Datasets:

Modalities:
Text
ArXiv:
llmtcl / visualization /multi_bench.py
Maple222's picture
Add files using upload-large-folder tool
53e0dae verified
import os
import json
import argparse
from pathlib import Path
import pandas as pd
import matplotlib.pyplot as plt
# ------------------ 参数解析 ------------------ #
def parse_args():
p = argparse.ArgumentParser()
p.add_argument("root", type=str,
help="Directory containing 12 month subfolders (e.g., 2407 .. 2506)")
p.add_argument("--out-dir", type=str, default=None,
help="Output directory (default: ROOT)")
return p.parse_args()
# ------------------ JSON加载函数 ------------------ #
def load_month_values_json(root: Path, month: str):
# 常见路径候选
candidates = []
candidates.append(root / month / "values.json")
candidates.append(root / f"{month}_full" / "values.json")
candidates.append(root / f"{month}_lr4e-5" / "values.json")
# fallback:任意以 month 开头的子目录
for path in sorted(root.glob(f"{month}*/values.json")):
if path not in candidates:
candidates.append(path)
for path in sorted(root.glob(f"{month}*/metrics.json")):
if path not in candidates:
candidates.append(path)
for c in candidates:
if c.exists():
return c
return None
# ------------------ 主逻辑 ------------------ #
def main():
args = parse_args()
root = Path(args.root)
out_dir = Path(args.out_dir) if args.out_dir else root
months = ["origin", "2407","2408","2409","2410","2411","2412",
"2501","2502","2503","2504","2505","2506"]
main_tasks = [
"arc_easy",
"arc_challenge",
"hellaswag",
"sciq",
"truthfulqa_mc1",
"truthfulqa_mc2",
]
records = []
for tag in months:
path = load_month_values_json(root, tag)
if path is None:
continue
with open(path, "r", encoding="utf-8") as f:
data = json.load(f)
for rec in data.get("tasks", []):
task = rec.get("task", "")
metric = rec.get("metric", "")
value = rec.get("value", None)
if task in main_tasks and metric in ("acc", "acc_norm"):
records.append({
"month": tag,
"task": task,
"metric": metric,
"value": value
})
for rec in data.get("groups", []):
group = rec.get("group", "")
metric = rec.get("metric", "")
value = rec.get("value", None)
if group == "mmlu" and metric == "acc":
records.append({
"month": tag,
"task": "mmlu",
"metric": "acc",
"value": value
})
df = pd.DataFrame.from_records(records)
if df.empty:
df = pd.DataFrame(columns=["month","task","metric","value"])
# 月份排序
def month_sort_key(x):
if x == "origin":
return (0, 0)
try:
return (1, int(x))
except Exception:
return (2, x)
df["month"] = pd.Categorical(
df["month"],
categories=sorted(df["month"].unique(), key=month_sort_key),
ordered=True
)
df = df.sort_values(["task","metric","month"])
# 保存 CSV
csv_path = out_dir / "monthly_metrics.csv"
df.to_csv(csv_path, index=False)
# 画折线图
plt.figure(figsize=(12, 6))
series_keys = sorted(df[["task","metric"]].drop_duplicates().apply(tuple, axis=1))
n = len(series_keys)
cmap = plt.colormaps['tab20'].resampled(n)
for i, (task, metric) in enumerate(series_keys):
sub = df[(df["task"] == task) & (df["metric"] == metric)].sort_values("month")
if sub.empty:
continue
color = cmap(i % n) if n <= 20 else cmap(i / n)
plt.plot(sub["month"].astype(str), sub["value"],
marker="o",
color=color,
label=f"{task}{metric}")
plt.xlabel("Month")
plt.ylabel("Score")
plt.title("Monthly Evaluation Trends (Main Tasks)")
plt.legend(loc='best', bbox_to_anchor=(1, 0.5))
plt.tight_layout()
png_path = out_dir / "monthly_metrics.png"
plt.savefig(png_path, dpi=150)
if __name__ == "__main__":
main()