Datasets:

Modalities:
Text
ArXiv:
File size: 4,445 Bytes
53e0dae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import json
import argparse
from pathlib import Path
import pandas as pd
import matplotlib.pyplot as plt

# ------------------ 参数解析 ------------------ #
def parse_args():
    p = argparse.ArgumentParser()
    p.add_argument("root", type=str,
                   help="Directory containing 12 month subfolders (e.g., 2407 .. 2506)")
    p.add_argument("--out-dir", type=str, default=None,
                   help="Output directory (default: ROOT)")
    return p.parse_args()

# ------------------ JSON加载函数 ------------------ #
def load_month_values_json(root: Path, month: str):
    # 常见路径候选
    candidates = []
    candidates.append(root / month / "values.json")
    candidates.append(root / f"{month}_full" / "values.json")
    candidates.append(root / f"{month}_lr4e-5" / "values.json")

    # fallback:任意以 month 开头的子目录
    for path in sorted(root.glob(f"{month}*/values.json")):
        if path not in candidates:
            candidates.append(path)
    for path in sorted(root.glob(f"{month}*/metrics.json")):
        if path not in candidates:
            candidates.append(path)

    for c in candidates:
        if c.exists():
            return c
    return None

# ------------------ 主逻辑 ------------------ #
def main():
    args = parse_args()
    root = Path(args.root)
    out_dir = Path(args.out_dir) if args.out_dir else root

    months = ["origin", "2407","2408","2409","2410","2411","2412",
              "2501","2502","2503","2504","2505","2506"]

    main_tasks = [
        "arc_easy",
        "arc_challenge",
        "hellaswag",
        "sciq",
        "truthfulqa_mc1",
        "truthfulqa_mc2",
    ]

    records = []

    for tag in months:
        path = load_month_values_json(root, tag)
        if path is None:
            continue

        with open(path, "r", encoding="utf-8") as f:
            data = json.load(f)

        for rec in data.get("tasks", []):
            task = rec.get("task", "")
            metric = rec.get("metric", "")
            value = rec.get("value", None)
            if task in main_tasks and metric in ("acc", "acc_norm"):
                records.append({
                    "month": tag,
                    "task": task,
                    "metric": metric,
                    "value": value
                })

        for rec in data.get("groups", []):
            group = rec.get("group", "")
            metric = rec.get("metric", "")
            value = rec.get("value", None)
            if group == "mmlu" and metric == "acc":
                records.append({
                    "month": tag,
                    "task": "mmlu",
                    "metric": "acc",
                    "value": value
                })

    df = pd.DataFrame.from_records(records)
    if df.empty:
        df = pd.DataFrame(columns=["month","task","metric","value"])

    # 月份排序
    def month_sort_key(x):
        if x == "origin":
            return (0, 0)
        try:
            return (1, int(x))
        except Exception:
            return (2, x)

    df["month"] = pd.Categorical(
        df["month"],
        categories=sorted(df["month"].unique(), key=month_sort_key),
        ordered=True
    )
    df = df.sort_values(["task","metric","month"])

    # 保存 CSV
    csv_path = out_dir / "monthly_metrics.csv"
    df.to_csv(csv_path, index=False)

    # 画折线图
    plt.figure(figsize=(12, 6))
    series_keys = sorted(df[["task","metric"]].drop_duplicates().apply(tuple, axis=1))
    n = len(series_keys)
    cmap = plt.colormaps['tab20'].resampled(n)


    for i, (task, metric) in enumerate(series_keys):
        sub = df[(df["task"] == task) & (df["metric"] == metric)].sort_values("month")
        if sub.empty:
            continue
        color = cmap(i % n) if n <= 20 else cmap(i / n)
        plt.plot(sub["month"].astype(str), sub["value"],
                 marker="o",
                 color=color,
                 label=f"{task}{metric}")

    plt.xlabel("Month")
    plt.ylabel("Score")
    plt.title("Monthly Evaluation Trends (Main Tasks)")
    plt.legend(loc='best', bbox_to_anchor=(1, 0.5))
    plt.tight_layout()

    png_path = out_dir / "monthly_metrics.png"
    plt.savefig(png_path, dpi=150)

if __name__ == "__main__":
    main()