|
|
""" |
|
|
This script is meant to be the simplest possible starting point for full finetuning a GPT model using lightning fabric with code (not CLI). |
|
|
|
|
|
- no checkpoints |
|
|
- no out dir |
|
|
- no precision |
|
|
- no resume |
|
|
- no train/eval args (or any args in general) |
|
|
- no logger (only to terminal) |
|
|
- no grad accumulation |
|
|
and no other fancy stuff. |
|
|
|
|
|
To add all the above stuff, you can slowly add them in yourself by looking at the code in litgpt/finetune/full.py or the docs for litgpt/fabric. |
|
|
""" |
|
|
|
|
|
import os |
|
|
|
|
|
import lightning as L |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
|
|
|
from litgpt.data import Alpaca |
|
|
from litgpt.model import GPT, Config |
|
|
from litgpt.tokenizer import Tokenizer |
|
|
from litgpt.utils import num_parameters |
|
|
|
|
|
|
|
|
SEED = 1337 |
|
|
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T" |
|
|
BATCH_SIZE = 4 |
|
|
LR_WARMUP_STEPS = 100 |
|
|
MAX_STEPS = 601 |
|
|
|
|
|
|
|
|
def validate(model, val_dataloader): |
|
|
model.eval() |
|
|
loss = 0 |
|
|
with torch.no_grad(): |
|
|
for batch in val_dataloader: |
|
|
input_ids, targets = batch["input_ids"], batch["labels"] |
|
|
logits = model(input_ids) |
|
|
logits = logits.reshape(-1, logits.size(-1)) |
|
|
targets = targets.reshape(-1) |
|
|
loss += nn.functional.cross_entropy(logits[..., :-1, :], targets[..., 1:]) |
|
|
fabric.print(f"Validation loss: {loss / len(val_dataloader)}") |
|
|
|
|
|
|
|
|
def train(fabric, model, optimizer, scheduler, train_dataloader, val_dataloader): |
|
|
for iter_num, batch in enumerate(train_dataloader): |
|
|
input_ids, targets = batch["input_ids"], batch["labels"] |
|
|
|
|
|
|
|
|
logits = model(input_ids) |
|
|
logits = logits.reshape(-1, logits.size(-1)) |
|
|
|
|
|
|
|
|
targets = targets.reshape(-1) |
|
|
loss = nn.functional.cross_entropy(logits[..., :-1, :], targets[..., 1:]) |
|
|
|
|
|
|
|
|
fabric.backward(loss) |
|
|
optimizer.step() |
|
|
optimizer.zero_grad() |
|
|
scheduler.step() |
|
|
|
|
|
|
|
|
if iter_num % 100 == 0 or iter_num == 0: |
|
|
fabric.print(f"Train iter {iter_num} - loss {loss}") |
|
|
|
|
|
|
|
|
if iter_num % 300 == 0 or iter_num == 0: |
|
|
validate(model, val_dataloader) |
|
|
model.train() |
|
|
iter_num += 1 |
|
|
|
|
|
if iter_num >= MAX_STEPS: |
|
|
break |
|
|
|
|
|
|
|
|
def main(fabric): |
|
|
fabric.seed_everything(SEED) |
|
|
|
|
|
|
|
|
data = Alpaca() |
|
|
tokenizer = Tokenizer(checkpoint_dir=f"checkpoints/{MODEL_NAME}") |
|
|
data.connect(tokenizer=tokenizer, batch_size=BATCH_SIZE, max_seq_length=1024) |
|
|
data.setup() |
|
|
train_dataloader = data.train_dataloader() |
|
|
val_dataloader = data.val_dataloader() |
|
|
train_dataloader, val_dataloader = fabric.setup_dataloaders(train_dataloader, val_dataloader) |
|
|
|
|
|
|
|
|
fabric.print(f"Steps in an epoch: {len(train_dataloader)}") |
|
|
|
|
|
|
|
|
config = Config.from_file(f"checkpoints/{MODEL_NAME}/model_config.yaml") |
|
|
model = GPT(config) |
|
|
fabric.print(f"Number of trainable parameters: {num_parameters(model, requires_grad=True):,}") |
|
|
model = fabric.setup(model) |
|
|
|
|
|
|
|
|
optimizer = torch.optim.AdamW(model.parameters(), lr=3e-3, weight_decay=0.02, betas=(0.9, 0.95)) |
|
|
optimizer = fabric.setup_optimizers(optimizer) |
|
|
|
|
|
|
|
|
scheduler1 = torch.optim.lr_scheduler.LambdaLR(optimizer, lambda step: step / LR_WARMUP_STEPS) |
|
|
scheduler2 = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=(MAX_STEPS - LR_WARMUP_STEPS)) |
|
|
scheduler = torch.optim.lr_scheduler.SequentialLR(optimizer, [scheduler1, scheduler2], milestones=[LR_WARMUP_STEPS]) |
|
|
|
|
|
|
|
|
train(fabric, model, optimizer, scheduler, train_dataloader, val_dataloader) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
if not os.path.exists(f"checkpoints/{MODEL_NAME}"): |
|
|
print(f"Model {MODEL_NAME} not found. Please download it using `litgpt download --repo {MODEL_NAME}`") |
|
|
exit() |
|
|
|
|
|
|
|
|
fabric = L.Fabric(devices="auto", strategy="auto") |
|
|
fabric.launch(main) |
|
|
|