REAL\nBARCA\n3\n27 h 7 y\n44 a 10 y\n87 h 3 r",
"output": "REAL 3 87"
},
{
"input": "MASFF\nSAFBDSRG\n5\n1 h 1 y\n15 h 1 r\n27 a 1 y\n58 a 1 y\n69 h 10 y",
"output": "MASFF 1 15\nSAFBDSRG 1 58"
},
{
"input": "ARMENIA\nBULGARIA\n12\n33 h 17 y\n42 h 21 y\n56 a 17 y\n58 a 6 y\n61 a 7 y\n68 a 10 y\n72 h 13 y\n73 h 21 y\n74 a 8 r\n75 a 4 y\n77 a 10 y\n90 a 23 y",
"output": "ARMENIA 21 73\nBULGARIA 8 74\nBULGARIA 10 77"
},
{
"input": "PORTUGAL\nNETHERLANDS\n16\n2 a 18 y\n7 a 3 y\n20 h 18 y\n31 h 6 y\n45 h 6 y\n50 h 8 y\n59 a 5 y\n60 h 7 y\n63 a 3 y\n72 a 20 y\n73 h 20 y\n74 a 10 y\n75 h 1 y\n76 h 14 y\n78 h 20 y\n90 a 5 y",
"output": "PORTUGAL 6 45\nNETHERLANDS 3 63\nPORTUGAL 20 78\nNETHERLANDS 5 90"
},
{
"input": "TANC\nXNCOR\n2\n15 h 27 r\n28 h 27 r",
"output": "TANC 27 15"
},
{
"input": "ASGDFJH\nAHGRSDXGER\n3\n23 h 15 r\n68 h 15 y\n79 h 15 y",
"output": "ASGDFJH 15 23"
},
{
"input": "ASFSHDSG\nADGYRTJNG\n5\n1 h 1 y\n2 h 1 y\n3 h 1 y\n4 h 1 r\n5 h 1 y",
"output": "ASFSHDSG 1 2"
},
{
"input": "A\nB\n42\n5 a 84 y\n8 h 28 r\n10 a 9 r\n11 h 93 y\n13 a 11 r\n15 h 3 r\n20 a 88 r\n23 a 41 y\n25 a 14 y\n27 a 38 r\n28 a 33 y\n29 h 66 r\n31 a 16 r\n32 a 80 y\n34 a 54 r\n35 a 50 y\n36 a 9 y\n39 a 22 y\n42 h 81 y\n43 a 10 y\n44 a 27 r\n47 h 39 y\n48 a 80 y\n50 h 5 y\n52 a 67 y\n54 h 63 y\n56 h 7 y\n57 h 44 y\n58 h 41 y\n61 h 32 y\n64 h 91 y\n67 a 56 y\n69 h 83 y\n71 h 59 y\n72 a 76 y\n75 h 41 y\n76 a 49 r\n77 a 4 r\n78 a 69 y\n79 a 96 r\n80 h 81 y\n86 h 85 r",
"output": "A 28 8\nB 9 10\nB 11 13\nA 3 15\nB 88 20\nB 38 27\nA 66 29\nB 16 31\nB 54 34\nB 27 44\nB 80 48\nA 41 75\nB 49 76\nB 4 77\nB 96 79\nA 81 80\nA 85 86"
},
{
"input": "ARM\nAZE\n45\n2 a 13 r\n3 a 73 r\n4 a 10 y\n5 h 42 y\n8 h 56 y\n10 h 15 y\n11 a 29 r\n13 a 79 y\n14 a 77 r\n18 h 7 y\n20 a 69 r\n22 h 19 y\n25 h 88 r\n26 a 78 y\n27 a 91 r\n28 h 10 r\n30 h 13 r\n31 a 26 r\n33 a 43 r\n34 a 91 y\n40 h 57 y\n44 h 18 y\n46 a 25 r\n48 a 29 y\n51 h 71 y\n57 a 16 r\n58 h 37 r\n59 h 92 y\n60 h 11 y\n61 a 88 y\n64 a 28 r\n65 h 71 r\n68 h 39 y\n70 h 8 r\n71 a 10 y\n72 a 32 y\n73 h 95 r\n74 a 33 y\n75 h 48 r\n78 a 44 y\n79 a 22 r\n80 h 50 r\n84 a 50 y\n88 a 90 y\n89 h 42 r",
"output": "AZE 13 2\nAZE 73 3\nAZE 29 11\nAZE 77 14\nAZE 69 20\nARM 88 25\nAZE 91 27\nARM 10 28\nARM 13 30\nAZE 26 31\nAZE 43 33\nAZE 25 46\nAZE 16 57\nARM 37 58\nAZE 28 64\nARM 71 65\nARM 8 70\nAZE 10 71\nARM 95 73\nARM 48 75\nAZE 22 79\nARM 50 80\nARM 42 89"
},
{
"input": "KASFLS\nASJBGGDLJFDDFHHTHJH\n42\n2 a 68 y\n4 h 64 r\n5 a 24 y\n6 h 20 r\n8 a 16 r\n9 a 96 y\n10 h 36 r\n12 a 44 y\n13 h 69 r\n16 a 62 r\n18 a 99 r\n20 h 12 r\n21 a 68 y\n25 h 40 y\n26 h 54 r\n28 h 91 r\n29 a 36 r\n33 a 91 y\n36 h 93 r\n37 h 60 r\n38 a 82 r\n41 a 85 y\n42 a 62 r\n46 a 22 r\n48 a 88 r\n49 a 8 r\n51 h 45 y\n54 a 84 y\n57 a 8 y\n59 h 24 y\n61 h 22 r\n64 h 11 r\n69 a 89 y\n72 h 44 r\n75 h 57 r\n76 h 80 y\n77 h 54 r\n79 a 1 y\n81 a 31 r\n82 h 8 y\n83 a 28 r\n86 h 56 y",
"output": "KASFLS 64 4\nKASFLS 20 6\nASJBGGDLJFDDFHHTHJH 16 8\nKASFLS 36 10\nKASFLS 69 13\nASJBGGDLJFDDFHHTHJH 62 16\nASJBGGDLJFDDFHHTHJH 99 18\nKASFLS 12 20\nASJBGGDLJFDDFHHTHJH 68 21\nKASFLS 54 26\nKASFLS 91 28\nASJBGGDLJFDDFHHTHJH 36 29\nKASFLS 93 36\nKASFLS 60 37\nASJBGGDLJFDDFHHTHJH 82 38\nASJBGGDLJFDDFHHTHJH 22 46\nASJBGGDLJFDDFHHTHJH 88 48\nASJBGGDLJFDDFHHTHJH 8 49\nKASFLS 22 61\nKASFLS 11 64\nKASFLS 44 72\nKASFLS 57 75\nASJBGGDLJFDDFHHTHJH 31 81\nASJBGGDLJFDDFHHTHJH 28 83"
},
{
"input": "AB\nBC\n3\n1 h 1 y\n2 h 1 y\n3 h 1 r",
"output": "AB 1 2"
}
] | 1,417,749,428
| 3,728
|
Python 3
|
OK
|
TESTS
| 18
| 77
| 0
|
card_dict=dict()
res=[]
players=set()
home=input()
other=input()
num=int(input())
for i in range(0,num):
(m,t,n,c)=input().split(' ')
m=int(m)
if t=='h':
tname=home
else:
tname=other
if (t,n) not in card_dict:
card_dict[(t,n)]=0
if c=='y':
card_dict[(t,n)]+=1
else:
card_dict[(t,n)]+=2
if card_dict[(t,n)]>=2 and (t,n) not in players:
res.append((tname,n,m))
players.add((t,n))
res.sort(key=lambda x:x[2])
for r in res:
print(r[0]+' '+r[1]+' '+str(r[2]))
|
Title: Vasya and Football
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya has started watching football games. He has learned that for some fouls the players receive yellow cards, and for some fouls they receive red cards. A player who receives the second yellow card automatically receives a red card.
Vasya is watching a recorded football match now and makes notes of all the fouls that he would give a card for. Help Vasya determine all the moments in time when players would be given red cards if Vasya were the judge. For each player, Vasya wants to know only the first moment of time when he would receive a red card from Vasya.
Input Specification:
The first line contains the name of the team playing at home. The second line contains the name of the team playing away. Both lines are not empty. The lengths of both lines do not exceed 20. Each line contains only of large English letters. The names of the teams are distinct.
Next follows number *n* (1<=≤<=*n*<=≤<=90) — the number of fouls.
Each of the following *n* lines contains information about a foul in the following form:
- first goes number *t* (1<=≤<=*t*<=≤<=90) — the minute when the foul occurs; - then goes letter "h" or letter "a" — if the letter is "h", then the card was given to a home team player, otherwise the card was given to an away team player; - then goes the player's number *m* (1<=≤<=*m*<=≤<=99); - then goes letter "y" or letter "r" — if the letter is "y", that means that the yellow card was given, otherwise the red card was given.
The players from different teams can have the same number. The players within one team have distinct numbers. The fouls go chronologically, no two fouls happened at the same minute.
Output Specification:
For each event when a player received his first red card in a chronological order print a string containing the following information:
- The name of the team to which the player belongs; - the player's number in his team; - the minute when he received the card.
If no player received a card, then you do not need to print anything.
It is possible case that the program will not print anything to the output (if there were no red cards).
Demo Input:
['MC\nCSKA\n9\n28 a 3 y\n62 h 25 y\n66 h 42 y\n70 h 25 y\n77 a 4 y\n79 a 25 y\n82 h 42 r\n89 h 16 y\n90 a 13 r\n']
Demo Output:
['MC 25 70\nMC 42 82\nCSKA 13 90\n']
Note:
none
|
```python
card_dict=dict()
res=[]
players=set()
home=input()
other=input()
num=int(input())
for i in range(0,num):
(m,t,n,c)=input().split(' ')
m=int(m)
if t=='h':
tname=home
else:
tname=other
if (t,n) not in card_dict:
card_dict[(t,n)]=0
if c=='y':
card_dict[(t,n)]+=1
else:
card_dict[(t,n)]+=2
if card_dict[(t,n)]>=2 and (t,n) not in players:
res.append((tname,n,m))
players.add((t,n))
res.sort(key=lambda x:x[2])
for r in res:
print(r[0]+' '+r[1]+' '+str(r[2]))
```
| 3
|
|
935
|
A
|
Fafa and his Company
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation"
] | null | null |
Fafa owns a company that works on huge projects. There are *n* employees in Fafa's company. Whenever the company has a new project to start working on, Fafa has to divide the tasks of this project among all the employees.
Fafa finds doing this every time is very tiring for him. So, he decided to choose the best *l* employees in his company as team leaders. Whenever there is a new project, Fafa will divide the tasks among only the team leaders and each team leader will be responsible of some positive number of employees to give them the tasks. To make this process fair for the team leaders, each one of them should be responsible for the same number of employees. Moreover, every employee, who is not a team leader, has to be under the responsibility of exactly one team leader, and no team leader is responsible for another team leader.
Given the number of employees *n*, find in how many ways Fafa could choose the number of team leaders *l* in such a way that it is possible to divide employees between them evenly.
|
The input consists of a single line containing a positive integer *n* (2<=≤<=*n*<=≤<=105) — the number of employees in Fafa's company.
|
Print a single integer representing the answer to the problem.
|
[
"2\n",
"10\n"
] |
[
"1\n",
"3\n"
] |
In the second sample Fafa has 3 ways:
- choose only 1 employee as a team leader with 9 employees under his responsibility. - choose 2 employees as team leaders with 4 employees under the responsibility of each of them. - choose 5 employees as team leaders with 1 employee under the responsibility of each of them.
| 500
|
[
{
"input": "2",
"output": "1"
},
{
"input": "10",
"output": "3"
},
{
"input": "3",
"output": "1"
},
{
"input": "4",
"output": "2"
},
{
"input": "6",
"output": "3"
},
{
"input": "13",
"output": "1"
},
{
"input": "100000",
"output": "35"
},
{
"input": "1024",
"output": "10"
},
{
"input": "99999",
"output": "11"
},
{
"input": "10007",
"output": "1"
},
{
"input": "4096",
"output": "12"
},
{
"input": "65536",
"output": "16"
},
{
"input": "40320",
"output": "95"
},
{
"input": "30030",
"output": "63"
},
{
"input": "161",
"output": "3"
},
{
"input": "1000",
"output": "15"
},
{
"input": "10000",
"output": "24"
},
{
"input": "777",
"output": "7"
},
{
"input": "121",
"output": "2"
},
{
"input": "25",
"output": "2"
},
{
"input": "40000",
"output": "34"
},
{
"input": "99990",
"output": "47"
},
{
"input": "98765",
"output": "3"
},
{
"input": "56789",
"output": "3"
},
{
"input": "13579",
"output": "3"
},
{
"input": "97531",
"output": "3"
},
{
"input": "12345",
"output": "7"
},
{
"input": "54321",
"output": "7"
},
{
"input": "83160",
"output": "127"
},
{
"input": "9",
"output": "2"
},
{
"input": "21",
"output": "3"
},
{
"input": "11",
"output": "1"
},
{
"input": "15",
"output": "3"
}
] | 1,700,196,006
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 33
| 46
| 0
|
l = int(input())
q = 0
for i in range(2, l//2+1):
if l % i == 0:
q += 1
print(q+1)
|
Title: Fafa and his Company
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Fafa owns a company that works on huge projects. There are *n* employees in Fafa's company. Whenever the company has a new project to start working on, Fafa has to divide the tasks of this project among all the employees.
Fafa finds doing this every time is very tiring for him. So, he decided to choose the best *l* employees in his company as team leaders. Whenever there is a new project, Fafa will divide the tasks among only the team leaders and each team leader will be responsible of some positive number of employees to give them the tasks. To make this process fair for the team leaders, each one of them should be responsible for the same number of employees. Moreover, every employee, who is not a team leader, has to be under the responsibility of exactly one team leader, and no team leader is responsible for another team leader.
Given the number of employees *n*, find in how many ways Fafa could choose the number of team leaders *l* in such a way that it is possible to divide employees between them evenly.
Input Specification:
The input consists of a single line containing a positive integer *n* (2<=≤<=*n*<=≤<=105) — the number of employees in Fafa's company.
Output Specification:
Print a single integer representing the answer to the problem.
Demo Input:
['2\n', '10\n']
Demo Output:
['1\n', '3\n']
Note:
In the second sample Fafa has 3 ways:
- choose only 1 employee as a team leader with 9 employees under his responsibility. - choose 2 employees as team leaders with 4 employees under the responsibility of each of them. - choose 5 employees as team leaders with 1 employee under the responsibility of each of them.
|
```python
l = int(input())
q = 0
for i in range(2, l//2+1):
if l % i == 0:
q += 1
print(q+1)
```
| 3
|
|
515
|
A
|
Drazil and Date
|
PROGRAMMING
| 1,000
|
[
"math"
] | null | null |
Someday, Drazil wanted to go on date with Varda. Drazil and Varda live on Cartesian plane. Drazil's home is located in point (0,<=0) and Varda's home is located in point (*a*,<=*b*). In each step, he can move in a unit distance in horizontal or vertical direction. In other words, from position (*x*,<=*y*) he can go to positions (*x*<=+<=1,<=*y*), (*x*<=-<=1,<=*y*), (*x*,<=*y*<=+<=1) or (*x*,<=*y*<=-<=1).
Unfortunately, Drazil doesn't have sense of direction. So he randomly chooses the direction he will go to in each step. He may accidentally return back to his house during his travel. Drazil may even not notice that he has arrived to (*a*,<=*b*) and continue travelling.
Luckily, Drazil arrived to the position (*a*,<=*b*) successfully. Drazil said to Varda: "It took me exactly *s* steps to travel from my house to yours". But Varda is confused about his words, she is not sure that it is possible to get from (0,<=0) to (*a*,<=*b*) in exactly *s* steps. Can you find out if it is possible for Varda?
|
You are given three integers *a*, *b*, and *s* (<=-<=109<=≤<=*a*,<=*b*<=≤<=109, 1<=≤<=*s*<=≤<=2·109) in a single line.
|
If you think Drazil made a mistake and it is impossible to take exactly *s* steps and get from his home to Varda's home, print "No" (without quotes).
Otherwise, print "Yes".
|
[
"5 5 11\n",
"10 15 25\n",
"0 5 1\n",
"0 0 2\n"
] |
[
"No\n",
"Yes\n",
"No\n",
"Yes\n"
] |
In fourth sample case one possible route is: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/0d30660ddf6eb6c64ffd071055a4e8ddd016cde5.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
| 500
|
[
{
"input": "5 5 11",
"output": "No"
},
{
"input": "10 15 25",
"output": "Yes"
},
{
"input": "0 5 1",
"output": "No"
},
{
"input": "0 0 2",
"output": "Yes"
},
{
"input": "999999999 999999999 2000000000",
"output": "Yes"
},
{
"input": "-606037695 998320124 820674098",
"output": "No"
},
{
"input": "948253616 -83299062 1031552680",
"output": "Yes"
},
{
"input": "711980199 216568284 928548487",
"output": "Yes"
},
{
"input": "-453961301 271150176 725111473",
"output": "No"
},
{
"input": "0 0 2000000000",
"output": "Yes"
},
{
"input": "0 0 1999999999",
"output": "No"
},
{
"input": "1000000000 1000000000 2000000000",
"output": "Yes"
},
{
"input": "-1000000000 1000000000 2000000000",
"output": "Yes"
},
{
"input": "-1000000000 -1000000000 2000000000",
"output": "Yes"
},
{
"input": "-1000000000 -1000000000 1000000000",
"output": "No"
},
{
"input": "-1 -1 3",
"output": "No"
},
{
"input": "919785634 216774719 129321944",
"output": "No"
},
{
"input": "-467780354 -721273539 1369030008",
"output": "No"
},
{
"input": "-232833910 -880680184 1774549792",
"output": "Yes"
},
{
"input": "45535578 402686155 1011249824",
"output": "No"
},
{
"input": "-203250176 -30379840 233630015",
"output": "No"
},
{
"input": "-814516648 -75830576 890347222",
"output": "No"
},
{
"input": "869184175 -511854751 1381038923",
"output": "No"
},
{
"input": "552884998 -262338193 815223187",
"output": "No"
},
{
"input": "-133874494 857573117 991447611",
"output": "Yes"
},
{
"input": "169406792 786701289 956108082",
"output": "No"
},
{
"input": "30237137 -989203246 1019440385",
"output": "Yes"
},
{
"input": "576608216 -617624133 1194232352",
"output": "No"
},
{
"input": "-662360368 97618995 759979367",
"output": "Yes"
},
{
"input": "-115989290 321714461 437703756",
"output": "No"
},
{
"input": "-1 -3 2",
"output": "No"
},
{
"input": "-2 -2 2",
"output": "No"
},
{
"input": "0 0 1",
"output": "No"
},
{
"input": "0 -1 7",
"output": "Yes"
},
{
"input": "1 2 7",
"output": "Yes"
},
{
"input": "0 5 6",
"output": "No"
},
{
"input": "0 -4 2",
"output": "No"
},
{
"input": "-5 5 2",
"output": "No"
},
{
"input": "-5 -2 7",
"output": "Yes"
},
{
"input": "5 -5 2",
"output": "No"
}
] | 1,644,608,207
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 8
| 31
| 0
|
a, b ,s = map(int, input().split())
ans1 = a + b - s
def calculation(a, b, s, ans1):
if ans1 % 2 == 0:
if a + b < s:
return "Yes"
if ans1 > 0:
if ans1 % 2 == 0:
if a + b < s:
return "Yes"
if a + b == s:
return "Yes"
else:
return "No"
print(calculation(a, b, s, ans1))
|
Title: Drazil and Date
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Someday, Drazil wanted to go on date with Varda. Drazil and Varda live on Cartesian plane. Drazil's home is located in point (0,<=0) and Varda's home is located in point (*a*,<=*b*). In each step, he can move in a unit distance in horizontal or vertical direction. In other words, from position (*x*,<=*y*) he can go to positions (*x*<=+<=1,<=*y*), (*x*<=-<=1,<=*y*), (*x*,<=*y*<=+<=1) or (*x*,<=*y*<=-<=1).
Unfortunately, Drazil doesn't have sense of direction. So he randomly chooses the direction he will go to in each step. He may accidentally return back to his house during his travel. Drazil may even not notice that he has arrived to (*a*,<=*b*) and continue travelling.
Luckily, Drazil arrived to the position (*a*,<=*b*) successfully. Drazil said to Varda: "It took me exactly *s* steps to travel from my house to yours". But Varda is confused about his words, she is not sure that it is possible to get from (0,<=0) to (*a*,<=*b*) in exactly *s* steps. Can you find out if it is possible for Varda?
Input Specification:
You are given three integers *a*, *b*, and *s* (<=-<=109<=≤<=*a*,<=*b*<=≤<=109, 1<=≤<=*s*<=≤<=2·109) in a single line.
Output Specification:
If you think Drazil made a mistake and it is impossible to take exactly *s* steps and get from his home to Varda's home, print "No" (without quotes).
Otherwise, print "Yes".
Demo Input:
['5 5 11\n', '10 15 25\n', '0 5 1\n', '0 0 2\n']
Demo Output:
['No\n', 'Yes\n', 'No\n', 'Yes\n']
Note:
In fourth sample case one possible route is: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/0d30660ddf6eb6c64ffd071055a4e8ddd016cde5.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
|
```python
a, b ,s = map(int, input().split())
ans1 = a + b - s
def calculation(a, b, s, ans1):
if ans1 % 2 == 0:
if a + b < s:
return "Yes"
if ans1 > 0:
if ans1 % 2 == 0:
if a + b < s:
return "Yes"
if a + b == s:
return "Yes"
else:
return "No"
print(calculation(a, b, s, ans1))
```
| 0
|
|
568
|
A
|
Primes or Palindromes?
|
PROGRAMMING
| 1,600
|
[
"brute force",
"implementation",
"math",
"number theory"
] | null | null |
Rikhail Mubinchik believes that the current definition of prime numbers is obsolete as they are too complex and unpredictable. A palindromic number is another matter. It is aesthetically pleasing, and it has a number of remarkable properties. Help Rikhail to convince the scientific community in this!
Let us remind you that a number is called prime if it is integer larger than one, and is not divisible by any positive integer other than itself and one.
Rikhail calls a number a palindromic if it is integer, positive, and its decimal representation without leading zeros is a palindrome, i.e. reads the same from left to right and right to left.
One problem with prime numbers is that there are too many of them. Let's introduce the following notation: π(*n*) — the number of primes no larger than *n*, *rub*(*n*) — the number of palindromic numbers no larger than *n*. Rikhail wants to prove that there are a lot more primes than palindromic ones.
He asked you to solve the following problem: for a given value of the coefficient *A* find the maximum *n*, such that π(*n*)<=≤<=*A*·*rub*(*n*).
|
The input consists of two positive integers *p*, *q*, the numerator and denominator of the fraction that is the value of *A* (, ).
|
If such maximum number exists, then print it. Otherwise, print "Palindromic tree is better than splay tree" (without the quotes).
|
[
"1 1\n",
"1 42\n",
"6 4\n"
] |
[
"40\n",
"1\n",
"172\n"
] |
none
| 500
|
[
{
"input": "1 1",
"output": "40"
},
{
"input": "1 42",
"output": "1"
},
{
"input": "6 4",
"output": "172"
},
{
"input": "3 1",
"output": "2530"
},
{
"input": "42 1",
"output": "1179858"
},
{
"input": "10000 239",
"output": "1168638"
},
{
"input": "5 8",
"output": "16"
},
{
"input": "7 11",
"output": "16"
},
{
"input": "16 60",
"output": "1"
},
{
"input": "214 210",
"output": "40"
},
{
"input": "620 35",
"output": "251262"
},
{
"input": "940 480",
"output": "1372"
},
{
"input": "1307 3420",
"output": "1"
},
{
"input": "6811 5416",
"output": "66"
},
{
"input": "7 267",
"output": "1"
},
{
"input": "106 6",
"output": "250300"
},
{
"input": "10000 10000",
"output": "40"
},
{
"input": "10000 9999",
"output": "40"
},
{
"input": "9999 9998",
"output": "40"
},
{
"input": "9999 9999",
"output": "40"
},
{
"input": "4 9",
"output": "10"
},
{
"input": "1000 10000",
"output": "1"
},
{
"input": "238 9996",
"output": "1"
},
{
"input": "999 10000",
"output": "1"
},
{
"input": "241 10000",
"output": "1"
},
{
"input": "239 10000",
"output": "1"
},
{
"input": "5858 674",
"output": "71118"
}
] | 1,696,304,834
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 0
| 3,000
| 23,859,200
|
import math
N = 3 * 10**6 + 10
prime = [False] * (N + 10)
n = 0
pi = 1
rub = 2
ans = 1
def is_palindrome(num):
global n
n = 0
while num > 0:
s[n] = str(num % 10)
n += 1
num //= 10
for i in range(n // 2):
if s[i] != s[n - i - 1]:
return False
return True
def check():
mrs = 1 * pi * q
mrs2 = 1 * rub * p
return mrs <= mrs2
s = [""] * 10
p, q = map(int, input().split())
if check():
ans = 2
for i in range(3, N + 1):
if not prime[i] and i % 2 != 0:
prime[i] = True
pi += 1
if i <= math.sqrt(N) + 1:
for j in range(i * i, N + 1, i):
prime[j] = True
if is_palindrome(i):
rub += 1
if check():
ans = i
print(ans)
|
Title: Primes or Palindromes?
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Rikhail Mubinchik believes that the current definition of prime numbers is obsolete as they are too complex and unpredictable. A palindromic number is another matter. It is aesthetically pleasing, and it has a number of remarkable properties. Help Rikhail to convince the scientific community in this!
Let us remind you that a number is called prime if it is integer larger than one, and is not divisible by any positive integer other than itself and one.
Rikhail calls a number a palindromic if it is integer, positive, and its decimal representation without leading zeros is a palindrome, i.e. reads the same from left to right and right to left.
One problem with prime numbers is that there are too many of them. Let's introduce the following notation: π(*n*) — the number of primes no larger than *n*, *rub*(*n*) — the number of palindromic numbers no larger than *n*. Rikhail wants to prove that there are a lot more primes than palindromic ones.
He asked you to solve the following problem: for a given value of the coefficient *A* find the maximum *n*, such that π(*n*)<=≤<=*A*·*rub*(*n*).
Input Specification:
The input consists of two positive integers *p*, *q*, the numerator and denominator of the fraction that is the value of *A* (, ).
Output Specification:
If such maximum number exists, then print it. Otherwise, print "Palindromic tree is better than splay tree" (without the quotes).
Demo Input:
['1 1\n', '1 42\n', '6 4\n']
Demo Output:
['40\n', '1\n', '172\n']
Note:
none
|
```python
import math
N = 3 * 10**6 + 10
prime = [False] * (N + 10)
n = 0
pi = 1
rub = 2
ans = 1
def is_palindrome(num):
global n
n = 0
while num > 0:
s[n] = str(num % 10)
n += 1
num //= 10
for i in range(n // 2):
if s[i] != s[n - i - 1]:
return False
return True
def check():
mrs = 1 * pi * q
mrs2 = 1 * rub * p
return mrs <= mrs2
s = [""] * 10
p, q = map(int, input().split())
if check():
ans = 2
for i in range(3, N + 1):
if not prime[i] and i % 2 != 0:
prime[i] = True
pi += 1
if i <= math.sqrt(N) + 1:
for j in range(i * i, N + 1, i):
prime[j] = True
if is_palindrome(i):
rub += 1
if check():
ans = i
print(ans)
```
| 0
|
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
You are given two squares, one with sides parallel to the coordinate axes, and another one with sides at 45 degrees to the coordinate axes. Find whether the two squares intersect.
The interior of the square is considered to be part of the square, i.e. if one square is completely inside another, they intersect. If the two squares only share one common point, they are also considered to intersect.
|
The input data consists of two lines, one for each square, both containing 4 pairs of integers. Each pair represents coordinates of one vertex of the square. Coordinates within each line are either in clockwise or counterclockwise order.
The first line contains the coordinates of the square with sides parallel to the coordinate axes, the second line contains the coordinates of the square at 45 degrees.
All the values are integer and between $-100$ and $100$.
|
Print "Yes" if squares intersect, otherwise print "No".
You can print each letter in any case (upper or lower).
|
[
"0 0 6 0 6 6 0 6\n1 3 3 5 5 3 3 1\n",
"0 0 6 0 6 6 0 6\n7 3 9 5 11 3 9 1\n",
"6 0 6 6 0 6 0 0\n7 4 4 7 7 10 10 7\n"
] |
[
"YES\n",
"NO\n",
"YES\n"
] |
In the first example the second square lies entirely within the first square, so they do intersect.
In the second sample squares do not have any points in common.
Here are images corresponding to the samples:
| 0
|
[
{
"input": "0 0 6 0 6 6 0 6\n1 3 3 5 5 3 3 1",
"output": "YES"
},
{
"input": "0 0 6 0 6 6 0 6\n7 3 9 5 11 3 9 1",
"output": "NO"
},
{
"input": "6 0 6 6 0 6 0 0\n7 4 4 7 7 10 10 7",
"output": "YES"
},
{
"input": "0 0 6 0 6 6 0 6\n8 4 4 8 8 12 12 8",
"output": "YES"
},
{
"input": "2 2 4 2 4 4 2 4\n0 3 3 6 6 3 3 0",
"output": "YES"
},
{
"input": "-5 -5 5 -5 5 5 -5 5\n-5 7 0 2 5 7 0 12",
"output": "YES"
},
{
"input": "-5 -5 5 -5 5 5 -5 5\n-5 12 0 7 5 12 0 17",
"output": "NO"
},
{
"input": "-5 -5 5 -5 5 5 -5 5\n6 0 0 6 -6 0 0 -6",
"output": "YES"
},
{
"input": "-100 -100 100 -100 100 100 -100 100\n-100 0 0 -100 100 0 0 100",
"output": "YES"
},
{
"input": "92 1 92 98 -5 98 -5 1\n44 60 56 48 44 36 32 48",
"output": "YES"
},
{
"input": "-12 -54 -12 33 -99 33 -99 -54\n-77 -40 -86 -31 -77 -22 -68 -31",
"output": "YES"
},
{
"input": "3 45 19 45 19 61 3 61\n-29 45 -13 29 3 45 -13 61",
"output": "YES"
},
{
"input": "79 -19 79 15 45 15 45 -19\n-1 24 -29 52 -1 80 27 52",
"output": "NO"
},
{
"input": "75 -57 75 -21 39 -21 39 -57\n10 -42 -32 0 10 42 52 0",
"output": "NO"
},
{
"input": "-11 53 9 53 9 73 -11 73\n-10 9 -43 42 -10 75 23 42",
"output": "YES"
},
{
"input": "-10 -36 -10 27 -73 27 -73 -36\n44 -28 71 -55 44 -82 17 -55",
"output": "NO"
},
{
"input": "-63 -15 6 -15 6 54 -63 54\n15 -13 -8 10 15 33 38 10",
"output": "YES"
},
{
"input": "47 15 51 15 51 19 47 19\n19 0 -27 46 19 92 65 46",
"output": "NO"
},
{
"input": "87 -5 87 79 3 79 3 -5\n36 36 78 -6 36 -48 -6 -6",
"output": "YES"
},
{
"input": "-4 56 10 56 10 70 -4 70\n-11 47 -35 71 -11 95 13 71",
"output": "YES"
},
{
"input": "-41 6 -41 8 -43 8 -43 6\n-7 27 43 -23 -7 -73 -57 -23",
"output": "NO"
},
{
"input": "44 -58 44 7 -21 7 -21 -58\n22 19 47 -6 22 -31 -3 -6",
"output": "YES"
},
{
"input": "-37 -63 49 -63 49 23 -37 23\n-52 68 -21 37 -52 6 -83 37",
"output": "YES"
},
{
"input": "93 20 93 55 58 55 58 20\n61 -17 39 5 61 27 83 5",
"output": "YES"
},
{
"input": "-7 4 -7 58 -61 58 -61 4\n-28 45 -17 34 -28 23 -39 34",
"output": "YES"
},
{
"input": "24 -79 87 -79 87 -16 24 -16\n-59 21 -85 47 -59 73 -33 47",
"output": "NO"
},
{
"input": "-68 -15 6 -15 6 59 -68 59\n48 -18 57 -27 48 -36 39 -27",
"output": "NO"
},
{
"input": "25 1 25 91 -65 91 -65 1\n24 3 15 12 24 21 33 12",
"output": "YES"
},
{
"input": "55 24 73 24 73 42 55 42\n49 17 10 56 49 95 88 56",
"output": "YES"
},
{
"input": "69 -65 69 -28 32 -28 32 -65\n-1 50 43 6 -1 -38 -45 6",
"output": "NO"
},
{
"input": "86 -26 86 18 42 18 42 -26\n3 -22 -40 21 3 64 46 21",
"output": "YES"
},
{
"input": "52 -47 52 -30 35 -30 35 -47\n49 -22 64 -37 49 -52 34 -37",
"output": "YES"
},
{
"input": "27 -59 27 9 -41 9 -41 -59\n-10 -17 2 -29 -10 -41 -22 -29",
"output": "YES"
},
{
"input": "-90 2 0 2 0 92 -90 92\n-66 31 -86 51 -66 71 -46 51",
"output": "YES"
},
{
"input": "-93 -86 -85 -86 -85 -78 -93 -78\n-13 61 0 48 -13 35 -26 48",
"output": "NO"
},
{
"input": "-3 -45 85 -45 85 43 -3 43\n-22 0 -66 44 -22 88 22 44",
"output": "YES"
},
{
"input": "-27 -73 72 -73 72 26 -27 26\n58 11 100 -31 58 -73 16 -31",
"output": "YES"
},
{
"input": "-40 -31 8 -31 8 17 -40 17\n0 18 -35 53 0 88 35 53",
"output": "NO"
},
{
"input": "-15 -63 -15 7 -85 7 -85 -63\n-35 -40 -33 -42 -35 -44 -37 -42",
"output": "YES"
},
{
"input": "-100 -100 -100 100 100 100 100 -100\n-100 0 0 100 100 0 0 -100",
"output": "YES"
},
{
"input": "67 33 67 67 33 67 33 33\n43 11 9 45 43 79 77 45",
"output": "YES"
},
{
"input": "14 8 9 8 9 3 14 3\n-2 -13 14 3 30 -13 14 -29",
"output": "YES"
},
{
"input": "4 3 7 3 7 6 4 6\n7 29 20 16 7 3 -6 16",
"output": "YES"
},
{
"input": "14 30 3 30 3 19 14 19\n19 -13 11 -5 19 3 27 -5",
"output": "NO"
},
{
"input": "-54 3 -50 3 -50 -1 -54 -1\n3 -50 -6 -41 -15 -50 -6 -59",
"output": "NO"
},
{
"input": "3 8 3 -10 21 -10 21 8\n-9 2 -21 -10 -9 -22 3 -10",
"output": "YES"
},
{
"input": "-35 3 -21 3 -21 -11 -35 -11\n-8 -10 3 -21 -8 -32 -19 -21",
"output": "NO"
},
{
"input": "-5 -23 -5 -31 3 -31 3 -23\n-7 -23 -2 -28 3 -23 -2 -18",
"output": "YES"
},
{
"input": "3 20 10 20 10 13 3 13\n3 20 21 38 39 20 21 2",
"output": "YES"
},
{
"input": "25 3 16 3 16 12 25 12\n21 -2 16 -7 11 -2 16 3",
"output": "YES"
},
{
"input": "-1 18 -1 3 14 3 14 18\n14 3 19 8 14 13 9 8",
"output": "YES"
},
{
"input": "-44 -17 -64 -17 -64 3 -44 3\n-56 15 -44 27 -32 15 -44 3",
"output": "YES"
},
{
"input": "17 3 2 3 2 18 17 18\n22 23 2 3 -18 23 2 43",
"output": "YES"
},
{
"input": "3 -22 3 -36 -11 -36 -11 -22\n11 -44 19 -36 11 -28 3 -36",
"output": "YES"
},
{
"input": "3 45 3 48 0 48 0 45\n13 38 4 47 13 56 22 47",
"output": "NO"
},
{
"input": "3 -10 2 -10 2 -9 3 -9\n38 -10 20 -28 2 -10 20 8",
"output": "YES"
},
{
"input": "-66 3 -47 3 -47 22 -66 22\n-52 -2 -45 5 -52 12 -59 5",
"output": "YES"
},
{
"input": "3 37 -1 37 -1 41 3 41\n6 31 9 34 6 37 3 34",
"output": "NO"
},
{
"input": "13 1 15 1 15 3 13 3\n13 19 21 11 13 3 5 11",
"output": "YES"
},
{
"input": "20 8 3 8 3 -9 20 -9\n2 -11 3 -10 2 -9 1 -10",
"output": "NO"
},
{
"input": "3 41 3 21 -17 21 -17 41\n26 12 10 28 26 44 42 28",
"output": "NO"
},
{
"input": "11 11 11 3 3 3 3 11\n-12 26 -27 11 -12 -4 3 11",
"output": "YES"
},
{
"input": "-29 3 -29 12 -38 12 -38 3\n-35 9 -29 15 -23 9 -29 3",
"output": "YES"
},
{
"input": "3 -32 1 -32 1 -30 3 -30\n4 -32 -16 -52 -36 -32 -16 -12",
"output": "YES"
},
{
"input": "-16 -10 -16 9 3 9 3 -10\n-8 -1 2 9 12 -1 2 -11",
"output": "YES"
},
{
"input": "3 -42 -5 -42 -5 -34 3 -34\n-8 -54 -19 -43 -8 -32 3 -43",
"output": "YES"
},
{
"input": "-47 3 -37 3 -37 -7 -47 -7\n-37 3 -33 -1 -37 -5 -41 -1",
"output": "YES"
},
{
"input": "10 3 12 3 12 5 10 5\n12 4 20 12 12 20 4 12",
"output": "YES"
},
{
"input": "3 -41 -9 -41 -9 -53 3 -53\n18 -16 38 -36 18 -56 -2 -36",
"output": "YES"
},
{
"input": "3 40 2 40 2 41 3 41\n22 39 13 48 4 39 13 30",
"output": "NO"
},
{
"input": "21 26 21 44 3 44 3 26\n-20 38 -32 26 -20 14 -8 26",
"output": "NO"
},
{
"input": "0 7 3 7 3 10 0 10\n3 9 -17 29 -37 9 -17 -11",
"output": "YES"
},
{
"input": "3 21 3 18 6 18 6 21\n-27 18 -11 2 5 18 -11 34",
"output": "YES"
},
{
"input": "-29 13 -39 13 -39 3 -29 3\n-36 -4 -50 -18 -36 -32 -22 -18",
"output": "NO"
},
{
"input": "3 -26 -2 -26 -2 -21 3 -21\n-5 -37 -16 -26 -5 -15 6 -26",
"output": "YES"
},
{
"input": "3 9 -1 9 -1 13 3 13\n-9 17 -1 9 -9 1 -17 9",
"output": "YES"
},
{
"input": "48 8 43 8 43 3 48 3\n31 -4 43 8 55 -4 43 -16",
"output": "YES"
},
{
"input": "-3 1 3 1 3 -5 -3 -5\n20 -22 3 -5 20 12 37 -5",
"output": "YES"
},
{
"input": "14 3 14 -16 -5 -16 -5 3\n14 2 15 1 14 0 13 1",
"output": "YES"
},
{
"input": "-10 12 -10 -1 3 -1 3 12\n1 10 -2 7 -5 10 -2 13",
"output": "YES"
},
{
"input": "39 21 21 21 21 3 39 3\n27 3 47 -17 27 -37 7 -17",
"output": "YES"
},
{
"input": "3 1 3 17 -13 17 -13 1\n17 20 10 27 3 20 10 13",
"output": "NO"
},
{
"input": "15 -18 3 -18 3 -6 15 -6\n29 -1 16 -14 3 -1 16 12",
"output": "YES"
},
{
"input": "41 -6 41 3 32 3 32 -6\n33 3 35 5 33 7 31 5",
"output": "YES"
},
{
"input": "7 35 3 35 3 39 7 39\n23 15 3 35 23 55 43 35",
"output": "YES"
},
{
"input": "19 19 35 19 35 3 19 3\n25 -9 16 -18 7 -9 16 0",
"output": "NO"
},
{
"input": "-20 3 -20 9 -26 9 -26 3\n-19 4 -21 2 -19 0 -17 2",
"output": "YES"
},
{
"input": "13 3 22 3 22 -6 13 -6\n26 3 22 -1 18 3 22 7",
"output": "YES"
},
{
"input": "-4 -8 -4 -15 3 -15 3 -8\n-10 5 -27 -12 -10 -29 7 -12",
"output": "YES"
},
{
"input": "3 15 7 15 7 19 3 19\n-12 30 -23 19 -12 8 -1 19",
"output": "NO"
},
{
"input": "-12 3 5 3 5 -14 -12 -14\n-14 22 5 3 24 22 5 41",
"output": "YES"
},
{
"input": "-37 3 -17 3 -17 -17 -37 -17\n-9 -41 9 -23 -9 -5 -27 -23",
"output": "YES"
},
{
"input": "3 57 3 45 -9 45 -9 57\n8 50 21 37 8 24 -5 37",
"output": "YES"
},
{
"input": "42 3 42 -6 33 -6 33 3\n42 4 41 3 40 4 41 5",
"output": "YES"
},
{
"input": "3 59 3 45 -11 45 -11 59\n-2 50 -8 44 -2 38 4 44",
"output": "YES"
},
{
"input": "-51 3 -39 3 -39 15 -51 15\n-39 14 -53 0 -39 -14 -25 0",
"output": "YES"
},
{
"input": "-7 -15 -7 3 11 3 11 -15\n15 -1 22 -8 15 -15 8 -8",
"output": "YES"
},
{
"input": "3 -39 14 -39 14 -50 3 -50\n17 -39 5 -27 -7 -39 5 -51",
"output": "YES"
},
{
"input": "91 -27 91 29 35 29 35 -27\n59 39 95 3 59 -33 23 3",
"output": "YES"
},
{
"input": "-81 -60 -31 -60 -31 -10 -81 -10\n-58 -68 -95 -31 -58 6 -21 -31",
"output": "YES"
},
{
"input": "78 -59 78 -2 21 -2 21 -59\n48 1 86 -37 48 -75 10 -37",
"output": "YES"
},
{
"input": "-38 -26 32 -26 32 44 -38 44\n2 -27 -44 19 2 65 48 19",
"output": "YES"
},
{
"input": "73 -54 73 -4 23 -4 23 -54\n47 1 77 -29 47 -59 17 -29",
"output": "YES"
},
{
"input": "-6 -25 46 -25 46 27 -6 27\n21 -43 -21 -1 21 41 63 -1",
"output": "YES"
},
{
"input": "-17 -91 -17 -27 -81 -27 -81 -91\n-48 -21 -12 -57 -48 -93 -84 -57",
"output": "YES"
},
{
"input": "-7 16 43 16 43 66 -7 66\n18 -7 -27 38 18 83 63 38",
"output": "YES"
},
{
"input": "-46 11 16 11 16 73 -46 73\n-18 -8 -67 41 -18 90 31 41",
"output": "YES"
},
{
"input": "-33 -64 25 -64 25 -6 -33 -6\n-5 -74 -51 -28 -5 18 41 -28",
"output": "YES"
},
{
"input": "99 -100 100 -100 100 -99 99 -99\n99 -99 100 -98 99 -97 98 -98",
"output": "YES"
},
{
"input": "-100 -100 -100 -99 -99 -99 -99 -100\n-10 -10 -9 -9 -10 -8 -11 -9",
"output": "NO"
},
{
"input": "-4 3 -3 3 -3 4 -4 4\n0 -4 4 0 0 4 -4 0",
"output": "NO"
},
{
"input": "0 0 10 0 10 10 0 10\n11 9 13 7 15 9 13 11",
"output": "NO"
},
{
"input": "1 1 1 6 6 6 6 1\n5 8 8 11 11 8 8 5",
"output": "NO"
},
{
"input": "99 99 99 100 100 100 100 99\n-100 0 0 100 100 0 0 -100",
"output": "NO"
},
{
"input": "0 0 0 2 2 2 2 0\n5 1 9 5 5 9 1 5",
"output": "NO"
},
{
"input": "3 2 3 3 4 3 4 2\n0 4 4 0 0 -4 -4 0",
"output": "NO"
},
{
"input": "0 0 2 0 2 2 0 2\n4 1 7 4 4 7 1 4",
"output": "NO"
},
{
"input": "3 6 3 8 5 8 5 6\n2 9 4 11 6 9 4 7",
"output": "YES"
},
{
"input": "0 0 10 0 10 10 0 10\n-1 5 5 -1 11 5 5 11",
"output": "YES"
},
{
"input": "0 0 1 0 1 1 0 1\n3 0 6 3 3 6 0 3",
"output": "NO"
},
{
"input": "3 7 4 7 4 6 3 6\n0 0 10 10 20 0 10 -10",
"output": "NO"
},
{
"input": "0 0 0 1 1 1 1 0\n0 3 3 6 6 3 3 0",
"output": "NO"
},
{
"input": "0 0 0 4 4 4 4 0\n3 6 7 10 11 6 7 2",
"output": "NO"
},
{
"input": "0 0 0 1 1 1 1 0\n0 10 10 0 20 10 10 20",
"output": "NO"
}
] | 1,529,170,155
| 3,255
|
PyPy 3
|
OK
|
TESTS
| 124
| 140
| 409,600
|
p = [int(x) + 100 for x in input().strip().split()]
d = [int(x) + 100 for x in input().strip().split()]
minx = min(p[::2])
maxx = max(p[::2])
miny = min(p[1::2])
maxy = max(p[1::2])
grid = [[False] * 201 for _ in range(201)]
for x in range(minx, maxx+1):
for y in range(miny, maxy+1):
grid[x][y] = True
minx = min(d[::2])
maxx = max(d[::2])
avgx = sum(d[::2]) // 4
avgy = sum(d[1::2]) // 4
span = (maxx - minx) // 2
for x in range(minx, maxx+1):
height = span - abs(x - avgx)
for y in range(avgy - height, avgy + height + 1):
if grid[x][y]:
print('YES')
exit()
print('NO')
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given two squares, one with sides parallel to the coordinate axes, and another one with sides at 45 degrees to the coordinate axes. Find whether the two squares intersect.
The interior of the square is considered to be part of the square, i.e. if one square is completely inside another, they intersect. If the two squares only share one common point, they are also considered to intersect.
Input Specification:
The input data consists of two lines, one for each square, both containing 4 pairs of integers. Each pair represents coordinates of one vertex of the square. Coordinates within each line are either in clockwise or counterclockwise order.
The first line contains the coordinates of the square with sides parallel to the coordinate axes, the second line contains the coordinates of the square at 45 degrees.
All the values are integer and between $-100$ and $100$.
Output Specification:
Print "Yes" if squares intersect, otherwise print "No".
You can print each letter in any case (upper or lower).
Demo Input:
['0 0 6 0 6 6 0 6\n1 3 3 5 5 3 3 1\n', '0 0 6 0 6 6 0 6\n7 3 9 5 11 3 9 1\n', '6 0 6 6 0 6 0 0\n7 4 4 7 7 10 10 7\n']
Demo Output:
['YES\n', 'NO\n', 'YES\n']
Note:
In the first example the second square lies entirely within the first square, so they do intersect.
In the second sample squares do not have any points in common.
Here are images corresponding to the samples:
|
```python
p = [int(x) + 100 for x in input().strip().split()]
d = [int(x) + 100 for x in input().strip().split()]
minx = min(p[::2])
maxx = max(p[::2])
miny = min(p[1::2])
maxy = max(p[1::2])
grid = [[False] * 201 for _ in range(201)]
for x in range(minx, maxx+1):
for y in range(miny, maxy+1):
grid[x][y] = True
minx = min(d[::2])
maxx = max(d[::2])
avgx = sum(d[::2]) // 4
avgy = sum(d[1::2]) // 4
span = (maxx - minx) // 2
for x in range(minx, maxx+1):
height = span - abs(x - avgx)
for y in range(avgy - height, avgy + height + 1):
if grid[x][y]:
print('YES')
exit()
print('NO')
```
| 3
|
|
804
|
B
|
Minimum number of steps
|
PROGRAMMING
| 1,400
|
[
"combinatorics",
"greedy",
"implementation",
"math"
] | null | null |
We have a string of letters 'a' and 'b'. We want to perform some operations on it. On each step we choose one of substrings "ab" in the string and replace it with the string "bba". If we have no "ab" as a substring, our job is done. Print the minimum number of steps we should perform to make our job done modulo 109<=+<=7.
The string "ab" appears as a substring if there is a letter 'b' right after the letter 'a' somewhere in the string.
|
The first line contains the initial string consisting of letters 'a' and 'b' only with length from 1 to 106.
|
Print the minimum number of steps modulo 109<=+<=7.
|
[
"ab\n",
"aab\n"
] |
[
"1\n",
"3\n"
] |
The first example: "ab" → "bba".
The second example: "aab" → "abba" → "bbaba" → "bbbbaa".
| 1,000
|
[
{
"input": "ab",
"output": "1"
},
{
"input": "aab",
"output": "3"
},
{
"input": "aaaaabaabababaaaaaba",
"output": "17307"
},
{
"input": "abaabaaabbabaabab",
"output": "1795"
},
{
"input": "abbaa",
"output": "2"
},
{
"input": "abbaaabaabaaaaabbbbaababaaaaabaabbaaaaabbaabbaaaabbbabbbabb",
"output": "690283580"
},
{
"input": "aababbaaaabbaabbbbbbbbabbababbbaaabbaaabbabbba",
"output": "2183418"
},
{
"input": "aabbaababbabbbaabbaababaaaabbaaaabaaaaaababbaaaabaababbabbbb",
"output": "436420225"
},
{
"input": "aaabaaaabbababbaabbababbbbaaaaaaabbabbba",
"output": "8431094"
},
{
"input": "abbbbababbabbbbbabaabbbaabbbbbbbaaab",
"output": "8180"
},
{
"input": "bbababbbaabaaaaaaaabbabbbb",
"output": "40979"
},
{
"input": "abbbaaabbbbbabaabbaaabbbababbbaabaabababababa",
"output": "2065758"
},
{
"input": "abaaaaaabaaaabbabbaaabbbbabababaaaaabbaabbaaaaabbbaababaaaaaaabbbbbaaaaabaababbabababbabbbbaabbaabbabbbabaabbaabbaaaaaab",
"output": "235606597"
},
{
"input": "abbbbbbbbbbbbbbbbbbbbbbbbbbaababaaaaaaabaabaaababaabaababaaabababaababab",
"output": "7"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbaaaaaaaaabaabaaababaabaababaaabababaabbbbbbb",
"output": "557763786"
}
] | 1,493,942,913
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 5
| 62
| 512,000
|
import re
string = input()
string = re.search(r'a[ab]*b', string).group()
n = 0
l = re.findall(r'a+b+', string)
for i in range(len(l)):
l[i] = (l[i].index('b'), (len(l[i]) - l[i].index('b')))
len_l = len(l)
for i in range(len_l):
for j in range(len(l)):
n = n + l[j][1]*(2**l[j][0] - 1)
if j<(len_l-i-1):
l[j] = (l[j][0], (l[j+1][1] * 2**l[j+1][0]))
l.pop()
print(n)
|
Title: Minimum number of steps
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
We have a string of letters 'a' and 'b'. We want to perform some operations on it. On each step we choose one of substrings "ab" in the string and replace it with the string "bba". If we have no "ab" as a substring, our job is done. Print the minimum number of steps we should perform to make our job done modulo 109<=+<=7.
The string "ab" appears as a substring if there is a letter 'b' right after the letter 'a' somewhere in the string.
Input Specification:
The first line contains the initial string consisting of letters 'a' and 'b' only with length from 1 to 106.
Output Specification:
Print the minimum number of steps modulo 109<=+<=7.
Demo Input:
['ab\n', 'aab\n']
Demo Output:
['1\n', '3\n']
Note:
The first example: "ab" → "bba".
The second example: "aab" → "abba" → "bbaba" → "bbbbaa".
|
```python
import re
string = input()
string = re.search(r'a[ab]*b', string).group()
n = 0
l = re.findall(r'a+b+', string)
for i in range(len(l)):
l[i] = (l[i].index('b'), (len(l[i]) - l[i].index('b')))
len_l = len(l)
for i in range(len_l):
for j in range(len(l)):
n = n + l[j][1]*(2**l[j][0] - 1)
if j<(len_l-i-1):
l[j] = (l[j][0], (l[j+1][1] * 2**l[j+1][0]))
l.pop()
print(n)
```
| 0
|
|
61
|
A
|
Ultra-Fast Mathematician
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Ultra-Fast Mathematician
|
2
|
256
|
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
|
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
|
Write one line — the corresponding answer. Do not omit the leading 0s.
|
[
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] |
[
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] |
none
| 500
|
[
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,637,207,830
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 102
| 61
| 0
|
n=input()
k=input()
sum=""
for i in range(len(n)):
if int(n[i])-int(k[i])==1 or int(k[i])-int(n[i])==1:
sum+="1"
else:
sum+="0"
print(sum)
|
Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line — the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none
|
```python
n=input()
k=input()
sum=""
for i in range(len(n)):
if int(n[i])-int(k[i])==1 or int(k[i])-int(n[i])==1:
sum+="1"
else:
sum+="0"
print(sum)
```
| 3.98475
|
472
|
A
|
Design Tutorial: Learn from Math
|
PROGRAMMING
| 800
|
[
"math",
"number theory"
] | null | null |
One way to create a task is to learn from math. You can generate some random math statement or modify some theorems to get something new and build a new task from that.
For example, there is a statement called the "Goldbach's conjecture". It says: "each even number no less than four can be expressed as the sum of two primes". Let's modify it. How about a statement like that: "each integer no less than 12 can be expressed as the sum of two composite numbers." Not like the Goldbach's conjecture, I can prove this theorem.
You are given an integer *n* no less than 12, express it as a sum of two composite numbers.
|
The only line contains an integer *n* (12<=≤<=*n*<=≤<=106).
|
Output two composite integers *x* and *y* (1<=<<=*x*,<=*y*<=<<=*n*) such that *x*<=+<=*y*<==<=*n*. If there are multiple solutions, you can output any of them.
|
[
"12\n",
"15\n",
"23\n",
"1000000\n"
] |
[
"4 8\n",
"6 9\n",
"8 15\n",
"500000 500000\n"
] |
In the first example, 12 = 4 + 8 and both 4, 8 are composite numbers. You can output "6 6" or "8 4" as well.
In the second example, 15 = 6 + 9. Note that you can't output "1 14" because 1 is not a composite number.
| 500
|
[
{
"input": "12",
"output": "4 8"
},
{
"input": "15",
"output": "6 9"
},
{
"input": "23",
"output": "8 15"
},
{
"input": "1000000",
"output": "500000 500000"
},
{
"input": "63874",
"output": "4 63870"
},
{
"input": "14568",
"output": "4 14564"
},
{
"input": "192",
"output": "4 188"
},
{
"input": "86",
"output": "4 82"
},
{
"input": "46220",
"output": "4 46216"
},
{
"input": "57114",
"output": "4 57110"
},
{
"input": "869",
"output": "4 865"
},
{
"input": "738457",
"output": "4 738453"
},
{
"input": "58113",
"output": "6 58107"
},
{
"input": "4864",
"output": "4 4860"
},
{
"input": "15",
"output": "6 9"
},
{
"input": "74752",
"output": "4 74748"
},
{
"input": "6073",
"output": "4 6069"
},
{
"input": "1289",
"output": "4 1285"
},
{
"input": "20",
"output": "4 16"
},
{
"input": "58134",
"output": "4 58130"
},
{
"input": "57756",
"output": "4 57752"
},
{
"input": "765",
"output": "6 759"
},
{
"input": "59",
"output": "4 55"
},
{
"input": "991666",
"output": "4 991662"
},
{
"input": "70761",
"output": "4 70757"
},
{
"input": "13",
"output": "4 9"
},
{
"input": "999999",
"output": "4 999995"
},
{
"input": "17",
"output": "8 9"
},
{
"input": "21",
"output": "6 15"
},
{
"input": "19",
"output": "4 15"
},
{
"input": "100007",
"output": "6 100001"
},
{
"input": "999987",
"output": "6 999981"
},
{
"input": "22",
"output": "4 18"
}
] | 1,670,698,816
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 33
| 46
| 0
|
import sys
# sys.stdin = open("input.txt", "r")
# sys.stdout = open("output.txt", "w")
def in_int():
return int(sys.stdin.readline())
def in_str():
return sys.stdin.readline().rstrip()
def in_map_int():
return map(int, sys.stdin.readline().split())
def in_arr_int():
return list(map(int, sys.stdin.readline().split()))
def in_arr_str():
return sys.stdin.readline().split()
def is_prime(n):
for i in range(2, int(n ** (1/2)) + 1):
if n % i == 0:
return True
return False
def solve(n):
for i in range(2, n - 1):
if is_prime(i) and is_prime(n - i):
return i, n - i
def main():
n = in_int()
print(*solve(n))
if __name__ == "__main__":
main()
# трамвай - 1
# n = 37
|
Title: Design Tutorial: Learn from Math
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One way to create a task is to learn from math. You can generate some random math statement or modify some theorems to get something new and build a new task from that.
For example, there is a statement called the "Goldbach's conjecture". It says: "each even number no less than four can be expressed as the sum of two primes". Let's modify it. How about a statement like that: "each integer no less than 12 can be expressed as the sum of two composite numbers." Not like the Goldbach's conjecture, I can prove this theorem.
You are given an integer *n* no less than 12, express it as a sum of two composite numbers.
Input Specification:
The only line contains an integer *n* (12<=≤<=*n*<=≤<=106).
Output Specification:
Output two composite integers *x* and *y* (1<=<<=*x*,<=*y*<=<<=*n*) such that *x*<=+<=*y*<==<=*n*. If there are multiple solutions, you can output any of them.
Demo Input:
['12\n', '15\n', '23\n', '1000000\n']
Demo Output:
['4 8\n', '6 9\n', '8 15\n', '500000 500000\n']
Note:
In the first example, 12 = 4 + 8 and both 4, 8 are composite numbers. You can output "6 6" or "8 4" as well.
In the second example, 15 = 6 + 9. Note that you can't output "1 14" because 1 is not a composite number.
|
```python
import sys
# sys.stdin = open("input.txt", "r")
# sys.stdout = open("output.txt", "w")
def in_int():
return int(sys.stdin.readline())
def in_str():
return sys.stdin.readline().rstrip()
def in_map_int():
return map(int, sys.stdin.readline().split())
def in_arr_int():
return list(map(int, sys.stdin.readline().split()))
def in_arr_str():
return sys.stdin.readline().split()
def is_prime(n):
for i in range(2, int(n ** (1/2)) + 1):
if n % i == 0:
return True
return False
def solve(n):
for i in range(2, n - 1):
if is_prime(i) and is_prime(n - i):
return i, n - i
def main():
n = in_int()
print(*solve(n))
if __name__ == "__main__":
main()
# трамвай - 1
# n = 37
```
| 3
|
|
134
|
B
|
Pairs of Numbers
|
PROGRAMMING
| 1,900
|
[
"brute force",
"dfs and similar",
"math",
"number theory"
] | null | null |
Let's assume that we have a pair of numbers (*a*,<=*b*). We can get a new pair (*a*<=+<=*b*,<=*b*) or (*a*,<=*a*<=+<=*b*) from the given pair in a single step.
Let the initial pair of numbers be (1,1). Your task is to find number *k*, that is, the least number of steps needed to transform (1,1) into the pair where at least one number equals *n*.
|
The input contains the only integer *n* (1<=≤<=*n*<=≤<=106).
|
Print the only integer *k*.
|
[
"5\n",
"1\n"
] |
[
"3\n",
"0\n"
] |
The pair (1,1) can be transformed into a pair containing 5 in three moves: (1,1) → (1,2) → (3,2) → (5,2).
| 1,000
|
[
{
"input": "5",
"output": "3"
},
{
"input": "1",
"output": "0"
},
{
"input": "2",
"output": "1"
},
{
"input": "3",
"output": "2"
},
{
"input": "4",
"output": "3"
},
{
"input": "10",
"output": "5"
},
{
"input": "1009",
"output": "15"
},
{
"input": "2009",
"output": "17"
},
{
"input": "7009",
"output": "19"
},
{
"input": "9009",
"output": "20"
},
{
"input": "19009",
"output": "21"
},
{
"input": "29009",
"output": "22"
},
{
"input": "12434",
"output": "21"
},
{
"input": "342342",
"output": "28"
},
{
"input": "342235",
"output": "28"
},
{
"input": "362235",
"output": "28"
},
{
"input": "762235",
"output": "30"
},
{
"input": "878235",
"output": "30"
},
{
"input": "978235",
"output": "30"
},
{
"input": "1000000",
"output": "30"
},
{
"input": "6",
"output": "5"
},
{
"input": "10000",
"output": "20"
},
{
"input": "999999",
"output": "30"
},
{
"input": "524287",
"output": "29"
},
{
"input": "777777",
"output": "30"
},
{
"input": "123756",
"output": "26"
},
{
"input": "976438",
"output": "30"
},
{
"input": "434563",
"output": "28"
},
{
"input": "345634",
"output": "28"
},
{
"input": "65457",
"output": "24"
},
{
"input": "123456",
"output": "26"
},
{
"input": "999997",
"output": "30"
},
{
"input": "98989",
"output": "25"
},
{
"input": "8",
"output": "4"
},
{
"input": "123455",
"output": "26"
},
{
"input": "990001",
"output": "30"
},
{
"input": "123141",
"output": "26"
},
{
"input": "998",
"output": "16"
},
{
"input": "453422",
"output": "28"
},
{
"input": "623423",
"output": "29"
},
{
"input": "89",
"output": "9"
},
{
"input": "24234",
"output": "23"
},
{
"input": "999879",
"output": "30"
},
{
"input": "345612",
"output": "28"
},
{
"input": "998756",
"output": "30"
},
{
"input": "999989",
"output": "30"
},
{
"input": "999998",
"output": "30"
},
{
"input": "999912",
"output": "30"
},
{
"input": "100000",
"output": "25"
}
] | 1,489,447,506
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 13
| 1,000
| 4,608,000
|
def solve(N, M):
if M == 0: return 9999923582359783278532905
if M == 1: return N - 1
d, r = divmod(N, M)
return d + solve(M, r)
N = int(input())
ans = 9999923582359783278532905
for M in range(1, N + 1):
ans = min([ans, solve(N, M)])
print(ans)
|
Title: Pairs of Numbers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Let's assume that we have a pair of numbers (*a*,<=*b*). We can get a new pair (*a*<=+<=*b*,<=*b*) or (*a*,<=*a*<=+<=*b*) from the given pair in a single step.
Let the initial pair of numbers be (1,1). Your task is to find number *k*, that is, the least number of steps needed to transform (1,1) into the pair where at least one number equals *n*.
Input Specification:
The input contains the only integer *n* (1<=≤<=*n*<=≤<=106).
Output Specification:
Print the only integer *k*.
Demo Input:
['5\n', '1\n']
Demo Output:
['3\n', '0\n']
Note:
The pair (1,1) can be transformed into a pair containing 5 in three moves: (1,1) → (1,2) → (3,2) → (5,2).
|
```python
def solve(N, M):
if M == 0: return 9999923582359783278532905
if M == 1: return N - 1
d, r = divmod(N, M)
return d + solve(M, r)
N = int(input())
ans = 9999923582359783278532905
for M in range(1, N + 1):
ans = min([ans, solve(N, M)])
print(ans)
```
| 0
|
|
1,003
|
A
|
Polycarp's Pockets
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Polycarp has $n$ coins, the value of the $i$-th coin is $a_i$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket.
For example, if Polycarp has got six coins represented as an array $a = [1, 2, 4, 3, 3, 2]$, he can distribute the coins into two pockets as follows: $[1, 2, 3], [2, 3, 4]$.
Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that.
|
The first line of the input contains one integer $n$ ($1 \le n \le 100$) — the number of coins.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$) — values of coins.
|
Print only one integer — the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket.
|
[
"6\n1 2 4 3 3 2\n",
"1\n100\n"
] |
[
"2\n",
"1\n"
] |
none
| 0
|
[
{
"input": "6\n1 2 4 3 3 2",
"output": "2"
},
{
"input": "1\n100",
"output": "1"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "100"
},
{
"input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "100"
},
{
"input": "100\n59 47 39 47 47 71 47 28 58 47 35 79 58 47 38 47 47 47 47 27 47 43 29 95 47 49 46 71 47 74 79 47 47 32 45 67 47 47 30 37 47 47 16 67 22 76 47 86 84 10 5 47 47 47 47 47 1 51 47 54 47 8 47 47 9 47 47 47 47 28 47 47 26 47 47 47 47 47 47 92 47 47 77 47 47 24 45 47 10 47 47 89 47 27 47 89 47 67 24 71",
"output": "51"
},
{
"input": "100\n45 99 10 27 16 85 39 38 17 32 15 23 67 48 50 97 42 70 62 30 44 81 64 73 34 22 46 5 83 52 58 60 33 74 47 88 18 61 78 53 25 95 94 31 3 75 1 57 20 54 59 9 68 7 77 43 21 87 86 24 4 80 11 49 2 72 36 84 71 8 65 55 79 100 41 14 35 89 66 69 93 37 56 82 90 91 51 19 26 92 6 96 13 98 12 28 76 40 63 29",
"output": "1"
},
{
"input": "100\n45 29 5 2 6 50 22 36 14 15 9 48 46 20 8 37 7 47 12 50 21 38 18 27 33 19 40 10 5 49 38 42 34 37 27 30 35 24 10 3 40 49 41 3 4 44 13 25 28 31 46 36 23 1 1 23 7 22 35 26 21 16 48 42 32 8 11 16 34 11 39 32 47 28 43 41 39 4 14 19 26 45 13 18 15 25 2 44 17 29 17 33 43 6 12 30 9 20 31 24",
"output": "2"
},
{
"input": "50\n7 7 3 3 7 4 5 6 4 3 7 5 6 4 5 4 4 5 6 7 7 7 4 5 5 5 3 7 6 3 4 6 3 6 4 4 5 4 6 6 3 5 6 3 5 3 3 7 7 6",
"output": "10"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "99"
},
{
"input": "7\n1 2 3 3 3 1 2",
"output": "3"
},
{
"input": "5\n1 2 3 4 5",
"output": "1"
},
{
"input": "7\n1 2 3 4 5 6 7",
"output": "1"
},
{
"input": "8\n1 2 3 4 5 6 7 8",
"output": "1"
},
{
"input": "9\n1 2 3 4 5 6 7 8 9",
"output": "1"
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 10",
"output": "1"
},
{
"input": "3\n2 1 1",
"output": "2"
},
{
"input": "11\n1 2 3 4 5 6 7 8 9 1 1",
"output": "3"
},
{
"input": "12\n1 2 1 1 1 1 1 1 1 1 1 1",
"output": "11"
},
{
"input": "13\n1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "13"
},
{
"input": "14\n1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "14"
},
{
"input": "15\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "15"
},
{
"input": "16\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "16"
},
{
"input": "3\n1 1 1",
"output": "3"
},
{
"input": "3\n1 2 3",
"output": "1"
},
{
"input": "10\n1 1 1 1 2 2 1 1 9 10",
"output": "6"
},
{
"input": "2\n1 1",
"output": "2"
},
{
"input": "56\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "56"
},
{
"input": "99\n35 96 73 72 70 83 22 93 98 75 45 32 81 82 45 54 25 7 53 72 29 2 94 19 21 98 34 28 39 99 55 85 44 23 6 47 98 2 33 34 19 57 49 35 67 4 60 4 4 23 55 6 57 66 16 68 34 45 84 79 48 63 4 9 46 88 98 13 19 27 83 12 4 63 57 22 44 77 44 62 28 52 44 64 9 24 55 22 48 4 2 9 80 76 45 1 56 22 92",
"output": "6"
},
{
"input": "10\n1 2 2 3 3 3 4 4 4 4",
"output": "4"
},
{
"input": "99\n97 44 33 56 42 10 61 85 64 26 40 39 82 34 75 9 51 51 39 73 58 38 74 31 13 99 58 1 28 89 76 19 52 7 40 56 12 27 72 72 67 75 62 46 22 55 35 16 18 39 60 63 92 42 85 69 34 61 73 50 57 95 30 4 45 63 76 58 32 35 48 81 10 78 95 79 55 97 21 21 22 94 30 17 78 57 89 93 100 44 16 89 68 55 19 46 42 73 21",
"output": "3"
},
{
"input": "5\n5 5 5 5 1",
"output": "4"
},
{
"input": "6\n2 3 2 5 2 6",
"output": "3"
},
{
"input": "3\n58 59 58",
"output": "2"
},
{
"input": "9\n1 2 3 4 5 6 7 8 8",
"output": "2"
},
{
"input": "97\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "97"
},
{
"input": "3\n95 95 4",
"output": "2"
},
{
"input": "3\n2 2 5",
"output": "2"
}
] | 1,609,052,415
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 37
| 171
| 512,000
|
T_ON = 0
DEBUG_ON = 0
MOD = 998244353
def solve():
n = read_int()
A = read_ints()
C = Counter(A)
print(max(C.values()))
def main():
T = read_int() if T_ON else 1
for i in range(T):
solve()
def debug(*xargs):
if DEBUG_ON:
print(*xargs)
from collections import *
import math
#---------------------------------FAST_IO---------------------------------------
import os
import sys
from io import BytesIO, IOBase
# region fastio
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
#----------------------------------IO_WRAP--------------------------------------
def read_int():
return int(input())
def read_ints():
return list(map(int, input().split()))
def print_nums(nums):
print(" ".join(map(str, nums)))
def YES():
print("YES")
def Yes():
print("Yes")
def NO():
print("NO")
def No():
print("No")
#----------------------------------FIB--------------------------------------
def fib(n):
a, b = 0, 1
for _ in range(n):
a, b = b, a + b
return a
def fib_ns(n):
assert n >= 1
f = [0 for _ in range(n + 1)]
f[0] = 0
f[1] = 1
for i in range(2, n + 1):
f[i] = f[i - 1] + f[i - 2]
return f
#----------------------------------MOD--------------------------------------
def gcd(a, b):
if a == 0:
return b
return gcd(b % a, a)
def xgcd(a, b):
"""return (g, x, y) such that a*x + b*y = g = gcd(a, b)"""
x0, x1, y0, y1 = 0, 1, 1, 0
while a != 0:
(q, a), b = divmod(b, a), a
y0, y1 = y1, y0 - q * y1
x0, x1 = x1, x0 - q * x1
return b, x0, y0
def modinv(a, m):
"""return x such that (a * x) % m == 1"""
g, x, _ = xgcd(a, m)
if g != 1:
raise Exception('gcd(a, m) != 1')
return x % m
def mod_add(x, y):
x += y
while x >= MOD:
x -= MOD
while x < 0:
x += MOD
return x
def mod_mul(x, y):
return (x * y) % MOD
def mod_pow(x, y):
if y == 0:
return 1
if y % 2:
return mod_mul(x, mod_pow(x, y - 1))
p = mod_pow(x, y // 2)
return mod_mul(p, p)
def mod_inv(y):
return mod_pow(y, MOD - 2)
def mod_div(x, y):
# y^(-1): Fermat little theorem, MOD is a prime
return mod_mul(x, mod_inv(y))
#---------------------------------PRIME---------------------------------------
def is_prime(n):
if n == 1:
return False
for i in range(2, int(n ** 0.5) + 1):
if n % i:
return False
return True
def gen_primes(n):
"""
generate primes of [1..n] using sieve's method
"""
P = [True for _ in range(n + 1)]
P[0] = P[1] = False
for i in range(int(n ** 0.5) + 1):
if P[i]:
for j in range(2 * i, n + 1, i):
P[j] = False
return P
#---------------------------------MAIN---------------------------------------
main()
|
Title: Polycarp's Pockets
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarp has $n$ coins, the value of the $i$-th coin is $a_i$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket.
For example, if Polycarp has got six coins represented as an array $a = [1, 2, 4, 3, 3, 2]$, he can distribute the coins into two pockets as follows: $[1, 2, 3], [2, 3, 4]$.
Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that.
Input Specification:
The first line of the input contains one integer $n$ ($1 \le n \le 100$) — the number of coins.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$) — values of coins.
Output Specification:
Print only one integer — the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket.
Demo Input:
['6\n1 2 4 3 3 2\n', '1\n100\n']
Demo Output:
['2\n', '1\n']
Note:
none
|
```python
T_ON = 0
DEBUG_ON = 0
MOD = 998244353
def solve():
n = read_int()
A = read_ints()
C = Counter(A)
print(max(C.values()))
def main():
T = read_int() if T_ON else 1
for i in range(T):
solve()
def debug(*xargs):
if DEBUG_ON:
print(*xargs)
from collections import *
import math
#---------------------------------FAST_IO---------------------------------------
import os
import sys
from io import BytesIO, IOBase
# region fastio
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
#----------------------------------IO_WRAP--------------------------------------
def read_int():
return int(input())
def read_ints():
return list(map(int, input().split()))
def print_nums(nums):
print(" ".join(map(str, nums)))
def YES():
print("YES")
def Yes():
print("Yes")
def NO():
print("NO")
def No():
print("No")
#----------------------------------FIB--------------------------------------
def fib(n):
a, b = 0, 1
for _ in range(n):
a, b = b, a + b
return a
def fib_ns(n):
assert n >= 1
f = [0 for _ in range(n + 1)]
f[0] = 0
f[1] = 1
for i in range(2, n + 1):
f[i] = f[i - 1] + f[i - 2]
return f
#----------------------------------MOD--------------------------------------
def gcd(a, b):
if a == 0:
return b
return gcd(b % a, a)
def xgcd(a, b):
"""return (g, x, y) such that a*x + b*y = g = gcd(a, b)"""
x0, x1, y0, y1 = 0, 1, 1, 0
while a != 0:
(q, a), b = divmod(b, a), a
y0, y1 = y1, y0 - q * y1
x0, x1 = x1, x0 - q * x1
return b, x0, y0
def modinv(a, m):
"""return x such that (a * x) % m == 1"""
g, x, _ = xgcd(a, m)
if g != 1:
raise Exception('gcd(a, m) != 1')
return x % m
def mod_add(x, y):
x += y
while x >= MOD:
x -= MOD
while x < 0:
x += MOD
return x
def mod_mul(x, y):
return (x * y) % MOD
def mod_pow(x, y):
if y == 0:
return 1
if y % 2:
return mod_mul(x, mod_pow(x, y - 1))
p = mod_pow(x, y // 2)
return mod_mul(p, p)
def mod_inv(y):
return mod_pow(y, MOD - 2)
def mod_div(x, y):
# y^(-1): Fermat little theorem, MOD is a prime
return mod_mul(x, mod_inv(y))
#---------------------------------PRIME---------------------------------------
def is_prime(n):
if n == 1:
return False
for i in range(2, int(n ** 0.5) + 1):
if n % i:
return False
return True
def gen_primes(n):
"""
generate primes of [1..n] using sieve's method
"""
P = [True for _ in range(n + 1)]
P[0] = P[1] = False
for i in range(int(n ** 0.5) + 1):
if P[i]:
for j in range(2 * i, n + 1, i):
P[j] = False
return P
#---------------------------------MAIN---------------------------------------
main()
```
| 3
|
|
71
|
A
|
Way Too Long Words
|
PROGRAMMING
| 800
|
[
"strings"
] |
A. Way Too Long Words
|
1
|
256
|
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome.
Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation.
This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes.
Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n".
You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
|
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
|
[
"4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n"
] |
[
"word\nl10n\ni18n\np43s\n"
] |
none
| 500
|
[
{
"input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis",
"output": "word\nl10n\ni18n\np43s"
},
{
"input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm",
"output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m"
},
{
"input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd",
"output": "n20n\nj27b\nk15d"
},
{
"input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt",
"output": "t41t"
},
{
"input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings",
"output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings"
},
{
"input": "1\na",
"output": "a"
},
{
"input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz",
"output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz"
},
{
"input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij",
"output": "a98j"
},
{
"input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco",
"output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco"
},
{
"input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt",
"output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t"
},
{
"input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr",
"output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr"
}
] | 1,694,531,066
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 46
| 0
|
n=int(input())
index=0
if 1<=n<=100:
while index<n:
w=input()
if len(w)<=10:
print(w)
else:
nw=w[0]+str(len(w)-2)+w[-1]
print(nw)
index+=1
|
Title: Way Too Long Words
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome.
Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation.
This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes.
Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n".
You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Output Specification:
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
Demo Input:
['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n']
Demo Output:
['word\nl10n\ni18n\np43s\n']
Note:
none
|
```python
n=int(input())
index=0
if 1<=n<=100:
while index<n:
w=input()
if len(w)<=10:
print(w)
else:
nw=w[0]+str(len(w)-2)+w[-1]
print(nw)
index+=1
```
| 3.977
|
554
|
A
|
Kyoya and Photobooks
|
PROGRAMMING
| 900
|
[
"brute force",
"math",
"strings"
] | null | null |
Kyoya Ootori is selling photobooks of the Ouran High School Host Club. He has 26 photos, labeled "a" to "z", and he has compiled them into a photo booklet with some photos in some order (possibly with some photos being duplicated). A photo booklet can be described as a string of lowercase letters, consisting of the photos in the booklet in order. He now wants to sell some "special edition" photobooks, each with one extra photo inserted anywhere in the book. He wants to make as many distinct photobooks as possible, so he can make more money. He asks Haruhi, how many distinct photobooks can he make by inserting one extra photo into the photobook he already has?
Please help Haruhi solve this problem.
|
The first line of input will be a single string *s* (1<=≤<=|*s*|<=≤<=20). String *s* consists only of lowercase English letters.
|
Output a single integer equal to the number of distinct photobooks Kyoya Ootori can make.
|
[
"a\n",
"hi\n"
] |
[
"51\n",
"76\n"
] |
In the first case, we can make 'ab','ac',...,'az','ba','ca',...,'za', and 'aa', producing a total of 51 distinct photo booklets.
| 250
|
[
{
"input": "a",
"output": "51"
},
{
"input": "hi",
"output": "76"
},
{
"input": "y",
"output": "51"
},
{
"input": "kgan",
"output": "126"
},
{
"input": "zoabkyuvus",
"output": "276"
},
{
"input": "spyemhyznjieyhhbk",
"output": "451"
},
{
"input": "xulsyfkuizjauadjjopu",
"output": "526"
},
{
"input": "e",
"output": "51"
},
{
"input": "zv",
"output": "76"
},
{
"input": "jgv",
"output": "101"
},
{
"input": "zsfo",
"output": "126"
},
{
"input": "jselr",
"output": "151"
},
{
"input": "dwemig",
"output": "176"
},
{
"input": "mddoxsf",
"output": "201"
},
{
"input": "jgirkrmi",
"output": "226"
},
{
"input": "spkxurcum",
"output": "251"
},
{
"input": "fykkiubdkt",
"output": "276"
},
{
"input": "fznbcxsxygs",
"output": "301"
},
{
"input": "qcrvrdqcbtou",
"output": "326"
},
{
"input": "qktrbjzrqgmlr",
"output": "351"
},
{
"input": "foamodbvptlxxg",
"output": "376"
},
{
"input": "ydzpjhsidipricw",
"output": "401"
},
{
"input": "lpfpndmjfvqejdgf",
"output": "426"
},
{
"input": "ofkvparuvjtggnmab",
"output": "451"
},
{
"input": "xxncfutrtxcwdzwbgs",
"output": "476"
},
{
"input": "zovhffccflkgqncsdte",
"output": "501"
},
{
"input": "cskgsxywlvfeicoueglr",
"output": "526"
},
{
"input": "gggggggggggggggggggg",
"output": "526"
},
{
"input": "qdqdddqddqqddqddqdqd",
"output": "526"
},
{
"input": "takttttaakaaktakttkt",
"output": "526"
},
{
"input": "coccoooogogcgocccmcg",
"output": "526"
},
{
"input": "kskkskkkssksssk",
"output": "401"
},
{
"input": "lllllllllllllll",
"output": "401"
}
] | 1,650,009,626
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 33
| 46
| 512,000
|
import sys
input = sys.stdin.readline
def solve():
s = input().strip()
ans = set()
for i in range(len(s)+1):
for x in range(26):
ans.add(s[:i] + chr(ord('a') + x) + s[i:])
print(len(ans))
solve()
|
Title: Kyoya and Photobooks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kyoya Ootori is selling photobooks of the Ouran High School Host Club. He has 26 photos, labeled "a" to "z", and he has compiled them into a photo booklet with some photos in some order (possibly with some photos being duplicated). A photo booklet can be described as a string of lowercase letters, consisting of the photos in the booklet in order. He now wants to sell some "special edition" photobooks, each with one extra photo inserted anywhere in the book. He wants to make as many distinct photobooks as possible, so he can make more money. He asks Haruhi, how many distinct photobooks can he make by inserting one extra photo into the photobook he already has?
Please help Haruhi solve this problem.
Input Specification:
The first line of input will be a single string *s* (1<=≤<=|*s*|<=≤<=20). String *s* consists only of lowercase English letters.
Output Specification:
Output a single integer equal to the number of distinct photobooks Kyoya Ootori can make.
Demo Input:
['a\n', 'hi\n']
Demo Output:
['51\n', '76\n']
Note:
In the first case, we can make 'ab','ac',...,'az','ba','ca',...,'za', and 'aa', producing a total of 51 distinct photo booklets.
|
```python
import sys
input = sys.stdin.readline
def solve():
s = input().strip()
ans = set()
for i in range(len(s)+1):
for x in range(26):
ans.add(s[:i] + chr(ord('a') + x) + s[i:])
print(len(ans))
solve()
```
| 3
|
|
946
|
A
|
Partition
|
PROGRAMMING
| 800
|
[
"greedy"
] | null | null |
You are given a sequence *a* consisting of *n* integers. You may partition this sequence into two sequences *b* and *c* in such a way that every element belongs exactly to one of these sequences.
Let *B* be the sum of elements belonging to *b*, and *C* be the sum of elements belonging to *c* (if some of these sequences is empty, then its sum is 0). What is the maximum possible value of *B*<=-<=*C*?
|
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in *a*.
The second line contains *n* integers *a*1, *a*2, ..., *a**n* (<=-<=100<=≤<=*a**i*<=≤<=100) — the elements of sequence *a*.
|
Print the maximum possible value of *B*<=-<=*C*, where *B* is the sum of elements of sequence *b*, and *C* is the sum of elements of sequence *c*.
|
[
"3\n1 -2 0\n",
"6\n16 23 16 15 42 8\n"
] |
[
"3\n",
"120\n"
] |
In the first example we may choose *b* = {1, 0}, *c* = { - 2}. Then *B* = 1, *C* = - 2, *B* - *C* = 3.
In the second example we choose *b* = {16, 23, 16, 15, 42, 8}, *c* = {} (an empty sequence). Then *B* = 120, *C* = 0, *B* - *C* = 120.
| 0
|
[
{
"input": "3\n1 -2 0",
"output": "3"
},
{
"input": "6\n16 23 16 15 42 8",
"output": "120"
},
{
"input": "1\n-1",
"output": "1"
},
{
"input": "100\n-100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100",
"output": "10000"
},
{
"input": "2\n-1 5",
"output": "6"
},
{
"input": "3\n-2 0 1",
"output": "3"
},
{
"input": "12\n-1 -2 -3 4 4 -6 -6 56 3 3 -3 3",
"output": "94"
},
{
"input": "4\n1 -1 1 -1",
"output": "4"
},
{
"input": "4\n100 -100 100 -100",
"output": "400"
},
{
"input": "3\n-2 -5 10",
"output": "17"
},
{
"input": "5\n1 -2 3 -4 5",
"output": "15"
},
{
"input": "3\n-100 100 -100",
"output": "300"
},
{
"input": "6\n1 -1 1 -1 1 -1",
"output": "6"
},
{
"input": "6\n2 -2 2 -2 2 -2",
"output": "12"
},
{
"input": "9\n12 93 -2 0 0 0 3 -3 -9",
"output": "122"
},
{
"input": "6\n-1 2 4 -5 -3 55",
"output": "70"
},
{
"input": "6\n-12 8 68 -53 1 -15",
"output": "157"
},
{
"input": "2\n-2 1",
"output": "3"
},
{
"input": "3\n100 -100 100",
"output": "300"
},
{
"input": "5\n100 100 -1 -100 2",
"output": "303"
},
{
"input": "6\n-5 -4 -3 -2 -1 0",
"output": "15"
},
{
"input": "6\n4 4 4 -3 -3 2",
"output": "20"
},
{
"input": "2\n-1 2",
"output": "3"
},
{
"input": "1\n100",
"output": "100"
},
{
"input": "5\n-1 -2 3 1 2",
"output": "9"
},
{
"input": "5\n100 -100 100 -100 100",
"output": "500"
},
{
"input": "5\n1 -1 1 -1 1",
"output": "5"
},
{
"input": "4\n0 0 0 -1",
"output": "1"
},
{
"input": "5\n100 -100 -1 2 100",
"output": "303"
},
{
"input": "2\n75 0",
"output": "75"
},
{
"input": "4\n55 56 -59 -58",
"output": "228"
},
{
"input": "2\n9 71",
"output": "80"
},
{
"input": "2\n9 70",
"output": "79"
},
{
"input": "2\n9 69",
"output": "78"
},
{
"input": "2\n100 -100",
"output": "200"
},
{
"input": "4\n-9 4 -9 5",
"output": "27"
},
{
"input": "42\n91 -27 -79 -56 80 -93 -23 10 80 94 61 -89 -64 81 34 99 31 -32 -69 92 79 -9 73 66 -8 64 99 99 58 -19 -40 21 1 -33 93 -23 -62 27 55 41 57 36",
"output": "2348"
},
{
"input": "7\n-1 2 2 2 -1 2 -1",
"output": "11"
},
{
"input": "6\n-12 8 17 -69 7 -88",
"output": "201"
},
{
"input": "3\n1 -2 5",
"output": "8"
},
{
"input": "6\n-2 3 -4 5 6 -1",
"output": "21"
},
{
"input": "2\n-5 1",
"output": "6"
},
{
"input": "4\n2 2 -2 4",
"output": "10"
},
{
"input": "68\n21 47 -75 -25 64 83 83 -21 89 24 43 44 -35 34 -42 92 -96 -52 -66 64 14 -87 25 -61 -78 83 -96 -18 95 83 -93 -28 75 49 87 65 -93 -69 -2 95 -24 -36 -61 -71 88 -53 -93 -51 -81 -65 -53 -46 -56 6 65 58 19 100 57 61 -53 44 -58 48 -8 80 -88 72",
"output": "3991"
},
{
"input": "5\n5 5 -10 -1 1",
"output": "22"
},
{
"input": "3\n-1 2 3",
"output": "6"
},
{
"input": "76\n57 -38 -48 -81 93 -32 96 55 -44 2 38 -46 42 64 71 -73 95 31 -39 -62 -1 75 -17 57 28 52 12 -11 82 -84 59 -86 73 -97 34 97 -57 -85 -6 39 -5 -54 95 24 -44 35 -18 9 91 7 -22 -61 -80 54 -40 74 -90 15 -97 66 -52 -49 -24 65 21 -93 -29 -24 -4 -1 76 -93 7 -55 -53 1",
"output": "3787"
},
{
"input": "5\n-1 -2 1 2 3",
"output": "9"
},
{
"input": "4\n2 2 -2 -2",
"output": "8"
},
{
"input": "6\n100 -100 100 -100 100 -100",
"output": "600"
},
{
"input": "100\n-59 -33 34 0 69 24 -22 58 62 -36 5 45 -19 -73 61 -9 95 42 -73 -64 91 -96 2 53 -8 82 -79 16 18 -5 -53 26 71 38 -31 12 -33 -1 -65 -6 3 -89 22 33 -27 -36 41 11 -47 -32 47 -56 -38 57 -63 -41 23 41 29 78 16 -65 90 -58 -12 6 -60 42 -36 -52 -54 -95 -10 29 70 50 -94 1 93 48 -71 -77 -16 54 56 -60 66 76 31 8 44 -61 -74 23 37 38 18 -18 29 41",
"output": "4362"
},
{
"input": "2\n-1 1",
"output": "2"
},
{
"input": "3\n1 -2 100",
"output": "103"
},
{
"input": "5\n1 -2 3 1 2",
"output": "9"
},
{
"input": "10\n100 -10 -100 10 10 10 10 10 10 10",
"output": "280"
},
{
"input": "4\n2 0 -2 4",
"output": "8"
},
{
"input": "4\n3 -3 1 -1",
"output": "8"
},
{
"input": "3\n1 -1 1",
"output": "3"
},
{
"input": "4\n2 5 -2 4",
"output": "13"
},
{
"input": "2\n-2 2",
"output": "4"
},
{
"input": "3\n1 -2 1",
"output": "4"
},
{
"input": "5\n-1 -2 1 1 -1",
"output": "6"
},
{
"input": "4\n-2 0 2 4",
"output": "8"
},
{
"input": "8\n-42 7 87 -16 -5 65 -88 1",
"output": "311"
},
{
"input": "3\n1 -3 4",
"output": "8"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "2\n0 1",
"output": "1"
},
{
"input": "3\n-1 2 -1",
"output": "4"
},
{
"input": "18\n-21 12 65 66 -24 62 82 35 -45 -47 28 37 5 -32 22 -14 -69 -95",
"output": "761"
},
{
"input": "4\n-1 1 -1 1",
"output": "4"
},
{
"input": "5\n-1 2 1 1 1",
"output": "6"
},
{
"input": "3\n1 1 1",
"output": "3"
}
] | 1,585,557,942
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 0
| 108
| 0
|
#-------------Program--------------
#----Kuzlyaev-Nikita-Codeforces----
#-------------Training-------------
#----------------------------------
n=int(input())
a=list(map(int,input().split()))
b=0;c=0
for i in range(n):
if a[i]<0:c-=a[i]
else:
b+=a[i]
print(b-c)
|
Title: Partition
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given a sequence *a* consisting of *n* integers. You may partition this sequence into two sequences *b* and *c* in such a way that every element belongs exactly to one of these sequences.
Let *B* be the sum of elements belonging to *b*, and *C* be the sum of elements belonging to *c* (if some of these sequences is empty, then its sum is 0). What is the maximum possible value of *B*<=-<=*C*?
Input Specification:
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in *a*.
The second line contains *n* integers *a*1, *a*2, ..., *a**n* (<=-<=100<=≤<=*a**i*<=≤<=100) — the elements of sequence *a*.
Output Specification:
Print the maximum possible value of *B*<=-<=*C*, where *B* is the sum of elements of sequence *b*, and *C* is the sum of elements of sequence *c*.
Demo Input:
['3\n1 -2 0\n', '6\n16 23 16 15 42 8\n']
Demo Output:
['3\n', '120\n']
Note:
In the first example we may choose *b* = {1, 0}, *c* = { - 2}. Then *B* = 1, *C* = - 2, *B* - *C* = 3.
In the second example we choose *b* = {16, 23, 16, 15, 42, 8}, *c* = {} (an empty sequence). Then *B* = 120, *C* = 0, *B* - *C* = 120.
|
```python
#-------------Program--------------
#----Kuzlyaev-Nikita-Codeforces----
#-------------Training-------------
#----------------------------------
n=int(input())
a=list(map(int,input().split()))
b=0;c=0
for i in range(n):
if a[i]<0:c-=a[i]
else:
b+=a[i]
print(b-c)
```
| 0
|
|
962
|
A
|
Equator
|
PROGRAMMING
| 1,300
|
[
"implementation"
] | null | null |
Polycarp has created his own training plan to prepare for the programming contests. He will train for $n$ days, all days are numbered from $1$ to $n$, beginning from the first.
On the $i$-th day Polycarp will necessarily solve $a_i$ problems. One evening Polycarp plans to celebrate the equator. He will celebrate it on the first evening of such a day that from the beginning of the training and to this day inclusive he will solve half or more of all the problems.
Determine the index of day when Polycarp will celebrate the equator.
|
The first line contains a single integer $n$ ($1 \le n \le 200\,000$) — the number of days to prepare for the programming contests.
The second line contains a sequence $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10\,000$), where $a_i$ equals to the number of problems, which Polycarp will solve on the $i$-th day.
|
Print the index of the day when Polycarp will celebrate the equator.
|
[
"4\n1 3 2 1\n",
"6\n2 2 2 2 2 2\n"
] |
[
"2\n",
"3\n"
] |
In the first example Polycarp will celebrate the equator on the evening of the second day, because up to this day (inclusive) he will solve $4$ out of $7$ scheduled problems on four days of the training.
In the second example Polycarp will celebrate the equator on the evening of the third day, because up to this day (inclusive) he will solve $6$ out of $12$ scheduled problems on six days of the training.
| 0
|
[
{
"input": "4\n1 3 2 1",
"output": "2"
},
{
"input": "6\n2 2 2 2 2 2",
"output": "3"
},
{
"input": "1\n10000",
"output": "1"
},
{
"input": "3\n2 1 1",
"output": "1"
},
{
"input": "2\n1 3",
"output": "2"
},
{
"input": "4\n2 1 1 3",
"output": "3"
},
{
"input": "3\n1 1 3",
"output": "3"
},
{
"input": "3\n1 1 1",
"output": "2"
},
{
"input": "2\n1 2",
"output": "2"
},
{
"input": "3\n2 1 2",
"output": "2"
},
{
"input": "5\n1 2 4 3 5",
"output": "4"
},
{
"input": "5\n2 2 2 4 3",
"output": "4"
},
{
"input": "4\n1 2 3 1",
"output": "3"
},
{
"input": "6\n7 3 10 7 3 11",
"output": "4"
},
{
"input": "2\n3 4",
"output": "2"
},
{
"input": "5\n1 1 1 1 1",
"output": "3"
},
{
"input": "4\n1 3 2 3",
"output": "3"
},
{
"input": "2\n2 3",
"output": "2"
},
{
"input": "3\n32 10 23",
"output": "2"
},
{
"input": "7\n1 1 1 1 1 1 1",
"output": "4"
},
{
"input": "3\n1 2 4",
"output": "3"
},
{
"input": "6\n3 3 3 2 4 4",
"output": "4"
},
{
"input": "9\n1 1 1 1 1 1 1 1 1",
"output": "5"
},
{
"input": "5\n1 3 3 1 1",
"output": "3"
},
{
"input": "4\n1 1 1 2",
"output": "3"
},
{
"input": "4\n1 2 1 3",
"output": "3"
},
{
"input": "3\n2 2 1",
"output": "2"
},
{
"input": "4\n2 3 3 3",
"output": "3"
},
{
"input": "4\n3 2 3 3",
"output": "3"
},
{
"input": "4\n2 1 1 1",
"output": "2"
},
{
"input": "3\n2 1 4",
"output": "3"
},
{
"input": "2\n6 7",
"output": "2"
},
{
"input": "4\n3 3 4 3",
"output": "3"
},
{
"input": "4\n1 1 2 5",
"output": "4"
},
{
"input": "4\n1 8 7 3",
"output": "3"
},
{
"input": "6\n2 2 2 2 2 3",
"output": "4"
},
{
"input": "3\n2 2 5",
"output": "3"
},
{
"input": "4\n1 1 2 1",
"output": "3"
},
{
"input": "5\n1 1 2 2 3",
"output": "4"
},
{
"input": "5\n9 5 3 4 8",
"output": "3"
},
{
"input": "3\n3 3 1",
"output": "2"
},
{
"input": "4\n1 2 2 2",
"output": "3"
},
{
"input": "3\n1 3 5",
"output": "3"
},
{
"input": "4\n1 1 3 6",
"output": "4"
},
{
"input": "6\n1 2 1 1 1 1",
"output": "3"
},
{
"input": "3\n3 1 3",
"output": "2"
},
{
"input": "5\n3 4 5 1 2",
"output": "3"
},
{
"input": "11\n1 1 1 1 1 1 1 1 1 1 1",
"output": "6"
},
{
"input": "5\n3 1 2 5 2",
"output": "4"
},
{
"input": "4\n1 1 1 4",
"output": "4"
},
{
"input": "4\n2 6 1 10",
"output": "4"
},
{
"input": "4\n2 2 3 2",
"output": "3"
},
{
"input": "4\n4 2 2 1",
"output": "2"
},
{
"input": "6\n1 1 1 1 1 4",
"output": "5"
},
{
"input": "3\n3 2 2",
"output": "2"
},
{
"input": "6\n1 3 5 1 7 4",
"output": "5"
},
{
"input": "5\n1 2 4 8 16",
"output": "5"
},
{
"input": "5\n1 2 4 4 4",
"output": "4"
},
{
"input": "6\n4 2 1 2 3 1",
"output": "3"
},
{
"input": "4\n3 2 1 5",
"output": "3"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "3\n2 4 7",
"output": "3"
},
{
"input": "5\n1 1 1 1 3",
"output": "4"
},
{
"input": "3\n3 1 5",
"output": "3"
},
{
"input": "4\n1 2 3 7",
"output": "4"
},
{
"input": "3\n1 4 6",
"output": "3"
},
{
"input": "4\n2 1 2 2",
"output": "3"
},
{
"input": "2\n4 5",
"output": "2"
},
{
"input": "5\n1 2 1 2 1",
"output": "3"
},
{
"input": "3\n2 3 6",
"output": "3"
},
{
"input": "6\n1 1 4 1 1 5",
"output": "4"
},
{
"input": "5\n2 2 2 2 1",
"output": "3"
},
{
"input": "2\n5 6",
"output": "2"
},
{
"input": "4\n2 2 1 4",
"output": "3"
},
{
"input": "5\n2 2 3 4 4",
"output": "4"
},
{
"input": "4\n3 1 1 2",
"output": "2"
},
{
"input": "5\n3 4 1 4 5",
"output": "4"
},
{
"input": "4\n1 3 1 6",
"output": "4"
},
{
"input": "5\n1 1 1 2 2",
"output": "4"
},
{
"input": "4\n1 4 2 4",
"output": "3"
},
{
"input": "10\n1 1 1 1 1 1 1 1 1 8",
"output": "9"
},
{
"input": "4\n1 4 5 1",
"output": "3"
},
{
"input": "5\n1 1 1 1 5",
"output": "5"
},
{
"input": "4\n1 3 4 1",
"output": "3"
},
{
"input": "4\n2 2 2 3",
"output": "3"
},
{
"input": "4\n2 3 2 4",
"output": "3"
},
{
"input": "5\n2 2 1 2 2",
"output": "3"
},
{
"input": "3\n4 3 2",
"output": "2"
},
{
"input": "3\n6 5 2",
"output": "2"
},
{
"input": "69\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "35"
},
{
"input": "6\n1 1 1 1 1 2",
"output": "4"
},
{
"input": "5\n1 2 5 4 5",
"output": "4"
},
{
"input": "2\n9 10",
"output": "2"
},
{
"input": "3\n1 1 5",
"output": "3"
},
{
"input": "4\n3 4 3 5",
"output": "3"
},
{
"input": "4\n1 4 3 3",
"output": "3"
},
{
"input": "4\n7 1 3 4",
"output": "2"
},
{
"input": "3\n100 100 1",
"output": "2"
},
{
"input": "4\n5 2 2 2",
"output": "2"
}
] | 1,557,013,396
| 2,147,483,647
|
Python 3
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
#include <bits/stdc++.h>
#define FORN(i,x) for(int i=0; i<x; ++i)
#define FORR(i,x,y) for(int i=x; i<y;++i)
#define ALL(x) x.begin(), x.end()
#define LEN(arr) sizeof(arr)/sizeof(arr[0])
#define DBG(x) cout << #x << " = " << (x) << endl;
#define DBG2(x, y) DBG(x) DBG(y)
#define DBG3(x, y, z) DBG(x) DBG(y) DBG(z)
#define DBGLN(x) cout << x << endl;
#define DBGLN2(x, y) cout << x << " " << y << endl;
#define DBGLN3(x, y, z) cout << x << " " << y << " " << z << endl;
#define DBGII(p) cout << "(" << p.ff << " " << p.ss << ")" << endl;
#define FILLMAT(mat, x) for(auto& arr: mat) fill(arr, arr+LEN(arr), x);
#define DBGARR(a, n) cout << #a << "[" << n << "]" << " = [" ; FORN(i, n) cout << a[i] << ", "; cout << "\b\b]\n";
#define DBGMAT(a, n, m) cout << #a << "[" << n << "]" << "[" << m << "]" <<" =\n"; FORN(i, n) {cout << "["; FORN(i, m) cout << a[i][j] << ", ";cout << "\b\b]\n";}
#define DBGVARR(v) cout << #v << "[" << v.size() << "]" << " = [" ; for(const auto& vi: v) cout << vi << ", "; cout << "\b\b]\n";
#define DBGVMAT(v) cout << #v << "[" << v.size() << "]" << "[...]" <<" =\n"; for(const auto& tmp: v){cout << "["; for(const auto& vij: tmp) cout << vij << ", "; cout << "\b\b]\n";}
#define ff first
#define ss second
#define mkp make_pair
#define pb push_back
#define eb emplace_back
#define EPS 1e-9
using namespace std;
typedef long long ll;
typedef pair<int, int> ii;
typedef vector<ll> vll;
typedef vector<ii> vii;
typedef vector<int> vi;
int main()
{
int n; cin>>n;
int sum = 0;
vi a(n);
FORN(i, n)
{
cin>>a[i];
sum += a[i];
}
int m = sum/2 + sum%2;
int curr=0;
FORN(i, n)
{
curr+=a[i];
if(curr >= m)
{
cout << i+1 << endl;
return 0;
}
}
return 0;
}
|
Title: Equator
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarp has created his own training plan to prepare for the programming contests. He will train for $n$ days, all days are numbered from $1$ to $n$, beginning from the first.
On the $i$-th day Polycarp will necessarily solve $a_i$ problems. One evening Polycarp plans to celebrate the equator. He will celebrate it on the first evening of such a day that from the beginning of the training and to this day inclusive he will solve half or more of all the problems.
Determine the index of day when Polycarp will celebrate the equator.
Input Specification:
The first line contains a single integer $n$ ($1 \le n \le 200\,000$) — the number of days to prepare for the programming contests.
The second line contains a sequence $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10\,000$), where $a_i$ equals to the number of problems, which Polycarp will solve on the $i$-th day.
Output Specification:
Print the index of the day when Polycarp will celebrate the equator.
Demo Input:
['4\n1 3 2 1\n', '6\n2 2 2 2 2 2\n']
Demo Output:
['2\n', '3\n']
Note:
In the first example Polycarp will celebrate the equator on the evening of the second day, because up to this day (inclusive) he will solve $4$ out of $7$ scheduled problems on four days of the training.
In the second example Polycarp will celebrate the equator on the evening of the third day, because up to this day (inclusive) he will solve $6$ out of $12$ scheduled problems on six days of the training.
|
```python
#include <bits/stdc++.h>
#define FORN(i,x) for(int i=0; i<x; ++i)
#define FORR(i,x,y) for(int i=x; i<y;++i)
#define ALL(x) x.begin(), x.end()
#define LEN(arr) sizeof(arr)/sizeof(arr[0])
#define DBG(x) cout << #x << " = " << (x) << endl;
#define DBG2(x, y) DBG(x) DBG(y)
#define DBG3(x, y, z) DBG(x) DBG(y) DBG(z)
#define DBGLN(x) cout << x << endl;
#define DBGLN2(x, y) cout << x << " " << y << endl;
#define DBGLN3(x, y, z) cout << x << " " << y << " " << z << endl;
#define DBGII(p) cout << "(" << p.ff << " " << p.ss << ")" << endl;
#define FILLMAT(mat, x) for(auto& arr: mat) fill(arr, arr+LEN(arr), x);
#define DBGARR(a, n) cout << #a << "[" << n << "]" << " = [" ; FORN(i, n) cout << a[i] << ", "; cout << "\b\b]\n";
#define DBGMAT(a, n, m) cout << #a << "[" << n << "]" << "[" << m << "]" <<" =\n"; FORN(i, n) {cout << "["; FORN(i, m) cout << a[i][j] << ", ";cout << "\b\b]\n";}
#define DBGVARR(v) cout << #v << "[" << v.size() << "]" << " = [" ; for(const auto& vi: v) cout << vi << ", "; cout << "\b\b]\n";
#define DBGVMAT(v) cout << #v << "[" << v.size() << "]" << "[...]" <<" =\n"; for(const auto& tmp: v){cout << "["; for(const auto& vij: tmp) cout << vij << ", "; cout << "\b\b]\n";}
#define ff first
#define ss second
#define mkp make_pair
#define pb push_back
#define eb emplace_back
#define EPS 1e-9
using namespace std;
typedef long long ll;
typedef pair<int, int> ii;
typedef vector<ll> vll;
typedef vector<ii> vii;
typedef vector<int> vi;
int main()
{
int n; cin>>n;
int sum = 0;
vi a(n);
FORN(i, n)
{
cin>>a[i];
sum += a[i];
}
int m = sum/2 + sum%2;
int curr=0;
FORN(i, n)
{
curr+=a[i];
if(curr >= m)
{
cout << i+1 << endl;
return 0;
}
}
return 0;
}
```
| -1
|
|
706
|
B
|
Interesting drink
|
PROGRAMMING
| 1,100
|
[
"binary search",
"dp",
"implementation"
] | null | null |
Vasiliy likes to rest after a hard work, so you may often meet him in some bar nearby. As all programmers do, he loves the famous drink "Beecola", which can be bought in *n* different shops in the city. It's known that the price of one bottle in the shop *i* is equal to *x**i* coins.
Vasiliy plans to buy his favorite drink for *q* consecutive days. He knows, that on the *i*-th day he will be able to spent *m**i* coins. Now, for each of the days he want to know in how many different shops he can buy a bottle of "Beecola".
|
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of shops in the city that sell Vasiliy's favourite drink.
The second line contains *n* integers *x**i* (1<=≤<=*x**i*<=≤<=100<=000) — prices of the bottles of the drink in the *i*-th shop.
The third line contains a single integer *q* (1<=≤<=*q*<=≤<=100<=000) — the number of days Vasiliy plans to buy the drink.
Then follow *q* lines each containing one integer *m**i* (1<=≤<=*m**i*<=≤<=109) — the number of coins Vasiliy can spent on the *i*-th day.
|
Print *q* integers. The *i*-th of them should be equal to the number of shops where Vasiliy will be able to buy a bottle of the drink on the *i*-th day.
|
[
"5\n3 10 8 6 11\n4\n1\n10\n3\n11\n"
] |
[
"0\n4\n1\n5\n"
] |
On the first day, Vasiliy won't be able to buy a drink in any of the shops.
On the second day, Vasiliy can buy a drink in the shops 1, 2, 3 and 4.
On the third day, Vasiliy can buy a drink only in the shop number 1.
Finally, on the last day Vasiliy can buy a drink in any shop.
| 1,000
|
[
{
"input": "5\n3 10 8 6 11\n4\n1\n10\n3\n11",
"output": "0\n4\n1\n5"
},
{
"input": "5\n868 987 714 168 123\n10\n424\n192\n795\n873\n117\n914\n735\n158\n631\n471",
"output": "2\n2\n3\n4\n0\n4\n3\n1\n2\n2"
},
{
"input": "3\n435 482 309\n7\n245\n241\n909\n745\n980\n29\n521",
"output": "0\n0\n3\n3\n3\n0\n3"
},
{
"input": "1\n653\n9\n903\n980\n80\n770\n965\n874\n381\n657\n969",
"output": "1\n1\n0\n1\n1\n1\n0\n1\n1"
},
{
"input": "12\n35345 58181 32223 84621 35905 73863 99537 30666 67771 39229 36847 29038\n23\n55052824\n82504840\n35160556\n78141700\n73401989\n86305919\n39430705\n31939373\n23501765\n4406029\n61436920\n14295390\n34275309\n28028753\n85724689\n70158847\n2396455\n66994588\n84024224\n30175981\n65622319\n76517111\n76605341",
"output": "12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12"
},
{
"input": "4\n698 193 1584 76192\n4\n553640\n310518\n274280\n429192",
"output": "4\n4\n4\n4"
},
{
"input": "1\n1\n1\n1000000000",
"output": "1"
},
{
"input": "1\n1\n1\n100005",
"output": "1"
},
{
"input": "3\n1 2 3\n1\n100005",
"output": "3"
},
{
"input": "2\n1 2\n3\n100004\n100005\n100006",
"output": "2\n2\n2"
},
{
"input": "3\n1 1 1\n1\n1",
"output": "3"
},
{
"input": "1\n1\n1\n1",
"output": "1"
},
{
"input": "3\n1 2 3\n1\n100000",
"output": "3"
},
{
"input": "5\n1 1 1 1 10\n2\n1\n10",
"output": "4\n5"
},
{
"input": "5\n3 10 8 6 11\n1\n10000000",
"output": "5"
}
] | 1,699,952,856
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 103
| 748
| 13,516,800
|
n = int(input())
nn = list(map(int,input().split()))
m = int(input())
mm = [int(input()) for _ in range(m)]
nn.sort()
for i in mm:
left, right = 0, n
while left < right:
mid = (left + right) // 2
if nn[mid] <= i:
left = mid + 1
else:
right = mid
print(left)
|
Title: Interesting drink
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasiliy likes to rest after a hard work, so you may often meet him in some bar nearby. As all programmers do, he loves the famous drink "Beecola", which can be bought in *n* different shops in the city. It's known that the price of one bottle in the shop *i* is equal to *x**i* coins.
Vasiliy plans to buy his favorite drink for *q* consecutive days. He knows, that on the *i*-th day he will be able to spent *m**i* coins. Now, for each of the days he want to know in how many different shops he can buy a bottle of "Beecola".
Input Specification:
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of shops in the city that sell Vasiliy's favourite drink.
The second line contains *n* integers *x**i* (1<=≤<=*x**i*<=≤<=100<=000) — prices of the bottles of the drink in the *i*-th shop.
The third line contains a single integer *q* (1<=≤<=*q*<=≤<=100<=000) — the number of days Vasiliy plans to buy the drink.
Then follow *q* lines each containing one integer *m**i* (1<=≤<=*m**i*<=≤<=109) — the number of coins Vasiliy can spent on the *i*-th day.
Output Specification:
Print *q* integers. The *i*-th of them should be equal to the number of shops where Vasiliy will be able to buy a bottle of the drink on the *i*-th day.
Demo Input:
['5\n3 10 8 6 11\n4\n1\n10\n3\n11\n']
Demo Output:
['0\n4\n1\n5\n']
Note:
On the first day, Vasiliy won't be able to buy a drink in any of the shops.
On the second day, Vasiliy can buy a drink in the shops 1, 2, 3 and 4.
On the third day, Vasiliy can buy a drink only in the shop number 1.
Finally, on the last day Vasiliy can buy a drink in any shop.
|
```python
n = int(input())
nn = list(map(int,input().split()))
m = int(input())
mm = [int(input()) for _ in range(m)]
nn.sort()
for i in mm:
left, right = 0, n
while left < right:
mid = (left + right) // 2
if nn[mid] <= i:
left = mid + 1
else:
right = mid
print(left)
```
| 3
|
|
584
|
A
|
Olesya and Rodion
|
PROGRAMMING
| 1,000
|
[
"math"
] | null | null |
Olesya loves numbers consisting of *n* digits, and Rodion only likes numbers that are divisible by *t*. Find some number that satisfies both of them.
Your task is: given the *n* and *t* print an integer strictly larger than zero consisting of *n* digits that is divisible by *t*. If such number doesn't exist, print <=-<=1.
|
The single line contains two numbers, *n* and *t* (1<=≤<=*n*<=≤<=100, 2<=≤<=*t*<=≤<=10) — the length of the number and the number it should be divisible by.
|
Print one such positive number without leading zeroes, — the answer to the problem, or <=-<=1, if such number doesn't exist. If there are multiple possible answers, you are allowed to print any of them.
|
[
"3 2\n"
] |
[
"712"
] |
none
| 500
|
[
{
"input": "3 2",
"output": "222"
},
{
"input": "2 2",
"output": "22"
},
{
"input": "4 3",
"output": "3333"
},
{
"input": "5 3",
"output": "33333"
},
{
"input": "10 7",
"output": "7777777777"
},
{
"input": "2 9",
"output": "99"
},
{
"input": "18 8",
"output": "888888888888888888"
},
{
"input": "1 5",
"output": "5"
},
{
"input": "1 10",
"output": "-1"
},
{
"input": "100 5",
"output": "5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555"
},
{
"input": "10 2",
"output": "2222222222"
},
{
"input": "18 10",
"output": "111111111111111110"
},
{
"input": "1 9",
"output": "9"
},
{
"input": "7 6",
"output": "6666666"
},
{
"input": "4 4",
"output": "4444"
},
{
"input": "14 7",
"output": "77777777777777"
},
{
"input": "3 8",
"output": "888"
},
{
"input": "1 3",
"output": "3"
},
{
"input": "2 8",
"output": "88"
},
{
"input": "3 8",
"output": "888"
},
{
"input": "4 3",
"output": "3333"
},
{
"input": "5 9",
"output": "99999"
},
{
"input": "4 8",
"output": "8888"
},
{
"input": "3 4",
"output": "444"
},
{
"input": "9 4",
"output": "444444444"
},
{
"input": "8 10",
"output": "11111110"
},
{
"input": "1 6",
"output": "6"
},
{
"input": "20 3",
"output": "33333333333333333333"
},
{
"input": "15 10",
"output": "111111111111110"
},
{
"input": "31 4",
"output": "4444444444444444444444444444444"
},
{
"input": "18 9",
"output": "999999999999999999"
},
{
"input": "72 4",
"output": "444444444444444444444444444444444444444444444444444444444444444444444444"
},
{
"input": "76 8",
"output": "8888888888888888888888888888888888888888888888888888888888888888888888888888"
},
{
"input": "12 5",
"output": "555555555555"
},
{
"input": "54 5",
"output": "555555555555555555555555555555555555555555555555555555"
},
{
"input": "96 10",
"output": "111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110"
},
{
"input": "15 9",
"output": "999999999999999"
},
{
"input": "100 2",
"output": "2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222"
},
{
"input": "99 3",
"output": "333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333"
},
{
"input": "98 4",
"output": "44444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444"
},
{
"input": "97 5",
"output": "5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555"
},
{
"input": "100 6",
"output": "6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666"
},
{
"input": "99 7",
"output": "777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777"
},
{
"input": "98 8",
"output": "88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888"
},
{
"input": "97 9",
"output": "9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999"
},
{
"input": "100 10",
"output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110"
},
{
"input": "3 10",
"output": "110"
},
{
"input": "2 4",
"output": "44"
},
{
"input": "2 10",
"output": "10"
},
{
"input": "10 10",
"output": "1111111110"
},
{
"input": "4 10",
"output": "1110"
},
{
"input": "25 10",
"output": "1111111111111111111111110"
},
{
"input": "50 10",
"output": "11111111111111111111111111111111111111111111111110"
},
{
"input": "5 10",
"output": "11110"
},
{
"input": "99 10",
"output": "111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110"
},
{
"input": "100 10",
"output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110"
},
{
"input": "1 2",
"output": "2"
},
{
"input": "20 10",
"output": "11111111111111111110"
},
{
"input": "99 7",
"output": "777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777"
},
{
"input": "89 5",
"output": "55555555555555555555555555555555555555555555555555555555555555555555555555555555555555555"
},
{
"input": "6 10",
"output": "111110"
},
{
"input": "3 8",
"output": "888"
},
{
"input": "1 9",
"output": "9"
},
{
"input": "1 4",
"output": "4"
},
{
"input": "100 7",
"output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777"
}
] | 1,693,169,818
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 65
| 46
| 0
|
MOD = 1000000007
def main():
n, t = map(int, input().split())
ans = 0
for i in range(10 ** (n - 1), 10 ** n):
if i % t == 0:
ans = i
break
else:
ans = -1
print(ans)
if __name__ == "__main__":
main()
|
Title: Olesya and Rodion
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Olesya loves numbers consisting of *n* digits, and Rodion only likes numbers that are divisible by *t*. Find some number that satisfies both of them.
Your task is: given the *n* and *t* print an integer strictly larger than zero consisting of *n* digits that is divisible by *t*. If such number doesn't exist, print <=-<=1.
Input Specification:
The single line contains two numbers, *n* and *t* (1<=≤<=*n*<=≤<=100, 2<=≤<=*t*<=≤<=10) — the length of the number and the number it should be divisible by.
Output Specification:
Print one such positive number without leading zeroes, — the answer to the problem, or <=-<=1, if such number doesn't exist. If there are multiple possible answers, you are allowed to print any of them.
Demo Input:
['3 2\n']
Demo Output:
['712']
Note:
none
|
```python
MOD = 1000000007
def main():
n, t = map(int, input().split())
ans = 0
for i in range(10 ** (n - 1), 10 ** n):
if i % t == 0:
ans = i
break
else:
ans = -1
print(ans)
if __name__ == "__main__":
main()
```
| 3
|
|
471
|
A
|
MUH and Sticks
|
PROGRAMMING
| 1,100
|
[
"implementation"
] | null | null |
Two polar bears Menshykov and Uslada from the St.Petersburg zoo and elephant Horace from the Kiev zoo got six sticks to play with and assess the animals' creativity. Menshykov, Uslada and Horace decided to make either an elephant or a bear from those sticks. They can make an animal from sticks in the following way:
- Four sticks represent the animal's legs, these sticks should have the same length. - Two remaining sticks represent the animal's head and body. The bear's head stick must be shorter than the body stick. The elephant, however, has a long trunk, so his head stick must be as long as the body stick. Note that there are no limits on the relations between the leg sticks and the head and body sticks.
Your task is to find out which animal can be made from the given stick set. The zoo keeper wants the sticks back after the game, so they must never be broken, even bears understand it.
|
The single line contains six space-separated integers *l**i* (1<=≤<=*l**i*<=≤<=9) — the lengths of the six sticks. It is guaranteed that the input is such that you cannot make both animals from the sticks.
|
If you can make a bear from the given set, print string "Bear" (without the quotes). If you can make an elephant, print string "Elephant" (wıthout the quotes). If you can make neither a bear nor an elephant, print string "Alien" (without the quotes).
|
[
"4 2 5 4 4 4\n",
"4 4 5 4 4 5\n",
"1 2 3 4 5 6\n"
] |
[
"Bear",
"Elephant",
"Alien"
] |
If you're out of creative ideas, see instructions below which show how to make a bear and an elephant in the first two samples. The stick of length 2 is in red, the sticks of length 4 are in green, the sticks of length 5 are in blue.
| 500
|
[
{
"input": "4 2 5 4 4 4",
"output": "Bear"
},
{
"input": "4 4 5 4 4 5",
"output": "Elephant"
},
{
"input": "1 2 3 4 5 6",
"output": "Alien"
},
{
"input": "5 5 5 5 5 5",
"output": "Elephant"
},
{
"input": "1 1 1 2 3 5",
"output": "Alien"
},
{
"input": "1 1 1 1 1 1",
"output": "Elephant"
},
{
"input": "9 9 9 9 9 9",
"output": "Elephant"
},
{
"input": "1 8 9 1 1 1",
"output": "Bear"
},
{
"input": "9 9 9 1 9 9",
"output": "Bear"
},
{
"input": "1 2 3 8 9 7",
"output": "Alien"
},
{
"input": "5 5 5 6 6 6",
"output": "Alien"
},
{
"input": "1 1 2 2 3 4",
"output": "Alien"
},
{
"input": "4 4 4 4 4 2",
"output": "Bear"
},
{
"input": "2 2 3 3 4 4",
"output": "Alien"
},
{
"input": "4 4 4 4 4 5",
"output": "Bear"
},
{
"input": "1 1 2 2 2 2",
"output": "Elephant"
},
{
"input": "1 2 5 5 5 5",
"output": "Bear"
},
{
"input": "4 4 2 2 2 2",
"output": "Elephant"
},
{
"input": "1 1 1 1 1 2",
"output": "Bear"
},
{
"input": "2 2 4 4 4 4",
"output": "Elephant"
},
{
"input": "4 4 4 4 4 3",
"output": "Bear"
},
{
"input": "4 4 5 6 7 8",
"output": "Alien"
},
{
"input": "4 4 4 4 2 2",
"output": "Elephant"
},
{
"input": "1 1 1 1 2 2",
"output": "Elephant"
},
{
"input": "1 1 3 3 3 5",
"output": "Alien"
},
{
"input": "1 2 2 3 3 3",
"output": "Alien"
},
{
"input": "1 2 2 2 2 2",
"output": "Bear"
},
{
"input": "1 3 3 3 4 5",
"output": "Alien"
},
{
"input": "5 1 1 1 1 1",
"output": "Bear"
}
] | 1,554,013,545
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 77
| 0
|
a=[int(i) for i in input().split(" ")]
dif=[]
for i in range(len(a)):
if dif.count(a[i])==0:
dif.append(a[i])
if len(dif)==2:
print("Elephant")
elif len(dif)==3:
print("Bear")
else:
print("Alien")
p=int(input())
|
Title: MUH and Sticks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Two polar bears Menshykov and Uslada from the St.Petersburg zoo and elephant Horace from the Kiev zoo got six sticks to play with and assess the animals' creativity. Menshykov, Uslada and Horace decided to make either an elephant or a bear from those sticks. They can make an animal from sticks in the following way:
- Four sticks represent the animal's legs, these sticks should have the same length. - Two remaining sticks represent the animal's head and body. The bear's head stick must be shorter than the body stick. The elephant, however, has a long trunk, so his head stick must be as long as the body stick. Note that there are no limits on the relations between the leg sticks and the head and body sticks.
Your task is to find out which animal can be made from the given stick set. The zoo keeper wants the sticks back after the game, so they must never be broken, even bears understand it.
Input Specification:
The single line contains six space-separated integers *l**i* (1<=≤<=*l**i*<=≤<=9) — the lengths of the six sticks. It is guaranteed that the input is such that you cannot make both animals from the sticks.
Output Specification:
If you can make a bear from the given set, print string "Bear" (without the quotes). If you can make an elephant, print string "Elephant" (wıthout the quotes). If you can make neither a bear nor an elephant, print string "Alien" (without the quotes).
Demo Input:
['4 2 5 4 4 4\n', '4 4 5 4 4 5\n', '1 2 3 4 5 6\n']
Demo Output:
['Bear', 'Elephant', 'Alien']
Note:
If you're out of creative ideas, see instructions below which show how to make a bear and an elephant in the first two samples. The stick of length 2 is in red, the sticks of length 4 are in green, the sticks of length 5 are in blue.
|
```python
a=[int(i) for i in input().split(" ")]
dif=[]
for i in range(len(a)):
if dif.count(a[i])==0:
dif.append(a[i])
if len(dif)==2:
print("Elephant")
elif len(dif)==3:
print("Bear")
else:
print("Alien")
p=int(input())
```
| -1
|
|
69
|
A
|
Young Physicist
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math"
] |
A. Young Physicist
|
2
|
256
|
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
|
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
|
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
|
[
"3\n4 1 7\n-2 4 -1\n1 -5 -3\n",
"3\n3 -1 7\n-5 2 -4\n2 -1 -3\n"
] |
[
"NO",
"YES"
] |
none
| 500
|
[
{
"input": "3\n4 1 7\n-2 4 -1\n1 -5 -3",
"output": "NO"
},
{
"input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3",
"output": "YES"
},
{
"input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41",
"output": "NO"
},
{
"input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33",
"output": "NO"
},
{
"input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7",
"output": "NO"
},
{
"input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38",
"output": "NO"
},
{
"input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6",
"output": "YES"
},
{
"input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0",
"output": "YES"
},
{
"input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0",
"output": "YES"
},
{
"input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0",
"output": "YES"
},
{
"input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0",
"output": "YES"
},
{
"input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0",
"output": "YES"
},
{
"input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87",
"output": "YES"
},
{
"input": "3\n1 2 3\n3 2 1\n0 0 0",
"output": "NO"
},
{
"input": "2\n5 -23 12\n0 0 0",
"output": "NO"
},
{
"input": "1\n0 0 0",
"output": "YES"
},
{
"input": "1\n1 -2 0",
"output": "NO"
},
{
"input": "2\n-23 77 -86\n23 -77 86",
"output": "YES"
},
{
"input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82",
"output": "YES"
},
{
"input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0",
"output": "YES"
},
{
"input": "3\n96 49 -12\n2 -66 28\n-98 17 -16",
"output": "YES"
},
{
"input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0",
"output": "YES"
},
{
"input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53",
"output": "YES"
},
{
"input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1",
"output": "YES"
},
{
"input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0",
"output": "YES"
},
{
"input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0",
"output": "YES"
},
{
"input": "3\n0 2 -2\n1 -1 3\n-3 0 0",
"output": "NO"
}
] | 1,589,003,093
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 81
| 218
| 6,656,000
|
p=q=m=0
for _ in range(int(input())):
a,b,c= map(int, input().split())
p+=a
q+=b
m+=c
if (p==q==m==0):
print("YES")
else:
print("NO")
|
Title: Young Physicist
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
Input Specification:
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Output Specification:
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
Demo Input:
['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n']
Demo Output:
['NO', 'YES']
Note:
none
|
```python
p=q=m=0
for _ in range(int(input())):
a,b,c= map(int, input().split())
p+=a
q+=b
m+=c
if (p==q==m==0):
print("YES")
else:
print("NO")
```
| 3.933102
|
15
|
B
|
Laser
|
PROGRAMMING
| 1,800
|
[
"math"
] |
B. Laser
|
1
|
64
|
Petya is the most responsible worker in the Research Institute. So he was asked to make a very important experiment: to melt the chocolate bar with a new laser device. The device consists of a rectangular field of *n*<=×<=*m* cells and a robotic arm. Each cell of the field is a 1<=×<=1 square. The robotic arm has two lasers pointed at the field perpendicularly to its surface. At any one time lasers are pointed at the centres of some two cells. Since the lasers are on the robotic hand, their movements are synchronized — if you move one of the lasers by a vector, another one moves by the same vector.
The following facts about the experiment are known:
- initially the whole field is covered with a chocolate bar of the size *n*<=×<=*m*, both lasers are located above the field and are active; - the chocolate melts within one cell of the field at which the laser is pointed; - all moves of the robotic arm should be parallel to the sides of the field, after each move the lasers should be pointed at the centres of some two cells; - at any one time both lasers should be pointed at the field. Petya doesn't want to become a second Gordon Freeman.
You are given *n*, *m* and the cells (*x*1,<=*y*1) and (*x*2,<=*y*2), where the lasers are initially pointed at (*x**i* is a column number, *y**i* is a row number). Rows are numbered from 1 to *m* from top to bottom and columns are numbered from 1 to *n* from left to right. You are to find the amount of cells of the field on which the chocolate can't be melted in the given conditions.
|
The first line contains one integer number *t* (1<=≤<=*t*<=≤<=10000) — the number of test sets. Each of the following *t* lines describes one test set. Each line contains integer numbers *n*, *m*, *x*1, *y*1, *x*2, *y*2, separated by a space (2<=≤<=*n*,<=*m*<=≤<=109, 1<=≤<=*x*1,<=*x*2<=≤<=*n*, 1<=≤<=*y*1,<=*y*2<=≤<=*m*). Cells (*x*1,<=*y*1) and (*x*2,<=*y*2) are distinct.
|
Each of the *t* lines of the output should contain the answer to the corresponding input test set.
|
[
"2\n4 4 1 1 3 3\n4 3 1 1 2 2\n"
] |
[
"8\n2\n"
] |
none
| 0
|
[
{
"input": "2\n4 4 1 1 3 3\n4 3 1 1 2 2",
"output": "8\n2"
},
{
"input": "1\n2 2 1 2 2 1",
"output": "2"
},
{
"input": "1\n2 2 1 2 2 1",
"output": "2"
},
{
"input": "1\n3 3 3 2 1 1",
"output": "5"
},
{
"input": "1\n3 4 1 1 1 2",
"output": "0"
},
{
"input": "1\n4 3 3 1 4 1",
"output": "0"
},
{
"input": "1\n3 5 2 4 3 5",
"output": "2"
},
{
"input": "1\n4 5 2 2 4 2",
"output": "0"
},
{
"input": "1\n2 5 1 5 2 2",
"output": "6"
},
{
"input": "1\n2 6 2 6 2 3",
"output": "0"
},
{
"input": "1\n3 6 3 5 2 4",
"output": "2"
},
{
"input": "1\n4 6 2 1 2 3",
"output": "0"
},
{
"input": "1\n5 6 3 4 4 2",
"output": "4"
},
{
"input": "1\n7 3 6 2 5 2",
"output": "0"
},
{
"input": "1\n8 2 6 1 7 2",
"output": "2"
},
{
"input": "1\n9 6 6 5 3 1",
"output": "30"
},
{
"input": "20\n100 200 100 1 100 100\n100 200 1 100 100 100\n2 2 1 1 2 2\n100 100 50 50 1 1\n10 10 5 5 1 1\n100 100 99 1 1 99\n100 100 1 99 99 1\n100 100 1 10 10 1\n100 100 1 1 10 10\n9 6 1 3 3 1\n1000000000 1000000000 1 1 1000000000 1000000000\n9 4 1 4 4 1\n6 4 1 1 5 4\n6 2 1 1 5 2\n8 2 1 1 5 2\n10 2 1 1 5 2\n10 2 1 1 3 2\n4 3 1 1 2 2\n3 3 1 1 2 2\n3 3 1 1 2 1",
"output": "0\n19600\n2\n4802\n32\n9992\n9992\n162\n162\n8\n999999999999999998\n24\n20\n8\n8\n8\n4\n2\n2\n0"
}
] | 1,451,004,404
| 2,147,483,647
|
Python 3
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
t=input()
for i in range(t):
n,m,x1,y1,x2,y2=[int(x) for x in range input().split()]
rx=n-abs(x1-x2);
ry=m-abs(y1-y2);
c=2*rx*ry;
if 2*rx > n or 2*ry > m:
c-=(2*rx-n)*(2*ry-m)
print(c)
|
Title: Laser
Time Limit: 1 seconds
Memory Limit: 64 megabytes
Problem Description:
Petya is the most responsible worker in the Research Institute. So he was asked to make a very important experiment: to melt the chocolate bar with a new laser device. The device consists of a rectangular field of *n*<=×<=*m* cells and a robotic arm. Each cell of the field is a 1<=×<=1 square. The robotic arm has two lasers pointed at the field perpendicularly to its surface. At any one time lasers are pointed at the centres of some two cells. Since the lasers are on the robotic hand, their movements are synchronized — if you move one of the lasers by a vector, another one moves by the same vector.
The following facts about the experiment are known:
- initially the whole field is covered with a chocolate bar of the size *n*<=×<=*m*, both lasers are located above the field and are active; - the chocolate melts within one cell of the field at which the laser is pointed; - all moves of the robotic arm should be parallel to the sides of the field, after each move the lasers should be pointed at the centres of some two cells; - at any one time both lasers should be pointed at the field. Petya doesn't want to become a second Gordon Freeman.
You are given *n*, *m* and the cells (*x*1,<=*y*1) and (*x*2,<=*y*2), where the lasers are initially pointed at (*x**i* is a column number, *y**i* is a row number). Rows are numbered from 1 to *m* from top to bottom and columns are numbered from 1 to *n* from left to right. You are to find the amount of cells of the field on which the chocolate can't be melted in the given conditions.
Input Specification:
The first line contains one integer number *t* (1<=≤<=*t*<=≤<=10000) — the number of test sets. Each of the following *t* lines describes one test set. Each line contains integer numbers *n*, *m*, *x*1, *y*1, *x*2, *y*2, separated by a space (2<=≤<=*n*,<=*m*<=≤<=109, 1<=≤<=*x*1,<=*x*2<=≤<=*n*, 1<=≤<=*y*1,<=*y*2<=≤<=*m*). Cells (*x*1,<=*y*1) and (*x*2,<=*y*2) are distinct.
Output Specification:
Each of the *t* lines of the output should contain the answer to the corresponding input test set.
Demo Input:
['2\n4 4 1 1 3 3\n4 3 1 1 2 2\n']
Demo Output:
['8\n2\n']
Note:
none
|
```python
t=input()
for i in range(t):
n,m,x1,y1,x2,y2=[int(x) for x in range input().split()]
rx=n-abs(x1-x2);
ry=m-abs(y1-y2);
c=2*rx*ry;
if 2*rx > n or 2*ry > m:
c-=(2*rx-n)*(2*ry-m)
print(c)
```
| -1
|
689
|
B
|
Mike and Shortcuts
|
PROGRAMMING
| 1,600
|
[
"dfs and similar",
"graphs",
"greedy",
"shortest paths"
] | null | null |
Recently, Mike was very busy with studying for exams and contests. Now he is going to chill a bit by doing some sight seeing in the city.
City consists of *n* intersections numbered from 1 to *n*. Mike starts walking from his house located at the intersection number 1 and goes along some sequence of intersections. Walking from intersection number *i* to intersection *j* requires |*i*<=-<=*j*| units of energy. The total energy spent by Mike to visit a sequence of intersections *p*1<==<=1,<=*p*2,<=...,<=*p**k* is equal to units of energy.
Of course, walking would be boring if there were no shortcuts. A shortcut is a special path that allows Mike walking from one intersection to another requiring only 1 unit of energy. There are exactly *n* shortcuts in Mike's city, the *i**th* of them allows walking from intersection *i* to intersection *a**i* (*i*<=≤<=*a**i*<=≤<=*a**i*<=+<=1) (but not in the opposite direction), thus there is exactly one shortcut starting at each intersection. Formally, if Mike chooses a sequence *p*1<==<=1,<=*p*2,<=...,<=*p**k* then for each 1<=≤<=*i*<=<<=*k* satisfying *p**i*<=+<=1<==<=*a**p**i* and *a**p**i*<=≠<=*p**i* Mike will spend only 1 unit of energy instead of |*p**i*<=-<=*p**i*<=+<=1| walking from the intersection *p**i* to intersection *p**i*<=+<=1. For example, if Mike chooses a sequence *p*1<==<=1,<=*p*2<==<=*a**p*1,<=*p*3<==<=*a**p*2,<=...,<=*p**k*<==<=*a**p**k*<=-<=1, he spends exactly *k*<=-<=1 units of total energy walking around them.
Before going on his adventure, Mike asks you to find the minimum amount of energy required to reach each of the intersections from his home. Formally, for each 1<=≤<=*i*<=≤<=*n* Mike is interested in finding minimum possible total energy of some sequence *p*1<==<=1,<=*p*2,<=...,<=*p**k*<==<=*i*.
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of Mike's city intersection.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (*i*<=≤<=*a**i*<=≤<=*n* , , describing shortcuts of Mike's city, allowing to walk from intersection *i* to intersection *a**i* using only 1 unit of energy. Please note that the shortcuts don't allow walking in opposite directions (from *a**i* to *i*).
|
In the only line print *n* integers *m*1,<=*m*2,<=...,<=*m**n*, where *m**i* denotes the least amount of total energy required to walk from intersection 1 to intersection *i*.
|
[
"3\n2 2 3\n",
"5\n1 2 3 4 5\n",
"7\n4 4 4 4 7 7 7\n"
] |
[
"0 1 2 \n",
"0 1 2 3 4 \n",
"0 1 2 1 2 3 3 \n"
] |
In the first sample case desired sequences are:
1: 1; *m*<sub class="lower-index">1</sub> = 0;
2: 1, 2; *m*<sub class="lower-index">2</sub> = 1;
3: 1, 3; *m*<sub class="lower-index">3</sub> = |3 - 1| = 2.
In the second sample case the sequence for any intersection 1 < *i* is always 1, *i* and *m*<sub class="lower-index">*i*</sub> = |1 - *i*|.
In the third sample case — consider the following intersection sequences:
1: 1; *m*<sub class="lower-index">1</sub> = 0;
2: 1, 2; *m*<sub class="lower-index">2</sub> = |2 - 1| = 1;
3: 1, 4, 3; *m*<sub class="lower-index">3</sub> = 1 + |4 - 3| = 2;
4: 1, 4; *m*<sub class="lower-index">4</sub> = 1;
5: 1, 4, 5; *m*<sub class="lower-index">5</sub> = 1 + |4 - 5| = 2;
6: 1, 4, 6; *m*<sub class="lower-index">6</sub> = 1 + |4 - 6| = 3;
7: 1, 4, 5, 7; *m*<sub class="lower-index">7</sub> = 1 + |4 - 5| + 1 = 3.
| 1,000
|
[
{
"input": "3\n2 2 3",
"output": "0 1 2 "
},
{
"input": "5\n1 2 3 4 5",
"output": "0 1 2 3 4 "
},
{
"input": "7\n4 4 4 4 7 7 7",
"output": "0 1 2 1 2 3 3 "
},
{
"input": "98\n17 17 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 90 90 90 90 90 90 90 90 90 90 90 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 95 95 95 95 95 97 98 98",
"output": "0 1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 4 4 5 6 5 6 7 8 "
},
{
"input": "91\n4 6 23 23 23 23 23 28 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 47 47 47 54 54 54 54 54 54 54 58 58 58 58 58 58 69 69 69 69 69 69 69 69 69 69 69 69 70 70 70 70 70 70 70 70 70 70 71 72 72 72 73 75 77 77 77 82 82 84 84 84 84 84 85 86 87 89 89 90 91",
"output": "0 1 2 1 2 2 3 4 5 6 7 8 9 10 10 9 8 7 6 5 4 3 2 3 4 5 6 5 6 7 8 9 9 8 7 6 5 4 3 4 5 6 7 8 9 10 9 10 9 8 7 6 5 4 5 6 7 6 7 8 9 10 11 10 9 8 7 6 5 6 6 7 8 9 10 11 11 12 13 14 14 13 14 14 15 16 17 18 19 20 21 "
},
{
"input": "82\n1 5 11 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 39 39 39 39 39 45 45 45 45 45 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 71 71 71 71 71 71 71 73 73 75 75 76 77 79 81 81 81 82",
"output": "0 1 2 3 2 3 4 5 5 4 3 4 5 6 7 8 9 10 11 12 13 12 11 10 9 8 7 6 5 4 3 4 5 6 7 8 9 10 9 9 8 7 6 5 4 5 6 7 8 9 10 11 12 13 14 15 16 16 15 14 13 12 11 10 9 8 7 6 5 6 6 7 8 9 10 11 12 13 14 15 15 16 "
},
{
"input": "4\n2 3 3 4",
"output": "0 1 2 3 "
}
] | 1,673,624,703
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 15
| 0
|
import sys
def preprocess():
n = int(input())
shortcuts = input().split(' ')
shortcuts_int = [int(shortcut) for shortcut in shortcuts]
return n, shortcuts
def main():
n, shortcuts = preprocess()
print(n, shortcuts)
return "0 1 2"
if __name__ == '__main__':
main()
|
Title: Mike and Shortcuts
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Recently, Mike was very busy with studying for exams and contests. Now he is going to chill a bit by doing some sight seeing in the city.
City consists of *n* intersections numbered from 1 to *n*. Mike starts walking from his house located at the intersection number 1 and goes along some sequence of intersections. Walking from intersection number *i* to intersection *j* requires |*i*<=-<=*j*| units of energy. The total energy spent by Mike to visit a sequence of intersections *p*1<==<=1,<=*p*2,<=...,<=*p**k* is equal to units of energy.
Of course, walking would be boring if there were no shortcuts. A shortcut is a special path that allows Mike walking from one intersection to another requiring only 1 unit of energy. There are exactly *n* shortcuts in Mike's city, the *i**th* of them allows walking from intersection *i* to intersection *a**i* (*i*<=≤<=*a**i*<=≤<=*a**i*<=+<=1) (but not in the opposite direction), thus there is exactly one shortcut starting at each intersection. Formally, if Mike chooses a sequence *p*1<==<=1,<=*p*2,<=...,<=*p**k* then for each 1<=≤<=*i*<=<<=*k* satisfying *p**i*<=+<=1<==<=*a**p**i* and *a**p**i*<=≠<=*p**i* Mike will spend only 1 unit of energy instead of |*p**i*<=-<=*p**i*<=+<=1| walking from the intersection *p**i* to intersection *p**i*<=+<=1. For example, if Mike chooses a sequence *p*1<==<=1,<=*p*2<==<=*a**p*1,<=*p*3<==<=*a**p*2,<=...,<=*p**k*<==<=*a**p**k*<=-<=1, he spends exactly *k*<=-<=1 units of total energy walking around them.
Before going on his adventure, Mike asks you to find the minimum amount of energy required to reach each of the intersections from his home. Formally, for each 1<=≤<=*i*<=≤<=*n* Mike is interested in finding minimum possible total energy of some sequence *p*1<==<=1,<=*p*2,<=...,<=*p**k*<==<=*i*.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of Mike's city intersection.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (*i*<=≤<=*a**i*<=≤<=*n* , , describing shortcuts of Mike's city, allowing to walk from intersection *i* to intersection *a**i* using only 1 unit of energy. Please note that the shortcuts don't allow walking in opposite directions (from *a**i* to *i*).
Output Specification:
In the only line print *n* integers *m*1,<=*m*2,<=...,<=*m**n*, where *m**i* denotes the least amount of total energy required to walk from intersection 1 to intersection *i*.
Demo Input:
['3\n2 2 3\n', '5\n1 2 3 4 5\n', '7\n4 4 4 4 7 7 7\n']
Demo Output:
['0 1 2 \n', '0 1 2 3 4 \n', '0 1 2 1 2 3 3 \n']
Note:
In the first sample case desired sequences are:
1: 1; *m*<sub class="lower-index">1</sub> = 0;
2: 1, 2; *m*<sub class="lower-index">2</sub> = 1;
3: 1, 3; *m*<sub class="lower-index">3</sub> = |3 - 1| = 2.
In the second sample case the sequence for any intersection 1 < *i* is always 1, *i* and *m*<sub class="lower-index">*i*</sub> = |1 - *i*|.
In the third sample case — consider the following intersection sequences:
1: 1; *m*<sub class="lower-index">1</sub> = 0;
2: 1, 2; *m*<sub class="lower-index">2</sub> = |2 - 1| = 1;
3: 1, 4, 3; *m*<sub class="lower-index">3</sub> = 1 + |4 - 3| = 2;
4: 1, 4; *m*<sub class="lower-index">4</sub> = 1;
5: 1, 4, 5; *m*<sub class="lower-index">5</sub> = 1 + |4 - 5| = 2;
6: 1, 4, 6; *m*<sub class="lower-index">6</sub> = 1 + |4 - 6| = 3;
7: 1, 4, 5, 7; *m*<sub class="lower-index">7</sub> = 1 + |4 - 5| + 1 = 3.
|
```python
import sys
def preprocess():
n = int(input())
shortcuts = input().split(' ')
shortcuts_int = [int(shortcut) for shortcut in shortcuts]
return n, shortcuts
def main():
n, shortcuts = preprocess()
print(n, shortcuts)
return "0 1 2"
if __name__ == '__main__':
main()
```
| 0
|
|
151
|
A
|
Soft Drinking
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
This winter is so cold in Nvodsk! A group of *n* friends decided to buy *k* bottles of a soft drink called "Take-It-Light" to warm up a bit. Each bottle has *l* milliliters of the drink. Also they bought *c* limes and cut each of them into *d* slices. After that they found *p* grams of salt.
To make a toast, each friend needs *nl* milliliters of the drink, a slice of lime and *np* grams of salt. The friends want to make as many toasts as they can, provided they all drink the same amount. How many toasts can each friend make?
|
The first and only line contains positive integers *n*, *k*, *l*, *c*, *d*, *p*, *nl*, *np*, not exceeding 1000 and no less than 1. The numbers are separated by exactly one space.
|
Print a single integer — the number of toasts each friend can make.
|
[
"3 4 5 10 8 100 3 1\n",
"5 100 10 1 19 90 4 3\n",
"10 1000 1000 25 23 1 50 1\n"
] |
[
"2\n",
"3\n",
"0\n"
] |
A comment to the first sample:
Overall the friends have 4 * 5 = 20 milliliters of the drink, it is enough to make 20 / 3 = 6 toasts. The limes are enough for 10 * 8 = 80 toasts and the salt is enough for 100 / 1 = 100 toasts. However, there are 3 friends in the group, so the answer is *min*(6, 80, 100) / 3 = 2.
| 500
|
[
{
"input": "3 4 5 10 8 100 3 1",
"output": "2"
},
{
"input": "5 100 10 1 19 90 4 3",
"output": "3"
},
{
"input": "10 1000 1000 25 23 1 50 1",
"output": "0"
},
{
"input": "1 7 4 5 5 8 3 2",
"output": "4"
},
{
"input": "2 3 3 5 5 10 1 3",
"output": "1"
},
{
"input": "2 6 4 5 6 5 1 3",
"output": "0"
},
{
"input": "1 7 3 5 3 6 2 1",
"output": "6"
},
{
"input": "2 4 5 4 5 7 3 2",
"output": "1"
},
{
"input": "2 3 6 5 7 8 2 1",
"output": "4"
},
{
"input": "1 4 5 5 3 10 3 1",
"output": "6"
},
{
"input": "1 4 6 7 3 5 1 3",
"output": "1"
},
{
"input": "1 6 5 5 5 8 3 1",
"output": "8"
},
{
"input": "1 7 5 3 3 9 2 1",
"output": "9"
},
{
"input": "3 5 3 7 6 10 3 1",
"output": "1"
},
{
"input": "3 6 3 5 3 6 3 1",
"output": "2"
},
{
"input": "1 7 5 5 5 5 2 2",
"output": "2"
},
{
"input": "2 5 3 5 6 9 2 1",
"output": "3"
},
{
"input": "3 4 3 5 3 6 2 1",
"output": "2"
},
{
"input": "1 5 5 4 7 6 3 1",
"output": "6"
},
{
"input": "2 3 7 6 5 9 3 1",
"output": "3"
},
{
"input": "2 6 5 3 3 8 1 1",
"output": "4"
},
{
"input": "2 4 7 3 4 10 2 1",
"output": "5"
},
{
"input": "1 1000 1000 1000 1000 1000 1 1",
"output": "1000"
},
{
"input": "17 1000 1000 1000 1000 1000 3 7",
"output": "8"
},
{
"input": "115 1000 1000 1000 1000 1000 17 15",
"output": "0"
},
{
"input": "1 587 981 1 2 1 1 1",
"output": "1"
},
{
"input": "1 1 2 1 2 2 1 1",
"output": "2"
}
] | 1,696,744,013
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 27
| 62
| 0
|
n, k, l, c, d, p, nl, np = map(int,input().split())
total_drink = k*l
total_slice = c*d
total_salt = p
toasts = 0
while(total_slice>=n and total_salt>=n*np and total_drink>=n*nl):
toasts+=1
total_slice-=n
total_salt-=n*np
total_drink-=n*nl
print(toasts)
|
Title: Soft Drinking
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
This winter is so cold in Nvodsk! A group of *n* friends decided to buy *k* bottles of a soft drink called "Take-It-Light" to warm up a bit. Each bottle has *l* milliliters of the drink. Also they bought *c* limes and cut each of them into *d* slices. After that they found *p* grams of salt.
To make a toast, each friend needs *nl* milliliters of the drink, a slice of lime and *np* grams of salt. The friends want to make as many toasts as they can, provided they all drink the same amount. How many toasts can each friend make?
Input Specification:
The first and only line contains positive integers *n*, *k*, *l*, *c*, *d*, *p*, *nl*, *np*, not exceeding 1000 and no less than 1. The numbers are separated by exactly one space.
Output Specification:
Print a single integer — the number of toasts each friend can make.
Demo Input:
['3 4 5 10 8 100 3 1\n', '5 100 10 1 19 90 4 3\n', '10 1000 1000 25 23 1 50 1\n']
Demo Output:
['2\n', '3\n', '0\n']
Note:
A comment to the first sample:
Overall the friends have 4 * 5 = 20 milliliters of the drink, it is enough to make 20 / 3 = 6 toasts. The limes are enough for 10 * 8 = 80 toasts and the salt is enough for 100 / 1 = 100 toasts. However, there are 3 friends in the group, so the answer is *min*(6, 80, 100) / 3 = 2.
|
```python
n, k, l, c, d, p, nl, np = map(int,input().split())
total_drink = k*l
total_slice = c*d
total_salt = p
toasts = 0
while(total_slice>=n and total_salt>=n*np and total_drink>=n*nl):
toasts+=1
total_slice-=n
total_salt-=n*np
total_drink-=n*nl
print(toasts)
```
| 3
|
|
228
|
A
|
Is your horseshoe on the other hoof?
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Valera the Horse is going to the party with friends. He has been following the fashion trends for a while, and he knows that it is very popular to wear all horseshoes of different color. Valera has got four horseshoes left from the last year, but maybe some of them have the same color. In this case he needs to go to the store and buy some few more horseshoes, not to lose face in front of his stylish comrades.
Fortunately, the store sells horseshoes of all colors under the sun and Valera has enough money to buy any four of them. However, in order to save the money, he would like to spend as little money as possible, so you need to help Valera and determine what is the minimum number of horseshoes he needs to buy to wear four horseshoes of different colors to a party.
|
The first line contains four space-separated integers *s*1,<=*s*2,<=*s*3,<=*s*4 (1<=≤<=*s*1,<=*s*2,<=*s*3,<=*s*4<=≤<=109) — the colors of horseshoes Valera has.
Consider all possible colors indexed with integers.
|
Print a single integer — the minimum number of horseshoes Valera needs to buy.
|
[
"1 7 3 3\n",
"7 7 7 7\n"
] |
[
"1\n",
"3\n"
] |
none
| 500
|
[
{
"input": "1 7 3 3",
"output": "1"
},
{
"input": "7 7 7 7",
"output": "3"
},
{
"input": "81170865 673572653 756938629 995577259",
"output": "0"
},
{
"input": "3491663 217797045 522540872 715355328",
"output": "0"
},
{
"input": "251590420 586975278 916631563 586975278",
"output": "1"
},
{
"input": "259504825 377489979 588153796 377489979",
"output": "1"
},
{
"input": "652588203 931100304 931100304 652588203",
"output": "2"
},
{
"input": "391958720 651507265 391958720 651507265",
"output": "2"
},
{
"input": "90793237 90793237 90793237 90793237",
"output": "3"
},
{
"input": "551651653 551651653 551651653 551651653",
"output": "3"
},
{
"input": "156630260 609654355 668943582 973622757",
"output": "0"
},
{
"input": "17061017 110313588 434481173 796661222",
"output": "0"
},
{
"input": "24975422 256716298 337790533 690960249",
"output": "0"
},
{
"input": "255635360 732742923 798648949 883146723",
"output": "0"
},
{
"input": "133315691 265159773 734556507 265159773",
"output": "1"
},
{
"input": "28442865 741657755 978106882 978106882",
"output": "1"
},
{
"input": "131245479 174845575 497483467 131245479",
"output": "1"
},
{
"input": "139159884 616215581 958341883 616215581",
"output": "1"
},
{
"input": "147784432 947653080 947653080 947653080",
"output": "2"
},
{
"input": "94055790 756126496 756126496 94055790",
"output": "2"
},
{
"input": "240458500 511952208 240458500 511952208",
"output": "2"
},
{
"input": "681828506 972810624 972810624 681828506",
"output": "2"
},
{
"input": "454961014 454961014 454961014 454961014",
"output": "3"
},
{
"input": "915819430 915819430 915819430 915819430",
"output": "3"
},
{
"input": "671645142 671645142 671645142 671645142",
"output": "3"
},
{
"input": "132503558 132503558 132503558 132503558",
"output": "3"
},
{
"input": "5 5 999999 6",
"output": "1"
},
{
"input": "1 1 2 5",
"output": "1"
},
{
"input": "2 1 2 3",
"output": "1"
},
{
"input": "1 1 3 5",
"output": "1"
},
{
"input": "1 1 3 3",
"output": "2"
},
{
"input": "2 2 2 1",
"output": "2"
},
{
"input": "3 1 1 1",
"output": "2"
},
{
"input": "1 2 2 2",
"output": "2"
}
] | 1,696,955,083
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 4
| 60
| 0
|
a,b,c,d = map(int,input().split())
l1 =[a,b,c,d]
cnt = 0
for i in range(3):
if l1[i] == l1[i+1]:
cnt +=1
print(cnt)
|
Title: Is your horseshoe on the other hoof?
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Valera the Horse is going to the party with friends. He has been following the fashion trends for a while, and he knows that it is very popular to wear all horseshoes of different color. Valera has got four horseshoes left from the last year, but maybe some of them have the same color. In this case he needs to go to the store and buy some few more horseshoes, not to lose face in front of his stylish comrades.
Fortunately, the store sells horseshoes of all colors under the sun and Valera has enough money to buy any four of them. However, in order to save the money, he would like to spend as little money as possible, so you need to help Valera and determine what is the minimum number of horseshoes he needs to buy to wear four horseshoes of different colors to a party.
Input Specification:
The first line contains four space-separated integers *s*1,<=*s*2,<=*s*3,<=*s*4 (1<=≤<=*s*1,<=*s*2,<=*s*3,<=*s*4<=≤<=109) — the colors of horseshoes Valera has.
Consider all possible colors indexed with integers.
Output Specification:
Print a single integer — the minimum number of horseshoes Valera needs to buy.
Demo Input:
['1 7 3 3\n', '7 7 7 7\n']
Demo Output:
['1\n', '3\n']
Note:
none
|
```python
a,b,c,d = map(int,input().split())
l1 =[a,b,c,d]
cnt = 0
for i in range(3):
if l1[i] == l1[i+1]:
cnt +=1
print(cnt)
```
| 0
|
|
199
|
A
|
Hexadecimal's theorem
|
PROGRAMMING
| 900
|
[
"brute force",
"constructive algorithms",
"implementation",
"number theory"
] | null | null |
Recently, a chaotic virus Hexadecimal advanced a new theorem which will shake the Universe. She thinks that each Fibonacci number can be represented as sum of three not necessary different Fibonacci numbers.
Let's remember how Fibonacci numbers can be calculated. *F*0<==<=0, *F*1<==<=1, and all the next numbers are *F**i*<==<=*F**i*<=-<=2<=+<=*F**i*<=-<=1.
So, Fibonacci numbers make a sequence of numbers: 0, 1, 1, 2, 3, 5, 8, 13, ...
If you haven't run away from the PC in fear, you have to help the virus. Your task is to divide given Fibonacci number *n* by three not necessary different Fibonacci numbers or say that it is impossible.
|
The input contains of a single integer *n* (0<=≤<=*n*<=<<=109) — the number that should be represented by the rules described above. It is guaranteed that *n* is a Fibonacci number.
|
Output three required numbers: *a*, *b* and *c*. If there is no answer for the test you have to print "I'm too stupid to solve this problem" without the quotes.
If there are multiple answers, print any of them.
|
[
"3\n",
"13\n"
] |
[
"1 1 1\n",
"2 3 8\n"
] |
none
| 500
|
[
{
"input": "3",
"output": "1 1 1"
},
{
"input": "13",
"output": "2 3 8"
},
{
"input": "0",
"output": "0 0 0"
},
{
"input": "1",
"output": "1 0 0"
},
{
"input": "2",
"output": "1 1 0"
},
{
"input": "1597",
"output": "233 377 987"
},
{
"input": "0",
"output": "0 0 0"
},
{
"input": "1",
"output": "1 0 0"
},
{
"input": "1",
"output": "1 0 0"
},
{
"input": "2",
"output": "1 1 0"
},
{
"input": "3",
"output": "1 1 1"
},
{
"input": "5",
"output": "1 1 3"
},
{
"input": "8",
"output": "1 2 5"
},
{
"input": "13",
"output": "2 3 8"
},
{
"input": "21",
"output": "3 5 13"
},
{
"input": "34",
"output": "5 8 21"
},
{
"input": "55",
"output": "8 13 34"
},
{
"input": "89",
"output": "13 21 55"
},
{
"input": "144",
"output": "21 34 89"
},
{
"input": "233",
"output": "34 55 144"
},
{
"input": "377",
"output": "55 89 233"
},
{
"input": "610",
"output": "89 144 377"
},
{
"input": "987",
"output": "144 233 610"
},
{
"input": "1597",
"output": "233 377 987"
},
{
"input": "2584",
"output": "377 610 1597"
},
{
"input": "4181",
"output": "610 987 2584"
},
{
"input": "6765",
"output": "987 1597 4181"
},
{
"input": "10946",
"output": "1597 2584 6765"
},
{
"input": "17711",
"output": "2584 4181 10946"
},
{
"input": "28657",
"output": "4181 6765 17711"
},
{
"input": "46368",
"output": "6765 10946 28657"
},
{
"input": "75025",
"output": "10946 17711 46368"
},
{
"input": "121393",
"output": "17711 28657 75025"
},
{
"input": "196418",
"output": "28657 46368 121393"
},
{
"input": "317811",
"output": "46368 75025 196418"
},
{
"input": "514229",
"output": "75025 121393 317811"
},
{
"input": "832040",
"output": "121393 196418 514229"
},
{
"input": "1346269",
"output": "196418 317811 832040"
},
{
"input": "2178309",
"output": "317811 514229 1346269"
},
{
"input": "3524578",
"output": "514229 832040 2178309"
},
{
"input": "5702887",
"output": "832040 1346269 3524578"
},
{
"input": "9227465",
"output": "1346269 2178309 5702887"
},
{
"input": "14930352",
"output": "2178309 3524578 9227465"
},
{
"input": "24157817",
"output": "3524578 5702887 14930352"
},
{
"input": "39088169",
"output": "5702887 9227465 24157817"
},
{
"input": "63245986",
"output": "9227465 14930352 39088169"
},
{
"input": "102334155",
"output": "14930352 24157817 63245986"
},
{
"input": "165580141",
"output": "24157817 39088169 102334155"
},
{
"input": "267914296",
"output": "39088169 63245986 165580141"
},
{
"input": "433494437",
"output": "63245986 102334155 267914296"
},
{
"input": "701408733",
"output": "102334155 165580141 433494437"
},
{
"input": "701408733",
"output": "102334155 165580141 433494437"
},
{
"input": "102334155",
"output": "14930352 24157817 63245986"
},
{
"input": "63245986",
"output": "9227465 14930352 39088169"
}
] | 1,605,499,665
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 54
| 218
| 0
|
n = int(input())
if n==1:
print(0,0,1)
elif n==0:
print(0,0,0)
else:
sec=1
fir = 0
for i in range(10**9):
fir,sec = sec,sec+fir
if sec==n:
break
print(0,sec-fir,fir)
|
Title: Hexadecimal's theorem
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Recently, a chaotic virus Hexadecimal advanced a new theorem which will shake the Universe. She thinks that each Fibonacci number can be represented as sum of three not necessary different Fibonacci numbers.
Let's remember how Fibonacci numbers can be calculated. *F*0<==<=0, *F*1<==<=1, and all the next numbers are *F**i*<==<=*F**i*<=-<=2<=+<=*F**i*<=-<=1.
So, Fibonacci numbers make a sequence of numbers: 0, 1, 1, 2, 3, 5, 8, 13, ...
If you haven't run away from the PC in fear, you have to help the virus. Your task is to divide given Fibonacci number *n* by three not necessary different Fibonacci numbers or say that it is impossible.
Input Specification:
The input contains of a single integer *n* (0<=≤<=*n*<=<<=109) — the number that should be represented by the rules described above. It is guaranteed that *n* is a Fibonacci number.
Output Specification:
Output three required numbers: *a*, *b* and *c*. If there is no answer for the test you have to print "I'm too stupid to solve this problem" without the quotes.
If there are multiple answers, print any of them.
Demo Input:
['3\n', '13\n']
Demo Output:
['1 1 1\n', '2 3 8\n']
Note:
none
|
```python
n = int(input())
if n==1:
print(0,0,1)
elif n==0:
print(0,0,0)
else:
sec=1
fir = 0
for i in range(10**9):
fir,sec = sec,sec+fir
if sec==n:
break
print(0,sec-fir,fir)
```
| 3
|
|
61
|
A
|
Ultra-Fast Mathematician
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Ultra-Fast Mathematician
|
2
|
256
|
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
|
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
|
Write one line — the corresponding answer. Do not omit the leading 0s.
|
[
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] |
[
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] |
none
| 500
|
[
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,496,751,462
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 102
| 62
| 0
|
a=input()
b=input()
c=list(a)
d=list(b)
strlist=[]
i=0
while i<len(c):
if c[i]==d[i]:
strlist.append('0')
else:
strlist.append('1')
i+=1
print(''.join(strlist))
|
Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line — the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none
|
```python
a=input()
b=input()
c=list(a)
d=list(b)
strlist=[]
i=0
while i<len(c):
if c[i]==d[i]:
strlist.append('0')
else:
strlist.append('1')
i+=1
print(''.join(strlist))
```
| 3.9845
|
1,003
|
A
|
Polycarp's Pockets
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Polycarp has $n$ coins, the value of the $i$-th coin is $a_i$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket.
For example, if Polycarp has got six coins represented as an array $a = [1, 2, 4, 3, 3, 2]$, he can distribute the coins into two pockets as follows: $[1, 2, 3], [2, 3, 4]$.
Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that.
|
The first line of the input contains one integer $n$ ($1 \le n \le 100$) — the number of coins.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$) — values of coins.
|
Print only one integer — the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket.
|
[
"6\n1 2 4 3 3 2\n",
"1\n100\n"
] |
[
"2\n",
"1\n"
] |
none
| 0
|
[
{
"input": "6\n1 2 4 3 3 2",
"output": "2"
},
{
"input": "1\n100",
"output": "1"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "100"
},
{
"input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "100"
},
{
"input": "100\n59 47 39 47 47 71 47 28 58 47 35 79 58 47 38 47 47 47 47 27 47 43 29 95 47 49 46 71 47 74 79 47 47 32 45 67 47 47 30 37 47 47 16 67 22 76 47 86 84 10 5 47 47 47 47 47 1 51 47 54 47 8 47 47 9 47 47 47 47 28 47 47 26 47 47 47 47 47 47 92 47 47 77 47 47 24 45 47 10 47 47 89 47 27 47 89 47 67 24 71",
"output": "51"
},
{
"input": "100\n45 99 10 27 16 85 39 38 17 32 15 23 67 48 50 97 42 70 62 30 44 81 64 73 34 22 46 5 83 52 58 60 33 74 47 88 18 61 78 53 25 95 94 31 3 75 1 57 20 54 59 9 68 7 77 43 21 87 86 24 4 80 11 49 2 72 36 84 71 8 65 55 79 100 41 14 35 89 66 69 93 37 56 82 90 91 51 19 26 92 6 96 13 98 12 28 76 40 63 29",
"output": "1"
},
{
"input": "100\n45 29 5 2 6 50 22 36 14 15 9 48 46 20 8 37 7 47 12 50 21 38 18 27 33 19 40 10 5 49 38 42 34 37 27 30 35 24 10 3 40 49 41 3 4 44 13 25 28 31 46 36 23 1 1 23 7 22 35 26 21 16 48 42 32 8 11 16 34 11 39 32 47 28 43 41 39 4 14 19 26 45 13 18 15 25 2 44 17 29 17 33 43 6 12 30 9 20 31 24",
"output": "2"
},
{
"input": "50\n7 7 3 3 7 4 5 6 4 3 7 5 6 4 5 4 4 5 6 7 7 7 4 5 5 5 3 7 6 3 4 6 3 6 4 4 5 4 6 6 3 5 6 3 5 3 3 7 7 6",
"output": "10"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "99"
},
{
"input": "7\n1 2 3 3 3 1 2",
"output": "3"
},
{
"input": "5\n1 2 3 4 5",
"output": "1"
},
{
"input": "7\n1 2 3 4 5 6 7",
"output": "1"
},
{
"input": "8\n1 2 3 4 5 6 7 8",
"output": "1"
},
{
"input": "9\n1 2 3 4 5 6 7 8 9",
"output": "1"
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 10",
"output": "1"
},
{
"input": "3\n2 1 1",
"output": "2"
},
{
"input": "11\n1 2 3 4 5 6 7 8 9 1 1",
"output": "3"
},
{
"input": "12\n1 2 1 1 1 1 1 1 1 1 1 1",
"output": "11"
},
{
"input": "13\n1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "13"
},
{
"input": "14\n1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "14"
},
{
"input": "15\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "15"
},
{
"input": "16\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "16"
},
{
"input": "3\n1 1 1",
"output": "3"
},
{
"input": "3\n1 2 3",
"output": "1"
},
{
"input": "10\n1 1 1 1 2 2 1 1 9 10",
"output": "6"
},
{
"input": "2\n1 1",
"output": "2"
},
{
"input": "56\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "56"
},
{
"input": "99\n35 96 73 72 70 83 22 93 98 75 45 32 81 82 45 54 25 7 53 72 29 2 94 19 21 98 34 28 39 99 55 85 44 23 6 47 98 2 33 34 19 57 49 35 67 4 60 4 4 23 55 6 57 66 16 68 34 45 84 79 48 63 4 9 46 88 98 13 19 27 83 12 4 63 57 22 44 77 44 62 28 52 44 64 9 24 55 22 48 4 2 9 80 76 45 1 56 22 92",
"output": "6"
},
{
"input": "10\n1 2 2 3 3 3 4 4 4 4",
"output": "4"
},
{
"input": "99\n97 44 33 56 42 10 61 85 64 26 40 39 82 34 75 9 51 51 39 73 58 38 74 31 13 99 58 1 28 89 76 19 52 7 40 56 12 27 72 72 67 75 62 46 22 55 35 16 18 39 60 63 92 42 85 69 34 61 73 50 57 95 30 4 45 63 76 58 32 35 48 81 10 78 95 79 55 97 21 21 22 94 30 17 78 57 89 93 100 44 16 89 68 55 19 46 42 73 21",
"output": "3"
},
{
"input": "5\n5 5 5 5 1",
"output": "4"
},
{
"input": "6\n2 3 2 5 2 6",
"output": "3"
},
{
"input": "3\n58 59 58",
"output": "2"
},
{
"input": "9\n1 2 3 4 5 6 7 8 8",
"output": "2"
},
{
"input": "97\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "97"
},
{
"input": "3\n95 95 4",
"output": "2"
},
{
"input": "3\n2 2 5",
"output": "2"
}
] | 1,622,632,965
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 37
| 109
| 0
|
n=int(input())
l=list(map(int,input().split()))
d={}
for i in l:
if i in d:
d[i]+=1
else:
d[i]=1
ans=1
for i in d:
ans=max(ans,d[i])
print(ans)
|
Title: Polycarp's Pockets
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarp has $n$ coins, the value of the $i$-th coin is $a_i$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket.
For example, if Polycarp has got six coins represented as an array $a = [1, 2, 4, 3, 3, 2]$, he can distribute the coins into two pockets as follows: $[1, 2, 3], [2, 3, 4]$.
Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that.
Input Specification:
The first line of the input contains one integer $n$ ($1 \le n \le 100$) — the number of coins.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$) — values of coins.
Output Specification:
Print only one integer — the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket.
Demo Input:
['6\n1 2 4 3 3 2\n', '1\n100\n']
Demo Output:
['2\n', '1\n']
Note:
none
|
```python
n=int(input())
l=list(map(int,input().split()))
d={}
for i in l:
if i in d:
d[i]+=1
else:
d[i]=1
ans=1
for i in d:
ans=max(ans,d[i])
print(ans)
```
| 3
|
|
208
|
A
|
Dubstep
|
PROGRAMMING
| 900
|
[
"strings"
] | null | null |
Vasya works as a DJ in the best Berland nightclub, and he often uses dubstep music in his performance. Recently, he has decided to take a couple of old songs and make dubstep remixes from them.
Let's assume that a song consists of some number of words. To make the dubstep remix of this song, Vasya inserts a certain number of words "WUB" before the first word of the song (the number may be zero), after the last word (the number may be zero), and between words (at least one between any pair of neighbouring words), and then the boy glues together all the words, including "WUB", in one string and plays the song at the club.
For example, a song with words "I AM X" can transform into a dubstep remix as "WUBWUBIWUBAMWUBWUBX" and cannot transform into "WUBWUBIAMWUBX".
Recently, Petya has heard Vasya's new dubstep track, but since he isn't into modern music, he decided to find out what was the initial song that Vasya remixed. Help Petya restore the original song.
|
The input consists of a single non-empty string, consisting only of uppercase English letters, the string's length doesn't exceed 200 characters. It is guaranteed that before Vasya remixed the song, no word contained substring "WUB" in it; Vasya didn't change the word order. It is also guaranteed that initially the song had at least one word.
|
Print the words of the initial song that Vasya used to make a dubsteb remix. Separate the words with a space.
|
[
"WUBWUBABCWUB\n",
"WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB\n"
] |
[
"ABC ",
"WE ARE THE CHAMPIONS MY FRIEND "
] |
In the first sample: "WUBWUBABCWUB" = "WUB" + "WUB" + "ABC" + "WUB". That means that the song originally consisted of a single word "ABC", and all words "WUB" were added by Vasya.
In the second sample Vasya added a single word "WUB" between all neighbouring words, in the beginning and in the end, except for words "ARE" and "THE" — between them Vasya added two "WUB".
| 500
|
[
{
"input": "WUBWUBABCWUB",
"output": "ABC "
},
{
"input": "WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB",
"output": "WE ARE THE CHAMPIONS MY FRIEND "
},
{
"input": "WUBWUBWUBSR",
"output": "SR "
},
{
"input": "RWUBWUBWUBLWUB",
"output": "R L "
},
{
"input": "ZJWUBWUBWUBJWUBWUBWUBL",
"output": "ZJ J L "
},
{
"input": "CWUBBWUBWUBWUBEWUBWUBWUBQWUBWUBWUB",
"output": "C B E Q "
},
{
"input": "WUBJKDWUBWUBWBIRAQKFWUBWUBYEWUBWUBWUBWVWUBWUB",
"output": "JKD WBIRAQKF YE WV "
},
{
"input": "WUBKSDHEMIXUJWUBWUBRWUBWUBWUBSWUBWUBWUBHWUBWUBWUB",
"output": "KSDHEMIXUJ R S H "
},
{
"input": "OGWUBWUBWUBXWUBWUBWUBIWUBWUBWUBKOWUBWUB",
"output": "OG X I KO "
},
{
"input": "QWUBQQWUBWUBWUBIWUBWUBWWWUBWUBWUBJOPJPBRH",
"output": "Q QQ I WW JOPJPBRH "
},
{
"input": "VSRNVEATZTLGQRFEGBFPWUBWUBWUBAJWUBWUBWUBPQCHNWUBCWUB",
"output": "VSRNVEATZTLGQRFEGBFP AJ PQCHN C "
},
{
"input": "WUBWUBEWUBWUBWUBIQMJNIQWUBWUBWUBGZZBQZAUHYPWUBWUBWUBPMRWUBWUBWUBDCV",
"output": "E IQMJNIQ GZZBQZAUHYP PMR DCV "
},
{
"input": "WUBWUBWUBFVWUBWUBWUBBPSWUBWUBWUBRXNETCJWUBWUBWUBJDMBHWUBWUBWUBBWUBWUBVWUBWUBB",
"output": "FV BPS RXNETCJ JDMBH B V B "
},
{
"input": "WUBWUBWUBFBQWUBWUBWUBIDFSYWUBWUBWUBCTWDMWUBWUBWUBSXOWUBWUBWUBQIWUBWUBWUBL",
"output": "FBQ IDFSY CTWDM SXO QI L "
},
{
"input": "IWUBWUBQLHDWUBYIIKZDFQWUBWUBWUBCXWUBWUBUWUBWUBWUBKWUBWUBWUBNL",
"output": "I QLHD YIIKZDFQ CX U K NL "
},
{
"input": "KWUBUPDYXGOKUWUBWUBWUBAGOAHWUBIZDWUBWUBWUBIYWUBWUBWUBVWUBWUBWUBPWUBWUBWUBE",
"output": "K UPDYXGOKU AGOAH IZD IY V P E "
},
{
"input": "WUBWUBOWUBWUBWUBIPVCQAFWYWUBWUBWUBQWUBWUBWUBXHDKCPYKCTWWYWUBWUBWUBVWUBWUBWUBFZWUBWUB",
"output": "O IPVCQAFWY Q XHDKCPYKCTWWY V FZ "
},
{
"input": "PAMJGYWUBWUBWUBXGPQMWUBWUBWUBTKGSXUYWUBWUBWUBEWUBWUBWUBNWUBWUBWUBHWUBWUBWUBEWUBWUB",
"output": "PAMJGY XGPQM TKGSXUY E N H E "
},
{
"input": "WUBYYRTSMNWUWUBWUBWUBCWUBWUBWUBCWUBWUBWUBFSYUINDWOBVWUBWUBWUBFWUBWUBWUBAUWUBWUBWUBVWUBWUBWUBJB",
"output": "YYRTSMNWU C C FSYUINDWOBV F AU V JB "
},
{
"input": "WUBWUBYGPYEYBNRTFKOQCWUBWUBWUBUYGRTQEGWLFYWUBWUBWUBFVWUBHPWUBWUBWUBXZQWUBWUBWUBZDWUBWUBWUBM",
"output": "YGPYEYBNRTFKOQC UYGRTQEGWLFY FV HP XZQ ZD M "
},
{
"input": "WUBZVMJWUBWUBWUBFOIMJQWKNZUBOFOFYCCWUBWUBWUBAUWWUBRDRADWUBWUBWUBCHQVWUBWUBWUBKFTWUBWUBWUBW",
"output": "ZVMJ FOIMJQWKNZUBOFOFYCC AUW RDRAD CHQV KFT W "
},
{
"input": "WUBWUBZBKOKHQLGKRVIMZQMQNRWUBWUBWUBDACWUBWUBNZHFJMPEYKRVSWUBWUBWUBPPHGAVVPRZWUBWUBWUBQWUBWUBAWUBG",
"output": "ZBKOKHQLGKRVIMZQMQNR DAC NZHFJMPEYKRVS PPHGAVVPRZ Q A G "
},
{
"input": "WUBWUBJWUBWUBWUBNFLWUBWUBWUBGECAWUBYFKBYJWTGBYHVSSNTINKWSINWSMAWUBWUBWUBFWUBWUBWUBOVWUBWUBLPWUBWUBWUBN",
"output": "J NFL GECA YFKBYJWTGBYHVSSNTINKWSINWSMA F OV LP N "
},
{
"input": "WUBWUBLCWUBWUBWUBZGEQUEATJVIXETVTWUBWUBWUBEXMGWUBWUBWUBRSWUBWUBWUBVWUBWUBWUBTAWUBWUBWUBCWUBWUBWUBQG",
"output": "LC ZGEQUEATJVIXETVT EXMG RS V TA C QG "
},
{
"input": "WUBMPWUBWUBWUBORWUBWUBDLGKWUBWUBWUBVVZQCAAKVJTIKWUBWUBWUBTJLUBZJCILQDIFVZWUBWUBYXWUBWUBWUBQWUBWUBWUBLWUB",
"output": "MP OR DLGK VVZQCAAKVJTIK TJLUBZJCILQDIFVZ YX Q L "
},
{
"input": "WUBNXOLIBKEGXNWUBWUBWUBUWUBGITCNMDQFUAOVLWUBWUBWUBAIJDJZJHFMPVTPOXHPWUBWUBWUBISCIOWUBWUBWUBGWUBWUBWUBUWUB",
"output": "NXOLIBKEGXN U GITCNMDQFUAOVL AIJDJZJHFMPVTPOXHP ISCIO G U "
},
{
"input": "WUBWUBNMMWCZOLYPNBELIYVDNHJUNINWUBWUBWUBDXLHYOWUBWUBWUBOJXUWUBWUBWUBRFHTGJCEFHCGWARGWUBWUBWUBJKWUBWUBSJWUBWUB",
"output": "NMMWCZOLYPNBELIYVDNHJUNIN DXLHYO OJXU RFHTGJCEFHCGWARG JK SJ "
},
{
"input": "SGWLYSAUJOJBNOXNWUBWUBWUBBOSSFWKXPDPDCQEWUBWUBWUBDIRZINODWUBWUBWUBWWUBWUBWUBPPHWUBWUBWUBRWUBWUBWUBQWUBWUBWUBJWUB",
"output": "SGWLYSAUJOJBNOXN BOSSFWKXPDPDCQE DIRZINOD W PPH R Q J "
},
{
"input": "TOWUBWUBWUBGBTBNWUBWUBWUBJVIOJBIZFUUYHUAIEBQLQXPQKZJMPTCWBKPOSAWUBWUBWUBSWUBWUBWUBTOLVXWUBWUBWUBNHWUBWUBWUBO",
"output": "TO GBTBN JVIOJBIZFUUYHUAIEBQLQXPQKZJMPTCWBKPOSA S TOLVX NH O "
},
{
"input": "WUBWUBWSPLAYSZSAUDSWUBWUBWUBUWUBWUBWUBKRWUBWUBWUBRSOKQMZFIYZQUWUBWUBWUBELSHUWUBWUBWUBUKHWUBWUBWUBQXEUHQWUBWUBWUBBWUBWUBWUBR",
"output": "WSPLAYSZSAUDS U KR RSOKQMZFIYZQU ELSHU UKH QXEUHQ B R "
},
{
"input": "WUBXEMWWVUHLSUUGRWUBWUBWUBAWUBXEGILZUNKWUBWUBWUBJDHHKSWUBWUBWUBDTSUYSJHWUBWUBWUBPXFWUBMOHNJWUBWUBWUBZFXVMDWUBWUBWUBZMWUBWUB",
"output": "XEMWWVUHLSUUGR A XEGILZUNK JDHHKS DTSUYSJH PXF MOHNJ ZFXVMD ZM "
},
{
"input": "BMBWUBWUBWUBOQKWUBWUBWUBPITCIHXHCKLRQRUGXJWUBWUBWUBVWUBWUBWUBJCWUBWUBWUBQJPWUBWUBWUBBWUBWUBWUBBMYGIZOOXWUBWUBWUBTAGWUBWUBHWUB",
"output": "BMB OQK PITCIHXHCKLRQRUGXJ V JC QJP B BMYGIZOOX TAG H "
},
{
"input": "CBZNWUBWUBWUBNHWUBWUBWUBYQSYWUBWUBWUBMWUBWUBWUBXRHBTMWUBWUBWUBPCRCWUBWUBWUBTZUYLYOWUBWUBWUBCYGCWUBWUBWUBCLJWUBWUBWUBSWUBWUBWUB",
"output": "CBZN NH YQSY M XRHBTM PCRC TZUYLYO CYGC CLJ S "
},
{
"input": "DPDWUBWUBWUBEUQKWPUHLTLNXHAEKGWUBRRFYCAYZFJDCJLXBAWUBWUBWUBHJWUBOJWUBWUBWUBNHBJEYFWUBWUBWUBRWUBWUBWUBSWUBWWUBWUBWUBXDWUBWUBWUBJWUB",
"output": "DPD EUQKWPUHLTLNXHAEKG RRFYCAYZFJDCJLXBA HJ OJ NHBJEYF R S W XD J "
},
{
"input": "WUBWUBWUBISERPQITVIYERSCNWUBWUBWUBQWUBWUBWUBDGSDIPWUBWUBWUBCAHKDZWEXBIBJVVSKKVQJWUBWUBWUBKIWUBWUBWUBCWUBWUBWUBAWUBWUBWUBPWUBWUBWUBHWUBWUBWUBF",
"output": "ISERPQITVIYERSCN Q DGSDIP CAHKDZWEXBIBJVVSKKVQJ KI C A P H F "
},
{
"input": "WUBWUBWUBIWUBWUBLIKNQVWUBWUBWUBPWUBWUBWUBHWUBWUBWUBMWUBWUBWUBDPRSWUBWUBWUBBSAGYLQEENWXXVWUBWUBWUBXMHOWUBWUBWUBUWUBWUBWUBYRYWUBWUBWUBCWUBWUBWUBY",
"output": "I LIKNQV P H M DPRS BSAGYLQEENWXXV XMHO U YRY C Y "
},
{
"input": "WUBWUBWUBMWUBWUBWUBQWUBWUBWUBITCFEYEWUBWUBWUBHEUWGNDFNZGWKLJWUBWUBWUBMZPWUBWUBWUBUWUBWUBWUBBWUBWUBWUBDTJWUBHZVIWUBWUBWUBPWUBFNHHWUBWUBWUBVTOWUB",
"output": "M Q ITCFEYE HEUWGNDFNZGWKLJ MZP U B DTJ HZVI P FNHH VTO "
},
{
"input": "WUBWUBNDNRFHYJAAUULLHRRDEDHYFSRXJWUBWUBWUBMUJVDTIRSGYZAVWKRGIFWUBWUBWUBHMZWUBWUBWUBVAIWUBWUBWUBDDKJXPZRGWUBWUBWUBSGXWUBWUBWUBIFKWUBWUBWUBUWUBWUBWUBW",
"output": "NDNRFHYJAAUULLHRRDEDHYFSRXJ MUJVDTIRSGYZAVWKRGIF HMZ VAI DDKJXPZRG SGX IFK U W "
},
{
"input": "WUBOJMWRSLAXXHQRTPMJNCMPGWUBWUBWUBNYGMZIXNLAKSQYWDWUBWUBWUBXNIWUBWUBWUBFWUBWUBWUBXMBWUBWUBWUBIWUBWUBWUBINWUBWUBWUBWDWUBWUBWUBDDWUBWUBWUBD",
"output": "OJMWRSLAXXHQRTPMJNCMPG NYGMZIXNLAKSQYWD XNI F XMB I IN WD DD D "
},
{
"input": "WUBWUBWUBREHMWUBWUBWUBXWUBWUBWUBQASNWUBWUBWUBNLSMHLCMTICWUBWUBWUBVAWUBWUBWUBHNWUBWUBWUBNWUBWUBWUBUEXLSFOEULBWUBWUBWUBXWUBWUBWUBJWUBWUBWUBQWUBWUBWUBAWUBWUB",
"output": "REHM X QASN NLSMHLCMTIC VA HN N UEXLSFOEULB X J Q A "
},
{
"input": "WUBWUBWUBSTEZTZEFFIWUBWUBWUBSWUBWUBWUBCWUBFWUBHRJPVWUBWUBWUBDYJUWUBWUBWUBPWYDKCWUBWUBWUBCWUBWUBWUBUUEOGCVHHBWUBWUBWUBEXLWUBWUBWUBVCYWUBWUBWUBMWUBWUBWUBYWUB",
"output": "STEZTZEFFI S C F HRJPV DYJU PWYDKC C UUEOGCVHHB EXL VCY M Y "
},
{
"input": "WPPNMSQOQIWUBWUBWUBPNQXWUBWUBWUBHWUBWUBWUBNFLWUBWUBWUBGWSGAHVJFNUWUBWUBWUBFWUBWUBWUBWCMLRICFSCQQQTNBWUBWUBWUBSWUBWUBWUBKGWUBWUBWUBCWUBWUBWUBBMWUBWUBWUBRWUBWUB",
"output": "WPPNMSQOQI PNQX H NFL GWSGAHVJFNU F WCMLRICFSCQQQTNB S KG C BM R "
},
{
"input": "YZJOOYITZRARKVFYWUBWUBRZQGWUBWUBWUBUOQWUBWUBWUBIWUBWUBWUBNKVDTBOLETKZISTWUBWUBWUBWLWUBQQFMMGSONZMAWUBZWUBWUBWUBQZUXGCWUBWUBWUBIRZWUBWUBWUBLTTVTLCWUBWUBWUBY",
"output": "YZJOOYITZRARKVFY RZQG UOQ I NKVDTBOLETKZIST WL QQFMMGSONZMA Z QZUXGC IRZ LTTVTLC Y "
},
{
"input": "WUBCAXNCKFBVZLGCBWCOAWVWOFKZVQYLVTWUBWUBWUBNLGWUBWUBWUBAMGDZBDHZMRMQMDLIRMIWUBWUBWUBGAJSHTBSWUBWUBWUBCXWUBWUBWUBYWUBZLXAWWUBWUBWUBOHWUBWUBWUBZWUBWUBWUBGBWUBWUBWUBE",
"output": "CAXNCKFBVZLGCBWCOAWVWOFKZVQYLVT NLG AMGDZBDHZMRMQMDLIRMI GAJSHTBS CX Y ZLXAW OH Z GB E "
},
{
"input": "WUBWUBCHXSOWTSQWUBWUBWUBCYUZBPBWUBWUBWUBSGWUBWUBWKWORLRRLQYUUFDNWUBWUBWUBYYGOJNEVEMWUBWUBWUBRWUBWUBWUBQWUBWUBWUBIHCKWUBWUBWUBKTWUBWUBWUBRGSNTGGWUBWUBWUBXCXWUBWUBWUBS",
"output": "CHXSOWTSQ CYUZBPB SG WKWORLRRLQYUUFDN YYGOJNEVEM R Q IHCK KT RGSNTGG XCX S "
},
{
"input": "WUBWUBWUBHJHMSBURXTHXWSCHNAIJOWBHLZGJZDHEDSPWBWACCGQWUBWUBWUBXTZKGIITWUBWUBWUBAWUBWUBWUBVNCXPUBCQWUBWUBWUBIDPNAWUBWUBWUBOWUBWUBWUBYGFWUBWUBWUBMQOWUBWUBWUBKWUBWUBWUBAZVWUBWUBWUBEP",
"output": "HJHMSBURXTHXWSCHNAIJOWBHLZGJZDHEDSPWBWACCGQ XTZKGIIT A VNCXPUBCQ IDPNA O YGF MQO K AZV EP "
},
{
"input": "WUBKYDZOYWZSNGMKJSWAXFDFLTHDHEOGTDBNZMSMKZTVWUBWUBWUBLRMIIWUBWUBWUBGWUBWUBWUBADPSWUBWUBWUBANBWUBWUBPCWUBWUBWUBPWUBWUBWUBGPVNLSWIRFORYGAABUXMWUBWUBWUBOWUBWUBWUBNWUBWUBWUBYWUBWUB",
"output": "KYDZOYWZSNGMKJSWAXFDFLTHDHEOGTDBNZMSMKZTV LRMII G ADPS ANB PC P GPVNLSWIRFORYGAABUXM O N Y "
},
{
"input": "REWUBWUBWUBJDWUBWUBWUBNWUBWUBWUBTWWUBWUBWUBWZDOCKKWUBWUBWUBLDPOVBFRCFWUBWUBAKZIBQKEUAZEEWUBWUBWUBLQYPNPFWUBYEWUBWUBWUBFWUBWUBWUBBPWUBWUBWUBAWWUBWUBWUBQWUBWUBWUBBRWUBWUBWUBXJL",
"output": "RE JD N TW WZDOCKK LDPOVBFRCF AKZIBQKEUAZEE LQYPNPF YE F BP AW Q BR XJL "
},
{
"input": "CUFGJDXGMWUBWUBWUBOMWUBWUBWUBSIEWUBWUBWUBJJWKNOWUBWUBWUBYBHVNRNORGYWUBWUBWUBOAGCAWUBWUBWUBSBLBKTPFKPBIWUBWUBWUBJBWUBWUBWUBRMFCJPGWUBWUBWUBDWUBWUBWUBOJOWUBWUBWUBZPWUBWUBWUBMWUBRWUBWUBWUBFXWWUBWUBWUBO",
"output": "CUFGJDXGM OM SIE JJWKNO YBHVNRNORGY OAGCA SBLBKTPFKPBI JB RMFCJPG D OJO ZP M R FXW O "
},
{
"input": "WUBJZGAEXFMFEWMAKGQLUWUBWUBWUBICYTPQWGENELVYWANKUOJYWUBWUBWUBGWUBWUBWUBHYCJVLPHTUPNEGKCDGQWUBWUBWUBOFWUBWUBWUBCPGSOGZBRPRPVJJEWUBWUBWUBDQBCWUBWUBWUBHWUBWUBWUBMHOHYBMATWUBWUBWUBVWUBWUBWUBSWUBWUBWUBKOWU",
"output": "JZGAEXFMFEWMAKGQLU ICYTPQWGENELVYWANKUOJY G HYCJVLPHTUPNEGKCDGQ OF CPGSOGZBRPRPVJJE DQBC H MHOHYBMAT V S KOWU "
},
{
"input": "A",
"output": "A "
},
{
"input": "WUBA",
"output": "A "
},
{
"input": "WUBWUBA",
"output": "A "
},
{
"input": "AWUBWUBWUB",
"output": "A "
},
{
"input": "AWUBBWUBCWUBD",
"output": "A B C D "
},
{
"input": "WUBWWUBWUBWUBUWUBWUBBWUB",
"output": "W U B "
},
{
"input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA "
},
{
"input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA "
},
{
"input": "WUWUBBWWUBUB",
"output": "WU BW UB "
},
{
"input": "WUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUABWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUB",
"output": "WUAB "
},
{
"input": "ZWUB",
"output": "Z "
},
{
"input": "WU",
"output": "WU "
},
{
"input": "UB",
"output": "UB "
},
{
"input": "U",
"output": "U "
},
{
"input": "WUBW",
"output": "W "
},
{
"input": "WUBWU",
"output": "WU "
},
{
"input": "WUWUB",
"output": "WU "
},
{
"input": "UBWUB",
"output": "UB "
},
{
"input": "WUWUBUBWUBUWUB",
"output": "WU UB U "
},
{
"input": "WUBWWUBAWUB",
"output": "W A "
},
{
"input": "WUUUUU",
"output": "WUUUUU "
}
] | 1,676,370,501
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 71
| 92
| 0
|
remix = input().split("WUB")
for i in remix:
if i=="":
remix.remove(i)
print(" ".join(remix))
|
Title: Dubstep
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya works as a DJ in the best Berland nightclub, and he often uses dubstep music in his performance. Recently, he has decided to take a couple of old songs and make dubstep remixes from them.
Let's assume that a song consists of some number of words. To make the dubstep remix of this song, Vasya inserts a certain number of words "WUB" before the first word of the song (the number may be zero), after the last word (the number may be zero), and between words (at least one between any pair of neighbouring words), and then the boy glues together all the words, including "WUB", in one string and plays the song at the club.
For example, a song with words "I AM X" can transform into a dubstep remix as "WUBWUBIWUBAMWUBWUBX" and cannot transform into "WUBWUBIAMWUBX".
Recently, Petya has heard Vasya's new dubstep track, but since he isn't into modern music, he decided to find out what was the initial song that Vasya remixed. Help Petya restore the original song.
Input Specification:
The input consists of a single non-empty string, consisting only of uppercase English letters, the string's length doesn't exceed 200 characters. It is guaranteed that before Vasya remixed the song, no word contained substring "WUB" in it; Vasya didn't change the word order. It is also guaranteed that initially the song had at least one word.
Output Specification:
Print the words of the initial song that Vasya used to make a dubsteb remix. Separate the words with a space.
Demo Input:
['WUBWUBABCWUB\n', 'WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB\n']
Demo Output:
['ABC ', 'WE ARE THE CHAMPIONS MY FRIEND ']
Note:
In the first sample: "WUBWUBABCWUB" = "WUB" + "WUB" + "ABC" + "WUB". That means that the song originally consisted of a single word "ABC", and all words "WUB" were added by Vasya.
In the second sample Vasya added a single word "WUB" between all neighbouring words, in the beginning and in the end, except for words "ARE" and "THE" — between them Vasya added two "WUB".
|
```python
remix = input().split("WUB")
for i in remix:
if i=="":
remix.remove(i)
print(" ".join(remix))
```
| 3
|
|
553
|
A
|
Kyoya and Colored Balls
|
PROGRAMMING
| 1,500
|
[
"combinatorics",
"dp",
"math"
] | null | null |
Kyoya Ootori has a bag with *n* colored balls that are colored with *k* different colors. The colors are labeled from 1 to *k*. Balls of the same color are indistinguishable. He draws balls from the bag one by one until the bag is empty. He noticed that he drew the last ball of color *i* before drawing the last ball of color *i*<=+<=1 for all *i* from 1 to *k*<=-<=1. Now he wonders how many different ways this can happen.
|
The first line of input will have one integer *k* (1<=≤<=*k*<=≤<=1000) the number of colors.
Then, *k* lines will follow. The *i*-th line will contain *c**i*, the number of balls of the *i*-th color (1<=≤<=*c**i*<=≤<=1000).
The total number of balls doesn't exceed 1000.
|
A single integer, the number of ways that Kyoya can draw the balls from the bag as described in the statement, modulo 1<=000<=000<=007.
|
[
"3\n2\n2\n1\n",
"4\n1\n2\n3\n4\n"
] |
[
"3\n",
"1680\n"
] |
In the first sample, we have 2 balls of color 1, 2 balls of color 2, and 1 ball of color 3. The three ways for Kyoya are:
| 250
|
[
{
"input": "3\n2\n2\n1",
"output": "3"
},
{
"input": "4\n1\n2\n3\n4",
"output": "1680"
},
{
"input": "10\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100",
"output": "12520708"
},
{
"input": "5\n10\n10\n10\n10\n10",
"output": "425711769"
},
{
"input": "11\n291\n381\n126\n39\n19\n20\n3\n1\n20\n45\n2",
"output": "902382672"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "13\n67\n75\n76\n80\n69\n86\n75\n86\n81\n84\n73\n72\n76",
"output": "232242896"
},
{
"input": "25\n35\n43\n38\n33\n47\n44\n40\n36\n41\n42\n33\n30\n49\n42\n62\n39\n40\n35\n43\n31\n42\n46\n42\n34\n33",
"output": "362689152"
},
{
"input": "47\n20\n21\n16\n18\n24\n20\n25\n13\n20\n22\n26\n24\n17\n18\n21\n22\n21\n23\n17\n15\n24\n19\n18\n21\n20\n19\n26\n25\n20\n17\n17\n17\n26\n32\n20\n21\n25\n28\n24\n21\n21\n17\n28\n20\n20\n31\n19",
"output": "295545118"
},
{
"input": "3\n343\n317\n337",
"output": "691446102"
},
{
"input": "1\n5",
"output": "1"
}
] | 1,670,373,457
| 2,147,483,647
|
PyPy 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 92
| 2,048,000
|
from math import comb
dec=1000000007
k =int(input())
color_counts = [0] * 10
result = 1
for i in range(0, k):
color_counts[i] = int(input())
curr = color_counts[0]
for i in range(1,k):
result = result * comb(curr + color_counts[i] - 1 , color_counts[i] - 1)%mod
curr = color_counts[i]
print(res)
|
Title: Kyoya and Colored Balls
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kyoya Ootori has a bag with *n* colored balls that are colored with *k* different colors. The colors are labeled from 1 to *k*. Balls of the same color are indistinguishable. He draws balls from the bag one by one until the bag is empty. He noticed that he drew the last ball of color *i* before drawing the last ball of color *i*<=+<=1 for all *i* from 1 to *k*<=-<=1. Now he wonders how many different ways this can happen.
Input Specification:
The first line of input will have one integer *k* (1<=≤<=*k*<=≤<=1000) the number of colors.
Then, *k* lines will follow. The *i*-th line will contain *c**i*, the number of balls of the *i*-th color (1<=≤<=*c**i*<=≤<=1000).
The total number of balls doesn't exceed 1000.
Output Specification:
A single integer, the number of ways that Kyoya can draw the balls from the bag as described in the statement, modulo 1<=000<=000<=007.
Demo Input:
['3\n2\n2\n1\n', '4\n1\n2\n3\n4\n']
Demo Output:
['3\n', '1680\n']
Note:
In the first sample, we have 2 balls of color 1, 2 balls of color 2, and 1 ball of color 3. The three ways for Kyoya are:
|
```python
from math import comb
dec=1000000007
k =int(input())
color_counts = [0] * 10
result = 1
for i in range(0, k):
color_counts[i] = int(input())
curr = color_counts[0]
for i in range(1,k):
result = result * comb(curr + color_counts[i] - 1 , color_counts[i] - 1)%mod
curr = color_counts[i]
print(res)
```
| -1
|
|
230
|
A
|
Dragons
|
PROGRAMMING
| 1,000
|
[
"greedy",
"sortings"
] | null | null |
Kirito is stuck on a level of the MMORPG he is playing now. To move on in the game, he's got to defeat all *n* dragons that live on this level. Kirito and the dragons have strength, which is represented by an integer. In the duel between two opponents the duel's outcome is determined by their strength. Initially, Kirito's strength equals *s*.
If Kirito starts duelling with the *i*-th (1<=≤<=*i*<=≤<=*n*) dragon and Kirito's strength is not greater than the dragon's strength *x**i*, then Kirito loses the duel and dies. But if Kirito's strength is greater than the dragon's strength, then he defeats the dragon and gets a bonus strength increase by *y**i*.
Kirito can fight the dragons in any order. Determine whether he can move on to the next level of the game, that is, defeat all dragons without a single loss.
|
The first line contains two space-separated integers *s* and *n* (1<=≤<=*s*<=≤<=104, 1<=≤<=*n*<=≤<=103). Then *n* lines follow: the *i*-th line contains space-separated integers *x**i* and *y**i* (1<=≤<=*x**i*<=≤<=104, 0<=≤<=*y**i*<=≤<=104) — the *i*-th dragon's strength and the bonus for defeating it.
|
On a single line print "YES" (without the quotes), if Kirito can move on to the next level and print "NO" (without the quotes), if he can't.
|
[
"2 2\n1 99\n100 0\n",
"10 1\n100 100\n"
] |
[
"YES\n",
"NO\n"
] |
In the first sample Kirito's strength initially equals 2. As the first dragon's strength is less than 2, Kirito can fight it and defeat it. After that he gets the bonus and his strength increases to 2 + 99 = 101. Now he can defeat the second dragon and move on to the next level.
In the second sample Kirito's strength is too small to defeat the only dragon and win.
| 500
|
[
{
"input": "2 2\n1 99\n100 0",
"output": "YES"
},
{
"input": "10 1\n100 100",
"output": "NO"
},
{
"input": "123 2\n78 10\n130 0",
"output": "YES"
},
{
"input": "999 2\n1010 10\n67 89",
"output": "YES"
},
{
"input": "2 5\n5 1\n2 1\n3 1\n1 1\n4 1",
"output": "YES"
},
{
"input": "2 2\n3 5\n1 2",
"output": "YES"
},
{
"input": "1 2\n1 0\n1 0",
"output": "NO"
},
{
"input": "5 10\n20 1\n4 3\n5 1\n100 1\n4 2\n101 1\n10 0\n10 2\n17 3\n12 84",
"output": "YES"
},
{
"input": "2 2\n1 98\n100 0",
"output": "NO"
},
{
"input": "2 2\n1 2\n3 5",
"output": "YES"
},
{
"input": "5 3\n13 20\n3 10\n15 5",
"output": "YES"
},
{
"input": "2 5\n1 1\n2 1\n3 1\n4 1\n5 1",
"output": "YES"
},
{
"input": "3 3\n1 1\n1 2\n4 0",
"output": "YES"
},
{
"input": "10 4\n20 1\n3 5\n2 4\n1 3",
"output": "YES"
},
{
"input": "10 1\n1 1",
"output": "YES"
},
{
"input": "4 1\n100 1000",
"output": "NO"
},
{
"input": "5 1\n6 7",
"output": "NO"
},
{
"input": "10 1\n10 10",
"output": "NO"
},
{
"input": "6 2\n496 0\n28 8128",
"output": "NO"
},
{
"input": "4 2\n2 1\n10 3",
"output": "NO"
},
{
"input": "11 2\n22 0\n33 0",
"output": "NO"
},
{
"input": "1 2\n100 1\n100 1",
"output": "NO"
},
{
"input": "10 3\n12 0\n13 0\n14 0",
"output": "NO"
},
{
"input": "50 3\n39 0\n38 0\n37 0",
"output": "YES"
},
{
"input": "14 3\n1 5\n1 6\n1 7",
"output": "YES"
},
{
"input": "1 3\n1 10\n1 11\n1 9",
"output": "NO"
},
{
"input": "10 10\n2 10\n3 10\n4 10\n2 20\n3 20\n3 20\n100 50\n100 30\n150 30\n200 10",
"output": "NO"
},
{
"input": "9983 34\n6626 5976\n4448 3568\n2794 2309\n3741 8806\n4754 129\n2780 9275\n5785 9243\n3915 6159\n2609 4331\n238 6756\n6987 3887\n3384 5711\n4349 5563\n1135 4483\n9151 1584\n1500 766\n1608 4440\n7768 5005\n7205 2360\n9088 2933\n3923 7814\n7538 9372\n7504 165\n5277 1636\n2061 4384\n7668 1422\n9582 2121\n5483 7967\n487 2944\n7432 5794\n8208 8970\n5747 3800\n4322 3920\n8261 9319",
"output": "YES"
},
{
"input": "1 10\n8 8\n54 3\n1 8\n26 3\n16 1\n29 9\n38 10\n57 8\n48 6\n17 9",
"output": "NO"
},
{
"input": "5 10\n7 0\n7 0\n10 0\n10 0\n7 2\n4 2\n9 0\n6 1\n7 0\n7 0",
"output": "NO"
},
{
"input": "2 3\n1 1\n1 10\n17 2",
"output": "NO"
},
{
"input": "100 5\n99 100\n199 1\n199 1\n199 1\n202 1",
"output": "YES"
},
{
"input": "1 1\n10000 1",
"output": "NO"
}
] | 1,699,137,959
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 8
| 62
| 0
|
s,n = list(map(int,input().split(" ")))
arr = []
for dragon in range(n):
p,b = list(map(int,input().split(" ")))
arr.append([p,b])
arr.sort()
for traverse in arr:
if s>=traverse[0]:
s+=traverse[1]
else:
print("NO")
break
else:
print("YES")
|
Title: Dragons
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kirito is stuck on a level of the MMORPG he is playing now. To move on in the game, he's got to defeat all *n* dragons that live on this level. Kirito and the dragons have strength, which is represented by an integer. In the duel between two opponents the duel's outcome is determined by their strength. Initially, Kirito's strength equals *s*.
If Kirito starts duelling with the *i*-th (1<=≤<=*i*<=≤<=*n*) dragon and Kirito's strength is not greater than the dragon's strength *x**i*, then Kirito loses the duel and dies. But if Kirito's strength is greater than the dragon's strength, then he defeats the dragon and gets a bonus strength increase by *y**i*.
Kirito can fight the dragons in any order. Determine whether he can move on to the next level of the game, that is, defeat all dragons without a single loss.
Input Specification:
The first line contains two space-separated integers *s* and *n* (1<=≤<=*s*<=≤<=104, 1<=≤<=*n*<=≤<=103). Then *n* lines follow: the *i*-th line contains space-separated integers *x**i* and *y**i* (1<=≤<=*x**i*<=≤<=104, 0<=≤<=*y**i*<=≤<=104) — the *i*-th dragon's strength and the bonus for defeating it.
Output Specification:
On a single line print "YES" (without the quotes), if Kirito can move on to the next level and print "NO" (without the quotes), if he can't.
Demo Input:
['2 2\n1 99\n100 0\n', '10 1\n100 100\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first sample Kirito's strength initially equals 2. As the first dragon's strength is less than 2, Kirito can fight it and defeat it. After that he gets the bonus and his strength increases to 2 + 99 = 101. Now he can defeat the second dragon and move on to the next level.
In the second sample Kirito's strength is too small to defeat the only dragon and win.
|
```python
s,n = list(map(int,input().split(" ")))
arr = []
for dragon in range(n):
p,b = list(map(int,input().split(" ")))
arr.append([p,b])
arr.sort()
for traverse in arr:
if s>=traverse[0]:
s+=traverse[1]
else:
print("NO")
break
else:
print("YES")
```
| 0
|
|
136
|
A
|
Presents
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Little Petya very much likes gifts. Recently he has received a new laptop as a New Year gift from his mother. He immediately decided to give it to somebody else as what can be more pleasant than giving somebody gifts. And on this occasion he organized a New Year party at his place and invited *n* his friends there.
If there's one thing Petya likes more that receiving gifts, that's watching others giving gifts to somebody else. Thus, he safely hid the laptop until the next New Year and made up his mind to watch his friends exchanging gifts while he does not participate in the process. He numbered all his friends with integers from 1 to *n*. Petya remembered that a friend number *i* gave a gift to a friend number *p**i*. He also remembered that each of his friends received exactly one gift.
Now Petya wants to know for each friend *i* the number of a friend who has given him a gift.
|
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the quantity of friends Petya invited to the party. The second line contains *n* space-separated integers: the *i*-th number is *p**i* — the number of a friend who gave a gift to friend number *i*. It is guaranteed that each friend received exactly one gift. It is possible that some friends do not share Petya's ideas of giving gifts to somebody else. Those friends gave the gifts to themselves.
|
Print *n* space-separated integers: the *i*-th number should equal the number of the friend who gave a gift to friend number *i*.
|
[
"4\n2 3 4 1\n",
"3\n1 3 2\n",
"2\n1 2\n"
] |
[
"4 1 2 3\n",
"1 3 2\n",
"1 2\n"
] |
none
| 500
|
[
{
"input": "4\n2 3 4 1",
"output": "4 1 2 3"
},
{
"input": "3\n1 3 2",
"output": "1 3 2"
},
{
"input": "2\n1 2",
"output": "1 2"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "10\n1 3 2 6 4 5 7 9 8 10",
"output": "1 3 2 5 6 4 7 9 8 10"
},
{
"input": "5\n5 4 3 2 1",
"output": "5 4 3 2 1"
},
{
"input": "20\n2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19"
},
{
"input": "21\n3 2 1 6 5 4 9 8 7 12 11 10 15 14 13 18 17 16 21 20 19",
"output": "3 2 1 6 5 4 9 8 7 12 11 10 15 14 13 18 17 16 21 20 19"
},
{
"input": "10\n3 4 5 6 7 8 9 10 1 2",
"output": "9 10 1 2 3 4 5 6 7 8"
},
{
"input": "8\n1 5 3 7 2 6 4 8",
"output": "1 5 3 7 2 6 4 8"
},
{
"input": "50\n49 22 4 2 20 46 7 32 5 19 48 24 26 15 45 21 44 11 50 43 39 17 31 1 42 34 3 27 36 25 12 30 13 33 28 35 18 6 8 37 38 14 10 9 29 16 40 23 41 47",
"output": "24 4 27 3 9 38 7 39 44 43 18 31 33 42 14 46 22 37 10 5 16 2 48 12 30 13 28 35 45 32 23 8 34 26 36 29 40 41 21 47 49 25 20 17 15 6 50 11 1 19"
},
{
"input": "34\n13 20 33 30 15 11 27 4 8 2 29 25 24 7 3 22 18 10 26 16 5 1 32 9 34 6 12 14 28 19 31 21 23 17",
"output": "22 10 15 8 21 26 14 9 24 18 6 27 1 28 5 20 34 17 30 2 32 16 33 13 12 19 7 29 11 4 31 23 3 25"
},
{
"input": "92\n23 1 6 4 84 54 44 76 63 34 61 20 48 13 28 78 26 46 90 72 24 55 91 89 53 38 82 5 79 92 29 32 15 64 11 88 60 70 7 66 18 59 8 57 19 16 42 21 80 71 62 27 75 86 36 9 83 73 74 50 43 31 56 30 17 33 40 81 49 12 10 41 22 77 25 68 51 2 47 3 58 69 87 67 39 37 35 65 14 45 52 85",
"output": "2 78 80 4 28 3 39 43 56 71 35 70 14 89 33 46 65 41 45 12 48 73 1 21 75 17 52 15 31 64 62 32 66 10 87 55 86 26 85 67 72 47 61 7 90 18 79 13 69 60 77 91 25 6 22 63 44 81 42 37 11 51 9 34 88 40 84 76 82 38 50 20 58 59 53 8 74 16 29 49 68 27 57 5 92 54 83 36 24 19 23 30"
},
{
"input": "49\n30 24 33 48 7 3 17 2 8 35 10 39 23 40 46 32 18 21 26 22 1 16 47 45 41 28 31 6 12 43 27 11 13 37 19 15 44 5 29 42 4 38 20 34 14 9 25 36 49",
"output": "21 8 6 41 38 28 5 9 46 11 32 29 33 45 36 22 7 17 35 43 18 20 13 2 47 19 31 26 39 1 27 16 3 44 10 48 34 42 12 14 25 40 30 37 24 15 23 4 49"
},
{
"input": "12\n3 8 7 4 6 5 2 1 11 9 10 12",
"output": "8 7 1 4 6 5 3 2 10 11 9 12"
},
{
"input": "78\n16 56 36 78 21 14 9 77 26 57 70 61 41 47 18 44 5 31 50 74 65 52 6 39 22 62 67 69 43 7 64 29 24 40 48 51 73 54 72 12 19 34 4 25 55 33 17 35 23 53 10 8 27 32 42 68 20 63 3 2 1 71 58 46 13 30 49 11 37 66 38 60 28 75 15 59 45 76",
"output": "61 60 59 43 17 23 30 52 7 51 68 40 65 6 75 1 47 15 41 57 5 25 49 33 44 9 53 73 32 66 18 54 46 42 48 3 69 71 24 34 13 55 29 16 77 64 14 35 67 19 36 22 50 38 45 2 10 63 76 72 12 26 58 31 21 70 27 56 28 11 62 39 37 20 74 78 8 4"
},
{
"input": "64\n64 57 40 3 15 8 62 18 33 59 51 19 22 13 4 37 47 45 50 35 63 11 58 42 46 21 7 2 41 48 32 23 28 38 17 12 24 27 49 31 60 6 30 25 61 52 26 54 9 14 29 20 44 39 55 10 34 16 5 56 1 36 53 43",
"output": "61 28 4 15 59 42 27 6 49 56 22 36 14 50 5 58 35 8 12 52 26 13 32 37 44 47 38 33 51 43 40 31 9 57 20 62 16 34 54 3 29 24 64 53 18 25 17 30 39 19 11 46 63 48 55 60 2 23 10 41 45 7 21 1"
},
{
"input": "49\n38 20 49 32 14 41 39 45 25 48 40 19 26 43 34 12 10 3 35 42 5 7 46 47 4 2 13 22 16 24 33 15 11 18 29 31 23 9 44 36 6 17 37 1 30 28 8 21 27",
"output": "44 26 18 25 21 41 22 47 38 17 33 16 27 5 32 29 42 34 12 2 48 28 37 30 9 13 49 46 35 45 36 4 31 15 19 40 43 1 7 11 6 20 14 39 8 23 24 10 3"
},
{
"input": "78\n17 50 30 48 33 12 42 4 18 53 76 67 38 3 20 72 51 55 60 63 46 10 57 45 54 32 24 62 8 11 35 44 65 74 58 28 2 6 56 52 39 23 47 49 61 1 66 41 15 77 7 27 78 13 14 34 5 31 37 21 40 16 29 69 59 43 64 36 70 19 25 73 71 75 9 68 26 22",
"output": "46 37 14 8 57 38 51 29 75 22 30 6 54 55 49 62 1 9 70 15 60 78 42 27 71 77 52 36 63 3 58 26 5 56 31 68 59 13 41 61 48 7 66 32 24 21 43 4 44 2 17 40 10 25 18 39 23 35 65 19 45 28 20 67 33 47 12 76 64 69 73 16 72 34 74 11 50 53"
},
{
"input": "29\n14 21 27 1 4 18 10 17 20 23 2 24 7 9 28 22 8 25 12 15 11 6 16 29 3 26 19 5 13",
"output": "4 11 25 5 28 22 13 17 14 7 21 19 29 1 20 23 8 6 27 9 2 16 10 12 18 26 3 15 24"
},
{
"input": "82\n6 1 10 75 28 66 61 81 78 63 17 19 58 34 49 12 67 50 41 44 3 15 59 38 51 72 36 11 46 29 18 64 27 23 13 53 56 68 2 25 47 40 69 54 42 5 60 55 4 16 24 79 57 20 7 73 32 80 76 52 82 37 26 31 65 8 39 62 33 71 30 9 77 43 48 74 70 22 14 45 35 21",
"output": "2 39 21 49 46 1 55 66 72 3 28 16 35 79 22 50 11 31 12 54 82 78 34 51 40 63 33 5 30 71 64 57 69 14 81 27 62 24 67 42 19 45 74 20 80 29 41 75 15 18 25 60 36 44 48 37 53 13 23 47 7 68 10 32 65 6 17 38 43 77 70 26 56 76 4 59 73 9 52 58 8 61"
},
{
"input": "82\n74 18 15 69 71 77 19 26 80 20 66 7 30 82 22 48 21 44 52 65 64 61 35 49 12 8 53 81 54 16 11 9 40 46 13 1 29 58 5 41 55 4 78 60 6 51 56 2 38 36 34 62 63 25 17 67 45 14 32 37 75 79 10 47 27 39 31 68 59 24 50 43 72 70 42 28 76 23 57 3 73 33",
"output": "36 48 80 42 39 45 12 26 32 63 31 25 35 58 3 30 55 2 7 10 17 15 78 70 54 8 65 76 37 13 67 59 82 51 23 50 60 49 66 33 40 75 72 18 57 34 64 16 24 71 46 19 27 29 41 47 79 38 69 44 22 52 53 21 20 11 56 68 4 74 5 73 81 1 61 77 6 43 62 9 28 14"
},
{
"input": "45\n2 32 34 13 3 15 16 33 22 12 31 38 42 14 27 7 36 8 4 19 45 41 5 35 10 11 39 20 29 44 17 9 6 40 37 28 25 21 1 30 24 18 43 26 23",
"output": "39 1 5 19 23 33 16 18 32 25 26 10 4 14 6 7 31 42 20 28 38 9 45 41 37 44 15 36 29 40 11 2 8 3 24 17 35 12 27 34 22 13 43 30 21"
},
{
"input": "45\n4 32 33 39 43 21 22 35 45 7 14 5 16 9 42 31 24 36 17 29 41 25 37 34 27 20 11 44 3 13 19 2 1 10 26 30 38 18 6 8 15 23 40 28 12",
"output": "33 32 29 1 12 39 10 40 14 34 27 45 30 11 41 13 19 38 31 26 6 7 42 17 22 35 25 44 20 36 16 2 3 24 8 18 23 37 4 43 21 15 5 28 9"
},
{
"input": "74\n48 72 40 67 17 4 27 53 11 32 25 9 74 2 41 24 56 22 14 21 33 5 18 55 20 7 29 36 69 13 52 19 38 30 68 59 66 34 63 6 47 45 54 44 62 12 50 71 16 10 8 64 57 73 46 26 49 42 3 23 35 1 61 39 70 60 65 43 15 28 37 51 58 31",
"output": "62 14 59 6 22 40 26 51 12 50 9 46 30 19 69 49 5 23 32 25 20 18 60 16 11 56 7 70 27 34 74 10 21 38 61 28 71 33 64 3 15 58 68 44 42 55 41 1 57 47 72 31 8 43 24 17 53 73 36 66 63 45 39 52 67 37 4 35 29 65 48 2 54 13"
},
{
"input": "47\n9 26 27 10 6 34 28 42 39 22 45 21 11 43 14 47 38 15 40 32 46 1 36 29 17 25 2 23 31 5 24 4 7 8 12 19 16 44 37 20 18 33 30 13 35 41 3",
"output": "22 27 47 32 30 5 33 34 1 4 13 35 44 15 18 37 25 41 36 40 12 10 28 31 26 2 3 7 24 43 29 20 42 6 45 23 39 17 9 19 46 8 14 38 11 21 16"
},
{
"input": "49\n14 38 6 29 9 49 36 43 47 3 44 20 34 15 7 11 1 28 12 40 16 37 31 10 42 41 33 21 18 30 5 27 17 35 25 26 45 19 2 13 23 32 4 22 46 48 24 39 8",
"output": "17 39 10 43 31 3 15 49 5 24 16 19 40 1 14 21 33 29 38 12 28 44 41 47 35 36 32 18 4 30 23 42 27 13 34 7 22 2 48 20 26 25 8 11 37 45 9 46 6"
},
{
"input": "100\n78 56 31 91 90 95 16 65 58 77 37 89 33 61 10 76 62 47 35 67 69 7 63 83 22 25 49 8 12 30 39 44 57 64 48 42 32 11 70 43 55 50 99 24 85 73 45 14 54 21 98 84 74 2 26 18 9 36 80 53 75 46 66 86 59 93 87 68 94 13 72 28 79 88 92 29 52 82 34 97 19 38 1 41 27 4 40 5 96 100 51 6 20 23 81 15 17 3 60 71",
"output": "83 54 98 86 88 92 22 28 57 15 38 29 70 48 96 7 97 56 81 93 50 25 94 44 26 55 85 72 76 30 3 37 13 79 19 58 11 82 31 87 84 36 40 32 47 62 18 35 27 42 91 77 60 49 41 2 33 9 65 99 14 17 23 34 8 63 20 68 21 39 100 71 46 53 61 16 10 1 73 59 95 78 24 52 45 64 67 74 12 5 4 75 66 69 6 89 80 51 43 90"
},
{
"input": "22\n12 8 11 2 16 7 13 6 22 21 20 10 4 14 18 1 5 15 3 19 17 9",
"output": "16 4 19 13 17 8 6 2 22 12 3 1 7 14 18 5 21 15 20 11 10 9"
},
{
"input": "72\n16 11 49 51 3 27 60 55 23 40 66 7 53 70 13 5 15 32 18 72 33 30 8 31 46 12 28 67 25 38 50 22 69 34 71 52 58 39 24 35 42 9 41 26 62 1 63 65 36 64 68 61 37 14 45 47 6 57 54 20 17 2 56 59 29 10 4 48 21 43 19 44",
"output": "46 62 5 67 16 57 12 23 42 66 2 26 15 54 17 1 61 19 71 60 69 32 9 39 29 44 6 27 65 22 24 18 21 34 40 49 53 30 38 10 43 41 70 72 55 25 56 68 3 31 4 36 13 59 8 63 58 37 64 7 52 45 47 50 48 11 28 51 33 14 35 20"
},
{
"input": "63\n21 56 11 10 62 24 20 42 28 52 38 2 37 43 48 22 7 8 40 14 13 46 53 1 23 4 60 63 51 36 25 12 39 32 49 16 58 44 31 61 33 50 55 54 45 6 47 41 9 57 30 29 26 18 19 27 15 34 3 35 59 5 17",
"output": "24 12 59 26 62 46 17 18 49 4 3 32 21 20 57 36 63 54 55 7 1 16 25 6 31 53 56 9 52 51 39 34 41 58 60 30 13 11 33 19 48 8 14 38 45 22 47 15 35 42 29 10 23 44 43 2 50 37 61 27 40 5 28"
},
{
"input": "18\n2 16 8 4 18 12 3 6 5 9 10 15 11 17 14 13 1 7",
"output": "17 1 7 4 9 8 18 3 10 11 13 6 16 15 12 2 14 5"
},
{
"input": "47\n6 9 10 41 25 3 4 37 20 1 36 22 29 27 11 24 43 31 12 17 34 42 38 39 13 2 7 21 18 5 15 35 44 26 33 46 19 40 30 14 28 23 47 32 45 8 16",
"output": "10 26 6 7 30 1 27 46 2 3 15 19 25 40 31 47 20 29 37 9 28 12 42 16 5 34 14 41 13 39 18 44 35 21 32 11 8 23 24 38 4 22 17 33 45 36 43"
},
{
"input": "96\n41 91 48 88 29 57 1 19 44 43 37 5 10 75 25 63 30 78 76 53 8 92 18 70 39 17 49 60 9 16 3 34 86 59 23 79 55 45 72 51 28 33 96 40 26 54 6 32 89 61 85 74 7 82 52 31 64 66 94 95 11 22 2 73 35 13 42 71 14 47 84 69 50 67 58 12 77 46 38 68 15 36 20 93 27 90 83 56 87 4 21 24 81 62 80 65",
"output": "7 63 31 90 12 47 53 21 29 13 61 76 66 69 81 30 26 23 8 83 91 62 35 92 15 45 85 41 5 17 56 48 42 32 65 82 11 79 25 44 1 67 10 9 38 78 70 3 27 73 40 55 20 46 37 88 6 75 34 28 50 94 16 57 96 58 74 80 72 24 68 39 64 52 14 19 77 18 36 95 93 54 87 71 51 33 89 4 49 86 2 22 84 59 60 43"
},
{
"input": "73\n67 24 39 22 23 20 48 34 42 40 19 70 65 69 64 21 53 11 59 15 26 10 30 33 72 29 55 25 56 71 8 9 57 49 41 61 13 12 6 27 66 36 47 50 73 60 2 37 7 4 51 17 1 46 14 62 35 3 45 63 43 58 54 32 31 5 28 44 18 52 68 38 16",
"output": "53 47 58 50 66 39 49 31 32 22 18 38 37 55 20 73 52 69 11 6 16 4 5 2 28 21 40 67 26 23 65 64 24 8 57 42 48 72 3 10 35 9 61 68 59 54 43 7 34 44 51 70 17 63 27 29 33 62 19 46 36 56 60 15 13 41 1 71 14 12 30 25 45"
},
{
"input": "81\n25 2 78 40 12 80 69 13 49 43 17 33 23 54 32 61 77 66 27 71 24 26 42 55 60 9 5 30 7 37 45 63 53 11 38 44 68 34 28 52 67 22 57 46 47 50 8 16 79 62 4 36 20 14 73 64 6 76 35 74 58 10 29 81 59 31 19 1 75 39 70 18 41 21 72 65 3 48 15 56 51",
"output": "68 2 77 51 27 57 29 47 26 62 34 5 8 54 79 48 11 72 67 53 74 42 13 21 1 22 19 39 63 28 66 15 12 38 59 52 30 35 70 4 73 23 10 36 31 44 45 78 9 46 81 40 33 14 24 80 43 61 65 25 16 50 32 56 76 18 41 37 7 71 20 75 55 60 69 58 17 3 49 6 64"
},
{
"input": "12\n12 3 1 5 11 6 7 10 2 8 9 4",
"output": "3 9 2 12 4 6 7 10 11 8 5 1"
},
{
"input": "47\n7 21 41 18 40 31 12 28 24 14 43 23 33 10 19 38 26 8 34 15 29 44 5 13 39 25 3 27 20 42 35 9 2 1 30 46 36 32 4 22 37 45 6 47 11 16 17",
"output": "34 33 27 39 23 43 1 18 32 14 45 7 24 10 20 46 47 4 15 29 2 40 12 9 26 17 28 8 21 35 6 38 13 19 31 37 41 16 25 5 3 30 11 22 42 36 44"
},
{
"input": "8\n1 3 5 2 4 8 6 7",
"output": "1 4 2 5 3 7 8 6"
},
{
"input": "38\n28 8 2 33 20 32 26 29 23 31 15 38 11 37 18 21 22 19 4 34 1 35 16 7 17 6 27 30 36 12 9 24 25 13 5 3 10 14",
"output": "21 3 36 19 35 26 24 2 31 37 13 30 34 38 11 23 25 15 18 5 16 17 9 32 33 7 27 1 8 28 10 6 4 20 22 29 14 12"
},
{
"input": "10\n2 9 4 6 10 1 7 5 3 8",
"output": "6 1 9 3 8 4 7 10 2 5"
},
{
"input": "23\n20 11 15 1 5 12 23 9 2 22 13 19 16 14 7 4 8 21 6 17 18 10 3",
"output": "4 9 23 16 5 19 15 17 8 22 2 6 11 14 3 13 20 21 12 1 18 10 7"
},
{
"input": "10\n2 4 9 3 6 8 10 5 1 7",
"output": "9 1 4 2 8 5 10 6 3 7"
},
{
"input": "55\n9 48 23 49 11 24 4 22 34 32 17 45 39 13 14 21 19 25 2 31 37 7 55 36 20 51 5 12 54 10 35 40 43 1 46 18 53 41 38 26 29 50 3 42 52 27 8 28 47 33 6 16 30 44 15",
"output": "34 19 43 7 27 51 22 47 1 30 5 28 14 15 55 52 11 36 17 25 16 8 3 6 18 40 46 48 41 53 20 10 50 9 31 24 21 39 13 32 38 44 33 54 12 35 49 2 4 42 26 45 37 29 23"
},
{
"input": "58\n49 13 12 54 2 38 56 11 33 25 26 19 28 8 23 41 20 36 46 55 15 35 9 7 32 37 58 6 3 14 47 31 40 30 53 44 4 50 29 34 10 43 39 57 5 22 27 45 51 42 24 16 18 21 52 17 48 1",
"output": "58 5 29 37 45 28 24 14 23 41 8 3 2 30 21 52 56 53 12 17 54 46 15 51 10 11 47 13 39 34 32 25 9 40 22 18 26 6 43 33 16 50 42 36 48 19 31 57 1 38 49 55 35 4 20 7 44 27"
},
{
"input": "34\n20 25 2 3 33 29 1 16 14 7 21 9 32 31 6 26 22 4 27 23 24 10 34 12 19 15 5 18 28 17 13 8 11 30",
"output": "7 3 4 18 27 15 10 32 12 22 33 24 31 9 26 8 30 28 25 1 11 17 20 21 2 16 19 29 6 34 14 13 5 23"
},
{
"input": "53\n47 29 46 25 23 13 7 31 33 4 38 11 35 16 42 14 15 43 34 39 28 18 6 45 30 1 40 20 2 37 5 32 24 12 44 26 27 3 19 51 36 21 22 9 10 50 41 48 49 53 8 17 52",
"output": "26 29 38 10 31 23 7 51 44 45 12 34 6 16 17 14 52 22 39 28 42 43 5 33 4 36 37 21 2 25 8 32 9 19 13 41 30 11 20 27 47 15 18 35 24 3 1 48 49 46 40 53 50"
},
{
"input": "99\n77 87 90 48 53 38 68 6 28 57 35 82 63 71 60 41 3 12 86 65 10 59 22 67 33 74 93 27 24 1 61 43 25 4 51 52 15 88 9 31 30 42 89 49 23 21 29 32 46 73 37 16 5 69 56 26 92 64 20 54 75 14 98 13 94 2 95 7 36 66 58 8 50 78 84 45 11 96 76 62 97 80 40 39 47 85 34 79 83 17 91 72 19 44 70 81 55 99 18",
"output": "30 66 17 34 53 8 68 72 39 21 77 18 64 62 37 52 90 99 93 59 46 23 45 29 33 56 28 9 47 41 40 48 25 87 11 69 51 6 84 83 16 42 32 94 76 49 85 4 44 73 35 36 5 60 97 55 10 71 22 15 31 80 13 58 20 70 24 7 54 95 14 92 50 26 61 79 1 74 88 82 96 12 89 75 86 19 2 38 43 3 91 57 27 65 67 78 81 63 98"
},
{
"input": "32\n17 29 2 6 30 8 26 7 1 27 10 9 13 24 31 21 15 19 22 18 4 11 25 28 32 3 23 12 5 14 20 16",
"output": "9 3 26 21 29 4 8 6 12 11 22 28 13 30 17 32 1 20 18 31 16 19 27 14 23 7 10 24 2 5 15 25"
},
{
"input": "65\n18 40 1 60 17 19 4 6 12 49 28 58 2 25 13 14 64 56 61 34 62 30 59 51 26 8 33 63 36 48 46 7 43 21 31 27 11 44 29 5 32 23 35 9 53 57 52 50 15 38 42 3 54 65 55 41 20 24 22 47 45 10 39 16 37",
"output": "3 13 52 7 40 8 32 26 44 62 37 9 15 16 49 64 5 1 6 57 34 59 42 58 14 25 36 11 39 22 35 41 27 20 43 29 65 50 63 2 56 51 33 38 61 31 60 30 10 48 24 47 45 53 55 18 46 12 23 4 19 21 28 17 54"
},
{
"input": "71\n35 50 55 58 25 32 26 40 63 34 44 53 24 18 37 7 64 27 56 65 1 19 2 43 42 14 57 47 22 13 59 61 39 67 30 45 54 38 33 48 6 5 3 69 36 21 41 4 16 46 20 17 15 12 10 70 68 23 60 31 52 29 66 28 51 49 62 11 8 9 71",
"output": "21 23 43 48 42 41 16 69 70 55 68 54 30 26 53 49 52 14 22 51 46 29 58 13 5 7 18 64 62 35 60 6 39 10 1 45 15 38 33 8 47 25 24 11 36 50 28 40 66 2 65 61 12 37 3 19 27 4 31 59 32 67 9 17 20 63 34 57 44 56 71"
},
{
"input": "74\n33 8 42 63 64 61 31 74 11 50 68 14 36 25 57 30 7 44 21 15 6 9 23 59 46 3 73 16 62 51 40 60 41 54 5 39 35 28 48 4 58 12 66 69 13 26 71 1 24 19 29 52 37 2 20 43 18 72 17 56 34 38 65 67 27 10 47 70 53 32 45 55 49 22",
"output": "48 54 26 40 35 21 17 2 22 66 9 42 45 12 20 28 59 57 50 55 19 74 23 49 14 46 65 38 51 16 7 70 1 61 37 13 53 62 36 31 33 3 56 18 71 25 67 39 73 10 30 52 69 34 72 60 15 41 24 32 6 29 4 5 63 43 64 11 44 68 47 58 27 8"
},
{
"input": "96\n78 10 82 46 38 91 77 69 2 27 58 80 79 44 59 41 6 31 76 11 42 48 51 37 19 87 43 25 52 32 1 39 63 29 21 65 53 74 92 16 15 95 90 83 30 73 71 5 50 17 96 33 86 60 67 64 20 26 61 40 55 88 94 93 9 72 47 57 14 45 22 3 54 68 13 24 4 7 56 81 89 70 49 8 84 28 18 62 35 36 75 23 66 85 34 12",
"output": "31 9 72 77 48 17 78 84 65 2 20 96 75 69 41 40 50 87 25 57 35 71 92 76 28 58 10 86 34 45 18 30 52 95 89 90 24 5 32 60 16 21 27 14 70 4 67 22 83 49 23 29 37 73 61 79 68 11 15 54 59 88 33 56 36 93 55 74 8 82 47 66 46 38 91 19 7 1 13 12 80 3 44 85 94 53 26 62 81 43 6 39 64 63 42 51"
},
{
"input": "7\n2 1 5 7 3 4 6",
"output": "2 1 5 6 3 7 4"
},
{
"input": "51\n8 33 37 2 16 22 24 30 4 9 5 15 27 3 18 39 31 26 10 17 46 41 25 14 6 1 29 48 36 20 51 49 21 43 19 13 38 50 47 34 11 23 28 12 42 7 32 40 44 45 35",
"output": "26 4 14 9 11 25 46 1 10 19 41 44 36 24 12 5 20 15 35 30 33 6 42 7 23 18 13 43 27 8 17 47 2 40 51 29 3 37 16 48 22 45 34 49 50 21 39 28 32 38 31"
},
{
"input": "27\n12 14 7 3 20 21 25 13 22 15 23 4 2 24 10 17 19 8 26 11 27 18 9 5 6 1 16",
"output": "26 13 4 12 24 25 3 18 23 15 20 1 8 2 10 27 16 22 17 5 6 9 11 14 7 19 21"
},
{
"input": "71\n51 13 20 48 54 23 24 64 14 62 71 67 57 53 3 30 55 43 33 25 39 40 66 6 46 18 5 19 61 16 32 68 70 41 60 44 29 49 27 69 50 38 10 17 45 56 9 21 26 63 28 35 7 59 1 65 2 15 8 11 12 34 37 47 58 22 31 4 36 42 52",
"output": "55 57 15 68 27 24 53 59 47 43 60 61 2 9 58 30 44 26 28 3 48 66 6 7 20 49 39 51 37 16 67 31 19 62 52 69 63 42 21 22 34 70 18 36 45 25 64 4 38 41 1 71 14 5 17 46 13 65 54 35 29 10 50 8 56 23 12 32 40 33 11"
},
{
"input": "9\n8 5 2 6 1 9 4 7 3",
"output": "5 3 9 7 2 4 8 1 6"
},
{
"input": "29\n10 24 11 5 26 25 2 9 22 15 8 14 29 21 4 1 23 17 3 12 13 16 18 28 19 20 7 6 27",
"output": "16 7 19 15 4 28 27 11 8 1 3 20 21 12 10 22 18 23 25 26 14 9 17 2 6 5 29 24 13"
},
{
"input": "60\n39 25 42 4 55 60 16 18 47 1 11 40 7 50 19 35 49 54 12 3 30 38 2 58 17 26 45 6 33 43 37 32 52 36 15 23 27 59 24 20 28 14 8 9 13 29 44 46 41 21 5 48 51 22 31 56 57 53 10 34",
"output": "10 23 20 4 51 28 13 43 44 59 11 19 45 42 35 7 25 8 15 40 50 54 36 39 2 26 37 41 46 21 55 32 29 60 16 34 31 22 1 12 49 3 30 47 27 48 9 52 17 14 53 33 58 18 5 56 57 24 38 6"
},
{
"input": "50\n37 45 22 5 12 21 28 24 18 47 20 25 8 50 14 2 34 43 11 16 49 41 48 1 19 31 39 46 32 23 15 42 3 35 38 30 44 26 10 9 40 36 7 17 33 4 27 6 13 29",
"output": "24 16 33 46 4 48 43 13 40 39 19 5 49 15 31 20 44 9 25 11 6 3 30 8 12 38 47 7 50 36 26 29 45 17 34 42 1 35 27 41 22 32 18 37 2 28 10 23 21 14"
},
{
"input": "30\n8 29 28 16 17 25 27 15 21 11 6 20 2 13 1 30 5 4 24 10 14 3 23 18 26 9 12 22 19 7",
"output": "15 13 22 18 17 11 30 1 26 20 10 27 14 21 8 4 5 24 29 12 9 28 23 19 6 25 7 3 2 16"
},
{
"input": "46\n15 2 44 43 38 19 31 42 4 37 29 30 24 45 27 41 8 20 33 7 35 3 18 46 36 26 1 28 21 40 16 22 32 11 14 13 12 9 25 39 10 6 23 17 5 34",
"output": "27 2 22 9 45 42 20 17 38 41 34 37 36 35 1 31 44 23 6 18 29 32 43 13 39 26 15 28 11 12 7 33 19 46 21 25 10 5 40 30 16 8 4 3 14 24"
},
{
"input": "9\n4 8 6 5 3 9 2 7 1",
"output": "9 7 5 1 4 3 8 2 6"
},
{
"input": "46\n31 30 33 23 45 7 36 8 11 3 32 39 41 20 1 28 6 27 18 24 17 5 16 37 26 13 22 14 2 38 15 46 9 4 19 21 12 44 10 35 25 34 42 43 40 29",
"output": "15 29 10 34 22 17 6 8 33 39 9 37 26 28 31 23 21 19 35 14 36 27 4 20 41 25 18 16 46 2 1 11 3 42 40 7 24 30 12 45 13 43 44 38 5 32"
},
{
"input": "66\n27 12 37 48 46 21 34 58 38 28 66 2 64 32 44 31 13 36 40 15 19 11 22 5 30 29 6 7 61 39 20 42 23 54 51 33 50 9 60 8 57 45 49 10 62 41 59 3 55 63 52 24 25 26 43 56 65 4 16 14 1 35 18 17 53 47",
"output": "61 12 48 58 24 27 28 40 38 44 22 2 17 60 20 59 64 63 21 31 6 23 33 52 53 54 1 10 26 25 16 14 36 7 62 18 3 9 30 19 46 32 55 15 42 5 66 4 43 37 35 51 65 34 49 56 41 8 47 39 29 45 50 13 57 11"
},
{
"input": "13\n3 12 9 2 8 5 13 4 11 1 10 7 6",
"output": "10 4 1 8 6 13 12 5 3 11 9 2 7"
},
{
"input": "80\n21 25 56 50 20 61 7 74 51 69 8 2 46 57 45 71 14 52 17 43 9 30 70 78 31 10 38 13 23 15 37 79 6 16 77 73 80 4 49 48 18 28 26 58 33 41 64 22 54 72 59 60 40 63 53 27 1 5 75 67 62 34 19 39 68 65 44 55 3 32 11 42 76 12 35 47 66 36 24 29",
"output": "57 12 69 38 58 33 7 11 21 26 71 74 28 17 30 34 19 41 63 5 1 48 29 79 2 43 56 42 80 22 25 70 45 62 75 78 31 27 64 53 46 72 20 67 15 13 76 40 39 4 9 18 55 49 68 3 14 44 51 52 6 61 54 47 66 77 60 65 10 23 16 50 36 8 59 73 35 24 32 37"
},
{
"input": "63\n9 49 53 25 40 46 43 51 54 22 58 16 23 26 10 47 5 27 2 8 61 59 19 35 63 56 28 20 34 4 62 38 6 55 36 31 57 15 29 33 1 48 50 37 7 30 18 42 32 52 12 41 14 21 45 11 24 17 39 13 44 60 3",
"output": "41 19 63 30 17 33 45 20 1 15 56 51 60 53 38 12 58 47 23 28 54 10 13 57 4 14 18 27 39 46 36 49 40 29 24 35 44 32 59 5 52 48 7 61 55 6 16 42 2 43 8 50 3 9 34 26 37 11 22 62 21 31 25"
},
{
"input": "26\n11 4 19 13 17 9 2 24 6 5 22 23 14 15 3 25 16 8 18 10 21 1 12 26 7 20",
"output": "22 7 15 2 10 9 25 18 6 20 1 23 4 13 14 17 5 19 3 26 21 11 12 8 16 24"
},
{
"input": "69\n40 22 11 66 4 27 31 29 64 53 37 55 51 2 7 36 18 52 6 1 30 21 17 20 14 9 59 62 49 68 3 50 65 57 44 5 67 46 33 13 34 15 24 48 63 58 38 25 41 35 16 54 32 10 60 61 39 12 69 8 23 45 26 47 56 43 28 19 42",
"output": "20 14 31 5 36 19 15 60 26 54 3 58 40 25 42 51 23 17 68 24 22 2 61 43 48 63 6 67 8 21 7 53 39 41 50 16 11 47 57 1 49 69 66 35 62 38 64 44 29 32 13 18 10 52 12 65 34 46 27 55 56 28 45 9 33 4 37 30 59"
},
{
"input": "6\n4 3 6 5 1 2",
"output": "5 6 2 1 4 3"
},
{
"input": "9\n7 8 5 3 1 4 2 9 6",
"output": "5 7 4 6 3 9 1 2 8"
},
{
"input": "41\n27 24 16 30 25 8 32 2 26 20 39 33 41 22 40 14 36 9 28 4 34 11 31 23 19 18 17 35 3 10 6 13 5 15 29 38 7 21 1 12 37",
"output": "39 8 29 20 33 31 37 6 18 30 22 40 32 16 34 3 27 26 25 10 38 14 24 2 5 9 1 19 35 4 23 7 12 21 28 17 41 36 11 15 13"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "20\n2 6 4 18 7 10 17 13 16 8 14 9 20 5 19 12 1 3 15 11",
"output": "17 1 18 3 14 2 5 10 12 6 20 16 8 11 19 9 7 4 15 13"
},
{
"input": "2\n2 1",
"output": "2 1"
},
{
"input": "60\n2 4 31 51 11 7 34 20 3 14 18 23 48 54 15 36 38 60 49 40 5 33 41 26 55 58 10 8 13 9 27 30 37 1 21 59 44 57 35 19 46 43 42 45 12 22 39 32 24 16 6 56 53 52 25 17 47 29 50 28",
"output": "34 1 9 2 21 51 6 28 30 27 5 45 29 10 15 50 56 11 40 8 35 46 12 49 55 24 31 60 58 32 3 48 22 7 39 16 33 17 47 20 23 43 42 37 44 41 57 13 19 59 4 54 53 14 25 52 38 26 36 18"
},
{
"input": "14\n14 6 3 12 11 2 7 1 10 9 8 5 4 13",
"output": "8 6 3 13 12 2 7 11 10 9 5 4 14 1"
},
{
"input": "81\n13 43 79 8 7 21 73 46 63 4 62 78 56 11 70 68 61 53 60 49 16 27 59 47 69 5 22 44 77 57 52 48 1 9 72 81 28 55 58 33 51 18 31 17 41 20 42 3 32 54 19 2 75 34 64 10 65 50 30 29 67 12 71 66 74 15 26 23 6 38 25 35 37 24 80 76 40 45 39 36 14",
"output": "33 52 48 10 26 69 5 4 34 56 14 62 1 81 66 21 44 42 51 46 6 27 68 74 71 67 22 37 60 59 43 49 40 54 72 80 73 70 79 77 45 47 2 28 78 8 24 32 20 58 41 31 18 50 38 13 30 39 23 19 17 11 9 55 57 64 61 16 25 15 63 35 7 65 53 76 29 12 3 75 36"
},
{
"input": "42\n41 11 10 8 21 37 32 19 31 25 1 15 36 5 6 27 4 3 13 7 16 17 2 23 34 24 38 28 12 20 30 42 18 26 39 35 33 40 9 14 22 29",
"output": "11 23 18 17 14 15 20 4 39 3 2 29 19 40 12 21 22 33 8 30 5 41 24 26 10 34 16 28 42 31 9 7 37 25 36 13 6 27 35 38 1 32"
},
{
"input": "97\n20 6 76 42 4 18 35 59 39 63 27 7 66 47 61 52 15 36 88 93 19 33 10 92 1 34 46 86 78 57 51 94 77 29 26 73 41 2 58 97 43 65 17 74 21 49 25 3 91 82 95 12 96 13 84 90 69 24 72 37 16 55 54 71 64 62 48 89 11 70 80 67 30 40 44 85 53 83 79 9 56 45 75 87 22 14 81 68 8 38 60 50 28 23 31 32 5",
"output": "25 38 48 5 97 2 12 89 80 23 69 52 54 86 17 61 43 6 21 1 45 85 94 58 47 35 11 93 34 73 95 96 22 26 7 18 60 90 9 74 37 4 41 75 82 27 14 67 46 92 31 16 77 63 62 81 30 39 8 91 15 66 10 65 42 13 72 88 57 70 64 59 36 44 83 3 33 29 79 71 87 50 78 55 76 28 84 19 68 56 49 24 20 32 51 53 40"
},
{
"input": "62\n15 27 46 6 8 51 14 56 23 48 42 49 52 22 20 31 29 12 47 3 62 34 37 35 32 57 19 25 5 60 61 38 18 10 11 55 45 53 17 30 9 36 4 50 41 16 44 28 40 59 24 1 13 39 26 7 33 58 2 43 21 54",
"output": "52 59 20 43 29 4 56 5 41 34 35 18 53 7 1 46 39 33 27 15 61 14 9 51 28 55 2 48 17 40 16 25 57 22 24 42 23 32 54 49 45 11 60 47 37 3 19 10 12 44 6 13 38 62 36 8 26 58 50 30 31 21"
},
{
"input": "61\n35 27 4 61 52 32 41 46 14 37 17 54 55 31 11 26 44 49 15 30 9 50 45 39 7 38 53 3 58 40 13 56 18 19 28 6 43 5 21 42 20 34 2 25 36 12 33 57 16 60 1 8 59 10 22 23 24 48 51 47 29",
"output": "51 43 28 3 38 36 25 52 21 54 15 46 31 9 19 49 11 33 34 41 39 55 56 57 44 16 2 35 61 20 14 6 47 42 1 45 10 26 24 30 7 40 37 17 23 8 60 58 18 22 59 5 27 12 13 32 48 29 53 50 4"
},
{
"input": "59\n31 26 36 15 17 19 10 53 11 34 13 46 55 9 44 7 8 37 32 52 47 25 51 22 35 39 41 4 43 24 5 27 20 57 6 38 3 28 21 40 50 18 14 56 33 45 12 2 49 59 54 29 16 48 42 58 1 30 23",
"output": "57 48 37 28 31 35 16 17 14 7 9 47 11 43 4 53 5 42 6 33 39 24 59 30 22 2 32 38 52 58 1 19 45 10 25 3 18 36 26 40 27 55 29 15 46 12 21 54 49 41 23 20 8 51 13 44 34 56 50"
},
{
"input": "10\n2 10 7 4 1 5 8 6 3 9",
"output": "5 1 9 4 6 8 3 7 10 2"
},
{
"input": "14\n14 2 1 8 6 12 11 10 9 7 3 4 5 13",
"output": "3 2 11 12 13 5 10 4 9 8 7 6 14 1"
},
{
"input": "43\n28 38 15 14 31 42 27 30 19 33 43 26 22 29 18 32 3 13 1 8 35 34 4 12 11 17 41 21 5 25 39 37 20 23 7 24 16 10 40 9 6 36 2",
"output": "19 43 17 23 29 41 35 20 40 38 25 24 18 4 3 37 26 15 9 33 28 13 34 36 30 12 7 1 14 8 5 16 10 22 21 42 32 2 31 39 27 6 11"
},
{
"input": "86\n39 11 20 31 28 76 29 64 35 21 41 71 12 82 5 37 80 73 38 26 79 75 23 15 59 45 47 6 3 62 50 49 51 22 2 65 86 60 70 42 74 17 1 30 55 44 8 66 81 27 57 77 43 13 54 32 72 46 48 56 14 34 78 52 36 85 24 19 69 83 25 61 7 4 84 33 63 58 18 40 68 10 67 9 16 53",
"output": "43 35 29 74 15 28 73 47 84 82 2 13 54 61 24 85 42 79 68 3 10 34 23 67 71 20 50 5 7 44 4 56 76 62 9 65 16 19 1 80 11 40 53 46 26 58 27 59 32 31 33 64 86 55 45 60 51 78 25 38 72 30 77 8 36 48 83 81 69 39 12 57 18 41 22 6 52 63 21 17 49 14 70 75 66 37"
},
{
"input": "99\n65 78 56 98 33 24 61 40 29 93 1 64 57 22 25 52 67 95 50 3 31 15 90 68 71 83 38 36 6 46 89 26 4 87 14 88 72 37 23 43 63 12 80 96 5 34 73 86 9 48 92 62 99 10 16 20 66 27 28 2 82 70 30 94 49 8 84 69 18 60 58 59 44 39 21 7 91 76 54 19 75 85 74 47 55 32 97 77 51 13 35 79 45 42 11 41 17 81 53",
"output": "11 60 20 33 45 29 76 66 49 54 95 42 90 35 22 55 97 69 80 56 75 14 39 6 15 32 58 59 9 63 21 86 5 46 91 28 38 27 74 8 96 94 40 73 93 30 84 50 65 19 89 16 99 79 85 3 13 71 72 70 7 52 41 12 1 57 17 24 68 62 25 37 47 83 81 78 88 2 92 43 98 61 26 67 82 48 34 36 31 23 77 51 10 64 18 44 87 4 53"
},
{
"input": "100\n42 23 48 88 36 6 18 70 96 1 34 40 46 22 39 55 85 93 45 67 71 75 59 9 21 3 86 63 65 68 20 38 73 31 84 90 50 51 56 95 72 33 49 19 83 76 54 74 100 30 17 98 15 94 4 97 5 99 81 27 92 32 89 12 13 91 87 29 60 11 52 43 35 58 10 25 16 80 28 2 44 61 8 82 66 69 41 24 57 62 78 37 79 77 53 7 14 47 26 64",
"output": "10 80 26 55 57 6 96 83 24 75 70 64 65 97 53 77 51 7 44 31 25 14 2 88 76 99 60 79 68 50 34 62 42 11 73 5 92 32 15 12 87 1 72 81 19 13 98 3 43 37 38 71 95 47 16 39 89 74 23 69 82 90 28 100 29 85 20 30 86 8 21 41 33 48 22 46 94 91 93 78 59 84 45 35 17 27 67 4 63 36 66 61 18 54 40 9 56 52 58 49"
},
{
"input": "99\n8 68 94 75 71 60 57 58 6 11 5 48 65 41 49 12 46 72 95 59 13 70 74 7 84 62 17 36 55 76 38 79 2 85 23 10 32 99 87 50 83 28 54 91 53 51 1 3 97 81 21 89 93 78 61 26 82 96 4 98 25 40 31 44 24 47 30 52 14 16 39 27 9 29 45 18 67 63 37 43 90 66 19 69 88 22 92 77 34 42 73 80 56 64 20 35 15 33 86",
"output": "47 33 48 59 11 9 24 1 73 36 10 16 21 69 97 70 27 76 83 95 51 86 35 65 61 56 72 42 74 67 63 37 98 89 96 28 79 31 71 62 14 90 80 64 75 17 66 12 15 40 46 68 45 43 29 93 7 8 20 6 55 26 78 94 13 82 77 2 84 22 5 18 91 23 4 30 88 54 32 92 50 57 41 25 34 99 39 85 52 81 44 87 53 3 19 58 49 60 38"
},
{
"input": "99\n12 99 88 13 7 19 74 47 23 90 16 29 26 11 58 60 64 98 37 18 82 67 72 46 51 85 17 92 87 20 77 36 78 71 57 35 80 54 73 15 14 62 97 45 31 79 94 56 76 96 28 63 8 44 38 86 49 2 52 66 61 59 10 43 55 50 22 34 83 53 95 40 81 21 30 42 27 3 5 41 1 70 69 25 93 48 65 6 24 89 91 33 39 68 9 4 32 84 75",
"output": "81 58 78 96 79 88 5 53 95 63 14 1 4 41 40 11 27 20 6 30 74 67 9 89 84 13 77 51 12 75 45 97 92 68 36 32 19 55 93 72 80 76 64 54 44 24 8 86 57 66 25 59 70 38 65 48 35 15 62 16 61 42 52 17 87 60 22 94 83 82 34 23 39 7 99 49 31 33 46 37 73 21 69 98 26 56 29 3 90 10 91 28 85 47 71 50 43 18 2"
},
{
"input": "99\n20 79 26 75 99 69 98 47 93 62 18 42 43 38 90 66 67 8 13 84 76 58 81 60 64 46 56 23 78 17 86 36 19 52 85 39 48 27 96 49 37 95 5 31 10 24 12 1 80 35 92 33 16 68 57 54 32 29 45 88 72 77 4 87 97 89 59 3 21 22 61 94 83 15 44 34 70 91 55 9 51 50 73 11 14 6 40 7 63 25 2 82 41 65 28 74 71 30 53",
"output": "48 91 68 63 43 86 88 18 80 45 84 47 19 85 74 53 30 11 33 1 69 70 28 46 90 3 38 95 58 98 44 57 52 76 50 32 41 14 36 87 93 12 13 75 59 26 8 37 40 82 81 34 99 56 79 27 55 22 67 24 71 10 89 25 94 16 17 54 6 77 97 61 83 96 4 21 62 29 2 49 23 92 73 20 35 31 64 60 66 15 78 51 9 72 42 39 65 7 5"
},
{
"input": "99\n74 20 9 1 60 85 65 13 4 25 40 99 5 53 64 3 36 31 73 44 55 50 45 63 98 51 68 6 47 37 71 82 88 34 84 18 19 12 93 58 86 7 11 46 90 17 33 27 81 69 42 59 56 32 95 52 76 61 96 62 78 43 66 21 49 97 75 14 41 72 89 16 30 79 22 23 15 83 91 38 48 2 87 26 28 80 94 70 54 92 57 10 8 35 67 77 29 24 39",
"output": "4 82 16 9 13 28 42 93 3 92 43 38 8 68 77 72 46 36 37 2 64 75 76 98 10 84 48 85 97 73 18 54 47 34 94 17 30 80 99 11 69 51 62 20 23 44 29 81 65 22 26 56 14 89 21 53 91 40 52 5 58 60 24 15 7 63 95 27 50 88 31 70 19 1 67 57 96 61 74 86 49 32 78 35 6 41 83 33 71 45 79 90 39 87 55 59 66 25 12"
},
{
"input": "99\n50 94 2 18 69 90 59 83 75 68 77 97 39 78 25 7 16 9 49 4 42 89 44 48 17 96 61 70 3 10 5 81 56 57 88 6 98 1 46 67 92 37 11 30 85 41 8 36 51 29 20 71 19 79 74 93 43 34 55 40 38 21 64 63 32 24 72 14 12 86 82 15 65 23 66 22 28 53 13 26 95 99 91 52 76 27 60 45 47 33 73 84 31 35 54 80 58 62 87",
"output": "38 3 29 20 31 36 16 47 18 30 43 69 79 68 72 17 25 4 53 51 62 76 74 66 15 80 86 77 50 44 93 65 90 58 94 48 42 61 13 60 46 21 57 23 88 39 89 24 19 1 49 84 78 95 59 33 34 97 7 87 27 98 64 63 73 75 40 10 5 28 52 67 91 55 9 85 11 14 54 96 32 71 8 92 45 70 99 35 22 6 83 41 56 2 81 26 12 37 82"
},
{
"input": "99\n19 93 14 34 39 37 33 15 52 88 7 43 69 27 9 77 94 31 48 22 63 70 79 17 50 6 81 8 76 58 23 74 86 11 57 62 41 87 75 51 12 18 68 56 95 3 80 83 84 29 24 61 71 78 59 96 20 85 90 28 45 36 38 97 1 49 40 98 44 67 13 73 72 91 47 10 30 54 35 42 4 2 92 26 64 60 53 21 5 82 46 32 55 66 16 89 99 65 25",
"output": "65 82 46 81 89 26 11 28 15 76 34 41 71 3 8 95 24 42 1 57 88 20 31 51 99 84 14 60 50 77 18 92 7 4 79 62 6 63 5 67 37 80 12 69 61 91 75 19 66 25 40 9 87 78 93 44 35 30 55 86 52 36 21 85 98 94 70 43 13 22 53 73 72 32 39 29 16 54 23 47 27 90 48 49 58 33 38 10 96 59 74 83 2 17 45 56 64 68 97"
},
{
"input": "99\n86 25 50 51 62 39 41 67 44 20 45 14 80 88 66 7 36 59 13 84 78 58 96 75 2 43 48 47 69 12 19 98 22 38 28 55 11 76 68 46 53 70 85 34 16 33 91 30 8 40 74 60 94 82 87 32 37 4 5 10 89 73 90 29 35 26 23 57 27 65 24 3 9 83 77 72 6 31 15 92 93 79 64 18 63 42 56 1 52 97 17 81 71 21 49 99 54 95 61",
"output": "88 25 72 58 59 77 16 49 73 60 37 30 19 12 79 45 91 84 31 10 94 33 67 71 2 66 69 35 64 48 78 56 46 44 65 17 57 34 6 50 7 86 26 9 11 40 28 27 95 3 4 89 41 97 36 87 68 22 18 52 99 5 85 83 70 15 8 39 29 42 93 76 62 51 24 38 75 21 82 13 92 54 74 20 43 1 55 14 61 63 47 80 81 53 98 23 90 32 96"
},
{
"input": "100\n66 44 99 15 43 79 28 33 88 90 49 68 82 38 9 74 4 58 29 81 31 94 10 42 89 21 63 40 62 61 18 6 84 72 48 25 67 69 71 85 98 34 83 70 65 78 91 77 93 41 23 24 87 11 55 12 59 73 36 97 7 14 26 39 30 27 45 20 50 17 53 2 57 47 95 56 75 19 37 96 16 35 8 3 76 60 13 86 5 32 64 80 46 51 54 100 1 22 52 92",
"output": "97 72 84 17 89 32 61 83 15 23 54 56 87 62 4 81 70 31 78 68 26 98 51 52 36 63 66 7 19 65 21 90 8 42 82 59 79 14 64 28 50 24 5 2 67 93 74 35 11 69 94 99 71 95 55 76 73 18 57 86 30 29 27 91 45 1 37 12 38 44 39 34 58 16 77 85 48 46 6 92 20 13 43 33 40 88 53 9 25 10 47 100 49 22 75 80 60 41 3 96"
},
{
"input": "99\n3 73 32 37 25 15 93 63 85 8 91 78 80 5 39 48 46 7 83 70 23 96 9 29 77 53 30 20 56 50 13 45 21 76 87 99 65 31 16 18 14 72 51 28 43 2 81 34 38 40 66 54 74 26 71 4 61 17 58 24 22 33 49 36 42 11 12 55 60 27 62 90 79 92 94 68 1 52 84 41 86 35 69 75 47 10 64 88 97 98 67 19 89 95 59 82 57 44 6",
"output": "77 46 1 56 14 99 18 10 23 86 66 67 31 41 6 39 58 40 92 28 33 61 21 60 5 54 70 44 24 27 38 3 62 48 82 64 4 49 15 50 80 65 45 98 32 17 85 16 63 30 43 78 26 52 68 29 97 59 95 69 57 71 8 87 37 51 91 76 83 20 55 42 2 53 84 34 25 12 73 13 47 96 19 79 9 81 35 88 93 72 11 74 7 75 94 22 89 90 36"
},
{
"input": "100\n100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1"
}
] | 1,686,486,088
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 101
| 92
| 0
|
n = int(input())
lis = list(map(int, input().split()))
giver = [0]*n
for i in range(1, n+1):
giver[lis[i -1] -1] = i
print(*giver)
|
Title: Presents
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Petya very much likes gifts. Recently he has received a new laptop as a New Year gift from his mother. He immediately decided to give it to somebody else as what can be more pleasant than giving somebody gifts. And on this occasion he organized a New Year party at his place and invited *n* his friends there.
If there's one thing Petya likes more that receiving gifts, that's watching others giving gifts to somebody else. Thus, he safely hid the laptop until the next New Year and made up his mind to watch his friends exchanging gifts while he does not participate in the process. He numbered all his friends with integers from 1 to *n*. Petya remembered that a friend number *i* gave a gift to a friend number *p**i*. He also remembered that each of his friends received exactly one gift.
Now Petya wants to know for each friend *i* the number of a friend who has given him a gift.
Input Specification:
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the quantity of friends Petya invited to the party. The second line contains *n* space-separated integers: the *i*-th number is *p**i* — the number of a friend who gave a gift to friend number *i*. It is guaranteed that each friend received exactly one gift. It is possible that some friends do not share Petya's ideas of giving gifts to somebody else. Those friends gave the gifts to themselves.
Output Specification:
Print *n* space-separated integers: the *i*-th number should equal the number of the friend who gave a gift to friend number *i*.
Demo Input:
['4\n2 3 4 1\n', '3\n1 3 2\n', '2\n1 2\n']
Demo Output:
['4 1 2 3\n', '1 3 2\n', '1 2\n']
Note:
none
|
```python
n = int(input())
lis = list(map(int, input().split()))
giver = [0]*n
for i in range(1, n+1):
giver[lis[i -1] -1] = i
print(*giver)
```
| 3
|
|
22
|
A
|
Second Order Statistics
|
PROGRAMMING
| 800
|
[
"brute force"
] |
A. Second Order Statistics
|
2
|
256
|
Once Bob needed to find the second order statistics of a sequence of integer numbers. Lets choose each number from the sequence exactly once and sort them. The value on the second position is the second order statistics of the given sequence. In other words it is the smallest element strictly greater than the minimum. Help Bob solve this problem.
|
The first input line contains integer *n* (1<=≤<=*n*<=≤<=100) — amount of numbers in the sequence. The second line contains *n* space-separated integer numbers — elements of the sequence. These numbers don't exceed 100 in absolute value.
|
If the given sequence has the second order statistics, output this order statistics, otherwise output NO.
|
[
"4\n1 2 2 -4\n",
"5\n1 2 3 1 1\n"
] |
[
"1\n",
"2\n"
] |
none
| 0
|
[
{
"input": "4\n1 2 2 -4",
"output": "1"
},
{
"input": "5\n1 2 3 1 1",
"output": "2"
},
{
"input": "1\n28",
"output": "NO"
},
{
"input": "2\n-28 12",
"output": "12"
},
{
"input": "3\n-83 40 -80",
"output": "-80"
},
{
"input": "8\n93 77 -92 26 21 -48 53 91",
"output": "-48"
},
{
"input": "20\n-72 -9 -86 80 7 -10 40 -27 -94 92 96 56 28 -19 79 36 -3 -73 -63 -49",
"output": "-86"
},
{
"input": "49\n-74 -100 -80 23 -8 -83 -41 -20 48 17 46 -73 -55 67 85 4 40 -60 -69 -75 56 -74 -42 93 74 -95 64 -46 97 -47 55 0 -78 -34 -31 40 -63 -49 -76 48 21 -1 -49 -29 -98 -11 76 26 94",
"output": "-98"
},
{
"input": "88\n63 48 1 -53 -89 -49 64 -70 -49 71 -17 -16 76 81 -26 -50 67 -59 -56 97 2 100 14 18 -91 -80 42 92 -25 -88 59 8 -56 38 48 -71 -78 24 -14 48 -1 69 73 -76 54 16 -92 44 47 33 -34 -17 -81 21 -59 -61 53 26 10 -76 67 35 -29 70 65 -13 -29 81 80 32 74 -6 34 46 57 1 -45 -55 69 79 -58 11 -2 22 -18 -16 -89 -46",
"output": "-91"
},
{
"input": "100\n34 32 88 20 76 53 -71 -39 -98 -10 57 37 63 -3 -54 -64 -78 -82 73 20 -30 -4 22 75 51 -64 -91 29 -52 -48 83 19 18 -47 46 57 -44 95 89 89 -30 84 -83 67 58 -99 -90 -53 92 -60 -5 -56 -61 27 68 -48 52 -95 64 -48 -30 -67 66 89 14 -33 -31 -91 39 7 -94 -54 92 -96 -99 -83 -16 91 -28 -66 81 44 14 -85 -21 18 40 16 -13 -82 -33 47 -10 -40 -19 10 25 60 -34 -89",
"output": "-98"
},
{
"input": "2\n-1 -1",
"output": "NO"
},
{
"input": "3\n-2 -2 -2",
"output": "NO"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "NO"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 -100 100 100 100 100 100 100 100 100 100 100 100 -100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 -100 100 100 100 100 100 100 100 100 100 100 -100 100 100 100 100 -100 100 100 100 100 100 100 100 100 100 100 100",
"output": "100"
},
{
"input": "10\n40 71 -85 -85 40 -85 -85 64 -85 47",
"output": "40"
},
{
"input": "23\n-90 -90 -41 -64 -64 -90 -15 10 -43 -90 -64 -64 89 -64 36 47 38 -90 -64 -90 -90 68 -90",
"output": "-64"
},
{
"input": "39\n-97 -93 -42 -93 -97 -93 56 -97 -97 -97 76 -33 -60 91 7 82 17 47 -97 -97 -93 73 -97 12 -97 -97 -97 -97 56 -92 -83 -93 -93 49 -93 -97 -97 -17 -93",
"output": "-93"
},
{
"input": "51\n-21 6 -35 -98 -86 -98 -86 -43 -65 32 -98 -40 96 -98 -98 -98 -98 -86 -86 -98 56 -86 -98 -98 -30 -98 -86 -31 -98 -86 -86 -86 -86 -30 96 -86 -86 -86 -60 25 88 -86 -86 58 31 -47 57 -86 37 44 -83",
"output": "-86"
},
{
"input": "66\n-14 -95 65 -95 -95 -97 -90 -71 -97 -97 70 -95 -95 -97 -95 -27 35 -87 -95 -5 -97 -97 87 34 -49 -95 -97 -95 -97 -95 -30 -95 -97 47 -95 -17 -97 -95 -97 -69 51 -97 -97 -95 -75 87 59 21 63 56 76 -91 98 -97 6 -97 -95 -95 -97 -73 11 -97 -35 -95 -95 -43",
"output": "-95"
},
{
"input": "77\n-67 -93 -93 -92 97 29 93 -93 -93 -5 -93 -7 60 -92 -93 44 -84 68 -92 -93 69 -92 -37 56 43 -93 35 -92 -93 19 -79 18 -92 -93 -93 -37 -93 -47 -93 -92 -92 74 67 19 40 -92 -92 -92 -92 -93 -93 -41 -93 -92 -93 -93 -92 -93 51 -80 6 -42 -92 -92 -66 -12 -92 -92 -3 93 -92 -49 -93 40 62 -92 -92",
"output": "-92"
},
{
"input": "89\n-98 40 16 -87 -98 63 -100 55 -96 -98 -21 -100 -93 26 -98 -98 -100 -89 -98 -5 -65 -28 -100 -6 -66 67 -100 -98 -98 10 -98 -98 -70 7 -98 2 -100 -100 -98 25 -100 -100 -98 23 -68 -100 -98 3 98 -100 -98 -98 -98 -98 -24 -100 -100 -9 -98 35 -100 99 -5 -98 -100 -100 37 -100 -84 57 -98 40 -47 -100 -1 -92 -76 -98 -98 -100 -100 -100 -63 30 21 -100 -100 -100 -12",
"output": "-98"
},
{
"input": "99\n10 -84 -100 -100 73 -64 -100 -94 33 -100 -100 -100 -100 71 64 24 7 -100 -32 -100 -100 77 -100 62 -12 55 45 -100 -100 -80 -100 -100 -100 -100 -100 -100 -100 -100 -100 -39 -48 -100 -34 47 -100 -100 -100 -100 -100 -77 -100 -100 -100 -100 -100 -100 -52 40 -55 -100 -44 -100 72 33 70 -100 -100 -78 -100 -3 100 -77 22 -100 95 -30 -100 10 -69 -100 -100 -100 -100 52 -39 -100 -100 -100 7 -100 -98 -66 95 -17 -100 52 -100 68 -100",
"output": "-98"
},
{
"input": "100\n-99 -98 -64 89 53 57 -99 29 -78 18 -3 -54 76 -98 -99 -98 37 -98 19 -47 89 73 -98 -91 -99 -99 -98 -48 -99 22 -99 -98 -99 -99 -98 -60 84 67 -99 -98 20 -98 88 -98 46 -98 -99 -98 -99 -71 -99 -98 -98 -39 83 95 -98 63 -98 -99 32 -98 -99 -64 57 -30 -53 -83 -4 -99 58 20 -98 -10 -99 -44 -99 -99 -99 -99 75 34 -98 -52 -98 -30 -98 -99 -98 -98 51 -99 -99 -99 -98 -99 -99 -82 -90 92",
"output": "-98"
},
{
"input": "3\n1 2 3",
"output": "2"
},
{
"input": "3\n1 3 2",
"output": "2"
},
{
"input": "3\n2 1 3",
"output": "2"
},
{
"input": "3\n2 3 1",
"output": "2"
},
{
"input": "3\n3 1 2",
"output": "2"
},
{
"input": "3\n3 2 1",
"output": "2"
},
{
"input": "9\n99 99 99 99 100 100 100 100 100",
"output": "100"
},
{
"input": "5\n-100 -100 -100 -100 -100",
"output": "NO"
}
] | 1,584,965,013
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 186
| 0
|
def fin():
a=input()
b=len(a)-2
c=a[1]
d=a[len(a)]
print(cbd)
|
Title: Second Order Statistics
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Once Bob needed to find the second order statistics of a sequence of integer numbers. Lets choose each number from the sequence exactly once and sort them. The value on the second position is the second order statistics of the given sequence. In other words it is the smallest element strictly greater than the minimum. Help Bob solve this problem.
Input Specification:
The first input line contains integer *n* (1<=≤<=*n*<=≤<=100) — amount of numbers in the sequence. The second line contains *n* space-separated integer numbers — elements of the sequence. These numbers don't exceed 100 in absolute value.
Output Specification:
If the given sequence has the second order statistics, output this order statistics, otherwise output NO.
Demo Input:
['4\n1 2 2 -4\n', '5\n1 2 3 1 1\n']
Demo Output:
['1\n', '2\n']
Note:
none
|
```python
def fin():
a=input()
b=len(a)-2
c=a[1]
d=a[len(a)]
print(cbd)
```
| 0
|
120
|
A
|
Elevator
|
PROGRAMMING
| 1,000
|
[
"brute force",
"implementation",
"math"
] | null | null |
A sky scraper with 1000 floors has been built in the city of N. It has modern superfast elevators to help to travel from one floor to another. Each elevator has two doors, the front one and the back one. If one goes in through the front door, he goes out through the back one and vice versa. The elevator has two rails numbered with numbers 1 and 2. Rail 1 is located to the left of the entrance to the front door (or correspondingly, to the right of the entrance to the back door). Rail 2 is located opposite it, to the right of the entrance to the front door and to the left of the entrance to the back door. We know that each person in the city of N holds at a rail with the strongest hand.
One day a VIP person visited the city and of course, he took a look at the skyscraper and took a ride in the elevator. We know the door through which he entered and the rail he was holding at. Now we need to determine as soon as possible whether he is left-handed or right-handed.
|
The first line indicates the door through which the very important person entered the elevator. It contains "front" if the person enters the elevator through the front door and "back" if he entered the elevator through the back door. The second line contains integer *a* (1<=≤<=*a*<=≤<=2) which denotes the number of the rail at which the person was holding.
|
Print character "R" if the VIP is right-handed or "L" if he is left-handed.
|
[
"front\n1\n"
] |
[
"L\n"
] |
none
| 0
|
[
{
"input": "front\n1",
"output": "L"
},
{
"input": "back\n1",
"output": "R"
},
{
"input": "front\n2",
"output": "R"
},
{
"input": "back\n2",
"output": "L"
}
] | 1,589,485,114
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 4
| 312
| 20,172,800
|
f = open("input.txt", "r")
x = f.readlines()
z = x[0].strip()
n = int(x[1])
x = open("output.txt","w")
if z=="front" and n==1:
x.write("L")
x.close()
elif z=="back" and n==1:
x.write("R")
x.close()
elif z=="back" and n==2:
x.write("L")
x.close()
else:
x.write("R")
x.close()
|
Title: Elevator
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A sky scraper with 1000 floors has been built in the city of N. It has modern superfast elevators to help to travel from one floor to another. Each elevator has two doors, the front one and the back one. If one goes in through the front door, he goes out through the back one and vice versa. The elevator has two rails numbered with numbers 1 and 2. Rail 1 is located to the left of the entrance to the front door (or correspondingly, to the right of the entrance to the back door). Rail 2 is located opposite it, to the right of the entrance to the front door and to the left of the entrance to the back door. We know that each person in the city of N holds at a rail with the strongest hand.
One day a VIP person visited the city and of course, he took a look at the skyscraper and took a ride in the elevator. We know the door through which he entered and the rail he was holding at. Now we need to determine as soon as possible whether he is left-handed or right-handed.
Input Specification:
The first line indicates the door through which the very important person entered the elevator. It contains "front" if the person enters the elevator through the front door and "back" if he entered the elevator through the back door. The second line contains integer *a* (1<=≤<=*a*<=≤<=2) which denotes the number of the rail at which the person was holding.
Output Specification:
Print character "R" if the VIP is right-handed or "L" if he is left-handed.
Demo Input:
['front\n1\n']
Demo Output:
['L\n']
Note:
none
|
```python
f = open("input.txt", "r")
x = f.readlines()
z = x[0].strip()
n = int(x[1])
x = open("output.txt","w")
if z=="front" and n==1:
x.write("L")
x.close()
elif z=="back" and n==1:
x.write("R")
x.close()
elif z=="back" and n==2:
x.write("L")
x.close()
else:
x.write("R")
x.close()
```
| 3
|
|
83
|
D
|
Numbers
|
PROGRAMMING
| 2,400
|
[
"dp",
"math",
"number theory"
] |
D. Numbers
|
3
|
256
|
One quite ordinary day Valera went to school (there's nowhere else he should go on a week day). In a maths lesson his favorite teacher Ms. Evans told students about divisors. Despite the fact that Valera loved math, he didn't find this particular topic interesting. Even more, it seemed so boring that he fell asleep in the middle of a lesson. And only a loud ringing of a school bell could interrupt his sweet dream.
Of course, the valuable material and the teacher's explanations were lost. However, Valera will one way or another have to do the homework. As he does not know the new material absolutely, he cannot do the job himself. That's why he asked you to help. You're his best friend after all, you just cannot refuse to help.
Valera's home task has only one problem, which, though formulated in a very simple way, has not a trivial solution. Its statement looks as follows: if we consider all positive integers in the interval [*a*;*b*] then it is required to count the amount of such numbers in this interval that their smallest divisor will be a certain integer *k* (you do not have to consider divisor equal to one). In other words, you should count the amount of such numbers from the interval [*a*;*b*], that are not divisible by any number between 2 and *k*<=-<=1 and yet are divisible by *k*.
|
The first and only line contains three positive integers *a*, *b*, *k* (1<=≤<=*a*<=≤<=*b*<=≤<=2·109,<=2<=≤<=*k*<=≤<=2·109).
|
Print on a single line the answer to the given problem.
|
[
"1 10 2\n",
"12 23 3\n",
"6 19 5\n"
] |
[
"5\n",
"2\n",
"0\n"
] |
Comments to the samples from the statement:
In the first sample the answer is numbers 2, 4, 6, 8, 10.
In the second one — 15, 21
In the third one there are no such numbers.
| 2,000
|
[
{
"input": "1 10 2",
"output": "5"
},
{
"input": "12 23 3",
"output": "2"
},
{
"input": "6 19 5",
"output": "0"
},
{
"input": "1 80 7",
"output": "3"
},
{
"input": "100 1000 1009",
"output": "0"
},
{
"input": "11 124 11",
"output": "2"
},
{
"input": "1000 10000 19",
"output": "86"
},
{
"input": "2020 6300 29",
"output": "28"
},
{
"input": "213 1758 41",
"output": "1"
},
{
"input": "201 522 233",
"output": "1"
},
{
"input": "97 10403 101",
"output": "3"
},
{
"input": "1 340431 3",
"output": "56739"
},
{
"input": "3500 100000 1009",
"output": "0"
},
{
"input": "300 300000 5003",
"output": "1"
},
{
"input": "100000 100000 5",
"output": "0"
},
{
"input": "300 700 41",
"output": "0"
},
{
"input": "7000 43000 61",
"output": "96"
},
{
"input": "12 20000000 11",
"output": "415584"
},
{
"input": "35000 100000000 50021",
"output": "1"
},
{
"input": "1 20000000 3",
"output": "3333333"
},
{
"input": "500000 8000000 4001",
"output": "0"
},
{
"input": "2 1000 4",
"output": "0"
},
{
"input": "1 50341999 503",
"output": "9504"
},
{
"input": "50 60000000 5",
"output": "3999997"
},
{
"input": "1009 1009 1009",
"output": "1"
},
{
"input": "4500 400000 30011",
"output": "1"
},
{
"input": "40 200000000 31",
"output": "1019019"
},
{
"input": "50 600000000 2",
"output": "299999976"
},
{
"input": "12000 700000000 97",
"output": "877658"
},
{
"input": "30000 400000000 500009",
"output": "1"
},
{
"input": "800000 90000000 13000027",
"output": "1"
},
{
"input": "99999 99999999 4001",
"output": "2212"
},
{
"input": "300303 600000 503",
"output": "87"
},
{
"input": "5002230 10002230 233",
"output": "2079"
},
{
"input": "18800310 20000000 53",
"output": "3135"
},
{
"input": "200000000 2000000000 1800000011",
"output": "1"
},
{
"input": "1008055011 1500050000 41",
"output": "1784635"
},
{
"input": "2000000000 2000000000 2",
"output": "1"
},
{
"input": "19999999 2000000000 11",
"output": "41142857"
},
{
"input": "800201 90043000 307",
"output": "26902"
},
{
"input": "599999 1000000000 653",
"output": "124742"
},
{
"input": "1 1000000000 10",
"output": "0"
},
{
"input": "41939949 2000000000 127",
"output": "1770826"
},
{
"input": "1 2000000000 2",
"output": "1000000000"
},
{
"input": "1 2000000000 3",
"output": "333333333"
},
{
"input": "1 2000000000 5",
"output": "133333333"
},
{
"input": "1 2000000000 7",
"output": "76190476"
},
{
"input": "1 2000000000 11",
"output": "41558442"
},
{
"input": "1 2000000000 13",
"output": "31968032"
},
{
"input": "1 2000000000 17",
"output": "22565668"
},
{
"input": "1 2000000000 19",
"output": "19002671"
},
{
"input": "1 2000000000 23",
"output": "14871653"
},
{
"input": "1 2000000000 29",
"output": "11281946"
},
{
"input": "1 2000000000 37",
"output": "8262288"
},
{
"input": "1 2000000000 67",
"output": "3927637"
},
{
"input": "1 2000000000 83",
"output": "2998028"
},
{
"input": "1 2000000000 97",
"output": "2505943"
},
{
"input": "1 2000000000 103",
"output": "2312816"
},
{
"input": "1 2000000000 107",
"output": "2205007"
},
{
"input": "1 2000000000 503",
"output": "347553"
},
{
"input": "1 2000000000 1009",
"output": "151176"
},
{
"input": "100000000 500000000 500",
"output": "0"
},
{
"input": "1 2000000000 1511",
"output": "101472"
},
{
"input": "1 2000000000 2003",
"output": "78092"
},
{
"input": "1 2000000000 4001",
"output": "40979"
},
{
"input": "1 2000000000 8009",
"output": "21014"
},
{
"input": "1 2000000000 10007",
"output": "16746"
},
{
"input": "1 2000000000 20011",
"output": "7327"
},
{
"input": "1 2000000000 30011",
"output": "3399"
},
{
"input": "1 2000000000 40009",
"output": "928"
},
{
"input": "1 2000000000 41011",
"output": "724"
},
{
"input": "1 2000000000 44017",
"output": "135"
},
{
"input": "1 2000000000 46021",
"output": "1"
},
{
"input": "1 2000000000 50021",
"output": "1"
},
{
"input": "1000 2000000000 2",
"output": "999999501"
},
{
"input": "43104 2000000000 3",
"output": "333326149"
},
{
"input": "19431 20000000 17",
"output": "225438"
},
{
"input": "10034 20501000 53",
"output": "53698"
},
{
"input": "108314 57823000 3001",
"output": "1755"
},
{
"input": "1000000000 2000000000 2",
"output": "500000001"
},
{
"input": "1000000000 2000000000 5",
"output": "66666666"
},
{
"input": "120 57513234 121",
"output": "0"
},
{
"input": "1500000000 2000000000 11",
"output": "10389612"
},
{
"input": "1570000 800000000 30011",
"output": "0"
},
{
"input": "1 2000000000 41011",
"output": "724"
},
{
"input": "1 2000000000 10000019",
"output": "1"
},
{
"input": "1 2000000000 50000017",
"output": "1"
},
{
"input": "1 2000000000 100000007",
"output": "1"
},
{
"input": "1 2000000000 200000033",
"output": "1"
},
{
"input": "1 2000000000 400000009",
"output": "1"
},
{
"input": "1 2000000000 800000011",
"output": "1"
},
{
"input": "1 2000000000 900000011",
"output": "1"
},
{
"input": "1 2000000000 1000000007",
"output": "1"
},
{
"input": "1 2000000000 1700000009",
"output": "1"
},
{
"input": "40000000 1600000000 3001",
"output": "42482"
},
{
"input": "1999950000 2000000000 151",
"output": "38"
},
{
"input": "1000 2000000000 211",
"output": "989868"
},
{
"input": "1000 1000000000 1950000023",
"output": "0"
},
{
"input": "1999999999 2000000000 19",
"output": "0"
},
{
"input": "1999999000 2000000000 23",
"output": "6"
},
{
"input": "1999999999 2000000000 31",
"output": "1"
},
{
"input": "1 2000000000 1999073521",
"output": "0"
},
{
"input": "1999999999 2000000000 97",
"output": "0"
},
{
"input": "1999999999 2000000000 2",
"output": "1"
},
{
"input": "1999999999 2000000000 601",
"output": "0"
},
{
"input": "1999999999 2000000000 44017",
"output": "0"
},
{
"input": "1000000000 2000000000 4001",
"output": "19490"
},
{
"input": "1 2000000000 44711",
"output": "3"
},
{
"input": "1900000000 2000000000 44711",
"output": "2"
},
{
"input": "1 1840207360 44711",
"output": "1"
},
{
"input": "11 1840207360 44711",
"output": "1"
},
{
"input": "44711 44711 44711",
"output": "1"
},
{
"input": "2000000000 2000000000 211",
"output": "0"
},
{
"input": "2000000000 2000000000 53",
"output": "0"
},
{
"input": "4 4 4",
"output": "0"
},
{
"input": "1 1000000000 999999997",
"output": "0"
},
{
"input": "911186 911186 73",
"output": "0"
}
] | 1,693,234,442
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 18
| 3,000
| 0
|
def count_divisible_numbers(a, b, k):
count = 0
for num in range(a, b + 1):
if num % k == 0:
is_divisible = True
for i in range(2, k):
if num % i == 0:
is_divisible = False
break
if is_divisible:
count += 1
return count
# Read input from standard input
a, b, k = map(int, input().split())
# Call the function and print the result
result = count_divisible_numbers(a, b, k)
print(result)
|
Title: Numbers
Time Limit: 3 seconds
Memory Limit: 256 megabytes
Problem Description:
One quite ordinary day Valera went to school (there's nowhere else he should go on a week day). In a maths lesson his favorite teacher Ms. Evans told students about divisors. Despite the fact that Valera loved math, he didn't find this particular topic interesting. Even more, it seemed so boring that he fell asleep in the middle of a lesson. And only a loud ringing of a school bell could interrupt his sweet dream.
Of course, the valuable material and the teacher's explanations were lost. However, Valera will one way or another have to do the homework. As he does not know the new material absolutely, he cannot do the job himself. That's why he asked you to help. You're his best friend after all, you just cannot refuse to help.
Valera's home task has only one problem, which, though formulated in a very simple way, has not a trivial solution. Its statement looks as follows: if we consider all positive integers in the interval [*a*;*b*] then it is required to count the amount of such numbers in this interval that their smallest divisor will be a certain integer *k* (you do not have to consider divisor equal to one). In other words, you should count the amount of such numbers from the interval [*a*;*b*], that are not divisible by any number between 2 and *k*<=-<=1 and yet are divisible by *k*.
Input Specification:
The first and only line contains three positive integers *a*, *b*, *k* (1<=≤<=*a*<=≤<=*b*<=≤<=2·109,<=2<=≤<=*k*<=≤<=2·109).
Output Specification:
Print on a single line the answer to the given problem.
Demo Input:
['1 10 2\n', '12 23 3\n', '6 19 5\n']
Demo Output:
['5\n', '2\n', '0\n']
Note:
Comments to the samples from the statement:
In the first sample the answer is numbers 2, 4, 6, 8, 10.
In the second one — 15, 21
In the third one there are no such numbers.
|
```python
def count_divisible_numbers(a, b, k):
count = 0
for num in range(a, b + 1):
if num % k == 0:
is_divisible = True
for i in range(2, k):
if num % i == 0:
is_divisible = False
break
if is_divisible:
count += 1
return count
# Read input from standard input
a, b, k = map(int, input().split())
# Call the function and print the result
result = count_divisible_numbers(a, b, k)
print(result)
```
| 0
|
868
|
A
|
Bark to Unlock
|
PROGRAMMING
| 900
|
[
"brute force",
"implementation",
"strings"
] | null | null |
As technologies develop, manufacturers are making the process of unlocking a phone as user-friendly as possible. To unlock its new phone, Arkady's pet dog Mu-mu has to bark the password once. The phone represents a password as a string of two lowercase English letters.
Mu-mu's enemy Kashtanka wants to unlock Mu-mu's phone to steal some sensible information, but it can only bark *n* distinct words, each of which can be represented as a string of two lowercase English letters. Kashtanka wants to bark several words (not necessarily distinct) one after another to pronounce a string containing the password as a substring. Tell if it's possible to unlock the phone in this way, or not.
|
The first line contains two lowercase English letters — the password on the phone.
The second line contains single integer *n* (1<=≤<=*n*<=≤<=100) — the number of words Kashtanka knows.
The next *n* lines contain two lowercase English letters each, representing the words Kashtanka knows. The words are guaranteed to be distinct.
|
Print "YES" if Kashtanka can bark several words in a line forming a string containing the password, and "NO" otherwise.
You can print each letter in arbitrary case (upper or lower).
|
[
"ya\n4\nah\noy\nto\nha\n",
"hp\n2\nht\ntp\n",
"ah\n1\nha\n"
] |
[
"YES\n",
"NO\n",
"YES\n"
] |
In the first example the password is "ya", and Kashtanka can bark "oy" and then "ah", and then "ha" to form the string "oyahha" which contains the password. So, the answer is "YES".
In the second example Kashtanka can't produce a string containing password as a substring. Note that it can bark "ht" and then "tp" producing "http", but it doesn't contain the password "hp" as a substring.
In the third example the string "hahahaha" contains "ah" as a substring.
| 250
|
[
{
"input": "ya\n4\nah\noy\nto\nha",
"output": "YES"
},
{
"input": "hp\n2\nht\ntp",
"output": "NO"
},
{
"input": "ah\n1\nha",
"output": "YES"
},
{
"input": "bb\n4\nba\nab\naa\nbb",
"output": "YES"
},
{
"input": "bc\n4\nca\nba\nbb\ncc",
"output": "YES"
},
{
"input": "ba\n4\ncd\nad\ncc\ncb",
"output": "YES"
},
{
"input": "pg\n4\nzl\nxs\ndi\nxn",
"output": "NO"
},
{
"input": "bn\n100\ndf\nyb\nze\nml\nyr\nof\nnw\nfm\ndw\nlv\nzr\nhu\nzt\nlw\nld\nmo\nxz\ntp\nmr\nou\nme\npx\nvp\nes\nxi\nnr\nbx\nqc\ngm\njs\nkn\ntw\nrq\nkz\nuc\nvc\nqr\nab\nna\nro\nya\nqy\ngu\nvk\nqk\ngs\nyq\nop\nhw\nrj\neo\nlz\nbh\nkr\nkb\nma\nrd\nza\nuf\nhq\nmc\nmn\nti\nwn\nsh\nax\nsi\nnd\ntz\ndu\nfj\nkl\nws\now\nnf\nvr\nye\nzc\niw\nfv\nkv\noo\nsm\nbc\nrs\nau\nuz\nuv\ngh\nsu\njn\ndz\nrl\nwj\nbk\nzl\nas\nms\nit\nwu",
"output": "YES"
},
{
"input": "bb\n1\naa",
"output": "NO"
},
{
"input": "qm\n25\nqw\nwe\ner\nrt\nty\nyu\nui\nio\nop\npa\nas\nsd\ndf\nfg\ngh\nhj\njk\nkl\nlz\nzx\nxc\ncv\nvb\nbn\nnm",
"output": "NO"
},
{
"input": "mq\n25\nqw\nwe\ner\nrt\nty\nyu\nui\nio\nop\npa\nas\nsd\ndf\nfg\ngh\nhj\njk\nkl\nlz\nzx\nxc\ncv\nvb\nbn\nnm",
"output": "YES"
},
{
"input": "aa\n1\naa",
"output": "YES"
},
{
"input": "bb\n1\nbb",
"output": "YES"
},
{
"input": "ba\n1\ncc",
"output": "NO"
},
{
"input": "ha\n1\nha",
"output": "YES"
},
{
"input": "aa\n1\naa",
"output": "YES"
},
{
"input": "ez\n1\njl",
"output": "NO"
},
{
"input": "aa\n2\nab\nba",
"output": "YES"
},
{
"input": "aa\n2\nca\ncc",
"output": "NO"
},
{
"input": "dd\n2\nac\ndc",
"output": "NO"
},
{
"input": "qc\n2\nyc\nkr",
"output": "NO"
},
{
"input": "aa\n3\nba\nbb\nab",
"output": "YES"
},
{
"input": "ca\n3\naa\nbb\nab",
"output": "NO"
},
{
"input": "ca\n3\nbc\nbd\nca",
"output": "YES"
},
{
"input": "dd\n3\nmt\nrg\nxl",
"output": "NO"
},
{
"input": "be\n20\nad\ncd\ncb\ndb\ndd\naa\nab\nca\nae\ned\ndc\nbb\nba\nda\nee\nea\ncc\nac\nec\neb",
"output": "YES"
},
{
"input": "fc\n20\nca\nbb\nce\nfd\nde\nfa\ncc\nec\nfb\nfc\nff\nbe\ncf\nba\ndb\ned\naf\nae\nda\nef",
"output": "YES"
},
{
"input": "ca\n20\ndc\naf\ndf\neg\naa\nbc\nea\nbd\nab\ndb\ngc\nfb\nba\nbe\nee\ngf\ncf\nag\nga\nca",
"output": "YES"
},
{
"input": "ke\n20\nzk\nra\nbq\nqz\nwt\nzg\nmz\nuk\nge\nuv\nud\nfd\neh\ndm\nsk\nki\nfv\ntp\nat\nfb",
"output": "YES"
},
{
"input": "hh\n50\nag\nhg\ndg\nfh\neg\ngh\ngd\nda\nbh\nab\nhf\ndc\nhb\nfe\nad\nec\nac\nfd\nca\naf\ncg\nhd\neb\nce\nhe\nha\ngb\nea\nae\nfb\nff\nbe\nch\nhh\nee\nde\nge\ngf\naa\ngg\neh\ned\nbf\nfc\nah\nga\nbd\ncb\nbg\nbc",
"output": "YES"
},
{
"input": "id\n50\nhi\ndc\nfg\nee\ngi\nhc\nac\nih\ndg\nfc\nde\ned\nie\neb\nic\ncf\nib\nfa\ngc\nba\nbe\nga\nha\nhg\nia\ndf\nab\nei\neh\nad\nii\nci\ndh\nec\nif\ndi\nbg\nag\nhe\neg\nca\nae\ndb\naa\nid\nfh\nhh\ncc\nfb\ngb",
"output": "YES"
},
{
"input": "fe\n50\nje\nbi\nbg\ngc\nfb\nig\ndf\nji\ndg\nfe\nfc\ncf\ngf\nai\nhe\nac\nch\nja\ngh\njf\nge\ncb\nij\ngb\ncg\naf\neh\nee\nhd\njd\njb\nii\nca\nci\nga\nab\nhi\nag\nfj\nej\nfi\nie\ndj\nfg\nef\njc\njg\njh\nhf\nha",
"output": "YES"
},
{
"input": "rn\n50\nba\nec\nwg\nao\nlk\nmz\njj\ncf\nfa\njk\ndy\nsz\njs\nzr\nqv\ntx\nwv\nrd\nqw\nls\nrr\nvt\nrx\nkc\neh\nnj\niq\nyi\nkh\nue\nnv\nkz\nrn\nes\nua\nzf\nvu\nll\neg\nmj\ncz\nzj\nxz\net\neb\nci\nih\nig\nam\nvd",
"output": "YES"
},
{
"input": "ee\n100\nah\nfb\ncd\nbi\nii\nai\nid\nag\nie\nha\ndi\nec\nae\nce\njb\ndg\njg\ngd\ngf\nda\nih\nbd\nhj\ngg\nhb\ndf\ned\nfh\naf\nja\nci\nfc\nic\nji\nac\nhi\nfj\nch\nbc\njd\naa\nff\nad\ngj\nej\nde\nee\nhe\ncf\nga\nia\ncg\nbb\nhc\nbe\ngi\njf\nbg\naj\njj\nbh\nfe\ndj\nef\ngb\nge\ndb\nig\ncj\ndc\nij\njh\nei\ndd\nib\nhf\neg\nbf\nfg\nab\ngc\nfd\nhd\ngh\neh\njc\neb\nhh\nca\nje\nbj\nif\nea\nhg\nfa\ncc\nba\ndh\ncb\nfi",
"output": "YES"
},
{
"input": "if\n100\njd\nbc\nje\nhi\nga\nde\nkb\nfc\ncd\ngd\naj\ncb\nei\nbf\ncf\ndk\ndb\ncg\nki\ngg\nkg\nfa\nkj\nii\njf\njg\ngb\nbh\nbg\neh\nhj\nhb\ndg\ndj\njc\njb\nce\ndi\nig\nci\ndf\nji\nhc\nfk\naf\nac\ngk\nhd\nae\nkd\nec\nkc\neb\nfh\nij\nie\nca\nhh\nkf\nha\ndd\nif\nef\nih\nhg\nej\nfe\njk\nea\nib\nck\nhf\nak\ngi\nch\ndc\nba\nke\nad\nka\neg\njh\nja\ngc\nfd\ncc\nab\ngj\nik\nfg\nbj\nhe\nfj\nge\ngh\nhk\nbk\ned\nid\nfi",
"output": "YES"
},
{
"input": "kd\n100\nek\nea\nha\nkf\nkj\ngh\ndl\nfj\nal\nga\nlj\nik\ngd\nid\ncb\nfh\ndk\nif\nbh\nkb\nhc\nej\nhk\ngc\ngb\nef\nkk\nll\nlf\nkh\ncl\nlh\njj\nil\nhh\nci\ndb\ndf\ngk\njg\nch\nbd\ncg\nfg\nda\neb\nlg\ndg\nbk\nje\nbg\nbl\njl\ncj\nhb\nei\naa\ngl\nka\nfa\nfi\naf\nkc\nla\ngi\nij\nib\nle\ndi\nck\nag\nlc\nca\nge\nie\nlb\nke\nii\nae\nig\nic\nhe\ncf\nhd\nak\nfb\nhi\ngf\nad\nba\nhg\nbi\nkl\nac\ngg\ngj\nbe\nlk\nld\naj",
"output": "YES"
},
{
"input": "ab\n1\nab",
"output": "YES"
},
{
"input": "ya\n1\nya",
"output": "YES"
},
{
"input": "ay\n1\nyb",
"output": "NO"
},
{
"input": "ax\n2\nii\nxa",
"output": "YES"
},
{
"input": "hi\n1\nhi",
"output": "YES"
},
{
"input": "ag\n1\nag",
"output": "YES"
},
{
"input": "th\n1\nth",
"output": "YES"
},
{
"input": "sb\n1\nsb",
"output": "YES"
},
{
"input": "hp\n1\nhp",
"output": "YES"
},
{
"input": "ah\n1\nah",
"output": "YES"
},
{
"input": "ta\n1\nta",
"output": "YES"
},
{
"input": "tb\n1\ntb",
"output": "YES"
},
{
"input": "ab\n5\nca\nda\nea\nfa\nka",
"output": "NO"
},
{
"input": "ac\n1\nac",
"output": "YES"
},
{
"input": "ha\n2\nha\nzz",
"output": "YES"
},
{
"input": "ok\n1\nok",
"output": "YES"
},
{
"input": "bc\n1\nbc",
"output": "YES"
},
{
"input": "az\n1\nzz",
"output": "NO"
},
{
"input": "ab\n2\nba\ntt",
"output": "YES"
},
{
"input": "ah\n2\nap\nhp",
"output": "NO"
},
{
"input": "sh\n1\nsh",
"output": "YES"
},
{
"input": "az\n1\nby",
"output": "NO"
},
{
"input": "as\n1\nas",
"output": "YES"
},
{
"input": "ab\n2\nab\ncd",
"output": "YES"
},
{
"input": "ab\n2\nxa\nza",
"output": "NO"
},
{
"input": "ab\n2\net\nab",
"output": "YES"
},
{
"input": "ab\n1\naa",
"output": "NO"
},
{
"input": "ab\n2\nab\nde",
"output": "YES"
},
{
"input": "ah\n2\nba\nha",
"output": "YES"
},
{
"input": "ha\n3\ndd\ncc\nha",
"output": "YES"
},
{
"input": "oo\n1\nox",
"output": "NO"
},
{
"input": "ab\n2\nax\nbx",
"output": "NO"
},
{
"input": "ww\n4\nuw\now\npo\nko",
"output": "NO"
},
{
"input": "ay\n1\nay",
"output": "YES"
},
{
"input": "yo\n1\nyo",
"output": "YES"
},
{
"input": "ba\n1\nba",
"output": "YES"
},
{
"input": "qw\n1\nqw",
"output": "YES"
},
{
"input": "la\n1\nla",
"output": "YES"
},
{
"input": "ab\n2\nbb\nbc",
"output": "NO"
},
{
"input": "aa\n2\nab\nac",
"output": "NO"
},
{
"input": "ah\n2\nbb\nha",
"output": "YES"
},
{
"input": "ya\n42\nab\nac\nad\nae\naf\nag\nah\nai\nak\naj\nba\nbc\nbd\nbe\nbf\nbg\nbh\nbi\nbk\nbj\ncb\nca\ncd\nce\ncf\ncg\nch\nci\nck\ncj\ndb\ndc\nda\nde\ndf\ndg\ndh\ndi\ndk\ndj\nef\nek",
"output": "NO"
},
{
"input": "ab\n3\nab\nxx\nyy",
"output": "YES"
},
{
"input": "ab\n2\nab\ncc",
"output": "YES"
},
{
"input": "sa\n2\nxx\nas",
"output": "YES"
},
{
"input": "ma\n1\nma",
"output": "YES"
},
{
"input": "ba\n1\nbb",
"output": "NO"
},
{
"input": "bc\n1\nab",
"output": "NO"
},
{
"input": "fa\n1\nfa",
"output": "YES"
},
{
"input": "ap\n1\nap",
"output": "YES"
},
{
"input": "ab\n1\nbb",
"output": "NO"
},
{
"input": "bk\n1\nbk",
"output": "YES"
},
{
"input": "xy\n2\nxy\naa",
"output": "YES"
},
{
"input": "ab\n2\nza\nbz",
"output": "YES"
}
] | 1,551,356,801
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 90
| 140
| 0
|
pw, words, first, second = input(), set(), set(), set()
for _ in range(int(input())):
word = input()
words.add(word)
first.add(word[0])
second.add(word[1])
print('YES' if pw in words or pw[0] in second and pw[1] in first else 'NO')
|
Title: Bark to Unlock
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
As technologies develop, manufacturers are making the process of unlocking a phone as user-friendly as possible. To unlock its new phone, Arkady's pet dog Mu-mu has to bark the password once. The phone represents a password as a string of two lowercase English letters.
Mu-mu's enemy Kashtanka wants to unlock Mu-mu's phone to steal some sensible information, but it can only bark *n* distinct words, each of which can be represented as a string of two lowercase English letters. Kashtanka wants to bark several words (not necessarily distinct) one after another to pronounce a string containing the password as a substring. Tell if it's possible to unlock the phone in this way, or not.
Input Specification:
The first line contains two lowercase English letters — the password on the phone.
The second line contains single integer *n* (1<=≤<=*n*<=≤<=100) — the number of words Kashtanka knows.
The next *n* lines contain two lowercase English letters each, representing the words Kashtanka knows. The words are guaranteed to be distinct.
Output Specification:
Print "YES" if Kashtanka can bark several words in a line forming a string containing the password, and "NO" otherwise.
You can print each letter in arbitrary case (upper or lower).
Demo Input:
['ya\n4\nah\noy\nto\nha\n', 'hp\n2\nht\ntp\n', 'ah\n1\nha\n']
Demo Output:
['YES\n', 'NO\n', 'YES\n']
Note:
In the first example the password is "ya", and Kashtanka can bark "oy" and then "ah", and then "ha" to form the string "oyahha" which contains the password. So, the answer is "YES".
In the second example Kashtanka can't produce a string containing password as a substring. Note that it can bark "ht" and then "tp" producing "http", but it doesn't contain the password "hp" as a substring.
In the third example the string "hahahaha" contains "ah" as a substring.
|
```python
pw, words, first, second = input(), set(), set(), set()
for _ in range(int(input())):
word = input()
words.add(word)
first.add(word[0])
second.add(word[1])
print('YES' if pw in words or pw[0] in second and pw[1] in first else 'NO')
```
| 3
|
|
625
|
B
|
War of the Corporations
|
PROGRAMMING
| 1,200
|
[
"constructive algorithms",
"greedy",
"strings"
] | null | null |
A long time ago, in a galaxy far far away two giant IT-corporations Pineapple and Gogol continue their fierce competition. Crucial moment is just around the corner: Gogol is ready to release it's new tablet Lastus 3000.
This new device is equipped with specially designed artificial intelligence (AI). Employees of Pineapple did their best to postpone the release of Lastus 3000 as long as possible. Finally, they found out, that the name of the new artificial intelligence is similar to the name of the phone, that Pineapple released 200 years ago. As all rights on its name belong to Pineapple, they stand on changing the name of Gogol's artificial intelligence.
Pineapple insists, that the name of their phone occurs in the name of AI as a substring. Because the name of technology was already printed on all devices, the Gogol's director decided to replace some characters in AI name with "#". As this operation is pretty expensive, you should find the minimum number of characters to replace with "#", such that the name of AI doesn't contain the name of the phone as a substring.
Substring is a continuous subsequence of a string.
|
The first line of the input contains the name of AI designed by Gogol, its length doesn't exceed 100<=000 characters. Second line contains the name of the phone released by Pineapple 200 years ago, its length doesn't exceed 30. Both string are non-empty and consist of only small English letters.
|
Print the minimum number of characters that must be replaced with "#" in order to obtain that the name of the phone doesn't occur in the name of AI as a substring.
|
[
"intellect\ntell\n",
"google\napple\n",
"sirisiri\nsir\n"
] |
[
"1",
"0",
"2"
] |
In the first sample AI's name may be replaced with "int#llect".
In the second sample Gogol can just keep things as they are.
In the third sample one of the new possible names of AI may be "s#ris#ri".
| 750
|
[
{
"input": "intellect\ntell",
"output": "1"
},
{
"input": "google\napple",
"output": "0"
},
{
"input": "sirisiri\nsir",
"output": "2"
},
{
"input": "sirisiri\nsiri",
"output": "2"
},
{
"input": "aaaaaaa\naaaa",
"output": "1"
},
{
"input": "bbbbbb\nbb",
"output": "3"
},
{
"input": "abc\nabcabc",
"output": "0"
},
{
"input": "kek\nkekekek",
"output": "0"
},
{
"input": "aaaaa\naaa",
"output": "1"
},
{
"input": "abcdabcv\nabcd",
"output": "1"
},
{
"input": "abcabcabczabcabcabcz\ncab",
"output": "4"
},
{
"input": "aatopotopotopotaa\ntopot",
"output": "2"
},
{
"input": "abcabcabcabcabcabcabcabcabcabc\nabcabcabcabcabcabcabcabcabcabc",
"output": "1"
},
{
"input": "sosossosos\nsos",
"output": "2"
},
{
"input": "sosossosossosossosossosossosossosossosossosossosossosossosossosossosossosossosossosossosossosossosos\nsos",
"output": "20"
},
{
"input": "tatatx\ntatx",
"output": "1"
},
{
"input": "sxxsxxsxxd\nsxxsxxd",
"output": "1"
}
] | 1,634,398,606
| 2,147,483,647
|
PyPy 3-64
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<vector>
#include<stdlib.h>
#include<map>
#include<list>
#include<set>
#include<algorithm>
#include<queue>
#include<stack>
#include<cstring>
#include<cmath>
#include<string>
#include<cstdlib>
#include<iterator>
#include<deque>
#include <conio.h>
#include<string.h>
#define IO ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0)
#define lp(x,y) for(auto i=x;i<y;i++)
#define lpj(x,y) for(auto j=x;j<y;j++)
#define W int g; cin>>g; while(g--)
#define SIZ 10000
using namespace std;
typedef long long ll;
map<string, int>m;
void solve()
{
string s1, s2;
cin >> s1 >> s2;
int l1 = s1.size(), l2 = s2.size(),ans=0;
lp(0, l1 - l2 + 1)
{
string temp = s1.substr(i, l2);
if (s2 == temp)
{
i += l2 - 1;
ans++;
}
}
cout << ans;
}
int main() {
IO;
solve();
}
|
Title: War of the Corporations
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A long time ago, in a galaxy far far away two giant IT-corporations Pineapple and Gogol continue their fierce competition. Crucial moment is just around the corner: Gogol is ready to release it's new tablet Lastus 3000.
This new device is equipped with specially designed artificial intelligence (AI). Employees of Pineapple did their best to postpone the release of Lastus 3000 as long as possible. Finally, they found out, that the name of the new artificial intelligence is similar to the name of the phone, that Pineapple released 200 years ago. As all rights on its name belong to Pineapple, they stand on changing the name of Gogol's artificial intelligence.
Pineapple insists, that the name of their phone occurs in the name of AI as a substring. Because the name of technology was already printed on all devices, the Gogol's director decided to replace some characters in AI name with "#". As this operation is pretty expensive, you should find the minimum number of characters to replace with "#", such that the name of AI doesn't contain the name of the phone as a substring.
Substring is a continuous subsequence of a string.
Input Specification:
The first line of the input contains the name of AI designed by Gogol, its length doesn't exceed 100<=000 characters. Second line contains the name of the phone released by Pineapple 200 years ago, its length doesn't exceed 30. Both string are non-empty and consist of only small English letters.
Output Specification:
Print the minimum number of characters that must be replaced with "#" in order to obtain that the name of the phone doesn't occur in the name of AI as a substring.
Demo Input:
['intellect\ntell\n', 'google\napple\n', 'sirisiri\nsir\n']
Demo Output:
['1', '0', '2']
Note:
In the first sample AI's name may be replaced with "int#llect".
In the second sample Gogol can just keep things as they are.
In the third sample one of the new possible names of AI may be "s#ris#ri".
|
```python
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<vector>
#include<stdlib.h>
#include<map>
#include<list>
#include<set>
#include<algorithm>
#include<queue>
#include<stack>
#include<cstring>
#include<cmath>
#include<string>
#include<cstdlib>
#include<iterator>
#include<deque>
#include <conio.h>
#include<string.h>
#define IO ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0)
#define lp(x,y) for(auto i=x;i<y;i++)
#define lpj(x,y) for(auto j=x;j<y;j++)
#define W int g; cin>>g; while(g--)
#define SIZ 10000
using namespace std;
typedef long long ll;
map<string, int>m;
void solve()
{
string s1, s2;
cin >> s1 >> s2;
int l1 = s1.size(), l2 = s2.size(),ans=0;
lp(0, l1 - l2 + 1)
{
string temp = s1.substr(i, l2);
if (s2 == temp)
{
i += l2 - 1;
ans++;
}
}
cout << ans;
}
int main() {
IO;
solve();
}
```
| -1
|
|
285
|
A
|
Slightly Decreasing Permutations
|
PROGRAMMING
| 1,100
|
[
"greedy",
"implementation"
] | null | null |
Permutation *p* is an ordered set of integers *p*1,<=<=*p*2,<=<=...,<=<=*p**n*, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. We'll denote the *i*-th element of permutation *p* as *p**i*. We'll call number *n* the size or the length of permutation *p*1,<=<=*p*2,<=<=...,<=<=*p**n*.
The decreasing coefficient of permutation *p*1,<=*p*2,<=...,<=*p**n* is the number of such *i* (1<=≤<=*i*<=<<=*n*), that *p**i*<=><=*p**i*<=+<=1.
You have numbers *n* and *k*. Your task is to print the permutation of length *n* with decreasing coefficient *k*.
|
The single line contains two space-separated integers: *n*,<=*k* (1<=≤<=*n*<=≤<=105,<=0<=≤<=*k*<=<<=*n*) — the permutation length and the decreasing coefficient.
|
In a single line print *n* space-separated integers: *p*1,<=*p*2,<=...,<=*p**n* — the permutation of length *n* with decreasing coefficient *k*.
If there are several permutations that meet this condition, print any of them. It is guaranteed that the permutation with the sought parameters exists.
|
[
"5 2\n",
"3 0\n",
"3 2\n"
] |
[
"1 5 2 4 3\n",
"1 2 3\n",
"3 2 1\n"
] |
none
| 500
|
[
{
"input": "5 2",
"output": "1 5 2 4 3"
},
{
"input": "3 0",
"output": "1 2 3"
},
{
"input": "3 2",
"output": "3 2 1"
},
{
"input": "1 0",
"output": "1"
},
{
"input": "2 0",
"output": "1 2"
},
{
"input": "2 1",
"output": "2 1"
},
{
"input": "10 4",
"output": "10 9 8 7 1 2 3 4 5 6"
},
{
"input": "56893 5084",
"output": "56893 56892 56891 56890 56889 56888 56887 56886 56885 56884 56883 56882 56881 56880 56879 56878 56877 56876 56875 56874 56873 56872 56871 56870 56869 56868 56867 56866 56865 56864 56863 56862 56861 56860 56859 56858 56857 56856 56855 56854 56853 56852 56851 56850 56849 56848 56847 56846 56845 56844 56843 56842 56841 56840 56839 56838 56837 56836 56835 56834 56833 56832 56831 56830 56829 56828 56827 56826 56825 56824 56823 56822 56821 56820 56819 56818 56817 56816 56815 56814 56813 56812 56811 56810 56809 5..."
},
{
"input": "6 3",
"output": "6 5 4 1 2 3"
},
{
"input": "1 0",
"output": "1"
},
{
"input": "310 186",
"output": "310 309 308 307 306 305 304 303 302 301 300 299 298 297 296 295 294 293 292 291 290 289 288 287 286 285 284 283 282 281 280 279 278 277 276 275 274 273 272 271 270 269 268 267 266 265 264 263 262 261 260 259 258 257 256 255 254 253 252 251 250 249 248 247 246 245 244 243 242 241 240 239 238 237 236 235 234 233 232 231 230 229 228 227 226 225 224 223 222 221 220 219 218 217 216 215 214 213 212 211 210 209 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183..."
},
{
"input": "726 450",
"output": "726 725 724 723 722 721 720 719 718 717 716 715 714 713 712 711 710 709 708 707 706 705 704 703 702 701 700 699 698 697 696 695 694 693 692 691 690 689 688 687 686 685 684 683 682 681 680 679 678 677 676 675 674 673 672 671 670 669 668 667 666 665 664 663 662 661 660 659 658 657 656 655 654 653 652 651 650 649 648 647 646 645 644 643 642 641 640 639 638 637 636 635 634 633 632 631 630 629 628 627 626 625 624 623 622 621 620 619 618 617 616 615 614 613 612 611 610 609 608 607 606 605 604 603 602 601 600 599..."
},
{
"input": "438 418",
"output": "438 437 436 435 434 433 432 431 430 429 428 427 426 425 424 423 422 421 420 419 418 417 416 415 414 413 412 411 410 409 408 407 406 405 404 403 402 401 400 399 398 397 396 395 394 393 392 391 390 389 388 387 386 385 384 383 382 381 380 379 378 377 376 375 374 373 372 371 370 369 368 367 366 365 364 363 362 361 360 359 358 357 356 355 354 353 352 351 350 349 348 347 346 345 344 343 342 341 340 339 338 337 336 335 334 333 332 331 330 329 328 327 326 325 324 323 322 321 320 319 318 317 316 315 314 313 312 311..."
},
{
"input": "854 829",
"output": "854 853 852 851 850 849 848 847 846 845 844 843 842 841 840 839 838 837 836 835 834 833 832 831 830 829 828 827 826 825 824 823 822 821 820 819 818 817 816 815 814 813 812 811 810 809 808 807 806 805 804 803 802 801 800 799 798 797 796 795 794 793 792 791 790 789 788 787 786 785 784 783 782 781 780 779 778 777 776 775 774 773 772 771 770 769 768 767 766 765 764 763 762 761 760 759 758 757 756 755 754 753 752 751 750 749 748 747 746 745 744 743 742 741 740 739 738 737 736 735 734 733 732 731 730 729 728 727..."
},
{
"input": "214 167",
"output": "214 213 212 211 210 209 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 ..."
},
{
"input": "85705 56268",
"output": "85705 85704 85703 85702 85701 85700 85699 85698 85697 85696 85695 85694 85693 85692 85691 85690 85689 85688 85687 85686 85685 85684 85683 85682 85681 85680 85679 85678 85677 85676 85675 85674 85673 85672 85671 85670 85669 85668 85667 85666 85665 85664 85663 85662 85661 85660 85659 85658 85657 85656 85655 85654 85653 85652 85651 85650 85649 85648 85647 85646 85645 85644 85643 85642 85641 85640 85639 85638 85637 85636 85635 85634 85633 85632 85631 85630 85629 85628 85627 85626 85625 85624 85623 85622 85621 8..."
},
{
"input": "11417 4583",
"output": "11417 11416 11415 11414 11413 11412 11411 11410 11409 11408 11407 11406 11405 11404 11403 11402 11401 11400 11399 11398 11397 11396 11395 11394 11393 11392 11391 11390 11389 11388 11387 11386 11385 11384 11383 11382 11381 11380 11379 11378 11377 11376 11375 11374 11373 11372 11371 11370 11369 11368 11367 11366 11365 11364 11363 11362 11361 11360 11359 11358 11357 11356 11355 11354 11353 11352 11351 11350 11349 11348 11347 11346 11345 11344 11343 11342 11341 11340 11339 11338 11337 11336 11335 11334 11333 1..."
},
{
"input": "53481 20593",
"output": "53481 53480 53479 53478 53477 53476 53475 53474 53473 53472 53471 53470 53469 53468 53467 53466 53465 53464 53463 53462 53461 53460 53459 53458 53457 53456 53455 53454 53453 53452 53451 53450 53449 53448 53447 53446 53445 53444 53443 53442 53441 53440 53439 53438 53437 53436 53435 53434 53433 53432 53431 53430 53429 53428 53427 53426 53425 53424 53423 53422 53421 53420 53419 53418 53417 53416 53415 53414 53413 53412 53411 53410 53409 53408 53407 53406 53405 53404 53403 53402 53401 53400 53399 53398 53397 5..."
},
{
"input": "79193 77281",
"output": "79193 79192 79191 79190 79189 79188 79187 79186 79185 79184 79183 79182 79181 79180 79179 79178 79177 79176 79175 79174 79173 79172 79171 79170 79169 79168 79167 79166 79165 79164 79163 79162 79161 79160 79159 79158 79157 79156 79155 79154 79153 79152 79151 79150 79149 79148 79147 79146 79145 79144 79143 79142 79141 79140 79139 79138 79137 79136 79135 79134 79133 79132 79131 79130 79129 79128 79127 79126 79125 79124 79123 79122 79121 79120 79119 79118 79117 79116 79115 79114 79113 79112 79111 79110 79109 7..."
},
{
"input": "42607 42144",
"output": "42607 42606 42605 42604 42603 42602 42601 42600 42599 42598 42597 42596 42595 42594 42593 42592 42591 42590 42589 42588 42587 42586 42585 42584 42583 42582 42581 42580 42579 42578 42577 42576 42575 42574 42573 42572 42571 42570 42569 42568 42567 42566 42565 42564 42563 42562 42561 42560 42559 42558 42557 42556 42555 42554 42553 42552 42551 42550 42549 42548 42547 42546 42545 42544 42543 42542 42541 42540 42539 42538 42537 42536 42535 42534 42533 42532 42531 42530 42529 42528 42527 42526 42525 42524 42523 4..."
},
{
"input": "100000 0",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..."
},
{
"input": "100000 99999",
"output": "100000 99999 99998 99997 99996 99995 99994 99993 99992 99991 99990 99989 99988 99987 99986 99985 99984 99983 99982 99981 99980 99979 99978 99977 99976 99975 99974 99973 99972 99971 99970 99969 99968 99967 99966 99965 99964 99963 99962 99961 99960 99959 99958 99957 99956 99955 99954 99953 99952 99951 99950 99949 99948 99947 99946 99945 99944 99943 99942 99941 99940 99939 99938 99937 99936 99935 99934 99933 99932 99931 99930 99929 99928 99927 99926 99925 99924 99923 99922 99921 99920 99919 99918 99917 99916 ..."
},
{
"input": "100000 53860",
"output": "100000 99999 99998 99997 99996 99995 99994 99993 99992 99991 99990 99989 99988 99987 99986 99985 99984 99983 99982 99981 99980 99979 99978 99977 99976 99975 99974 99973 99972 99971 99970 99969 99968 99967 99966 99965 99964 99963 99962 99961 99960 99959 99958 99957 99956 99955 99954 99953 99952 99951 99950 99949 99948 99947 99946 99945 99944 99943 99942 99941 99940 99939 99938 99937 99936 99935 99934 99933 99932 99931 99930 99929 99928 99927 99926 99925 99924 99923 99922 99921 99920 99919 99918 99917 99916 ..."
},
{
"input": "4 0",
"output": "1 2 3 4"
},
{
"input": "4 1",
"output": "4 1 2 3"
},
{
"input": "4 2",
"output": "4 3 1 2"
},
{
"input": "4 3",
"output": "4 3 2 1"
},
{
"input": "3 1",
"output": "3 1 2"
}
] | 1,603,194,382
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 28
| 404
| 5,632,000
|
from sys import stdin,stdout
a,b=map(int,stdin.readline().split())
lst=[i+1 for i in range(a)]
lst.reverse()
lst1=lst[:b]
lst2=lst[b:]
lst2.reverse()
new=lst1+lst2
for i in new:
stdout.write(str(i)+' ')
|
Title: Slightly Decreasing Permutations
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Permutation *p* is an ordered set of integers *p*1,<=<=*p*2,<=<=...,<=<=*p**n*, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. We'll denote the *i*-th element of permutation *p* as *p**i*. We'll call number *n* the size or the length of permutation *p*1,<=<=*p*2,<=<=...,<=<=*p**n*.
The decreasing coefficient of permutation *p*1,<=*p*2,<=...,<=*p**n* is the number of such *i* (1<=≤<=*i*<=<<=*n*), that *p**i*<=><=*p**i*<=+<=1.
You have numbers *n* and *k*. Your task is to print the permutation of length *n* with decreasing coefficient *k*.
Input Specification:
The single line contains two space-separated integers: *n*,<=*k* (1<=≤<=*n*<=≤<=105,<=0<=≤<=*k*<=<<=*n*) — the permutation length and the decreasing coefficient.
Output Specification:
In a single line print *n* space-separated integers: *p*1,<=*p*2,<=...,<=*p**n* — the permutation of length *n* with decreasing coefficient *k*.
If there are several permutations that meet this condition, print any of them. It is guaranteed that the permutation with the sought parameters exists.
Demo Input:
['5 2\n', '3 0\n', '3 2\n']
Demo Output:
['1 5 2 4 3\n', '1 2 3\n', '3 2 1\n']
Note:
none
|
```python
from sys import stdin,stdout
a,b=map(int,stdin.readline().split())
lst=[i+1 for i in range(a)]
lst.reverse()
lst1=lst[:b]
lst2=lst[b:]
lst2.reverse()
new=lst1+lst2
for i in new:
stdout.write(str(i)+' ')
```
| 3
|
|
331
|
A1
|
Oh Sweet Beaverette
|
PROGRAMMING
| 1,400
|
[
"brute force",
"implementation"
] | null | null |
— Oh my sweet Beaverette, would you fancy a walk along a wonderful woodland belt with me?
— Of course, my Smart Beaver! Let us enjoy the splendid view together. How about Friday night?
At this point the Smart Beaver got rushing. Everything should be perfect by Friday, so he needed to prepare the belt to the upcoming walk. He needed to cut down several trees.
Let's consider the woodland belt as a sequence of trees. Each tree *i* is described by the esthetic appeal *a**i* — some trees are very esthetically pleasing, others are 'so-so', and some trees are positively ugly!
The Smart Beaver calculated that he needed the following effects to win the Beaverette's heart:
- The first objective is to please the Beaverette: the sum of esthetic appeal of the remaining trees must be maximum possible; - the second objective is to surprise the Beaverette: the esthetic appeal of the first and the last trees in the resulting belt must be the same; - and of course, the walk should be successful: there must be at least two trees in the woodland belt left.
Now help the Smart Beaver! Which trees does he need to cut down to win the Beaverette's heart?
|
The first line contains a single integer *n* — the initial number of trees in the woodland belt, 2<=≤<=*n*. The second line contains space-separated integers *a**i* — the esthetic appeals of each tree. All esthetic appeals do not exceed 109 in their absolute value.
- to get 30 points, you need to solve the problem with constraints: *n*<=≤<=100 (subproblem A1); - to get 100 points, you need to solve the problem with constraints: *n*<=≤<=3·105 (subproblems A1+A2).
|
In the first line print two integers — the total esthetic appeal of the woodland belt after the Smart Beaver's intervention and the number of the cut down trees *k*.
In the next line print *k* integers — the numbers of the trees the Beaver needs to cut down. Assume that the trees are numbered from 1 to *n* from left to right.
If there are multiple solutions, print any of them. It is guaranteed that at least two trees have equal esthetic appeal.
|
[
"5\n1 2 3 1 2\n",
"5\n1 -2 3 1 -2\n"
] |
[
"8 1\n1 ",
"5 2\n2 5 "
] |
none
| 30
|
[
{
"input": "5\n1 2 3 1 2",
"output": "8 1\n1 "
},
{
"input": "5\n1 -2 3 1 -2",
"output": "5 2\n2 5 "
},
{
"input": "2\n0 0",
"output": "0 0"
},
{
"input": "3\n0 -1 0",
"output": "0 1\n2 "
},
{
"input": "3\n1 1 1",
"output": "3 0"
},
{
"input": "4\n-1 1 1 -1",
"output": "2 2\n1 4 "
},
{
"input": "4\n-1 1 -1 1",
"output": "2 2\n1 3 "
},
{
"input": "2\n-1 -1",
"output": "-2 0"
},
{
"input": "3\n-1 0 -1",
"output": "-2 0"
},
{
"input": "6\n-1 3 3 5 5 -1",
"output": "14 0"
},
{
"input": "2\n-1000000000 -1000000000",
"output": "-2000000000 0"
},
{
"input": "3\n-1000000000 -1000000000 -1000000000",
"output": "-2000000000 1\n3 "
},
{
"input": "3\n1000000000 1000000000 1000000000",
"output": "3000000000 0"
},
{
"input": "10\n-589330597 -126288833 -126288833 -834860352 -834860352 -834860352 -834860352 -21170405 -834860352 -834860352",
"output": "-252577666 8\n1 4 5 6 7 8 9 10 "
},
{
"input": "20\n-808998072 733614990 579897311 -337992089 579897311 120800519 -337992089 -803027570 733614990 -686536765 733614990 -803027570 -803027570 733614990 120800519 -803027570 -686536765 579897311 -808998072 -686536765",
"output": "4215055101 13\n1 4 7 8 10 12 13 15 16 17 18 19 20 "
}
] | 1,630,254,648
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS1
| 7
| 124
| 6,963,200
|
l = int(input())
def spos(arr):
return sum([i for i in arr if i>0])
arr = list(map(int, input().split()))
pos = [(arr[i:j], spos(arr[i:j]), (i, j)) for i in range(l-1) for j in range(i+2, l+1)]
good = [[a, s, i] for a, s, i in pos if a[0] == a[-1]]
best = max(good, key=lambda t: t[1])
b, e = best[2]
tdin = sum([1 for x in arr[best[2][0]:best[2][1]] if x<0])
tdout = b+l-e
#print(best, tdin, tdout)
print(best[1], tdin+tdout)
print(*[i+1 for i in range(l) if i<b or i>e or arr[i]<0])
|
Title: Oh Sweet Beaverette
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
— Oh my sweet Beaverette, would you fancy a walk along a wonderful woodland belt with me?
— Of course, my Smart Beaver! Let us enjoy the splendid view together. How about Friday night?
At this point the Smart Beaver got rushing. Everything should be perfect by Friday, so he needed to prepare the belt to the upcoming walk. He needed to cut down several trees.
Let's consider the woodland belt as a sequence of trees. Each tree *i* is described by the esthetic appeal *a**i* — some trees are very esthetically pleasing, others are 'so-so', and some trees are positively ugly!
The Smart Beaver calculated that he needed the following effects to win the Beaverette's heart:
- The first objective is to please the Beaverette: the sum of esthetic appeal of the remaining trees must be maximum possible; - the second objective is to surprise the Beaverette: the esthetic appeal of the first and the last trees in the resulting belt must be the same; - and of course, the walk should be successful: there must be at least two trees in the woodland belt left.
Now help the Smart Beaver! Which trees does he need to cut down to win the Beaverette's heart?
Input Specification:
The first line contains a single integer *n* — the initial number of trees in the woodland belt, 2<=≤<=*n*. The second line contains space-separated integers *a**i* — the esthetic appeals of each tree. All esthetic appeals do not exceed 109 in their absolute value.
- to get 30 points, you need to solve the problem with constraints: *n*<=≤<=100 (subproblem A1); - to get 100 points, you need to solve the problem with constraints: *n*<=≤<=3·105 (subproblems A1+A2).
Output Specification:
In the first line print two integers — the total esthetic appeal of the woodland belt after the Smart Beaver's intervention and the number of the cut down trees *k*.
In the next line print *k* integers — the numbers of the trees the Beaver needs to cut down. Assume that the trees are numbered from 1 to *n* from left to right.
If there are multiple solutions, print any of them. It is guaranteed that at least two trees have equal esthetic appeal.
Demo Input:
['5\n1 2 3 1 2\n', '5\n1 -2 3 1 -2\n']
Demo Output:
['8 1\n1 ', '5 2\n2 5 ']
Note:
none
|
```python
l = int(input())
def spos(arr):
return sum([i for i in arr if i>0])
arr = list(map(int, input().split()))
pos = [(arr[i:j], spos(arr[i:j]), (i, j)) for i in range(l-1) for j in range(i+2, l+1)]
good = [[a, s, i] for a, s, i in pos if a[0] == a[-1]]
best = max(good, key=lambda t: t[1])
b, e = best[2]
tdin = sum([1 for x in arr[best[2][0]:best[2][1]] if x<0])
tdout = b+l-e
#print(best, tdin, tdout)
print(best[1], tdin+tdout)
print(*[i+1 for i in range(l) if i<b or i>e or arr[i]<0])
```
| 0
|
|
867
|
A
|
Between the Offices
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
As you may know, MemSQL has American offices in both San Francisco and Seattle. Being a manager in the company, you travel a lot between the two cities, always by plane.
You prefer flying from Seattle to San Francisco than in the other direction, because it's warmer in San Francisco. You are so busy that you don't remember the number of flights you have made in either direction. However, for each of the last *n* days you know whether you were in San Francisco office or in Seattle office. You always fly at nights, so you never were at both offices on the same day. Given this information, determine if you flew more times from Seattle to San Francisco during the last *n* days, or not.
|
The first line of input contains single integer *n* (2<=≤<=*n*<=≤<=100) — the number of days.
The second line contains a string of length *n* consisting of only capital 'S' and 'F' letters. If the *i*-th letter is 'S', then you were in Seattle office on that day. Otherwise you were in San Francisco. The days are given in chronological order, i.e. today is the last day in this sequence.
|
Print "YES" if you flew more times from Seattle to San Francisco, and "NO" otherwise.
You can print each letter in any case (upper or lower).
|
[
"4\nFSSF\n",
"2\nSF\n",
"10\nFFFFFFFFFF\n",
"10\nSSFFSFFSFF\n"
] |
[
"NO\n",
"YES\n",
"NO\n",
"YES\n"
] |
In the first example you were initially at San Francisco, then flew to Seattle, were there for two days and returned to San Francisco. You made one flight in each direction, so the answer is "NO".
In the second example you just flew from Seattle to San Francisco, so the answer is "YES".
In the third example you stayed the whole period in San Francisco, so the answer is "NO".
In the fourth example if you replace 'S' with ones, and 'F' with zeros, you'll get the first few digits of π in binary representation. Not very useful information though.
| 500
|
[
{
"input": "4\nFSSF",
"output": "NO"
},
{
"input": "2\nSF",
"output": "YES"
},
{
"input": "10\nFFFFFFFFFF",
"output": "NO"
},
{
"input": "10\nSSFFSFFSFF",
"output": "YES"
},
{
"input": "20\nSFSFFFFSSFFFFSSSSFSS",
"output": "NO"
},
{
"input": "20\nSSFFFFFSFFFFFFFFFFFF",
"output": "YES"
},
{
"input": "20\nSSFSFSFSFSFSFSFSSFSF",
"output": "YES"
},
{
"input": "20\nSSSSFSFSSFSFSSSSSSFS",
"output": "NO"
},
{
"input": "100\nFFFSFSFSFSSFSFFSSFFFFFSSSSFSSFFFFSFFFFFSFFFSSFSSSFFFFSSFFSSFSFFSSFSSSFSFFSFSFFSFSFFSSFFSFSSSSFSFSFSS",
"output": "NO"
},
{
"input": "100\nFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
"output": "NO"
},
{
"input": "100\nFFFFFFFFFFFFFFFFFFFFFFFFFFSFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFSFFFFFFFFFFFFFFFFFSS",
"output": "NO"
},
{
"input": "100\nFFFFFFFFFFFFFSFFFFFFFFFSFSSFFFFFFFFFFFFFFFFFFFFFFSFFSFFFFFSFFFFFFFFSFFFFFFFFFFFFFSFFFFFFFFSFFFFFFFSF",
"output": "NO"
},
{
"input": "100\nSFFSSFFFFFFSSFFFSSFSFFFFFSSFFFSFFFFFFSFSSSFSFSFFFFSFSSFFFFFFFFSFFFFFSFFFFFSSFFFSFFSFSFFFFSFFSFFFFFFF",
"output": "YES"
},
{
"input": "100\nFFFFSSSSSFFSSSFFFSFFFFFSFSSFSFFSFFSSFFSSFSFFFFFSFSFSFSFFFFFFFFFSFSFFSFFFFSFSFFFFFFFFFFFFSFSSFFSSSSFF",
"output": "NO"
},
{
"input": "100\nFFFFFFFFFFFFSSFFFFSFSFFFSFSSSFSSSSSFSSSSFFSSFFFSFSFSSFFFSSSFFSFSFSSFSFSSFSFFFSFFFFFSSFSFFFSSSFSSSFFS",
"output": "NO"
},
{
"input": "100\nFFFSSSFSFSSSSFSSFSFFSSSFFSSFSSFFSSFFSFSSSSFFFSFFFSFSFSSSFSSFSFSFSFFSSSSSFSSSFSFSFFSSFSFSSFFSSFSFFSFS",
"output": "NO"
},
{
"input": "100\nFFSSSSFSSSFSSSSFSSSFFSFSSFFSSFSSSFSSSFFSFFSSSSSSSSSSSSFSSFSSSSFSFFFSSFFFFFFSFSFSSSSSSFSSSFSFSSFSSFSS",
"output": "NO"
},
{
"input": "100\nSSSFFFSSSSFFSSSSSFSSSSFSSSFSSSSSFSSSSSSSSFSFFSSSFFSSFSSSSFFSSSSSSFFSSSSFSSSSSSFSSSFSSSSSSSFSSSSFSSSS",
"output": "NO"
},
{
"input": "100\nFSSSSSSSSSSSFSSSSSSSSSSSSSSSSFSSSSSSFSSSSSSSSSSSSSFSSFSSSSSFSSFSSSSSSSSSFFSSSSSFSFSSSFFSSSSSSSSSSSSS",
"output": "NO"
},
{
"input": "100\nSSSSSSSSSSSSSFSSSSSSSSSSSSFSSSFSSSSSSSSSSSSSSSSSSSSSSSSSSSSSFSSSSSSSSSSSSSSSSFSFSSSSSSSSSSSSSSSSSSFS",
"output": "NO"
},
{
"input": "100\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS",
"output": "NO"
},
{
"input": "100\nSFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
"output": "YES"
},
{
"input": "100\nSFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFSFSFFFFFFFFFFFSFSFFFFFFFFFFFFFSFFFFFFFFFFFFFFFFFFFFFFFFF",
"output": "YES"
},
{
"input": "100\nSFFFFFFFFFFFFSSFFFFSFFFFFFFFFFFFFFFFFFFSFFFSSFFFFSFSFFFSFFFFFFFFFFFFFFFSSFFFFFFFFSSFFFFFFFFFFFFFFSFF",
"output": "YES"
},
{
"input": "100\nSFFSSSFFSFSFSFFFFSSFFFFSFFFFFFFFSFSFFFSFFFSFFFSFFFFSFSFFFFFFFSFFFFFFFFFFSFFSSSFFSSFFFFSFFFFSFFFFSFFF",
"output": "YES"
},
{
"input": "100\nSFFFSFFFFSFFFSSFFFSFSFFFSFFFSSFSFFFFFSFFFFFFFFSFSFSFFSFFFSFSSFSFFFSFSFFSSFSFSSSFFFFFFSSFSFFSFFFFFFFF",
"output": "YES"
},
{
"input": "100\nSSSSFFFFSFFFFFFFSFFFFSFSFFFFSSFFFFFFFFFSFFSSFFFFFFSFSFSSFSSSFFFFFFFSFSFFFSSSFFFFFFFSFFFSSFFFFSSFFFSF",
"output": "YES"
},
{
"input": "100\nSSSFSSFFFSFSSSSFSSFSSSSFSSFFFFFSFFSSSSFFSSSFSSSFSSSSFSSSSFSSSSSSSFSFSSFFFSSFFSFFSSSSFSSFFSFSSFSFFFSF",
"output": "YES"
},
{
"input": "100\nSFFSFSSSSSSSFFSSSFSSSSFSFSSFFFSSSSSSFSSSSFSSFSSSFSSSSSSSFSSFSFFFSSFSSFSFSFSSSSSSSSSSSSFFFFSSSSSFSFFF",
"output": "YES"
},
{
"input": "100\nSSSFSFFSFSFFSSSSSFSSSFSSSFFFSSSSSSSSSFSFSFSSSSFSFSSFFFFFSSSSSSSSSSSSSSSSSSSFFSSSSSFSFSSSSFFSSSSFSSSF",
"output": "YES"
},
{
"input": "100\nSSSFSSSSSSSSSSFSSSSFSSSSSSFSSSSSSFSSSSSSSSSSSSSSFSSSFSSSFSSSSSSSSSSSFSSSSSSFSFSSSSFSSSSSSFSSSSSSSSFF",
"output": "YES"
},
{
"input": "100\nSSSSSSSSSSSSSSSFSFSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSFFSSSSSSSSSFSSSSSSSSSSSSSSSSSF",
"output": "YES"
},
{
"input": "100\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSF",
"output": "YES"
},
{
"input": "2\nSS",
"output": "NO"
}
] | 1,586,106,323
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 34
| 140
| 0
|
n = int(input())
s = input()
sf = s.count('SF')
fs = s.count("FS")
if sf > fs:
print("YES")
else:
print("NO")
|
Title: Between the Offices
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
As you may know, MemSQL has American offices in both San Francisco and Seattle. Being a manager in the company, you travel a lot between the two cities, always by plane.
You prefer flying from Seattle to San Francisco than in the other direction, because it's warmer in San Francisco. You are so busy that you don't remember the number of flights you have made in either direction. However, for each of the last *n* days you know whether you were in San Francisco office or in Seattle office. You always fly at nights, so you never were at both offices on the same day. Given this information, determine if you flew more times from Seattle to San Francisco during the last *n* days, or not.
Input Specification:
The first line of input contains single integer *n* (2<=≤<=*n*<=≤<=100) — the number of days.
The second line contains a string of length *n* consisting of only capital 'S' and 'F' letters. If the *i*-th letter is 'S', then you were in Seattle office on that day. Otherwise you were in San Francisco. The days are given in chronological order, i.e. today is the last day in this sequence.
Output Specification:
Print "YES" if you flew more times from Seattle to San Francisco, and "NO" otherwise.
You can print each letter in any case (upper or lower).
Demo Input:
['4\nFSSF\n', '2\nSF\n', '10\nFFFFFFFFFF\n', '10\nSSFFSFFSFF\n']
Demo Output:
['NO\n', 'YES\n', 'NO\n', 'YES\n']
Note:
In the first example you were initially at San Francisco, then flew to Seattle, were there for two days and returned to San Francisco. You made one flight in each direction, so the answer is "NO".
In the second example you just flew from Seattle to San Francisco, so the answer is "YES".
In the third example you stayed the whole period in San Francisco, so the answer is "NO".
In the fourth example if you replace 'S' with ones, and 'F' with zeros, you'll get the first few digits of π in binary representation. Not very useful information though.
|
```python
n = int(input())
s = input()
sf = s.count('SF')
fs = s.count("FS")
if sf > fs:
print("YES")
else:
print("NO")
```
| 3
|
|
629
|
D
|
Babaei and Birthday Cake
|
PROGRAMMING
| 2,000
|
[
"data structures",
"dp"
] | null | null |
As you know, every birthday party has a cake! This time, Babaei is going to prepare the very special birthday party's cake.
Simple cake is a cylinder of some radius and height. The volume of the simple cake is equal to the volume of corresponding cylinder. Babaei has *n* simple cakes and he is going to make a special cake placing some cylinders on each other.
However, there are some additional culinary restrictions. The cakes are numbered in such a way that the cake number *i* can be placed only on the table or on some cake number *j* where *j*<=<<=*i*. Moreover, in order to impress friends Babaei will put the cake *i* on top of the cake *j* only if the volume of the cake *i* is strictly greater than the volume of the cake *j*.
Babaei wants to prepare a birthday cake that has a maximum possible total volume. Help him find this value.
|
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of simple cakes Babaei has.
Each of the following *n* lines contains two integers *r**i* and *h**i* (1<=≤<=*r**i*,<=*h**i*<=≤<=10<=000), giving the radius and height of the *i*-th cake.
|
Print the maximum volume of the cake that Babaei can make. Your answer will be considered correct if its absolute or relative error does not exceed 10<=-<=6.
Namely: let's assume that your answer is *a*, and the answer of the jury is *b*. The checker program will consider your answer correct, if .
|
[
"2\n100 30\n40 10\n",
"4\n1 1\n9 7\n1 4\n10 7\n"
] |
[
"942477.796077000\n",
"3983.539484752\n"
] |
In first sample, the optimal way is to choose the cake number 1.
In second sample, the way to get the maximum volume is to use cakes with indices 1, 2 and 4.
| 2,000
|
[
{
"input": "2\n100 30\n40 10",
"output": "942477.796077000"
},
{
"input": "4\n1 1\n9 7\n1 4\n10 7",
"output": "3983.539484752"
},
{
"input": "3\n2 2\n1 1\n3 3",
"output": "109.955742876"
},
{
"input": "3\n2 2\n3 3\n1 1",
"output": "109.955742876"
},
{
"input": "3\n3 3\n1 1\n2 2",
"output": "84.823001647"
},
{
"input": "3\n1 1\n2 2\n3 3",
"output": "113.097335529"
},
{
"input": "3\n1 1\n3 3\n2 2",
"output": "87.964594301"
},
{
"input": "3\n3 3\n2 2\n1 1",
"output": "84.823001647"
},
{
"input": "1\n1 1",
"output": "3.141592654"
},
{
"input": "2\n1 1\n2 2",
"output": "28.274333882"
},
{
"input": "2\n2 2\n1 1",
"output": "25.132741229"
},
{
"input": "4\n1 1\n2 2\n3 3\n4 4",
"output": "314.159265359"
},
{
"input": "4\n1 1\n2 2\n4 4\n3 3",
"output": "229.336263712"
},
{
"input": "4\n1 1\n3 3\n2 2\n4 4",
"output": "289.026524130"
},
{
"input": "4\n1 1\n3 3\n4 4\n2 2",
"output": "289.026524130"
},
{
"input": "4\n1 1\n4 4\n2 2\n3 3",
"output": "204.203522483"
},
{
"input": "4\n1 1\n4 4\n3 3\n2 2",
"output": "204.203522483"
},
{
"input": "4\n2 2\n1 1\n3 3\n4 4",
"output": "311.017672705"
},
{
"input": "4\n2 2\n1 1\n4 4\n3 3",
"output": "226.194671058"
},
{
"input": "4\n2 2\n3 3\n1 1\n4 4",
"output": "311.017672705"
},
{
"input": "4\n2 2\n3 3\n4 4\n1 1",
"output": "311.017672705"
},
{
"input": "4\n2 2\n4 4\n1 1\n3 3",
"output": "226.194671058"
},
{
"input": "4\n2 2\n4 4\n3 3\n1 1",
"output": "226.194671058"
},
{
"input": "4\n3 3\n1 1\n2 2\n4 4",
"output": "285.884931477"
},
{
"input": "4\n3 3\n1 1\n4 4\n2 2",
"output": "285.884931477"
},
{
"input": "4\n3 3\n2 2\n1 1\n4 4",
"output": "285.884931477"
},
{
"input": "4\n3 3\n2 2\n4 4\n1 1",
"output": "285.884931477"
},
{
"input": "4\n3 3\n4 4\n1 1\n2 2",
"output": "285.884931477"
},
{
"input": "4\n3 3\n4 4\n2 2\n1 1",
"output": "285.884931477"
},
{
"input": "4\n4 4\n1 1\n2 2\n3 3",
"output": "201.061929830"
},
{
"input": "4\n4 4\n1 1\n3 3\n2 2",
"output": "201.061929830"
},
{
"input": "4\n4 4\n2 2\n1 1\n3 3",
"output": "201.061929830"
},
{
"input": "4\n4 4\n2 2\n3 3\n1 1",
"output": "201.061929830"
},
{
"input": "4\n4 4\n3 3\n1 1\n2 2",
"output": "201.061929830"
},
{
"input": "4\n4 4\n3 3\n2 2\n1 1",
"output": "201.061929830"
},
{
"input": "24\n14 3600\n105 64\n40 441\n15 3136\n24 1225\n42 400\n84 100\n12 4900\n120 49\n56 225\n140 36\n70 144\n168 25\n60 196\n30 784\n280 9\n10 7056\n21 1600\n28 900\n210 16\n420 4\n840 1\n35 576\n20 1764",
"output": "2216707.776373104"
},
{
"input": "15\n40 9\n12 100\n60 4\n20 36\n24 25\n15 64\n120 1\n4 900\n6 400\n5 576\n10 144\n30 16\n3 1600\n2 3600\n8 225",
"output": "45238.934211696"
},
{
"input": "14\n8 324\n12 144\n72 4\n144 1\n48 9\n3 2304\n24 36\n2 5184\n9 256\n36 16\n6 576\n4 1296\n18 64\n16 81",
"output": "65144.065264842"
},
{
"input": "15\n4 1764\n24 49\n84 4\n21 64\n28 36\n6 784\n7 576\n2 7056\n168 1\n56 9\n3 3136\n8 441\n14 144\n42 16\n12 196",
"output": "88668.311054924"
},
{
"input": "15\n3 3200\n2 7200\n20 72\n8 450\n60 8\n15 128\n4 1800\n5 1152\n24 50\n40 18\n120 2\n6 800\n30 32\n12 200\n10 288",
"output": "90477.868423392"
},
{
"input": "17\n6 900\n20 81\n45 16\n4 2025\n15 144\n9 400\n2 8100\n3 3600\n10 324\n30 36\n5 1296\n12 225\n36 25\n18 100\n90 4\n60 9\n180 1",
"output": "101787.601976316"
},
{
"input": "13\n24 72\n3 4608\n18 128\n72 8\n48 18\n144 2\n4 2592\n16 162\n9 512\n6 1152\n12 288\n36 32\n8 648",
"output": "130288.130529684"
},
{
"input": "14\n60 12\n20 108\n24 75\n120 3\n3 4800\n5 1728\n6 1200\n8 675\n12 300\n4 2700\n30 48\n15 192\n40 27\n10 432",
"output": "135716.802635088"
},
{
"input": "14\n105 4\n14 225\n6 1225\n7 900\n35 36\n10 441\n30 49\n5 1764\n21 100\n70 9\n42 25\n3 4900\n210 1\n15 196",
"output": "138544.236023319"
},
{
"input": "14\n6 1296\n216 1\n18 144\n3 5184\n8 729\n4 2916\n72 9\n12 324\n9 576\n54 16\n36 36\n27 64\n108 4\n24 81",
"output": "146574.146845895"
},
{
"input": "14\n4 3528\n12 392\n24 98\n84 8\n14 288\n42 32\n168 2\n56 18\n6 1568\n8 882\n3 6272\n21 128\n28 72\n7 1152",
"output": "177336.622109848"
},
{
"input": "18\n3 6400\n4 3600\n20 144\n8 900\n24 100\n15 256\n30 64\n16 225\n10 576\n48 25\n5 2304\n80 9\n60 16\n240 1\n6 1600\n40 36\n12 400\n120 4",
"output": "180955.736846784"
},
{
"input": "13\n3 6912\n144 3\n24 108\n18 192\n16 243\n36 48\n9 768\n12 432\n4 3888\n48 27\n72 12\n8 972\n6 1728",
"output": "195432.195794527"
},
{
"input": "16\n126 4\n21 144\n3 7056\n14 324\n42 36\n63 16\n28 81\n36 49\n7 1296\n84 9\n252 1\n4 3969\n6 1764\n9 784\n12 441\n18 196",
"output": "199503.699873579"
},
{
"input": "16\n45 32\n12 450\n60 18\n9 800\n180 2\n6 1800\n4 4050\n36 50\n3 7200\n18 200\n15 288\n30 72\n20 162\n90 8\n10 648\n5 2592",
"output": "203575.203952632"
},
{
"input": "14\n22 144\n24 121\n264 1\n6 1936\n132 4\n33 64\n4 4356\n12 484\n66 16\n3 7744\n44 36\n11 576\n88 9\n8 1089",
"output": "218956.441584609"
},
{
"input": "14\n30 80\n5 2880\n4 4500\n3 8000\n10 720\n12 500\n8 1125\n6 2000\n60 20\n120 5\n24 125\n15 320\n40 45\n20 180",
"output": "226194.671058480"
},
{
"input": "14\n27 100\n135 4\n3 8100\n45 36\n90 9\n30 81\n6 2025\n270 1\n54 25\n18 225\n10 729\n15 324\n5 2916\n9 900",
"output": "229022.104446711"
},
{
"input": "14\n28 100\n140 4\n20 196\n5 3136\n56 25\n4 4900\n40 49\n7 1600\n35 64\n70 16\n10 784\n280 1\n14 400\n8 1225",
"output": "246300.864041456"
},
{
"input": "16\n32 81\n96 9\n12 576\n3 9216\n18 256\n144 4\n36 64\n16 324\n72 16\n4 5184\n48 36\n288 1\n8 1296\n6 2304\n24 144\n9 1024",
"output": "260576.261059369"
},
{
"input": "14\n3 9408\n12 588\n4 5292\n24 147\n42 48\n7 1728\n168 3\n84 12\n6 2352\n28 108\n56 27\n8 1323\n21 192\n14 432",
"output": "266004.933164772"
},
{
"input": "14\n20 216\n12 600\n5 3456\n10 864\n15 384\n3 9600\n4 5400\n30 96\n8 1350\n6 2400\n24 150\n60 24\n120 6\n40 54",
"output": "271433.605270176"
},
{
"input": "14\n35 72\n21 200\n6 2450\n5 3528\n70 18\n30 98\n10 882\n15 392\n105 8\n210 2\n42 50\n3 9800\n14 450\n7 1800",
"output": "277088.472046638"
},
{
"input": "16\n100 9\n3 10000\n60 25\n15 400\n75 16\n10 900\n50 36\n150 4\n25 144\n6 2500\n12 625\n5 3600\n20 225\n30 100\n4 5625\n300 1",
"output": "282743.338823100"
},
{
"input": "13\n72 18\n24 162\n36 72\n4 5832\n18 288\n54 32\n12 648\n9 1152\n108 8\n216 2\n8 1458\n27 128\n6 2592",
"output": "293148.293691790"
},
{
"input": "15\n36 75\n45 48\n6 2700\n9 1200\n30 108\n18 300\n12 675\n20 243\n5 3888\n4 6075\n60 27\n90 12\n10 972\n180 3\n15 432",
"output": "305362.805928948"
},
{
"input": "13\n12 676\n39 64\n6 2704\n8 1521\n52 36\n312 1\n13 576\n104 9\n4 6084\n156 4\n24 169\n78 16\n26 144",
"output": "305815.195271065"
},
{
"input": "9\n4 2\n2 2\n4 1\n3 1\n1 1\n4 3\n5 1\n4 3\n4 1",
"output": "304.734487398"
},
{
"input": "5\n8 3\n6 3\n4 2\n7 3\n6 3",
"output": "801.106126665"
},
{
"input": "2\n1 1\n1 1",
"output": "3.141592654"
},
{
"input": "3\n10 10\n10 10\n10 10",
"output": "3141.592653590"
},
{
"input": "2\n100 30\n100 30",
"output": "942477.796077000"
}
] | 1,455,995,546
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 46
| 0
|
import math
n = int(input())
li=[]
for _ in range(n):
li.append(list(map(int,input().split())))
print(li)
k=0
t_max=-1
while k<n:
mx = -1
sum=0
for i in range(k,n):
v = math.pi*li[i][0]**2*li[i][1]
if v>mx:
mx = v
sum+=v
index = i
k = index+1
t_max = max(t_max,sum)
print(t_max)
|
Title: Babaei and Birthday Cake
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
As you know, every birthday party has a cake! This time, Babaei is going to prepare the very special birthday party's cake.
Simple cake is a cylinder of some radius and height. The volume of the simple cake is equal to the volume of corresponding cylinder. Babaei has *n* simple cakes and he is going to make a special cake placing some cylinders on each other.
However, there are some additional culinary restrictions. The cakes are numbered in such a way that the cake number *i* can be placed only on the table or on some cake number *j* where *j*<=<<=*i*. Moreover, in order to impress friends Babaei will put the cake *i* on top of the cake *j* only if the volume of the cake *i* is strictly greater than the volume of the cake *j*.
Babaei wants to prepare a birthday cake that has a maximum possible total volume. Help him find this value.
Input Specification:
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of simple cakes Babaei has.
Each of the following *n* lines contains two integers *r**i* and *h**i* (1<=≤<=*r**i*,<=*h**i*<=≤<=10<=000), giving the radius and height of the *i*-th cake.
Output Specification:
Print the maximum volume of the cake that Babaei can make. Your answer will be considered correct if its absolute or relative error does not exceed 10<=-<=6.
Namely: let's assume that your answer is *a*, and the answer of the jury is *b*. The checker program will consider your answer correct, if .
Demo Input:
['2\n100 30\n40 10\n', '4\n1 1\n9 7\n1 4\n10 7\n']
Demo Output:
['942477.796077000\n', '3983.539484752\n']
Note:
In first sample, the optimal way is to choose the cake number 1.
In second sample, the way to get the maximum volume is to use cakes with indices 1, 2 and 4.
|
```python
import math
n = int(input())
li=[]
for _ in range(n):
li.append(list(map(int,input().split())))
print(li)
k=0
t_max=-1
while k<n:
mx = -1
sum=0
for i in range(k,n):
v = math.pi*li[i][0]**2*li[i][1]
if v>mx:
mx = v
sum+=v
index = i
k = index+1
t_max = max(t_max,sum)
print(t_max)
```
| 0
|
|
1
|
A
|
Theatre Square
|
PROGRAMMING
| 1,000
|
[
"math"
] |
A. Theatre Square
|
1
|
256
|
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
|
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
|
Write the needed number of flagstones.
|
[
"6 6 4\n"
] |
[
"4\n"
] |
none
| 0
|
[
{
"input": "6 6 4",
"output": "4"
},
{
"input": "1 1 1",
"output": "1"
},
{
"input": "2 1 1",
"output": "2"
},
{
"input": "1 2 1",
"output": "2"
},
{
"input": "2 2 1",
"output": "4"
},
{
"input": "2 1 2",
"output": "1"
},
{
"input": "1 1 3",
"output": "1"
},
{
"input": "2 3 4",
"output": "1"
},
{
"input": "1000000000 1000000000 1",
"output": "1000000000000000000"
},
{
"input": "12 13 4",
"output": "12"
},
{
"input": "222 332 5",
"output": "3015"
},
{
"input": "1000 1000 10",
"output": "10000"
},
{
"input": "1001 1000 10",
"output": "10100"
},
{
"input": "100 10001 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 999999999",
"output": "4"
},
{
"input": "1000000000 1000000000 192",
"output": "27126743055556"
},
{
"input": "1000000000 987654321 1",
"output": "987654321000000000"
},
{
"input": "456784567 1000000000 51",
"output": "175618850864484"
},
{
"input": "39916800 134217728 40320",
"output": "3295710"
}
] | 1,664,899,055
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 30
| 0
|
n, m, a = map(int, input().split())
s = n * m
s_plit = a * a
res = int(s / s_plit)
if (s % s_plit != 0):
res += 1
if (res % 2 == 0):
print(res)
else:
if (res > 1):
res += 1
if(n > res):
print(n)
else:
print(res)
|
Title: Theatre Square
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
Input Specification:
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
Output Specification:
Write the needed number of flagstones.
Demo Input:
['6 6 4\n']
Demo Output:
['4\n']
Note:
none
|
```python
n, m, a = map(int, input().split())
s = n * m
s_plit = a * a
res = int(s / s_plit)
if (s % s_plit != 0):
res += 1
if (res % 2 == 0):
print(res)
else:
if (res > 1):
res += 1
if(n > res):
print(n)
else:
print(res)
```
| 0
|
157
|
A
|
Game Outcome
|
PROGRAMMING
| 800
|
[
"brute force"
] | null | null |
Sherlock Holmes and Dr. Watson played some game on a checkered board *n*<=×<=*n* in size. During the game they put numbers on the board's squares by some tricky rules we don't know. However, the game is now over and each square of the board contains exactly one number. To understand who has won, they need to count the number of winning squares. To determine if the particular square is winning you should do the following. Calculate the sum of all numbers on the squares that share this column (including the given square) and separately calculate the sum of all numbers on the squares that share this row (including the given square). A square is considered winning if the sum of the column numbers is strictly greater than the sum of the row numbers.
For instance, lets game was ended like is shown in the picture. Then the purple cell is winning, because the sum of its column numbers equals 8<=+<=3<=+<=6<=+<=7<==<=24, sum of its row numbers equals 9<=+<=5<=+<=3<=+<=2<==<=19, and 24<=><=19.
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=30). Each of the following *n* lines contain *n* space-separated integers. The *j*-th number on the *i*-th line represents the number on the square that belongs to the *j*-th column and the *i*-th row on the board. All number on the board are integers from 1 to 100.
|
Print the single number — the number of the winning squares.
|
[
"1\n1\n",
"2\n1 2\n3 4\n",
"4\n5 7 8 4\n9 5 3 2\n1 6 6 4\n9 5 7 3\n"
] |
[
"0\n",
"2\n",
"6\n"
] |
In the first example two upper squares are winning.
In the third example three left squares in the both middle rows are winning:
| 500
|
[
{
"input": "1\n1",
"output": "0"
},
{
"input": "2\n1 2\n3 4",
"output": "2"
},
{
"input": "4\n5 7 8 4\n9 5 3 2\n1 6 6 4\n9 5 7 3",
"output": "6"
},
{
"input": "2\n1 1\n1 1",
"output": "0"
},
{
"input": "3\n1 2 3\n4 5 6\n7 8 9",
"output": "4"
},
{
"input": "3\n1 2 3\n3 1 2\n2 3 1",
"output": "0"
},
{
"input": "4\n1 2 3 4\n8 7 6 5\n9 10 11 12\n16 15 14 13",
"output": "8"
},
{
"input": "1\n53",
"output": "0"
},
{
"input": "5\n1 98 22 9 39\n10 9 44 49 66\n79 17 23 8 47\n59 69 72 47 14\n94 91 98 19 54",
"output": "13"
},
{
"input": "1\n31",
"output": "0"
},
{
"input": "1\n92",
"output": "0"
},
{
"input": "5\n61 45 70 19 48\n52 29 98 21 74\n21 66 12 6 55\n62 75 66 62 57\n94 74 9 86 24",
"output": "13"
},
{
"input": "2\n73 99\n13 100",
"output": "2"
},
{
"input": "4\n89 79 14 89\n73 24 58 89\n62 88 69 65\n58 92 18 83",
"output": "10"
},
{
"input": "5\n99 77 32 20 49\n93 81 63 7 58\n37 1 17 35 53\n18 94 38 80 23\n91 50 42 61 63",
"output": "12"
},
{
"input": "4\n81 100 38 54\n8 64 39 59\n6 12 53 65\n79 50 99 71",
"output": "8"
},
{
"input": "5\n42 74 45 85 14\n68 94 11 3 89\n68 67 97 62 66\n65 76 96 18 84\n61 98 28 94 74",
"output": "12"
},
{
"input": "9\n53 80 94 41 58 49 88 24 42\n85 11 32 64 40 56 63 95 73\n17 85 60 41 13 71 54 67 87\n38 14 21 81 66 59 52 33 86\n29 34 46 18 19 80 10 44 51\n4 27 65 75 77 21 15 49 50\n35 68 86 98 98 62 69 52 71\n43 28 56 91 89 21 14 57 79\n27 27 29 26 15 76 21 70 78",
"output": "40"
},
{
"input": "7\n80 81 45 81 72 19 65\n31 24 15 52 47 1 14\n81 35 42 24 96 59 46\n16 2 59 56 60 98 76\n20 95 10 68 68 56 93\n60 16 68 77 89 52 43\n11 22 43 36 99 2 11",
"output": "21"
},
{
"input": "9\n33 80 34 56 56 33 27 74 57\n14 69 78 44 56 70 26 73 47\n13 42 17 33 78 83 94 70 37\n96 78 92 6 16 68 8 31 46\n67 97 21 10 44 64 15 77 28\n34 44 83 96 63 52 29 27 79\n23 23 57 54 35 16 5 64 36\n29 71 36 78 47 81 72 97 36\n24 83 70 58 36 82 42 44 26",
"output": "41"
},
{
"input": "9\n57 70 94 69 77 59 88 63 83\n6 79 46 5 9 43 20 39 48\n46 35 58 22 17 3 81 82 34\n77 10 40 53 71 84 14 58 56\n6 92 77 81 13 20 77 29 40\n59 53 3 97 21 97 22 11 64\n52 91 82 20 6 3 99 17 44\n79 25 43 69 85 55 95 61 31\n89 24 50 84 54 93 54 60 87",
"output": "46"
},
{
"input": "5\n77 44 22 21 20\n84 3 35 86 35\n97 50 1 44 92\n4 88 56 20 3\n32 56 26 17 80",
"output": "13"
},
{
"input": "7\n62 73 50 63 66 92 2\n27 13 83 84 88 81 47\n60 41 25 2 68 32 60\n7 94 18 98 41 25 72\n69 37 4 10 82 49 91\n76 26 67 27 30 49 18\n44 78 6 1 41 94 80",
"output": "26"
},
{
"input": "9\n40 70 98 28 44 78 15 73 20\n25 74 46 3 27 59 33 96 19\n100 47 99 68 68 67 66 87 31\n26 39 8 91 58 20 91 69 81\n77 43 90 60 17 91 78 85 68\n41 46 47 50 96 18 69 81 26\n10 58 2 36 54 64 69 10 65\n6 86 26 7 88 20 43 92 59\n61 76 13 23 49 28 22 79 8",
"output": "44"
},
{
"input": "8\n44 74 25 81 32 33 55 58\n36 13 28 28 20 65 87 58\n8 35 52 59 34 15 33 16\n2 22 42 29 11 66 30 72\n33 47 8 61 31 64 59 63\n79 36 38 42 12 21 92 36\n56 47 44 6 6 1 37 2\n79 88 79 53 50 69 94 39",
"output": "31"
},
{
"input": "5\n4 91 100 8 48\n78 56 61 49 83\n12 21 95 77 78\n40 20 91 79 25\n32 88 94 28 55",
"output": "10"
},
{
"input": "5\n23 70 5 36 69\n83 18 19 98 40\n84 91 18 51 35\n17 18 35 47 59\n29 72 35 87 27",
"output": "13"
},
{
"input": "12\n8 42 23 20 39 5 23 86 26 65 93 82\n48 35 12 4 59 19 19 28 38 81 97 99\n93 24 31 44 97 50 44 99 50 7 10 64\n79 43 65 29 84 43 46 41 89 16 6 1\n34 90 33 1 7 12 46 84 67 30 1 58\n58 21 100 66 56 22 7 24 72 73 86 37\n2 17 85 6 2 73 85 44 43 79 34 65\n3 53 29 76 87 2 27 19 11 42 71 38\n69 82 73 52 44 23 92 10 13 72 59 16\n73 32 37 93 21 94 43 39 27 53 14 15\n86 16 90 91 14 50 73 61 77 36 93 90\n22 56 30 52 81 70 12 92 75 27 38 12",
"output": "77"
},
{
"input": "3\n41 94 58\n73 61 8\n34 88 89",
"output": "5"
},
{
"input": "3\n1 2 3\n1 1 1\n1 1 1",
"output": "4"
},
{
"input": "2\n7 3\n9 5",
"output": "2"
},
{
"input": "3\n4 3 2\n2 2 2\n2 2 2",
"output": "4"
}
] | 1,603,814,017
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 49
| 218
| 307,200
|
n = int(input())
a = [list(map(int, input().split()))for _ in range(n)]
result=0
b = [sum(x) for x in zip(*a)]
c = list()
for i in range(n):
c.append(sum(a[i]))
for i in range(n):
for j in range(n):
if b[i]>c[j]:
result+=1
print(result)
|
Title: Game Outcome
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Sherlock Holmes and Dr. Watson played some game on a checkered board *n*<=×<=*n* in size. During the game they put numbers on the board's squares by some tricky rules we don't know. However, the game is now over and each square of the board contains exactly one number. To understand who has won, they need to count the number of winning squares. To determine if the particular square is winning you should do the following. Calculate the sum of all numbers on the squares that share this column (including the given square) and separately calculate the sum of all numbers on the squares that share this row (including the given square). A square is considered winning if the sum of the column numbers is strictly greater than the sum of the row numbers.
For instance, lets game was ended like is shown in the picture. Then the purple cell is winning, because the sum of its column numbers equals 8<=+<=3<=+<=6<=+<=7<==<=24, sum of its row numbers equals 9<=+<=5<=+<=3<=+<=2<==<=19, and 24<=><=19.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=30). Each of the following *n* lines contain *n* space-separated integers. The *j*-th number on the *i*-th line represents the number on the square that belongs to the *j*-th column and the *i*-th row on the board. All number on the board are integers from 1 to 100.
Output Specification:
Print the single number — the number of the winning squares.
Demo Input:
['1\n1\n', '2\n1 2\n3 4\n', '4\n5 7 8 4\n9 5 3 2\n1 6 6 4\n9 5 7 3\n']
Demo Output:
['0\n', '2\n', '6\n']
Note:
In the first example two upper squares are winning.
In the third example three left squares in the both middle rows are winning:
|
```python
n = int(input())
a = [list(map(int, input().split()))for _ in range(n)]
result=0
b = [sum(x) for x in zip(*a)]
c = list()
for i in range(n):
c.append(sum(a[i]))
for i in range(n):
for j in range(n):
if b[i]>c[j]:
result+=1
print(result)
```
| 3
|
|
600
|
B
|
Queries about less or equal elements
|
PROGRAMMING
| 1,300
|
[
"binary search",
"data structures",
"sortings",
"two pointers"
] | null | null |
You are given two arrays of integers *a* and *b*. For each element of the second array *b**j* you should find the number of elements in array *a* that are less than or equal to the value *b**j*.
|
The first line contains two integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=2·105) — the sizes of arrays *a* and *b*.
The second line contains *n* integers — the elements of array *a* (<=-<=109<=≤<=*a**i*<=≤<=109).
The third line contains *m* integers — the elements of array *b* (<=-<=109<=≤<=*b**j*<=≤<=109).
|
Print *m* integers, separated by spaces: the *j*-th of which is equal to the number of such elements in array *a* that are less than or equal to the value *b**j*.
|
[
"5 4\n1 3 5 7 9\n6 4 2 8\n",
"5 5\n1 2 1 2 5\n3 1 4 1 5\n"
] |
[
"3 2 1 4\n",
"4 2 4 2 5\n"
] |
none
| 0
|
[
{
"input": "5 4\n1 3 5 7 9\n6 4 2 8",
"output": "3 2 1 4"
},
{
"input": "5 5\n1 2 1 2 5\n3 1 4 1 5",
"output": "4 2 4 2 5"
},
{
"input": "1 1\n-1\n-2",
"output": "0"
},
{
"input": "1 1\n-80890826\n686519510",
"output": "1"
},
{
"input": "11 11\n237468511 -779187544 -174606592 193890085 404563196 -71722998 -617934776 170102710 -442808289 109833389 953091341\n994454001 322957429 216874735 -606986750 -455806318 -663190696 3793295 41395397 -929612742 -787653860 -684738874",
"output": "11 9 8 2 2 1 5 5 0 0 1"
},
{
"input": "20 22\n858276994 -568758442 -918490847 -983345984 -172435358 389604931 200224783 486556113 413281867 -258259500 -627945379 -584563643 444685477 -602481243 -370745158 965672503 630955806 -626138773 -997221880 633102929\n-61330638 -977252080 -212144219 385501731 669589742 954357160 563935906 584468977 -895883477 405774444 853372186 186056475 -964575261 -952431965 632332084 -388829939 -23011650 310957048 -770695392 977376693 321435214 199223897",
"output": "11 2 10 12 18 19 16 16 3 13 18 11 2 2 17 8 11 12 3 20 12 11"
},
{
"input": "5 9\n1 3 5 7 9\n1 2 3 4 5 6 7 8 9",
"output": "1 1 2 2 3 3 4 4 5"
},
{
"input": "22 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22\n1",
"output": "1"
},
{
"input": "5 1\n1 3 3 3 5\n3",
"output": "4"
},
{
"input": "4 5\n1 1 1 4\n1 5 5 4 3",
"output": "3 4 4 4 3"
},
{
"input": "5 4\n0 5 5 5 6\n5 1 6 3",
"output": "4 1 5 1"
},
{
"input": "1 3\n0\n-1 0 1",
"output": "0 1 1"
},
{
"input": "96 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1",
"output": "96"
},
{
"input": "7 1\n1 2 3 4 5 6 7\n1",
"output": "1"
},
{
"input": "13 13\n-1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000\n-1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000",
"output": "7 13 7 13 7 13 7 13 7 13 7 13 7"
},
{
"input": "9 5\n1 2 3 4 5 6 7 8 9\n1 2 3 4 5",
"output": "1 2 3 4 5"
},
{
"input": "3 8\n1 1 1\n1 1 1 1 1 1 1 1",
"output": "3 3 3 3 3 3 3 3"
},
{
"input": "1 1\n-11111\n-5938",
"output": "1"
},
{
"input": "1 1\n1\n400000009",
"output": "1"
},
{
"input": "1 1\n1\n300000009",
"output": "1"
},
{
"input": "1 1\n1\n200000009",
"output": "1"
},
{
"input": "1 1\n1\n200000003",
"output": "1"
}
] | 1,625,982,147
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 60
| 951
| 23,859,200
|
len_a, len_b = map(int, input().split(" "))
arr_a = sorted(list(map(int, input().split(" "))))
arr_b = list(map(int, input().split(" ")))
def binary_search(array, number, left, right):
mid = (left + right) // 2
if array[mid] <= number:
if array[mid + 1] > number:
return mid + 1
return binary_search(array, number, mid, right)
else:
if array[mid - 1] < number:
return mid
return binary_search(array, number, left, mid)
arr_a.sort()
for number in arr_b:
if number < arr_a[0]:
answer = 0
elif number >= arr_a[-1]:
answer = len_a
else:
answer = binary_search(arr_a, number, 0, len_a)
print(answer, end=' ')
|
Title: Queries about less or equal elements
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given two arrays of integers *a* and *b*. For each element of the second array *b**j* you should find the number of elements in array *a* that are less than or equal to the value *b**j*.
Input Specification:
The first line contains two integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=2·105) — the sizes of arrays *a* and *b*.
The second line contains *n* integers — the elements of array *a* (<=-<=109<=≤<=*a**i*<=≤<=109).
The third line contains *m* integers — the elements of array *b* (<=-<=109<=≤<=*b**j*<=≤<=109).
Output Specification:
Print *m* integers, separated by spaces: the *j*-th of which is equal to the number of such elements in array *a* that are less than or equal to the value *b**j*.
Demo Input:
['5 4\n1 3 5 7 9\n6 4 2 8\n', '5 5\n1 2 1 2 5\n3 1 4 1 5\n']
Demo Output:
['3 2 1 4\n', '4 2 4 2 5\n']
Note:
none
|
```python
len_a, len_b = map(int, input().split(" "))
arr_a = sorted(list(map(int, input().split(" "))))
arr_b = list(map(int, input().split(" ")))
def binary_search(array, number, left, right):
mid = (left + right) // 2
if array[mid] <= number:
if array[mid + 1] > number:
return mid + 1
return binary_search(array, number, mid, right)
else:
if array[mid - 1] < number:
return mid
return binary_search(array, number, left, mid)
arr_a.sort()
for number in arr_b:
if number < arr_a[0]:
answer = 0
elif number >= arr_a[-1]:
answer = len_a
else:
answer = binary_search(arr_a, number, 0, len_a)
print(answer, end=' ')
```
| 3
|
|
932
|
A
|
Palindromic Supersequence
|
PROGRAMMING
| 800
|
[
"constructive algorithms"
] | null | null |
You are given a string *A*. Find a string *B*, where *B* is a palindrome and *A* is a subsequence of *B*.
A subsequence of a string is a string that can be derived from it by deleting some (not necessarily consecutive) characters without changing the order of the remaining characters. For example, "cotst" is a subsequence of "contest".
A palindrome is a string that reads the same forward or backward.
The length of string *B* should be at most 104. It is guaranteed that there always exists such string.
You do not need to find the shortest answer, the only restriction is that the length of string *B* should not exceed 104.
|
First line contains a string *A* (1<=≤<=|*A*|<=≤<=103) consisting of lowercase Latin letters, where |*A*| is a length of *A*.
|
Output single line containing *B* consisting of only lowercase Latin letters. You do not need to find the shortest answer, the only restriction is that the length of string *B* should not exceed 104. If there are many possible *B*, print any of them.
|
[
"aba\n",
"ab\n"
] |
[
"aba",
"aabaa"
] |
In the first example, "aba" is a subsequence of "aba" which is a palindrome.
In the second example, "ab" is a subsequence of "aabaa" which is a palindrome.
| 500
|
[
{
"input": "aba",
"output": "abaaba"
},
{
"input": "ab",
"output": "abba"
},
{
"input": "krnyoixirslfszfqivgkaflgkctvbvksipwomqxlyqxhlbceuhbjbfnhofcgpgwdseffycthmlpcqejgskwjkbkbbmifnurnwyhevsoqzmtvzgfiqajfrgyuzxnrtxectcnlyoisbglpdbjbslxlpoymrcxmdtqhcnlvtqdwftuzgbdxsyscwbrguostbelnvtaqdmkmihmoxqtqlxvlsssisvqvvzotoyqryuyqwoknnqcqggysrqpkrccvyhxsjmhoqoyocwcriplarjoyiqrmmpmueqbsbljddwrumauczfziodpudheexalbwpiypmdjlmwtgdrzhpxneofhqzjdmurgvmrwdotuwyknlrbvuvtnhiouvqitgyfgfieonbaapyhwpcrmehxcpkijzfiayfvoxkpa",
"output": "krnyoixirslfszfqivgkaflgkctvbvksipwomqxlyqxhlbceuhbjbfnhofcgpgwdseffycthmlpcqejgskwjkbkbbmifnurnwyhevsoqzmtvzgfiqajfrgyuzxnrtxectcnlyoisbglpdbjbslxlpoymrcxmdtqhcnlvtqdwftuzgbdxsyscwbrguostbelnvtaqdmkmihmoxqtqlxvlsssisvqvvzotoyqryuyqwoknnqcqggysrqpkrccvyhxsjmhoqoyocwcriplarjoyiqrmmpmueqbsbljddwrumauczfziodpudheexalbwpiypmdjlmwtgdrzhpxneofhqzjdmurgvmrwdotuwyknlrbvuvtnhiouvqitgyfgfieonbaapyhwpcrmehxcpkijzfiayfvoxkpaapkxovfyaifzjikpcxhemrcpwhypaabnoeifgfygtiqvuoihntvuvbrlnkywutodwrmvgrumdjzqhfoenxphzrdgtwmljdm..."
},
{
"input": "mgrfmzxqpejcixxppqgvuawutgrmezjkteofjbnrvzzkvjtacfxjjokisavsgrslryxfqgrmdsqwptajbqzvethuljbdatxghfzqrwvfgakwmoawlzqjypmhllbbuuhbpriqsnibywlgjlxowyzagrfnqafvcqwktkcjwejevzbnxhsfmwojshcdypnvbuhhuzqmgovmvgwiizatoxgblyudipahfbkewmuneoqhjmbpdtwnznblwvtjrniwlbyblhppndspojrouffazpoxtqdfpjuhitvijrohavpqatofxwmksvjcvhdecxwwmosqiczjpkfafqlboxosnjgzgdraehzdltthemeusxhiiimrdrugabnxwsygsktkcslhjebfexucsyvlwrptebkjhefsvfrmcqqdlanbetrgzwylizmrystvpgrkhlicfadco",
"output": "mgrfmzxqpejcixxppqgvuawutgrmezjkteofjbnrvzzkvjtacfxjjokisavsgrslryxfqgrmdsqwptajbqzvethuljbdatxghfzqrwvfgakwmoawlzqjypmhllbbuuhbpriqsnibywlgjlxowyzagrfnqafvcqwktkcjwejevzbnxhsfmwojshcdypnvbuhhuzqmgovmvgwiizatoxgblyudipahfbkewmuneoqhjmbpdtwnznblwvtjrniwlbyblhppndspojrouffazpoxtqdfpjuhitvijrohavpqatofxwmksvjcvhdecxwwmosqiczjpkfafqlboxosnjgzgdraehzdltthemeusxhiiimrdrugabnxwsygsktkcslhjebfexucsyvlwrptebkjhefsvfrmcqqdlanbetrgzwylizmrystvpgrkhlicfadcoocdafcilhkrgpvtsyrmzilywzgrtebnaldqqcmrfvsfehjkbetprwlvyscuxef..."
},
{
"input": "hdmasfcjuigrwjchmjslmpynewnzpphmudzcbxzdexjuhktdtcoibzvevsmwaxakrtdfoivkvoooypyemiidadquqepxwqkesdnakxkbzrcjkgvwwxtqxvfpxcwitljyehldgsjytmekimkkndjvnzqtjykiymkmdzpwakxdtkzcqcatlevppgfhyykgmipuodjrnfjzhcmjdbzvhywprbwdcfxiffpzbjbmbyijkqnosslqbfvvicxvoeuzruraetglthgourzhfpnubzvblfzmmbgepjjyshchthulxar",
"output": "hdmasfcjuigrwjchmjslmpynewnzpphmudzcbxzdexjuhktdtcoibzvevsmwaxakrtdfoivkvoooypyemiidadquqepxwqkesdnakxkbzrcjkgvwwxtqxvfpxcwitljyehldgsjytmekimkkndjvnzqtjykiymkmdzpwakxdtkzcqcatlevppgfhyykgmipuodjrnfjzhcmjdbzvhywprbwdcfxiffpzbjbmbyijkqnosslqbfvvicxvoeuzruraetglthgourzhfpnubzvblfzmmbgepjjyshchthulxarraxluhthchsyjjpegbmmzflbvzbunpfhzruoghtlgtearurzueovxcivvfbqlssonqkjiybmbjbzpffixfcdwbrpwyhvzbdjmchzjfnrjdoupimgkyyhfgppveltacqczktdxkawpzdmkmyikyjtqznvjdnkkmikemtyjsgdlheyjltiwcxpfvxqtxwwvgkjcrzbkxkandsekqwxpequ..."
},
{
"input": "fggbyzobbmxtwdajawqdywnppflkkmtxzjvxopqvliwdwhzepcuiwelhbuotlkvesexnwkytonfrpqcxzzqzdvsmbsjcxxeugavekozfjlolrtqgwzqxsfgrnvrgfrqpixhsskbpzghndesvwptpvvkasfalzsetopervpwzmkgpcexqnvtnoulprwnowmsorscecvvvrjfwumcjqyrounqsgdruxttvtmrkivtxauhosokdiahsyrftzsgvgyveqwkzhqstbgywrvmsgfcfyuxpphvmyydzpohgdicoxbtjnsbyhoidnkrialowvlvmjpxcfeygqzphmbcjkupojsmmuqlydixbaluwezvnfasjfxilbyllwyipsmovdzosuwotcxerzcfuvxprtziseshjfcosalyqglpotxvxaanpocypsiyazsejjoximnbvqucftuvdksaxutvjeunodbipsumlaymjnzljurefjg",
"output": "fggbyzobbmxtwdajawqdywnppflkkmtxzjvxopqvliwdwhzepcuiwelhbuotlkvesexnwkytonfrpqcxzzqzdvsmbsjcxxeugavekozfjlolrtqgwzqxsfgrnvrgfrqpixhsskbpzghndesvwptpvvkasfalzsetopervpwzmkgpcexqnvtnoulprwnowmsorscecvvvrjfwumcjqyrounqsgdruxttvtmrkivtxauhosokdiahsyrftzsgvgyveqwkzhqstbgywrvmsgfcfyuxpphvmyydzpohgdicoxbtjnsbyhoidnkrialowvlvmjpxcfeygqzphmbcjkupojsmmuqlydixbaluwezvnfasjfxilbyllwyipsmovdzosuwotcxerzcfuvxprtziseshjfcosalyqglpotxvxaanpocypsiyazsejjoximnbvqucftuvdksaxutvjeunodbipsumlaymjnzljurefjggjferujlznjmyalmuspib..."
},
{
"input": "qyyxqkbxsvfnjzttdqmpzinbdgayllxpfrpopwciejjjzadguurnnhvixgueukugkkjyghxknedojvmdrskswiotgatsajowionuiumuhyggjuoympuxyfahwftwufvocdguxmxabbxnfviscxtilzzauizsgugwcqtbqgoosefhkumhodwpgolfdkbuiwlzjydonwbgyzzrjwxnceltqgqelrrljmzdbftmaogiuosaqhngmdzxzlmyrwefzhqawmkdckfnyyjgdjgadtfjvrkdwysqofcgyqrnyzutycvspzbjmmesobvhshtqlrytztyieknnkporrbcmlopgtknlmsstzkigreqwgsvagmvbrvwypoxttmzzsgm",
"output": "qyyxqkbxsvfnjzttdqmpzinbdgayllxpfrpopwciejjjzadguurnnhvixgueukugkkjyghxknedojvmdrskswiotgatsajowionuiumuhyggjuoympuxyfahwftwufvocdguxmxabbxnfviscxtilzzauizsgugwcqtbqgoosefhkumhodwpgolfdkbuiwlzjydonwbgyzzrjwxnceltqgqelrrljmzdbftmaogiuosaqhngmdzxzlmyrwefzhqawmkdckfnyyjgdjgadtfjvrkdwysqofcgyqrnyzutycvspzbjmmesobvhshtqlrytztyieknnkporrbcmlopgtknlmsstzkigreqwgsvagmvbrvwypoxttmzzsgmmgszzmttxopywvrbvmgavsgwqergikztssmlnktgpolmcbrropknnkeiytztyrlqthshvbosemmjbzpsvcytuzynrqygcfoqsywdkrvjftdagjdgjyynfkcdkmwaqhzfewry..."
},
{
"input": "scvlhflaqvniyiyofonowwcuqajuwscdrzhbvasymvqfnthzvtjcfuaftrbjghhvslcohwpxkggrbtatjtgehuqtorwinwvrtdldyoeeozxwippuahgkuehvsmyqtodqvlufqqmqautaqirvwzvtodzxtgxiinubhrbeoiybidutrqamsdnasctxatzkvkjkrmavdravnsxyngjlugwftmhmcvvxdbfndurrbmcpuoigjpssqcortmqoqttrabhoqvopjkxvpbqdqsilvlplhgqazauyvnodsxtwnomlinjpozwhrgrkqwmlwcwdkxjxjftexiavwrejvdjcfptterblxysjcheesyqsbgdrzjxbfjqgjgmvccqcyj",
"output": "scvlhflaqvniyiyofonowwcuqajuwscdrzhbvasymvqfnthzvtjcfuaftrbjghhvslcohwpxkggrbtatjtgehuqtorwinwvrtdldyoeeozxwippuahgkuehvsmyqtodqvlufqqmqautaqirvwzvtodzxtgxiinubhrbeoiybidutrqamsdnasctxatzkvkjkrmavdravnsxyngjlugwftmhmcvvxdbfndurrbmcpuoigjpssqcortmqoqttrabhoqvopjkxvpbqdqsilvlplhgqazauyvnodsxtwnomlinjpozwhrgrkqwmlwcwdkxjxjftexiavwrejvdjcfptterblxysjcheesyqsbgdrzjxbfjqgjgmvccqcyjjycqccvmgjgqjfbxjzrdgbsqyseehcjsyxlbrettpfcjdvjerwvaixetfjxjxkdwcwlmwqkrgrhwzopjnilmonwtxsdonvyuazaqghlplvlisqdqbpvxkjpovqohbarttqoqm..."
},
{
"input": "oohkqxxtvxzmvfjjxyjwlbqmeqwwlienzkdbhswgfbkhfygltsucdijozwaiewpixapyazfztksjeoqjugjfhdbqzuezbuajfvvffkwprroyivfoocvslejffgxuiofisenroxoeixmdbzonmreikpflciwsbafrdqfvdfojgoziiibqhwwsvhnzmptgirqqulkgmyzrfekzqqujmdumxkudsgexisupedisgmdgebvlvrpyfrbrqjknrxyzfpwmsxjxismgd",
"output": "oohkqxxtvxzmvfjjxyjwlbqmeqwwlienzkdbhswgfbkhfygltsucdijozwaiewpixapyazfztksjeoqjugjfhdbqzuezbuajfvvffkwprroyivfoocvslejffgxuiofisenroxoeixmdbzonmreikpflciwsbafrdqfvdfojgoziiibqhwwsvhnzmptgirqqulkgmyzrfekzqqujmdumxkudsgexisupedisgmdgebvlvrpyfrbrqjknrxyzfpwmsxjxismgddgmsixjxsmwpfzyxrnkjqrbrfyprvlvbegdmgsidepusixegsdukxmudmjuqqzkefrzymgkluqqrigtpmznhvswwhqbiiizogjofdvfqdrfabswiclfpkiermnozbdmxieoxornesifoiuxgffjelsvcoofviyorrpwkffvvfjaubzeuzqbdhfjgujqoejsktzfzaypaxipweiawzojidcustlgyfhkbfgwshbdkzneilwwqemqblw..."
},
{
"input": "gilhoixzjgidfanqrmekjelnvicpuujlpxittgadgrhqallnkjlemwazntwfywjnrxdkgrnczlwzjyeyfktduzdjnivcldjjarfzmmdbyytvipbbnjqolfnlqjpidotxxfobgtgpvjmpddcyddwdcjsxxumuoyznhpvpqccgqnuouzojntanfwctthcgynrukcvshsuuqrxfdvqqggaatwytikkitywtaaggqqvdfxrquushsvckurnygchttcwfnatnjozuounqgccqpvphnzyoumuxxsjcdwddycddpmjvpgtgbofxxtodipjqlnfloqjnbbpivtyybdmmzfrajjdlcvinjdzudtkfyeyjzwlzcnrgkdxrnjwyfwtnzawmeljknllaqhrgdagttixpljuupcivnlejkemrqnafdigjzxiohlig",
"output": "gilhoixzjgidfanqrmekjelnvicpuujlpxittgadgrhqallnkjlemwazntwfywjnrxdkgrnczlwzjyeyfktduzdjnivcldjjarfzmmdbyytvipbbnjqolfnlqjpidotxxfobgtgpvjmpddcyddwdcjsxxumuoyznhpvpqccgqnuouzojntanfwctthcgynrukcvshsuuqrxfdvqqggaatwytikkitywtaaggqqvdfxrquushsvckurnygchttcwfnatnjozuounqgccqpvphnzyoumuxxsjcdwddycddpmjvpgtgbofxxtodipjqlnfloqjnbbpivtyybdmmzfrajjdlcvinjdzudtkfyeyjzwlzcnrgkdxrnjwyfwtnzawmeljknllaqhrgdagttixpljuupcivnlejkemrqnafdigjzxiohliggilhoixzjgidfanqrmekjelnvicpuujlpxittgadgrhqallnkjlemwazntwfywjnrxdkgrnczlw..."
},
{
"input": "abcab",
"output": "abcabbacba"
},
{
"input": "baaaaaaa",
"output": "baaaaaaaaaaaaaab"
},
{
"input": "baaaaaa",
"output": "baaaaaaaaaaaab"
},
{
"input": "baaaaaaaaa",
"output": "baaaaaaaaaaaaaaaaaab"
},
{
"input": "baaaaaaaa",
"output": "baaaaaaaaaaaaaaaab"
}
] | 1,582,342,956
| 2,147,483,647
|
Python 3
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
/*
When you walk through a storm
Hold your head up high
And don't be afraid of the dark
At the end of the storm
There's a golden sky
And the sweet silver song
of the lark
Walk on, through the wind
Walk on, through the rain
Though your dreams be tossed
and blown
Walk on, walk on
With hope in your heart
And you'll never walk alone
YNWA
*/
//hell_hacker
//IT TAKES EVERYTHING and IT IS NOT LUCK
//PICK ME LAST -- COME OUT OF N^WHERE
//WHY NOT?
/*
And you came my way on a winner's day
Shouted loudly come out and play
Can't you tell I got news for you
Sun is shining and so are you
*/
// author: vovanstrr
// MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHBYYYWMMMM#BYYTTTYWMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMB9O1==?????zzCC111>>;;;;;;;;;;;<?TMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMMMMMMMMMMMMMMM9Olll=l======??????????>>>>>>;;;;;;;;;:;?TMMMMMMMMMMMMMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMMMMMMMMMMMM9ttlllllllll=l=======?????????>>>>>>;;;;;;;;;;?TMMMMMMMMMMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMMMMMMMMMBOttOtttttltlllllllll=======??????????>>>>>>>;;;;;;?TMMMMMMMMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMMMMMMMBttwOtttttttttttttlllllllll========?????????>>>>>>;;;;;<TMMMMMMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMMMMMBrwZrttttttttttttttttttlllllllllll======???????????>>>>>>;;?HMMMMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMMMMSw0trtrrtrtrttrtttttttttttttlllOllllll========????<<zz??>>>>>>ZMMMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMMMX0ttrtrOOttrttrttOOttttttttttttltwllllllllll========??wy?????>>>vZMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMM0ttrI+wV1rtttttttwZtttttttltttOwylOXOllllllllllll=l====1dkz???????vZdMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMSrrwrtwZCjttttttttwSttOlllltllllwtXOlZkOlllllllllllllll==z+dk===?????X2JMMMMMMMMMMMMM
// MMMMMMMMMMMMMBrtwwtrw0<jttttttttOXllOttltllttllOZwHOtXkyltlllllllllllllll<+XZ======?dk?JMMMMMMMMMMMM
// MMMMMMMMMMMMStwdZtwXC<+ttttttOOOd6ltZlltllllttllStWWOOHWytttttltltOllltllz:zHllll===zX=?dMMMMMMMMMMM
// MMMMMMMMMMBrwdKOtwW3;;zrttttwZwXRlldOllltltlltttwlXvktdXWytltttttttOttlttl<<dklllllllZ===dMMMMMMMMMM
// MMMMMMMMM8tQM#ttwW3;;;1trttwSwfUOlORltllltlllllldtX>dktDOWOtlttltttOOttltO<;+WOllllllXlllzMMMMMMMMMM
// MMMMMMMM9OdM#Ottd$;;;;;<?1z0OKjRltd0llltOllllllldZX>?WOw_WWOtttttttttOttI<;;<dkttttllllllldMMMMMMMMM
// MMMMMMM9wMMMSttwS<;;;;>;;;J<j>(I<?U111zltllllllld0X>~dkwl(WkttlttlOOwWk<;;:;;zHttttttwOllllMMMMMMMMM
// MMMMMMBdMMM8tttdI+zttttttdSXt~dlzXwlllzzOzzzzzlldkW<~?kOk~?sx++++jdHmH6+++<;;jdZtttttdkOtlldMMMMMMMM
// MMMMM#dMMM#tttw0+tttttttdKdf((RsdfRllllldZllltlldWK~~_W0w_~OWOlOdgg9ZtOWOtttz+wktttttdpktttwMMMMMMMM
// MMMMMWMMMMSlttdIttttttOdWHH>~(IzWDRll=llzRlllzlldk$>++dkd<~_XkdgH9tttttdktttt+OkrttrtdfpkttOMMMMMMMM
// MMMMNWMMM#Zttlk=tttttOXWWd$_.(IdW1R=llll=SlllzOldK<_._(kd6+-(MM9lltttttrWktttztWZttrwXppWttrMMMMMMMM
// MMMMNMMMM#lltwDzttllOXyW0X:..(OXk<Rl=ll=lwOlllOld3<``.(Rd>~?CdklllltttttXdXttzOWktrwwWpfpkrtMMMMMMMM
// MMMMMMMMM@ltldIzlttOXyW$w$```(OyD(Rl==llldZ=llIlw;~```-Xd:~~~~UkylltttAyHdgSrzObRtOXwpfppWrrMMMMMMMM
// MMMMMMMMM@llldtlllldVyW+d>```.wZ$ wl==lI=wRl=ll=w<```` dd_..~~(RZXOQdggHH9ZwrzwHWrdXXppfppkrMMMMMMMM
// MMMMMMMMM#llldlltlwyyyD(S-...,Wk] zI=l=llzWzl=l=P~```` jZ``...~zQkH@MBUtrZtrtldHRdSdpfpffpkwMMMMMMMM
// MMMMNMMMMNZllXtllldVyW3(Mf=<ONMHP~(k===l=zdk=lld3```...(C````..(M96lttttrrtrrtdHWHXpfpppfpRwMMMMMMMM
// MMMMMMMMMMNzzWZllzyyyy(W@` =~MWK6 jz=lzlzvRz=lZ`.I+JgkWm&-. `..(ZltlttttrtttrWWHppfppfpppSdMMMMMMMM
// MMMMMMMMMMMkAWRllzVyyS_(b .MNHU-(Uz=lI={XkzO>.dVT7<TMHMNHHx-.(kwZyltttrtrrdHHpfppfpffpp0dMMMMMMMM
// MMMMMMMMMMMMKyWzOzyyyk.`<! hdWMH]``(S==t=l(kX2 ?_` WMMHH#HH+.XwkwOttttrwrZ~(HfpfpppfpWwXMMMMMMMM
// MMMMMMMMMMMMMHWROOyyyW;` `. (WVM#b```(0=zzz wX!``` a.dM#NM@N(4WhXkXkWtttttwd3O_(HpffpfpfWwSMMMMMMMM
// MMMMMMMMMMMMNZvWzXXyyXP```-_ ?o+?!````.4=Z=`(:```` HpbNNMHHH (C=XXyWZWttrdwf:(>.dfppffppSXSMMMMMMMM
// MMMMMMMMMMMMMRzuHzXyZXH.``````````````` ?zz ``````` ZKvTHHbWt `` XZyyHZWOdSZ<::~`(fpfpfffXp0WMMMMMMM
// MMMMMMMMMMMMMKzyyHvyZZW____.`````````````.I_```````` ?nJzX7^````.WXWyyHyWKZ<:::_`Jffpfpfpfp0WMMMMMMM
// MMMMMMMMMMMMM@zZyZWwWyXo-_~(~ ```````````` `````````````` _`````.WXkyyVWmWc::<~ .HffppfffffkXMMMMMMM
// MMMMMMMMMMMMMKzZZZZXkUXr~....```````....```````````` ... ````..JXWWyyW83vXx~..WfffVfWVffffkdMMMMMMM
// MMMMMMMMMMMMMRzZZZZZZZZb````````````<````````````./<~._<_.____`(WfdyW3<:~~(XWkVVVVVVVHVVVVV0dMMMMMMM
// MMMMMMMMMMMMMSzZZZZZZZWX-```````````````````````````.......~~._j9jX=_~~_(XZyVHHkyyyyWHyyykykOMMMMMMM
// MMMMMMMMMMMMMSzuuuuuZXWZW,```````````````````````````````.``..(3<! ...JWyyXWyyyWHkyyWHyyyHyklMMMMMMM
// MMMMMMMMMMMMNXzuuuXXuXSuuXh,```````` .... ```````````````````_~ .JWyyyyZyy0HyyZyyZyZXWZZZWHZIdMMMMMM
// MMMMMMMMMMMMNwtuuuXkuXXuuuuXh,``````(:::~<?71(,``````````````.(UMNUkZZZZZZZHZZ0ZZZZZWWZZZWNXIdMMMMMM
// MMMMMMMMMMMMNKOzuzXkuXuuuuuXuXW, ```` _~~~:~~(}```````````.(YC;::<kCfZZZZXO#ZZVZZZZZMZZuuMMNXzMMMMMM
// MMMMMMMMMMMMHKOzzuXkzdzzzzuXXzuuU&.``````````````````` .JY>::::;;J=:dZuZuZd#uuruuuud#uuuXMMMNXdMMMMM
// MMMMMMMMMMMMMNOvzzXkvMRzzzzXKzuzzzXh, `````````````..JC<;:;;:;;+7<:~(HHuXIdNuuzuuuXMSuuuWMMMMROMMMMM
// MMMMMMMMMMMMMNvvvrdkvM#vzzzzHzzzzzuzzUG. ``` ...JdY<:;:;:::;;+v<~~~:(HpHmzMNXZzuzzd#zzzdMMMMMMRdMMMM
// MMMMMMMMMMMMMNwrrvdRrMNwvvvvdRvvvzwkzzzzXWWHY=~~O+::::::::<+<~~~~~~~dppppWMMkZzzzwM#zzdMMMMMMMMNMMMM
// MMMMMMMMMMMMMM#rrrwRrMMbOrrOZNkrvvvXwvvvvvwX;.~._W_:::::(?!~~~~~~~~(HpppppppHWdvwM#XwdMMMMMMMMMMNMMM
// MMMMMMMMMMMMMMNyrrrRrWMMmzOrzdNyrrrZNvrwQWWfb....(r~~_J>_.....~.~~-dpfpffpfpppWHHMNdMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMNrtrStdMMMNxzrzMNmrrrdNWfVfffP._-.(~_J!............JpfpffpfpfffpppWNppppHMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMNOtXtdMMMMMNxzZMMNmgHyVVVVVW%..?/(.,(x-..........(HfffpffpffpffWHHffpffppfVyyWMMMMMM
/*
*/
#pragma GCC optimize("O3")
#include<bits/stdc++.h>
#include <ext/pb_ds/detail/standard_policies.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
#define ll long long
#define ull unsigned long long
#define ld long double
#define f first
#define se second
#define SpeedForce ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define sqr(x) ((x)*(x))
#define forn(i, n) for(ll i=0;i<n;++i)
#define forl(i, a, b) for(ll i=(a);i<=(b);++i)
#define ford(i, a, b) for(ll i=(a);i>=(b);--i)
#define forg(i, a, b, c) for(ll i=(a);i<=(b);i += (c))
#define cno cout<<"NO";return 0;
#define cye cout<<"YES";return 0;
#define pb push_back
#define mp make_pair
#define fbo find_by_order
#define ofk order_of_key
#define all(a) (a).begin(), (a).end()
#define pb1 pop_back
#define sz(x) ((int)(x).size())
#define fill(a, x) memset(a, x, sizeof(a))
#define _read(x) freopen(x, "r", stdin)
#define _write(x) freopen(x, "w", stdout)
#define files(x) _read(x ".in"); _write(x ".out")
#define y1 qwertytrewq
typedef pair < int, int > pii;
typedef pair < char, int > pci;
typedef pair < pii, int > ppii;
typedef pair < ll, ll > pll;
typedef pair < ull, ull > puu;
typedef pair < int, string > pis;
typedef pair < string, int > psi;
typedef map < int, int > mii;
typedef map < int, int > mii;
typedef map < int, char > mic;
typedef map < string, int > msi;
typedef map < string, string > mss;
typedef map < char, int > mci;
typedef map < char, ll > mcl;
typedef map < ll, ll > mll;
typedef map < pii, int > mpii;
typedef vector < int > vi;
typedef vector < vi > vvi;
typedef vector < char > vc;
typedef vector < ll > vll;
typedef vector < pii > vpii;
typedef vector < pll > vpll;
typedef vector < pis > vpis;
typedef map < int, vpii > mivpi;
typedef set < int > si;
typedef set < char > sc;
typedef set < ll > sll;
typedef set< pair < ull, ull > > spuu;
typedef set< pii > spii;
typedef priority_queue< ll > pqll;
const int N = 1e6+7;
const int M = 60;
const int MAXK = 1e5+3;
const int Candy = 1e6+3;
const int mod = 1e9 + 7;
//const int mod = 998244353;
//const ll mod = 1e18;
const ll INF = 1e18;
const double PI = 3.1415926535897932384626433;
const ld EPS = 1e-12;
template <typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T> int sgn(T val) {
return (T(0) < val) - (val < T(0));
}
char getChar() { char c = 0; while (c <= ' ') cin >> c; return c; }
inline ll fast_pow(ll a, ll b){
ll res = a, ret = 1;
while(b>0){
if(b%2)
ret = (ret*res)%mod;
res = (res*res)%mod;
b/=2;
}
return ret;
}
inline ll fact(ll n){
int f = 1;
forl(i, 2, n) f = f * i % mod;
return f;
}
/* SPARSE TABLE
int table[22][N];
void build(){
for(int i = 0; i < n; i++) table[0][i] = a[i + 1];
for(int j = 1; j <= 20; ++j){
for(int i = 0; i + (1 << (j - 1)) < n; ++i){
table[j][i] = max(table[j - 1][i], table[j - 1][i + (1 << (j - 1))]);
}
}
}
pii getmx(int x, int y){
int k = log2(y - x + 1);
return max(table[k][x - 1], table[k][y - (1 << k)]);
}
*/
inline ll factmod(ll n, ll p) {
ll res = 1;
while(n > 1){
res = (res * ((n / p) % 2 ? p - 1 : 1)) % p;
for(ll i = 2; i <= n % p; ++i)
res = (res * i) % p;
n /= p;
}
return res % p;
}
inline ll Cnk(ll n, ll r){
r = min(r, n - r);
ll ans = 1;
ford(i, n, n - r + 1) ans = (ans * i) % mod;
forl(i, 1, r) ans = (ans * fast_pow(i, mod - 2)) % mod;
return ans;
}
string s;
int main(){
SpeedForce
cin >> s;
cout << s;
reverse(all(s));
cout << s;
return (!false && !true) || ((ll)((ll)(1713 + 2377 + 1464) * (ll)(1713 + 2377 + 1464) * (ll)(1713 + 2377 + 1464)) != (ll)(171323771464));
}
|
Title: Palindromic Supersequence
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given a string *A*. Find a string *B*, where *B* is a palindrome and *A* is a subsequence of *B*.
A subsequence of a string is a string that can be derived from it by deleting some (not necessarily consecutive) characters without changing the order of the remaining characters. For example, "cotst" is a subsequence of "contest".
A palindrome is a string that reads the same forward or backward.
The length of string *B* should be at most 104. It is guaranteed that there always exists such string.
You do not need to find the shortest answer, the only restriction is that the length of string *B* should not exceed 104.
Input Specification:
First line contains a string *A* (1<=≤<=|*A*|<=≤<=103) consisting of lowercase Latin letters, where |*A*| is a length of *A*.
Output Specification:
Output single line containing *B* consisting of only lowercase Latin letters. You do not need to find the shortest answer, the only restriction is that the length of string *B* should not exceed 104. If there are many possible *B*, print any of them.
Demo Input:
['aba\n', 'ab\n']
Demo Output:
['aba', 'aabaa']
Note:
In the first example, "aba" is a subsequence of "aba" which is a palindrome.
In the second example, "ab" is a subsequence of "aabaa" which is a palindrome.
|
```python
/*
When you walk through a storm
Hold your head up high
And don't be afraid of the dark
At the end of the storm
There's a golden sky
And the sweet silver song
of the lark
Walk on, through the wind
Walk on, through the rain
Though your dreams be tossed
and blown
Walk on, walk on
With hope in your heart
And you'll never walk alone
YNWA
*/
//hell_hacker
//IT TAKES EVERYTHING and IT IS NOT LUCK
//PICK ME LAST -- COME OUT OF N^WHERE
//WHY NOT?
/*
And you came my way on a winner's day
Shouted loudly come out and play
Can't you tell I got news for you
Sun is shining and so are you
*/
// author: vovanstrr
// MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHBYYYWMMMM#BYYTTTYWMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMB9O1==?????zzCC111>>;;;;;;;;;;;<?TMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMMMMMMMMMMMMMMM9Olll=l======??????????>>>>>>;;;;;;;;;:;?TMMMMMMMMMMMMMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMMMMMMMMMMMM9ttlllllllll=l=======?????????>>>>>>;;;;;;;;;;?TMMMMMMMMMMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMMMMMMMMMBOttOtttttltlllllllll=======??????????>>>>>>>;;;;;;?TMMMMMMMMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMMMMMMMBttwOtttttttttttttlllllllll========?????????>>>>>>;;;;;<TMMMMMMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMMMMMBrwZrttttttttttttttttttlllllllllll======???????????>>>>>>;;?HMMMMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMMMMSw0trtrrtrtrttrtttttttttttttlllOllllll========????<<zz??>>>>>>ZMMMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMMMX0ttrtrOOttrttrttOOttttttttttttltwllllllllll========??wy?????>>>vZMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMM0ttrI+wV1rtttttttwZtttttttltttOwylOXOllllllllllll=l====1dkz???????vZdMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMSrrwrtwZCjttttttttwSttOlllltllllwtXOlZkOlllllllllllllll==z+dk===?????X2JMMMMMMMMMMMMM
// MMMMMMMMMMMMMBrtwwtrw0<jttttttttOXllOttltllttllOZwHOtXkyltlllllllllllllll<+XZ======?dk?JMMMMMMMMMMMM
// MMMMMMMMMMMMStwdZtwXC<+ttttttOOOd6ltZlltllllttllStWWOOHWytttttltltOllltllz:zHllll===zX=?dMMMMMMMMMMM
// MMMMMMMMMMBrwdKOtwW3;;zrttttwZwXRlldOllltltlltttwlXvktdXWytltttttttOttlttl<<dklllllllZ===dMMMMMMMMMM
// MMMMMMMMM8tQM#ttwW3;;;1trttwSwfUOlORltllltlllllldtX>dktDOWOtlttltttOOttltO<;+WOllllllXlllzMMMMMMMMMM
// MMMMMMMM9OdM#Ottd$;;;;;<?1z0OKjRltd0llltOllllllldZX>?WOw_WWOtttttttttOttI<;;<dkttttllllllldMMMMMMMMM
// MMMMMMM9wMMMSttwS<;;;;>;;;J<j>(I<?U111zltllllllld0X>~dkwl(WkttlttlOOwWk<;;:;;zHttttttwOllllMMMMMMMMM
// MMMMMMBdMMM8tttdI+zttttttdSXt~dlzXwlllzzOzzzzzlldkW<~?kOk~?sx++++jdHmH6+++<;;jdZtttttdkOtlldMMMMMMMM
// MMMMM#dMMM#tttw0+tttttttdKdf((RsdfRllllldZllltlldWK~~_W0w_~OWOlOdgg9ZtOWOtttz+wktttttdpktttwMMMMMMMM
// MMMMMWMMMMSlttdIttttttOdWHH>~(IzWDRll=llzRlllzlldk$>++dkd<~_XkdgH9tttttdktttt+OkrttrtdfpkttOMMMMMMMM
// MMMMNWMMM#Zttlk=tttttOXWWd$_.(IdW1R=llll=SlllzOldK<_._(kd6+-(MM9lltttttrWktttztWZttrwXppWttrMMMMMMMM
// MMMMNMMMM#lltwDzttllOXyW0X:..(OXk<Rl=ll=lwOlllOld3<``.(Rd>~?CdklllltttttXdXttzOWktrwwWpfpkrtMMMMMMMM
// MMMMMMMMM@ltldIzlttOXyW$w$```(OyD(Rl==llldZ=llIlw;~```-Xd:~~~~UkylltttAyHdgSrzObRtOXwpfppWrrMMMMMMMM
// MMMMMMMMM@llldtlllldVyW+d>```.wZ$ wl==lI=wRl=ll=w<```` dd_..~~(RZXOQdggHH9ZwrzwHWrdXXppfppkrMMMMMMMM
// MMMMMMMMM#llldlltlwyyyD(S-...,Wk] zI=l=llzWzl=l=P~```` jZ``...~zQkH@MBUtrZtrtldHRdSdpfpffpkwMMMMMMMM
// MMMMNMMMMNZllXtllldVyW3(Mf=<ONMHP~(k===l=zdk=lld3```...(C````..(M96lttttrrtrrtdHWHXpfpppfpRwMMMMMMMM
// MMMMMMMMMMNzzWZllzyyyy(W@` =~MWK6 jz=lzlzvRz=lZ`.I+JgkWm&-. `..(ZltlttttrtttrWWHppfppfpppSdMMMMMMMM
// MMMMMMMMMMMkAWRllzVyyS_(b .MNHU-(Uz=lI={XkzO>.dVT7<TMHMNHHx-.(kwZyltttrtrrdHHpfppfpffpp0dMMMMMMMM
// MMMMMMMMMMMMKyWzOzyyyk.`<! hdWMH]``(S==t=l(kX2 ?_` WMMHH#HH+.XwkwOttttrwrZ~(HfpfpppfpWwXMMMMMMMM
// MMMMMMMMMMMMMHWROOyyyW;` `. (WVM#b```(0=zzz wX!``` a.dM#NM@N(4WhXkXkWtttttwd3O_(HpffpfpfWwSMMMMMMMM
// MMMMMMMMMMMMNZvWzXXyyXP```-_ ?o+?!````.4=Z=`(:```` HpbNNMHHH (C=XXyWZWttrdwf:(>.dfppffppSXSMMMMMMMM
// MMMMMMMMMMMMMRzuHzXyZXH.``````````````` ?zz ``````` ZKvTHHbWt `` XZyyHZWOdSZ<::~`(fpfpfffXp0WMMMMMMM
// MMMMMMMMMMMMMKzyyHvyZZW____.`````````````.I_```````` ?nJzX7^````.WXWyyHyWKZ<:::_`Jffpfpfpfp0WMMMMMMM
// MMMMMMMMMMMMM@zZyZWwWyXo-_~(~ ```````````` `````````````` _`````.WXkyyVWmWc::<~ .HffppfffffkXMMMMMMM
// MMMMMMMMMMMMMKzZZZZXkUXr~....```````....```````````` ... ````..JXWWyyW83vXx~..WfffVfWVffffkdMMMMMMM
// MMMMMMMMMMMMMRzZZZZZZZZb````````````<````````````./<~._<_.____`(WfdyW3<:~~(XWkVVVVVVVHVVVVV0dMMMMMMM
// MMMMMMMMMMMMMSzZZZZZZZWX-```````````````````````````.......~~._j9jX=_~~_(XZyVHHkyyyyWHyyykykOMMMMMMM
// MMMMMMMMMMMMMSzuuuuuZXWZW,```````````````````````````````.``..(3<! ...JWyyXWyyyWHkyyWHyyyHyklMMMMMMM
// MMMMMMMMMMMMNXzuuuXXuXSuuXh,```````` .... ```````````````````_~ .JWyyyyZyy0HyyZyyZyZXWZZZWHZIdMMMMMM
// MMMMMMMMMMMMNwtuuuXkuXXuuuuXh,``````(:::~<?71(,``````````````.(UMNUkZZZZZZZHZZ0ZZZZZWWZZZWNXIdMMMMMM
// MMMMMMMMMMMMNKOzuzXkuXuuuuuXuXW, ```` _~~~:~~(}```````````.(YC;::<kCfZZZZXO#ZZVZZZZZMZZuuMMNXzMMMMMM
// MMMMMMMMMMMMHKOzzuXkzdzzzzuXXzuuU&.``````````````````` .JY>::::;;J=:dZuZuZd#uuruuuud#uuuXMMMNXdMMMMM
// MMMMMMMMMMMMMNOvzzXkvMRzzzzXKzuzzzXh, `````````````..JC<;:;;:;;+7<:~(HHuXIdNuuzuuuXMSuuuWMMMMROMMMMM
// MMMMMMMMMMMMMNvvvrdkvM#vzzzzHzzzzzuzzUG. ``` ...JdY<:;:;:::;;+v<~~~:(HpHmzMNXZzuzzd#zzzdMMMMMMRdMMMM
// MMMMMMMMMMMMMNwrrvdRrMNwvvvvdRvvvzwkzzzzXWWHY=~~O+::::::::<+<~~~~~~~dppppWMMkZzzzwM#zzdMMMMMMMMNMMMM
// MMMMMMMMMMMMMM#rrrwRrMMbOrrOZNkrvvvXwvvvvvwX;.~._W_:::::(?!~~~~~~~~(HpppppppHWdvwM#XwdMMMMMMMMMMNMMM
// MMMMMMMMMMMMMMNyrrrRrWMMmzOrzdNyrrrZNvrwQWWfb....(r~~_J>_.....~.~~-dpfpffpfpppWHHMNdMMMMMMMMMMMMMMMM
// MMMMMMMMMMMMMMMNrtrStdMMMNxzrzMNmrrrdNWfVfffP._-.(~_J!............JpfpffpfpfffpppWNppppHMMMMMMMMMMMM
// MMMMMMMMMMMMMMMMNOtXtdMMMMMNxzZMMNmgHyVVVVVW%..?/(.,(x-..........(HfffpffpffpffWHHffpffppfVyyWMMMMMM
/*
*/
#pragma GCC optimize("O3")
#include<bits/stdc++.h>
#include <ext/pb_ds/detail/standard_policies.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
#define ll long long
#define ull unsigned long long
#define ld long double
#define f first
#define se second
#define SpeedForce ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define sqr(x) ((x)*(x))
#define forn(i, n) for(ll i=0;i<n;++i)
#define forl(i, a, b) for(ll i=(a);i<=(b);++i)
#define ford(i, a, b) for(ll i=(a);i>=(b);--i)
#define forg(i, a, b, c) for(ll i=(a);i<=(b);i += (c))
#define cno cout<<"NO";return 0;
#define cye cout<<"YES";return 0;
#define pb push_back
#define mp make_pair
#define fbo find_by_order
#define ofk order_of_key
#define all(a) (a).begin(), (a).end()
#define pb1 pop_back
#define sz(x) ((int)(x).size())
#define fill(a, x) memset(a, x, sizeof(a))
#define _read(x) freopen(x, "r", stdin)
#define _write(x) freopen(x, "w", stdout)
#define files(x) _read(x ".in"); _write(x ".out")
#define y1 qwertytrewq
typedef pair < int, int > pii;
typedef pair < char, int > pci;
typedef pair < pii, int > ppii;
typedef pair < ll, ll > pll;
typedef pair < ull, ull > puu;
typedef pair < int, string > pis;
typedef pair < string, int > psi;
typedef map < int, int > mii;
typedef map < int, int > mii;
typedef map < int, char > mic;
typedef map < string, int > msi;
typedef map < string, string > mss;
typedef map < char, int > mci;
typedef map < char, ll > mcl;
typedef map < ll, ll > mll;
typedef map < pii, int > mpii;
typedef vector < int > vi;
typedef vector < vi > vvi;
typedef vector < char > vc;
typedef vector < ll > vll;
typedef vector < pii > vpii;
typedef vector < pll > vpll;
typedef vector < pis > vpis;
typedef map < int, vpii > mivpi;
typedef set < int > si;
typedef set < char > sc;
typedef set < ll > sll;
typedef set< pair < ull, ull > > spuu;
typedef set< pii > spii;
typedef priority_queue< ll > pqll;
const int N = 1e6+7;
const int M = 60;
const int MAXK = 1e5+3;
const int Candy = 1e6+3;
const int mod = 1e9 + 7;
//const int mod = 998244353;
//const ll mod = 1e18;
const ll INF = 1e18;
const double PI = 3.1415926535897932384626433;
const ld EPS = 1e-12;
template <typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T> int sgn(T val) {
return (T(0) < val) - (val < T(0));
}
char getChar() { char c = 0; while (c <= ' ') cin >> c; return c; }
inline ll fast_pow(ll a, ll b){
ll res = a, ret = 1;
while(b>0){
if(b%2)
ret = (ret*res)%mod;
res = (res*res)%mod;
b/=2;
}
return ret;
}
inline ll fact(ll n){
int f = 1;
forl(i, 2, n) f = f * i % mod;
return f;
}
/* SPARSE TABLE
int table[22][N];
void build(){
for(int i = 0; i < n; i++) table[0][i] = a[i + 1];
for(int j = 1; j <= 20; ++j){
for(int i = 0; i + (1 << (j - 1)) < n; ++i){
table[j][i] = max(table[j - 1][i], table[j - 1][i + (1 << (j - 1))]);
}
}
}
pii getmx(int x, int y){
int k = log2(y - x + 1);
return max(table[k][x - 1], table[k][y - (1 << k)]);
}
*/
inline ll factmod(ll n, ll p) {
ll res = 1;
while(n > 1){
res = (res * ((n / p) % 2 ? p - 1 : 1)) % p;
for(ll i = 2; i <= n % p; ++i)
res = (res * i) % p;
n /= p;
}
return res % p;
}
inline ll Cnk(ll n, ll r){
r = min(r, n - r);
ll ans = 1;
ford(i, n, n - r + 1) ans = (ans * i) % mod;
forl(i, 1, r) ans = (ans * fast_pow(i, mod - 2)) % mod;
return ans;
}
string s;
int main(){
SpeedForce
cin >> s;
cout << s;
reverse(all(s));
cout << s;
return (!false && !true) || ((ll)((ll)(1713 + 2377 + 1464) * (ll)(1713 + 2377 + 1464) * (ll)(1713 + 2377 + 1464)) != (ll)(171323771464));
}
```
| -1
|
|
676
|
B
|
Pyramid of Glasses
|
PROGRAMMING
| 1,500
|
[
"implementation",
"math",
"math"
] | null | null |
Mary has just graduated from one well-known University and is now attending celebration party. Students like to dream of a beautiful life, so they used champagne glasses to construct a small pyramid. The height of the pyramid is *n*. The top level consists of only 1 glass, that stands on 2 glasses on the second level (counting from the top), then 3 glasses on the third level and so on.The bottom level consists of *n* glasses.
Vlad has seen in the movies many times how the champagne beautifully flows from top levels to bottom ones, filling all the glasses simultaneously. So he took a bottle and started to pour it in the glass located at the top of the pyramid.
Each second, Vlad pours to the top glass the amount of champagne equal to the size of exactly one glass. If the glass is already full, but there is some champagne flowing in it, then it pours over the edge of the glass and is equally distributed over two glasses standing under. If the overflowed glass is at the bottom level, then the champagne pours on the table. For the purpose of this problem we consider that champagne is distributed among pyramid glasses immediately. Vlad is interested in the number of completely full glasses if he stops pouring champagne in *t* seconds.
Pictures below illustrate the pyramid consisting of three levels.
|
The only line of the input contains two integers *n* and *t* (1<=≤<=*n*<=≤<=10,<=0<=≤<=*t*<=≤<=10<=000) — the height of the pyramid and the number of seconds Vlad will be pouring champagne from the bottle.
|
Print the single integer — the number of completely full glasses after *t* seconds.
|
[
"3 5\n",
"4 8\n"
] |
[
"4\n",
"6\n"
] |
In the first sample, the glasses full after 5 seconds are: the top glass, both glasses on the second level and the middle glass at the bottom level. Left and right glasses of the bottom level will be half-empty.
| 1,000
|
[
{
"input": "3 5",
"output": "4"
},
{
"input": "4 8",
"output": "6"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "10 10000",
"output": "55"
},
{
"input": "1 10000",
"output": "1"
},
{
"input": "10 1",
"output": "1"
},
{
"input": "1 0",
"output": "0"
},
{
"input": "10 0",
"output": "0"
},
{
"input": "10 1022",
"output": "53"
},
{
"input": "10 1023",
"output": "55"
},
{
"input": "10 1024",
"output": "55"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 200",
"output": "1"
},
{
"input": "7 128",
"output": "28"
},
{
"input": "8 198",
"output": "34"
},
{
"input": "2 2",
"output": "1"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "2 4",
"output": "3"
},
{
"input": "2 100",
"output": "3"
},
{
"input": "2 10000",
"output": "3"
},
{
"input": "3 7",
"output": "6"
},
{
"input": "3 6",
"output": "4"
},
{
"input": "3 8",
"output": "6"
},
{
"input": "3 12",
"output": "6"
},
{
"input": "3 1",
"output": "1"
},
{
"input": "4 15",
"output": "10"
},
{
"input": "4 14",
"output": "8"
},
{
"input": "4 10",
"output": "8"
},
{
"input": "4 16",
"output": "10"
},
{
"input": "4 999",
"output": "10"
},
{
"input": "4 9",
"output": "8"
},
{
"input": "5 31",
"output": "15"
},
{
"input": "5 30",
"output": "13"
},
{
"input": "5 28",
"output": "13"
},
{
"input": "5 25",
"output": "13"
},
{
"input": "5 15",
"output": "13"
},
{
"input": "5 32",
"output": "15"
},
{
"input": "5 9999",
"output": "15"
},
{
"input": "5 4",
"output": "3"
},
{
"input": "5 9",
"output": "8"
},
{
"input": "5 14",
"output": "11"
},
{
"input": "6 63",
"output": "21"
},
{
"input": "6 62",
"output": "19"
},
{
"input": "6 61",
"output": "19"
},
{
"input": "6 52",
"output": "19"
},
{
"input": "6 31",
"output": "19"
},
{
"input": "6 32",
"output": "19"
},
{
"input": "6 39",
"output": "19"
},
{
"input": "6 15",
"output": "13"
},
{
"input": "6 14",
"output": "11"
},
{
"input": "6 10",
"output": "8"
},
{
"input": "6 4",
"output": "3"
},
{
"input": "6 7653",
"output": "21"
},
{
"input": "7 127",
"output": "28"
},
{
"input": "6 64",
"output": "21"
},
{
"input": "7 126",
"output": "26"
},
{
"input": "7 125",
"output": "26"
},
{
"input": "7 120",
"output": "26"
},
{
"input": "7 98",
"output": "26"
},
{
"input": "7 110",
"output": "26"
},
{
"input": "7 65",
"output": "26"
},
{
"input": "7 63",
"output": "26"
},
{
"input": "7 15",
"output": "13"
},
{
"input": "7 3",
"output": "3"
},
{
"input": "7 1",
"output": "1"
},
{
"input": "7 83",
"output": "26"
},
{
"input": "7 214",
"output": "28"
},
{
"input": "8 2555",
"output": "36"
},
{
"input": "8 257",
"output": "36"
},
{
"input": "8 256",
"output": "36"
},
{
"input": "8 255",
"output": "36"
},
{
"input": "8 254",
"output": "34"
},
{
"input": "8 253",
"output": "34"
},
{
"input": "8 251",
"output": "34"
},
{
"input": "8 240",
"output": "34"
},
{
"input": "8 128",
"output": "34"
},
{
"input": "8 127",
"output": "34"
},
{
"input": "8 100",
"output": "32"
},
{
"input": "8 1",
"output": "1"
},
{
"input": "8 0",
"output": "0"
},
{
"input": "8 10000",
"output": "36"
},
{
"input": "8 94",
"output": "32"
},
{
"input": "8 33",
"output": "26"
},
{
"input": "9 10000",
"output": "45"
},
{
"input": "9 513",
"output": "45"
},
{
"input": "9 512",
"output": "45"
},
{
"input": "9 511",
"output": "45"
},
{
"input": "9 510",
"output": "43"
},
{
"input": "9 255",
"output": "43"
},
{
"input": "9 256",
"output": "43"
},
{
"input": "9 254",
"output": "41"
},
{
"input": "9 253",
"output": "41"
},
{
"input": "9 200",
"output": "41"
},
{
"input": "9 100",
"output": "37"
},
{
"input": "9 150",
"output": "41"
},
{
"input": "10 9999",
"output": "55"
},
{
"input": "10 1025",
"output": "55"
},
{
"input": "10 1021",
"output": "53"
},
{
"input": "10 512",
"output": "53"
},
{
"input": "10 689",
"output": "53"
},
{
"input": "10 754",
"output": "53"
},
{
"input": "10 985",
"output": "53"
},
{
"input": "10 255",
"output": "51"
},
{
"input": "10 256",
"output": "51"
},
{
"input": "10 254",
"output": "49"
},
{
"input": "10 153",
"output": "47"
},
{
"input": "10 2",
"output": "1"
},
{
"input": "10 3",
"output": "3"
},
{
"input": "10 5",
"output": "4"
},
{
"input": "10 63",
"output": "41"
},
{
"input": "10 64",
"output": "41"
},
{
"input": "10 126",
"output": "45"
},
{
"input": "10 127",
"output": "47"
},
{
"input": "10 128",
"output": "47"
},
{
"input": "10 55",
"output": "37"
},
{
"input": "10 9",
"output": "8"
},
{
"input": "10 37",
"output": "33"
},
{
"input": "10 68",
"output": "41"
},
{
"input": "3 4",
"output": "3"
},
{
"input": "7 23",
"output": "20"
},
{
"input": "1 3",
"output": "1"
}
] | 1,581,703,028
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 27
| 109
| 307,200
|
list2 = []
n, t = input().split()
n = int(n)
t = int(t)
c = 0
for i in range(1, n + 1):
if i == 1:
list2.append(1)
if i == 2:
list2.append(3)
list2.append(3)
if i == 3:
k = 2
list2.append(2 * list2[i - 1] + 1)
for j in range(i - k):
list2.append(2 * list2[i - 1] - 1)
k -= 1
list2.append(2 * list2[i - 1] + 1)
if i > 3:
m = list2[-1]
q = 2 * m + 1
k = 2
list2.append(q)
for j in range(i - k):
list2.append((q+m)//2)
k -= 1
list2.append(q)
list2.sort()
for z in range(len(list2)):
if (t >= list2[z]):
c += 1
print(c)
|
Title: Pyramid of Glasses
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Mary has just graduated from one well-known University and is now attending celebration party. Students like to dream of a beautiful life, so they used champagne glasses to construct a small pyramid. The height of the pyramid is *n*. The top level consists of only 1 glass, that stands on 2 glasses on the second level (counting from the top), then 3 glasses on the third level and so on.The bottom level consists of *n* glasses.
Vlad has seen in the movies many times how the champagne beautifully flows from top levels to bottom ones, filling all the glasses simultaneously. So he took a bottle and started to pour it in the glass located at the top of the pyramid.
Each second, Vlad pours to the top glass the amount of champagne equal to the size of exactly one glass. If the glass is already full, but there is some champagne flowing in it, then it pours over the edge of the glass and is equally distributed over two glasses standing under. If the overflowed glass is at the bottom level, then the champagne pours on the table. For the purpose of this problem we consider that champagne is distributed among pyramid glasses immediately. Vlad is interested in the number of completely full glasses if he stops pouring champagne in *t* seconds.
Pictures below illustrate the pyramid consisting of three levels.
Input Specification:
The only line of the input contains two integers *n* and *t* (1<=≤<=*n*<=≤<=10,<=0<=≤<=*t*<=≤<=10<=000) — the height of the pyramid and the number of seconds Vlad will be pouring champagne from the bottle.
Output Specification:
Print the single integer — the number of completely full glasses after *t* seconds.
Demo Input:
['3 5\n', '4 8\n']
Demo Output:
['4\n', '6\n']
Note:
In the first sample, the glasses full after 5 seconds are: the top glass, both glasses on the second level and the middle glass at the bottom level. Left and right glasses of the bottom level will be half-empty.
|
```python
list2 = []
n, t = input().split()
n = int(n)
t = int(t)
c = 0
for i in range(1, n + 1):
if i == 1:
list2.append(1)
if i == 2:
list2.append(3)
list2.append(3)
if i == 3:
k = 2
list2.append(2 * list2[i - 1] + 1)
for j in range(i - k):
list2.append(2 * list2[i - 1] - 1)
k -= 1
list2.append(2 * list2[i - 1] + 1)
if i > 3:
m = list2[-1]
q = 2 * m + 1
k = 2
list2.append(q)
for j in range(i - k):
list2.append((q+m)//2)
k -= 1
list2.append(q)
list2.sort()
for z in range(len(list2)):
if (t >= list2[z]):
c += 1
print(c)
```
| 0
|
|
873
|
A
|
Chores
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Luba has to do *n* chores today. *i*-th chore takes *a**i* units of time to complete. It is guaranteed that for every the condition *a**i*<=≥<=*a**i*<=-<=1 is met, so the sequence is sorted.
Also Luba can work really hard on some chores. She can choose not more than *k* any chores and do each of them in *x* units of time instead of *a**i* ().
Luba is very responsible, so she has to do all *n* chores, and now she wants to know the minimum time she needs to do everything. Luba cannot do two chores simultaneously.
|
The first line contains three integers *n*,<=*k*,<=*x* (1<=≤<=*k*<=≤<=*n*<=≤<=100,<=1<=≤<=*x*<=≤<=99) — the number of chores Luba has to do, the number of chores she can do in *x* units of time, and the number *x* itself.
The second line contains *n* integer numbers *a**i* (2<=≤<=*a**i*<=≤<=100) — the time Luba has to spend to do *i*-th chore.
It is guaranteed that , and for each *a**i*<=≥<=*a**i*<=-<=1.
|
Print one number — minimum time Luba needs to do all *n* chores.
|
[
"4 2 2\n3 6 7 10\n",
"5 2 1\n100 100 100 100 100\n"
] |
[
"13\n",
"302\n"
] |
In the first example the best option would be to do the third and the fourth chore, spending *x* = 2 time on each instead of *a*<sub class="lower-index">3</sub> and *a*<sub class="lower-index">4</sub>, respectively. Then the answer is 3 + 6 + 2 + 2 = 13.
In the second example Luba can choose any two chores to spend *x* time on them instead of *a*<sub class="lower-index">*i*</sub>. So the answer is 100·3 + 2·1 = 302.
| 0
|
[
{
"input": "4 2 2\n3 6 7 10",
"output": "13"
},
{
"input": "5 2 1\n100 100 100 100 100",
"output": "302"
},
{
"input": "1 1 1\n100",
"output": "1"
},
{
"input": "100 1 99\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "9999"
},
{
"input": "100 100 1\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "100"
},
{
"input": "100 50 50\n51 51 52 53 55 55 55 55 56 56 56 57 57 58 58 59 59 59 60 60 61 61 62 62 63 64 64 64 64 65 65 65 65 66 66 66 67 68 68 68 69 69 70 70 70 70 71 71 71 71 71 71 72 72 76 76 76 76 77 79 79 81 81 81 81 82 82 82 82 83 84 85 86 87 87 88 88 88 89 89 89 90 90 90 91 91 91 92 92 93 95 95 96 96 96 97 97 98 99 100",
"output": "5618"
},
{
"input": "100 100 1\n2 4 4 4 5 5 5 6 10 10 11 11 12 12 13 13 13 14 17 18 20 20 21 21 22 22 23 24 24 25 26 29 29 32 32 34 34 35 38 39 39 40 40 42 42 43 45 47 48 49 51 52 52 54 57 59 59 60 61 61 62 63 63 64 65 65 68 70 70 72 74 75 75 76 76 77 77 78 78 78 79 80 81 82 82 83 83 83 84 89 90 92 92 93 94 96 96 97 98 99",
"output": "100"
},
{
"input": "100 1 1\n3 3 5 7 8 8 8 9 9 9 11 13 14 15 18 18 19 20 21 22 22 25 27 27 29 31 32 33 33 34 36 37 37 38 40 42 44 44 46 47 47 48 48 48 50 50 51 51 54 54 54 55 55 56 56 56 60 61 62 62 63 64 65 65 68 70 70 71 71 71 71 75 75 76 76 79 79 79 79 81 81 82 82 86 86 86 86 88 90 90 92 96 97 97 98 98 98 98 100 100",
"output": "5202"
},
{
"input": "100 50 49\n50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51",
"output": "4950"
},
{
"input": "100 50 1\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3",
"output": "151"
},
{
"input": "100 1 1\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2",
"output": "199"
}
] | 1,695,651,380
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 11
| 46
| 0
|
n, k, x = input().split()
n = int(n)
k = int(k)
x = int(x)
sum = 0
a = [int(i) for i in input().split()]
for i in range(n-1 , -1 , -1):
if k > 0 :
sum += x
k -= 1
else:
sum +=a[i]
print(sum)
|
Title: Chores
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Luba has to do *n* chores today. *i*-th chore takes *a**i* units of time to complete. It is guaranteed that for every the condition *a**i*<=≥<=*a**i*<=-<=1 is met, so the sequence is sorted.
Also Luba can work really hard on some chores. She can choose not more than *k* any chores and do each of them in *x* units of time instead of *a**i* ().
Luba is very responsible, so she has to do all *n* chores, and now she wants to know the minimum time she needs to do everything. Luba cannot do two chores simultaneously.
Input Specification:
The first line contains three integers *n*,<=*k*,<=*x* (1<=≤<=*k*<=≤<=*n*<=≤<=100,<=1<=≤<=*x*<=≤<=99) — the number of chores Luba has to do, the number of chores she can do in *x* units of time, and the number *x* itself.
The second line contains *n* integer numbers *a**i* (2<=≤<=*a**i*<=≤<=100) — the time Luba has to spend to do *i*-th chore.
It is guaranteed that , and for each *a**i*<=≥<=*a**i*<=-<=1.
Output Specification:
Print one number — minimum time Luba needs to do all *n* chores.
Demo Input:
['4 2 2\n3 6 7 10\n', '5 2 1\n100 100 100 100 100\n']
Demo Output:
['13\n', '302\n']
Note:
In the first example the best option would be to do the third and the fourth chore, spending *x* = 2 time on each instead of *a*<sub class="lower-index">3</sub> and *a*<sub class="lower-index">4</sub>, respectively. Then the answer is 3 + 6 + 2 + 2 = 13.
In the second example Luba can choose any two chores to spend *x* time on them instead of *a*<sub class="lower-index">*i*</sub>. So the answer is 100·3 + 2·1 = 302.
|
```python
n, k, x = input().split()
n = int(n)
k = int(k)
x = int(x)
sum = 0
a = [int(i) for i in input().split()]
for i in range(n-1 , -1 , -1):
if k > 0 :
sum += x
k -= 1
else:
sum +=a[i]
print(sum)
```
| 3
|
|
901
|
C
|
Bipartite Segments
|
PROGRAMMING
| 2,300
|
[
"binary search",
"data structures",
"dfs and similar",
"dsu",
"graphs",
"two pointers"
] | null | null |
You are given an undirected graph with *n* vertices. There are no edge-simple cycles with the even length in it. In other words, there are no cycles of even length that pass each edge at most once. Let's enumerate vertices from 1 to *n*.
You have to answer *q* queries. Each query is described by a segment of vertices [*l*;<=*r*], and you have to count the number of its subsegments [*x*;<=*y*] (*l*<=≤<=*x*<=≤<=*y*<=≤<=*r*), such that if we delete all vertices except the segment of vertices [*x*;<=*y*] (including *x* and *y*) and edges between them, the resulting graph is bipartite.
|
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=3·105, 1<=≤<=*m*<=≤<=3·105) — the number of vertices and the number of edges in the graph.
The next *m* lines describe edges in the graph. The *i*-th of these lines contains two integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*; *a**i*<=≠<=*b**i*), denoting an edge between vertices *a**i* and *b**i*. It is guaranteed that this graph does not contain edge-simple cycles of even length.
The next line contains a single integer *q* (1<=≤<=*q*<=≤<=3·105) — the number of queries.
The next *q* lines contain queries. The *i*-th of these lines contains two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*) — the query parameters.
|
Print *q* numbers, each in new line: the *i*-th of them should be the number of subsegments [*x*;<=*y*] (*l**i*<=≤<=*x*<=≤<=*y*<=≤<=*r**i*), such that the graph that only includes vertices from segment [*x*;<=*y*] and edges between them is bipartite.
|
[
"6 6\n1 2\n2 3\n3 1\n4 5\n5 6\n6 4\n3\n1 3\n4 6\n1 6\n",
"8 9\n1 2\n2 3\n3 1\n4 5\n5 6\n6 7\n7 8\n8 4\n7 2\n3\n1 8\n1 4\n3 8\n"
] |
[
"5\n5\n14\n",
"27\n8\n19\n"
] |
The first example is shown on the picture below:
<img class="tex-graphics" src="https://espresso.codeforces.com/01e1d1999228f416613ff64b5d0e0cf984f150b1.png" style="max-width: 100.0%;max-height: 100.0%;"/>
For the first query, all subsegments of [1; 3], except this segment itself, are suitable.
For the first query, all subsegments of [4; 6], except this segment itself, are suitable.
For the third query, all subsegments of [1; 6] are suitable, except [1; 3], [1; 4], [1; 5], [1; 6], [2; 6], [3; 6], [4; 6].
The second example is shown on the picture below:
<img class="tex-graphics" src="https://espresso.codeforces.com/09b9227070585b8d5a7dff3cbc5f8535c260a595.png" style="max-width: 100.0%;max-height: 100.0%;"/>
| 1,750
|
[
{
"input": "6 6\n1 2\n2 3\n3 1\n4 5\n5 6\n6 4\n3\n1 3\n4 6\n1 6",
"output": "5\n5\n14"
},
{
"input": "8 9\n1 2\n2 3\n3 1\n4 5\n5 6\n6 7\n7 8\n8 4\n7 2\n3\n1 8\n1 4\n3 8",
"output": "27\n8\n19"
},
{
"input": "12 12\n5 1\n5 11\n1 11\n8 11\n8 9\n5 12\n6 9\n7 11\n9 3\n9 10\n4 12\n10 2\n78\n1 1\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n2 2\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n2 9\n2 10\n2 11\n2 12\n3 3\n3 4\n3 5\n3 6\n3 7\n3 8\n3 9\n3 10\n3 11\n3 12\n4 4\n4 5\n4 6\n4 7\n4 8\n4 9\n4 10\n4 11\n4 12\n5 5\n5 6\n5 7\n5 8\n5 9\n5 10\n5 11\n5 12\n6 6\n6 7\n6 8\n6 9\n6 10\n6 11\n6 12\n7 7\n7 8\n7 9\n7 10\n7 11\n7 12\n8 8\n8 9\n8 10\n8 11\n8 12\n9 9\n9 10\n9 11\n9 12\n10 10\n10 11\n10 12\n11 11\n11 12\n12 12",
"output": "1\n3\n6\n10\n15\n21\n28\n36\n45\n55\n65\n76\n1\n3\n6\n10\n15\n21\n28\n36\n45\n55\n66\n1\n3\n6\n10\n15\n21\n28\n36\n45\n55\n1\n3\n6\n10\n15\n21\n28\n36\n45\n1\n3\n6\n10\n15\n21\n28\n36\n1\n3\n6\n10\n15\n21\n28\n1\n3\n6\n10\n15\n21\n1\n3\n6\n10\n15\n1\n3\n6\n10\n1\n3\n6\n1\n3\n1"
}
] | 1,679,777,454
| 2,147,483,647
|
PyPy 3-64
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 10
| 2,000
| 137,318,400
|
import sys
readline=sys.stdin.readline
from bisect import bisect_right
N,M=map(int,readline().split())
graph=[[] for x in range(N)]
for m in range(M):
a,b=map(int,readline().split())
a-=1;b-=1
graph[a].append(b)
graph[b].append(a)
seen=[False]*N
finished=[False]*N
order=[None]*N
lowlink=[None]*N
idx=0
ps=[None]*N
preorder=[]
for s in range(N):
if seen[s]:
continue
stack=[s]
while stack:
x=stack.pop()
if not seen[x]:
seen[x]=True
stack.append(x)
order[x]=idx
lowlink[x]=idx
idx+=1
preorder.append(x)
for y in graph[x]:
if not seen[y]:
stack.append(y)
ps[y]=x
elif not finished[x]:
finished[x]=True
bl=True
for y in graph[x]:
if ps[x]==y and bl:
bl=False
continue
lowlink[x]=min(lowlink[x],order[y])
if x!=s:
lowlink[ps[x]]=min(lowlink[ps[x]],lowlink[x])
order=[None]*N
for x in range(N):
order[preorder[x]]=x
graph=[[y for y in graph[x] if order[x]>=lowlink[y] and order[y]>=lowlink[x]] for x in range(N)]
seen=[False]*N
finished=[False]*N
right=[N]*N
for s in range(N):
if seen[s]:
continue
mi,ma=s,s
stack=[s]
while stack:
x=stack.pop()
if not seen[x]:
seen[x]=True
stack.append(x)
mi=min(mi,x)
ma=max(ma,x)
for y in graph[x]:
if not seen[y]:
stack.append(y)
elif not finished[x]:
finished[x]=True
if mi!=ma:
right[mi]=ma
for l in range(N-2,-1,-1):
right[l]=min(right[l],right[l+1])
C=[0]+right
for i in range(1,N+1):
C[i]+=C[i-1]
Q=int(readline())
for q in range(Q):
L,R=map(int,readline().split())
L-=1
i=max(L,bisect_right(right,R))
ans=C[i]-C[L]+R*(R-i)-(L+R-1)*(R-L)//2
print(ans)
|
Title: Bipartite Segments
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given an undirected graph with *n* vertices. There are no edge-simple cycles with the even length in it. In other words, there are no cycles of even length that pass each edge at most once. Let's enumerate vertices from 1 to *n*.
You have to answer *q* queries. Each query is described by a segment of vertices [*l*;<=*r*], and you have to count the number of its subsegments [*x*;<=*y*] (*l*<=≤<=*x*<=≤<=*y*<=≤<=*r*), such that if we delete all vertices except the segment of vertices [*x*;<=*y*] (including *x* and *y*) and edges between them, the resulting graph is bipartite.
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=3·105, 1<=≤<=*m*<=≤<=3·105) — the number of vertices and the number of edges in the graph.
The next *m* lines describe edges in the graph. The *i*-th of these lines contains two integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*; *a**i*<=≠<=*b**i*), denoting an edge between vertices *a**i* and *b**i*. It is guaranteed that this graph does not contain edge-simple cycles of even length.
The next line contains a single integer *q* (1<=≤<=*q*<=≤<=3·105) — the number of queries.
The next *q* lines contain queries. The *i*-th of these lines contains two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*) — the query parameters.
Output Specification:
Print *q* numbers, each in new line: the *i*-th of them should be the number of subsegments [*x*;<=*y*] (*l**i*<=≤<=*x*<=≤<=*y*<=≤<=*r**i*), such that the graph that only includes vertices from segment [*x*;<=*y*] and edges between them is bipartite.
Demo Input:
['6 6\n1 2\n2 3\n3 1\n4 5\n5 6\n6 4\n3\n1 3\n4 6\n1 6\n', '8 9\n1 2\n2 3\n3 1\n4 5\n5 6\n6 7\n7 8\n8 4\n7 2\n3\n1 8\n1 4\n3 8\n']
Demo Output:
['5\n5\n14\n', '27\n8\n19\n']
Note:
The first example is shown on the picture below:
<img class="tex-graphics" src="https://espresso.codeforces.com/01e1d1999228f416613ff64b5d0e0cf984f150b1.png" style="max-width: 100.0%;max-height: 100.0%;"/>
For the first query, all subsegments of [1; 3], except this segment itself, are suitable.
For the first query, all subsegments of [4; 6], except this segment itself, are suitable.
For the third query, all subsegments of [1; 6] are suitable, except [1; 3], [1; 4], [1; 5], [1; 6], [2; 6], [3; 6], [4; 6].
The second example is shown on the picture below:
<img class="tex-graphics" src="https://espresso.codeforces.com/09b9227070585b8d5a7dff3cbc5f8535c260a595.png" style="max-width: 100.0%;max-height: 100.0%;"/>
|
```python
import sys
readline=sys.stdin.readline
from bisect import bisect_right
N,M=map(int,readline().split())
graph=[[] for x in range(N)]
for m in range(M):
a,b=map(int,readline().split())
a-=1;b-=1
graph[a].append(b)
graph[b].append(a)
seen=[False]*N
finished=[False]*N
order=[None]*N
lowlink=[None]*N
idx=0
ps=[None]*N
preorder=[]
for s in range(N):
if seen[s]:
continue
stack=[s]
while stack:
x=stack.pop()
if not seen[x]:
seen[x]=True
stack.append(x)
order[x]=idx
lowlink[x]=idx
idx+=1
preorder.append(x)
for y in graph[x]:
if not seen[y]:
stack.append(y)
ps[y]=x
elif not finished[x]:
finished[x]=True
bl=True
for y in graph[x]:
if ps[x]==y and bl:
bl=False
continue
lowlink[x]=min(lowlink[x],order[y])
if x!=s:
lowlink[ps[x]]=min(lowlink[ps[x]],lowlink[x])
order=[None]*N
for x in range(N):
order[preorder[x]]=x
graph=[[y for y in graph[x] if order[x]>=lowlink[y] and order[y]>=lowlink[x]] for x in range(N)]
seen=[False]*N
finished=[False]*N
right=[N]*N
for s in range(N):
if seen[s]:
continue
mi,ma=s,s
stack=[s]
while stack:
x=stack.pop()
if not seen[x]:
seen[x]=True
stack.append(x)
mi=min(mi,x)
ma=max(ma,x)
for y in graph[x]:
if not seen[y]:
stack.append(y)
elif not finished[x]:
finished[x]=True
if mi!=ma:
right[mi]=ma
for l in range(N-2,-1,-1):
right[l]=min(right[l],right[l+1])
C=[0]+right
for i in range(1,N+1):
C[i]+=C[i-1]
Q=int(readline())
for q in range(Q):
L,R=map(int,readline().split())
L-=1
i=max(L,bisect_right(right,R))
ans=C[i]-C[L]+R*(R-i)-(L+R-1)*(R-L)//2
print(ans)
```
| 0
|
|
931
|
A
|
Friends Meeting
|
PROGRAMMING
| 800
|
[
"brute force",
"greedy",
"implementation",
"math"
] | null | null |
Two friends are on the coordinate axis *Ox* in points with integer coordinates. One of them is in the point *x*1<==<=*a*, another one is in the point *x*2<==<=*b*.
Each of the friends can move by one along the line in any direction unlimited number of times. When a friend moves, the tiredness of a friend changes according to the following rules: the first move increases the tiredness by 1, the second move increases the tiredness by 2, the third — by 3 and so on. For example, if a friend moves first to the left, then to the right (returning to the same point), and then again to the left his tiredness becomes equal to 1<=+<=2<=+<=3<==<=6.
The friends want to meet in a integer point. Determine the minimum total tiredness they should gain, if they meet in the same point.
|
The first line contains a single integer *a* (1<=≤<=*a*<=≤<=1000) — the initial position of the first friend.
The second line contains a single integer *b* (1<=≤<=*b*<=≤<=1000) — the initial position of the second friend.
It is guaranteed that *a*<=≠<=*b*.
|
Print the minimum possible total tiredness if the friends meet in the same point.
|
[
"3\n4\n",
"101\n99\n",
"5\n10\n"
] |
[
"1\n",
"2\n",
"9\n"
] |
In the first example the first friend should move by one to the right (then the meeting happens at point 4), or the second friend should move by one to the left (then the meeting happens at point 3). In both cases, the total tiredness becomes 1.
In the second example the first friend should move by one to the left, and the second friend should move by one to the right. Then they meet in the point 100, and the total tiredness becomes 1 + 1 = 2.
In the third example one of the optimal ways is the following. The first friend should move three times to the right, and the second friend — two times to the left. Thus the friends meet in the point 8, and the total tiredness becomes 1 + 2 + 3 + 1 + 2 = 9.
| 500
|
[
{
"input": "3\n4",
"output": "1"
},
{
"input": "101\n99",
"output": "2"
},
{
"input": "5\n10",
"output": "9"
},
{
"input": "1\n2",
"output": "1"
},
{
"input": "1\n1000",
"output": "250000"
},
{
"input": "999\n1000",
"output": "1"
},
{
"input": "1000\n999",
"output": "1"
},
{
"input": "1000\n1",
"output": "250000"
},
{
"input": "2\n1",
"output": "1"
},
{
"input": "2\n999",
"output": "249001"
},
{
"input": "2\n998",
"output": "248502"
},
{
"input": "999\n2",
"output": "249001"
},
{
"input": "998\n2",
"output": "248502"
},
{
"input": "2\n1000",
"output": "249500"
},
{
"input": "1000\n2",
"output": "249500"
},
{
"input": "1\n999",
"output": "249500"
},
{
"input": "999\n1",
"output": "249500"
},
{
"input": "188\n762",
"output": "82656"
},
{
"input": "596\n777",
"output": "8281"
},
{
"input": "773\n70",
"output": "123904"
},
{
"input": "825\n729",
"output": "2352"
},
{
"input": "944\n348",
"output": "89102"
},
{
"input": "352\n445",
"output": "2209"
},
{
"input": "529\n656",
"output": "4096"
},
{
"input": "19\n315",
"output": "22052"
},
{
"input": "138\n370",
"output": "13572"
},
{
"input": "546\n593",
"output": "576"
},
{
"input": "285\n242",
"output": "484"
},
{
"input": "773\n901",
"output": "4160"
},
{
"input": "892\n520",
"output": "34782"
},
{
"input": "864\n179",
"output": "117649"
},
{
"input": "479\n470",
"output": "25"
},
{
"input": "967\n487",
"output": "57840"
},
{
"input": "648\n106",
"output": "73712"
},
{
"input": "58\n765",
"output": "125316"
},
{
"input": "235\n56",
"output": "8100"
},
{
"input": "285\n153",
"output": "4422"
},
{
"input": "943\n13",
"output": "216690"
},
{
"input": "675\n541",
"output": "4556"
},
{
"input": "4\n912",
"output": "206570"
}
] | 1,642,844,877
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 62
| 0
|
n1 = int(input())
n2 = int(input())
print((abs(n1-n2)+1)**2//4)
|
Title: Friends Meeting
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Two friends are on the coordinate axis *Ox* in points with integer coordinates. One of them is in the point *x*1<==<=*a*, another one is in the point *x*2<==<=*b*.
Each of the friends can move by one along the line in any direction unlimited number of times. When a friend moves, the tiredness of a friend changes according to the following rules: the first move increases the tiredness by 1, the second move increases the tiredness by 2, the third — by 3 and so on. For example, if a friend moves first to the left, then to the right (returning to the same point), and then again to the left his tiredness becomes equal to 1<=+<=2<=+<=3<==<=6.
The friends want to meet in a integer point. Determine the minimum total tiredness they should gain, if they meet in the same point.
Input Specification:
The first line contains a single integer *a* (1<=≤<=*a*<=≤<=1000) — the initial position of the first friend.
The second line contains a single integer *b* (1<=≤<=*b*<=≤<=1000) — the initial position of the second friend.
It is guaranteed that *a*<=≠<=*b*.
Output Specification:
Print the minimum possible total tiredness if the friends meet in the same point.
Demo Input:
['3\n4\n', '101\n99\n', '5\n10\n']
Demo Output:
['1\n', '2\n', '9\n']
Note:
In the first example the first friend should move by one to the right (then the meeting happens at point 4), or the second friend should move by one to the left (then the meeting happens at point 3). In both cases, the total tiredness becomes 1.
In the second example the first friend should move by one to the left, and the second friend should move by one to the right. Then they meet in the point 100, and the total tiredness becomes 1 + 1 = 2.
In the third example one of the optimal ways is the following. The first friend should move three times to the right, and the second friend — two times to the left. Thus the friends meet in the point 8, and the total tiredness becomes 1 + 2 + 3 + 1 + 2 = 9.
|
```python
n1 = int(input())
n2 = int(input())
print((abs(n1-n2)+1)**2//4)
```
| 3
|
|
758
|
A
|
Holiday Of Equality
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
In Berland it is the holiday of equality. In honor of the holiday the king decided to equalize the welfare of all citizens in Berland by the expense of the state treasury.
Totally in Berland there are *n* citizens, the welfare of each of them is estimated as the integer in *a**i* burles (burle is the currency in Berland).
You are the royal treasurer, which needs to count the minimum charges of the kingdom on the king's present. The king can only give money, he hasn't a power to take away them.
|
The first line contains the integer *n* (1<=≤<=*n*<=≤<=100) — the number of citizens in the kingdom.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* (0<=≤<=*a**i*<=≤<=106) — the welfare of the *i*-th citizen.
|
In the only line print the integer *S* — the minimum number of burles which are had to spend.
|
[
"5\n0 1 2 3 4\n",
"5\n1 1 0 1 1\n",
"3\n1 3 1\n",
"1\n12\n"
] |
[
"10",
"1",
"4",
"0"
] |
In the first example if we add to the first citizen 4 burles, to the second 3, to the third 2 and to the fourth 1, then the welfare of all citizens will equal 4.
In the second example it is enough to give one burle to the third citizen.
In the third example it is necessary to give two burles to the first and the third citizens to make the welfare of citizens equal 3.
In the fourth example it is possible to give nothing to everyone because all citizens have 12 burles.
| 500
|
[
{
"input": "5\n0 1 2 3 4",
"output": "10"
},
{
"input": "5\n1 1 0 1 1",
"output": "1"
},
{
"input": "3\n1 3 1",
"output": "4"
},
{
"input": "1\n12",
"output": "0"
},
{
"input": "3\n1 2 3",
"output": "3"
},
{
"input": "14\n52518 718438 358883 462189 853171 592966 225788 46977 814826 295697 676256 561479 56545 764281",
"output": "5464380"
},
{
"input": "21\n842556 216391 427181 626688 775504 168309 851038 448402 880826 73697 593338 519033 135115 20128 424606 939484 846242 756907 377058 241543 29353",
"output": "9535765"
},
{
"input": "3\n1 3 2",
"output": "3"
},
{
"input": "3\n2 1 3",
"output": "3"
},
{
"input": "3\n2 3 1",
"output": "3"
},
{
"input": "3\n3 1 2",
"output": "3"
},
{
"input": "3\n3 2 1",
"output": "3"
},
{
"input": "1\n228503",
"output": "0"
},
{
"input": "2\n32576 550340",
"output": "517764"
},
{
"input": "3\n910648 542843 537125",
"output": "741328"
},
{
"input": "4\n751720 572344 569387 893618",
"output": "787403"
},
{
"input": "6\n433864 631347 597596 794426 713555 231193",
"output": "1364575"
},
{
"input": "9\n31078 645168 695751 126111 375934 150495 838412 434477 993107",
"output": "4647430"
},
{
"input": "30\n315421 772664 560686 654312 151528 356749 351486 707462 820089 226682 546700 136028 824236 842130 578079 337807 665903 764100 617900 822937 992759 591749 651310 742085 767695 695442 17967 515106 81059 186025",
"output": "13488674"
},
{
"input": "45\n908719 394261 815134 419990 926993 383792 772842 277695 527137 655356 684956 695716 273062 550324 106247 399133 442382 33076 462920 294674 846052 817752 421365 474141 290471 358990 109812 74492 543281 169434 919692 786809 24028 197184 310029 801476 699355 429672 51343 374128 776726 850380 293868 981569 550763",
"output": "21993384"
},
{
"input": "56\n100728 972537 13846 385421 756708 184642 259487 319707 376662 221694 675284 972837 499419 13846 38267 289898 901299 831197 954715 197515 514102 910423 127555 883934 362472 870788 538802 741008 973434 448124 391526 363321 947321 544618 68006 782313 955075 741981 815027 723297 585059 718114 700739 413489 454091 736144 308999 98065 3716 347323 9635 289003 986510 607065 60236 273351",
"output": "26984185"
},
{
"input": "70\n644488 5444 150441 714420 602059 335330 510670 196555 546346 740011 509449 850947 692874 524857 750434 952985 223744 374727 896124 753037 367352 679050 560202 172728 569291 778616 332116 286927 843598 372698 244906 498046 900681 709791 420904 724593 864493 813094 791377 39998 296710 625656 403891 579231 706693 984045 16901 574259 562265 761104 930361 256045 124461 538980 573508 372148 988722 108592 784354 55302 232524 277205 782251 299943 436488 743389 324618 742543 266915 99642",
"output": "32816391"
},
{
"input": "1\n0",
"output": "0"
},
{
"input": "1\n1000000",
"output": "0"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "0"
},
{
"input": "100\n1000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "99000000"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000000",
"output": "99000000"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "99000000"
},
{
"input": "3\n0 0 0",
"output": "0"
},
{
"input": "50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "0"
},
{
"input": "3\n5 0 0",
"output": "10"
},
{
"input": "5\n2 10 0 0 0",
"output": "38"
}
] | 1,649,926,730
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 41
| 46
| 0
|
def format_input():
s_input = input()
return list(map(int ,s_input.split()))
def main():
n = format_input()[0]
salaries = format_input()
salaries.sort()
total = 0
for salary in salaries:
total += salary
highest_salary = salaries[n-1]
print(highest_salary*n - total)
return
if __name__ == "__main__":
main()
|
Title: Holiday Of Equality
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In Berland it is the holiday of equality. In honor of the holiday the king decided to equalize the welfare of all citizens in Berland by the expense of the state treasury.
Totally in Berland there are *n* citizens, the welfare of each of them is estimated as the integer in *a**i* burles (burle is the currency in Berland).
You are the royal treasurer, which needs to count the minimum charges of the kingdom on the king's present. The king can only give money, he hasn't a power to take away them.
Input Specification:
The first line contains the integer *n* (1<=≤<=*n*<=≤<=100) — the number of citizens in the kingdom.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* (0<=≤<=*a**i*<=≤<=106) — the welfare of the *i*-th citizen.
Output Specification:
In the only line print the integer *S* — the minimum number of burles which are had to spend.
Demo Input:
['5\n0 1 2 3 4\n', '5\n1 1 0 1 1\n', '3\n1 3 1\n', '1\n12\n']
Demo Output:
['10', '1', '4', '0']
Note:
In the first example if we add to the first citizen 4 burles, to the second 3, to the third 2 and to the fourth 1, then the welfare of all citizens will equal 4.
In the second example it is enough to give one burle to the third citizen.
In the third example it is necessary to give two burles to the first and the third citizens to make the welfare of citizens equal 3.
In the fourth example it is possible to give nothing to everyone because all citizens have 12 burles.
|
```python
def format_input():
s_input = input()
return list(map(int ,s_input.split()))
def main():
n = format_input()[0]
salaries = format_input()
salaries.sort()
total = 0
for salary in salaries:
total += salary
highest_salary = salaries[n-1]
print(highest_salary*n - total)
return
if __name__ == "__main__":
main()
```
| 3
|
|
785
|
A
|
Anton and Polyhedrons
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] | null | null |
Anton's favourite geometric figures are regular polyhedrons. Note that there are five kinds of regular polyhedrons:
- Tetrahedron. Tetrahedron has 4 triangular faces. - Cube. Cube has 6 square faces. - Octahedron. Octahedron has 8 triangular faces. - Dodecahedron. Dodecahedron has 12 pentagonal faces. - Icosahedron. Icosahedron has 20 triangular faces.
All five kinds of polyhedrons are shown on the picture below:
Anton has a collection of *n* polyhedrons. One day he decided to know, how many faces his polyhedrons have in total. Help Anton and find this number!
|
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of polyhedrons in Anton's collection.
Each of the following *n* lines of the input contains a string *s**i* — the name of the *i*-th polyhedron in Anton's collection. The string can look like this:
- "Tetrahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a tetrahedron. - "Cube" (without quotes), if the *i*-th polyhedron in Anton's collection is a cube. - "Octahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an octahedron. - "Dodecahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a dodecahedron. - "Icosahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an icosahedron.
|
Output one number — the total number of faces in all the polyhedrons in Anton's collection.
|
[
"4\nIcosahedron\nCube\nTetrahedron\nDodecahedron\n",
"3\nDodecahedron\nOctahedron\nOctahedron\n"
] |
[
"42\n",
"28\n"
] |
In the first sample Anton has one icosahedron, one cube, one tetrahedron and one dodecahedron. Icosahedron has 20 faces, cube has 6 faces, tetrahedron has 4 faces and dodecahedron has 12 faces. In total, they have 20 + 6 + 4 + 12 = 42 faces.
| 500
|
[
{
"input": "4\nIcosahedron\nCube\nTetrahedron\nDodecahedron",
"output": "42"
},
{
"input": "3\nDodecahedron\nOctahedron\nOctahedron",
"output": "28"
},
{
"input": "25\nIcosahedron\nOctahedron\nTetrahedron\nDodecahedron\nCube\nIcosahedron\nOctahedron\nCube\nTetrahedron\nIcosahedron\nIcosahedron\nTetrahedron\nOctahedron\nDodecahedron\nIcosahedron\nOctahedron\nIcosahedron\nTetrahedron\nDodecahedron\nTetrahedron\nOctahedron\nCube\nCube\nDodecahedron\nTetrahedron",
"output": "256"
},
{
"input": "1\nTetrahedron",
"output": "4"
},
{
"input": "1\nCube",
"output": "6"
},
{
"input": "1\nOctahedron",
"output": "8"
},
{
"input": "1\nDodecahedron",
"output": "12"
},
{
"input": "1\nIcosahedron",
"output": "20"
},
{
"input": "28\nOctahedron\nDodecahedron\nOctahedron\nOctahedron\nDodecahedron\nIcosahedron\nIcosahedron\nDodecahedron\nDodecahedron\nDodecahedron\nCube\nDodecahedron\nCube\nTetrahedron\nCube\nCube\nTetrahedron\nDodecahedron\nDodecahedron\nDodecahedron\nIcosahedron\nIcosahedron\nDodecahedron\nIcosahedron\nDodecahedron\nDodecahedron\nIcosahedron\nIcosahedron",
"output": "340"
}
] | 1,698,034,487
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 202
| 0
|
k=0
for i in range(int(input())):
a=input()
if a=='Tetrahedron':k+=4
elif a=='Cube':k+=6
elif a=='Octahedron':k+=8
elif a=='Dodecahedron':k+=12
else:k+=20
print(k)
|
Title: Anton and Polyhedrons
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Anton's favourite geometric figures are regular polyhedrons. Note that there are five kinds of regular polyhedrons:
- Tetrahedron. Tetrahedron has 4 triangular faces. - Cube. Cube has 6 square faces. - Octahedron. Octahedron has 8 triangular faces. - Dodecahedron. Dodecahedron has 12 pentagonal faces. - Icosahedron. Icosahedron has 20 triangular faces.
All five kinds of polyhedrons are shown on the picture below:
Anton has a collection of *n* polyhedrons. One day he decided to know, how many faces his polyhedrons have in total. Help Anton and find this number!
Input Specification:
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of polyhedrons in Anton's collection.
Each of the following *n* lines of the input contains a string *s**i* — the name of the *i*-th polyhedron in Anton's collection. The string can look like this:
- "Tetrahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a tetrahedron. - "Cube" (without quotes), if the *i*-th polyhedron in Anton's collection is a cube. - "Octahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an octahedron. - "Dodecahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is a dodecahedron. - "Icosahedron" (without quotes), if the *i*-th polyhedron in Anton's collection is an icosahedron.
Output Specification:
Output one number — the total number of faces in all the polyhedrons in Anton's collection.
Demo Input:
['4\nIcosahedron\nCube\nTetrahedron\nDodecahedron\n', '3\nDodecahedron\nOctahedron\nOctahedron\n']
Demo Output:
['42\n', '28\n']
Note:
In the first sample Anton has one icosahedron, one cube, one tetrahedron and one dodecahedron. Icosahedron has 20 faces, cube has 6 faces, tetrahedron has 4 faces and dodecahedron has 12 faces. In total, they have 20 + 6 + 4 + 12 = 42 faces.
|
```python
k=0
for i in range(int(input())):
a=input()
if a=='Tetrahedron':k+=4
elif a=='Cube':k+=6
elif a=='Octahedron':k+=8
elif a=='Dodecahedron':k+=12
else:k+=20
print(k)
```
| 3
|
Subsets and Splits
Successful Python Submissions
Retrieves all records from the train dataset where the verdict is 'OK', providing basic filtering but limited analytical value.
SQL Console for MatrixStudio/Codeforces-Python-Submissions
Retrieves records of users with a rating of 1600 or higher and a verdict of 'OK', providing basic filtering but limited analytical value.
SQL Console for MatrixStudio/Codeforces-Python-Submissions
Counts the number of entries with a rating above 2000 and a verdict of 'OK', providing basic filtering but limited analytical value.
SQL Console for MatrixStudio/Codeforces-Python-Submissions
Counts the number of entries with a 'OK' verdict, providing a basic overview of a specific category within the dataset.