import os import json import argparse from pathlib import Path import pandas as pd import matplotlib.pyplot as plt # ------------------ 参数解析 ------------------ # def parse_args(): p = argparse.ArgumentParser() p.add_argument("root", type=str, help="Directory containing 12 month subfolders (e.g., 2407 .. 2506)") p.add_argument("--out-dir", type=str, default=None, help="Output directory (default: ROOT)") return p.parse_args() # ------------------ JSON加载函数 ------------------ # def load_month_values_json(root: Path, month: str): # 常见路径候选 candidates = [] candidates.append(root / month / "values.json") candidates.append(root / f"{month}_full" / "values.json") candidates.append(root / f"{month}_lr4e-5" / "values.json") # fallback:任意以 month 开头的子目录 for path in sorted(root.glob(f"{month}*/values.json")): if path not in candidates: candidates.append(path) for path in sorted(root.glob(f"{month}*/metrics.json")): if path not in candidates: candidates.append(path) for c in candidates: if c.exists(): return c return None # ------------------ 主逻辑 ------------------ # def main(): args = parse_args() root = Path(args.root) out_dir = Path(args.out_dir) if args.out_dir else root months = ["origin", "2407","2408","2409","2410","2411","2412", "2501","2502","2503","2504","2505","2506"] main_tasks = [ "arc_easy", "arc_challenge", "hellaswag", "sciq", "truthfulqa_mc1", "truthfulqa_mc2", ] records = [] for tag in months: path = load_month_values_json(root, tag) if path is None: continue with open(path, "r", encoding="utf-8") as f: data = json.load(f) for rec in data.get("tasks", []): task = rec.get("task", "") metric = rec.get("metric", "") value = rec.get("value", None) if task in main_tasks and metric in ("acc", "acc_norm"): records.append({ "month": tag, "task": task, "metric": metric, "value": value }) for rec in data.get("groups", []): group = rec.get("group", "") metric = rec.get("metric", "") value = rec.get("value", None) if group == "mmlu" and metric == "acc": records.append({ "month": tag, "task": "mmlu", "metric": "acc", "value": value }) df = pd.DataFrame.from_records(records) if df.empty: df = pd.DataFrame(columns=["month","task","metric","value"]) # 月份排序 def month_sort_key(x): if x == "origin": return (0, 0) try: return (1, int(x)) except Exception: return (2, x) df["month"] = pd.Categorical( df["month"], categories=sorted(df["month"].unique(), key=month_sort_key), ordered=True ) df = df.sort_values(["task","metric","month"]) # 保存 CSV csv_path = out_dir / "monthly_metrics.csv" df.to_csv(csv_path, index=False) # 画折线图 plt.figure(figsize=(12, 6)) series_keys = sorted(df[["task","metric"]].drop_duplicates().apply(tuple, axis=1)) n = len(series_keys) cmap = plt.colormaps['tab20'].resampled(n) for i, (task, metric) in enumerate(series_keys): sub = df[(df["task"] == task) & (df["metric"] == metric)].sort_values("month") if sub.empty: continue color = cmap(i % n) if n <= 20 else cmap(i / n) plt.plot(sub["month"].astype(str), sub["value"], marker="o", color=color, label=f"{task}—{metric}") plt.xlabel("Month") plt.ylabel("Score") plt.title("Monthly Evaluation Trends (Main Tasks)") plt.legend(loc='best', bbox_to_anchor=(1, 0.5)) plt.tight_layout() png_path = out_dir / "monthly_metrics.png" plt.savefig(png_path, dpi=150) if __name__ == "__main__": main()