|
|
import os
|
|
|
import json
|
|
|
import argparse
|
|
|
from pathlib import Path
|
|
|
import pandas as pd
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
def parse_args():
|
|
|
p = argparse.ArgumentParser()
|
|
|
p.add_argument("root", type=str,
|
|
|
help="Directory containing 12 month subfolders (e.g., 2407 .. 2506)")
|
|
|
p.add_argument("--out-dir", type=str, default=None,
|
|
|
help="Output directory (default: ROOT)")
|
|
|
return p.parse_args()
|
|
|
|
|
|
|
|
|
def load_month_values_json(root: Path, month: str):
|
|
|
|
|
|
candidates = []
|
|
|
candidates.append(root / month / "values.json")
|
|
|
candidates.append(root / f"{month}_full" / "values.json")
|
|
|
candidates.append(root / f"{month}_lr4e-5" / "values.json")
|
|
|
|
|
|
|
|
|
for path in sorted(root.glob(f"{month}*/values.json")):
|
|
|
if path not in candidates:
|
|
|
candidates.append(path)
|
|
|
for path in sorted(root.glob(f"{month}*/metrics.json")):
|
|
|
if path not in candidates:
|
|
|
candidates.append(path)
|
|
|
|
|
|
for c in candidates:
|
|
|
if c.exists():
|
|
|
return c
|
|
|
return None
|
|
|
|
|
|
|
|
|
def main():
|
|
|
args = parse_args()
|
|
|
root = Path(args.root)
|
|
|
out_dir = Path(args.out_dir) if args.out_dir else root
|
|
|
|
|
|
months = ["origin", "2407","2408","2409","2410","2411","2412",
|
|
|
"2501","2502","2503","2504","2505","2506"]
|
|
|
|
|
|
main_tasks = [
|
|
|
"arc_easy",
|
|
|
"arc_challenge",
|
|
|
"hellaswag",
|
|
|
"sciq",
|
|
|
"truthfulqa_mc1",
|
|
|
"truthfulqa_mc2",
|
|
|
]
|
|
|
|
|
|
records = []
|
|
|
|
|
|
for tag in months:
|
|
|
path = load_month_values_json(root, tag)
|
|
|
if path is None:
|
|
|
continue
|
|
|
|
|
|
with open(path, "r", encoding="utf-8") as f:
|
|
|
data = json.load(f)
|
|
|
|
|
|
for rec in data.get("tasks", []):
|
|
|
task = rec.get("task", "")
|
|
|
metric = rec.get("metric", "")
|
|
|
value = rec.get("value", None)
|
|
|
if task in main_tasks and metric in ("acc", "acc_norm"):
|
|
|
records.append({
|
|
|
"month": tag,
|
|
|
"task": task,
|
|
|
"metric": metric,
|
|
|
"value": value
|
|
|
})
|
|
|
|
|
|
for rec in data.get("groups", []):
|
|
|
group = rec.get("group", "")
|
|
|
metric = rec.get("metric", "")
|
|
|
value = rec.get("value", None)
|
|
|
if group == "mmlu" and metric == "acc":
|
|
|
records.append({
|
|
|
"month": tag,
|
|
|
"task": "mmlu",
|
|
|
"metric": "acc",
|
|
|
"value": value
|
|
|
})
|
|
|
|
|
|
df = pd.DataFrame.from_records(records)
|
|
|
if df.empty:
|
|
|
df = pd.DataFrame(columns=["month","task","metric","value"])
|
|
|
|
|
|
|
|
|
def month_sort_key(x):
|
|
|
if x == "origin":
|
|
|
return (0, 0)
|
|
|
try:
|
|
|
return (1, int(x))
|
|
|
except Exception:
|
|
|
return (2, x)
|
|
|
|
|
|
df["month"] = pd.Categorical(
|
|
|
df["month"],
|
|
|
categories=sorted(df["month"].unique(), key=month_sort_key),
|
|
|
ordered=True
|
|
|
)
|
|
|
df = df.sort_values(["task","metric","month"])
|
|
|
|
|
|
|
|
|
csv_path = out_dir / "monthly_metrics.csv"
|
|
|
df.to_csv(csv_path, index=False)
|
|
|
|
|
|
|
|
|
plt.figure(figsize=(12, 6))
|
|
|
series_keys = sorted(df[["task","metric"]].drop_duplicates().apply(tuple, axis=1))
|
|
|
n = len(series_keys)
|
|
|
cmap = plt.colormaps['tab20'].resampled(n)
|
|
|
|
|
|
|
|
|
for i, (task, metric) in enumerate(series_keys):
|
|
|
sub = df[(df["task"] == task) & (df["metric"] == metric)].sort_values("month")
|
|
|
if sub.empty:
|
|
|
continue
|
|
|
color = cmap(i % n) if n <= 20 else cmap(i / n)
|
|
|
plt.plot(sub["month"].astype(str), sub["value"],
|
|
|
marker="o",
|
|
|
color=color,
|
|
|
label=f"{task}—{metric}")
|
|
|
|
|
|
plt.xlabel("Month")
|
|
|
plt.ylabel("Score")
|
|
|
plt.title("Monthly Evaluation Trends (Main Tasks)")
|
|
|
plt.legend(loc='best', bbox_to_anchor=(1, 0.5))
|
|
|
plt.tight_layout()
|
|
|
|
|
|
png_path = out_dir / "monthly_metrics.png"
|
|
|
plt.savefig(png_path, dpi=150)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
main()
|
|
|
|