Datasets:

Modalities:
Text
ArXiv:
Maple222 commited on
Commit
f9dff7a
·
verified ·
1 Parent(s): 9916a5f

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .azure/gpu-test.yml +114 -0
  2. .devcontainer/Dockerfile +9 -0
  3. .devcontainer/devcontainer.json +105 -0
  4. .github/CODEOWNERS +2 -0
  5. .github/dependabot.yml +41 -0
  6. .gitignore +24 -0
  7. .pre-commit-config.yaml +89 -0
  8. CITATION.cff +9 -0
  9. Dockerfile +17 -0
  10. LICENSE +201 -0
  11. README.md +722 -3
  12. check.py +34 -0
  13. cmd_start_for.ini +2 -0
  14. delete.py +83 -0
  15. environment.yml +261 -0
  16. fix.py +45 -0
  17. litgpt.egg-info/PKG-INFO +977 -0
  18. litgpt.egg-info/SOURCES.txt +89 -0
  19. litgpt.egg-info/dependency_links.txt +1 -0
  20. litgpt.egg-info/entry_points.txt +2 -0
  21. litgpt.egg-info/requires.txt +51 -0
  22. litgpt.egg-info/top_level.txt +1 -0
  23. litgpt/__init__.py +20 -0
  24. litgpt/__main__.py +75 -0
  25. litgpt/adapter.py +129 -0
  26. litgpt/adapter_v2.py +210 -0
  27. litgpt/api.py +734 -0
  28. litgpt/args.py +104 -0
  29. litgpt/config.py +3087 -0
  30. litgpt/lora.py +662 -0
  31. litgpt/model.py +876 -0
  32. litgpt/perplexity.py +513 -0
  33. litgpt/pretrain.py +564 -0
  34. litgpt/prompts.py +541 -0
  35. litgpt/tokenizer.py +182 -0
  36. litgpt/utils.py +875 -0
  37. out/eval/tinyllama_benches/monthly_metrics.csv +133 -0
  38. out/eval/tinyllama_full_arc_arxiv_mc/2407/config.json +24 -0
  39. out/eval/tinyllama_full_arc_arxiv_mc/2407/generation_config.json +7 -0
  40. out/eval/tinyllama_full_arc_arxiv_mc/2407/log.txt +29 -0
  41. out/eval/tinyllama_full_arc_arxiv_mc/2407/model_config.yaml +44 -0
  42. out/eval/tinyllama_full_arc_arxiv_mc/2407/results.json +0 -0
  43. out/eval/tinyllama_full_arc_arxiv_mc/2407/tokenizer.json +0 -0
  44. out/eval/tinyllama_full_arc_arxiv_mc/2407/tokenizer_config.json +35 -0
  45. out/eval/tinyllama_full_arc_arxiv_mc/2407/values.json +286 -0
  46. out/eval/tinyllama_full_ppl/2407_full/ppl_metrics.jsonl +48 -0
  47. out/eval/tinyllama_full_ppl/2408_full/ppl_metrics.jsonl +48 -0
  48. out/eval/tinyllama_full_ppl/2409_full/ppl_metrics.jsonl +48 -0
  49. out/eval/tinyllama_full_ppl/2410_full/ppl_metrics.jsonl +48 -0
  50. out/eval/tinyllama_full_ppl/2411_full/ppl_metrics.jsonl +48 -0
.azure/gpu-test.yml ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: GPU tests
2
+
3
+ trigger:
4
+ branches:
5
+ include:
6
+ - "main"
7
+ - "wip"
8
+
9
+ pr:
10
+ branches:
11
+ include:
12
+ - "main"
13
+ - "wip"
14
+
15
+ jobs:
16
+ - job: testing
17
+ strategy:
18
+ matrix:
19
+ "ordinary":
20
+ #image: "pytorchlightning/pytorch_lightning:base-cuda-py3.10-torch2.7-cuda12.6.3"
21
+ dependency: ""
22
+ "w. Thunder":
23
+ #image: "pytorchlightning/pytorch_lightning:base-cuda-py3.10-torch2.7-cuda12.6.3"
24
+ dependency: "compiler"
25
+ variables:
26
+ DEVICES: $( python -c 'print("$(Agent.Name)".split("_")[-1])' )
27
+ RUN_ONLY_CUDA_TESTS: "1"
28
+ TRANSFORMERS_CACHE: "/var/tmp/hf/transformers"
29
+ HF_HOME: "/var/tmp/hf/home"
30
+ HF_HUB_CACHE: "/var/tmp/hf/hub"
31
+ SKIP_WITH_CI: "1"
32
+ NCCL_DEBUG: "INFO"
33
+ PYTHON_VERSION: "3.10"
34
+ CUDA_VERSION: "12.6.3"
35
+ TORCH_VERSION: "2.7.1"
36
+ CUDNN_FRONTEND_VERSION: "1.10.0"
37
+ container:
38
+ # image: "pytorchlightning/pytorch_lightning:base-cuda-py$(PYTHON_VERSION)-torch$(TORCH_VERSION)-cuda$(CUDA_VERSION)"
39
+ # pytorchlightning/lightning-thunder:ubuntu22.04-cuda12.1.1-cudnn-fe1.5.0-py3.10-pt_main-dev
40
+ image: "pytorchlightning/lightning-thunder:ubuntu24.04-cuda$(CUDA_VERSION)-cudnn-fe$(CUDNN_FRONTEND_VERSION)-py$(PYTHON_VERSION)-pt_$(TORCH_VERSION)-dev"
41
+ options: "--gpus=all --shm-size=8gb -v /var/tmp:/var/tmp"
42
+ workspace:
43
+ clean: all
44
+ pool: "lit-rtx-3090"
45
+ timeoutInMinutes: "35"
46
+ cancelTimeoutInMinutes: "2"
47
+ steps:
48
+ - bash: |
49
+ echo "##vso[task.setvariable variable=CUDA_VISIBLE_DEVICES]$(DEVICES)"
50
+ displayName: "set env. vars"
51
+
52
+ - bash: |
53
+ echo $(DEVICES)
54
+ echo $CUDA_VISIBLE_DEVICES
55
+ dpkg-query -W -f='${Package} ${Version}\n' libnccl2 libnccl-dev
56
+ whereis nvidia
57
+ nvidia-smi
58
+ which python && which pip
59
+ python --version
60
+ pip --version
61
+ pip list
62
+ displayName: "Image info & NVIDIA"
63
+
64
+ - script: |
65
+ pip install --upgrade pip
66
+ pip install '.[extra,test]' "torch==${TORCH_VERSION}" cffi -U
67
+ displayName: "Install package & dependencies"
68
+
69
+ - script: |
70
+ set -e
71
+ pip uninstall -y torchvision torchaudio
72
+ pip install '.[compiler,extra,test]' "torch==${TORCH_VERSION}"
73
+ python -c "from thunder.executors import nvfuser_available ; assert nvfuser_available(), 'nvFuser is missing!'"
74
+ python -c "from thunder.executors.triton_utils import triton_version ; assert triton_version() is not None, 'triton is missing!'"
75
+ condition: eq(variables['dependency'], 'compiler')
76
+ displayName: "Install `compiler` [nvFuser & Thunder]"
77
+
78
+ - bash: |
79
+ set -e
80
+ pip list
81
+ python -c "import torch ; mgpu = torch.cuda.device_count() ; assert mgpu == 2, f'GPU: {mgpu}'"
82
+ python -c "from torch import __version__ as ver ; assert str(ver).split('+')[0] == '$(TORCH_VERSION)', f'PyTorch: installed {ver} but expected $(TORCH_VERSION)'"
83
+ displayName: "Env details"
84
+
85
+ - bash: pytest -v --durations=100
86
+ displayName: "All tests"
87
+ timeoutInMinutes: "15"
88
+
89
+ - bash: |
90
+ wget https://raw.githubusercontent.com/Lightning-AI/utilities/main/scripts/run_standalone_tests.sh
91
+ bash run_standalone_tests.sh "tests"
92
+ displayName: "Standalone tests"
93
+ env:
94
+ PL_RUN_STANDALONE_TESTS: "1"
95
+ # NUM_PARALLEL_TESTS: "10"
96
+ NCCL_IGNORE_DISABLED_P2P: "1"
97
+ NCCL_DEBUG: "INFO"
98
+ timeoutInMinutes: "10"
99
+
100
+ - bash: |
101
+ pip uninstall -y lightning-thunder
102
+ # install thunder from source, so that, thunder.tests will be available
103
+ pip install -U "lightning-thunder[test] @ git+https://github.com/Lightning-AI/lightning-thunder.git" "torch==${TORCH_VERSION}"
104
+ displayName: "Re-install Thunder [main branch]"
105
+ condition: eq(variables['dependency'], 'compiler')
106
+
107
+ - bash: |
108
+ # without env var, it filters out all tests
109
+ RUN_ONLY_CUDA_TESTS=0 pytest tests/ext_thunder/test_thunder_networks.py -v --durations=50
110
+ displayName: "Extra tests for Thunder [main branch]"
111
+ condition: eq(variables['dependency'], 'compiler')
112
+ env:
113
+ TORCHDYNAMO_VERBOSE: "1"
114
+ timeoutInMinutes: "10"
.devcontainer/Dockerfile ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ # See here for image contents: https://github.com/devcontainers/images/blob/main/src/python/.devcontainer/Dockerfile
2
+
3
+ # [Choice] Python version (use -bookworm or -bullseye variants on local arm64/Apple Silicon): 3, 3.12, 3.11, 3.10, 3.9, 3.8, 3-bookworm, 3.12-bookworm, 3.11-bookworm, 3.10-bookworm, 3.9-bookworm, 3.8-bookworm, 3-bullseye, 3.12-bullseye, 3.11-bullseye, 3.10-bullseye, 3.9-bullseye, 3.8-bullseye, 3-buster, 3.12-buster, 3.11-buster, 3.10-buster, 3.9-buster, 3.8-buster
4
+ ARG VARIANT=3-bookworm
5
+ FROM mcr.microsoft.com/devcontainers/python:1-${VARIANT}
6
+
7
+ # Temporary: Upgrade python packages due to https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-40897
8
+ # They are installed by the base image (python) which does not have the patch.
9
+ RUN python3 -m pip install --upgrade pip setuptools
.devcontainer/devcontainer.json ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // For format details, see https://aka.ms/devcontainer.json. For config options, see the README at:
2
+ // https://github.com/microsoft/vscode-dev-containers/tree/v0.194.0/containers/python-3
3
+ {
4
+ "name": "Python 3 (litgpt)",
5
+ "build": {
6
+ "dockerfile": "Dockerfile",
7
+ "context": "..",
8
+ "args": {
9
+ "VARIANT": "3.11-bookworm"
10
+ }
11
+ },
12
+ "runArgs": [
13
+ // Enable GPU passthrough, requires WSL2 on Windows
14
+ //"--gpus=all",
15
+ // One of the following options is required for torch multiprocessing
16
+ //"--ipc=host",
17
+ //"--shm-size=4gb",
18
+ ],
19
+ // Features to add to the dev container. More info: https://containers.dev/features.
20
+ "features": {
21
+ "ghcr.io/devcontainers/features/git:1": {},
22
+ "ghcr.io/devcontainers/features/git-lfs:1": {},
23
+ //"ghcr.io/devcontainers/features/nvidia-cuda:1": {},
24
+ "ghcr.io/devcontainers-extra/features/actionlint:1": {},
25
+ "ghcr.io/devcontainers-extra/features/pre-commit:2": {},
26
+ "ghcr.io/dhoeric/features/act:1": {},
27
+ "ghcr.io/devcontainers/features/docker-in-docker:2": {
28
+ "version": "latest",
29
+ "moby": true
30
+ }
31
+ },
32
+ // Set *default* container specific settings.json values on container create.
33
+ "customizations": {
34
+ "vscode": {
35
+ "settings": {
36
+ "editor.tabSize": 4,
37
+ "editor.renderWhitespace": "all",
38
+ "editor.formatOnSave": true,
39
+ "editor.rulers": [120],
40
+ "files.exclude": {
41
+ "**/__pycache__": true
42
+ },
43
+ "python.pythonPath": "/usr/local/bin/python",
44
+ "python.defaultInterpreterPath": "/usr/local/bin/python",
45
+ "python.languageServer": "Pylance",
46
+ "python.analysis.autoImportCompletions": true,
47
+ "python.analysis.completeFunctionParens": true,
48
+ "python.analysis.autoSearchPaths": true,
49
+ "python.testing.pytestArgs": ["tests"],
50
+ "python.testing.unittestEnabled": false,
51
+ "python.testing.pytestEnabled": true,
52
+ "code-eol.highlightNonDefault": true,
53
+ "code-eol.highlightExtraWhitespace": true,
54
+ "autoDocstring.docstringFormat": "google-notypes",
55
+ "autoDocstring.guessTypes": true,
56
+ "autoDocstring.generateDocstringOnEnter": true,
57
+ "autoDocstring.startOnNewLine": true,
58
+ "telemetry.telemetryLevel": "off",
59
+ "[python]": {
60
+ "editor.formatOnSave": true,
61
+ "editor.defaultFormatter": "charliermarsh.ruff",
62
+ "editor.codeActionsOnSave": {
63
+ "source.organizeImports": "always",
64
+ "source.fixAll": "always"
65
+ }
66
+ }
67
+ },
68
+ // Add the IDs of extensions you want installed when the container is created.
69
+ "extensions": [
70
+ "ms-python.python",
71
+ "ms-python.vscode-pylance",
72
+ "ms-toolsai.jupyter",
73
+ "GitHub.copilot",
74
+ "GitHub.copilot-chat",
75
+ "github.vscode-github-actions",
76
+ "SanjulaGanepola.github-local-actions",
77
+ "charliermarsh.ruff",
78
+ "esbenp.prettier-vscode",
79
+ "ms-vscode.test-adapter-converter",
80
+ "njqdev.vscode-python-typehint",
81
+ "KevinRose.vsc-python-indent",
82
+ "medo64.render-crlf",
83
+ "shardulm94.trailing-spaces",
84
+ "nhoizey.gremlins",
85
+ "wayou.vscode-todo-highlight",
86
+ "Gruntfuggly.todo-tree",
87
+ "njpwerner.autodocstring",
88
+ "rodolphebarbanneau.python-docstring-highlighter",
89
+ "mechatroner.rainbow-csv",
90
+ "uctakeoff.vscode-counter",
91
+ "bierner.github-markdown-preview",
92
+ "yahyabatulu.vscode-markdown-alert",
93
+ "ms-vscode-remote.vscode-remote-extensionpack",
94
+ "ms-azuretools.vscode-docker",
95
+ "redhat.vscode-yaml"
96
+ ]
97
+ }
98
+ },
99
+ // Use 'forwardPorts' to make a list of ports inside the container available locally.
100
+ // "forwardPorts": [],
101
+ // Use 'postCreateCommand' to run commands after the container is created.
102
+ "postCreateCommand": "pre-commit install && pip install '.[extra,compiler,test]' -U",
103
+ // Comment out connect as root instead. More info: https://aka.ms/vscode-remote/containers/non-root.
104
+ "remoteUser": "vscode"
105
+ }
.github/CODEOWNERS ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ * @lantiga @t-vi @borda
2
+ /README.md @williamfalcon @lantiga
.github/dependabot.yml ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Basic dependabot.yml file with
2
+ # minimum configuration for two package managers
3
+
4
+ version: 2
5
+ updates:
6
+ # Enable version updates for python
7
+ - package-ecosystem: "pip"
8
+ # Look for a `requirements` in the `root` directory
9
+ directory: "/"
10
+ # Check for updates once a week
11
+ schedule:
12
+ interval: "monthly"
13
+ # Labels on pull requests for version updates only
14
+ labels:
15
+ - "dependencies"
16
+ pull-request-branch-name:
17
+ # Separate sections of the branch name with a hyphen
18
+ # for example, `dependabot-npm_and_yarn-next_js-acorn-6.4.1`
19
+ separator: "-"
20
+ # Allow up to 5 open pull requests for pip dependencies
21
+ open-pull-requests-limit: 3
22
+
23
+ # Enable version updates for GitHub Actions
24
+ - package-ecosystem: "github-actions"
25
+ directory: "/"
26
+ # Check for updates once a week
27
+ schedule:
28
+ interval: "weekly"
29
+ # Labels on pull requests for version updates only
30
+ labels:
31
+ - "CI / actions"
32
+ pull-request-branch-name:
33
+ # Separate sections of the branch name with a hyphen
34
+ # for example, `dependabot-npm_and_yarn-next_js-acorn-6.4.1`
35
+ separator: "-"
36
+ # Allow up to 5 open pull requests for GitHub Actions
37
+ open-pull-requests-limit: 1
38
+ groups:
39
+ GHA-updates:
40
+ patterns:
41
+ - "*"
.gitignore ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .ipynb_checkpoints/
2
+ __pycache__
3
+ .idea
4
+ .DS_Store
5
+ *.egg-info
6
+ build
7
+ dist
8
+ .venv
9
+ .vscode
10
+
11
+ # data
12
+ data
13
+ datasets
14
+ !litgpt/data
15
+ !tests/data
16
+ checkpoints
17
+ out
18
+ wandb
19
+ events.out.tfevents*
20
+
21
+ # test artifacts from tests/test_readme.py
22
+ **/custom_finetuning_dataset.json
23
+ client.py
24
+ **/custom_texts/
.pre-commit-config.yaml ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright The Lightning team.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ default_language_version:
16
+ python: python3
17
+
18
+ ci:
19
+ autofix_prs: true
20
+ autoupdate_commit_msg: "[pre-commit.ci] pre-commit suggestions"
21
+ autoupdate_schedule: quarterly
22
+ # submodules: true
23
+
24
+ repos:
25
+ - repo: https://github.com/pre-commit/pre-commit-hooks
26
+ rev: v5.0.0
27
+ hooks:
28
+ - id: end-of-file-fixer
29
+ - id: trailing-whitespace
30
+ exclude: README.md
31
+ - id: check-yaml
32
+ - id: check-toml
33
+ #- id: check-docstring-first
34
+ #- id: check-executables-have-shebangs
35
+ - id: check-case-conflict
36
+ - id: check-added-large-files
37
+ args: ["--maxkb=250", "--enforce-all"]
38
+ - id: detect-private-key
39
+
40
+ - repo: https://github.com/codespell-project/codespell
41
+ rev: v2.4.1
42
+ hooks:
43
+ - id: codespell
44
+ additional_dependencies: [tomli]
45
+ args: ["--write-changes"]
46
+ exclude: pyproject.toml
47
+
48
+ #- repo: https://github.com/crate-ci/typos
49
+ # rev: dictgen-v0.3.1
50
+ # hooks:
51
+ # - id: typos
52
+ # args: [] # empty to do not write fixes
53
+ # exclude: pyproject.toml
54
+
55
+ #- repo: https://github.com/executablebooks/mdformat
56
+ # rev: 0.7.21
57
+ # hooks:
58
+ # - id: mdformat
59
+ # args: ["--number"]
60
+ # additional_dependencies:
61
+ # - mdformat-gfm
62
+ # - mdformat-black
63
+ # - mdformat_frontmatter
64
+
65
+ - repo: https://github.com/pre-commit/mirrors-prettier
66
+ rev: v3.1.0
67
+ hooks:
68
+ - id: prettier
69
+ files: \.(json|yml|yaml|toml)
70
+ # https://prettier.io/docs/en/options.html#print-width
71
+ args: ["--print-width=140"]
72
+
73
+ - repo: https://github.com/astral-sh/ruff-pre-commit
74
+ rev: v0.12.2
75
+ hooks:
76
+ - id: ruff
77
+ args: ["--fix"]
78
+ - id: ruff-format
79
+ - id: ruff
80
+
81
+ - repo: https://github.com/tox-dev/pyproject-fmt
82
+ rev: v2.6.0
83
+ hooks:
84
+ - id: pyproject-fmt
85
+ additional_dependencies: [tox]
86
+ - repo: https://github.com/abravalheri/validate-pyproject
87
+ rev: v0.24.1
88
+ hooks:
89
+ - id: validate-pyproject
CITATION.cff ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ cff-version: 1.2.0
2
+ message: "If you use this software, you can cite it as shown below."
3
+ title: "LitGPT"
4
+ abstract: "20+ high-performance LLMs with recipes to pretrain, finetune and deploy at scale."
5
+ date-released: 2023-03-22
6
+ authors:
7
+ - name: "The Lightning AI team"
8
+ license: "Apache-2.0"
9
+ url: "https://github.com/Lightning-AI/litgpt"
Dockerfile ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM ubuntu:22.04
2
+
3
+ # 设置 UTF-8(重要,否则 python/其他程序可能乱码)
4
+ ENV LANG=C.UTF-8
5
+ ENV LC_ALL=C.UTF-8
6
+
7
+ # 安装常用工具(可选)
8
+ RUN apt-get update && apt-get install -y \
9
+ python3 python3-pip vim git wget curl \
10
+ && apt-get clean
11
+
12
+ # 把你的整个文件夹复制进镜像
13
+ COPY . /workspace
14
+
15
+ # 设置默认工作目录
16
+ WORKDIR /workspace
17
+
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [2023] Lightning AI
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md CHANGED
@@ -1,3 +1,722 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+
3
+
4
+ # ⚡ LitGPT
5
+
6
+ **20+ high-performance LLMs with recipes to pretrain, finetune, and deploy at scale.**
7
+
8
+ <pre>
9
+ ✅ From scratch implementations ✅ No abstractions ✅ Beginner friendly
10
+ ✅ Flash attention ✅ FSDP ✅ LoRA, QLoRA, Adapter
11
+ ✅ Reduce GPU memory (fp4/8/16/32) ✅ 1-1000+ GPUs/TPUs ✅ 20+ LLMs
12
+ </pre>
13
+
14
+
15
+ ---
16
+
17
+
18
+ ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/pytorch-lightning)
19
+ ![cpu-tests](https://github.com/lightning-AI/lit-stablelm/actions/workflows/cpu-tests.yml/badge.svg) [![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/Lightning-AI/lit-stablelm/blob/master/LICENSE) [![Discord](https://img.shields.io/discord/1077906959069626439)](https://discord.gg/VptPCZkGNa)
20
+
21
+ <p align="center">
22
+ <a href="#quick-start">Quick start</a> •
23
+ <a href="#choose-from-20-llms">Models</a> •
24
+ <a href="#finetune-an-llm">Finetune</a> •
25
+ <a href="#deploy-an-llm">Deploy</a> •
26
+ <a href="#all-workflows">All workflows</a> •
27
+ <a href="#state-of-the-art-features">Features</a> •
28
+ <a href="#training-recipes">Recipes (YAML)</a> •
29
+ <a href="https://lightning.ai/">Lightning AI</a> •
30
+ <a href="#tutorials">Tutorials</a>
31
+ </p>
32
+
33
+ &nbsp;
34
+
35
+ <a target="_blank" href="https://lightning.ai/lightning-ai/studios/litgpt-quick-start">
36
+ <img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/get-started-badge.svg" height="36px" alt="Get started"/>
37
+ </a>
38
+
39
+ &nbsp;
40
+
41
+ </div>
42
+
43
+ # Use, finetune, pretrain, and deploy LLMs Lightning fast ⚡⚡
44
+ Every LLM is implemented from scratch with **no abstractions** and **full control**, making them blazing fast, minimal, and performant at enterprise scale.
45
+
46
+ ✅ **Enterprise ready -** Apache 2.0 for unlimited enterprise use.</br>
47
+ ✅ **Developer friendly -** Easy debugging with no abstraction layers and single file implementations.</br>
48
+ ✅ **Optimized performance -** Models designed to maximize performance, reduce costs, and speed up training.</br>
49
+ ✅ **Proven recipes -** Highly-optimized training/finetuning recipes tested at enterprise scale.</br>
50
+
51
+ &nbsp;
52
+
53
+ # Quick start
54
+ Install LitGPT
55
+ ```
56
+ pip install 'litgpt[extra]'
57
+ ```
58
+
59
+ Load and use any of the [20+ LLMs](#choose-from-20-llms):
60
+ ```python
61
+ from litgpt import LLM
62
+
63
+ llm = LLM.load("microsoft/phi-2")
64
+ text = llm.generate("Fix the spelling: Every fall, the family goes to the mountains.")
65
+ print(text)
66
+ # Corrected Sentence: Every fall, the family goes to the mountains.
67
+ ```
68
+
69
+ &nbsp;
70
+
71
+ ✅ Optimized for fast inference</br>
72
+ ✅ Quantization</br>
73
+ ✅ Runs on low-memory GPUs</br>
74
+ ✅ No layers of internal abstractions</br>
75
+ ✅ Optimized for production scale</br>
76
+
77
+ <details>
78
+ <summary>Advanced install options</summary>
79
+
80
+ Install from source:
81
+
82
+ ```bash
83
+ git clone https://github.com/Lightning-AI/litgpt
84
+ cd litgpt
85
+ pip install -e '.[all]'
86
+ ```
87
+ </details>
88
+
89
+ [Explore the full Python API docs](tutorials/python-api.md).
90
+
91
+ &nbsp;
92
+
93
+ ---
94
+ # Choose from 20+ LLMs
95
+ Every model is written from scratch to maximize performance and remove layers of abstraction:
96
+
97
+ | Model | Model size | Author | Reference |
98
+ |----|----|----|----|
99
+ | Llama 3, 3.1, 3.2, 3.3 | 1B, 3B, 8B, 70B, 405B | Meta AI | [Meta AI 2024](https://github.com/meta-llama/llama3) |
100
+ | Code Llama | 7B, 13B, 34B, 70B | Meta AI | [Rozière et al. 2023](https://arxiv.org/abs/2308.12950) |
101
+ | CodeGemma | 7B | Google | [Google Team, Google Deepmind](https://ai.google.dev/gemma/docs/codegemma) |
102
+ | Gemma 2 | 2B, 9B, 27B | Google | [Google Team, Google Deepmind](https://storage.googleapis.com/deepmind-media/gemma/gemma-2-report.pdf) |
103
+ | Phi 4 | 14B | Microsoft Research | [Abdin et al. 2024](https://arxiv.org/abs/2412.08905) |
104
+ | Qwen2.5 | 0.5B, 1.5B, 3B, 7B, 14B, 32B, 72B | Alibaba Group | [Qwen Team 2024](https://qwenlm.github.io/blog/qwen2.5/) |
105
+ | Qwen2.5 Coder | 0.5B, 1.5B, 3B, 7B, 14B, 32B | Alibaba Group | [Hui, Binyuan et al. 2024](https://arxiv.org/abs/2409.12186) |
106
+ | R1 Distill Llama | 8B, 70B | DeepSeek AI | [DeepSeek AI 2025](https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf) |
107
+ | ... | ... | ... | ... |
108
+
109
+ <details>
110
+ <summary>See full list of 20+ LLMs</summary>
111
+
112
+ &nbsp;
113
+
114
+ #### All models
115
+
116
+ | Model | Model size | Author | Reference |
117
+ |----|----|----|----|
118
+ | CodeGemma | 7B | Google | [Google Team, Google Deepmind](https://ai.google.dev/gemma/docs/codegemma) |
119
+ | Code Llama | 7B, 13B, 34B, 70B | Meta AI | [Rozière et al. 2023](https://arxiv.org/abs/2308.12950) |
120
+ | Falcon | 7B, 40B, 180B | TII UAE | [TII 2023](https://falconllm.tii.ae) |
121
+ | Falcon 3 | 1B, 3B, 7B, 10B | TII UAE | [TII 2024](https://huggingface.co/blog/falcon3) |
122
+ | FreeWilly2 (Stable Beluga 2) | 70B | Stability AI | [Stability AI 2023](https://stability.ai/blog/stable-beluga-large-instruction-fine-tuned-models) |
123
+ | Function Calling Llama 2 | 7B | Trelis | [Trelis et al. 2023](https://huggingface.co/Trelis/Llama-2-7b-chat-hf-function-calling-v2) |
124
+ | Gemma | 2B, 7B | Google | [Google Team, Google Deepmind](https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf) |
125
+ | Gemma 2 | 9B, 27B | Google | [Google Team, Google Deepmind](https://storage.googleapis.com/deepmind-media/gemma/gemma-2-report.pdf) |
126
+ | Gemma 3 | 1B, 4B, 12B, 27B | Google | [Google Team, Google Deepmind](https://arxiv.org/pdf/2503.19786) |
127
+ | Llama 2 | 7B, 13B, 70B | Meta AI | [Touvron et al. 2023](https://arxiv.org/abs/2307.09288) |
128
+ | Llama 3.1 | 8B, 70B | Meta AI | [Meta AI 2024](https://github.com/meta-llama/llama3) |
129
+ | Llama 3.2 | 1B, 3B | Meta AI | [Meta AI 2024](https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/) |
130
+ | Llama 3.3 | 70B | Meta AI | [Meta AI 2024](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) |
131
+ | Mathstral | 7B | Mistral AI | [Mistral AI 2024](https://mistral.ai/news/mathstral/) |
132
+ | MicroLlama | 300M | Ken Wang | [MicroLlama repo](https://github.com/keeeeenw/MicroLlama) |
133
+ | Mixtral MoE | 8x7B | Mistral AI | [Mistral AI 2023](https://mistral.ai/news/mixtral-of-experts/) |
134
+ | Mistral | 7B, 123B | Mistral AI | [Mistral AI 2023](https://mistral.ai/news/announcing-mistral-7b/) |
135
+ | Mixtral MoE | 8x22B | Mistral AI | [Mistral AI 2024](https://mistral.ai/news/mixtral-8x22b/) |
136
+ | OLMo | 1B, 7B | Allen Institute for AI (AI2) | [Groeneveld et al. 2024](https://aclanthology.org/2024.acl-long.841/) |
137
+ | OpenLLaMA | 3B, 7B, 13B | OpenLM Research | [Geng & Liu 2023](https://github.com/openlm-research/open_llama) |
138
+ | Phi 1.5 & 2 | 1.3B, 2.7B | Microsoft Research | [Li et al. 2023](https://arxiv.org/abs/2309.05463) |
139
+ | Phi 3 | 3.8B | Microsoft Research | [Abdin et al. 2024](https://arxiv.org/abs/2404.14219) |
140
+ | Phi 4 | 14B | Microsoft Research | [Abdin et al. 2024](https://arxiv.org/abs/2412.08905) |
141
+ | Phi 4 Mini Instruct | 3.8B | Microsoft Research | [Microsoft 2025](https://arxiv.org/abs/2503.01743) |
142
+ | Phi 4 Mini Reasoning | 3.8B | Microsoft Research | [Xu, Peng et al. 2025](https://arxiv.org/abs/2504.21233) |
143
+ | Phi 4 Reasoning | 3.8B | Microsoft Research | [Abdin et al. 2025](https://arxiv.org/abs/2504.21318) |
144
+ | Phi 4 Reasoning Plus | 3.8B | Microsoft Research | [Abdin et al. 2025](https://arxiv.org/abs/2504.21318) |
145
+ | Platypus | 7B, 13B, 70B | Lee et al. | [Lee, Hunter, and Ruiz 2023](https://arxiv.org/abs/2308.07317) |
146
+ | Pythia | {14,31,70,160,410}M, {1,1.4,2.8,6.9,12}B | EleutherAI | [Biderman et al. 2023](https://arxiv.org/abs/2304.01373) |
147
+ | Qwen2.5 | 0.5B, 1.5B, 3B, 7B, 14B, 32B, 72B | Alibaba Group | [Qwen Team 2024](https://qwenlm.github.io/blog/qwen2.5/) |
148
+ | Qwen2.5 Coder | 0.5B, 1.5B, 3B, 7B, 14B, 32B | Alibaba Group | [Hui, Binyuan et al. 2024](https://arxiv.org/abs/2409.12186) |
149
+ | Qwen2.5 1M (Long Context) | 7B, 14B | Alibaba Group | [Qwen Team 2025](https://qwenlm.github.io/blog/qwen2.5-1m/) |
150
+ | Qwen2.5 Math | 1.5B, 7B, 72B | Alibaba Group | [An, Yang et al. 2024](https://arxiv.org/abs/2409.12122) |
151
+ | QwQ | 32B | Alibaba Group | [Qwen Team 2025](https://qwenlm.github.io/blog/qwq-32b/) |
152
+ | QwQ-Preview | 32B | Alibaba Group | [Qwen Team 2024](https://qwenlm.github.io/blog/qwq-32b-preview/) |
153
+ | Qwen3 | 0.6B, 1.7B, 4B, 8B, 14B, 32B | Alibaba Group | [Qwen Team 2025](https://arxiv.org/abs/2505.09388/) |
154
+ | Qwen3 MoE | 30B, 235B | Alibaba Group | [Qwen Team 2025](https://arxiv.org/abs/2505.09388/) |
155
+ | R1 Distill Llama | 8B, 70B | DeepSeek AI | [DeepSeek AI 2025](https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf) |
156
+ | SmolLM2 | 135M, 360M, 1.7B | Hugging Face | [Hugging Face 2024](https://github.com/huggingface/smollm) |
157
+ | Salamandra | 2B, 7B | Barcelona Supercomputing Centre | [BSC-LTC 2024](https://github.com/BSC-LTC/salamandra) |
158
+ | StableCode | 3B | Stability AI | [Stability AI 2023](https://stability.ai/blog/stablecode-llm-generative-ai-coding) |
159
+ | StableLM | 3B, 7B | Stability AI | [Stability AI 2023](https://github.com/Stability-AI/StableLM) |
160
+ | StableLM Zephyr | 3B | Stability AI | [Stability AI 2023](https://stability.ai/blog/stablecode-llm-generative-ai-coding) |
161
+ | TinyLlama | 1.1B | Zhang et al. | [Zhang et al. 2023](https://github.com/jzhang38/TinyLlama) |
162
+
163
+
164
+ **Tip**: You can list all available models by running the `litgpt download list` command.
165
+
166
+
167
+ </details>
168
+
169
+ &nbsp;
170
+
171
+ ---
172
+
173
+ # Workflows
174
+
175
+ <p align="center">
176
+ <a href="#finetune-an-llm">Finetune</a> •
177
+ <a href="#pretrain-an-llm">Pretrain</a> •
178
+ <a href="#continue-pretraining-an-llm">Continued pretraining</a> •
179
+ <a href="#evaluate-an-llm">Evaluate</a> •
180
+ <a href="#deploy-an-llm">Deploy</a> •
181
+ <a href="#test-an-llm">Test</a>
182
+ </p>
183
+
184
+ &nbsp;
185
+
186
+ Use the command line interface to run advanced workflows such as pretraining or finetuning on your own data.
187
+
188
+
189
+ ## All workflows
190
+ After installing LitGPT, select the model and workflow to run (finetune, pretrain, evaluate, deploy, etc...):
191
+
192
+ ```bash
193
+ # litgpt [action] [model]
194
+ litgpt serve meta-llama/Llama-3.2-3B-Instruct
195
+ litgpt finetune meta-llama/Llama-3.2-3B-Instruct
196
+ litgpt pretrain meta-llama/Llama-3.2-3B-Instruct
197
+ litgpt chat meta-llama/Llama-3.2-3B-Instruct
198
+ litgpt evaluate meta-llama/Llama-3.2-3B-Instruct
199
+ ```
200
+
201
+ &nbsp;
202
+
203
+ ----
204
+
205
+ ## Finetune an LLM
206
+
207
+ <div align="center">
208
+ <a target="_blank" href="https://lightning.ai/lightning-ai/studios/litgpt-finetune">
209
+ <img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/run-on-studio.svg" height="36px" alt="Run on Studios"/>
210
+ </a>
211
+ </div>
212
+
213
+ &nbsp;
214
+
215
+ Finetuning is the process of taking a pretrained AI model and further training it on a smaller, specialized dataset tailored to a specific task or application.
216
+
217
+
218
+ &nbsp;
219
+
220
+ ```bash
221
+ # 0) setup your dataset
222
+ curl -L https://huggingface.co/datasets/ksaw008/finance_alpaca/resolve/main/finance_alpaca.json -o my_custom_dataset.json
223
+
224
+ # 1) Finetune a model (auto downloads weights)
225
+ litgpt finetune microsoft/phi-2 \
226
+ --data JSON \
227
+ --data.json_path my_custom_dataset.json \
228
+ --data.val_split_fraction 0.1 \
229
+ --out_dir out/custom-model
230
+
231
+ # 2) Test the model
232
+ litgpt chat out/custom-model/final
233
+
234
+ # 3) Deploy the model
235
+ litgpt serve out/custom-model/final
236
+ ```
237
+
238
+ [Read the full finetuning docs](tutorials/finetune.md)
239
+
240
+ &nbsp;
241
+
242
+ ----
243
+
244
+ ## Deploy an LLM
245
+
246
+ <div align="center">
247
+ <a target="_blank" href="https://lightning.ai/lightning-ai/studios/litgpt-serve">
248
+ <img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/deploy-on-studios.svg" height="36px" alt="Deploy on Studios"/>
249
+ </a>
250
+ </div>
251
+
252
+ &nbsp;
253
+
254
+ Deploy a pretrained or finetune LLM to use it in real-world applications. Deploy, automatically sets up a web server that can be accessed by a website or app.
255
+
256
+ ```bash
257
+ # deploy an out-of-the-box LLM
258
+ litgpt serve microsoft/phi-2
259
+
260
+ # deploy your own trained model
261
+ litgpt serve path/to/microsoft/phi-2/checkpoint
262
+ ```
263
+
264
+ <details>
265
+ <summary>Show code to query server:</summary>
266
+
267
+ &nbsp;
268
+
269
+ Test the server in a separate terminal and integrate the model API into your AI product:
270
+ ```python
271
+ # 3) Use the server (in a separate Python session)
272
+ import requests, json
273
+ response = requests.post(
274
+ "http://127.0.0.1:8000/predict",
275
+ json={"prompt": "Fix typos in the following sentence: Example input"}
276
+ )
277
+ print(response.json()["output"])
278
+ ```
279
+ </details>
280
+
281
+ [Read the full deploy docs](tutorials/deploy.md).
282
+
283
+ &nbsp;
284
+
285
+ ----
286
+
287
+ ## Evaluate an LLM
288
+ Evaluate an LLM to test its performance on various tasks to see how well it understands and generates text. Simply put, we can evaluate things like how well would it do in college-level chemistry, coding, etc... (MMLU, Truthful QA, etc...)
289
+
290
+ ```bash
291
+ litgpt evaluate microsoft/phi-2 --tasks 'truthfulqa_mc2,mmlu'
292
+ ```
293
+
294
+ [Read the full evaluation docs](tutorials/evaluation.md).
295
+
296
+ &nbsp;
297
+
298
+ ----
299
+
300
+ ## Test an LLM
301
+
302
+ <div align="center">
303
+ <a target="_blank" href="https://lightning.ai/lightning-ai/studios/litgpt-chat">
304
+ <img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/run-on-studio.svg" height="36px" alt="Run on Studios"/>
305
+ </a>
306
+ </div>
307
+
308
+ &nbsp;
309
+
310
+ Test how well the model works via an interactive chat. Use the `chat` command to chat, extract embeddings, etc...
311
+
312
+ Here's an example showing how to use the Phi-2 LLM:
313
+ ```bash
314
+ litgpt chat microsoft/phi-2
315
+
316
+ >> Prompt: What do Llamas eat?
317
+ ```
318
+
319
+ <details>
320
+ <summary>Full code:</summary>
321
+
322
+ &nbsp;
323
+
324
+ ```bash
325
+ # 1) List all supported LLMs
326
+ litgpt download list
327
+
328
+ # 2) Use a model (auto downloads weights)
329
+ litgpt chat microsoft/phi-2
330
+
331
+ >> Prompt: What do Llamas eat?
332
+ ```
333
+
334
+ The download of certain models requires an additional access token. You can read more about this in the [download](tutorials/download_model_weights.md#specific-models-and-access-tokens) documentation.
335
+
336
+ </details>
337
+
338
+ [Read the full chat docs](tutorials/inference.md).
339
+
340
+ &nbsp;
341
+
342
+ ----
343
+
344
+ ## Pretrain an LLM
345
+
346
+ <div align="center">
347
+ <a target="_blank" href="https://lightning.ai/lightning-ai/studios/litgpt-pretrain">
348
+ <img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/run-on-studio.svg" height="36px" alt="Run on Studios"/>
349
+ </a>
350
+ </div>
351
+
352
+ &nbsp;
353
+
354
+ Pretraining is the process of teaching an AI model by exposing it to a large amount of data before it is fine-tuned for specific tasks.
355
+
356
+ <details>
357
+ <summary>Show code:</summary>
358
+
359
+ &nbsp;
360
+
361
+ ```bash
362
+ mkdir -p custom_texts
363
+ curl https://www.gutenberg.org/cache/epub/24440/pg24440.txt --output custom_texts/book1.txt
364
+ curl https://www.gutenberg.org/cache/epub/26393/pg26393.txt --output custom_texts/book2.txt
365
+
366
+ # 1) Download a tokenizer
367
+ litgpt download EleutherAI/pythia-160m \
368
+ --tokenizer_only True
369
+
370
+ # 2) Pretrain the model
371
+ litgpt pretrain EleutherAI/pythia-160m \
372
+ --tokenizer_dir EleutherAI/pythia-160m \
373
+ --data TextFiles \
374
+ --data.train_data_path "custom_texts/" \
375
+ --train.max_tokens 10_000_000 \
376
+ --out_dir out/custom-model
377
+
378
+ # 3) Test the model
379
+ litgpt chat out/custom-model/final
380
+ ```
381
+ </details>
382
+
383
+ [Read the full pretraining docs](tutorials/pretrain.md)
384
+
385
+ &nbsp;
386
+
387
+ ----
388
+
389
+ ## Continue pretraining an LLM
390
+
391
+ <div align="center">
392
+ <a target="_blank" href="https://lightning.ai/lightning-ai/studios/litgpt-continue-pretraining">
393
+ <img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/run-on-studio.svg" height="36px" alt="Run on Studios"/>
394
+ </a>
395
+ </div>
396
+
397
+ &nbsp;
398
+
399
+ Continued pretraining is another way of finetuning that specializes an already pretrained model by training on custom data:
400
+
401
+ <details>
402
+ <summary>Show code:</summary>
403
+
404
+ &nbsp;
405
+
406
+ ```bash
407
+ mkdir -p custom_texts
408
+ curl https://www.gutenberg.org/cache/epub/24440/pg24440.txt --output custom_texts/book1.txt
409
+ curl https://www.gutenberg.org/cache/epub/26393/pg26393.txt --output custom_texts/book2.txt
410
+
411
+ # 1) Continue pretraining a model (auto downloads weights)
412
+ litgpt pretrain EleutherAI/pythia-160m \
413
+ --tokenizer_dir EleutherAI/pythia-160m \
414
+ --initial_checkpoint_dir EleutherAI/pythia-160m \
415
+ --data TextFiles \
416
+ --data.train_data_path "custom_texts/" \
417
+ --train.max_tokens 10_000_000 \
418
+ --out_dir out/custom-model
419
+
420
+ # 2) Test the model
421
+ litgpt chat out/custom-model/final
422
+ ```
423
+
424
+ </details>
425
+
426
+ [Read the full continued pretraining docs](tutorials/pretrain.md#continued-pretraining-on-custom-data)
427
+
428
+ &nbsp;
429
+
430
+ ----
431
+
432
+ # State-of-the-art features
433
+
434
+ ✅ State-of-the-art optimizations: Flash Attention v2, multi-GPU support via fully-sharded data parallelism, [optional CPU offloading](tutorials/oom.md#do-sharding-across-multiple-gpus), and [TPU and XLA support](extensions/xla).</br>
435
+ ✅ [Pretrain](tutorials/pretrain.md), [finetune](tutorials/finetune.md), and [deploy](tutorials/inference.md)</br>
436
+ ✅ Reduce compute requirements with low-precision settings: FP16, BF16, and FP16/FP32 mixed.</br>
437
+ ✅ Lower memory requirements with [quantization](tutorials/quantize.md): 4-bit floats, 8-bit integers, and double quantization.</br>
438
+ ✅ [Configuration files](config_hub) for great out-of-the-box performance.</br>
439
+ ✅ Parameter-efficient finetuning: [LoRA](tutorials/finetune_lora.md), [QLoRA](tutorials/finetune_lora.md), [Adapter](tutorials/finetune_adapter.md), and [Adapter v2](tutorials/finetune_adapter.md).</br>
440
+ ✅ [Exporting](tutorials/convert_lit_models.md) to other popular model weight formats.</br>
441
+ ✅ Many popular datasets for [pretraining](tutorials/pretrain.md) and [finetuning](tutorials/prepare_dataset.md), and [support for custom datasets](tutorials/prepare_dataset.md#preparing-custom-datasets-for-instruction-finetuning).</br>
442
+ ✅ Readable and easy-to-modify code to experiment with the latest research ideas.</br>
443
+
444
+ &nbsp;
445
+
446
+ ---
447
+
448
+ # Training recipes
449
+
450
+ LitGPT comes with validated recipes (YAML configs) to train models under different conditions. We've generated these recipes based on the parameters we found to perform the best for different training conditions.
451
+
452
+ Browse all training recipes [here](config_hub).
453
+
454
+ ### Example
455
+
456
+ ```bash
457
+ litgpt finetune \
458
+ --config https://raw.githubusercontent.com/Lightning-AI/litgpt/main/config_hub/finetune/llama-2-7b/lora.yaml
459
+ ```
460
+ <details>
461
+ <summary>✅ Use configs to customize training</summary>
462
+
463
+ Configs let you customize training for all granular parameters like:
464
+
465
+ ```yaml
466
+ # The path to the base model's checkpoint directory to load for finetuning. (type: <class 'Path'>, default: checkpoints/stabilityai/stablelm-base-alpha-3b)
467
+ checkpoint_dir: checkpoints/meta-llama/Llama-2-7b-hf
468
+
469
+ # Directory in which to save checkpoints and logs. (type: <class 'Path'>, default: out/lora)
470
+ out_dir: out/finetune/qlora-llama2-7b
471
+
472
+ # The precision to use for finetuning. Possible choices: "bf16-true", "bf16-mixed", "32-true". (type: Optional[str], default: null)
473
+ precision: bf16-true
474
+
475
+ ...
476
+ ```
477
+ </details>
478
+
479
+ <details>
480
+ <summary>✅ Example: LoRA finetuning config</summary>
481
+
482
+ &nbsp;
483
+
484
+ ```yaml
485
+ # The path to the base model's checkpoint directory to load for finetuning. (type: <class 'Path'>, default: checkpoints/stabilityai/stablelm-base-alpha-3b)
486
+ checkpoint_dir: checkpoints/meta-llama/Llama-2-7b-hf
487
+
488
+ # Directory in which to save checkpoints and logs. (type: <class 'Path'>, default: out/lora)
489
+ out_dir: out/finetune/qlora-llama2-7b
490
+
491
+ # The precision to use for finetuning. Possible choices: "bf16-true", "bf16-mixed", "32-true". (type: Optional[str], default: null)
492
+ precision: bf16-true
493
+
494
+ # If set, quantize the model with this algorithm. See ``tutorials/quantize.md`` for more information. (type: Optional[Literal['nf4', 'nf4-dq', 'fp4', 'fp4-dq', 'int8-training']], default: null)
495
+ quantize: bnb.nf4
496
+
497
+ # How many devices/GPUs to use. (type: Union[int, str], default: 1)
498
+ devices: 1
499
+
500
+ # How many nodes to use. (type: int, default: 1)
501
+ num_nodes: 1
502
+
503
+ # The LoRA rank. (type: int, default: 8)
504
+ lora_r: 32
505
+
506
+ # The LoRA alpha. (type: int, default: 16)
507
+ lora_alpha: 16
508
+
509
+ # The LoRA dropout value. (type: float, default: 0.05)
510
+ lora_dropout: 0.05
511
+
512
+ # Whether to apply LoRA to the query weights in attention. (type: bool, default: True)
513
+ lora_query: true
514
+
515
+ # Whether to apply LoRA to the key weights in attention. (type: bool, default: False)
516
+ lora_key: false
517
+
518
+ # Whether to apply LoRA to the value weights in attention. (type: bool, default: True)
519
+ lora_value: true
520
+
521
+ # Whether to apply LoRA to the output projection in the attention block. (type: bool, default: False)
522
+ lora_projection: false
523
+
524
+ # Whether to apply LoRA to the weights of the MLP in the attention block. (type: bool, default: False)
525
+ lora_mlp: false
526
+
527
+ # Whether to apply LoRA to output head in GPT. (type: bool, default: False)
528
+ lora_head: false
529
+
530
+ # Data-related arguments. If not provided, the default is ``litgpt.data.Alpaca``.
531
+ data:
532
+ class_path: litgpt.data.Alpaca2k
533
+ init_args:
534
+ mask_prompt: false
535
+ val_split_fraction: 0.05
536
+ prompt_style: alpaca
537
+ ignore_index: -100
538
+ seed: 42
539
+ num_workers: 4
540
+ download_dir: data/alpaca2k
541
+
542
+ # Training-related arguments. See ``litgpt.args.TrainArgs`` for details
543
+ train:
544
+
545
+ # Number of optimizer steps between saving checkpoints (type: Optional[int], default: 1000)
546
+ save_interval: 200
547
+
548
+ # Number of iterations between logging calls (type: int, default: 1)
549
+ log_interval: 1
550
+
551
+ # Number of samples between optimizer steps across data-parallel ranks (type: int, default: 128)
552
+ global_batch_size: 8
553
+
554
+ # Number of samples per data-parallel rank (type: int, default: 4)
555
+ micro_batch_size: 2
556
+
557
+ # Number of iterations with learning rate warmup active (type: int, default: 100)
558
+ lr_warmup_steps: 10
559
+
560
+ # Number of epochs to train on (type: Optional[int], default: 5)
561
+ epochs: 4
562
+
563
+ # Total number of tokens to train on (type: Optional[int], default: null)
564
+ max_tokens:
565
+
566
+ # Limits the number of optimizer steps to run (type: Optional[int], default: null)
567
+ max_steps:
568
+
569
+ # Limits the length of samples (type: Optional[int], default: null)
570
+ max_seq_length: 512
571
+
572
+ # Whether to tie the embedding weights with the language modeling head weights (type: Optional[bool], default: null)
573
+ tie_embeddings:
574
+
575
+ # (type: float, default: 0.0003)
576
+ learning_rate: 0.0002
577
+
578
+ # (type: float, default: 0.02)
579
+ weight_decay: 0.0
580
+
581
+ # (type: float, default: 0.9)
582
+ beta1: 0.9
583
+
584
+ # (type: float, default: 0.95)
585
+ beta2: 0.95
586
+
587
+ # (type: Optional[float], default: null)
588
+ max_norm:
589
+
590
+ # (type: float, default: 6e-05)
591
+ min_lr: 6.0e-05
592
+
593
+ # Evaluation-related arguments. See ``litgpt.args.EvalArgs`` for details
594
+ eval:
595
+
596
+ # Number of optimizer steps between evaluation calls (type: int, default: 100)
597
+ interval: 100
598
+
599
+ # Number of tokens to generate (type: Optional[int], default: 100)
600
+ max_new_tokens: 100
601
+
602
+ # Number of iterations (type: int, default: 100)
603
+ max_iters: 100
604
+
605
+ # The name of the logger to send metrics to. (type: Literal['wandb', 'tensorboard', 'csv'], default: csv)
606
+ logger_name: csv
607
+
608
+ # The random seed to use for reproducibility. (type: int, default: 1337)
609
+ seed: 1337
610
+ ```
611
+ </details>
612
+
613
+ <details>
614
+ <summary>✅ Override any parameter in the CLI:</summary>
615
+
616
+ ```bash
617
+ litgpt finetune \
618
+ --config https://raw.githubusercontent.com/Lightning-AI/litgpt/main/config_hub/finetune/llama-2-7b/lora.yaml \
619
+ --lora_r 4
620
+ ```
621
+ </details>
622
+
623
+ &nbsp;
624
+
625
+ ----
626
+
627
+ # Project highlights
628
+
629
+ LitGPT powers many great AI projects, initiatives, challenges and of course enterprises. Please submit a pull request to be considered for a feature.
630
+
631
+ <details>
632
+ <summary>📊 SAMBA: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling</summary>
633
+
634
+ The [Samba](https://github.com/microsoft/Samba) project by researchers at Microsoft is built on top of the LitGPT code base and combines state space models with sliding window attention, which outperforms pure state space models.
635
+
636
+ </details>
637
+
638
+ <details>
639
+ <summary>🏆 NeurIPS 2023 Large Language Model Efficiency Challenge: 1 LLM + 1 GPU + 1 Day</summary>
640
+
641
+ The LitGPT repository was the official starter kit for the [NeurIPS 2023 LLM Efficiency Challenge](https://llm-efficiency-challenge.github.io), which is a competition focused on finetuning an existing non-instruction tuned LLM for 24 hours on a single GPU.
642
+
643
+ </details>
644
+
645
+ <details>
646
+ <summary>🦙 TinyLlama: An Open-Source Small Language Model</summary>
647
+
648
+
649
+ LitGPT powered the [TinyLlama project](https://github.com/jzhang38/TinyLlama) and [TinyLlama: An Open-Source Small Language Model](https://arxiv.org/abs/2401.02385) research paper.
650
+
651
+ </details>
652
+
653
+ <details>
654
+ <summary>🍪 MicroLlama: MicroLlama-300M</summary>
655
+
656
+ [MicroLlama](https://github.com/keeeeenw/MicroLlama) is a 300M Llama model pretrained on 50B tokens powered by TinyLlama and LitGPT.
657
+ </details>
658
+
659
+ <details>
660
+ <summary>🔬 Pre-training Small Base LMs with Fewer Tokens</summary>
661
+
662
+ The research paper ["Pre-training Small Base LMs with Fewer Tokens"](https://arxiv.org/abs/2404.08634), which utilizes LitGPT, develops smaller base language models by inheriting a few transformer blocks from larger models and training on a tiny fraction of the data used by the larger models. It demonstrates that these smaller models can perform comparably to larger models despite using significantly less training data and resources.
663
+
664
+ </details>
665
+
666
+ &nbsp;
667
+
668
+ ----
669
+
670
+ # Community
671
+
672
+ We welcome all individual contributors, regardless of their level of experience or hardware. Your contributions are valuable, and we are excited to see what you can accomplish in this collaborative and supportive environment.
673
+
674
+ - [Request a feature](https://github.com/Lightning-AI/litgpt/issues)
675
+ - [Submit your first contribution](https://lightning.ai/pages/community/tutorial/how-to-contribute-to-litgpt/)
676
+ - [Join our Discord](https://discord.gg/VptPCZkGNa)
677
+
678
+ &nbsp;
679
+
680
+ # Tutorials
681
+
682
+ 🚀 [Get started](tutorials/0_to_litgpt.md)</br>
683
+ ⚡️ [Finetuning, incl. LoRA, QLoRA, and Adapters](tutorials/finetune.md)</br>
684
+ 🤖 [Pretraining](tutorials/pretrain.md)</br>
685
+ 💬 [Model evaluation](tutorials/evaluation.md)</br>
686
+ 📘 [Supported and custom datasets](tutorials/prepare_dataset.md)</br>
687
+ 🧹 [Quantization](tutorials/quantize.md)</br>
688
+ 🤯 [Tips for dealing with out-of-memory (OOM) errors](tutorials/oom.md)</br>
689
+ 🧑🏽‍💻 [Using cloud TPUs](extensions/xla)</br>
690
+
691
+ &nbsp;
692
+
693
+ ----
694
+
695
+ ### Acknowledgments
696
+
697
+ This implementation extends on [Lit-LLaMA](https://github.com/lightning-AI/lit-llama) and [nanoGPT](https://github.com/karpathy/nanoGPT), and it's **powered by [Lightning Fabric](https://lightning.ai/docs/fabric/stable/) ⚡**.
698
+
699
+ - [@karpathy](https://github.com/karpathy) for [nanoGPT](https://github.com/karpathy/nanoGPT)
700
+ - [@EleutherAI](https://github.com/EleutherAI) for [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) and the [Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness)
701
+ - [@TimDettmers](https://github.com/TimDettmers) for [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
702
+ - [@Microsoft](https://github.com/microsoft) for [LoRA](https://github.com/microsoft/LoRA)
703
+ - [@tridao](https://github.com/tridao) for [Flash Attention 2](https://github.com/Dao-AILab/flash-attention)
704
+
705
+ ### License
706
+
707
+ LitGPT is released under the [Apache 2.0](https://github.com/Lightning-AI/litgpt/blob/main/LICENSE) license.
708
+
709
+ ### Citation
710
+
711
+ If you use LitGPT in your research, please cite the following work:
712
+
713
+ ```bibtex
714
+ @misc{litgpt-2023,
715
+ author = {Lightning AI},
716
+ title = {LitGPT},
717
+ howpublished = {\url{https://github.com/Lightning-AI/litgpt}},
718
+ year = {2023},
719
+ }
720
+ ```
721
+
722
+ &nbsp;
check.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import argparse
4
+
5
+ def check_file(path):
6
+ with open(path, "r", encoding="utf-8") as f:
7
+ data = json.load(f) # 这里假设每个文件是一个 JSON 数组
8
+ total = len(data)
9
+ # 转换成字符串来判断重复(保证字典可哈希)
10
+ unique = len({json.dumps(item, sort_keys=True) for item in data})
11
+ duplicates = total - unique
12
+ return total, duplicates
13
+
14
+ def main():
15
+ parser = argparse.ArgumentParser(description="Check JSON array dataset files for row count and duplicates.")
16
+ parser.add_argument("folder", help="Folder containing the JSON files")
17
+ args = parser.parse_args()
18
+
19
+ folder = args.folder
20
+ for fname in sorted(os.listdir(folder)):
21
+ fpath = os.path.join(folder, fname)
22
+ if not os.path.isfile(fpath):
23
+ continue
24
+ if not fname.endswith(".json"):
25
+ continue
26
+ try:
27
+ total, duplicates = check_file(fpath)
28
+ print(f"{fname:25} rows={total:6} duplicates={duplicates:4}")
29
+ except Exception as e:
30
+ print(f"{fname:25} [ERROR: {e}]")
31
+
32
+ if __name__ == "__main__":
33
+ main()
34
+
cmd_start_for.ini ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ [cmd_start_info]
2
+ game_id=26
delete.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+
4
+ import argparse
5
+ import pathlib
6
+ import re
7
+ import shutil
8
+
9
+ def remove_explanation_fields(text: str) -> str:
10
+ """
11
+ 删除 JSON 文本中键为 "explanation" 的键值对(值为字符串),
12
+ 不使用 json 解析,使用正则在词法层面安全处理转义字符。
13
+ 同时正确处理前后逗号,保持 JSON 仍然有效。
14
+ """
15
+
16
+ # JSON 字符串匹配:支持任意数量的转义字符(如 \" \\ \n ...)
17
+ # 说明:JSON 字符串不允许出现未转义的换行,因此不需 DOTALL。
18
+ json_string = r'"(?:\\.|[^"\\])*"'
19
+
20
+ # 情况 A:explanation 在中间/开头,后面跟逗号
21
+ # ... "explanation": "......", ...
22
+ pattern_after = re.compile(
23
+ rf'\s*"explanation"\s*:\s*{json_string}\s*,'
24
+ )
25
+
26
+ # 情况 B:explanation 在中间/末尾,前面有逗号
27
+ # ..., "explanation": "......"
28
+ pattern_before = re.compile(
29
+ rf',\s*"explanation"\s*:\s*{json_string}'
30
+ )
31
+
32
+ # 先删“后跟逗号”的情况,再删“前有逗号”的情况
33
+ new_text = pattern_after.sub('', text)
34
+ new_text = pattern_before.sub('', new_text)
35
+
36
+ # 情况 C:对象里只有一个键值对(既没有前逗号也没有后逗号)
37
+ # 比如:{ "explanation": "..." }
38
+ # 这会在 A/B 后仍残留:{ }(已是合法 JSON),无需额外处理。
39
+ # 若出现花括号内部多余空白也不影响合法性。
40
+
41
+ return new_text
42
+
43
+ def process_file(p: pathlib.Path, dry_run: bool = False) -> bool:
44
+ original = p.read_text(encoding='utf-8')
45
+ repaired = remove_explanation_fields(original)
46
+ if repaired != original:
47
+ if not dry_run:
48
+ # 备份
49
+ backup = p.with_suffix(p.suffix + '.bak')
50
+ shutil.copyfile(p, backup)
51
+ # 覆盖
52
+ p.write_text(repaired, encoding='utf-8')
53
+ return True
54
+ return False
55
+
56
+ def main():
57
+ ap = argparse.ArgumentParser(
58
+ description="在不使用 json 解析的前提下,删除所有 JSON 文件中的 \"explanation\": \"...\" 字段(安全处理转义字符与逗号)。"
59
+ )
60
+ ap.add_argument("folder", type=str, help="包含 .json 文件的文件夹路径")
61
+ ap.add_argument("--dry-run", action="store_true", help="仅显示将要修改的文件,不写回")
62
+ args = ap.parse_args()
63
+
64
+ root = pathlib.Path(args.folder)
65
+ if not root.is_dir():
66
+ raise SystemExit(f"路径不存在或不是文件夹:{root}")
67
+
68
+ changed = 0
69
+ total = 0
70
+ for p in sorted(root.glob("*.json")):
71
+ total += 1
72
+ if process_file(p, dry_run=args.dry_run):
73
+ changed += 1
74
+ print(f"[UPDATED] {p}")
75
+ else:
76
+ print(f"[SKIP ] {p}(无 explanation 字段或无需修改)")
77
+
78
+ print(f"\n完成:扫描 {total} 个 .json 文件,修改 {changed} 个。")
79
+ if not args.dry_run:
80
+ print("已为修改过的文件生成 .bak 备份。")
81
+
82
+ if __name__ == "__main__":
83
+ main()
environment.yml ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: /mnt/data/llmtcl
2
+ channels:
3
+ - defaults
4
+ dependencies:
5
+ - _libgcc_mutex=0.1=main
6
+ - _openmp_mutex=5.1=1_gnu
7
+ - bzip2=1.0.8=h5eee18b_6
8
+ - ca-certificates=2025.2.25=h06a4308_0
9
+ - expat=2.7.1=h6a678d5_0
10
+ - ld_impl_linux-64=2.40=h12ee557_0
11
+ - libffi=3.4.4=h6a678d5_1
12
+ - libgcc-ng=11.2.0=h1234567_1
13
+ - libgomp=11.2.0=h1234567_1
14
+ - libstdcxx-ng=11.2.0=h1234567_1
15
+ - libuuid=1.41.5=h5eee18b_0
16
+ - libxcb=1.17.0=h9b100fa_0
17
+ - ncurses=6.5=h7934f7d_0
18
+ - openssl=3.0.17=h5eee18b_0
19
+ - pip=25.1=pyhc872135_2
20
+ - pthread-stubs=0.3=h0ce48e5_1
21
+ - python=3.10.18=h1a3bd86_0
22
+ - readline=8.2=h5eee18b_0
23
+ - setuptools=78.1.1=py310h06a4308_0
24
+ - sqlite=3.50.2=hb25bd0a_1
25
+ - tk=8.6.14=h993c535_1
26
+ - wheel=0.45.1=py310h06a4308_0
27
+ - xorg-libx11=1.8.12=h9b100fa_1
28
+ - xorg-libxau=1.0.12=h9b100fa_0
29
+ - xorg-libxdmcp=1.1.5=h9b100fa_0
30
+ - xorg-xorgproto=2024.1=h5eee18b_1
31
+ - xz=5.6.4=h5eee18b_1
32
+ - zlib=1.2.13=h5eee18b_1
33
+ - pip:
34
+ - absl-py==2.3.1
35
+ - accelerate==1.10.0
36
+ - aiohappyeyeballs==2.6.1
37
+ - aiohttp==3.12.15
38
+ - aiosignal==1.4.0
39
+ - annotated-types==0.7.0
40
+ - anyio==4.10.0
41
+ - astor==0.8.1
42
+ - async-timeout==5.0.1
43
+ - attrs==25.3.0
44
+ - blake3==1.0.5
45
+ - boto3==1.40.1
46
+ - botocore==1.40.1
47
+ - cachetools==6.2.0
48
+ - cbor2==5.7.0
49
+ - certifi==2025.8.3
50
+ - cffi==2.0.0
51
+ - cfgv==3.4.0
52
+ - chardet==5.2.0
53
+ - charset-normalizer==3.4.2
54
+ - click==8.2.1
55
+ - cloudpickle==3.1.1
56
+ - colorama==0.4.6
57
+ - compressed-tensors==0.10.2
58
+ - contourpy==1.3.2
59
+ - coverage==7.10.6
60
+ - cupy-cuda12x==13.6.0
61
+ - cycler==0.12.1
62
+ - dataproperty==1.1.0
63
+ - datasets==3.6.0
64
+ - depyf==0.19.0
65
+ - dill==0.3.8
66
+ - diskcache==5.6.3
67
+ - distlib==0.4.0
68
+ - distro==1.9.0
69
+ - dnspython==2.8.0
70
+ - docstring-parser==0.17.0
71
+ - einops==0.8.1
72
+ - email-validator==2.3.0
73
+ - et-xmlfile==2.0.0
74
+ - evaluate==0.4.5
75
+ - exceptiongroup==1.3.0
76
+ - execnet==2.1.1
77
+ - fastapi==0.116.1
78
+ - fastapi-cli==0.0.11
79
+ - fastapi-cloud-cli==0.1.5
80
+ - fastrlock==0.8.3
81
+ - filelock==3.18.0
82
+ - fonttools==4.59.0
83
+ - frozenlist==1.7.0
84
+ - fsspec==2025.3.0
85
+ - gguf==0.17.1
86
+ - grpcio==1.74.0
87
+ - h11==0.16.0
88
+ - hf-transfer==0.1.9
89
+ - hf-xet==1.1.5
90
+ - httpcore==1.0.9
91
+ - httptools==0.6.4
92
+ - httpx==0.28.1
93
+ - huggingface-hub==0.34.4
94
+ - identify==2.6.14
95
+ - idna==3.10
96
+ - importlib-resources==6.5.2
97
+ - iniconfig==2.1.0
98
+ - interegular==0.3.3
99
+ - jinja2==3.1.6
100
+ - jiter==0.10.0
101
+ - jmespath==1.0.1
102
+ - joblib==1.5.1
103
+ - jsonargparse==4.40.1
104
+ - jsonlines==4.0.0
105
+ - jsonschema==4.25.1
106
+ - jsonschema-specifications==2025.9.1
107
+ - kiwisolver==1.4.9
108
+ - lark==1.2.2
109
+ - lightning==2.5.2
110
+ - lightning-utilities==0.15.0
111
+ - litdata==0.2.51
112
+ - litgpt==0.5.9
113
+ - llguidance==0.7.30
114
+ - llvmlite==0.44.0
115
+ - lm-eval==0.4.9.1
116
+ - lm-format-enforcer==0.10.12
117
+ - lxml==6.0.0
118
+ - markdown==3.8.2
119
+ - markdown-it-py==4.0.0
120
+ - markupsafe==3.0.2
121
+ - matplotlib==3.10.5
122
+ - mbstrdecoder==1.1.4
123
+ - mdurl==0.1.2
124
+ - mistral-common==1.8.4
125
+ - more-itertools==10.7.0
126
+ - mpmath==1.3.0
127
+ - msgpack==1.1.1
128
+ - msgspec==0.19.0
129
+ - multidict==6.6.3
130
+ - multiprocess==0.70.16
131
+ - networkx==3.4.2
132
+ - ninja==1.13.0
133
+ - nltk==3.9.1
134
+ - nodeenv==1.9.1
135
+ - numba==0.61.2
136
+ - numexpr==2.11.0
137
+ - numpy==2.2.6
138
+ - nvidia-cublas-cu12==12.6.4.1
139
+ - nvidia-cuda-cupti-cu12==12.6.80
140
+ - nvidia-cuda-nvrtc-cu12==12.6.77
141
+ - nvidia-cuda-runtime-cu12==12.6.77
142
+ - nvidia-cudnn-cu12==9.5.1.17
143
+ - nvidia-cufft-cu12==11.3.0.4
144
+ - nvidia-cufile-cu12==1.11.1.6
145
+ - nvidia-curand-cu12==10.3.7.77
146
+ - nvidia-cusolver-cu12==11.7.1.2
147
+ - nvidia-cusparse-cu12==12.5.4.2
148
+ - nvidia-cusparselt-cu12==0.6.3
149
+ - nvidia-nccl-cu12==2.26.2
150
+ - nvidia-nvjitlink-cu12==12.6.85
151
+ - nvidia-nvtx-cu12==12.6.77
152
+ - obstore==0.7.3
153
+ - openai==1.107.0
154
+ - openai-harmony==0.0.4
155
+ - opencv-python-headless==4.12.0.88
156
+ - openpyxl==3.1.5
157
+ - outlines-core==0.2.10
158
+ - packaging==25.0
159
+ - pandas==2.3.1
160
+ - partial-json-parser==0.2.1.1.post6
161
+ - pathvalidate==3.3.1
162
+ - peft==0.17.0
163
+ - pillow==11.3.0
164
+ - platformdirs==4.4.0
165
+ - pluggy==1.6.0
166
+ - portalocker==3.2.0
167
+ - pre-commit==4.3.0
168
+ - prometheus-client==0.22.1
169
+ - prometheus-fastapi-instrumentator==7.1.0
170
+ - propcache==0.3.2
171
+ - protobuf==6.31.1
172
+ - psutil==7.0.0
173
+ - py-cpuinfo==9.0.0
174
+ - pyarrow==21.0.0
175
+ - pybase64==1.4.2
176
+ - pybind11==3.0.0
177
+ - pycountry==24.6.1
178
+ - pycparser==2.23
179
+ - pydantic==2.11.7
180
+ - pydantic-core==2.33.2
181
+ - pydantic-extra-types==2.10.5
182
+ - pygments==2.19.2
183
+ - pyparsing==3.2.3
184
+ - pytablewriter==1.2.1
185
+ - pytest==8.4.2
186
+ - pytest-cov==6.3.0
187
+ - pytest-xdist==3.8.0
188
+ - python-dateutil==2.9.0.post0
189
+ - python-dotenv==1.1.1
190
+ - python-json-logger==3.3.0
191
+ - python-multipart==0.0.20
192
+ - pytorch-lightning==2.5.2
193
+ - pytz==2025.2
194
+ - pyyaml==6.0.2
195
+ - pyzmq==27.1.0
196
+ - ray==2.49.1
197
+ - referencing==0.36.2
198
+ - regex==2025.7.34
199
+ - requests==2.32.4
200
+ - rich==14.1.0
201
+ - rich-toolkit==0.15.1
202
+ - rignore==0.6.4
203
+ - rouge-score==0.1.2
204
+ - rpds-py==0.27.1
205
+ - s3transfer==0.13.1
206
+ - sacrebleu==2.5.1
207
+ - safetensors==0.5.3
208
+ - scikit-learn==1.7.1
209
+ - scipy==1.15.3
210
+ - seaborn==0.13.2
211
+ - sentencepiece==0.2.0
212
+ - sentry-sdk==2.37.1
213
+ - setproctitle==1.3.7
214
+ - shellingham==1.5.4
215
+ - six==1.17.0
216
+ - sniffio==1.3.1
217
+ - soundfile==0.13.1
218
+ - soxr==1.0.0
219
+ - sqlitedict==2.1.0
220
+ - starlette==0.47.3
221
+ - sympy==1.14.0
222
+ - tabledata==1.3.4
223
+ - tabulate==0.9.0
224
+ - tcolorpy==0.1.7
225
+ - tenacity==9.1.2
226
+ - tensorboard==2.20.0
227
+ - tensorboard-data-server==0.7.2
228
+ - threadpoolctl==3.6.0
229
+ - tifffile==2025.5.10
230
+ - tiktoken==0.11.0
231
+ - tokenizers==0.21.4
232
+ - tomli==2.2.1
233
+ - torch==2.7.1
234
+ - torchaudio==2.7.1
235
+ - torchmetrics==1.8.0
236
+ - torchvision==0.22.1
237
+ - tqdm==4.67.1
238
+ - tqdm-multiprocess==0.0.11
239
+ - transformers==4.55.0
240
+ - triton==3.3.1
241
+ - typepy==1.3.4
242
+ - typer==0.17.4
243
+ - typeshed-client==2.8.2
244
+ - typing-extensions==4.14.1
245
+ - typing-inspection==0.4.1
246
+ - tzdata==2025.2
247
+ - urllib3==2.5.0
248
+ - uvicorn==0.35.0
249
+ - uvloop==0.21.0
250
+ - virtualenv==20.34.0
251
+ - vllm==0.10.1.1
252
+ - watchfiles==1.1.0
253
+ - websockets==15.0.1
254
+ - werkzeug==3.1.3
255
+ - word2number==1.1
256
+ - xformers==0.0.31
257
+ - xgrammar==0.1.21
258
+ - xxhash==3.5.0
259
+ - yarl==1.20.1
260
+ - zstandard==0.23.0
261
+ prefix: /mnt/data/llmtcl
fix.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import pathlib
3
+ import shutil
4
+ import argparse
5
+
6
+ def escape_backslashes_in_questions(text: str) -> str:
7
+ # 匹配 "question": "..."
8
+ json_string = r'"(?:\\.|[^"\\])*"'
9
+ pattern = re.compile(rf'("question"\s*:\s*)({json_string})')
10
+
11
+ def replacer(m):
12
+ prefix, raw = m.groups()
13
+ # 去掉外层引号
14
+ inner = raw[1:-1]
15
+ # 把单反斜杠替换成双反斜杠
16
+ inner_fixed = inner.replace("\\", "\\\\")
17
+ return f'{prefix}"{inner_fixed}"'
18
+
19
+ return pattern.sub(replacer, text)
20
+
21
+ def process_file(p: pathlib.Path):
22
+ original = p.read_text(encoding="utf-8")
23
+ fixed = escape_backslashes_in_questions(original)
24
+ if fixed != original:
25
+ shutil.copyfile(p, p.with_suffix(p.suffix + ".bak"))
26
+ p.write_text(fixed, encoding="utf-8")
27
+ print(f"[UPDATED] {p}")
28
+ else:
29
+ print(f"[SKIP ] {p}")
30
+
31
+ def main():
32
+ ap = argparse.ArgumentParser(description="Fix backslashes in 'question' fields of JSON files")
33
+ ap.add_argument("folder", type=str, help="Directory containing .json files")
34
+ args = ap.parse_args()
35
+
36
+ root = pathlib.Path(args.folder)
37
+ if not root.is_dir():
38
+ print(f"[ERROR] {args.folder} is not a valid directory")
39
+ return
40
+
41
+ for p in root.glob("*.json"):
42
+ process_file(p)
43
+
44
+ if __name__ == "__main__":
45
+ main()
litgpt.egg-info/PKG-INFO ADDED
@@ -0,0 +1,977 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.4
2
+ Name: litgpt
3
+ Version: 0.5.9
4
+ Summary: Hackable implementation of state-of-the-art open-source LLMs
5
+ Author-email: Lightning AI <contact@lightning.ai>
6
+ License: Apache License
7
+ Version 2.0, January 2004
8
+ http://www.apache.org/licenses/
9
+
10
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
11
+
12
+ 1. Definitions.
13
+
14
+ "License" shall mean the terms and conditions for use, reproduction,
15
+ and distribution as defined by Sections 1 through 9 of this document.
16
+
17
+ "Licensor" shall mean the copyright owner or entity authorized by
18
+ the copyright owner that is granting the License.
19
+
20
+ "Legal Entity" shall mean the union of the acting entity and all
21
+ other entities that control, are controlled by, or are under common
22
+ control with that entity. For the purposes of this definition,
23
+ "control" means (i) the power, direct or indirect, to cause the
24
+ direction or management of such entity, whether by contract or
25
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
26
+ outstanding shares, or (iii) beneficial ownership of such entity.
27
+
28
+ "You" (or "Your") shall mean an individual or Legal Entity
29
+ exercising permissions granted by this License.
30
+
31
+ "Source" form shall mean the preferred form for making modifications,
32
+ including but not limited to software source code, documentation
33
+ source, and configuration files.
34
+
35
+ "Object" form shall mean any form resulting from mechanical
36
+ transformation or translation of a Source form, including but
37
+ not limited to compiled object code, generated documentation,
38
+ and conversions to other media types.
39
+
40
+ "Work" shall mean the work of authorship, whether in Source or
41
+ Object form, made available under the License, as indicated by a
42
+ copyright notice that is included in or attached to the work
43
+ (an example is provided in the Appendix below).
44
+
45
+ "Derivative Works" shall mean any work, whether in Source or Object
46
+ form, that is based on (or derived from) the Work and for which the
47
+ editorial revisions, annotations, elaborations, or other modifications
48
+ represent, as a whole, an original work of authorship. For the purposes
49
+ of this License, Derivative Works shall not include works that remain
50
+ separable from, or merely link (or bind by name) to the interfaces of,
51
+ the Work and Derivative Works thereof.
52
+
53
+ "Contribution" shall mean any work of authorship, including
54
+ the original version of the Work and any modifications or additions
55
+ to that Work or Derivative Works thereof, that is intentionally
56
+ submitted to Licensor for inclusion in the Work by the copyright owner
57
+ or by an individual or Legal Entity authorized to submit on behalf of
58
+ the copyright owner. For the purposes of this definition, "submitted"
59
+ means any form of electronic, verbal, or written communication sent
60
+ to the Licensor or its representatives, including but not limited to
61
+ communication on electronic mailing lists, source code control systems,
62
+ and issue tracking systems that are managed by, or on behalf of, the
63
+ Licensor for the purpose of discussing and improving the Work, but
64
+ excluding communication that is conspicuously marked or otherwise
65
+ designated in writing by the copyright owner as "Not a Contribution."
66
+
67
+ "Contributor" shall mean Licensor and any individual or Legal Entity
68
+ on behalf of whom a Contribution has been received by Licensor and
69
+ subsequently incorporated within the Work.
70
+
71
+ 2. Grant of Copyright License. Subject to the terms and conditions of
72
+ this License, each Contributor hereby grants to You a perpetual,
73
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
74
+ copyright license to reproduce, prepare Derivative Works of,
75
+ publicly display, publicly perform, sublicense, and distribute the
76
+ Work and such Derivative Works in Source or Object form.
77
+
78
+ 3. Grant of Patent License. Subject to the terms and conditions of
79
+ this License, each Contributor hereby grants to You a perpetual,
80
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
81
+ (except as stated in this section) patent license to make, have made,
82
+ use, offer to sell, sell, import, and otherwise transfer the Work,
83
+ where such license applies only to those patent claims licensable
84
+ by such Contributor that are necessarily infringed by their
85
+ Contribution(s) alone or by combination of their Contribution(s)
86
+ with the Work to which such Contribution(s) was submitted. If You
87
+ institute patent litigation against any entity (including a
88
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
89
+ or a Contribution incorporated within the Work constitutes direct
90
+ or contributory patent infringement, then any patent licenses
91
+ granted to You under this License for that Work shall terminate
92
+ as of the date such litigation is filed.
93
+
94
+ 4. Redistribution. You may reproduce and distribute copies of the
95
+ Work or Derivative Works thereof in any medium, with or without
96
+ modifications, and in Source or Object form, provided that You
97
+ meet the following conditions:
98
+
99
+ (a) You must give any other recipients of the Work or
100
+ Derivative Works a copy of this License; and
101
+
102
+ (b) You must cause any modified files to carry prominent notices
103
+ stating that You changed the files; and
104
+
105
+ (c) You must retain, in the Source form of any Derivative Works
106
+ that You distribute, all copyright, patent, trademark, and
107
+ attribution notices from the Source form of the Work,
108
+ excluding those notices that do not pertain to any part of
109
+ the Derivative Works; and
110
+
111
+ (d) If the Work includes a "NOTICE" text file as part of its
112
+ distribution, then any Derivative Works that You distribute must
113
+ include a readable copy of the attribution notices contained
114
+ within such NOTICE file, excluding those notices that do not
115
+ pertain to any part of the Derivative Works, in at least one
116
+ of the following places: within a NOTICE text file distributed
117
+ as part of the Derivative Works; within the Source form or
118
+ documentation, if provided along with the Derivative Works; or,
119
+ within a display generated by the Derivative Works, if and
120
+ wherever such third-party notices normally appear. The contents
121
+ of the NOTICE file are for informational purposes only and
122
+ do not modify the License. You may add Your own attribution
123
+ notices within Derivative Works that You distribute, alongside
124
+ or as an addendum to the NOTICE text from the Work, provided
125
+ that such additional attribution notices cannot be construed
126
+ as modifying the License.
127
+
128
+ You may add Your own copyright statement to Your modifications and
129
+ may provide additional or different license terms and conditions
130
+ for use, reproduction, or distribution of Your modifications, or
131
+ for any such Derivative Works as a whole, provided Your use,
132
+ reproduction, and distribution of the Work otherwise complies with
133
+ the conditions stated in this License.
134
+
135
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
136
+ any Contribution intentionally submitted for inclusion in the Work
137
+ by You to the Licensor shall be under the terms and conditions of
138
+ this License, without any additional terms or conditions.
139
+ Notwithstanding the above, nothing herein shall supersede or modify
140
+ the terms of any separate license agreement you may have executed
141
+ with Licensor regarding such Contributions.
142
+
143
+ 6. Trademarks. This License does not grant permission to use the trade
144
+ names, trademarks, service marks, or product names of the Licensor,
145
+ except as required for reasonable and customary use in describing the
146
+ origin of the Work and reproducing the content of the NOTICE file.
147
+
148
+ 7. Disclaimer of Warranty. Unless required by applicable law or
149
+ agreed to in writing, Licensor provides the Work (and each
150
+ Contributor provides its Contributions) on an "AS IS" BASIS,
151
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
152
+ implied, including, without limitation, any warranties or conditions
153
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
154
+ PARTICULAR PURPOSE. You are solely responsible for determining the
155
+ appropriateness of using or redistributing the Work and assume any
156
+ risks associated with Your exercise of permissions under this License.
157
+
158
+ 8. Limitation of Liability. In no event and under no legal theory,
159
+ whether in tort (including negligence), contract, or otherwise,
160
+ unless required by applicable law (such as deliberate and grossly
161
+ negligent acts) or agreed to in writing, shall any Contributor be
162
+ liable to You for damages, including any direct, indirect, special,
163
+ incidental, or consequential damages of any character arising as a
164
+ result of this License or out of the use or inability to use the
165
+ Work (including but not limited to damages for loss of goodwill,
166
+ work stoppage, computer failure or malfunction, or any and all
167
+ other commercial damages or losses), even if such Contributor
168
+ has been advised of the possibility of such damages.
169
+
170
+ 9. Accepting Warranty or Additional Liability. While redistributing
171
+ the Work or Derivative Works thereof, You may choose to offer,
172
+ and charge a fee for, acceptance of support, warranty, indemnity,
173
+ or other liability obligations and/or rights consistent with this
174
+ License. However, in accepting such obligations, You may act only
175
+ on Your own behalf and on Your sole responsibility, not on behalf
176
+ of any other Contributor, and only if You agree to indemnify,
177
+ defend, and hold each Contributor harmless for any liability
178
+ incurred by, or claims asserted against, such Contributor by reason
179
+ of your accepting any such warranty or additional liability.
180
+
181
+ END OF TERMS AND CONDITIONS
182
+
183
+ APPENDIX: How to apply the Apache License to your work.
184
+
185
+ To apply the Apache License to your work, attach the following
186
+ boilerplate notice, with the fields enclosed by brackets "[]"
187
+ replaced with your own identifying information. (Don't include
188
+ the brackets!) The text should be enclosed in the appropriate
189
+ comment syntax for the file format. We also recommend that a
190
+ file or class name and description of purpose be included on the
191
+ same "printed page" as the copyright notice for easier
192
+ identification within third-party archives.
193
+
194
+ Copyright [2023] Lightning AI
195
+
196
+ Licensed under the Apache License, Version 2.0 (the "License");
197
+ you may not use this file except in compliance with the License.
198
+ You may obtain a copy of the License at
199
+
200
+ http://www.apache.org/licenses/LICENSE-2.0
201
+
202
+ Unless required by applicable law or agreed to in writing, software
203
+ distributed under the License is distributed on an "AS IS" BASIS,
204
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
205
+ See the License for the specific language governing permissions and
206
+ limitations under the License.
207
+
208
+ Project-URL: documentation, https://github.com/lightning-AI/litgpt/tutorials
209
+ Project-URL: homepage, https://github.com/lightning-AI/litgpt
210
+ Classifier: Programming Language :: Python :: 3 :: Only
211
+ Classifier: Programming Language :: Python :: 3.9
212
+ Classifier: Programming Language :: Python :: 3.10
213
+ Classifier: Programming Language :: Python :: 3.11
214
+ Classifier: Programming Language :: Python :: 3.12
215
+ Classifier: Programming Language :: Python :: 3.13
216
+ Description-Content-Type: text/markdown
217
+ License-File: LICENSE
218
+ Requires-Dist: huggingface-hub<0.33,>=0.23.5
219
+ Requires-Dist: jsonargparse[signatures]<=4.32.1,>=4.30.1; python_version <= "3.9"
220
+ Requires-Dist: jsonargparse[signatures]>=4.37; python_version > "3.9"
221
+ Requires-Dist: lightning>=2.5
222
+ Requires-Dist: psutil==7
223
+ Requires-Dist: safetensors>=0.4.3
224
+ Requires-Dist: tokenizers>=0.15.2
225
+ Requires-Dist: torch>=2.5
226
+ Requires-Dist: tqdm>=4.66
227
+ Provides-Extra: compiler
228
+ Requires-Dist: lightning-thunder>=0.2.0.dev20250119; (python_version >= "3.10" and sys_platform == "linux") and extra == "compiler"
229
+ Provides-Extra: extra
230
+ Requires-Dist: bitsandbytes<0.43,>=0.42; sys_platform == "darwin" and extra == "extra"
231
+ Requires-Dist: bitsandbytes<0.45.5,>=0.45.2; (sys_platform == "linux" or sys_platform == "win32") and extra == "extra"
232
+ Requires-Dist: datasets<4,>=2.18; extra == "extra"
233
+ Requires-Dist: huggingface-hub[hf-transfer]>=0.21; extra == "extra"
234
+ Requires-Dist: litdata==0.2.51; extra == "extra"
235
+ Requires-Dist: litserve>0.2; extra == "extra"
236
+ Requires-Dist: lm-eval>=0.4.2; extra == "extra"
237
+ Requires-Dist: pandas>=1.9; extra == "extra"
238
+ Requires-Dist: pyarrow>=15.0.2; extra == "extra"
239
+ Requires-Dist: requests>=2.31; extra == "extra"
240
+ Requires-Dist: sentencepiece>=0.2; extra == "extra"
241
+ Requires-Dist: tensorboard>=2.14; extra == "extra"
242
+ Requires-Dist: torchmetrics>=1.3.1; extra == "extra"
243
+ Requires-Dist: transformers<4.52,>=4.51.3; extra == "extra"
244
+ Requires-Dist: uvloop>=0.2; sys_platform != "win32" and extra == "extra"
245
+ Requires-Dist: zstandard>=0.22; extra == "extra"
246
+ Provides-Extra: test
247
+ Requires-Dist: einops>=0.7; extra == "test"
248
+ Requires-Dist: protobuf>=4.23.4; extra == "test"
249
+ Requires-Dist: pytest>=8.1.1; extra == "test"
250
+ Requires-Dist: pytest-benchmark>=5.1; extra == "test"
251
+ Requires-Dist: pytest-dependency>=0.6; extra == "test"
252
+ Requires-Dist: pytest-rerunfailures>=14; extra == "test"
253
+ Requires-Dist: pytest-timeout>=2.3.1; extra == "test"
254
+ Dynamic: license-file
255
+
256
+ <div align="center">
257
+
258
+
259
+ # ⚡ LitGPT
260
+
261
+ **20+ high-performance LLMs with recipes to pretrain, finetune, and deploy at scale.**
262
+
263
+ <pre>
264
+ ✅ From scratch implementations ✅ No abstractions ✅ Beginner friendly
265
+ ✅ Flash attention ✅ FSDP ✅ LoRA, QLoRA, Adapter
266
+ ✅ Reduce GPU memory (fp4/8/16/32) ✅ 1-1000+ GPUs/TPUs ✅ 20+ LLMs
267
+ </pre>
268
+
269
+
270
+ ---
271
+
272
+
273
+ ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/pytorch-lightning)
274
+ ![cpu-tests](https://github.com/lightning-AI/lit-stablelm/actions/workflows/cpu-tests.yml/badge.svg) [![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/Lightning-AI/lit-stablelm/blob/master/LICENSE) [![Discord](https://img.shields.io/discord/1077906959069626439)](https://discord.gg/VptPCZkGNa)
275
+
276
+ <p align="center">
277
+ <a href="#quick-start">Quick start</a> •
278
+ <a href="#choose-from-20-llms">Models</a> •
279
+ <a href="#finetune-an-llm">Finetune</a> •
280
+ <a href="#deploy-an-llm">Deploy</a> •
281
+ <a href="#all-workflows">All workflows</a> •
282
+ <a href="#state-of-the-art-features">Features</a> •
283
+ <a href="#training-recipes">Recipes (YAML)</a> •
284
+ <a href="https://lightning.ai/">Lightning AI</a> •
285
+ <a href="#tutorials">Tutorials</a>
286
+ </p>
287
+
288
+ &nbsp;
289
+
290
+ <a target="_blank" href="https://lightning.ai/lightning-ai/studios/litgpt-quick-start">
291
+ <img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/get-started-badge.svg" height="36px" alt="Get started"/>
292
+ </a>
293
+
294
+ &nbsp;
295
+
296
+ </div>
297
+
298
+ # Use, finetune, pretrain, and deploy LLMs Lightning fast ⚡⚡
299
+ Every LLM is implemented from scratch with **no abstractions** and **full control**, making them blazing fast, minimal, and performant at enterprise scale.
300
+
301
+ ✅ **Enterprise ready -** Apache 2.0 for unlimited enterprise use.</br>
302
+ ✅ **Developer friendly -** Easy debugging with no abstraction layers and single file implementations.</br>
303
+ ✅ **Optimized performance -** Models designed to maximize performance, reduce costs, and speed up training.</br>
304
+ ✅ **Proven recipes -** Highly-optimized training/finetuning recipes tested at enterprise scale.</br>
305
+
306
+ &nbsp;
307
+
308
+ # Quick start
309
+ Install LitGPT
310
+ ```
311
+ pip install 'litgpt[extra]'
312
+ ```
313
+
314
+ Load and use any of the [20+ LLMs](#choose-from-20-llms):
315
+ ```python
316
+ from litgpt import LLM
317
+
318
+ llm = LLM.load("microsoft/phi-2")
319
+ text = llm.generate("Fix the spelling: Every fall, the family goes to the mountains.")
320
+ print(text)
321
+ # Corrected Sentence: Every fall, the family goes to the mountains.
322
+ ```
323
+
324
+ &nbsp;
325
+
326
+ ✅ Optimized for fast inference</br>
327
+ ✅ Quantization</br>
328
+ ✅ Runs on low-memory GPUs</br>
329
+ ✅ No layers of internal abstractions</br>
330
+ ✅ Optimized for production scale</br>
331
+
332
+ <details>
333
+ <summary>Advanced install options</summary>
334
+
335
+ Install from source:
336
+
337
+ ```bash
338
+ git clone https://github.com/Lightning-AI/litgpt
339
+ cd litgpt
340
+ pip install -e '.[all]'
341
+ ```
342
+ </details>
343
+
344
+ [Explore the full Python API docs](tutorials/python-api.md).
345
+
346
+ &nbsp;
347
+
348
+ ---
349
+ # Choose from 20+ LLMs
350
+ Every model is written from scratch to maximize performance and remove layers of abstraction:
351
+
352
+ | Model | Model size | Author | Reference |
353
+ |----|----|----|----|
354
+ | Llama 3, 3.1, 3.2, 3.3 | 1B, 3B, 8B, 70B, 405B | Meta AI | [Meta AI 2024](https://github.com/meta-llama/llama3) |
355
+ | Code Llama | 7B, 13B, 34B, 70B | Meta AI | [Rozière et al. 2023](https://arxiv.org/abs/2308.12950) |
356
+ | CodeGemma | 7B | Google | [Google Team, Google Deepmind](https://ai.google.dev/gemma/docs/codegemma) |
357
+ | Gemma 2 | 2B, 9B, 27B | Google | [Google Team, Google Deepmind](https://storage.googleapis.com/deepmind-media/gemma/gemma-2-report.pdf) |
358
+ | Phi 4 | 14B | Microsoft Research | [Abdin et al. 2024](https://arxiv.org/abs/2412.08905) |
359
+ | Qwen2.5 | 0.5B, 1.5B, 3B, 7B, 14B, 32B, 72B | Alibaba Group | [Qwen Team 2024](https://qwenlm.github.io/blog/qwen2.5/) |
360
+ | Qwen2.5 Coder | 0.5B, 1.5B, 3B, 7B, 14B, 32B | Alibaba Group | [Hui, Binyuan et al. 2024](https://arxiv.org/abs/2409.12186) |
361
+ | R1 Distill Llama | 8B, 70B | DeepSeek AI | [DeepSeek AI 2025](https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf) |
362
+ | ... | ... | ... | ... |
363
+
364
+ <details>
365
+ <summary>See full list of 20+ LLMs</summary>
366
+
367
+ &nbsp;
368
+
369
+ #### All models
370
+
371
+ | Model | Model size | Author | Reference |
372
+ |----|----|----|----|
373
+ | CodeGemma | 7B | Google | [Google Team, Google Deepmind](https://ai.google.dev/gemma/docs/codegemma) |
374
+ | Code Llama | 7B, 13B, 34B, 70B | Meta AI | [Rozière et al. 2023](https://arxiv.org/abs/2308.12950) |
375
+ | Falcon | 7B, 40B, 180B | TII UAE | [TII 2023](https://falconllm.tii.ae) |
376
+ | Falcon 3 | 1B, 3B, 7B, 10B | TII UAE | [TII 2024](https://huggingface.co/blog/falcon3) |
377
+ | FreeWilly2 (Stable Beluga 2) | 70B | Stability AI | [Stability AI 2023](https://stability.ai/blog/stable-beluga-large-instruction-fine-tuned-models) |
378
+ | Function Calling Llama 2 | 7B | Trelis | [Trelis et al. 2023](https://huggingface.co/Trelis/Llama-2-7b-chat-hf-function-calling-v2) |
379
+ | Gemma | 2B, 7B | Google | [Google Team, Google Deepmind](https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf) |
380
+ | Gemma 2 | 9B, 27B | Google | [Google Team, Google Deepmind](https://storage.googleapis.com/deepmind-media/gemma/gemma-2-report.pdf) |
381
+ | Gemma 3 | 1B, 4B, 12B, 27B | Google | [Google Team, Google Deepmind](https://arxiv.org/pdf/2503.19786) |
382
+ | Llama 2 | 7B, 13B, 70B | Meta AI | [Touvron et al. 2023](https://arxiv.org/abs/2307.09288) |
383
+ | Llama 3.1 | 8B, 70B | Meta AI | [Meta AI 2024](https://github.com/meta-llama/llama3) |
384
+ | Llama 3.2 | 1B, 3B | Meta AI | [Meta AI 2024](https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/) |
385
+ | Llama 3.3 | 70B | Meta AI | [Meta AI 2024](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) |
386
+ | Mathstral | 7B | Mistral AI | [Mistral AI 2024](https://mistral.ai/news/mathstral/) |
387
+ | MicroLlama | 300M | Ken Wang | [MicroLlama repo](https://github.com/keeeeenw/MicroLlama) |
388
+ | Mixtral MoE | 8x7B | Mistral AI | [Mistral AI 2023](https://mistral.ai/news/mixtral-of-experts/) |
389
+ | Mistral | 7B, 123B | Mistral AI | [Mistral AI 2023](https://mistral.ai/news/announcing-mistral-7b/) |
390
+ | Mixtral MoE | 8x22B | Mistral AI | [Mistral AI 2024](https://mistral.ai/news/mixtral-8x22b/) |
391
+ | OLMo | 1B, 7B | Allen Institute for AI (AI2) | [Groeneveld et al. 2024](https://aclanthology.org/2024.acl-long.841/) |
392
+ | OpenLLaMA | 3B, 7B, 13B | OpenLM Research | [Geng & Liu 2023](https://github.com/openlm-research/open_llama) |
393
+ | Phi 1.5 & 2 | 1.3B, 2.7B | Microsoft Research | [Li et al. 2023](https://arxiv.org/abs/2309.05463) |
394
+ | Phi 3 | 3.8B | Microsoft Research | [Abdin et al. 2024](https://arxiv.org/abs/2404.14219) |
395
+ | Phi 4 | 14B | Microsoft Research | [Abdin et al. 2024](https://arxiv.org/abs/2412.08905) |
396
+ | Phi 4 Mini Instruct | 3.8B | Microsoft Research | [Microsoft 2025](https://arxiv.org/abs/2503.01743) |
397
+ | Phi 4 Mini Reasoning | 3.8B | Microsoft Research | [Xu, Peng et al. 2025](https://arxiv.org/abs/2504.21233) |
398
+ | Phi 4 Reasoning | 3.8B | Microsoft Research | [Abdin et al. 2025](https://arxiv.org/abs/2504.21318) |
399
+ | Phi 4 Reasoning Plus | 3.8B | Microsoft Research | [Abdin et al. 2025](https://arxiv.org/abs/2504.21318) |
400
+ | Platypus | 7B, 13B, 70B | Lee et al. | [Lee, Hunter, and Ruiz 2023](https://arxiv.org/abs/2308.07317) |
401
+ | Pythia | {14,31,70,160,410}M, {1,1.4,2.8,6.9,12}B | EleutherAI | [Biderman et al. 2023](https://arxiv.org/abs/2304.01373) |
402
+ | Qwen2.5 | 0.5B, 1.5B, 3B, 7B, 14B, 32B, 72B | Alibaba Group | [Qwen Team 2024](https://qwenlm.github.io/blog/qwen2.5/) |
403
+ | Qwen2.5 Coder | 0.5B, 1.5B, 3B, 7B, 14B, 32B | Alibaba Group | [Hui, Binyuan et al. 2024](https://arxiv.org/abs/2409.12186) |
404
+ | Qwen2.5 1M (Long Context) | 7B, 14B | Alibaba Group | [Qwen Team 2025](https://qwenlm.github.io/blog/qwen2.5-1m/) |
405
+ | Qwen2.5 Math | 1.5B, 7B, 72B | Alibaba Group | [An, Yang et al. 2024](https://arxiv.org/abs/2409.12122) |
406
+ | QwQ | 32B | Alibaba Group | [Qwen Team 2025](https://qwenlm.github.io/blog/qwq-32b/) |
407
+ | QwQ-Preview | 32B | Alibaba Group | [Qwen Team 2024](https://qwenlm.github.io/blog/qwq-32b-preview/) |
408
+ | Qwen3 | 0.6B, 1.7B, 4B, 8B, 14B, 32B | Alibaba Group | [Qwen Team 2025](https://arxiv.org/abs/2505.09388/) |
409
+ | Qwen3 MoE | 30B, 235B | Alibaba Group | [Qwen Team 2025](https://arxiv.org/abs/2505.09388/) |
410
+ | R1 Distill Llama | 8B, 70B | DeepSeek AI | [DeepSeek AI 2025](https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf) |
411
+ | SmolLM2 | 135M, 360M, 1.7B | Hugging Face | [Hugging Face 2024](https://github.com/huggingface/smollm) |
412
+ | Salamandra | 2B, 7B | Barcelona Supercomputing Centre | [BSC-LTC 2024](https://github.com/BSC-LTC/salamandra) |
413
+ | StableCode | 3B | Stability AI | [Stability AI 2023](https://stability.ai/blog/stablecode-llm-generative-ai-coding) |
414
+ | StableLM | 3B, 7B | Stability AI | [Stability AI 2023](https://github.com/Stability-AI/StableLM) |
415
+ | StableLM Zephyr | 3B | Stability AI | [Stability AI 2023](https://stability.ai/blog/stablecode-llm-generative-ai-coding) |
416
+ | TinyLlama | 1.1B | Zhang et al. | [Zhang et al. 2023](https://github.com/jzhang38/TinyLlama) |
417
+
418
+
419
+ **Tip**: You can list all available models by running the `litgpt download list` command.
420
+
421
+
422
+ </details>
423
+
424
+ &nbsp;
425
+
426
+ ---
427
+
428
+ # Workflows
429
+
430
+ <p align="center">
431
+ <a href="#finetune-an-llm">Finetune</a> •
432
+ <a href="#pretrain-an-llm">Pretrain</a> •
433
+ <a href="#continue-pretraining-an-llm">Continued pretraining</a> •
434
+ <a href="#evaluate-an-llm">Evaluate</a> •
435
+ <a href="#deploy-an-llm">Deploy</a> •
436
+ <a href="#test-an-llm">Test</a>
437
+ </p>
438
+
439
+ &nbsp;
440
+
441
+ Use the command line interface to run advanced workflows such as pretraining or finetuning on your own data.
442
+
443
+
444
+ ## All workflows
445
+ After installing LitGPT, select the model and workflow to run (finetune, pretrain, evaluate, deploy, etc...):
446
+
447
+ ```bash
448
+ # litgpt [action] [model]
449
+ litgpt serve meta-llama/Llama-3.2-3B-Instruct
450
+ litgpt finetune meta-llama/Llama-3.2-3B-Instruct
451
+ litgpt pretrain meta-llama/Llama-3.2-3B-Instruct
452
+ litgpt chat meta-llama/Llama-3.2-3B-Instruct
453
+ litgpt evaluate meta-llama/Llama-3.2-3B-Instruct
454
+ ```
455
+
456
+ &nbsp;
457
+
458
+ ----
459
+
460
+ ## Finetune an LLM
461
+
462
+ <div align="center">
463
+ <a target="_blank" href="https://lightning.ai/lightning-ai/studios/litgpt-finetune">
464
+ <img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/run-on-studio.svg" height="36px" alt="Run on Studios"/>
465
+ </a>
466
+ </div>
467
+
468
+ &nbsp;
469
+
470
+ Finetuning is the process of taking a pretrained AI model and further training it on a smaller, specialized dataset tailored to a specific task or application.
471
+
472
+
473
+ &nbsp;
474
+
475
+ ```bash
476
+ # 0) setup your dataset
477
+ curl -L https://huggingface.co/datasets/ksaw008/finance_alpaca/resolve/main/finance_alpaca.json -o my_custom_dataset.json
478
+
479
+ # 1) Finetune a model (auto downloads weights)
480
+ litgpt finetune microsoft/phi-2 \
481
+ --data JSON \
482
+ --data.json_path my_custom_dataset.json \
483
+ --data.val_split_fraction 0.1 \
484
+ --out_dir out/custom-model
485
+
486
+ # 2) Test the model
487
+ litgpt chat out/custom-model/final
488
+
489
+ # 3) Deploy the model
490
+ litgpt serve out/custom-model/final
491
+ ```
492
+
493
+ [Read the full finetuning docs](tutorials/finetune.md)
494
+
495
+ &nbsp;
496
+
497
+ ----
498
+
499
+ ## Deploy an LLM
500
+
501
+ <div align="center">
502
+ <a target="_blank" href="https://lightning.ai/lightning-ai/studios/litgpt-serve">
503
+ <img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/deploy-on-studios.svg" height="36px" alt="Deploy on Studios"/>
504
+ </a>
505
+ </div>
506
+
507
+ &nbsp;
508
+
509
+ Deploy a pretrained or finetune LLM to use it in real-world applications. Deploy, automatically sets up a web server that can be accessed by a website or app.
510
+
511
+ ```bash
512
+ # deploy an out-of-the-box LLM
513
+ litgpt serve microsoft/phi-2
514
+
515
+ # deploy your own trained model
516
+ litgpt serve path/to/microsoft/phi-2/checkpoint
517
+ ```
518
+
519
+ <details>
520
+ <summary>Show code to query server:</summary>
521
+
522
+ &nbsp;
523
+
524
+ Test the server in a separate terminal and integrate the model API into your AI product:
525
+ ```python
526
+ # 3) Use the server (in a separate Python session)
527
+ import requests, json
528
+ response = requests.post(
529
+ "http://127.0.0.1:8000/predict",
530
+ json={"prompt": "Fix typos in the following sentence: Example input"}
531
+ )
532
+ print(response.json()["output"])
533
+ ```
534
+ </details>
535
+
536
+ [Read the full deploy docs](tutorials/deploy.md).
537
+
538
+ &nbsp;
539
+
540
+ ----
541
+
542
+ ## Evaluate an LLM
543
+ Evaluate an LLM to test its performance on various tasks to see how well it understands and generates text. Simply put, we can evaluate things like how well would it do in college-level chemistry, coding, etc... (MMLU, Truthful QA, etc...)
544
+
545
+ ```bash
546
+ litgpt evaluate microsoft/phi-2 --tasks 'truthfulqa_mc2,mmlu'
547
+ ```
548
+
549
+ [Read the full evaluation docs](tutorials/evaluation.md).
550
+
551
+ &nbsp;
552
+
553
+ ----
554
+
555
+ ## Test an LLM
556
+
557
+ <div align="center">
558
+ <a target="_blank" href="https://lightning.ai/lightning-ai/studios/litgpt-chat">
559
+ <img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/run-on-studio.svg" height="36px" alt="Run on Studios"/>
560
+ </a>
561
+ </div>
562
+
563
+ &nbsp;
564
+
565
+ Test how well the model works via an interactive chat. Use the `chat` command to chat, extract embeddings, etc...
566
+
567
+ Here's an example showing how to use the Phi-2 LLM:
568
+ ```bash
569
+ litgpt chat microsoft/phi-2
570
+
571
+ >> Prompt: What do Llamas eat?
572
+ ```
573
+
574
+ <details>
575
+ <summary>Full code:</summary>
576
+
577
+ &nbsp;
578
+
579
+ ```bash
580
+ # 1) List all supported LLMs
581
+ litgpt download list
582
+
583
+ # 2) Use a model (auto downloads weights)
584
+ litgpt chat microsoft/phi-2
585
+
586
+ >> Prompt: What do Llamas eat?
587
+ ```
588
+
589
+ The download of certain models requires an additional access token. You can read more about this in the [download](tutorials/download_model_weights.md#specific-models-and-access-tokens) documentation.
590
+
591
+ </details>
592
+
593
+ [Read the full chat docs](tutorials/inference.md).
594
+
595
+ &nbsp;
596
+
597
+ ----
598
+
599
+ ## Pretrain an LLM
600
+
601
+ <div align="center">
602
+ <a target="_blank" href="https://lightning.ai/lightning-ai/studios/litgpt-pretrain">
603
+ <img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/run-on-studio.svg" height="36px" alt="Run on Studios"/>
604
+ </a>
605
+ </div>
606
+
607
+ &nbsp;
608
+
609
+ Pretraining is the process of teaching an AI model by exposing it to a large amount of data before it is fine-tuned for specific tasks.
610
+
611
+ <details>
612
+ <summary>Show code:</summary>
613
+
614
+ &nbsp;
615
+
616
+ ```bash
617
+ mkdir -p custom_texts
618
+ curl https://www.gutenberg.org/cache/epub/24440/pg24440.txt --output custom_texts/book1.txt
619
+ curl https://www.gutenberg.org/cache/epub/26393/pg26393.txt --output custom_texts/book2.txt
620
+
621
+ # 1) Download a tokenizer
622
+ litgpt download EleutherAI/pythia-160m \
623
+ --tokenizer_only True
624
+
625
+ # 2) Pretrain the model
626
+ litgpt pretrain EleutherAI/pythia-160m \
627
+ --tokenizer_dir EleutherAI/pythia-160m \
628
+ --data TextFiles \
629
+ --data.train_data_path "custom_texts/" \
630
+ --train.max_tokens 10_000_000 \
631
+ --out_dir out/custom-model
632
+
633
+ # 3) Test the model
634
+ litgpt chat out/custom-model/final
635
+ ```
636
+ </details>
637
+
638
+ [Read the full pretraining docs](tutorials/pretrain.md)
639
+
640
+ &nbsp;
641
+
642
+ ----
643
+
644
+ ## Continue pretraining an LLM
645
+
646
+ <div align="center">
647
+ <a target="_blank" href="https://lightning.ai/lightning-ai/studios/litgpt-continue-pretraining">
648
+ <img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/run-on-studio.svg" height="36px" alt="Run on Studios"/>
649
+ </a>
650
+ </div>
651
+
652
+ &nbsp;
653
+
654
+ Continued pretraining is another way of finetuning that specializes an already pretrained model by training on custom data:
655
+
656
+ <details>
657
+ <summary>Show code:</summary>
658
+
659
+ &nbsp;
660
+
661
+ ```bash
662
+ mkdir -p custom_texts
663
+ curl https://www.gutenberg.org/cache/epub/24440/pg24440.txt --output custom_texts/book1.txt
664
+ curl https://www.gutenberg.org/cache/epub/26393/pg26393.txt --output custom_texts/book2.txt
665
+
666
+ # 1) Continue pretraining a model (auto downloads weights)
667
+ litgpt pretrain EleutherAI/pythia-160m \
668
+ --tokenizer_dir EleutherAI/pythia-160m \
669
+ --initial_checkpoint_dir EleutherAI/pythia-160m \
670
+ --data TextFiles \
671
+ --data.train_data_path "custom_texts/" \
672
+ --train.max_tokens 10_000_000 \
673
+ --out_dir out/custom-model
674
+
675
+ # 2) Test the model
676
+ litgpt chat out/custom-model/final
677
+ ```
678
+
679
+ </details>
680
+
681
+ [Read the full continued pretraining docs](tutorials/pretrain.md#continued-pretraining-on-custom-data)
682
+
683
+ &nbsp;
684
+
685
+ ----
686
+
687
+ # State-of-the-art features
688
+
689
+ ✅ State-of-the-art optimizations: Flash Attention v2, multi-GPU support via fully-sharded data parallelism, [optional CPU offloading](tutorials/oom.md#do-sharding-across-multiple-gpus), and [TPU and XLA support](extensions/xla).</br>
690
+ ✅ [Pretrain](tutorials/pretrain.md), [finetune](tutorials/finetune.md), and [deploy](tutorials/inference.md)</br>
691
+ ✅ Reduce compute requirements with low-precision settings: FP16, BF16, and FP16/FP32 mixed.</br>
692
+ ✅ Lower memory requirements with [quantization](tutorials/quantize.md): 4-bit floats, 8-bit integers, and double quantization.</br>
693
+ ✅ [Configuration files](config_hub) for great out-of-the-box performance.</br>
694
+ ✅ Parameter-efficient finetuning: [LoRA](tutorials/finetune_lora.md), [QLoRA](tutorials/finetune_lora.md), [Adapter](tutorials/finetune_adapter.md), and [Adapter v2](tutorials/finetune_adapter.md).</br>
695
+ ✅ [Exporting](tutorials/convert_lit_models.md) to other popular model weight formats.</br>
696
+ ✅ Many popular datasets for [pretraining](tutorials/pretrain.md) and [finetuning](tutorials/prepare_dataset.md), and [support for custom datasets](tutorials/prepare_dataset.md#preparing-custom-datasets-for-instruction-finetuning).</br>
697
+ ✅ Readable and easy-to-modify code to experiment with the latest research ideas.</br>
698
+
699
+ &nbsp;
700
+
701
+ ---
702
+
703
+ # Training recipes
704
+
705
+ LitGPT comes with validated recipes (YAML configs) to train models under different conditions. We've generated these recipes based on the parameters we found to perform the best for different training conditions.
706
+
707
+ Browse all training recipes [here](config_hub).
708
+
709
+ ### Example
710
+
711
+ ```bash
712
+ litgpt finetune \
713
+ --config https://raw.githubusercontent.com/Lightning-AI/litgpt/main/config_hub/finetune/llama-2-7b/lora.yaml
714
+ ```
715
+ <details>
716
+ <summary>✅ Use configs to customize training</summary>
717
+
718
+ Configs let you customize training for all granular parameters like:
719
+
720
+ ```yaml
721
+ # The path to the base model's checkpoint directory to load for finetuning. (type: <class 'Path'>, default: checkpoints/stabilityai/stablelm-base-alpha-3b)
722
+ checkpoint_dir: checkpoints/meta-llama/Llama-2-7b-hf
723
+
724
+ # Directory in which to save checkpoints and logs. (type: <class 'Path'>, default: out/lora)
725
+ out_dir: out/finetune/qlora-llama2-7b
726
+
727
+ # The precision to use for finetuning. Possible choices: "bf16-true", "bf16-mixed", "32-true". (type: Optional[str], default: null)
728
+ precision: bf16-true
729
+
730
+ ...
731
+ ```
732
+ </details>
733
+
734
+ <details>
735
+ <summary>✅ Example: LoRA finetuning config</summary>
736
+
737
+ &nbsp;
738
+
739
+ ```yaml
740
+ # The path to the base model's checkpoint directory to load for finetuning. (type: <class 'Path'>, default: checkpoints/stabilityai/stablelm-base-alpha-3b)
741
+ checkpoint_dir: checkpoints/meta-llama/Llama-2-7b-hf
742
+
743
+ # Directory in which to save checkpoints and logs. (type: <class 'Path'>, default: out/lora)
744
+ out_dir: out/finetune/qlora-llama2-7b
745
+
746
+ # The precision to use for finetuning. Possible choices: "bf16-true", "bf16-mixed", "32-true". (type: Optional[str], default: null)
747
+ precision: bf16-true
748
+
749
+ # If set, quantize the model with this algorithm. See ``tutorials/quantize.md`` for more information. (type: Optional[Literal['nf4', 'nf4-dq', 'fp4', 'fp4-dq', 'int8-training']], default: null)
750
+ quantize: bnb.nf4
751
+
752
+ # How many devices/GPUs to use. (type: Union[int, str], default: 1)
753
+ devices: 1
754
+
755
+ # How many nodes to use. (type: int, default: 1)
756
+ num_nodes: 1
757
+
758
+ # The LoRA rank. (type: int, default: 8)
759
+ lora_r: 32
760
+
761
+ # The LoRA alpha. (type: int, default: 16)
762
+ lora_alpha: 16
763
+
764
+ # The LoRA dropout value. (type: float, default: 0.05)
765
+ lora_dropout: 0.05
766
+
767
+ # Whether to apply LoRA to the query weights in attention. (type: bool, default: True)
768
+ lora_query: true
769
+
770
+ # Whether to apply LoRA to the key weights in attention. (type: bool, default: False)
771
+ lora_key: false
772
+
773
+ # Whether to apply LoRA to the value weights in attention. (type: bool, default: True)
774
+ lora_value: true
775
+
776
+ # Whether to apply LoRA to the output projection in the attention block. (type: bool, default: False)
777
+ lora_projection: false
778
+
779
+ # Whether to apply LoRA to the weights of the MLP in the attention block. (type: bool, default: False)
780
+ lora_mlp: false
781
+
782
+ # Whether to apply LoRA to output head in GPT. (type: bool, default: False)
783
+ lora_head: false
784
+
785
+ # Data-related arguments. If not provided, the default is ``litgpt.data.Alpaca``.
786
+ data:
787
+ class_path: litgpt.data.Alpaca2k
788
+ init_args:
789
+ mask_prompt: false
790
+ val_split_fraction: 0.05
791
+ prompt_style: alpaca
792
+ ignore_index: -100
793
+ seed: 42
794
+ num_workers: 4
795
+ download_dir: data/alpaca2k
796
+
797
+ # Training-related arguments. See ``litgpt.args.TrainArgs`` for details
798
+ train:
799
+
800
+ # Number of optimizer steps between saving checkpoints (type: Optional[int], default: 1000)
801
+ save_interval: 200
802
+
803
+ # Number of iterations between logging calls (type: int, default: 1)
804
+ log_interval: 1
805
+
806
+ # Number of samples between optimizer steps across data-parallel ranks (type: int, default: 128)
807
+ global_batch_size: 8
808
+
809
+ # Number of samples per data-parallel rank (type: int, default: 4)
810
+ micro_batch_size: 2
811
+
812
+ # Number of iterations with learning rate warmup active (type: int, default: 100)
813
+ lr_warmup_steps: 10
814
+
815
+ # Number of epochs to train on (type: Optional[int], default: 5)
816
+ epochs: 4
817
+
818
+ # Total number of tokens to train on (type: Optional[int], default: null)
819
+ max_tokens:
820
+
821
+ # Limits the number of optimizer steps to run (type: Optional[int], default: null)
822
+ max_steps:
823
+
824
+ # Limits the length of samples (type: Optional[int], default: null)
825
+ max_seq_length: 512
826
+
827
+ # Whether to tie the embedding weights with the language modeling head weights (type: Optional[bool], default: null)
828
+ tie_embeddings:
829
+
830
+ # (type: float, default: 0.0003)
831
+ learning_rate: 0.0002
832
+
833
+ # (type: float, default: 0.02)
834
+ weight_decay: 0.0
835
+
836
+ # (type: float, default: 0.9)
837
+ beta1: 0.9
838
+
839
+ # (type: float, default: 0.95)
840
+ beta2: 0.95
841
+
842
+ # (type: Optional[float], default: null)
843
+ max_norm:
844
+
845
+ # (type: float, default: 6e-05)
846
+ min_lr: 6.0e-05
847
+
848
+ # Evaluation-related arguments. See ``litgpt.args.EvalArgs`` for details
849
+ eval:
850
+
851
+ # Number of optimizer steps between evaluation calls (type: int, default: 100)
852
+ interval: 100
853
+
854
+ # Number of tokens to generate (type: Optional[int], default: 100)
855
+ max_new_tokens: 100
856
+
857
+ # Number of iterations (type: int, default: 100)
858
+ max_iters: 100
859
+
860
+ # The name of the logger to send metrics to. (type: Literal['wandb', 'tensorboard', 'csv'], default: csv)
861
+ logger_name: csv
862
+
863
+ # The random seed to use for reproducibility. (type: int, default: 1337)
864
+ seed: 1337
865
+ ```
866
+ </details>
867
+
868
+ <details>
869
+ <summary>✅ Override any parameter in the CLI:</summary>
870
+
871
+ ```bash
872
+ litgpt finetune \
873
+ --config https://raw.githubusercontent.com/Lightning-AI/litgpt/main/config_hub/finetune/llama-2-7b/lora.yaml \
874
+ --lora_r 4
875
+ ```
876
+ </details>
877
+
878
+ &nbsp;
879
+
880
+ ----
881
+
882
+ # Project highlights
883
+
884
+ LitGPT powers many great AI projects, initiatives, challenges and of course enterprises. Please submit a pull request to be considered for a feature.
885
+
886
+ <details>
887
+ <summary>📊 SAMBA: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling</summary>
888
+
889
+ The [Samba](https://github.com/microsoft/Samba) project by researchers at Microsoft is built on top of the LitGPT code base and combines state space models with sliding window attention, which outperforms pure state space models.
890
+
891
+ </details>
892
+
893
+ <details>
894
+ <summary>🏆 NeurIPS 2023 Large Language Model Efficiency Challenge: 1 LLM + 1 GPU + 1 Day</summary>
895
+
896
+ The LitGPT repository was the official starter kit for the [NeurIPS 2023 LLM Efficiency Challenge](https://llm-efficiency-challenge.github.io), which is a competition focused on finetuning an existing non-instruction tuned LLM for 24 hours on a single GPU.
897
+
898
+ </details>
899
+
900
+ <details>
901
+ <summary>🦙 TinyLlama: An Open-Source Small Language Model</summary>
902
+
903
+
904
+ LitGPT powered the [TinyLlama project](https://github.com/jzhang38/TinyLlama) and [TinyLlama: An Open-Source Small Language Model](https://arxiv.org/abs/2401.02385) research paper.
905
+
906
+ </details>
907
+
908
+ <details>
909
+ <summary>🍪 MicroLlama: MicroLlama-300M</summary>
910
+
911
+ [MicroLlama](https://github.com/keeeeenw/MicroLlama) is a 300M Llama model pretrained on 50B tokens powered by TinyLlama and LitGPT.
912
+ </details>
913
+
914
+ <details>
915
+ <summary>🔬 Pre-training Small Base LMs with Fewer Tokens</summary>
916
+
917
+ The research paper ["Pre-training Small Base LMs with Fewer Tokens"](https://arxiv.org/abs/2404.08634), which utilizes LitGPT, develops smaller base language models by inheriting a few transformer blocks from larger models and training on a tiny fraction of the data used by the larger models. It demonstrates that these smaller models can perform comparably to larger models despite using significantly less training data and resources.
918
+
919
+ </details>
920
+
921
+ &nbsp;
922
+
923
+ ----
924
+
925
+ # Community
926
+
927
+ We welcome all individual contributors, regardless of their level of experience or hardware. Your contributions are valuable, and we are excited to see what you can accomplish in this collaborative and supportive environment.
928
+
929
+ - [Request a feature](https://github.com/Lightning-AI/litgpt/issues)
930
+ - [Submit your first contribution](https://lightning.ai/pages/community/tutorial/how-to-contribute-to-litgpt/)
931
+ - [Join our Discord](https://discord.gg/VptPCZkGNa)
932
+
933
+ &nbsp;
934
+
935
+ # Tutorials
936
+
937
+ 🚀 [Get started](tutorials/0_to_litgpt.md)</br>
938
+ ⚡️ [Finetuning, incl. LoRA, QLoRA, and Adapters](tutorials/finetune.md)</br>
939
+ 🤖 [Pretraining](tutorials/pretrain.md)</br>
940
+ 💬 [Model evaluation](tutorials/evaluation.md)</br>
941
+ 📘 [Supported and custom datasets](tutorials/prepare_dataset.md)</br>
942
+ 🧹 [Quantization](tutorials/quantize.md)</br>
943
+ 🤯 [Tips for dealing with out-of-memory (OOM) errors](tutorials/oom.md)</br>
944
+ 🧑🏽‍💻 [Using cloud TPUs](extensions/xla)</br>
945
+
946
+ &nbsp;
947
+
948
+ ----
949
+
950
+ ### Acknowledgments
951
+
952
+ This implementation extends on [Lit-LLaMA](https://github.com/lightning-AI/lit-llama) and [nanoGPT](https://github.com/karpathy/nanoGPT), and it's **powered by [Lightning Fabric](https://lightning.ai/docs/fabric/stable/) ⚡**.
953
+
954
+ - [@karpathy](https://github.com/karpathy) for [nanoGPT](https://github.com/karpathy/nanoGPT)
955
+ - [@EleutherAI](https://github.com/EleutherAI) for [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) and the [Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness)
956
+ - [@TimDettmers](https://github.com/TimDettmers) for [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
957
+ - [@Microsoft](https://github.com/microsoft) for [LoRA](https://github.com/microsoft/LoRA)
958
+ - [@tridao](https://github.com/tridao) for [Flash Attention 2](https://github.com/Dao-AILab/flash-attention)
959
+
960
+ ### License
961
+
962
+ LitGPT is released under the [Apache 2.0](https://github.com/Lightning-AI/litgpt/blob/main/LICENSE) license.
963
+
964
+ ### Citation
965
+
966
+ If you use LitGPT in your research, please cite the following work:
967
+
968
+ ```bibtex
969
+ @misc{litgpt-2023,
970
+ author = {Lightning AI},
971
+ title = {LitGPT},
972
+ howpublished = {\url{https://github.com/Lightning-AI/litgpt}},
973
+ year = {2023},
974
+ }
975
+ ```
976
+
977
+ &nbsp;
litgpt.egg-info/SOURCES.txt ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ LICENSE
2
+ README.md
3
+ pyproject.toml
4
+ litgpt/__init__.py
5
+ litgpt/__main__.py
6
+ litgpt/adapter.py
7
+ litgpt/adapter_v2.py
8
+ litgpt/api.py
9
+ litgpt/args.py
10
+ litgpt/config.py
11
+ litgpt/lora.py
12
+ litgpt/model.py
13
+ litgpt/pretrain.py
14
+ litgpt/prompts.py
15
+ litgpt/tokenizer.py
16
+ litgpt/utils.py
17
+ litgpt.egg-info/PKG-INFO
18
+ litgpt.egg-info/SOURCES.txt
19
+ litgpt.egg-info/dependency_links.txt
20
+ litgpt.egg-info/entry_points.txt
21
+ litgpt.egg-info/requires.txt
22
+ litgpt.egg-info/top_level.txt
23
+ litgpt/chat/__init__.py
24
+ litgpt/chat/base.py
25
+ litgpt/data/__init__.py
26
+ litgpt/data/alpaca.py
27
+ litgpt/data/alpaca_2k.py
28
+ litgpt/data/alpaca_gpt4.py
29
+ litgpt/data/base.py
30
+ litgpt/data/deita.py
31
+ litgpt/data/flan.py
32
+ litgpt/data/json_data.py
33
+ litgpt/data/lima.py
34
+ litgpt/data/lit_data.py
35
+ litgpt/data/longform.py
36
+ litgpt/data/microllama.py
37
+ litgpt/data/openwebtext.py
38
+ litgpt/data/prepare_slimpajama.py
39
+ litgpt/data/prepare_starcoder.py
40
+ litgpt/data/text_files.py
41
+ litgpt/data/tinyllama.py
42
+ litgpt/data/tinystories.py
43
+ litgpt/deploy/__init__.py
44
+ litgpt/deploy/serve.py
45
+ litgpt/eval/evaluate.py
46
+ litgpt/finetune/__init__.py
47
+ litgpt/finetune/adapter.py
48
+ litgpt/finetune/adapter_v2.py
49
+ litgpt/finetune/full.py
50
+ litgpt/finetune/lora.py
51
+ litgpt/generate/__init__.py
52
+ litgpt/generate/adapter.py
53
+ litgpt/generate/adapter_v2.py
54
+ litgpt/generate/base.py
55
+ litgpt/generate/full.py
56
+ litgpt/generate/sequentially.py
57
+ litgpt/generate/speculative_decoding.py
58
+ litgpt/generate/tp.py
59
+ litgpt/scripts/__init__.py
60
+ litgpt/scripts/convert_hf_checkpoint.py
61
+ litgpt/scripts/convert_lit_checkpoint.py
62
+ litgpt/scripts/convert_pretrained_checkpoint.py
63
+ litgpt/scripts/download.py
64
+ litgpt/scripts/merge_lora.py
65
+ tests/test_adapter.py
66
+ tests/test_adapter_v2.py
67
+ tests/test_api.py
68
+ tests/test_args.py
69
+ tests/test_batch.py
70
+ tests/test_chat.py
71
+ tests/test_ci.py
72
+ tests/test_cli.py
73
+ tests/test_config.py
74
+ tests/test_config_hub.py
75
+ tests/test_distributed.py
76
+ tests/test_evaluate.py
77
+ tests/test_full.py
78
+ tests/test_generate_speculatively.py
79
+ tests/test_lora.py
80
+ tests/test_merge_lora.py
81
+ tests/test_model.py
82
+ tests/test_pretrain.py
83
+ tests/test_prompts.py
84
+ tests/test_readme.py
85
+ tests/test_rope.py
86
+ tests/test_serve.py
87
+ tests/test_tokenizer.py
88
+ tests/test_trainer_support.py
89
+ tests/test_utils.py
litgpt.egg-info/dependency_links.txt ADDED
@@ -0,0 +1 @@
 
 
1
+
litgpt.egg-info/entry_points.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ [console_scripts]
2
+ litgpt = litgpt.__main__:main
litgpt.egg-info/requires.txt ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ huggingface-hub<0.33,>=0.23.5
2
+ lightning>=2.5
3
+ psutil==7
4
+ safetensors>=0.4.3
5
+ tokenizers>=0.15.2
6
+ torch>=2.5
7
+ tqdm>=4.66
8
+
9
+ [:python_version <= "3.9"]
10
+ jsonargparse[signatures]<=4.32.1,>=4.30.1
11
+
12
+ [:python_version > "3.9"]
13
+ jsonargparse[signatures]>=4.37
14
+
15
+ [compiler]
16
+
17
+ [compiler:python_version >= "3.10" and sys_platform == "linux"]
18
+ lightning-thunder>=0.2.0.dev20250119
19
+
20
+ [extra]
21
+ datasets<4,>=2.18
22
+ huggingface-hub[hf-transfer]>=0.21
23
+ litdata==0.2.51
24
+ litserve>0.2
25
+ lm-eval>=0.4.2
26
+ pandas>=1.9
27
+ pyarrow>=15.0.2
28
+ requests>=2.31
29
+ sentencepiece>=0.2
30
+ tensorboard>=2.14
31
+ torchmetrics>=1.3.1
32
+ transformers<4.52,>=4.51.3
33
+ zstandard>=0.22
34
+
35
+ [extra:sys_platform != "win32"]
36
+ uvloop>=0.2
37
+
38
+ [extra:sys_platform == "darwin"]
39
+ bitsandbytes<0.43,>=0.42
40
+
41
+ [extra:sys_platform == "linux" or sys_platform == "win32"]
42
+ bitsandbytes<0.45.5,>=0.45.2
43
+
44
+ [test]
45
+ einops>=0.7
46
+ protobuf>=4.23.4
47
+ pytest>=8.1.1
48
+ pytest-benchmark>=5.1
49
+ pytest-dependency>=0.6
50
+ pytest-rerunfailures>=14
51
+ pytest-timeout>=2.3.1
litgpt.egg-info/top_level.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ litgpt
litgpt/__init__.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
2
+
3
+ import logging
4
+ import re
5
+
6
+ from litgpt.api import LLM
7
+ from litgpt.config import Config
8
+ from litgpt.model import GPT # needs to be imported before config
9
+ from litgpt.prompts import PromptStyle
10
+ from litgpt.tokenizer import Tokenizer
11
+
12
+ # Suppress excessive warnings, see https://github.com/pytorch/pytorch/issues/111632
13
+ pattern = re.compile(".*Profiler function .* will be ignored")
14
+ logging.getLogger("torch._dynamo.variables.torch").addFilter(lambda record: not pattern.search(record.getMessage()))
15
+
16
+ # Avoid printing state-dict profiling output at the WARNING level when saving a checkpoint
17
+ logging.getLogger("torch.distributed.fsdp._optim_utils").disabled = True
18
+ logging.getLogger("torch.distributed.fsdp._debug_utils").disabled = True
19
+
20
+ __all__ = ["LLM", "GPT", "Config", "PromptStyle", "Tokenizer"]
litgpt/__main__.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
2
+
3
+ import warnings
4
+
5
+ import torch
6
+ from jsonargparse import CLI, set_config_read_mode, set_docstring_parse_options
7
+
8
+ from litgpt.chat.base import main as chat_fn
9
+ from litgpt.deploy.serve import run_server as serve_fn
10
+ from litgpt.eval.evaluate import convert_and_evaluate as evaluate_fn
11
+ from litgpt.finetune.adapter import setup as finetune_adapter_fn
12
+ from litgpt.finetune.adapter_v2 import setup as finetune_adapter_v2_fn
13
+ from litgpt.finetune.full import setup as finetune_full_fn
14
+ from litgpt.finetune.lora import setup as finetune_lora_fn
15
+ from litgpt.generate.adapter import main as generate_adapter_fn
16
+ from litgpt.generate.adapter_v2 import main as generate_adapter_v2_fn
17
+ from litgpt.generate.base import main as generate_base_fn
18
+ from litgpt.generate.full import main as generate_full_fn
19
+ from litgpt.generate.sequentially import main as generate_sequentially_fn
20
+ from litgpt.generate.speculative_decoding import main as generate_speculatively_fn
21
+ from litgpt.generate.tp import main as generate_tp_fn
22
+ from litgpt.pretrain import setup as pretrain_fn
23
+ from litgpt.perplexity import setup as perplexity_fn
24
+ from litgpt.scripts.convert_hf_checkpoint import convert_hf_checkpoint as convert_hf_checkpoint_fn
25
+ from litgpt.scripts.convert_lit_checkpoint import convert_lit_checkpoint as convert_lit_checkpoint_fn
26
+ from litgpt.scripts.convert_pretrained_checkpoint import (
27
+ convert_pretrained_checkpoint as convert_pretrained_checkpoint_fn,
28
+ )
29
+ from litgpt.scripts.download import download_from_hub as download_fn
30
+ from litgpt.scripts.merge_lora import merge_lora as merge_lora_fn
31
+
32
+
33
+ def main() -> None:
34
+ parser_data = {
35
+ "download": download_fn,
36
+ "chat": chat_fn,
37
+ "finetune": finetune_lora_fn,
38
+ "finetune_lora": finetune_lora_fn,
39
+ "finetune_full": finetune_full_fn,
40
+ "finetune_adapter": finetune_adapter_fn,
41
+ "finetune_adapter_v2": finetune_adapter_v2_fn,
42
+ "pretrain": pretrain_fn,
43
+ "perplexity": perplexity_fn,
44
+ "generate": generate_base_fn,
45
+ "generate_full": generate_full_fn,
46
+ "generate_adapter": generate_adapter_fn,
47
+ "generate_adapter_v2": generate_adapter_v2_fn,
48
+ "generate_sequentially": generate_sequentially_fn,
49
+ "generate_speculatively": generate_speculatively_fn,
50
+ "generate_tp": generate_tp_fn,
51
+ "convert_to_litgpt": convert_hf_checkpoint_fn,
52
+ "convert_from_litgpt": convert_lit_checkpoint_fn,
53
+ "convert_pretrained_checkpoint": convert_pretrained_checkpoint_fn,
54
+ "merge_lora": merge_lora_fn,
55
+ "evaluate": evaluate_fn,
56
+ "serve": serve_fn,
57
+ }
58
+
59
+ set_docstring_parse_options(attribute_docstrings=True)
60
+ set_config_read_mode(urls_enabled=True)
61
+
62
+ # PyTorch bug that raises a false-positive warning
63
+ # More info: https://github.com/Lightning-AI/litgpt/issues/1561
64
+ warning_message = r"The epoch parameter in `scheduler.step\(\)` was not necessary and is being deprecated.*"
65
+
66
+ warnings.filterwarnings(
67
+ action="ignore", message=warning_message, category=UserWarning, module=r".*torch\.optim\.lr_scheduler.*"
68
+ )
69
+
70
+ torch.set_float32_matmul_precision("high")
71
+ CLI(parser_data)
72
+
73
+
74
+ if __name__ == "__main__":
75
+ main()
litgpt/adapter.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
2
+
3
+ """Implementation of the paper:
4
+
5
+ LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention
6
+ https://arxiv.org/abs/2303.16199
7
+
8
+ Port for LitGPT
9
+ """
10
+
11
+ from dataclasses import dataclass
12
+ from typing import Any, Dict, Optional, Tuple
13
+
14
+ import torch
15
+ import torch.nn as nn
16
+ from typing_extensions import Self
17
+
18
+ from litgpt.config import Config as BaseConfig
19
+ from litgpt.model import GPT as BaseModel
20
+ from litgpt.model import Block as BaseBlock
21
+ from litgpt.model import CausalSelfAttention as BaseCausalSelfAttention
22
+
23
+
24
+ @dataclass
25
+ class Config(BaseConfig):
26
+ adapter_prompt_length: int = 10
27
+ adapter_start_layer: int = 2
28
+
29
+
30
+ class GPT(BaseModel):
31
+ # Copy & paste from :class:`model.GPT`. Note that :class:`Block` is new here.
32
+ def __init__(self, config: Config) -> None:
33
+ nn.Module.__init__(self)
34
+ assert config.padded_vocab_size is not None
35
+ self.config = config
36
+
37
+ self.lm_head = nn.Linear(config.n_embd, config.padded_vocab_size, bias=config.lm_head_bias)
38
+ self.transformer = nn.ModuleDict(
39
+ dict(
40
+ wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
41
+ h=nn.ModuleList(Block(config, block_idx) for block_idx in range(config.n_layer)),
42
+ ln_f=config.norm_class(config.n_embd, eps=config.norm_eps),
43
+ )
44
+ )
45
+ self.mask_cache: Optional[torch.Tensor] = None
46
+ self.max_seq_length = self.config.block_size
47
+
48
+ @classmethod
49
+ def from_name(cls, name: str, **kwargs: Any) -> Self:
50
+ return cls(Config.from_name(name, **kwargs))
51
+
52
+ def _init_weights(self, module: nn.Module) -> None:
53
+ """Meant to be used with `gpt.apply(gpt._init_weights)`. Unused method left for completeness."""
54
+ super()._init_weights(module)
55
+ if isinstance(module, CausalSelfAttention):
56
+ module.reset_parameters()
57
+
58
+
59
+ class Block(BaseBlock):
60
+ def __init__(self, config: Config, block_idx: int) -> None:
61
+ super().__init__(config, block_idx)
62
+ self.attn = CausalSelfAttention(config, block_idx)
63
+
64
+
65
+ class CausalSelfAttention(BaseCausalSelfAttention):
66
+ """A modification of `litgpt.model.CausalSelfAttention` that adds the attention
67
+ over the adaption prompt."""
68
+
69
+ def __init__(self, config: Config, block_idx: int) -> None:
70
+ super().__init__(config, block_idx)
71
+ if block_idx >= config.adapter_start_layer:
72
+ # adapter embedding layer
73
+ self.adapter_wte = nn.Embedding(config.adapter_prompt_length, config.n_embd)
74
+ # gate for adaption
75
+ self.gating_factor = torch.nn.Parameter(torch.zeros(1, 1, config.n_head, 1))
76
+ # kv cache for inference
77
+ self.adapter_kv_cache: Optional[Tuple[torch.Tensor, torch.Tensor]] = None
78
+
79
+ def scaled_dot_product_attention(
80
+ self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, mask: Optional[torch.Tensor] = None
81
+ ) -> torch.Tensor:
82
+ y = super().scaled_dot_product_attention(q, k, v, mask)
83
+ if self.block_idx < self.config.adapter_start_layer:
84
+ return y
85
+
86
+ aT = self.config.adapter_prompt_length
87
+ if self.adapter_kv_cache is not None:
88
+ # since this uses the wte weights as the prefix and the kv cache is only used during inference, ak and av
89
+ # are the same every call
90
+ ak, av = self.adapter_kv_cache
91
+ else:
92
+ prefix = self.adapter_wte.weight.reshape(1, aT, self.config.n_embd)
93
+ aqkv = self.qkv(prefix)
94
+ q_per_kv = self.config.n_head // self.config.n_query_groups
95
+ aqkv = aqkv.view(1, aT, self.config.n_query_groups, q_per_kv + 2, self.config.head_size)
96
+ aqkv = aqkv.permute(0, 2, 3, 1, 4)
97
+ _, ak, av = aqkv.split((q_per_kv, 1, 1), dim=2)
98
+ if self.config.n_query_groups != 1:
99
+ # for MHA this is a no-op
100
+ ak = ak.repeat_interleave(q_per_kv, dim=2)
101
+ av = av.repeat_interleave(q_per_kv, dim=2)
102
+ ak = ak.view(1, -1, aT, self.config.head_size) # (1, nh_ak, aT, hs)
103
+ av = av.view(1, -1, aT, self.config.head_size) # (1, nh_av, aT, hs)
104
+ self.adapter_kv_cache = (ak, av)
105
+
106
+ T = q.size(2)
107
+ amask = torch.ones(T, aT, dtype=torch.bool, device=q.device)
108
+ ay = super().scaled_dot_product_attention(q, ak, av, amask)
109
+ return y + self.gating_factor * ay
110
+
111
+ def reset_parameters(self) -> None:
112
+ if hasattr(self, "gating_factor"):
113
+ torch.nn.init.zeros_(self.gating_factor)
114
+
115
+ def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
116
+ """For compatibility with older checkpoints."""
117
+ if (key := prefix + "gating_factor") in state_dict and state_dict[key].size(1) == self.config.n_head:
118
+ state_dict[key] = state_dict[key].permute(0, 2, 1, 3)
119
+ super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
120
+
121
+
122
+ def mark_only_adapter_as_trainable(model: GPT) -> None:
123
+ """Sets `requires_grad=False` for all non-adapter weights."""
124
+ for name, param in model.named_parameters():
125
+ param.requires_grad = adapter_filter(name, param)
126
+
127
+
128
+ def adapter_filter(key: str, value: Any) -> bool:
129
+ return "adapter_wte" in key or "gating_factor" in key
litgpt/adapter_v2.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
2
+
3
+ """Implementation of the paper:
4
+
5
+ LLaMA-Adapter V2: Parameter-Efficient Visual Instruction Model
6
+ https://arxiv.org/abs/2304.15010
7
+
8
+ Port for LitGPT
9
+ """
10
+
11
+ from dataclasses import dataclass
12
+ from typing import Any, Dict, Optional, Type
13
+
14
+ import torch
15
+ import torch.nn as nn
16
+ from typing_extensions import Self
17
+
18
+ import litgpt
19
+ from litgpt.adapter import GPT as BaseModel
20
+ from litgpt.adapter import CausalSelfAttention as BaseCausalSelfAttention
21
+ from litgpt.adapter import Config as BaseConfig
22
+ from litgpt.model import Block as BaseBlock
23
+ from litgpt.scripts.convert_hf_checkpoint import qkv_reassemble
24
+ from litgpt.utils import map_old_state_dict_weights
25
+
26
+
27
+ @dataclass
28
+ class Config(BaseConfig):
29
+ @property
30
+ def mlp_class(self) -> Type:
31
+ return getattr(litgpt.adapter_v2, self.mlp_class_name)
32
+
33
+
34
+ def adapter_filter(key: str, value: Any) -> bool:
35
+ adapter_substrings = (
36
+ # regular adapter v1 parameters
37
+ "adapter_wte",
38
+ "gating_factor",
39
+ # adapter v2: new bias and scale used in Linear
40
+ "adapter_scale",
41
+ "adapter_bias",
42
+ # adapter v2: Norm parameters are now trainable
43
+ "norm_1",
44
+ "norm_2",
45
+ "ln_f",
46
+ )
47
+ return any(s in key for s in adapter_substrings)
48
+
49
+
50
+ class AdapterV2Linear(torch.nn.Module):
51
+ def __init__(self, in_features: int, out_features: int, **kwargs) -> None:
52
+ super().__init__()
53
+ self.linear = torch.nn.Linear(in_features, out_features, **kwargs)
54
+ self.adapter_bias = torch.nn.Parameter(torch.zeros(out_features), requires_grad=False)
55
+ self.adapter_scale = torch.nn.Parameter(torch.ones(out_features), requires_grad=False)
56
+
57
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
58
+ return self.adapter_scale * (self.linear(x) + self.adapter_bias)
59
+
60
+ def reset_parameters(self) -> None:
61
+ nn.init.zeros_(self.adapter_bias)
62
+ nn.init.ones_(self.adapter_scale)
63
+
64
+
65
+ class GPT(BaseModel):
66
+ # Copy & paste from :class:`model.GPT`. Note that :class:`Block` is new here.
67
+ def __init__(self, config: Config) -> None:
68
+ nn.Module.__init__(self)
69
+ assert config.padded_vocab_size is not None
70
+ self.config = config
71
+
72
+ self.lm_head = AdapterV2Linear(config.n_embd, config.padded_vocab_size, bias=config.lm_head_bias)
73
+ self.transformer = nn.ModuleDict(
74
+ dict(
75
+ wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
76
+ h=nn.ModuleList(Block(config, block_idx) for block_idx in range(config.n_layer)),
77
+ ln_f=config.norm_class(config.n_embd, eps=config.norm_eps),
78
+ )
79
+ )
80
+ self.mask_cache: Optional[torch.Tensor] = None
81
+ self.max_seq_length = self.config.block_size
82
+
83
+ @classmethod
84
+ def from_name(cls, name: str, **kwargs: Any) -> Self:
85
+ return cls(Config.from_name(name, **kwargs))
86
+
87
+ def _init_weights(self, module: nn.Module) -> None:
88
+ """Meant to be used with `gpt.apply(gpt._init_weights)`. Unused method left for completeness."""
89
+ super()._init_weights(module)
90
+ if isinstance(module, AdapterV2Linear):
91
+ module.reset_parameters()
92
+
93
+ def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
94
+ """For compatibility with base checkpoints."""
95
+ mapping = {"lm_head.weight": "lm_head.linear.weight", "lm_head.bias": "lm_head.linear.bias"}
96
+ state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
97
+ super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
98
+
99
+
100
+ class Block(BaseBlock):
101
+ def __init__(self, config: Config, block_idx: int) -> None:
102
+ super().__init__(config, block_idx)
103
+ self.attn = CausalSelfAttention(config, block_idx)
104
+ self.mlp = config.mlp_class(config)
105
+
106
+
107
+ class CausalSelfAttention(BaseCausalSelfAttention):
108
+ """A modification of `litgpt.adapter.CausalSelfAttention` that uses the Adapter V2 Linear class"""
109
+
110
+ # Copy&paste from :class:`model.CausalSelfAttention`
111
+ def __init__(self, config: Config, block_idx: int) -> None:
112
+ super().__init__(config, block_idx)
113
+ # key, query, value projections for all heads, but in a batch
114
+ shape = (config.n_head + 2 * config.n_query_groups) * config.head_size
115
+ self.qkv = AdapterV2Linear(in_features=config.n_embd, out_features=shape, bias=config.bias or config.attn_bias)
116
+ # output projection
117
+ self.proj = AdapterV2Linear(config.head_size * config.n_head, config.n_embd, bias=config.bias)
118
+
119
+ def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
120
+ """For compatibility with base and/or legacy checkpoints."""
121
+ mapping = {
122
+ "qkv.weight": "qkv.linear.weight",
123
+ "qkv.bias": "qkv.linear.bias",
124
+ "proj.weight": "proj.linear.weight",
125
+ "proj.bias": "proj.linear.bias",
126
+ }
127
+ state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
128
+ # For compatibility with older checkpoints
129
+ if (key := prefix + "gating_factor") in state_dict and state_dict[key].size(1) == self.config.n_head:
130
+ state_dict[key] = state_dict[key].permute(0, 2, 1, 3)
131
+
132
+ for attr in ("weight", "bias"):
133
+ legacy_key = f"{prefix}attn.linear.{attr}"
134
+ current_key = f"{prefix}qkv.linear.{attr}"
135
+ if legacy_key in state_dict:
136
+ state_dict[current_key] = qkv_reassemble(state_dict.pop(legacy_key), self.config)
137
+
138
+ super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
139
+
140
+
141
+ class GptNeoxMLP(litgpt.model.GptNeoxMLP):
142
+ def __init__(self, config: Config) -> None:
143
+ nn.Module.__init__(self)
144
+ self.fc = AdapterV2Linear(config.n_embd, config.intermediate_size, bias=config.bias)
145
+ self.proj = AdapterV2Linear(config.intermediate_size, config.n_embd, bias=config.bias)
146
+ self.config = config
147
+
148
+ def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
149
+ """For compatibility with base checkpoints."""
150
+ mapping = {
151
+ "fc.weight": "fc.linear.weight",
152
+ "fc.bias": "fc.linear.bias",
153
+ "proj.weight": "proj.linear.weight",
154
+ "proj.bias": "proj.linear.bias",
155
+ }
156
+ state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
157
+ super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
158
+
159
+
160
+ class LLaMAMLP(litgpt.model.LLaMAMLP):
161
+ def __init__(self, config: Config, intermediate_size: Optional[int] = None) -> None:
162
+ nn.Module.__init__(self)
163
+ self.intermediate_size = intermediate_size or config.intermediate_size
164
+ self.fc_1 = AdapterV2Linear(config.n_embd, self.intermediate_size, bias=config.bias)
165
+ self.fc_2 = AdapterV2Linear(config.n_embd, self.intermediate_size, bias=config.bias)
166
+ self.proj = AdapterV2Linear(self.intermediate_size, config.n_embd, bias=config.bias)
167
+ self.config = config
168
+
169
+ def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
170
+ """For compatibility with base checkpoints."""
171
+ mapping = {
172
+ "fc_1.weight": "fc_1.linear.weight",
173
+ "fc_1.bias": "fc_1.linear.bias",
174
+ "fc_2.weight": "fc_2.linear.weight",
175
+ "fc_2.bias": "fc_2.linear.bias",
176
+ "proj.weight": "proj.linear.weight",
177
+ "proj.bias": "proj.linear.bias",
178
+ }
179
+ state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
180
+ super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
181
+
182
+
183
+ class GemmaMLP(LLaMAMLP):
184
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
185
+ x_fc_1 = self.fc_1(x)
186
+ x_fc_2 = self.fc_2(x)
187
+ x = torch.nn.functional.gelu(x_fc_1, approximate=self.config.gelu_approximate) * x_fc_2
188
+ return self.proj(x)
189
+
190
+
191
+ class LLaMAMoE(litgpt.model.LLaMAMoE):
192
+ def __init__(self, config: Config) -> None:
193
+ nn.Module.__init__(self)
194
+ self.gate = AdapterV2Linear(config.n_embd, config.n_expert, bias=False)
195
+ self.experts = nn.ModuleList(
196
+ LLaMAMLP(config, intermediate_size=config.moe_intermediate_size) for _ in range(config.n_expert)
197
+ )
198
+ self.config = config
199
+
200
+ def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
201
+ """For compatibility with base checkpoints."""
202
+ mapping = {"gate.weight": "gate.linear.weight"}
203
+ state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
204
+ super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
205
+
206
+
207
+ def mark_only_adapter_v2_as_trainable(model: GPT) -> None:
208
+ """Sets requires_grad=False for all non-adapter weights"""
209
+ for name, param in model.named_parameters():
210
+ param.requires_grad = adapter_filter(name, param)
litgpt/api.py ADDED
@@ -0,0 +1,734 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
2
+ #
3
+ # This file implements the LitGPT Python API
4
+ import sys
5
+ import time
6
+ from pathlib import Path
7
+ from typing import Any, Callable, List, Literal, Optional, Tuple, Union
8
+
9
+ import lightning as L
10
+ import numpy as np
11
+ import torch
12
+ from lightning.fabric.accelerators import CUDAAccelerator
13
+ from lightning.fabric.plugins import BitsandbytesPrecision
14
+ from tqdm import tqdm
15
+
16
+ from litgpt.chat.base import generate as stream_generate_fn
17
+ from litgpt.config import Config, name_to_config
18
+ from litgpt.generate.base import generate as generate_fn
19
+ from litgpt.generate.sequentially import sequential
20
+ from litgpt.generate.tp import tensor_parallel
21
+ from litgpt.model import GPT
22
+ from litgpt.prompts import PromptStyle, has_prompt_style, load_prompt_style, save_prompt_style
23
+ from litgpt.tokenizer import Tokenizer
24
+ from litgpt.utils import (
25
+ auto_download_checkpoint,
26
+ check_file_size_on_cpu_and_warn,
27
+ check_nvlink_connectivity,
28
+ chunked_cross_entropy,
29
+ copy_config_files,
30
+ extend_checkpoint_dir,
31
+ get_default_supported_precision,
32
+ load_checkpoint,
33
+ save_config,
34
+ )
35
+
36
+
37
+ class LLM(torch.nn.Module):
38
+ def __init__(
39
+ self,
40
+ model: GPT,
41
+ preprocessor=None,
42
+ prompt_style: PromptStyle = None,
43
+ devices: Union[int, List[int]] = None,
44
+ config: Config = None,
45
+ checkpoint_dir: Path = None,
46
+ fabric: L.Fabric = None,
47
+ generate_strategy: Optional[Literal["sequential", "tensor_parallel"]] = None,
48
+ kv_cache_initialized: bool = False,
49
+ fixed_kv_cache_size: Union[int, Literal["max_model_supported"], None] = None,
50
+ ) -> None:
51
+ super().__init__()
52
+ self.model = model
53
+ self.preprocessor = preprocessor
54
+ self.devices = devices
55
+ self.prompt_style = prompt_style
56
+ self.config = config
57
+ self.checkpoint_dir = checkpoint_dir
58
+ self.fabric = fabric
59
+ self.generate_strategy = generate_strategy
60
+ self.kv_cache_initialized = kv_cache_initialized
61
+ self.fixed_kv_cache_size = fixed_kv_cache_size
62
+ self.prev_generated_seq_length = 0
63
+
64
+ """
65
+ LLM model class for inference, pretraining, and finetuning.
66
+
67
+ Example:
68
+ from litgpt.api import LLM
69
+
70
+ llm = LLM.load("microsoft/phi-2")
71
+ text = llm.generate("What do Llamas eat?", top_k=1)
72
+ print(text)
73
+ """
74
+
75
+ @property
76
+ def tokenizer(self):
77
+ return self.preprocessor.tokenizer
78
+
79
+ def state_dict(self, destination=None, prefix="", keep_vars=False):
80
+ return self.model.state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars)
81
+
82
+ def load_state_dict(self, state_dict, strict=True):
83
+ return self.model.load_state_dict(state_dict, strict=strict)
84
+
85
+ def forward(
86
+ self,
87
+ input_ids: torch.Tensor,
88
+ target_ids: Optional[torch.Tensor] = None,
89
+ loss_fn: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
90
+ ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
91
+ logits = self.model(input_ids)
92
+ if target_ids is not None:
93
+ if loss_fn is None:
94
+ loss_fn = chunked_cross_entropy
95
+ loss = loss_fn(logits[..., :-1, :], target_ids[..., 1:])
96
+ return logits, loss
97
+ else:
98
+ return logits
99
+
100
+ def trainer_setup(self, trainer_ckpt: Optional[Path] = None) -> None:
101
+ """Initializes the model checkpoint for PyTorch Lightning Trainer contexts"""
102
+ self.model = GPT(self.config)
103
+
104
+ if trainer_ckpt is not None:
105
+ # strip the object name key from the state_dict
106
+ state_dict = torch.load(trainer_ckpt, weights_only=True)["state_dict"]
107
+ first_key = next(iter(state_dict))
108
+ prefix = first_key.split(".")[0] + "."
109
+ keys_to_modify = [key for key in state_dict if key.startswith(prefix)]
110
+ for key in keys_to_modify:
111
+ new_key = key.replace(prefix, "", 1)
112
+ state_dict[new_key] = state_dict.pop(key)
113
+
114
+ self.load_state_dict(state_dict, strict=True)
115
+
116
+ elif self.checkpoint_dir is not None:
117
+ state_dict = torch.load(self.checkpoint_dir / "lit_model.pth", weights_only=False)
118
+ self.load_state_dict(state_dict, strict=False)
119
+
120
+ else:
121
+ raise ValueError(
122
+ "No checkpoint found. Either provide a valid path via `trainer_ckpt` "
123
+ "or ensure that `self.checkpoint_dir` points to a folder containing a `lit_model.pth` weight file."
124
+ )
125
+
126
+ def save(self, out_dir: Optional[Path] = None, prompt_style: Optional[PromptStyle] = None) -> None:
127
+ out_dir = Path(out_dir)
128
+ save_path = out_dir / "lit_model.pth"
129
+ save_path.parent.mkdir(parents=True, exist_ok=True)
130
+
131
+ if prompt_style is None:
132
+ prompt_style = PromptStyle.from_config(self.config)
133
+ if self.fabric is None:
134
+ torch.save(self.state_dict(), save_path)
135
+ else:
136
+ self.fabric.save(save_path, self.state_dict())
137
+
138
+ if self.fabric is None or self.fabric.global_rank == 0:
139
+ # If initialization a model with random weights, the checkpoint dir can be none
140
+ if self.checkpoint_dir is not None:
141
+ copy_config_files(Path(self.checkpoint_dir), save_path.parent)
142
+ else:
143
+ save_config(self.config, out_dir)
144
+
145
+ save_prompt_style(prompt_style, save_path.parent)
146
+
147
+ @classmethod
148
+ def load(
149
+ cls,
150
+ model: str,
151
+ init: Optional[Literal["pretrained", "random"]] = "pretrained",
152
+ tokenizer_dir: Optional[Path] = None,
153
+ access_token: Optional[str] = None,
154
+ distribute: Optional[Literal["auto"]] = "auto",
155
+ ) -> "LLM":
156
+ """
157
+ Loads the LLM from a local directory or model hub.
158
+
159
+ Arguments
160
+ model: A local path to a directory containing the model weights or a valid model name.
161
+ You can get a list of valid model names via the `litgpt download list` command line argument.
162
+ init: If "pretrained" (default), downloads the model from the HF Hub if a local model can't be found at the `model`
163
+ directory name; otherwise loads the model from the local directory.
164
+ If "random", initializes the `model` with random weights.
165
+ tokenizer_dir: An optional tokenizer directory if `model` is not a checkpoint directory, or if a user
166
+ wants to use a different tokenizer instead.
167
+ access_token: Optional API token to access models with restrictions when using `init="pretrained"`.
168
+ distribute: If "auto" (default), initializes the model on a single GPU if available and otherwise on the CPU.
169
+ To have more control over the model distribution strategy and utilize multiple GPUs, you can set
170
+ `llm = LLM.load(..., distribute=None)` and call `llm.distribute(...)` manually.
171
+ """
172
+
173
+ allowed_init = {"pretrained", "random"}
174
+
175
+ if init == "pretrained":
176
+ checkpoint_dir = auto_download_checkpoint(
177
+ model_name=model, access_token=access_token, ignore_tokenizer_files=tokenizer_dir is not None
178
+ )
179
+ config = Config.from_file(checkpoint_dir / "model_config.yaml")
180
+
181
+ elif init == "random":
182
+ checkpoint_dir = None
183
+ try:
184
+ config = Config.from_name(model)
185
+ except ValueError:
186
+ print(f"Model name {model} is not supported.\n")
187
+ available_models = "\n".join(sorted(name_to_config))
188
+ print(f"Available values:\n{available_models}")
189
+ return
190
+
191
+ else:
192
+ raise ValueError(f"Invalid init option: {init}. Must be one of {allowed_init}")
193
+
194
+ torch.set_float32_matmul_precision("high")
195
+
196
+ if tokenizer_dir is not None:
197
+ tokenizer_dir = extend_checkpoint_dir(Path(tokenizer_dir))
198
+ tokenizer = Tokenizer(tokenizer_dir)
199
+ elif checkpoint_dir is not None:
200
+ tokenizer = Tokenizer(checkpoint_dir)
201
+ else:
202
+ raise ValueError("Provide a path to a tokenizer directory via the `tokenizer_dir` setting.")
203
+
204
+ if checkpoint_dir is not None:
205
+ prompt_style = (
206
+ load_prompt_style(checkpoint_dir)
207
+ if has_prompt_style(checkpoint_dir)
208
+ else PromptStyle.from_config(config)
209
+ )
210
+ else:
211
+ prompt_style = PromptStyle.from_config(config)
212
+
213
+ if distribute == "auto":
214
+ if torch.cuda.is_available():
215
+ accelerator = "cuda"
216
+ elif torch.backends.mps.is_available():
217
+ accelerator = "mps"
218
+ else:
219
+ accelerator = "cpu"
220
+
221
+ fabric = L.Fabric(
222
+ accelerator=accelerator,
223
+ devices=1,
224
+ precision=get_default_supported_precision(training=False),
225
+ )
226
+
227
+ with fabric.init_module(empty_init=False):
228
+ model = GPT(config)
229
+ model.eval()
230
+ preprocessor = Preprocessor(tokenizer, device=fabric.device)
231
+
232
+ if checkpoint_dir is not None:
233
+ checkpoint_path = checkpoint_dir / "lit_model.pth"
234
+ check_file_size_on_cpu_and_warn(checkpoint_path, fabric.device)
235
+ load_checkpoint(fabric, model, checkpoint_path)
236
+
237
+ model = fabric.setup_module(model)
238
+
239
+ else:
240
+ preprocessor = Preprocessor(tokenizer, device="cuda" if torch.cuda.is_available() else "cpu")
241
+ model = None
242
+ fabric = None
243
+
244
+ return cls(
245
+ model=model,
246
+ preprocessor=preprocessor,
247
+ prompt_style=prompt_style,
248
+ config=config,
249
+ checkpoint_dir=checkpoint_dir,
250
+ fabric=fabric,
251
+ generate_strategy=None,
252
+ kv_cache_initialized=False,
253
+ fixed_kv_cache_size=False,
254
+ )
255
+
256
+ def distribute(
257
+ self,
258
+ accelerator: Literal["cpu", "cuda", "auto"] = "auto",
259
+ devices: Union[int, Literal["auto"]] = "auto",
260
+ precision: Optional[Any] = None,
261
+ quantize: Optional[Literal["bnb.nf4", "bnb.nf4-dq", "bnb.fp4", "bnb.fp4-dq", "bnb.int8"]] = None,
262
+ generate_strategy: Optional[Literal["sequential", "tensor_parallel"]] = None,
263
+ fixed_kv_cache_size: Union[int, Literal["max_model_supported"], None] = None,
264
+ ) -> None:
265
+ """
266
+ Moves the model onto specified devices for single-GPU or multi-GPU inference
267
+
268
+ accelerator: Which device type to load the model on ("cpu", "gpu", "mps", "cuda", or "auto")
269
+ devices: The number of devices (1, 2, etc.) or "auto", which uses all available devices
270
+ quantize: Whether to quantize the model and using which method:
271
+ - bnb.nf4, bnb.nf4-dq, bnb.fp4, bnb.fp4-dq: 4-bit quantization from bitsandbytes
272
+ - bnb.int8: 8-bit quantization from bitsandbytes
273
+ for more details, see https://github.com/Lightning-AI/litgpt/blob/main/tutorials/quantize.md
274
+ precision: Indicates the Fabric precision setting to use.
275
+ For instance, "32-true", "16-mixed", "16-true", "bf16-mixed", "bf16-true".
276
+ For more details, see https://lightning.ai/docs/fabric/stable/api/fabric_args.html#precision
277
+ generate_strategy: Whether to use a sequential model generation strategy. The "sequential" settings allows running
278
+ models that wouldn't fit in a single card by partitioning the transformer blocks across
279
+ all devices and running them sequentially. Sequential generation may be slower but allows using larger models.
280
+ Note that sequential generation sets `fixed_kv_cache_size="max_model_supported"`. You can set it to a lower integer
281
+ value, `fixed_kv_cache_size=256` to reduce memory. The `fixed_kv_cache_size` value determines the maximum number
282
+ of tokens that can be returned via `llm.generate(...)`.
283
+ fixed_kv_cache_size: If set to an integer value or "max_model_supported" is set, the kv-cache won't be resized dynamically
284
+ during `llm.generate` calls. Use this setting if you plan to compile the model or use `generate_strategy="sequential`.
285
+ Note that the chosen `fixed_kv_cache_size` value determines the maximum number of tokens that can be returned in `llm.generate(...)`.
286
+ """
287
+
288
+ if self.checkpoint_dir is None:
289
+ raise NotImplementedError(
290
+ "The LLM was initialized with init='random' but .distribute() "
291
+ "currently only supports pretrained weights."
292
+ )
293
+
294
+ allowed_accelerators = {"cpu", "gpu", "cuda", "mps", "auto"}
295
+ if accelerator not in allowed_accelerators:
296
+ raise ValueError(f"Invalid accelerator: {accelerator}. Must be one of {allowed_accelerators}.")
297
+
298
+ if accelerator == "auto":
299
+ if torch.cuda.is_available():
300
+ accelerator = "cuda"
301
+ elif torch.backends.mps.is_available():
302
+ accelerator = "mps"
303
+ else:
304
+ accelerator = "cpu"
305
+
306
+ if generate_strategy in ("sequential", "tensor_parallel") and accelerator not in ("cuda", "gpu"):
307
+ raise NotImplementedError(
308
+ f"generate_strategy='{generate_strategy}' is only supported for accelerator='cuda'|'gpu'."
309
+ )
310
+
311
+ if devices == "auto":
312
+ if generate_strategy in ("sequential", "tensor_parallel"):
313
+ total_devices = CUDAAccelerator.auto_device_count()
314
+ else:
315
+ total_devices = 1
316
+ elif isinstance(devices, int) and accelerator == "cuda":
317
+ use_devices = calculate_number_of_devices(devices)
318
+ total_devices = CUDAAccelerator.auto_device_count()
319
+ if use_devices > total_devices:
320
+ raise ValueError(
321
+ f"You selected more devices ({use_devices}) than available in your system ({total_devices})."
322
+ )
323
+ else:
324
+ total_devices = use_devices
325
+
326
+ if total_devices > 1 and generate_strategy not in ("sequential", "tensor_parallel"):
327
+ raise NotImplementedError(
328
+ "Support for multiple devices is currently only implemented for generate_strategy='sequential'|'tensor_parallel'."
329
+ )
330
+ elif accelerator == "cpu" or accelerator == "mps":
331
+ total_devices = 1
332
+
333
+ else:
334
+ raise ValueError(f"devices argument must be an integer or 'auto', got {devices}")
335
+
336
+ print(f"Using {total_devices} device(s)", file=sys.stderr)
337
+
338
+ if precision is None:
339
+ precision = get_default_supported_precision(training=False)
340
+
341
+ print("Precision set", file=sys.stderr)
342
+
343
+ plugins = None
344
+ if quantize is not None and quantize.startswith("bnb."):
345
+ if "mixed" in precision:
346
+ raise ValueError("The combination of quantization and mixed precision is not supported.")
347
+ dtype = {"16-true": torch.float16, "bf16-true": torch.bfloat16, "32-true": torch.float32}[precision]
348
+ plugins = BitsandbytesPrecision(quantize[4:], dtype)
349
+ precision = None
350
+
351
+ # set "ddp" as the strategy for the launching functionality, but there's no data-parallelism
352
+ if generate_strategy != "tensor_parallel":
353
+ fabric = L.Fabric(
354
+ accelerator=accelerator,
355
+ devices=1, # Otherwise sequential wouldn't work, see litgpt/generate/sequentially.py
356
+ # devices=devices,
357
+ precision=precision,
358
+ plugins=plugins,
359
+ )
360
+ else:
361
+ fabric = L.Fabric(
362
+ accelerator=accelerator, devices=total_devices, strategy="ddp", precision=precision, plugins=plugins
363
+ )
364
+ if torch.cuda.is_available() and fabric.accelerator.auto_device_count() > 1:
365
+ check_nvlink_connectivity(fabric)
366
+ fabric.launch()
367
+
368
+ print("Fabric launched", file=sys.stderr)
369
+
370
+ self.kv_cache_initialized = False
371
+ if generate_strategy is None:
372
+ with fabric.init_module(empty_init=(total_devices > 1)):
373
+ model = GPT(self.config)
374
+ model.eval()
375
+
376
+ if self.checkpoint_dir is not None:
377
+ load_checkpoint(fabric, model, self.checkpoint_dir / "lit_model.pth")
378
+
379
+ model = fabric.setup_module(model)
380
+
381
+ if fixed_kv_cache_size is not None:
382
+ if fixed_kv_cache_size is None or fixed_kv_cache_size == "max_model_supported":
383
+ kv_cache_size = model.max_seq_length
384
+ else:
385
+ kv_cache_size = fixed_kv_cache_size
386
+ model.set_kv_cache(batch_size=1, max_seq_length=kv_cache_size, device=fabric.device)
387
+ self.kv_cache_initialized = True
388
+ self.fixed_kv_cache_size = fixed_kv_cache_size
389
+
390
+ elif generate_strategy in ("sequential", "tensor_parallel"):
391
+ with fabric.init_tensor(), torch.device("meta"):
392
+ model = GPT(self.config)
393
+ model.eval()
394
+
395
+ if generate_strategy == "sequential":
396
+ state_dict = torch.load(
397
+ str(self.checkpoint_dir / "lit_model.pth"), mmap=True, map_location="cpu", weights_only=False
398
+ )
399
+ model.load_state_dict(state_dict, assign=True)
400
+ model = fabric.setup_module(model, move_to_device=False)
401
+
402
+ if fixed_kv_cache_size is None:
403
+ fixed_kv_cache_size = "max_model_supported"
404
+ if fixed_kv_cache_size == "max_model_supported":
405
+ kv_cache_size = model.max_seq_length
406
+ else:
407
+ kv_cache_size = fixed_kv_cache_size
408
+
409
+ model = sequential(model, fabric.device, kv_cache_size, total_devices)
410
+ self.fixed_kv_cache_size = fixed_kv_cache_size
411
+
412
+ elif generate_strategy == "tensor_parallel":
413
+ if fabric.global_rank == 0:
414
+ pbar = tqdm(total=fabric.world_size, desc="Loading model weights")
415
+ for rank in range(fabric.world_size):
416
+ if fabric.global_rank == rank:
417
+ state_dict = torch.load(
418
+ str(self.checkpoint_dir / "lit_model.pth"),
419
+ mmap=True,
420
+ map_location="cpu",
421
+ weights_only=False,
422
+ )
423
+ model.load_state_dict(state_dict, assign=True)
424
+
425
+ # cannot use `.setup_module` because it will wrap with DDP
426
+ model = fabric._precision.convert_module(model)
427
+ model = tensor_parallel(fabric, model)
428
+
429
+ with fabric.init_tensor():
430
+ if fixed_kv_cache_size is None:
431
+ fixed_kv_cache_size = "max_model_supported"
432
+ if fixed_kv_cache_size == "max_model_supported":
433
+ kv_cache_size = model.max_seq_length
434
+ else:
435
+ kv_cache_size = fixed_kv_cache_size
436
+ model.max_seq_length = kv_cache_size
437
+ # the rope cache which is on meta device
438
+ model.cos, model.sin = model.rope_cache()
439
+ # enable the kv cache
440
+ model.set_kv_cache(batch_size=1)
441
+ model.eval()
442
+ model = fabric.to_device(model)
443
+
444
+ fabric.barrier()
445
+ if fabric.global_rank == 0:
446
+ pbar.update(1)
447
+
448
+ if fabric.global_rank == 0:
449
+ pbar.close()
450
+
451
+ self.kv_cache_initialized = True
452
+
453
+ else:
454
+ raise ValueError(f"Unsupported generate_strategy: {generate_strategy}")
455
+
456
+ self.model = model
457
+ self.fabric = fabric
458
+ self.preprocessor.device = fabric.device
459
+
460
+ @torch.inference_mode()
461
+ def generate(
462
+ self,
463
+ prompt: str,
464
+ sys_prompt: Optional[str] = None,
465
+ max_new_tokens: int = 50,
466
+ temperature: float = 1.0,
467
+ top_k: Optional[int] = None,
468
+ top_p: float = 1.0,
469
+ return_as_token_ids: bool = False,
470
+ stream: bool = False,
471
+ ) -> Union[str, torch.Tensor]:
472
+ """
473
+ Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
474
+
475
+ Arguments:
476
+ model: The model to use.
477
+ prompt: The prompt string to use for generating the samples.
478
+ sys_prompt: The system prompt string to use for generating the samples.
479
+ The system prompt allows the user to provide additional instructions to shape all responses by providing additional context, behavioral guidelines, style, and constraints.
480
+ max_new_tokens: The maximum number of new tokens to return.
481
+ temperature: Scales the predicted logits by 1 / temperature.
482
+ top_k: If specified, only sample among the tokens with the k highest probabilities.
483
+ top_p: If specified, it represents the cumulative probability threshold to consider in the sampling process.
484
+ In top-p sampling, the next token is sampled from the highest probability tokens
485
+ whose cumulative probability exceeds the threshold `top_p`. When specified,
486
+ it must be `0 <= top_p <= 1`. Here, `top_p=0` is equivalent
487
+ to sampling the most probable token, while `top_p=1` samples from the whole distribution.
488
+ It can be used in conjunction with `top_k` and `temperature` with the following order
489
+ of application:
490
+
491
+ 1. `top_k` sampling
492
+ 2. `temperature` scaling
493
+ 3. `top_p` sampling
494
+
495
+ For more details, see https://arxiv.org/abs/1904.09751
496
+ or https://huyenchip.com/2024/01/16/sampling.html#top_p
497
+ return_as_token_ids: If True, returns the token IDs as a torch.Tensor. Otherwise, returns the decoded text as a string.
498
+ stream: If True, returns a generator that yields tokens as they are generated.
499
+ At the moment, this setting is slower and may use more memory than the non-streaming version.
500
+ We plan to resolve this in the future.
501
+ """
502
+ if self.model is None:
503
+ raise AttributeError(
504
+ "The model is not initialized yet; use the .distribute() "
505
+ "or .trainer_setup() method to initialize the model."
506
+ )
507
+ input_ids = self._text_to_token_ids(prompt, sys_prompt)
508
+ prompt_length = input_ids.size(0)
509
+ max_returned_tokens = prompt_length + max_new_tokens
510
+
511
+ if not self.kv_cache_initialized:
512
+ if self.fabric is not None:
513
+ device = self.fabric.device
514
+ else:
515
+ device = self.preprocessor.device
516
+ self.model.set_kv_cache(batch_size=1, max_seq_length=max_returned_tokens, device=device)
517
+ self.kv_cache_initialized = True
518
+
519
+ # Dynamically grow the kv cache size if necessary
520
+ if not self.fixed_kv_cache_size and self.prev_generated_seq_length < max_returned_tokens:
521
+ tmp_device = self.model.mask_cache.device
522
+ self.model.clear_kv_cache()
523
+ self.model.set_kv_cache(batch_size=1, max_seq_length=max_returned_tokens, device=tmp_device)
524
+
525
+ else:
526
+ for block in self.model.transformer.h:
527
+ block.attn.kv_cache.reset_parameters()
528
+
529
+ self.prev_generated_seq_length = max_returned_tokens
530
+ self.model.eval()
531
+
532
+ def iterator():
533
+ outputs = stream_generate_fn(
534
+ model=self.model,
535
+ prompt=input_ids,
536
+ max_returned_tokens=max_returned_tokens,
537
+ temperature=temperature,
538
+ top_k=top_k,
539
+ top_p=top_p,
540
+ stop_tokens=([self.preprocessor.tokenizer.eos_id],),
541
+ )
542
+ if return_as_token_ids:
543
+ yield from outputs
544
+ else:
545
+ for output in outputs:
546
+ yield self.preprocessor.decode(output)
547
+ return
548
+
549
+ if stream:
550
+ outputs = iterator()
551
+ else:
552
+ outputs = generate_fn(
553
+ model=self.model,
554
+ prompt=input_ids,
555
+ max_returned_tokens=max_returned_tokens,
556
+ temperature=temperature,
557
+ top_k=top_k,
558
+ top_p=top_p,
559
+ eos_id=self.preprocessor.tokenizer.eos_id,
560
+ include_prompt=False,
561
+ )
562
+
563
+ if stream:
564
+ return outputs
565
+ elif return_as_token_ids:
566
+ return outputs
567
+ else:
568
+ return self.preprocessor.decode(outputs)
569
+
570
+ def _text_to_token_ids(self, prompt: str, sys_prompt: Optional[str] = None) -> torch.Tensor:
571
+ """Utility method to convert a prompt text to token IDs"""
572
+ prompt = self.prompt_style.apply(prompt, sys_prompt=sys_prompt)
573
+ input_ids = self.preprocessor.encode(prompt)
574
+ return input_ids
575
+
576
+ def benchmark(self, num_iterations=1, **kwargs):
577
+ """
578
+ A wrapper around the .generate() method to calculate runtime performance.
579
+
580
+ Arguments:
581
+ num_iterations: How often the `.generate()` call is repeated.
582
+ kwargs: Keyword arguments that are passed to the .generate() method.
583
+ """
584
+ benchmark_dict = {}
585
+
586
+ for i in range(num_iterations):
587
+ time_to_first_token = None
588
+ t0 = time.perf_counter()
589
+ outputs = self.generate(**kwargs)
590
+
591
+ if kwargs.get("stream", False):
592
+ gen_outputs = []
593
+ for e in outputs:
594
+ if time_to_first_token is None:
595
+ t1 = time.perf_counter()
596
+ time_to_first_token = t1 - t0
597
+ gen_outputs.append(e)
598
+ outputs = "".join(gen_outputs)
599
+ else:
600
+ outputs = self.generate(
601
+ **kwargs,
602
+ )
603
+ benchmark_dict.setdefault("Seconds total", []).append(time.perf_counter() - t0)
604
+
605
+ benchmark_dict.setdefault("Seconds to first token", []).append(time_to_first_token)
606
+ tokens_generated = self.preprocessor.encode(outputs).size(0)
607
+ benchmark_dict.setdefault("Tokens generated", []).append(tokens_generated)
608
+ benchmark_dict.setdefault("Inference speed in tokens/sec", []).append(
609
+ benchmark_dict["Tokens generated"][-1] / benchmark_dict["Seconds total"][-1]
610
+ )
611
+ if self.fabric is not None and self.fabric.device.type == "cuda":
612
+ benchmark_dict.setdefault("Total GPU memory allocated in GB", []).append(
613
+ torch.cuda.max_memory_allocated() / 1e9
614
+ )
615
+
616
+ return outputs, benchmark_dict
617
+
618
+
619
+ class Preprocessor:
620
+ """
621
+ Preprocessor class for tokenization and de-tokenization.
622
+ """
623
+
624
+ def __init__(self, tokenizer: Tokenizer, device: str = "cpu") -> None:
625
+ self.tokenizer = tokenizer
626
+ self.device = device
627
+
628
+ def encode(self, text: str) -> torch.Tensor:
629
+ return self.tokenizer.encode(text, device=self.device)
630
+
631
+ def decode(self, token_ids: torch.Tensor) -> str:
632
+ return self.tokenizer.decode(token_ids)
633
+
634
+
635
+ def calculate_number_of_devices(devices):
636
+ """
637
+ Utility function to calculate the number of devices.
638
+ """
639
+ num_devices = devices if isinstance(devices, int) else len(devices) if isinstance(devices, list) else 0
640
+ return num_devices
641
+
642
+
643
+ def benchmark_dict_to_markdown_table(data):
644
+ """
645
+ Converts .benchmark() outputs to a markdown table
646
+ """
647
+ markdown_table = (
648
+ "| Metric | Mean | Std Dev |\n"
649
+ )
650
+ markdown_table += (
651
+ "|-------------------------------------|-----------------------------|-----------------------------|\n"
652
+ )
653
+
654
+ for key, values in data.items():
655
+ mean_value = np.mean(values)
656
+ std_dev_value = np.std(values, ddof=1)
657
+
658
+ formatted_mean = f"{mean_value:.2f}"
659
+ formatted_std_dev = f"{std_dev_value:.2f}"
660
+
661
+ markdown_table += f"| {key.ljust(35)} | {formatted_mean.ljust(27)} | {formatted_std_dev.ljust(27)} |\n"
662
+
663
+ return markdown_table
664
+
665
+
666
+ def pull_request_benchmark_util(model_name="microsoft/phi-2", num_iterations=6):
667
+ def print_table(header, data):
668
+ print(f"\n### {header}\n")
669
+ markdown_table = (
670
+ f"| Metric | First Iteration | "
671
+ f"Iter 2-{num_iterations} Mean | Iter 2-{num_iterations} Standard Dev. |\n"
672
+ f"|--------------------------------------|-----------------|"
673
+ f"-------------------|-------------------------|\n"
674
+ )
675
+
676
+ for key, value in data.items():
677
+ first_iteration = f"{value[0]:.2f}" if value[0] is not None else "N/A"
678
+ clean_values = [v for v in value[1:] if v is not None]
679
+
680
+ if clean_values:
681
+ mean_value = np.mean(clean_values)
682
+ std_dev_value = np.std(clean_values, ddof=1)
683
+ mean_str = f"{mean_value:.2f}"
684
+ std_dev_str = f"{std_dev_value:.2f}"
685
+ else:
686
+ mean_str = "N/A"
687
+ std_dev_str = "N/A"
688
+
689
+ markdown_table += f"| {key:<36} | {first_iteration:<15} | {mean_str:<17} | {std_dev_str:<23} |\n"
690
+ print(markdown_table)
691
+
692
+ import subprocess
693
+
694
+ try:
695
+ g_hash = subprocess.run(
696
+ ["git", "rev-parse", "--short", "HEAD"], capture_output=True, text=True, check=True
697
+ ).stdout.strip()
698
+ print(f"Git Commit Hash: {g_hash}")
699
+ except subprocess.CalledProcessError:
700
+ print("Git Commit Hash: N/A")
701
+ print(f"PyTorch version: {torch.__version__}")
702
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
703
+ print(f"Device: {device}\n")
704
+
705
+ # 1st table
706
+ llm = LLM.load(
707
+ model=model_name,
708
+ )
709
+ text, bench_d = llm.benchmark(num_iterations=num_iterations, prompt="What do llamas eat?", top_k=1)
710
+ print_table(f"Defaults ({model_name}), 1st time", bench_d)
711
+ del llm
712
+
713
+ # 2nd table
714
+ llm = LLM.load(
715
+ model=model_name,
716
+ )
717
+ text, bench_d = llm.benchmark(num_iterations=num_iterations, prompt="What do llamas eat?", top_k=1)
718
+ print_table(f"Defaults ({model_name}), 2nd time", bench_d)
719
+ del llm
720
+
721
+ # 3rd table
722
+ llm = LLM.load(
723
+ model=model_name,
724
+ )
725
+ text, bench_d = llm.benchmark(num_iterations=num_iterations, prompt="What do llamas eat?", top_k=1, stream=True)
726
+ print_table("stream=True", bench_d)
727
+ del llm
728
+
729
+ # 4th table
730
+ llm = LLM.load(model=model_name, distribute=None)
731
+ llm.distribute(fixed_kv_cache_size=500)
732
+
733
+ text, bench_d = llm.benchmark(num_iterations=num_iterations, prompt="What do llamas eat?", top_k=1, stream=True)
734
+ print_table("stream=True + fixed_kv_cache=500", bench_d)
litgpt/args.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
2
+ import math
3
+ import warnings
4
+ from dataclasses import dataclass
5
+ from typing import Optional, Union
6
+
7
+
8
+ @dataclass
9
+ class TrainArgs:
10
+ """Training-related arguments"""
11
+
12
+ save_interval: Optional[int] = 1000
13
+ """Number of optimizer steps between saving checkpoints"""
14
+ log_interval: int = 1
15
+ """Number of iterations between logging calls"""
16
+ global_batch_size: int = 64
17
+ """Number of samples between optimizer steps across data-parallel ranks"""
18
+ micro_batch_size: int = 4
19
+ """Number of samples per data-parallel rank"""
20
+ lr_warmup_steps: Optional[int] = 100
21
+ """Number of iterations with learning rate warmup active"""
22
+ lr_warmup_fraction: Optional[float] = None
23
+ """The fraction of an epoch to use for learning rate warmup"""
24
+ epochs: Optional[int] = None
25
+ """Number of epochs to train on"""
26
+ # TODO: `pretrain` is the only script using `max_tokens` explicitly. replace it with epoch_size*epochs?
27
+ max_tokens: Optional[int] = None
28
+ """Total number of tokens to train on"""
29
+ max_steps: Optional[int] = None
30
+ """Limits the number of optimizer steps to run"""
31
+ max_seq_length: Optional[int] = None
32
+ """Limits the length of samples"""
33
+ tie_embeddings: Optional[bool] = None
34
+ """Whether to tie the embedding weights with the language modeling head weights"""
35
+
36
+ # Optimization args
37
+ max_norm: Optional[float] = None
38
+ min_lr: float = 6e-5
39
+
40
+ def __post_init__(self) -> None:
41
+ if self.lr_warmup_fraction and self.lr_warmup_steps:
42
+ raise ValueError(
43
+ "Can't provide both `--train.lr_warmup_fraction` and `--train.lr_warmup_steps`. Choose one."
44
+ )
45
+ if self.lr_warmup_fraction and not (0 <= self.lr_warmup_fraction <= 1):
46
+ raise ValueError("`--train.lr_warmup_fraction` must be between 0 and 1.")
47
+
48
+ if self.lr_warmup_steps and self.max_steps and (self.lr_warmup_steps >= self.max_steps):
49
+ warnings.warn(
50
+ "`--train.lr_warmup_steps` should be less than `--train.max_steps`."
51
+ f" Got {self.lr_warmup_steps} lr_warmup_steps and {self.max_steps} max_steps.",
52
+ UserWarning,
53
+ )
54
+
55
+ def gradient_accumulation_iters(self, devices: int, num_nodes: int = 1) -> int:
56
+ """Number of iterations between gradient synchronizations"""
57
+ gradient_accumulation_iters = self.batch_size(devices, num_nodes) // self.micro_batch_size
58
+ assert gradient_accumulation_iters > 0
59
+ return gradient_accumulation_iters
60
+
61
+ def batch_size(self, devices: int, num_nodes: int = 1) -> int:
62
+ """Number of samples between optimizer steps per data-parallel rank"""
63
+ batch_size = self.global_batch_size // (devices * num_nodes)
64
+ assert batch_size > 0
65
+ return batch_size
66
+
67
+ def warmup_iters(self, devices: int, num_nodes: int, max_iters: int, train_dataloader) -> int:
68
+ """Number of iterations to warm up the learning rate."""
69
+ if self.lr_warmup_fraction:
70
+ return min(max_iters, math.ceil(self.lr_warmup_fraction * len(train_dataloader)))
71
+ if self.lr_warmup_steps:
72
+ return min(max_iters, self.lr_warmup_steps * self.gradient_accumulation_iters(devices, num_nodes))
73
+ return 0
74
+
75
+
76
+ @dataclass
77
+ class EvalArgs:
78
+ """Evaluation-related arguments"""
79
+
80
+ interval: int = 600
81
+ """Number of optimizer steps between evaluation calls"""
82
+ max_new_tokens: Optional[int] = None
83
+ """Number of tokens to generate"""
84
+ max_iters: int = 100
85
+ """Number of iterations"""
86
+ initial_validation: bool = False
87
+ """Whether to evaluate on the validation set at the beginning of the training"""
88
+ final_validation: bool = True
89
+ """Whether to evaluate on the validation set at the end of the training"""
90
+ evaluate_example: Union[str, int] = "first"
91
+ """How to pick an example instruction to evaluate periodically during training.
92
+ Can be "first", "random", or an integer index to pick a specific example."""
93
+
94
+
95
+ @dataclass
96
+ class LogArgs:
97
+ """Logging-related arguments"""
98
+
99
+ project: Optional[str] = None
100
+ """Project name"""
101
+ run: Optional[str] = None
102
+ """Run name"""
103
+ group: Optional[str] = None
104
+ """Group name"""
litgpt/config.py ADDED
@@ -0,0 +1,3087 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
2
+
3
+ from copy import deepcopy
4
+ from dataclasses import dataclass, field
5
+ from pathlib import Path
6
+ from typing import Any, List, Literal, Optional, Type, Union
7
+
8
+ import yaml
9
+ from typing_extensions import Self
10
+
11
+
12
+ def find_multiple(n: int, k: int) -> int:
13
+ """Utility function for finding the nearest value to n which is a multiple of k.
14
+
15
+ NOTE: We define this function in this module rather than `litgpt.utils` so that users can import
16
+ this file to do configuration manipulations in Python environments which do not include all the dependencies
17
+ demanded by `litgpt.utils`.
18
+ """
19
+ assert k > 0
20
+ if n % k == 0:
21
+ return n
22
+ return n + k - (n % k)
23
+
24
+
25
+ @dataclass
26
+ class Config:
27
+ name: str = ""
28
+ hf_config: dict = field(default_factory=dict)
29
+ # General size parameters
30
+ block_size: int = 4096
31
+ n_layer: int = 16
32
+ n_embd: int = 4096
33
+ vocab_size: int = 50254
34
+ padding_multiple: int = 512
35
+ padded_vocab_size: Optional[int] = None
36
+ # Transformer block (structure, normalizations)
37
+ norm_class_name: Literal["LayerNorm", "RMSNorm"] = "LayerNorm"
38
+ norm_eps: float = 1e-5
39
+ norm_qk: bool = False
40
+ norm_qk_type: Literal["default", "olmo2"] = "default"
41
+ post_attention_norm: bool = False
42
+ post_mlp_norm: bool = False
43
+ parallel_residual: bool = True
44
+ shared_attention_norm: bool = False
45
+ # Transformer block (self-attention)
46
+ n_head: int = 32
47
+ head_size: Optional[int] = None
48
+ # to use multi-head attention (MHA), set this to `n_head` (default)
49
+ # to use multi-query attention (MQA), set this to 1
50
+ # to use grouped-query attention (GQA), set this to a value in between
51
+ # Example with `n_head=4`
52
+ # ┌───┐┌───┐┌───┐┌───┐ ┌───┐ ┌───┐ ┌───┐
53
+ # │ v ││ v ││ v ││ v │ │ v │ │ v │ │ v │
54
+ # └───┘└───┘└───┘└───┘ └───┘ └───┘ └───┘
55
+ # │ │ │ │ │ │ │
56
+ # ┌───┐┌───┐┌───┐┌───┐ ┌───┐ ┌───┐ ┌───┐
57
+ # │ k ││ k ││ k ││ k │ │ k │ │ k │ │ k │
58
+ # └───┘└───┘└───┘└───┘ └───┘ └───┘ └───┘
59
+ # │ │ │ │ ┌──┴──┐ ┌──┴──┐ ┌────┬──┴─┬────┐
60
+ # ┌───┐┌───┐┌───┐┌───┐ ┌───┐┌───┐┌───┐┌───┐ ┌───┐┌───┐┌───┐┌───┐
61
+ # │ q ││ q ││ q ││ q │ │ q ││ q ││ q ││ q │ │ q ││ q ││ q ││ q │
62
+ # └───┘└───┘└───┘└───┘ └───┘└───┘└───┘└───┘ └───┘└───┘└───┘└───┘
63
+ # ◀──────────────────▶ ◀──────────────────▶ ◀──────────────────▶
64
+ # MHA GQA MQA
65
+ # n_query_groups=4 n_query_groups=2 n_query_groups=1
66
+ #
67
+ # credit https://arxiv.org/pdf/2305.13245.pdf
68
+ n_query_groups: Optional[int] = None
69
+ attn_bias: bool = False
70
+ attention_scores_scalar: Optional[int] = None
71
+ sliding_window_size: Optional[int] = None
72
+ sliding_window_indices: Optional[List] = None
73
+ # if `attention_logit_softcapping` is used, cannot use optimized
74
+ # `torch.nn.functional.scaled_dot_product_attention` (which implements
75
+ # Flash attention), may result in higher memory and runtime footprint.
76
+ attention_logit_softcapping: Optional[float] = None
77
+ # Rotary position embedding (RoPE)
78
+ rope_base: int = 10000
79
+ rotary_percentage: float = 0.25
80
+ rope_condense_ratio: int = 1
81
+ rope_adjustments: Optional[dict] = None
82
+ # Transformer block (MLP)
83
+ intermediate_size: Optional[int] = None
84
+ moe_intermediate_size: Optional[int] = None
85
+ bias: bool = True
86
+ mlp_class_name: Literal["GptNeoxMLP", "LLaMAMLP", "GemmaMLP", "LLaMAMoE"] = "GptNeoxMLP"
87
+ gelu_approximate: str = "none"
88
+ n_expert: int = 0
89
+ n_expert_per_token: int = 0
90
+ # GPT before/after blocks
91
+ scale_embeddings: bool = False
92
+ lm_head_bias: bool = False
93
+ final_logit_softcapping: Optional[float] = None
94
+ norm_1: bool = True
95
+ norm_2: bool = True
96
+ # The base period of the RoPE embeddings for local attention.
97
+ # If not provided, rope_theta will be used for both local and global attention.
98
+ rope_local_base_freq: Optional[float] = None
99
+ rope_indices: Optional[List] = None
100
+
101
+ def __post_init__(self):
102
+ if not self.name:
103
+ self.name = self.hf_config.get("name", self.name)
104
+
105
+ if self.head_size is None:
106
+ assert self.n_embd % self.n_head == 0
107
+ self.head_size = self.n_embd // self.n_head
108
+
109
+ # vocab size should be a power of 2 to be optimal on hardware. compute the closest value
110
+ if self.padded_vocab_size is None:
111
+ self.padded_vocab_size = find_multiple(self.vocab_size, self.padding_multiple)
112
+ else:
113
+ # vocab size shouldn't be larger than padded vocab size
114
+ self.vocab_size = min(self.vocab_size, self.padded_vocab_size)
115
+
116
+ # compute the number of query groups
117
+ if self.n_query_groups is not None:
118
+ assert self.n_head % self.n_query_groups == 0
119
+ else:
120
+ self.n_query_groups = self.n_head
121
+
122
+ # compute the intermediate size for MLP if not set
123
+ if self.intermediate_size is None:
124
+ if self.mlp_class_name == "LLaMAMLP":
125
+ raise ValueError(f"The config {self.name!r}, needs to set the `intermediate_size`")
126
+ self.intermediate_size = 4 * self.n_embd
127
+
128
+ self.rope_n_elem = int(self.rotary_percentage * self.head_size)
129
+
130
+ if self.sliding_window_size is not None and self.sliding_window_indices is None:
131
+ self.sliding_window_indices = [1] * self.n_layer
132
+
133
+ if self.rope_local_base_freq is not None and self.rope_indices is None:
134
+ self.rope_indices = [1] * self.n_layer
135
+
136
+ @classmethod
137
+ def from_name(cls, name: str, **kwargs: Any) -> Optional[Self]:
138
+ if name not in name_to_config:
139
+ # search through all `config['hf_config']['name']`
140
+ try:
141
+ conf_dict = next(
142
+ config
143
+ for config in configs
144
+ if name == config["hf_config"]["name"]
145
+ or config["hf_config"]["org"] + "/" + config["hf_config"]["name"] == name
146
+ )
147
+ except StopIteration:
148
+ raise ValueError(f"{name!r} is not a supported config name")
149
+ else:
150
+ conf_dict = name_to_config[name]
151
+
152
+ conf_dict = conf_dict.copy()
153
+ conf_dict.update(kwargs)
154
+ return cls(**conf_dict)
155
+
156
+ @classmethod
157
+ def from_file(cls, path: Union[str, Path], **kwargs: Any) -> Self:
158
+ with open(path, encoding="utf-8") as fp:
159
+ file_kwargs = yaml.safe_load(fp)
160
+ if file_kwargs is None:
161
+ raise ValueError(f"{path} is empty which is likely unexpected.")
162
+ file_kwargs.update(kwargs)
163
+ return cls(**file_kwargs)
164
+
165
+ @classmethod
166
+ def from_checkpoint(cls, path: Path, **kwargs: Any) -> Self:
167
+ """Automatically load `model_config.yaml` and if it doesn't exist - a matching config from `litgpt/config.py`."""
168
+ if (config_path := path / "model_config.yaml").is_file():
169
+ return cls.from_file(config_path, **kwargs)
170
+ if (model_name := path.name) in name_to_config:
171
+ return cls.from_name(model_name, **kwargs)
172
+ raise FileNotFoundError(f"For {str(path)!r} neither 'model_config.yaml' nor matching config exists.")
173
+
174
+ @property
175
+ def mlp_class(self) -> Type:
176
+ # `self.mlp_class_name` cannot be the type to keep the config serializable
177
+ import litgpt.model
178
+
179
+ return getattr(litgpt.model, self.mlp_class_name)
180
+
181
+ @property
182
+ def norm_class(self) -> Type:
183
+ # `self.norm_class_name` cannot be the type to keep the config serializable
184
+
185
+ from functools import partial
186
+
187
+ import torch # Torch import is lazy to make config loading faster
188
+
189
+ if self.norm_class_name == "RMSNorm":
190
+ from litgpt.model import RMSNorm
191
+
192
+ return partial(RMSNorm, add_unit_offset="Gemma" in self.name)
193
+
194
+ if self.norm_class_name == "LayerNorm" and "OLMo" in self.name:
195
+ # this makes it equivalent to `torch.nn.functional.layer_norm`
196
+ # that is used by OLMo
197
+ # Table 5 caption in the OLMo paper shows this - https://aclanthology.org/2024.acl-long.841
198
+ return partial(torch.nn.LayerNorm, elementwise_affine=False)
199
+
200
+ return getattr(torch.nn, self.norm_class_name)
201
+
202
+
203
+ ########################
204
+ # Stability AI StableLM
205
+ ########################
206
+ configs = [
207
+ # https://huggingface.co/stabilityai/stablelm-base-alpha-3b/blob/main/config.json
208
+ dict(name="stablelm-base-alpha-3b", hf_config=dict(org="stabilityai", name="stablelm-base-alpha-3b")),
209
+ # https://huggingface.co/stabilityai/stablelm-base-alpha-7b/blob/main/config.json
210
+ dict(
211
+ name="stablelm-base-alpha-7b",
212
+ hf_config=dict(org="stabilityai", name="stablelm-base-alpha-7b"),
213
+ n_head=48,
214
+ n_embd=6144,
215
+ padding_multiple=256,
216
+ ),
217
+ # https://huggingface.co/stabilityai/stablelm-tuned-alpha-3b/blob/main/config.json
218
+ dict(name="stablelm-tuned-alpha-3b", hf_config=dict(org="stabilityai", name="stablelm-tuned-alpha-3b"), n_head=32),
219
+ # https://huggingface.co/stabilityai/stablelm-tuned-alpha-7b/blob/main/config.json
220
+ dict(
221
+ name="stablelm-tuned-alpha-7b",
222
+ hf_config=dict(org="stabilityai", name="stablelm-tuned-alpha-7b"),
223
+ n_head=48,
224
+ n_embd=6144,
225
+ padding_multiple=256,
226
+ ),
227
+ # https://huggingface.co/stabilityai/stablelm-3b-4e1t/blob/main/config.json
228
+ dict(
229
+ name="stablelm-3b-4e1t",
230
+ hf_config=dict(org="stabilityai", name="stablelm-3b-4e1t"),
231
+ padded_vocab_size=50304,
232
+ n_layer=32,
233
+ n_head=32,
234
+ n_embd=2560,
235
+ parallel_residual=False,
236
+ bias=False,
237
+ mlp_class_name="LLaMAMLP",
238
+ intermediate_size=6912,
239
+ ),
240
+ # https://huggingface.co/stabilityai/stablelm-zephyr-3b/blob/main/config.json
241
+ dict(
242
+ name="stablelm-zephyr-3b",
243
+ hf_config=dict(org="stabilityai", name="stablelm-zephyr-3b"),
244
+ padded_vocab_size=50304,
245
+ n_layer=32,
246
+ n_head=32,
247
+ n_embd=2560,
248
+ parallel_residual=False,
249
+ bias=False,
250
+ mlp_class_name="LLaMAMLP",
251
+ intermediate_size=6912,
252
+ ),
253
+ ]
254
+
255
+
256
+ ##########################
257
+ # Stability AI StableCode
258
+ ##########################
259
+ stablecode = [
260
+ # https://huggingface.co/stabilityai/stablecode-completion-alpha-3b/blob/main/config.json
261
+ dict(
262
+ name="stablecode-completion-alpha-3b",
263
+ hf_config=dict(org="stabilityai", name="stablecode-completion-alpha-3b"),
264
+ block_size=16384,
265
+ vocab_size=49152,
266
+ n_layer=32,
267
+ n_embd=2560,
268
+ ),
269
+ # https://huggingface.co/stabilityai/stablecode-completion-alpha-3b-4k/blob/main/config.json
270
+ dict(
271
+ name="stablecode-completion-alpha-3b-4k",
272
+ hf_config=dict(org="stabilityai", name="stablecode-completion-alpha-3b-4k"),
273
+ vocab_size=49152,
274
+ n_layer=32,
275
+ n_embd=2560,
276
+ ),
277
+ # https://huggingface.co/stabilityai/stablecode-instruct-alpha-3b/blob/main/config.json
278
+ dict(
279
+ name="stablecode-instruct-alpha-3b",
280
+ hf_config=dict(org="stabilityai", name="stablecode-instruct-alpha-3b"),
281
+ vocab_size=49152,
282
+ n_layer=32,
283
+ n_embd=2560,
284
+ ),
285
+ # https://huggingface.co/stabilityai/stable-code-3b/blob/main/config.json
286
+ dict(
287
+ name="stable-code-3b",
288
+ hf_config=dict(org="stabilityai", name="stable-code-3b"),
289
+ padded_vocab_size=50304,
290
+ n_layer=32,
291
+ n_embd=2560,
292
+ block_size=16384,
293
+ parallel_residual=False,
294
+ bias=False,
295
+ mlp_class_name="LLaMAMLP",
296
+ intermediate_size=6912,
297
+ ),
298
+ ]
299
+ configs.extend(stablecode)
300
+
301
+
302
+ ####################
303
+ # EleutherAI Pythia
304
+ ####################
305
+ pythia = [
306
+ # https://huggingface.co/EleutherAI/pythia-14m/blob/main/config.json
307
+ dict(
308
+ name="pythia-14m",
309
+ hf_config=dict(org="EleutherAI", name="pythia-14m"),
310
+ block_size=512,
311
+ n_layer=6,
312
+ n_embd=128,
313
+ n_head=4,
314
+ padding_multiple=128,
315
+ ),
316
+ # https://huggingface.co/EleutherAI/pythia-31m/blob/main/config.json
317
+ dict(
318
+ name="pythia-31m",
319
+ hf_config=dict(org="EleutherAI", name="pythia-31m"),
320
+ block_size=1024,
321
+ n_layer=6,
322
+ n_embd=256,
323
+ n_head=8,
324
+ padding_multiple=128,
325
+ ),
326
+ # https://huggingface.co/EleutherAI/pythia-70m/blob/main/config.json
327
+ dict(
328
+ name="pythia-70m",
329
+ hf_config=dict(org="EleutherAI", name="pythia-70m"),
330
+ block_size=2048,
331
+ n_layer=6,
332
+ n_embd=512,
333
+ n_head=8,
334
+ padding_multiple=128,
335
+ ),
336
+ # https://huggingface.co/EleutherAI/pythia-160m/blob/main/config.json
337
+ dict(
338
+ name="pythia-160m",
339
+ hf_config=dict(org="EleutherAI", name="pythia-160m"),
340
+ block_size=2048,
341
+ n_layer=12,
342
+ n_embd=768,
343
+ n_head=12,
344
+ padding_multiple=128,
345
+ ),
346
+ # https://huggingface.co/EleutherAI/pythia-410m/blob/main/config.json
347
+ dict(
348
+ name="pythia-410m",
349
+ hf_config=dict(org="EleutherAI", name="pythia-410m"),
350
+ block_size=2048,
351
+ n_layer=24,
352
+ n_embd=1024,
353
+ n_head=16,
354
+ padding_multiple=128,
355
+ ),
356
+ # https://huggingface.co/EleutherAI/pythia-1b/blob/main/config.json
357
+ dict(
358
+ name="pythia-1b",
359
+ hf_config=dict(org="EleutherAI", name="pythia-1b"),
360
+ block_size=2048,
361
+ n_embd=2048,
362
+ n_head=8,
363
+ padding_multiple=128,
364
+ ),
365
+ # https://huggingface.co/EleutherAI/pythia-1.4b/blob/main/config.json
366
+ dict(
367
+ name="pythia-1.4b",
368
+ hf_config=dict(org="EleutherAI", name="pythia-1.4b"),
369
+ block_size=2048,
370
+ n_layer=24,
371
+ n_embd=2048,
372
+ n_head=16,
373
+ padding_multiple=128,
374
+ ),
375
+ # https://huggingface.co/EleutherAI/pythia-2.8b/blob/main/config.json
376
+ dict(
377
+ name="pythia-2.8b",
378
+ hf_config=dict(org="EleutherAI", name="pythia-2.8b"),
379
+ block_size=2048,
380
+ n_layer=32,
381
+ n_embd=2560,
382
+ padding_multiple=128,
383
+ ),
384
+ # https://huggingface.co/EleutherAI/pythia-6.9b/blob/main/config.json
385
+ dict(
386
+ name="pythia-6.9b",
387
+ hf_config=dict(org="EleutherAI", name="pythia-6.9b"),
388
+ block_size=2048,
389
+ n_layer=32,
390
+ padding_multiple=256,
391
+ ),
392
+ # https://huggingface.co/EleutherAI/pythia-12b/blob/main/config.json
393
+ dict(
394
+ name="pythia-12b",
395
+ hf_config=dict(org="EleutherAI", name="pythia-12b"),
396
+ block_size=2048,
397
+ n_layer=36,
398
+ n_embd=5120,
399
+ n_head=40,
400
+ ),
401
+ ]
402
+ configs.extend(pythia)
403
+ for c in pythia:
404
+ # "pythia-14m" and "pythia-31m" don't have deduped version
405
+ if c["name"] in ("pythia-14m", "pythia-31m"):
406
+ continue
407
+ copy = deepcopy(c)
408
+ copy["name"] = f"{c['name']}-deduped"
409
+ copy["hf_config"]["name"] = f"{c['hf_config']['name']}-deduped"
410
+ configs.append(copy)
411
+
412
+
413
+ #################
414
+ # TII UAE Falcon
415
+ #################
416
+ falcon = [
417
+ # https://huggingface.co/tiiuae/falcon-7b/blob/main/config.json
418
+ dict(
419
+ name="falcon-7b{}",
420
+ hf_config=dict(org="tiiuae", name="falcon-7b{}"),
421
+ block_size=2048,
422
+ vocab_size=65024,
423
+ padded_vocab_size=65024,
424
+ n_layer=32,
425
+ n_head=71,
426
+ n_embd=4544,
427
+ rotary_percentage=1.0,
428
+ n_query_groups=1,
429
+ bias=False,
430
+ # this is not in the config, but in the original model implementation, only for this config
431
+ shared_attention_norm=True,
432
+ ),
433
+ # https://huggingface.co/tiiuae/falcon-40b/blob/main/config.json
434
+ dict(
435
+ name="falcon-40b{}",
436
+ hf_config=dict(org="tiiuae", name="falcon-40b{}"),
437
+ block_size=2048,
438
+ vocab_size=65024,
439
+ padded_vocab_size=65024,
440
+ n_layer=60,
441
+ n_head=128,
442
+ n_embd=8192,
443
+ rotary_percentage=1.0,
444
+ n_query_groups=8,
445
+ bias=False,
446
+ ),
447
+ ]
448
+ for c in falcon:
449
+ for kind in ("", "-instruct"):
450
+ copy = deepcopy(c)
451
+ copy["name"] = c["name"].format(kind)
452
+ copy["hf_config"]["name"] = c["hf_config"]["name"].format(kind)
453
+ configs.append(copy)
454
+
455
+ # https://huggingface.co/tiiuae/falcon-180b/blob/main/config.json
456
+ falcon180b = dict(
457
+ name="falcon-180B{}",
458
+ hf_config=dict(org="tiiuae", name="falcon-180B{}"),
459
+ block_size=2048,
460
+ vocab_size=65024,
461
+ padded_vocab_size=65024,
462
+ n_layer=80,
463
+ n_head=232,
464
+ n_embd=14848,
465
+ rotary_percentage=1.0,
466
+ n_query_groups=8,
467
+ bias=False,
468
+ )
469
+
470
+ for kind in ("", "-chat"):
471
+ copy = deepcopy(falcon180b)
472
+ copy["name"] = falcon180b["name"].format(kind)
473
+ copy["hf_config"]["name"] = falcon180b["hf_config"]["name"].format(kind)
474
+ configs.append(copy)
475
+
476
+ falcon3 = [
477
+ # https://huggingface.co/tiiuae/Falcon3-1B-Base/blob/main/config.json
478
+ dict(
479
+ name="Falcon3-1B{}",
480
+ hf_config=dict(org="tiiuae", name="Falcon3-1B{}"),
481
+ block_size=4096,
482
+ vocab_size=131072,
483
+ padded_vocab_size=131072,
484
+ n_layer=18,
485
+ n_head=8,
486
+ n_query_groups=4,
487
+ n_embd=2048,
488
+ rotary_percentage=1.0,
489
+ parallel_residual=False,
490
+ rope_base=1000042,
491
+ norm_eps=1e-6,
492
+ bias=False,
493
+ norm_class_name="RMSNorm",
494
+ mlp_class_name="LLaMAMLP",
495
+ intermediate_size=8192,
496
+ ),
497
+ # https://huggingface.co/tiiuae/Falcon3-3B-Base/blob/main/config.json
498
+ dict(
499
+ name="Falcon3-3B{}",
500
+ hf_config=dict(org="tiiuae", name="Falcon3-3B{}"),
501
+ block_size=32768,
502
+ vocab_size=131072,
503
+ padded_vocab_size=131072,
504
+ n_layer=22,
505
+ n_head=12,
506
+ n_query_groups=4,
507
+ n_embd=3072,
508
+ rotary_percentage=1.0,
509
+ parallel_residual=False,
510
+ rope_base=1000042,
511
+ norm_eps=1e-6,
512
+ bias=False,
513
+ norm_class_name="RMSNorm",
514
+ mlp_class_name="LLaMAMLP",
515
+ intermediate_size=9216,
516
+ ),
517
+ # https://huggingface.co/tiiuae/Falcon3-7B-Base/blob/main/config.json
518
+ dict(
519
+ name="Falcon3-7B{}",
520
+ hf_config=dict(org="tiiuae", name="Falcon3-7B{}"),
521
+ block_size=32768,
522
+ vocab_size=131072,
523
+ padded_vocab_size=131072,
524
+ n_layer=28,
525
+ n_head=12,
526
+ n_query_groups=4,
527
+ n_embd=3072,
528
+ rotary_percentage=1.0,
529
+ parallel_residual=False,
530
+ rope_base=1000042,
531
+ norm_eps=1e-6,
532
+ bias=False,
533
+ norm_class_name="RMSNorm",
534
+ mlp_class_name="LLaMAMLP",
535
+ intermediate_size=23040,
536
+ ),
537
+ # https://huggingface.co/tiiuae/Falcon3-10B-Base/blob/main/config.json
538
+ dict(
539
+ name="Falcon3-10B{}",
540
+ hf_config=dict(org="tiiuae", name="Falcon3-10B{}"),
541
+ block_size=32768,
542
+ vocab_size=131072,
543
+ padded_vocab_size=131072,
544
+ n_layer=40,
545
+ n_head=12,
546
+ n_query_groups=4,
547
+ n_embd=3072,
548
+ rotary_percentage=1.0,
549
+ parallel_residual=False,
550
+ rope_base=1000042,
551
+ norm_eps=1e-6,
552
+ bias=False,
553
+ norm_class_name="RMSNorm",
554
+ mlp_class_name="LLaMAMLP",
555
+ intermediate_size=23040,
556
+ ),
557
+ ]
558
+ for c in falcon3:
559
+ for kind in ("-Base", "-Instruct"):
560
+ copy = deepcopy(c)
561
+ copy["name"] = c["name"].format(kind)
562
+ copy["hf_config"]["name"] = c["hf_config"]["name"].format(kind)
563
+ configs.append(copy)
564
+
565
+
566
+ #############################
567
+ # OpenLM Research Open LLaMA
568
+ #############################
569
+ open_LLaMA = [
570
+ # https://huggingface.co/openlm-research/open_llama_3b/blob/main/config.json
571
+ dict(
572
+ name="open_llama_3b",
573
+ hf_config=dict(org="openlm-research", name="open_llama_3b"),
574
+ block_size=2048,
575
+ vocab_size=32000,
576
+ padding_multiple=64,
577
+ n_layer=26,
578
+ n_embd=3200,
579
+ rotary_percentage=1.0,
580
+ parallel_residual=False,
581
+ bias=False,
582
+ norm_class_name="RMSNorm",
583
+ norm_eps=1e-6,
584
+ mlp_class_name="LLaMAMLP",
585
+ intermediate_size=8640,
586
+ ),
587
+ # https://huggingface.co/openlm-research/open_llama_7b/blob/main/config.json
588
+ dict(
589
+ name="open_llama_7b",
590
+ hf_config=dict(org="openlm-research", name="open_llama_7b"),
591
+ block_size=2048,
592
+ vocab_size=32000,
593
+ padding_multiple=64,
594
+ n_layer=32,
595
+ rotary_percentage=1.0,
596
+ parallel_residual=False,
597
+ bias=False,
598
+ norm_class_name="RMSNorm",
599
+ norm_eps=1e-6,
600
+ mlp_class_name="LLaMAMLP",
601
+ intermediate_size=11008,
602
+ ),
603
+ # https://huggingface.co/openlm-research/open_llama_13b/blob/main/config.json
604
+ dict(
605
+ name="open_llama_13b",
606
+ hf_config=dict(org="openlm-research", name="open_llama_13b"),
607
+ block_size=2048,
608
+ vocab_size=32000,
609
+ padding_multiple=64,
610
+ n_layer=40,
611
+ n_head=40,
612
+ n_embd=5120,
613
+ rotary_percentage=1.0,
614
+ parallel_residual=False,
615
+ bias=False,
616
+ norm_class_name="RMSNorm",
617
+ norm_eps=1e-6,
618
+ mlp_class_name="LLaMAMLP",
619
+ intermediate_size=13824,
620
+ ),
621
+ ]
622
+ configs.extend(open_LLaMA)
623
+
624
+ ###############
625
+ # Meta LLaMA 2
626
+ ###############
627
+ llama_2 = [
628
+ # https://huggingface.co/meta-llama/Llama-2-7b-hf/blob/main/config.json
629
+ dict(
630
+ name="Llama-2-7b{}-hf",
631
+ hf_config=dict(org="meta-llama", name="Llama-2-7b{}-hf"),
632
+ vocab_size=32000,
633
+ padding_multiple=64,
634
+ n_layer=32,
635
+ rotary_percentage=1.0,
636
+ parallel_residual=False,
637
+ bias=False,
638
+ norm_class_name="RMSNorm",
639
+ mlp_class_name="LLaMAMLP",
640
+ intermediate_size=11008,
641
+ ),
642
+ # https://huggingface.co/meta-llama/Llama-2-13b-hf/blob/main/config.json
643
+ dict(
644
+ name="Llama-2-13b{}-hf",
645
+ hf_config=dict(org="meta-llama", name="Llama-2-13b{}-hf"),
646
+ vocab_size=32000,
647
+ padding_multiple=64,
648
+ n_layer=40,
649
+ n_head=40,
650
+ n_embd=5120,
651
+ rotary_percentage=1.0,
652
+ parallel_residual=False,
653
+ bias=False,
654
+ norm_class_name="RMSNorm",
655
+ mlp_class_name="LLaMAMLP",
656
+ intermediate_size=13824,
657
+ ),
658
+ # https://huggingface.co/meta-llama/Llama-2-70b-hf/blob/main/config.json
659
+ dict(
660
+ name="Llama-2-70b{}-hf",
661
+ hf_config=dict(org="meta-llama", name="Llama-2-70b{}-hf"),
662
+ vocab_size=32000,
663
+ padding_multiple=64,
664
+ n_layer=80,
665
+ n_head=64,
666
+ n_embd=8192,
667
+ n_query_groups=8,
668
+ rotary_percentage=1.0,
669
+ parallel_residual=False,
670
+ bias=False,
671
+ norm_class_name="RMSNorm",
672
+ mlp_class_name="LLaMAMLP",
673
+ intermediate_size=28672,
674
+ ),
675
+ ]
676
+ for c in llama_2:
677
+ for kind in ("", "-chat"):
678
+ copy = deepcopy(c)
679
+ copy["name"] = c["name"].format(kind)
680
+ copy["hf_config"]["name"] = c["hf_config"]["name"].format(kind)
681
+ configs.append(copy)
682
+
683
+
684
+ ###############
685
+ # Meta LLaMA 3
686
+ ###############
687
+ llama_3 = [
688
+ # https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/config.json
689
+ dict(
690
+ name="Llama-3-8B{}",
691
+ hf_config=dict(org="meta-llama", name="Meta-Llama-3-8B{}"),
692
+ block_size=8192,
693
+ vocab_size=128000,
694
+ padded_vocab_size=128256,
695
+ n_layer=32,
696
+ n_head=32,
697
+ n_query_groups=8,
698
+ rotary_percentage=1.0,
699
+ parallel_residual=False,
700
+ bias=False,
701
+ norm_class_name="RMSNorm",
702
+ mlp_class_name="LLaMAMLP",
703
+ intermediate_size=14336,
704
+ rope_base=500000,
705
+ ),
706
+ # https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/config.json
707
+ dict(
708
+ name="Llama-3.1-8B{}",
709
+ hf_config=dict(org="meta-llama", name="Meta-Llama-3.1-8B{}"),
710
+ block_size=131072,
711
+ vocab_size=128000,
712
+ padded_vocab_size=128256,
713
+ n_layer=32,
714
+ n_head=32,
715
+ n_query_groups=8,
716
+ rotary_percentage=1.0,
717
+ parallel_residual=False,
718
+ bias=False,
719
+ norm_class_name="RMSNorm",
720
+ mlp_class_name="LLaMAMLP",
721
+ intermediate_size=14336,
722
+ rope_base=500000,
723
+ rope_adjustments=dict(factor=8.0, low_freq_factor=1.0, high_freq_factor=4.0, original_max_seq_len=8192),
724
+ ),
725
+ # https://huggingface.co/meta-llama/Meta-Llama-3-70B/blob/main/config.json
726
+ dict(
727
+ name="Llama-3-70B{}",
728
+ hf_config=dict(org="meta-llama", name="Meta-Llama-3-70B{}"),
729
+ block_size=8192,
730
+ vocab_size=128000,
731
+ padded_vocab_size=128256,
732
+ n_layer=80,
733
+ n_head=64,
734
+ n_embd=8192,
735
+ n_query_groups=8,
736
+ rotary_percentage=1.0,
737
+ parallel_residual=False,
738
+ bias=False,
739
+ norm_class_name="RMSNorm",
740
+ mlp_class_name="LLaMAMLP",
741
+ intermediate_size=28672,
742
+ rope_base=500000,
743
+ ),
744
+ # https://huggingface.co/meta-llama/Meta-Llama-3.1-70B/blob/main/config.json
745
+ dict(
746
+ name="Llama-3.1-70B{}",
747
+ hf_config=dict(org="meta-llama", name="Meta-Llama-3.1-70B{}"),
748
+ block_size=131072,
749
+ vocab_size=128000,
750
+ padded_vocab_size=128256,
751
+ n_layer=80,
752
+ n_head=64,
753
+ n_embd=8192,
754
+ n_query_groups=8,
755
+ rotary_percentage=1.0,
756
+ parallel_residual=False,
757
+ bias=False,
758
+ norm_class_name="RMSNorm",
759
+ mlp_class_name="LLaMAMLP",
760
+ intermediate_size=28672,
761
+ rope_base=500000,
762
+ rope_adjustments=dict(factor=8.0, low_freq_factor=1.0, high_freq_factor=4.0, original_max_seq_len=8192),
763
+ ),
764
+ # https://huggingface.co/meta-llama/Meta-Llama-3.1-405B/blob/main/config.json
765
+ dict(
766
+ name="Llama-3.1-405B{}",
767
+ hf_config=dict(org="meta-llama", name="Meta-Llama-3.1-405B{}"),
768
+ block_size=131072,
769
+ vocab_size=128000,
770
+ padded_vocab_size=128256,
771
+ n_layer=126,
772
+ n_head=128,
773
+ n_embd=16384,
774
+ n_query_groups=8,
775
+ rotary_percentage=1.0,
776
+ parallel_residual=False,
777
+ bias=False,
778
+ norm_class_name="RMSNorm",
779
+ mlp_class_name="LLaMAMLP",
780
+ intermediate_size=53248,
781
+ rope_base=500000,
782
+ rope_adjustments=dict(factor=8.0, low_freq_factor=1.0, high_freq_factor=4.0, original_max_seq_len=8192),
783
+ ),
784
+ # https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/config.json
785
+ dict(
786
+ name="Llama-3.2-1B{}",
787
+ hf_config=dict(org="meta-llama", name="Llama-3.2-1B{}"),
788
+ block_size=131072,
789
+ vocab_size=128000,
790
+ padded_vocab_size=128256,
791
+ n_layer=16,
792
+ n_embd=2048,
793
+ n_head=32,
794
+ n_query_groups=8,
795
+ rotary_percentage=1.0,
796
+ parallel_residual=False,
797
+ bias=False,
798
+ norm_class_name="RMSNorm",
799
+ mlp_class_name="LLaMAMLP",
800
+ intermediate_size=8192,
801
+ rope_base=500000,
802
+ rope_adjustments=dict(factor=32.0, low_freq_factor=1.0, high_freq_factor=4.0, original_max_seq_len=8192),
803
+ ),
804
+ # https://huggingface.co/meta-llama/Llama-3.2-3B/blob/main/config.json
805
+ dict(
806
+ name="Llama-3.2-3B{}",
807
+ hf_config=dict(org="meta-llama", name="Llama-3.2-3B{}"),
808
+ block_size=131072,
809
+ vocab_size=128000,
810
+ padded_vocab_size=128256,
811
+ n_layer=28,
812
+ n_embd=3072,
813
+ n_head=24,
814
+ n_query_groups=8,
815
+ rotary_percentage=1.0,
816
+ parallel_residual=False,
817
+ bias=False,
818
+ norm_class_name="RMSNorm",
819
+ mlp_class_name="LLaMAMLP",
820
+ intermediate_size=8192,
821
+ rope_base=500000,
822
+ rope_adjustments=dict(factor=32.0, low_freq_factor=1.0, high_freq_factor=4.0, original_max_seq_len=8192),
823
+ ),
824
+ # https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct/blob/main/config.json
825
+ dict(
826
+ name="Llama-3.3-70B-Instruct",
827
+ hf_config=dict(org="meta-llama", name="Llama-3.3-70B-Instruct"),
828
+ block_size=131072,
829
+ vocab_size=128000,
830
+ padded_vocab_size=128256,
831
+ n_layer=80,
832
+ n_head=64,
833
+ n_embd=8192,
834
+ n_query_groups=8,
835
+ rotary_percentage=1.0,
836
+ parallel_residual=False,
837
+ bias=False,
838
+ norm_class_name="RMSNorm",
839
+ mlp_class_name="LLaMAMLP",
840
+ intermediate_size=28672,
841
+ rope_base=500000,
842
+ rope_adjustments=dict(factor=8.0, low_freq_factor=1.0, high_freq_factor=4.0, original_max_seq_len=8192),
843
+ ),
844
+ ]
845
+ for c in llama_3:
846
+ if c["name"] == "Llama-3.3-70B-Instruct":
847
+ configs.append(c)
848
+ continue
849
+ for kind in ("", "-Instruct"):
850
+ copy = deepcopy(c)
851
+ copy["name"] = c["name"].format(kind)
852
+ copy["hf_config"]["name"] = c["hf_config"]["name"].format(kind)
853
+ configs.append(copy)
854
+
855
+ #########################
856
+ # NVIDIA Llama Nemotron
857
+ #########################
858
+ configs.append(
859
+ dict(
860
+ name="Llama-3.1-Nemotron-70B-Instruct-HF",
861
+ hf_config=dict(org="nvidia", name="Llama-3.1-Nemotron-70B-Instruct-HF"),
862
+ block_size=131072,
863
+ vocab_size=128000,
864
+ padded_vocab_size=128256,
865
+ n_layer=80,
866
+ n_head=64,
867
+ n_embd=8192,
868
+ n_query_groups=8,
869
+ rotary_percentage=1.0,
870
+ parallel_residual=False,
871
+ bias=False,
872
+ norm_class_name="RMSNorm",
873
+ mlp_class_name="LLaMAMLP",
874
+ intermediate_size=28672,
875
+ rope_base=500000,
876
+ rope_adjustments=dict(factor=8.0, low_freq_factor=1.0, high_freq_factor=4.0, original_max_seq_len=8192),
877
+ ),
878
+ )
879
+
880
+ #################
881
+ # Allen AI OLMo
882
+ #################
883
+ olmo = [
884
+ # https://huggingface.co/allenai/OLMo-1B-hf/blob/main/config.json
885
+ dict(
886
+ name="OLMo-1B-hf",
887
+ hf_config=dict(org="allenai", name="OLMo-1B-hf"),
888
+ vocab_size=50280,
889
+ padded_vocab_size=50304,
890
+ block_size=2048,
891
+ n_embd=2048,
892
+ n_layer=16,
893
+ n_head=16,
894
+ rotary_percentage=1.0,
895
+ parallel_residual=False,
896
+ bias=False,
897
+ norm_class_name="LayerNorm",
898
+ mlp_class_name="LLaMAMLP",
899
+ intermediate_size=8192,
900
+ ),
901
+ # https://huggingface.co/allenai/OLMo-7B-hf/blob/main/config.json
902
+ dict(
903
+ name="OLMo-7B-hf",
904
+ hf_config=dict(org="allenai", name="OLMo-7B-hf"),
905
+ vocab_size=50280,
906
+ padded_vocab_size=50304,
907
+ block_size=2048,
908
+ n_layer=32,
909
+ n_head=32,
910
+ rotary_percentage=1.0,
911
+ parallel_residual=False,
912
+ bias=False,
913
+ norm_class_name="LayerNorm",
914
+ mlp_class_name="LLaMAMLP",
915
+ intermediate_size=11008,
916
+ ),
917
+ # https://huggingface.co/allenai/OLMo-7B-Instruct-hf/blob/main/config.json
918
+ dict(
919
+ name="OLMo-7B-Instruct-hf",
920
+ hf_config=dict(org="allenai", name="OLMo-7B-Instruct-hf"),
921
+ vocab_size=50280,
922
+ padded_vocab_size=50304,
923
+ block_size=2048,
924
+ n_layer=32,
925
+ n_head=32,
926
+ rotary_percentage=1.0,
927
+ parallel_residual=False,
928
+ bias=False,
929
+ norm_class_name="LayerNorm",
930
+ mlp_class_name="LLaMAMLP",
931
+ intermediate_size=11008,
932
+ ),
933
+ ]
934
+
935
+ configs.extend(olmo)
936
+
937
+ olmo2 = [
938
+ # https://huggingface.co/allenai/OLMo-2-1124-7B/blob/main/config.json
939
+ dict(
940
+ name="OLMo-2-1124-7B{}",
941
+ hf_config=dict(org="allenai", name="OLMo-2-1124-7B{}"),
942
+ vocab_size=100278,
943
+ padded_vocab_size=100352,
944
+ block_size=4096,
945
+ n_embd=4096,
946
+ n_layer=32,
947
+ n_head=32,
948
+ n_query_groups=32,
949
+ rotary_percentage=1.0,
950
+ parallel_residual=False,
951
+ bias=False,
952
+ norm_class_name="RMSNorm",
953
+ mlp_class_name="LLaMAMLP",
954
+ norm_eps=1e-06,
955
+ intermediate_size=11008,
956
+ rope_base=500000,
957
+ norm_qk=True,
958
+ post_mlp_norm=True,
959
+ norm_1=False,
960
+ norm_2=False,
961
+ norm_qk_type="olmo2",
962
+ post_attention_norm=True,
963
+ ),
964
+ # https://huggingface.co/allenai/OLMo-2-1124-13B/blob/main/config.json
965
+ dict(
966
+ name="OLMo-2-1124-13B{}",
967
+ hf_config=dict(org="allenai", name="OLMo-2-1124-13B{}"),
968
+ vocab_size=100278,
969
+ padded_vocab_size=100352,
970
+ block_size=4096,
971
+ n_embd=5120,
972
+ n_layer=40,
973
+ n_head=40,
974
+ n_query_groups=40,
975
+ rotary_percentage=1.0,
976
+ parallel_residual=False,
977
+ bias=False,
978
+ norm_class_name="RMSNorm",
979
+ mlp_class_name="LLaMAMLP",
980
+ norm_eps=1e-06,
981
+ intermediate_size=13824,
982
+ rope_base=500000,
983
+ norm_qk=True,
984
+ post_mlp_norm=True,
985
+ norm_1=False,
986
+ norm_2=False,
987
+ norm_qk_type="olmo2",
988
+ post_attention_norm=True,
989
+ ),
990
+ ]
991
+
992
+ for c in olmo2:
993
+ for kind in ("", "-SFT", "-DPO", "-Instruct"):
994
+ copy = deepcopy(c)
995
+ copy["name"] = c["name"].format(kind)
996
+ copy["hf_config"]["name"] = c["hf_config"]["name"].format(kind)
997
+ configs.append(copy)
998
+
999
+ ###############
1000
+ # Google Gemma
1001
+ ###############
1002
+ gemma = [
1003
+ # https://huggingface.co/google/gemma-2b/blob/main/config.json
1004
+ dict(
1005
+ name="Gemma-2b",
1006
+ hf_config=dict(org="google", name="gemma-2b"),
1007
+ scale_embeddings=True,
1008
+ vocab_size=256000,
1009
+ padding_multiple=64,
1010
+ n_embd=2048,
1011
+ n_layer=18,
1012
+ n_head=8,
1013
+ n_query_groups=1,
1014
+ rotary_percentage=1.0,
1015
+ parallel_residual=False,
1016
+ bias=False,
1017
+ norm_class_name="RMSNorm",
1018
+ mlp_class_name="GemmaMLP",
1019
+ gelu_approximate="tanh",
1020
+ intermediate_size=16384,
1021
+ ),
1022
+ # https://huggingface.co/google/gemma-7b/blob/main/config.json
1023
+ dict(
1024
+ name="Gemma-7b",
1025
+ hf_config=dict(org="google", name="gemma-7b"),
1026
+ scale_embeddings=True,
1027
+ vocab_size=256000,
1028
+ padding_multiple=64,
1029
+ n_embd=3072,
1030
+ n_layer=28,
1031
+ n_head=16,
1032
+ head_size=256,
1033
+ rotary_percentage=1.0,
1034
+ parallel_residual=False,
1035
+ bias=False,
1036
+ norm_class_name="RMSNorm",
1037
+ mlp_class_name="GemmaMLP",
1038
+ gelu_approximate="tanh",
1039
+ intermediate_size=24576,
1040
+ ),
1041
+ # https://huggingface.co/google/gemma-2-2b/blob/main/config.json
1042
+ dict(
1043
+ name="Gemma-2-2b",
1044
+ hf_config=dict(org="google", name="gemma-2-2b"),
1045
+ scale_embeddings=True,
1046
+ attention_scores_scalar=256,
1047
+ vocab_size=256000,
1048
+ block_size=8192,
1049
+ sliding_window_size=4096,
1050
+ # only layer with idx 0, 2, 4, ... have sliding window attention
1051
+ sliding_window_indices=[1 if i % 2 == 0 else 0 for i in range(26)],
1052
+ intermediate_size=9216,
1053
+ n_embd=2304,
1054
+ n_layer=26,
1055
+ n_head=8,
1056
+ n_query_groups=4,
1057
+ head_size=256,
1058
+ rotary_percentage=1.0,
1059
+ parallel_residual=False,
1060
+ bias=False,
1061
+ norm_class_name="RMSNorm",
1062
+ mlp_class_name="GemmaMLP",
1063
+ gelu_approximate="tanh",
1064
+ post_attention_norm=True,
1065
+ post_mlp_norm=True,
1066
+ attention_logit_softcapping=50.0,
1067
+ final_logit_softcapping=30.0,
1068
+ ),
1069
+ # https://huggingface.co/google/gemma-2-9b/blob/main/config.json
1070
+ dict(
1071
+ name="Gemma-2-9b",
1072
+ hf_config=dict(org="google", name="gemma-2-9b"),
1073
+ scale_embeddings=True,
1074
+ attention_scores_scalar=256,
1075
+ vocab_size=256000,
1076
+ block_size=8192,
1077
+ sliding_window_size=4096,
1078
+ # only layer with idx 0, 2, 4, ... have sliding window attention
1079
+ sliding_window_indices=[1 if i % 2 == 0 else 0 for i in range(42)],
1080
+ intermediate_size=14336,
1081
+ n_embd=3584,
1082
+ n_layer=42,
1083
+ n_head=16,
1084
+ n_query_groups=8,
1085
+ head_size=256,
1086
+ rotary_percentage=1.0,
1087
+ parallel_residual=False,
1088
+ bias=False,
1089
+ norm_class_name="RMSNorm",
1090
+ mlp_class_name="GemmaMLP",
1091
+ gelu_approximate="tanh",
1092
+ post_attention_norm=True,
1093
+ post_mlp_norm=True,
1094
+ attention_logit_softcapping=50.0,
1095
+ final_logit_softcapping=30.0,
1096
+ ),
1097
+ # https://huggingface.co/google/gemma-2-27b/blob/main/config.json
1098
+ dict(
1099
+ name="Gemma-2-27b",
1100
+ hf_config=dict(org="google", name="gemma-2-27b"),
1101
+ scale_embeddings=True,
1102
+ # In Gemma 2 27B attention scores are scaled not by `sqrt(head_size)` (11.31),
1103
+ # but by `sqrt(n_emb // n_head)` = sqrt(4608 // 32) = 12
1104
+ attention_scores_scalar=144,
1105
+ vocab_size=256000,
1106
+ block_size=8192,
1107
+ sliding_window_size=4096,
1108
+ # only layer with idx 0, 2, 4, ... have sliding window attention
1109
+ sliding_window_indices=[1 if i % 2 == 0 else 0 for i in range(46)],
1110
+ intermediate_size=36864,
1111
+ n_embd=4608,
1112
+ n_layer=46,
1113
+ n_head=32,
1114
+ n_query_groups=16,
1115
+ head_size=128,
1116
+ rotary_percentage=1.0,
1117
+ parallel_residual=False,
1118
+ bias=False,
1119
+ norm_class_name="RMSNorm",
1120
+ mlp_class_name="GemmaMLP",
1121
+ gelu_approximate="tanh",
1122
+ post_attention_norm=True,
1123
+ post_mlp_norm=True,
1124
+ attention_logit_softcapping=50.0,
1125
+ final_logit_softcapping=30.0,
1126
+ ),
1127
+ ]
1128
+ configs.extend(gemma)
1129
+ for c in gemma:
1130
+ copy = deepcopy(c)
1131
+ copy["name"] = f"{c['name']}-it"
1132
+ copy["hf_config"]["name"] = f"{c['hf_config']['name']}-it"
1133
+ configs.append(copy)
1134
+
1135
+ ##################
1136
+ # Google Gemma 3
1137
+ ##################
1138
+ gemma3 = [
1139
+ # https://huggingface.co/google/gemma-3-1b-it/blob/main/config.json
1140
+ dict(
1141
+ name="Gemma-3-1b-it",
1142
+ hf_config=dict(org="google", name="gemma-3-1b-it"),
1143
+ scale_embeddings=True,
1144
+ attention_scores_scalar=256,
1145
+ vocab_size=262144,
1146
+ block_size=131072,
1147
+ sliding_window_size=512,
1148
+ # 5 local layers for every global layer
1149
+ sliding_window_indices=[0 if (i + 1) % 6 == 0 else 1 for i in range(26)],
1150
+ intermediate_size=6912,
1151
+ n_embd=1152,
1152
+ n_layer=26,
1153
+ n_head=4,
1154
+ n_query_groups=1,
1155
+ head_size=256,
1156
+ rotary_percentage=1.0,
1157
+ rope_adjustments=None,
1158
+ parallel_residual=False,
1159
+ bias=False,
1160
+ norm_class_name="RMSNorm",
1161
+ mlp_class_name="GemmaMLP",
1162
+ gelu_approximate="tanh",
1163
+ post_attention_norm=True,
1164
+ post_mlp_norm=True,
1165
+ norm_qk=True,
1166
+ rope_base=1000000,
1167
+ rope_local_base_freq=10000,
1168
+ # 5 local layers for every global layer
1169
+ rope_indices=[0 if (i + 1) % 6 == 0 else 1 for i in range(26)],
1170
+ ),
1171
+ # https://huggingface.co/google/gemma-3-4b-it/blob/main/config.json
1172
+ dict(
1173
+ name="Gemma-3-4b-it",
1174
+ hf_config=dict(org="google", name="gemma-3-4b-it"),
1175
+ scale_embeddings=True,
1176
+ attention_scores_scalar=256,
1177
+ vocab_size=262144,
1178
+ block_size=131072,
1179
+ sliding_window_size=1024,
1180
+ # 5 local layers for every global layer
1181
+ sliding_window_indices=[0 if (i + 1) % 6 == 0 else 1 for i in range(34)],
1182
+ intermediate_size=10240,
1183
+ n_embd=2560,
1184
+ n_layer=34,
1185
+ n_head=8,
1186
+ n_query_groups=4,
1187
+ head_size=256,
1188
+ rotary_percentage=1.0,
1189
+ rope_adjustments=dict(factor=8.0),
1190
+ parallel_residual=False,
1191
+ bias=False,
1192
+ norm_class_name="RMSNorm",
1193
+ mlp_class_name="GemmaMLP",
1194
+ gelu_approximate="tanh",
1195
+ post_attention_norm=True,
1196
+ post_mlp_norm=True,
1197
+ norm_qk=True,
1198
+ rope_base=1000000,
1199
+ rope_local_base_freq=10000,
1200
+ # 5 local layers for every global layer
1201
+ rope_indices=[0 if (i + 1) % 6 == 0 else 1 for i in range(34)],
1202
+ ),
1203
+ # https://huggingface.co/google/gemma-3-12b-it/blob/main/config.json
1204
+ dict(
1205
+ name="Gemma-3-12b-it",
1206
+ hf_config=dict(org="google", name="gemma-3-12b-it"),
1207
+ scale_embeddings=True,
1208
+ attention_scores_scalar=256,
1209
+ vocab_size=262144,
1210
+ block_size=131072,
1211
+ sliding_window_size=1024,
1212
+ # 5 local layers for every global layer
1213
+ sliding_window_indices=[0 if (i + 1) % 6 == 0 else 1 for i in range(48)],
1214
+ intermediate_size=15360,
1215
+ n_embd=3840,
1216
+ n_layer=48,
1217
+ n_head=16,
1218
+ n_query_groups=8,
1219
+ head_size=256,
1220
+ rotary_percentage=1.0,
1221
+ rope_adjustments=dict(factor=8.0),
1222
+ parallel_residual=False,
1223
+ bias=False,
1224
+ norm_class_name="RMSNorm",
1225
+ mlp_class_name="GemmaMLP",
1226
+ gelu_approximate="tanh",
1227
+ post_attention_norm=True,
1228
+ post_mlp_norm=True,
1229
+ norm_qk=True,
1230
+ rope_base=1000000,
1231
+ rope_local_base_freq=10000,
1232
+ # 5 local layers for every global layer
1233
+ rope_indices=[0 if (i + 1) % 6 == 0 else 1 for i in range(48)],
1234
+ ),
1235
+ # https://huggingface.co/google/gemma-3-27b-it/blob/main/config.json
1236
+ dict(
1237
+ name="Gemma-3-27b-it",
1238
+ hf_config=dict(org="google", name="gemma-3-27b-it"),
1239
+ scale_embeddings=True,
1240
+ attention_scores_scalar=168,
1241
+ vocab_size=262144,
1242
+ block_size=131072,
1243
+ sliding_window_size=1024,
1244
+ # 5 local layers for every global layer
1245
+ sliding_window_indices=[0 if (i + 1) % 6 == 0 else 1 for i in range(62)],
1246
+ intermediate_size=21504,
1247
+ n_embd=5376,
1248
+ n_layer=62,
1249
+ n_head=32,
1250
+ n_query_groups=16,
1251
+ head_size=128,
1252
+ rotary_percentage=1.0,
1253
+ rope_adjustments=dict(factor=8.0),
1254
+ parallel_residual=False,
1255
+ bias=False,
1256
+ norm_class_name="RMSNorm",
1257
+ mlp_class_name="GemmaMLP",
1258
+ gelu_approximate="tanh",
1259
+ post_attention_norm=True,
1260
+ post_mlp_norm=True,
1261
+ norm_qk=True,
1262
+ rope_base=1000000,
1263
+ rope_local_base_freq=10000,
1264
+ # 5 local layers for every global layer
1265
+ rope_indices=[0 if (i + 1) % 6 == 0 else 1 for i in range(62)],
1266
+ ),
1267
+ ]
1268
+ configs.extend(gemma3)
1269
+
1270
+ ##################
1271
+ # Google CodeGemma
1272
+ ##################
1273
+ codegemma = [
1274
+ # https://huggingface.co/google/codegemma-7b-it/blob/main/config.json
1275
+ dict(
1276
+ name="CodeGemma-7b-it",
1277
+ hf_config=dict(org="google", name="codegemma-7b-it"),
1278
+ scale_embeddings=True,
1279
+ vocab_size=256000,
1280
+ padding_multiple=64,
1281
+ n_embd=3072,
1282
+ n_layer=28,
1283
+ n_head=16,
1284
+ head_size=256,
1285
+ rotary_percentage=1.0,
1286
+ parallel_residual=False,
1287
+ bias=False,
1288
+ norm_class_name="RMSNorm",
1289
+ mlp_class_name="GemmaMLP",
1290
+ gelu_approximate="tanh",
1291
+ intermediate_size=24576,
1292
+ ),
1293
+ ]
1294
+ configs.extend(codegemma)
1295
+
1296
+
1297
+ ##########################
1298
+ # Stability AI FreeWilly2
1299
+ ##########################
1300
+ freewilly_2 = [
1301
+ # https://huggingface.co/stabilityai/FreeWilly2/blob/main/config.json
1302
+ dict(
1303
+ name="FreeWilly2",
1304
+ hf_config=dict(org="stabilityai", name="FreeWilly2"),
1305
+ vocab_size=32000,
1306
+ padding_multiple=64,
1307
+ n_layer=80,
1308
+ n_head=64,
1309
+ n_embd=8192,
1310
+ n_query_groups=8,
1311
+ rotary_percentage=1.0,
1312
+ parallel_residual=False,
1313
+ bias=False,
1314
+ norm_class_name="RMSNorm",
1315
+ mlp_class_name="LLaMAMLP",
1316
+ intermediate_size=28672,
1317
+ )
1318
+ ]
1319
+ configs.extend(freewilly_2)
1320
+
1321
+
1322
+ ##################
1323
+ # Meta Code Llama
1324
+ ##################
1325
+ code_llama = [
1326
+ # https://huggingface.co/codellama/CodeLlama-7b-hf/blob/main/config.json
1327
+ dict(
1328
+ name="CodeLlama-7b-hf",
1329
+ hf_config=dict(org="codellama", name="CodeLlama-7b-hf"),
1330
+ block_size=16384,
1331
+ vocab_size=32016,
1332
+ padding_multiple=16,
1333
+ n_layer=32,
1334
+ rotary_percentage=1.0,
1335
+ parallel_residual=False,
1336
+ bias=False,
1337
+ norm_class_name="RMSNorm",
1338
+ norm_eps=1e-05,
1339
+ mlp_class_name="LLaMAMLP",
1340
+ intermediate_size=11008,
1341
+ rope_base=1000000,
1342
+ ),
1343
+ # https://huggingface.co/codellama/CodeLlama-13b-hf/blob/main/config.json
1344
+ dict(
1345
+ name="CodeLlama-13b-hf",
1346
+ hf_config=dict(org="codellama", name="CodeLlama-13b-hf"),
1347
+ block_size=16384,
1348
+ vocab_size=32016,
1349
+ padding_multiple=16,
1350
+ n_layer=40,
1351
+ n_head=40,
1352
+ n_embd=5120,
1353
+ rotary_percentage=1.0,
1354
+ parallel_residual=False,
1355
+ bias=False,
1356
+ norm_class_name="RMSNorm",
1357
+ norm_eps=1e-05,
1358
+ mlp_class_name="LLaMAMLP",
1359
+ intermediate_size=13824,
1360
+ rope_base=1000000,
1361
+ ),
1362
+ # https://huggingface.co/codellama/CodeLlama-34b-hf/blob/main/config.json
1363
+ dict(
1364
+ name="CodeLlama-34b-hf",
1365
+ hf_config=dict(org="codellama", name="CodeLlama-34b-hf"),
1366
+ block_size=16384,
1367
+ vocab_size=32000,
1368
+ padded_vocab_size=32000,
1369
+ n_layer=48,
1370
+ n_head=64,
1371
+ n_embd=8192,
1372
+ n_query_groups=8,
1373
+ rotary_percentage=1.0,
1374
+ parallel_residual=False,
1375
+ bias=False,
1376
+ norm_class_name="RMSNorm",
1377
+ norm_eps=1e-05,
1378
+ mlp_class_name="LLaMAMLP",
1379
+ intermediate_size=22016,
1380
+ rope_base=1000000,
1381
+ ),
1382
+ # https://huggingface.co/codellama/CodeLlama-70b-hf/blob/main/config.json
1383
+ dict(
1384
+ name="CodeLlama-70b-hf",
1385
+ hf_config=dict(org="codellama", name="CodeLlama-70b-hf"),
1386
+ block_size=16384,
1387
+ vocab_size=32016,
1388
+ padding_multiple=16,
1389
+ n_layer=80,
1390
+ n_head=64,
1391
+ n_embd=8192,
1392
+ n_query_groups=8,
1393
+ rotary_percentage=1.0,
1394
+ parallel_residual=False,
1395
+ bias=False,
1396
+ norm_class_name="RMSNorm",
1397
+ norm_eps=1e-05,
1398
+ mlp_class_name="LLaMAMLP",
1399
+ intermediate_size=28672,
1400
+ rope_base=1000000,
1401
+ ),
1402
+ # https://huggingface.co/codellama/CodeLlama-7b-Python-hf/blob/main/config.json
1403
+ dict(
1404
+ name="CodeLlama-7b-Python-hf",
1405
+ hf_config=dict(org="codellama", name="CodeLlama-7b-Python-hf"),
1406
+ block_size=16384,
1407
+ vocab_size=32000,
1408
+ padded_vocab_size=32000,
1409
+ n_layer=32,
1410
+ rotary_percentage=1.0,
1411
+ parallel_residual=False,
1412
+ bias=False,
1413
+ norm_class_name="RMSNorm",
1414
+ norm_eps=1e-05,
1415
+ mlp_class_name="LLaMAMLP",
1416
+ intermediate_size=11008,
1417
+ rope_base=1000000,
1418
+ ),
1419
+ # https://huggingface.co/codellama/CodeLlama-13b-Python-hf/blob/main/config.json
1420
+ dict(
1421
+ name="CodeLlama-13b-Python-hf",
1422
+ hf_config=dict(org="codellama", name="CodeLlama-13b-Python-hf"),
1423
+ block_size=16384,
1424
+ vocab_size=32000,
1425
+ padded_vocab_size=32000,
1426
+ n_layer=40,
1427
+ n_head=40,
1428
+ n_embd=5120,
1429
+ rotary_percentage=1.0,
1430
+ parallel_residual=False,
1431
+ bias=False,
1432
+ norm_class_name="RMSNorm",
1433
+ norm_eps=1e-05,
1434
+ mlp_class_name="LLaMAMLP",
1435
+ intermediate_size=13824,
1436
+ rope_base=1000000,
1437
+ ),
1438
+ # https://huggingface.co/codellama/CodeLlama-34b-Python-hf/blob/main/config.json
1439
+ dict(
1440
+ name="CodeLlama-34b-Python-hf",
1441
+ hf_config=dict(org="codellama", name="CodeLlama-34b-Python-hf"),
1442
+ block_size=16384,
1443
+ vocab_size=32000,
1444
+ padded_vocab_size=32000,
1445
+ n_layer=48,
1446
+ n_head=64,
1447
+ n_embd=8192,
1448
+ n_query_groups=8,
1449
+ rotary_percentage=1.0,
1450
+ parallel_residual=False,
1451
+ bias=False,
1452
+ norm_class_name="RMSNorm",
1453
+ norm_eps=1e-05,
1454
+ mlp_class_name="LLaMAMLP",
1455
+ intermediate_size=22016,
1456
+ rope_base=1000000,
1457
+ ),
1458
+ # https://huggingface.co/codellama/CodeLlama-70b-Python-hf/blob/main/config.json
1459
+ dict(
1460
+ name="CodeLlama-70b-Python-hf",
1461
+ hf_config=dict(org="codellama", name="CodeLlama-70b-Python-hf"),
1462
+ block_size=16384,
1463
+ vocab_size=32016,
1464
+ padding_multiple=16,
1465
+ n_layer=80,
1466
+ n_head=64,
1467
+ n_embd=8192,
1468
+ n_query_groups=8,
1469
+ rotary_percentage=1.0,
1470
+ parallel_residual=False,
1471
+ bias=False,
1472
+ norm_class_name="RMSNorm",
1473
+ norm_eps=1e-05,
1474
+ mlp_class_name="LLaMAMLP",
1475
+ intermediate_size=28672,
1476
+ rope_base=1000000,
1477
+ ),
1478
+ # https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf/blob/main/config.json
1479
+ dict(
1480
+ name="CodeLlama-7b-Instruct-hf",
1481
+ hf_config=dict(org="codellama", name="CodeLlama-7b-Instruct-hf"),
1482
+ block_size=16384,
1483
+ vocab_size=32016,
1484
+ padding_multiple=16,
1485
+ n_layer=32,
1486
+ rotary_percentage=1.0,
1487
+ parallel_residual=False,
1488
+ bias=False,
1489
+ norm_class_name="RMSNorm",
1490
+ norm_eps=1e-05,
1491
+ mlp_class_name="LLaMAMLP",
1492
+ intermediate_size=11008,
1493
+ rope_base=1000000,
1494
+ ),
1495
+ # https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf/blob/main/config.json
1496
+ dict(
1497
+ name="CodeLlama-13b-Instruct-hf",
1498
+ hf_config=dict(org="codellama", name="CodeLlama-13b-Instruct-hf"),
1499
+ block_size=2048,
1500
+ vocab_size=32016,
1501
+ padding_multiple=16,
1502
+ n_layer=40,
1503
+ n_head=40,
1504
+ n_embd=5120,
1505
+ rotary_percentage=1.0,
1506
+ parallel_residual=False,
1507
+ bias=False,
1508
+ norm_class_name="RMSNorm",
1509
+ norm_eps=1e-05,
1510
+ mlp_class_name="LLaMAMLP",
1511
+ intermediate_size=13824,
1512
+ rope_base=1000000,
1513
+ ),
1514
+ # https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf/blob/main/config.json
1515
+ dict(
1516
+ name="CodeLlama-34b-Instruct-hf",
1517
+ hf_config=dict(org="codellama", name="CodeLlama-34b-Instruct-hf"),
1518
+ block_size=16384,
1519
+ vocab_size=32000,
1520
+ padded_vocab_size=32000,
1521
+ n_layer=48,
1522
+ n_head=64,
1523
+ n_embd=8192,
1524
+ n_query_groups=8,
1525
+ rotary_percentage=1.0,
1526
+ parallel_residual=False,
1527
+ bias=False,
1528
+ norm_class_name="RMSNorm",
1529
+ norm_eps=1e-05,
1530
+ mlp_class_name="LLaMAMLP",
1531
+ intermediate_size=22016,
1532
+ rope_base=1000000,
1533
+ ),
1534
+ # https://huggingface.co/codellama/CodeLlama-70b-Instruct-hf/blob/main/config.json
1535
+ dict(
1536
+ name="CodeLlama-70b-Instruct-hf",
1537
+ hf_config=dict(org="codellama", name="CodeLlama-70b-Instruct-hf"),
1538
+ block_size=16384,
1539
+ # 32016 is an added token, so not reported in vocab_size
1540
+ # https://huggingface.co/codellama/CodeLlama-70b-Instruct-hf/blob/main/tokenizer_config.json
1541
+ vocab_size=32015,
1542
+ padding_multiple=16,
1543
+ n_layer=80,
1544
+ n_head=64,
1545
+ n_embd=8192,
1546
+ n_query_groups=8,
1547
+ rotary_percentage=1.0,
1548
+ parallel_residual=False,
1549
+ bias=False,
1550
+ norm_class_name="RMSNorm",
1551
+ norm_eps=1e-05,
1552
+ mlp_class_name="LLaMAMLP",
1553
+ intermediate_size=28672,
1554
+ rope_base=1000000,
1555
+ ),
1556
+ ]
1557
+ configs.extend(code_llama)
1558
+
1559
+
1560
+ ########################
1561
+ # garage-bAInd Platypus
1562
+ ########################
1563
+ platypus = [
1564
+ # https://huggingface.co/garage-bAInd/Platypus-30B/blob/main/config.json
1565
+ dict(
1566
+ name="Platypus-30B",
1567
+ hf_config=dict(org="garage-bAInd", name="Platypus-30B"),
1568
+ block_size=2048,
1569
+ padded_vocab_size=32000,
1570
+ n_layer=60,
1571
+ n_head=52,
1572
+ n_embd=6656,
1573
+ rotary_percentage=1.0,
1574
+ parallel_residual=False,
1575
+ bias=False,
1576
+ norm_class_name="RMSNorm",
1577
+ norm_eps=1e-06,
1578
+ mlp_class_name="LLaMAMLP",
1579
+ intermediate_size=17920,
1580
+ ),
1581
+ # https://huggingface.co/garage-bAInd/Platypus2-7B/blob/main/config.json
1582
+ dict(
1583
+ name="Platypus2-7B",
1584
+ hf_config=dict(org="garage-bAInd", name="Platypus2-7B"),
1585
+ padded_vocab_size=32000,
1586
+ n_layer=32,
1587
+ rotary_percentage=1.0,
1588
+ parallel_residual=False,
1589
+ bias=False,
1590
+ norm_class_name="RMSNorm",
1591
+ norm_eps=1e-05,
1592
+ mlp_class_name="LLaMAMLP",
1593
+ intermediate_size=11008,
1594
+ ),
1595
+ # https://huggingface.co/garage-bAInd/Platypus2-13B/blob/main/config.json
1596
+ dict(
1597
+ name="Platypus2-13B",
1598
+ hf_config=dict(org="garage-bAInd", name="Platypus2-13B"),
1599
+ padded_vocab_size=32000,
1600
+ n_layer=40,
1601
+ n_head=40,
1602
+ n_embd=5120,
1603
+ rotary_percentage=1.0,
1604
+ parallel_residual=False,
1605
+ bias=False,
1606
+ norm_class_name="RMSNorm",
1607
+ norm_eps=1e-05,
1608
+ mlp_class_name="LLaMAMLP",
1609
+ intermediate_size=13824,
1610
+ ),
1611
+ # https://huggingface.co/garage-bAInd/Platypus2-70B/blob/main/config.json
1612
+ dict(
1613
+ name="Platypus2-70B",
1614
+ hf_config=dict(org="garage-bAInd", name="Platypus2-70B"),
1615
+ padded_vocab_size=32000,
1616
+ n_layer=80,
1617
+ n_head=64,
1618
+ n_embd=8192,
1619
+ rotary_percentage=1.0,
1620
+ parallel_residual=False,
1621
+ bias=False,
1622
+ norm_class_name="RMSNorm",
1623
+ mlp_class_name="LLaMAMLP",
1624
+ intermediate_size=28672,
1625
+ ),
1626
+ # https://huggingface.co/garage-bAInd/Camel-Platypus2-13B/blob/main/config.json
1627
+ dict(
1628
+ name="Camel-Platypus2-13B",
1629
+ hf_config=dict(org="garage-bAInd", name="Camel-Platypus2-13B"),
1630
+ padded_vocab_size=32000,
1631
+ n_layer=40,
1632
+ n_head=40,
1633
+ n_embd=5120,
1634
+ rotary_percentage=1.0,
1635
+ parallel_residual=False,
1636
+ bias=False,
1637
+ norm_class_name="RMSNorm",
1638
+ mlp_class_name="LLaMAMLP",
1639
+ intermediate_size=13824,
1640
+ ),
1641
+ # https://huggingface.co/garage-bAInd/Camel-Platypus2-70B/blob/main/config.json
1642
+ dict(
1643
+ name="Camel-Platypus2-70B",
1644
+ hf_config=dict(org="garage-bAInd", name="Camel-Platypus2-70B"),
1645
+ padded_vocab_size=32000,
1646
+ n_layer=80,
1647
+ n_head=64,
1648
+ n_embd=8192,
1649
+ n_query_groups=8,
1650
+ rotary_percentage=1.0,
1651
+ parallel_residual=False,
1652
+ bias=False,
1653
+ norm_class_name="RMSNorm",
1654
+ mlp_class_name="LLaMAMLP",
1655
+ intermediate_size=28672,
1656
+ ),
1657
+ # https://huggingface.co/garage-bAInd/Stable-Platypus2-13B/blob/main/config.json
1658
+ dict(
1659
+ name="Stable-Platypus2-13B",
1660
+ hf_config=dict(org="garage-bAInd", name="Stable-Platypus2-13B"),
1661
+ padded_vocab_size=32000,
1662
+ n_layer=40,
1663
+ n_head=40,
1664
+ n_embd=5120,
1665
+ rotary_percentage=1.0,
1666
+ parallel_residual=False,
1667
+ bias=False,
1668
+ norm_class_name="RMSNorm",
1669
+ mlp_class_name="LLaMAMLP",
1670
+ intermediate_size=13824,
1671
+ ),
1672
+ # https://huggingface.co/garage-bAInd/Platypus2-70B-instruct/blob/main/config.json
1673
+ dict(
1674
+ name="Platypus2-70B-instruct",
1675
+ hf_config=dict(org="garage-bAInd", name="Platypus2-70B-instruct"),
1676
+ padded_vocab_size=32000,
1677
+ n_layer=80,
1678
+ n_head=64,
1679
+ n_embd=8192,
1680
+ n_query_groups=8,
1681
+ rotary_percentage=1.0,
1682
+ parallel_residual=False,
1683
+ bias=False,
1684
+ norm_class_name="RMSNorm",
1685
+ mlp_class_name="LLaMAMLP",
1686
+ intermediate_size=28672,
1687
+ ),
1688
+ ]
1689
+ configs.extend(platypus)
1690
+
1691
+
1692
+ ##################################
1693
+ # togethercomputer LLaMA-2-7B-32K
1694
+ ##################################
1695
+ together_llama2_32k = [
1696
+ # https://huggingface.co/togethercomputer/LLaMA-2-7B-32K/blob/main/config.json
1697
+ dict(
1698
+ name="LLaMA-2-7B-32K",
1699
+ hf_config=dict(org="togethercomputer", name="LLaMA-2-7B-32K"),
1700
+ vocab_size=32000,
1701
+ padding_multiple=64,
1702
+ n_layer=32,
1703
+ rotary_percentage=1.0,
1704
+ parallel_residual=False,
1705
+ bias=False,
1706
+ norm_class_name="RMSNorm",
1707
+ mlp_class_name="LLaMAMLP",
1708
+ intermediate_size=11008,
1709
+ rope_condense_ratio=8,
1710
+ )
1711
+ ]
1712
+ configs.extend(together_llama2_32k)
1713
+
1714
+
1715
+ ################
1716
+ # Microsoft Phi
1717
+ ################
1718
+ phi = [
1719
+ # https://huggingface.co/microsoft/phi-1_5/blob/main/config.json
1720
+ dict(
1721
+ name="phi-1_5",
1722
+ hf_config=dict(org="microsoft", name="phi-1_5"),
1723
+ vocab_size=50257,
1724
+ padded_vocab_size=51200,
1725
+ block_size=2048,
1726
+ n_embd=2048,
1727
+ n_layer=24,
1728
+ rotary_percentage=0.5, # 32 / (n_embd / n_head) = 32 / 64
1729
+ shared_attention_norm=True,
1730
+ lm_head_bias=True,
1731
+ gelu_approximate="tanh",
1732
+ ),
1733
+ # https://huggingface.co/microsoft/phi-2/blob/main/config.json
1734
+ dict(
1735
+ name="phi-2",
1736
+ hf_config=dict(org="microsoft", name="phi-2"),
1737
+ vocab_size=50257,
1738
+ padded_vocab_size=51200,
1739
+ block_size=2048,
1740
+ n_embd=2560,
1741
+ n_layer=32,
1742
+ rotary_percentage=0.4, # 32 / (n_embd / n_head) = 32 / 80
1743
+ shared_attention_norm=True,
1744
+ lm_head_bias=True,
1745
+ gelu_approximate="tanh",
1746
+ ),
1747
+ # https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/config.json
1748
+ dict(
1749
+ name="Phi-3-mini-4k-instruct",
1750
+ hf_config=dict(org="microsoft", name="Phi-3-mini-4k-instruct"),
1751
+ vocab_size=32000,
1752
+ padded_vocab_size=32064,
1753
+ block_size=4096,
1754
+ n_embd=3072,
1755
+ n_layer=32,
1756
+ rotary_percentage=1.0,
1757
+ bias=False,
1758
+ norm_class_name="RMSNorm",
1759
+ intermediate_size=8192,
1760
+ mlp_class_name="LLaMAMLP",
1761
+ parallel_residual=False,
1762
+ sliding_window_size=2048,
1763
+ ),
1764
+ # https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/blob/main/config.json
1765
+ dict(
1766
+ name="Phi-3-mini-128k-instruct",
1767
+ hf_config=dict(org="microsoft", name="Phi-3-mini-128k-instruct"),
1768
+ vocab_size=32000,
1769
+ padded_vocab_size=32064,
1770
+ block_size=131072,
1771
+ n_embd=3072,
1772
+ n_layer=32,
1773
+ rotary_percentage=1.0,
1774
+ bias=False,
1775
+ norm_class_name="RMSNorm",
1776
+ intermediate_size=8192,
1777
+ mlp_class_name="LLaMAMLP",
1778
+ parallel_residual=False,
1779
+ sliding_window_size=262145,
1780
+ ),
1781
+ # https://huggingface.co/microsoft/Phi-3.5-mini-instruct/blob/main/config.json
1782
+ dict(
1783
+ name="Phi-3.5-mini-instruct",
1784
+ hf_config=dict(org="microsoft", name="Phi-3.5-mini-instruct"),
1785
+ vocab_size=32000,
1786
+ padded_vocab_size=32064,
1787
+ block_size=4096,
1788
+ n_embd=3072,
1789
+ n_layer=32,
1790
+ rotary_percentage=1.0,
1791
+ bias=False,
1792
+ norm_class_name="RMSNorm",
1793
+ intermediate_size=8192,
1794
+ mlp_class_name="LLaMAMLP",
1795
+ parallel_residual=False,
1796
+ ),
1797
+ # https://huggingface.co/microsoft/phi-4/blob/main/config.json
1798
+ dict(
1799
+ name="phi-4",
1800
+ hf_config=dict(org="microsoft", name="phi-4"),
1801
+ vocab_size=100352,
1802
+ padded_vocab_size=100352,
1803
+ block_size=16384,
1804
+ n_embd=5120,
1805
+ n_layer=40,
1806
+ n_head=40,
1807
+ n_query_groups=10,
1808
+ rotary_percentage=1.0,
1809
+ bias=False,
1810
+ norm_class_name="RMSNorm",
1811
+ intermediate_size=17920,
1812
+ rope_base=250000,
1813
+ mlp_class_name="LLaMAMLP",
1814
+ parallel_residual=False,
1815
+ ),
1816
+ # https://huggingface.co/microsoft/Phi-4-reasoning/blob/main/config.json
1817
+ dict(
1818
+ name="Phi-4-reasoning",
1819
+ hf_config=dict(org="microsoft", name="Phi-4-reasoning"),
1820
+ vocab_size=100352,
1821
+ padded_vocab_size=100352,
1822
+ block_size=32768,
1823
+ n_embd=5120,
1824
+ n_layer=40,
1825
+ n_head=40,
1826
+ n_query_groups=10,
1827
+ rotary_percentage=1.0,
1828
+ bias=False,
1829
+ norm_class_name="RMSNorm",
1830
+ intermediate_size=17920,
1831
+ rope_base=500000,
1832
+ mlp_class_name="LLaMAMLP",
1833
+ parallel_residual=False,
1834
+ ),
1835
+ # https://huggingface.co/microsoft/Phi-4-reasoning-plus/blob/main/config.json
1836
+ dict(
1837
+ name="Phi-4-reasoning-plus",
1838
+ hf_config=dict(org="microsoft", name="Phi-4-reasoning-plus"),
1839
+ vocab_size=100352,
1840
+ padded_vocab_size=100352,
1841
+ block_size=32768,
1842
+ n_embd=5120,
1843
+ n_layer=40,
1844
+ n_head=40,
1845
+ n_query_groups=10,
1846
+ rotary_percentage=1.0,
1847
+ bias=False,
1848
+ norm_class_name="RMSNorm",
1849
+ intermediate_size=17920,
1850
+ rope_base=500000,
1851
+ mlp_class_name="LLaMAMLP",
1852
+ parallel_residual=False,
1853
+ ),
1854
+ # https://huggingface.co/microsoft/Phi-4-mini-instruct/blob/main/config.json
1855
+ dict(
1856
+ name="Phi-4-mini-instruct",
1857
+ hf_config=dict(org="microsoft", name="Phi-4-mini-instruct"),
1858
+ vocab_size=200019,
1859
+ padded_vocab_size=200064,
1860
+ block_size=131072,
1861
+ n_embd=3072,
1862
+ n_layer=32,
1863
+ n_head=24,
1864
+ n_query_groups=8,
1865
+ rotary_percentage=0.75,
1866
+ bias=False,
1867
+ norm_class_name="RMSNorm",
1868
+ intermediate_size=8192,
1869
+ mlp_class_name="LLaMAMLP",
1870
+ parallel_residual=False,
1871
+ sliding_window_size=262145,
1872
+ ),
1873
+ # https://huggingface.co/microsoft/Phi-4-mini-reasoning/blob/main/config.json
1874
+ dict(
1875
+ name="Phi-4-mini-reasoning",
1876
+ hf_config=dict(org="microsoft", name="Phi-4-mini-reasoning"),
1877
+ vocab_size=200019,
1878
+ padded_vocab_size=200064,
1879
+ block_size=131072,
1880
+ n_embd=3072,
1881
+ n_layer=32,
1882
+ n_head=24,
1883
+ n_query_groups=8,
1884
+ rotary_percentage=0.75,
1885
+ bias=False,
1886
+ norm_class_name="RMSNorm",
1887
+ intermediate_size=8192,
1888
+ mlp_class_name="LLaMAMLP",
1889
+ parallel_residual=False,
1890
+ sliding_window_size=262145,
1891
+ ),
1892
+ ]
1893
+ configs.extend(phi)
1894
+
1895
+
1896
+ #############
1897
+ # Mistral AI
1898
+ #############
1899
+
1900
+ configs.append(
1901
+ # https://huggingface.co/mistralai/mathstral-7B-v0.1/blob/main/config.json
1902
+ dict(
1903
+ name="Mathstral-7B-v0.1",
1904
+ hf_config=dict(org="mistralai", name="mathstral-7B-v0.1"),
1905
+ padded_vocab_size=32768,
1906
+ block_size=32768,
1907
+ n_layer=32,
1908
+ n_query_groups=8,
1909
+ rotary_percentage=1.0,
1910
+ parallel_residual=False,
1911
+ bias=False,
1912
+ norm_class_name="RMSNorm",
1913
+ norm_eps=1e-05,
1914
+ mlp_class_name="LLaMAMLP",
1915
+ intermediate_size=14336,
1916
+ sliding_window_size=4096,
1917
+ )
1918
+ )
1919
+
1920
+ mistral = [
1921
+ # https://huggingface.co/mistralai/Mistral-7B-v0.1/blob/main/config.json
1922
+ dict(
1923
+ name="Mistral-7B-{}v0.1",
1924
+ hf_config=dict(org="mistralai", name="Mistral-7B-{}v0.1"),
1925
+ padded_vocab_size=32000,
1926
+ block_size=4096, # should be 32768 but sliding window attention is not implemented
1927
+ n_layer=32,
1928
+ n_query_groups=8,
1929
+ rotary_percentage=1.0,
1930
+ parallel_residual=False,
1931
+ bias=False,
1932
+ norm_class_name="RMSNorm",
1933
+ norm_eps=1e-05,
1934
+ mlp_class_name="LLaMAMLP",
1935
+ intermediate_size=14336,
1936
+ sliding_window_size=4096,
1937
+ ),
1938
+ # https://huggingface.co/mistralai/Mixtral-8x7B-v0.1/blob/main/config.json
1939
+ dict(
1940
+ name="Mixtral-8x7B-{}v0.1",
1941
+ hf_config=dict(org="mistralai", name="Mixtral-8x7B-{}v0.1"),
1942
+ padded_vocab_size=32000,
1943
+ block_size=32768,
1944
+ n_layer=32,
1945
+ n_query_groups=8,
1946
+ rotary_percentage=1.0,
1947
+ parallel_residual=False,
1948
+ bias=False,
1949
+ norm_class_name="RMSNorm",
1950
+ norm_eps=1e-05,
1951
+ mlp_class_name="LLaMAMoE",
1952
+ intermediate_size=14336,
1953
+ rope_base=1000000,
1954
+ n_expert=8,
1955
+ n_expert_per_token=2,
1956
+ ),
1957
+ # https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1/blob/main/config.json
1958
+ dict(
1959
+ name="Mixtral-8x22B-{}v0.1",
1960
+ hf_config=dict(org="mistralai", name="Mixtral-8x22B-{}v0.1"),
1961
+ padded_vocab_size=32768,
1962
+ block_size=65536,
1963
+ n_layer=56,
1964
+ n_query_groups=8,
1965
+ rotary_percentage=1.0,
1966
+ parallel_residual=False,
1967
+ bias=False,
1968
+ norm_class_name="RMSNorm",
1969
+ norm_eps=1e-05,
1970
+ mlp_class_name="LLaMAMoE",
1971
+ intermediate_size=16384,
1972
+ n_head=48,
1973
+ n_embd=6144,
1974
+ rope_base=1000000,
1975
+ n_expert=8,
1976
+ n_expert_per_token=2,
1977
+ ),
1978
+ ]
1979
+ for c in mistral:
1980
+ for kind in ("", "Instruct-"):
1981
+ copy = deepcopy(c)
1982
+ copy["name"] = c["name"].format(kind)
1983
+ copy["hf_config"]["name"] = c["hf_config"]["name"].format(kind)
1984
+ configs.append(copy)
1985
+ configs.append(
1986
+ # https://huggingface.co/unsloth/mistral-7b-v0.2/blob/main/config.json
1987
+ dict(
1988
+ name="Mistral-7B-v0.2",
1989
+ hf_config=dict(org="unsloth", name="Mistral-7B-v0.2"),
1990
+ padded_vocab_size=32000,
1991
+ block_size=32768,
1992
+ n_layer=32,
1993
+ n_query_groups=8,
1994
+ rotary_percentage=1.0,
1995
+ parallel_residual=False,
1996
+ bias=False,
1997
+ norm_class_name="RMSNorm",
1998
+ norm_eps=1e-05,
1999
+ mlp_class_name="LLaMAMLP",
2000
+ intermediate_size=14336,
2001
+ )
2002
+ )
2003
+ configs.append(
2004
+ # https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2/blob/main/config.json
2005
+ dict(
2006
+ name="Mistral-7B-Instruct-v0.2",
2007
+ hf_config=dict(org="mistralai", name="Mistral-7B-Instruct-v0.2"),
2008
+ padded_vocab_size=32000,
2009
+ block_size=32768,
2010
+ n_layer=32,
2011
+ n_query_groups=8,
2012
+ rotary_percentage=1.0,
2013
+ parallel_residual=False,
2014
+ bias=False,
2015
+ norm_class_name="RMSNorm",
2016
+ norm_eps=1e-05,
2017
+ mlp_class_name="LLaMAMLP",
2018
+ intermediate_size=14336,
2019
+ )
2020
+ )
2021
+ configs.append(
2022
+ # https://huggingface.co/mistralai/Mistral-7B-v0.3/blob/main/config.json
2023
+ dict(
2024
+ name="Mistral-7B-v0.3",
2025
+ hf_config=dict(org="mistralai", name="Mistral-7B-v0.3"),
2026
+ padded_vocab_size=32768,
2027
+ block_size=32768,
2028
+ n_layer=32,
2029
+ n_query_groups=8,
2030
+ rotary_percentage=1.0,
2031
+ parallel_residual=False,
2032
+ bias=False,
2033
+ norm_class_name="RMSNorm",
2034
+ norm_eps=1e-05,
2035
+ mlp_class_name="LLaMAMLP",
2036
+ intermediate_size=14336,
2037
+ )
2038
+ )
2039
+ configs.append(
2040
+ # https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3/blob/main/config.json
2041
+ dict(
2042
+ name="Mistral-7B-Instruct-v0.3",
2043
+ hf_config=dict(org="mistralai", name="Mistral-7B-Instruct-v0.3"),
2044
+ padded_vocab_size=32768,
2045
+ block_size=32768,
2046
+ n_layer=32,
2047
+ n_query_groups=8,
2048
+ rotary_percentage=1.0,
2049
+ parallel_residual=False,
2050
+ bias=False,
2051
+ norm_class_name="RMSNorm",
2052
+ norm_eps=1e-05,
2053
+ mlp_class_name="LLaMAMLP",
2054
+ intermediate_size=14336,
2055
+ )
2056
+ )
2057
+ configs.append(
2058
+ # https://huggingface.co/mistralai/Mistral-Large-Instruct-2407/blob/main/config.json
2059
+ dict(
2060
+ name="Mistral-Large-Instruct-2407",
2061
+ hf_config=dict(org="mistralai", name="Mistral-Large-Instruct-2407"),
2062
+ padded_vocab_size=32768,
2063
+ block_size=32768,
2064
+ n_layer=88,
2065
+ n_head=96,
2066
+ n_embd=12288,
2067
+ n_query_groups=8,
2068
+ rotary_percentage=1.0,
2069
+ parallel_residual=False,
2070
+ bias=False,
2071
+ norm_class_name="RMSNorm",
2072
+ norm_eps=1e-05,
2073
+ mlp_class_name="LLaMAMLP",
2074
+ intermediate_size=28672,
2075
+ )
2076
+ )
2077
+ configs.append(
2078
+ # https://huggingface.co/mistralai/Mistral-Large-Instruct-2411/blob/main/config.json
2079
+ dict(
2080
+ name="Mistral-Large-Instruct-2411",
2081
+ hf_config=dict(org="mistralai", name="Mistral-Large-Instruct-2411"),
2082
+ padded_vocab_size=32768,
2083
+ block_size=32768,
2084
+ n_layer=88,
2085
+ n_head=96,
2086
+ n_embd=12288,
2087
+ n_query_groups=8,
2088
+ rotary_percentage=1.0,
2089
+ parallel_residual=False,
2090
+ bias=False,
2091
+ norm_class_name="RMSNorm",
2092
+ norm_eps=1e-05,
2093
+ mlp_class_name="LLaMAMLP",
2094
+ intermediate_size=28672,
2095
+ )
2096
+ )
2097
+
2098
+
2099
+ ############
2100
+ # TinyLlama
2101
+ ############
2102
+ tiny_llama = [
2103
+ dict(
2104
+ name="tiny-llama-1.1b{}",
2105
+ hf_config=dict(org="TinyLlama", name="TinyLlama-1.1B{}"),
2106
+ block_size=2048,
2107
+ vocab_size=32000,
2108
+ padding_multiple=64,
2109
+ n_layer=22,
2110
+ n_head=32,
2111
+ n_embd=2048,
2112
+ rotary_percentage=1.0,
2113
+ parallel_residual=False,
2114
+ bias=False,
2115
+ norm_class_name="RMSNorm", # original TinyLlama use FusedRMSNorm
2116
+ norm_eps=1e-5,
2117
+ mlp_class_name="LLaMAMLP",
2118
+ intermediate_size=5632,
2119
+ n_query_groups=4,
2120
+ )
2121
+ ]
2122
+ for c in tiny_llama:
2123
+ for kind, hf_postfix in (("", "-intermediate-step-1431k-3T"), ("-chat", "-Chat-v1.0")):
2124
+ copy = deepcopy(c)
2125
+ copy["name"] = c["name"].format(kind)
2126
+ copy["hf_config"]["name"] = c["hf_config"]["name"].format(hf_postfix)
2127
+ configs.append(copy)
2128
+
2129
+
2130
+ ############
2131
+ # MicroLlama
2132
+ ############
2133
+ micro_llama = [
2134
+ dict(
2135
+ name="micro-llama-300M",
2136
+ hf_config=dict(org="keeeeenw", name="MicroLlama"),
2137
+ block_size=2048,
2138
+ vocab_size=32000,
2139
+ padding_multiple=64,
2140
+ n_layer=12,
2141
+ n_head=16,
2142
+ n_embd=1024,
2143
+ rotary_percentage=1.0,
2144
+ parallel_residual=False,
2145
+ bias=False,
2146
+ norm_class_name="RMSNorm", # original TinyLlama and MicroLlama use FusedRMSNorm
2147
+ norm_eps=1e-5,
2148
+ mlp_class_name="LLaMAMLP",
2149
+ intermediate_size=5632,
2150
+ n_query_groups=4,
2151
+ )
2152
+ ]
2153
+ configs.extend(micro_llama)
2154
+
2155
+
2156
+ ##########################
2157
+ # Trelis Function Calling
2158
+ ##########################
2159
+ llama_2_function_calling = [
2160
+ # https://huggingface.co/Trelis/Llama-2-7b-chat-hf-function-calling-v2/blob/main/config.json
2161
+ dict(
2162
+ name="Llama-2-7b-chat-hf-function-calling-v2",
2163
+ hf_config=dict(org="Trelis", name="Llama-2-7b-chat-hf-function-calling-v2"),
2164
+ padding_multiple=64,
2165
+ n_layer=32,
2166
+ rotary_percentage=1.0,
2167
+ parallel_residual=False,
2168
+ bias=False,
2169
+ norm_class_name="RMSNorm",
2170
+ mlp_class_name="LLaMAMLP",
2171
+ intermediate_size=11008,
2172
+ norm_eps=1e-6,
2173
+ block_size=4096,
2174
+ vocab_size=32000,
2175
+ n_head=32,
2176
+ n_embd=4096,
2177
+ rope_base=10000,
2178
+ )
2179
+ ]
2180
+
2181
+ configs.extend(llama_2_function_calling)
2182
+
2183
+ ##########################
2184
+ # Qwen2
2185
+ ##########################
2186
+ qwen_2 = [
2187
+ # https://huggingface.co/Trelis/Llama-2-7b-chat-hf-function-calling-v2/blob/main/config.json
2188
+ dict(
2189
+ name="Qwen2-7B",
2190
+ hf_config=dict(org="Qwen", name="Qwen2-7B"),
2191
+ block_size=131072,
2192
+ vocab_size=151643,
2193
+ padded_vocab_size=152064,
2194
+ n_layer=28,
2195
+ n_head=28,
2196
+ n_embd=3584,
2197
+ n_query_groups=4,
2198
+ rotary_percentage=1.0,
2199
+ parallel_residual=False,
2200
+ bias=False,
2201
+ attn_bias=True,
2202
+ norm_class_name="RMSNorm",
2203
+ mlp_class_name="LLaMAMLP",
2204
+ intermediate_size=18944,
2205
+ norm_eps=1e-6,
2206
+ rope_base=1000000,
2207
+ ),
2208
+ dict(
2209
+ name="Qwen2-0.5B",
2210
+ hf_config=dict(org="Qwen", name="Qwen2-0.5B"),
2211
+ block_size=32768,
2212
+ vocab_size=151643,
2213
+ padded_vocab_size=151936,
2214
+ n_layer=24,
2215
+ n_head=14,
2216
+ n_embd=896,
2217
+ n_query_groups=2,
2218
+ rotary_percentage=1.0,
2219
+ parallel_residual=False,
2220
+ bias=False,
2221
+ attn_bias=True,
2222
+ norm_class_name="RMSNorm",
2223
+ mlp_class_name="LLaMAMLP",
2224
+ intermediate_size=4864,
2225
+ norm_eps=1e-6,
2226
+ rope_base=1000000,
2227
+ ),
2228
+ ]
2229
+
2230
+ configs.extend(qwen_2)
2231
+
2232
+ ##########
2233
+ # Qwen2.5
2234
+ ##########
2235
+ qwen_2_5 = [
2236
+ # https://huggingface.co/Qwen/Qwen2.5-0.5B/blob/main/config.json
2237
+ dict(
2238
+ name="Qwen2.5-0.5B{}",
2239
+ hf_config=dict(org="Qwen", name="Qwen2.5-0.5B{}"),
2240
+ block_size=32768,
2241
+ vocab_size=151643,
2242
+ padded_vocab_size=151936,
2243
+ n_layer=24,
2244
+ n_head=14,
2245
+ n_embd=896,
2246
+ n_query_groups=2,
2247
+ rotary_percentage=1.0,
2248
+ parallel_residual=False,
2249
+ bias=False,
2250
+ attn_bias=True,
2251
+ norm_class_name="RMSNorm",
2252
+ mlp_class_name="LLaMAMLP",
2253
+ intermediate_size=4864,
2254
+ norm_eps=1e-6,
2255
+ rope_base=1000000,
2256
+ ),
2257
+ # https://huggingface.co/Qwen/Qwen2.5-1.5B/blob/main/config.json
2258
+ dict(
2259
+ name="Qwen2.5-1.5B{}",
2260
+ hf_config=dict(org="Qwen", name="Qwen2.5-1.5B{}"),
2261
+ block_size=131072,
2262
+ vocab_size=151643,
2263
+ padded_vocab_size=151936,
2264
+ n_layer=28,
2265
+ n_head=12,
2266
+ n_embd=1536,
2267
+ n_query_groups=2,
2268
+ rotary_percentage=1.0,
2269
+ parallel_residual=False,
2270
+ bias=False,
2271
+ attn_bias=True,
2272
+ norm_class_name="RMSNorm",
2273
+ mlp_class_name="LLaMAMLP",
2274
+ intermediate_size=8960,
2275
+ norm_eps=1e-6,
2276
+ rope_base=1000000,
2277
+ ),
2278
+ # https://huggingface.co/Qwen/Qwen2.5-3B/blob/main/config.json
2279
+ dict(
2280
+ name="Qwen2.5-3B{}",
2281
+ hf_config=dict(org="Qwen", name="Qwen2.5-3B{}"),
2282
+ block_size=32768,
2283
+ vocab_size=151643,
2284
+ padded_vocab_size=151936,
2285
+ n_layer=36,
2286
+ n_head=16,
2287
+ n_embd=2048,
2288
+ n_query_groups=2,
2289
+ rotary_percentage=1.0,
2290
+ parallel_residual=False,
2291
+ bias=False,
2292
+ attn_bias=True,
2293
+ norm_class_name="RMSNorm",
2294
+ mlp_class_name="LLaMAMLP",
2295
+ intermediate_size=11008,
2296
+ norm_eps=1e-6,
2297
+ rope_base=1000000,
2298
+ ),
2299
+ # https://huggingface.co/Qwen/Qwen2.5-7B/blob/main/config.json
2300
+ dict(
2301
+ name="Qwen2.5-7B{}",
2302
+ hf_config=dict(org="Qwen", name="Qwen2.5-7B{}"),
2303
+ block_size=131072,
2304
+ vocab_size=151643,
2305
+ padded_vocab_size=152064,
2306
+ n_layer=28,
2307
+ n_head=28,
2308
+ n_embd=3584,
2309
+ n_query_groups=4,
2310
+ rotary_percentage=1.0,
2311
+ parallel_residual=False,
2312
+ bias=False,
2313
+ attn_bias=True,
2314
+ norm_class_name="RMSNorm",
2315
+ mlp_class_name="LLaMAMLP",
2316
+ intermediate_size=18944,
2317
+ norm_eps=1e-6,
2318
+ rope_base=1000000,
2319
+ ),
2320
+ # https://huggingface.co/Qwen/Qwen2.5-14B/blob/main/config.json
2321
+ dict(
2322
+ name="Qwen2.5-14B{}",
2323
+ hf_config=dict(org="Qwen", name="Qwen2.5-14B{}"),
2324
+ block_size=131072,
2325
+ vocab_size=151643,
2326
+ padded_vocab_size=152064,
2327
+ n_layer=48,
2328
+ n_head=40,
2329
+ n_embd=5120,
2330
+ n_query_groups=8,
2331
+ rotary_percentage=1.0,
2332
+ parallel_residual=False,
2333
+ bias=False,
2334
+ attn_bias=True,
2335
+ norm_class_name="RMSNorm",
2336
+ mlp_class_name="LLaMAMLP",
2337
+ intermediate_size=13824,
2338
+ norm_eps=1e-5,
2339
+ rope_base=1000000,
2340
+ ),
2341
+ # https://huggingface.co/Qwen/Qwen2.5-32B/blob/main/config.json
2342
+ dict(
2343
+ name="Qwen2.5-32B{}",
2344
+ hf_config=dict(org="Qwen", name="Qwen2.5-32B{}"),
2345
+ block_size=131072,
2346
+ vocab_size=151643,
2347
+ padded_vocab_size=152064,
2348
+ n_layer=64,
2349
+ n_head=40,
2350
+ n_embd=5120,
2351
+ n_query_groups=8,
2352
+ rotary_percentage=1.0,
2353
+ parallel_residual=False,
2354
+ bias=False,
2355
+ attn_bias=True,
2356
+ norm_class_name="RMSNorm",
2357
+ mlp_class_name="LLaMAMLP",
2358
+ intermediate_size=27648,
2359
+ norm_eps=1e-5,
2360
+ rope_base=1000000,
2361
+ ),
2362
+ # https://huggingface.co/Qwen/Qwen2.5-72B/blob/main/config.json
2363
+ dict(
2364
+ name="Qwen2.5-72B{}",
2365
+ hf_config=dict(org="Qwen", name="Qwen2.5-72B{}"),
2366
+ block_size=131072,
2367
+ vocab_size=151643,
2368
+ padded_vocab_size=152064,
2369
+ n_layer=80,
2370
+ n_head=64,
2371
+ n_embd=8192,
2372
+ n_query_groups=8,
2373
+ rotary_percentage=1.0,
2374
+ parallel_residual=False,
2375
+ bias=False,
2376
+ attn_bias=True,
2377
+ norm_class_name="RMSNorm",
2378
+ mlp_class_name="LLaMAMLP",
2379
+ intermediate_size=29568,
2380
+ norm_eps=1e-5,
2381
+ rope_base=1000000,
2382
+ ),
2383
+ ]
2384
+
2385
+ qwen_2_5_coder = [
2386
+ # https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B/blob/main/config.json
2387
+ dict(
2388
+ name="Qwen2.5-Coder-0.5B{}",
2389
+ hf_config=dict(org="Qwen", name="Qwen2.5-Coder-0.5B{}"),
2390
+ block_size=32768,
2391
+ vocab_size=151643,
2392
+ padded_vocab_size=151936,
2393
+ n_layer=24,
2394
+ n_head=14,
2395
+ n_embd=896,
2396
+ n_query_groups=2,
2397
+ rotary_percentage=1.0,
2398
+ parallel_residual=False,
2399
+ bias=False,
2400
+ attn_bias=True,
2401
+ norm_class_name="RMSNorm",
2402
+ mlp_class_name="LLaMAMLP",
2403
+ intermediate_size=4864,
2404
+ norm_eps=1e-6,
2405
+ rope_base=1000000,
2406
+ ),
2407
+ # https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B/blob/main/config.json
2408
+ dict(
2409
+ name="Qwen2.5-Coder-1.5B{}",
2410
+ hf_config=dict(org="Qwen", name="Qwen2.5-Coder-1.5B{}"),
2411
+ block_size=32768,
2412
+ vocab_size=151643,
2413
+ padded_vocab_size=151936,
2414
+ n_layer=28,
2415
+ n_head=12,
2416
+ n_embd=1536,
2417
+ n_query_groups=2,
2418
+ rotary_percentage=1.0,
2419
+ parallel_residual=False,
2420
+ bias=False,
2421
+ attn_bias=True,
2422
+ norm_class_name="RMSNorm",
2423
+ mlp_class_name="LLaMAMLP",
2424
+ intermediate_size=8960,
2425
+ norm_eps=1e-6,
2426
+ rope_base=1000000,
2427
+ ),
2428
+ # https://huggingface.co/Qwen/Qwen2.5-Coder-3B/blob/main/config.json
2429
+ dict(
2430
+ name="Qwen2.5-Coder-3B{}",
2431
+ hf_config=dict(org="Qwen", name="Qwen2.5-Coder-3B{}"),
2432
+ block_size=32768,
2433
+ vocab_size=151643,
2434
+ padded_vocab_size=151936,
2435
+ n_layer=36,
2436
+ n_head=16,
2437
+ n_embd=2048,
2438
+ n_query_groups=2,
2439
+ rotary_percentage=1.0,
2440
+ parallel_residual=False,
2441
+ bias=False,
2442
+ attn_bias=True,
2443
+ norm_class_name="RMSNorm",
2444
+ mlp_class_name="LLaMAMLP",
2445
+ intermediate_size=11008,
2446
+ norm_eps=1e-6,
2447
+ rope_base=1000000,
2448
+ ),
2449
+ # https://huggingface.co/Qwen/Qwen2.5-Coder-7B/blob/main/config.json
2450
+ dict(
2451
+ name="Qwen2.5-Coder-7B{}",
2452
+ hf_config=dict(org="Qwen", name="Qwen2.5-Coder-7B{}"),
2453
+ block_size=32768,
2454
+ vocab_size=151643,
2455
+ padded_vocab_size=152064,
2456
+ n_layer=28,
2457
+ n_head=28,
2458
+ n_embd=3584,
2459
+ n_query_groups=4,
2460
+ rotary_percentage=1.0,
2461
+ parallel_residual=False,
2462
+ bias=False,
2463
+ attn_bias=True,
2464
+ norm_class_name="RMSNorm",
2465
+ mlp_class_name="LLaMAMLP",
2466
+ intermediate_size=18944,
2467
+ norm_eps=1e-6,
2468
+ rope_base=1000000,
2469
+ ),
2470
+ # https://huggingface.co/Qwen/Qwen2.5-Coder-14B/blob/main/config.json
2471
+ dict(
2472
+ name="Qwen2.5-Coder-14B{}",
2473
+ hf_config=dict(org="Qwen", name="Qwen2.5-Coder-14B{}"),
2474
+ block_size=32768,
2475
+ vocab_size=151643,
2476
+ padded_vocab_size=152064,
2477
+ n_layer=48,
2478
+ n_head=40,
2479
+ n_embd=5120,
2480
+ n_query_groups=8,
2481
+ rotary_percentage=1.0,
2482
+ parallel_residual=False,
2483
+ bias=False,
2484
+ attn_bias=True,
2485
+ norm_class_name="RMSNorm",
2486
+ mlp_class_name="LLaMAMLP",
2487
+ intermediate_size=13824,
2488
+ norm_eps=1e-5,
2489
+ rope_base=1000000,
2490
+ ),
2491
+ # https://huggingface.co/Qwen/Qwen2.5-Coder-32B/blob/main/config.json
2492
+ dict(
2493
+ name="Qwen2.5-Coder-32B{}",
2494
+ hf_config=dict(org="Qwen", name="Qwen2.5-Coder-32B{}"),
2495
+ block_size=32768,
2496
+ vocab_size=151643,
2497
+ padded_vocab_size=152064,
2498
+ n_layer=64,
2499
+ n_head=40,
2500
+ n_embd=5120,
2501
+ n_query_groups=8,
2502
+ rotary_percentage=1.0,
2503
+ parallel_residual=False,
2504
+ bias=False,
2505
+ attn_bias=True,
2506
+ norm_class_name="RMSNorm",
2507
+ mlp_class_name="LLaMAMLP",
2508
+ intermediate_size=27648,
2509
+ norm_eps=1e-5,
2510
+ rope_base=1000000,
2511
+ ),
2512
+ ]
2513
+
2514
+ qwen_2_5.extend(qwen_2_5_coder)
2515
+
2516
+ qwen_2_5_math = [
2517
+ # https://huggingface.co/Qwen/Qwen2.5-Math-1.5B/blob/main/config.json
2518
+ dict(
2519
+ name="Qwen2.5-Math-1.5B{}",
2520
+ hf_config=dict(org="Qwen", name="Qwen2.5-Math-1.5B{}"),
2521
+ block_size=4096,
2522
+ vocab_size=151643,
2523
+ padded_vocab_size=151936,
2524
+ n_layer=28,
2525
+ n_head=12,
2526
+ n_embd=1536,
2527
+ n_query_groups=2,
2528
+ rotary_percentage=1.0,
2529
+ parallel_residual=False,
2530
+ bias=False,
2531
+ attn_bias=True,
2532
+ norm_class_name="RMSNorm",
2533
+ mlp_class_name="LLaMAMLP",
2534
+ intermediate_size=8960,
2535
+ norm_eps=1e-6,
2536
+ rope_base=10000,
2537
+ ),
2538
+ # https://huggingface.co/Qwen/Qwen2.5-Math-7B/blob/main/config.json
2539
+ dict(
2540
+ name="Qwen2.5-Math-7B{}",
2541
+ hf_config=dict(org="Qwen", name="Qwen2.5-Math-7B{}"),
2542
+ block_size=4096,
2543
+ vocab_size=151643,
2544
+ padded_vocab_size=152064,
2545
+ n_layer=28,
2546
+ n_head=28,
2547
+ n_embd=3584,
2548
+ n_query_groups=4,
2549
+ rotary_percentage=1.0,
2550
+ parallel_residual=False,
2551
+ bias=False,
2552
+ attn_bias=True,
2553
+ norm_class_name="RMSNorm",
2554
+ mlp_class_name="LLaMAMLP",
2555
+ intermediate_size=18944,
2556
+ norm_eps=1e-6,
2557
+ rope_base=10000,
2558
+ ),
2559
+ # https://huggingface.co/Qwen/Qwen2.5-Math-72B/blob/main/config.json
2560
+ dict(
2561
+ name="Qwen2.5-Math-72B{}",
2562
+ hf_config=dict(org="Qwen", name="Qwen2.5-Math-72B{}"),
2563
+ block_size=4096,
2564
+ vocab_size=151643,
2565
+ padded_vocab_size=152064,
2566
+ n_layer=80,
2567
+ n_head=64,
2568
+ n_embd=8192,
2569
+ n_query_groups=8,
2570
+ rotary_percentage=1.0,
2571
+ parallel_residual=False,
2572
+ bias=False,
2573
+ attn_bias=True,
2574
+ norm_class_name="RMSNorm",
2575
+ mlp_class_name="LLaMAMLP",
2576
+ intermediate_size=29568,
2577
+ norm_eps=1e-5,
2578
+ rope_base=10000,
2579
+ ),
2580
+ ]
2581
+
2582
+ qwen_2_5.extend(qwen_2_5_math)
2583
+
2584
+ for c in qwen_2_5:
2585
+ for kind in ("", "-Instruct"):
2586
+ copy = deepcopy(c)
2587
+ copy["name"] = c["name"].format(kind)
2588
+ copy["hf_config"]["name"] = c["hf_config"]["name"].format(kind)
2589
+ configs.append(copy)
2590
+
2591
+ qwen_2_5_1m = [
2592
+ # https://huggingface.co/Qwen/Qwen2.5-7B-Instruct-1M/blob/main/config.json
2593
+ dict(
2594
+ name="Qwen2.5-7B-Instruct-1M",
2595
+ hf_config=dict(org="Qwen", name="Qwen2.5-7B-Instruct-1M"),
2596
+ block_size=1010000,
2597
+ vocab_size=151643,
2598
+ padded_vocab_size=152064,
2599
+ n_layer=28,
2600
+ n_head=28,
2601
+ n_embd=3584,
2602
+ n_query_groups=4,
2603
+ rotary_percentage=1.0,
2604
+ parallel_residual=False,
2605
+ bias=False,
2606
+ attn_bias=True,
2607
+ norm_class_name="RMSNorm",
2608
+ mlp_class_name="LLaMAMLP",
2609
+ intermediate_size=18944,
2610
+ norm_eps=1e-5,
2611
+ rope_base=10000000,
2612
+ ),
2613
+ # https://huggingface.co/Qwen/Qwen2.5-14B-Instruct-1M/blob/main/config.json
2614
+ dict(
2615
+ name="Qwen2.5-14B-Instruct-1M",
2616
+ hf_config=dict(org="Qwen", name="Qwen2.5-14B-Instruct-1M"),
2617
+ block_size=1010000,
2618
+ vocab_size=151643,
2619
+ padded_vocab_size=152064,
2620
+ n_layer=48,
2621
+ n_head=40,
2622
+ n_embd=5120,
2623
+ n_query_groups=8,
2624
+ rotary_percentage=1.0,
2625
+ parallel_residual=False,
2626
+ bias=False,
2627
+ attn_bias=True,
2628
+ norm_class_name="RMSNorm",
2629
+ mlp_class_name="LLaMAMLP",
2630
+ intermediate_size=13824,
2631
+ norm_eps=1e-5,
2632
+ rope_base=10000000,
2633
+ ),
2634
+ ]
2635
+
2636
+ configs.extend(qwen_2_5_1m)
2637
+
2638
+ ##########
2639
+ # QwQ
2640
+ ##########
2641
+ qwq = [
2642
+ # https://huggingface.co/Qwen/QwQ-32B/blob/main/config.json
2643
+ dict(
2644
+ name="QwQ-32B",
2645
+ hf_config=dict(org="Qwen", name="QwQ-32B"),
2646
+ block_size=131072,
2647
+ vocab_size=151643,
2648
+ padded_vocab_size=152064,
2649
+ n_layer=64,
2650
+ n_head=40,
2651
+ n_embd=5120,
2652
+ n_query_groups=8,
2653
+ rotary_percentage=1.0,
2654
+ parallel_residual=False,
2655
+ bias=False,
2656
+ attn_bias=True,
2657
+ norm_class_name="RMSNorm",
2658
+ mlp_class_name="LLaMAMLP",
2659
+ intermediate_size=27648,
2660
+ norm_eps=1e-5,
2661
+ rope_base=1000000,
2662
+ ),
2663
+ # https://huggingface.co/Qwen/QwQ-32B-Preview/blob/main/config.json
2664
+ dict(
2665
+ name="QwQ-32B-Preview",
2666
+ hf_config=dict(org="Qwen", name="QwQ-32B-Preview"),
2667
+ block_size=32768,
2668
+ vocab_size=151643,
2669
+ padded_vocab_size=152064,
2670
+ n_layer=64,
2671
+ n_head=40,
2672
+ n_embd=5120,
2673
+ n_query_groups=8,
2674
+ rotary_percentage=1.0,
2675
+ parallel_residual=False,
2676
+ bias=False,
2677
+ attn_bias=True,
2678
+ norm_class_name="RMSNorm",
2679
+ mlp_class_name="LLaMAMLP",
2680
+ intermediate_size=27648,
2681
+ norm_eps=1e-5,
2682
+ rope_base=1000000,
2683
+ ),
2684
+ ]
2685
+
2686
+ configs.extend(qwq)
2687
+
2688
+ ##########
2689
+ # Qwen3
2690
+ ##########
2691
+ qwen_3 = [
2692
+ # https://huggingface.co/Qwen/Qwen3-0.6B/blob/main/config.json
2693
+ dict(
2694
+ name="Qwen3-0.6B{}",
2695
+ hf_config=dict(org="Qwen", name="Qwen3-0.6B{}"),
2696
+ block_size=40960,
2697
+ vocab_size=151643,
2698
+ padded_vocab_size=151936,
2699
+ n_layer=28,
2700
+ n_head=16,
2701
+ n_embd=1024,
2702
+ n_query_groups=8,
2703
+ rotary_percentage=1.0,
2704
+ parallel_residual=False,
2705
+ bias=False,
2706
+ norm_class_name="RMSNorm",
2707
+ mlp_class_name="LLaMAMLP",
2708
+ intermediate_size=3072,
2709
+ norm_eps=1e-6,
2710
+ rope_base=1000000,
2711
+ head_size=128,
2712
+ norm_qk=True,
2713
+ ),
2714
+ # https://huggingface.co/Qwen/Qwen3-1.7B/blob/main/config.json
2715
+ dict(
2716
+ name="Qwen3-1.7B{}",
2717
+ hf_config=dict(org="Qwen", name="Qwen3-1.7B{}"),
2718
+ block_size=40960,
2719
+ vocab_size=151643,
2720
+ padded_vocab_size=151936,
2721
+ n_layer=28,
2722
+ n_head=16,
2723
+ n_embd=2048,
2724
+ n_query_groups=8,
2725
+ rotary_percentage=1.0,
2726
+ parallel_residual=False,
2727
+ bias=False,
2728
+ norm_class_name="RMSNorm",
2729
+ mlp_class_name="LLaMAMLP",
2730
+ intermediate_size=6144,
2731
+ norm_eps=1e-6,
2732
+ rope_base=1000000,
2733
+ norm_qk=True,
2734
+ ),
2735
+ # https://huggingface.co/Qwen/Qwen3-4B/blob/main/config.json
2736
+ dict(
2737
+ name="Qwen3-4B{}",
2738
+ hf_config=dict(org="Qwen", name="Qwen3-4B{}"),
2739
+ block_size=40960,
2740
+ vocab_size=151643,
2741
+ padded_vocab_size=151936,
2742
+ n_layer=36,
2743
+ n_head=32,
2744
+ n_embd=2560,
2745
+ n_query_groups=8,
2746
+ rotary_percentage=1.0,
2747
+ parallel_residual=False,
2748
+ bias=False,
2749
+ norm_class_name="RMSNorm",
2750
+ mlp_class_name="LLaMAMLP",
2751
+ intermediate_size=9728,
2752
+ norm_eps=1e-6,
2753
+ rope_base=1000000,
2754
+ head_size=128,
2755
+ norm_qk=True,
2756
+ ),
2757
+ # https://huggingface.co/Qwen/Qwen3-8B/blob/main/config.json
2758
+ dict(
2759
+ name="Qwen3-8B{}",
2760
+ hf_config=dict(org="Qwen", name="Qwen3-8B{}"),
2761
+ block_size=40960,
2762
+ vocab_size=151643,
2763
+ padded_vocab_size=151936,
2764
+ n_layer=36,
2765
+ n_head=32,
2766
+ n_embd=4096,
2767
+ n_query_groups=8,
2768
+ rotary_percentage=1.0,
2769
+ parallel_residual=False,
2770
+ bias=False,
2771
+ norm_class_name="RMSNorm",
2772
+ mlp_class_name="LLaMAMLP",
2773
+ intermediate_size=12288,
2774
+ norm_eps=1e-6,
2775
+ rope_base=1000000,
2776
+ norm_qk=True,
2777
+ ),
2778
+ # https://huggingface.co/Qwen/Qwen3-14B/blob/main/config.json
2779
+ dict(
2780
+ name="Qwen3-14B{}",
2781
+ hf_config=dict(org="Qwen", name="Qwen3-14B{}"),
2782
+ block_size=40960,
2783
+ vocab_size=151643,
2784
+ padded_vocab_size=151936,
2785
+ n_layer=40,
2786
+ n_head=40,
2787
+ n_embd=5120,
2788
+ n_query_groups=8,
2789
+ rotary_percentage=1.0,
2790
+ parallel_residual=False,
2791
+ bias=False,
2792
+ norm_class_name="RMSNorm",
2793
+ mlp_class_name="LLaMAMLP",
2794
+ intermediate_size=17408,
2795
+ norm_eps=1e-6,
2796
+ rope_base=1000000,
2797
+ norm_qk=True,
2798
+ ),
2799
+ ]
2800
+ for c in qwen_3:
2801
+ for kind in ("", "-Base"):
2802
+ copy = deepcopy(c)
2803
+ copy["name"] = c["name"].format(kind)
2804
+ copy["hf_config"]["name"] = c["hf_config"]["name"].format(kind)
2805
+ configs.append(copy)
2806
+ qwen_3_32b = [
2807
+ # https://huggingface.co/Qwen/Qwen3-32B/blob/main/config.json
2808
+ dict(
2809
+ name="Qwen3-32B",
2810
+ hf_config=dict(org="Qwen", name="Qwen3-32B"),
2811
+ block_size=40960,
2812
+ vocab_size=151643,
2813
+ padded_vocab_size=151936,
2814
+ n_layer=64,
2815
+ n_head=64,
2816
+ n_embd=5120,
2817
+ n_query_groups=8,
2818
+ rotary_percentage=1.0,
2819
+ parallel_residual=False,
2820
+ bias=False,
2821
+ norm_class_name="RMSNorm",
2822
+ mlp_class_name="LLaMAMLP",
2823
+ intermediate_size=25600,
2824
+ norm_eps=1e-6,
2825
+ rope_base=1000000,
2826
+ head_size=128,
2827
+ norm_qk=True,
2828
+ ),
2829
+ ]
2830
+ configs.extend(qwen_3_32b)
2831
+
2832
+ qwen_3_moe = [
2833
+ # https://huggingface.co/Qwen/Qwen3-30B-A3B/blob/main/config.json
2834
+ dict(
2835
+ name="Qwen3-30B-A3B",
2836
+ hf_config=dict(org="Qwen", name="Qwen3-30B-A3B"),
2837
+ block_size=40960,
2838
+ head_size=128,
2839
+ vocab_size=151643,
2840
+ padded_vocab_size=151936,
2841
+ n_layer=48,
2842
+ n_head=32,
2843
+ n_embd=2048,
2844
+ n_query_groups=4,
2845
+ rotary_percentage=1.0,
2846
+ parallel_residual=False,
2847
+ bias=False,
2848
+ norm_class_name="RMSNorm",
2849
+ mlp_class_name="LLaMAMoE",
2850
+ intermediate_size=6144,
2851
+ moe_intermediate_size=768,
2852
+ norm_eps=1e-6,
2853
+ rope_base=1000000,
2854
+ norm_qk=True,
2855
+ n_expert=128,
2856
+ n_expert_per_token=8,
2857
+ ),
2858
+ # https://huggingface.co/Qwen/Qwen3-30B-A3B-Base/blob/main/config.json
2859
+ dict(
2860
+ name="Qwen3-30B-A3B-Base",
2861
+ hf_config=dict(org="Qwen", name="Qwen3-30B-A3B-Base"),
2862
+ block_size=40960,
2863
+ head_size=128,
2864
+ vocab_size=151643,
2865
+ padded_vocab_size=151936,
2866
+ n_layer=48,
2867
+ n_head=32,
2868
+ n_embd=2048,
2869
+ n_query_groups=4,
2870
+ rotary_percentage=1.0,
2871
+ parallel_residual=False,
2872
+ bias=False,
2873
+ norm_class_name="RMSNorm",
2874
+ mlp_class_name="LLaMAMoE",
2875
+ intermediate_size=6144,
2876
+ moe_intermediate_size=768,
2877
+ norm_eps=1e-6,
2878
+ rope_base=1000000,
2879
+ norm_qk=True,
2880
+ n_expert=128,
2881
+ n_expert_per_token=8,
2882
+ ),
2883
+ # https://huggingface.co/Qwen/Qwen3-235B-A22B/blob/main/config.json
2884
+ dict(
2885
+ name="Qwen3-235B-A22B",
2886
+ hf_config=dict(org="Qwen", name="Qwen3-235B-A22B"),
2887
+ block_size=40960,
2888
+ head_size=128,
2889
+ vocab_size=151643,
2890
+ padded_vocab_size=151936,
2891
+ n_layer=94,
2892
+ n_head=64,
2893
+ n_embd=4096,
2894
+ n_query_groups=4,
2895
+ rotary_percentage=1.0,
2896
+ parallel_residual=False,
2897
+ bias=False,
2898
+ norm_class_name="RMSNorm",
2899
+ mlp_class_name="LLaMAMoE",
2900
+ intermediate_size=12288,
2901
+ moe_intermediate_size=1536,
2902
+ norm_eps=1e-6,
2903
+ rope_base=1000000,
2904
+ norm_qk=True,
2905
+ n_expert=128,
2906
+ n_expert_per_token=8,
2907
+ ),
2908
+ ]
2909
+ configs.extend(qwen_3_moe)
2910
+
2911
+
2912
+ #############
2913
+ # Salamandra
2914
+ #############
2915
+ salamandra = [
2916
+ # https://huggingface.co/BSC-LT/salamandra-2b-instruct/blob/main/config.json
2917
+ dict(
2918
+ name="salamandra-2b{}",
2919
+ hf_config=dict(org="BSC-LT", name="salamandra-2b{}"),
2920
+ block_size=8192,
2921
+ vocab_size=256000,
2922
+ padded_vocab_size=256000,
2923
+ n_layer=24,
2924
+ n_head=16,
2925
+ n_embd=2048,
2926
+ n_query_groups=16,
2927
+ rotary_percentage=1.0,
2928
+ parallel_residual=False,
2929
+ bias=False,
2930
+ norm_class_name="RMSNorm",
2931
+ mlp_class_name="LLaMAMLP",
2932
+ intermediate_size=5440,
2933
+ norm_eps=1e-5,
2934
+ rope_base=10000,
2935
+ ),
2936
+ # https://huggingface.co/BSC-LT/salamandra-7b-instruct/blob/main/config.json
2937
+ dict(
2938
+ name="salamandra-7b{}",
2939
+ hf_config=dict(org="BSC-LT", name="salamandra-7b{}"),
2940
+ block_size=8192,
2941
+ vocab_size=256000,
2942
+ padded_vocab_size=256000,
2943
+ n_layer=32,
2944
+ n_head=32,
2945
+ n_embd=4096,
2946
+ n_query_groups=8,
2947
+ rotary_percentage=1.0,
2948
+ parallel_residual=False,
2949
+ bias=False,
2950
+ norm_class_name="RMSNorm",
2951
+ mlp_class_name="LLaMAMLP",
2952
+ intermediate_size=11008,
2953
+ norm_eps=1e-6,
2954
+ rope_base=10000,
2955
+ ),
2956
+ ]
2957
+
2958
+ for c in salamandra:
2959
+ for kind in ("", "-instruct"):
2960
+ copy = deepcopy(c)
2961
+ copy["name"] = c["name"].format(kind)
2962
+ copy["hf_config"]["name"] = c["hf_config"]["name"].format(kind)
2963
+ configs.append(copy)
2964
+
2965
+
2966
+ ###############
2967
+ # SmolLM2
2968
+ ###############
2969
+ smollm2 = [
2970
+ # https://huggingface.co/HuggingFaceTB/SmolLM2-135M/blob/main/config.json
2971
+ dict(
2972
+ name="SmolLM2-135M{}",
2973
+ hf_config=dict(org="HuggingFaceTB", name="SmolLM2-135M{}"),
2974
+ block_size=8192,
2975
+ vocab_size=49152,
2976
+ padded_vocab_size=49152,
2977
+ n_layer=30,
2978
+ n_head=9,
2979
+ n_embd=576,
2980
+ n_query_groups=3,
2981
+ rotary_percentage=1.0,
2982
+ parallel_residual=False,
2983
+ bias=False,
2984
+ norm_class_name="RMSNorm",
2985
+ mlp_class_name="LLaMAMLP",
2986
+ intermediate_size=1536,
2987
+ rope_base=100000,
2988
+ norm_eps=1e-5,
2989
+ ),
2990
+ # https://huggingface.co/HuggingFaceTB/SmolLM2-360M/blob/main/config.json
2991
+ dict(
2992
+ name="SmolLM2-360M{}",
2993
+ hf_config=dict(org="HuggingFaceTB", name="SmolLM2-360M{}"),
2994
+ block_size=8192,
2995
+ vocab_size=49152,
2996
+ padded_vocab_size=49152,
2997
+ n_layer=32,
2998
+ n_head=15,
2999
+ n_embd=960,
3000
+ n_query_groups=5,
3001
+ rotary_percentage=1.0,
3002
+ parallel_residual=False,
3003
+ bias=False,
3004
+ norm_class_name="RMSNorm",
3005
+ mlp_class_name="LLaMAMLP",
3006
+ intermediate_size=2560,
3007
+ rope_base=100000,
3008
+ norm_eps=1e-5,
3009
+ ),
3010
+ # https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B/blob/main/config.json
3011
+ dict(
3012
+ name="SmolLM2-1.7B{}",
3013
+ hf_config=dict(org="HuggingFaceTB", name="SmolLM2-1.7B{}"),
3014
+ block_size=8192,
3015
+ vocab_size=49152,
3016
+ padded_vocab_size=49152,
3017
+ n_layer=24,
3018
+ n_head=32,
3019
+ n_embd=2048,
3020
+ n_query_groups=32,
3021
+ rotary_percentage=1.0,
3022
+ parallel_residual=False,
3023
+ bias=False,
3024
+ norm_class_name="RMSNorm",
3025
+ mlp_class_name="LLaMAMLP",
3026
+ intermediate_size=8192,
3027
+ rope_base=130000,
3028
+ norm_eps=1e-5,
3029
+ ),
3030
+ ]
3031
+
3032
+ for c in smollm2:
3033
+ for kind in ("", "-Instruct"):
3034
+ copy = deepcopy(c)
3035
+ copy["name"] = c["name"].format(kind)
3036
+ copy["hf_config"]["name"] = c["hf_config"]["name"].format(kind)
3037
+ configs.append(copy)
3038
+
3039
+ ###############
3040
+ # DeepSeek R1 Distill
3041
+ ###############
3042
+
3043
+ r1_distill_llama = [
3044
+ # https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B/blob/main/config.json
3045
+ dict(
3046
+ name="R1-Distill-Llama-8B",
3047
+ hf_config=dict(org="deepseek-ai", name="DeepSeek-R1-Distill-Llama-8B"),
3048
+ block_size=131072,
3049
+ vocab_size=128000,
3050
+ padded_vocab_size=128256,
3051
+ n_layer=32,
3052
+ n_head=32,
3053
+ n_query_groups=8,
3054
+ rotary_percentage=1.0,
3055
+ parallel_residual=False,
3056
+ bias=False,
3057
+ norm_class_name="RMSNorm",
3058
+ mlp_class_name="LLaMAMLP",
3059
+ intermediate_size=14336,
3060
+ rope_base=500000,
3061
+ rope_adjustments=dict(factor=8.0, low_freq_factor=1.0, high_freq_factor=4.0, original_max_seq_len=8192),
3062
+ ),
3063
+ # https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B/blob/main/config.json
3064
+ dict(
3065
+ name="R1-Distill-Llama-70B",
3066
+ hf_config=dict(org="deepseek-ai", name="DeepSeek-R1-Distill-Llama-70B"),
3067
+ block_size=131072,
3068
+ vocab_size=128000,
3069
+ padded_vocab_size=128256,
3070
+ n_layer=80,
3071
+ n_head=64,
3072
+ n_embd=8192,
3073
+ n_query_groups=8,
3074
+ rotary_percentage=1.0,
3075
+ parallel_residual=False,
3076
+ bias=False,
3077
+ norm_class_name="RMSNorm",
3078
+ mlp_class_name="LLaMAMLP",
3079
+ intermediate_size=28672,
3080
+ rope_base=500000,
3081
+ rope_adjustments=dict(factor=8.0, low_freq_factor=1.0, high_freq_factor=4.0, original_max_seq_len=8192),
3082
+ ),
3083
+ ]
3084
+
3085
+ configs.extend(r1_distill_llama)
3086
+
3087
+ name_to_config = {config["name"]: config for config in configs}
litgpt/lora.py ADDED
@@ -0,0 +1,662 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
2
+
3
+ # Derived from https://github.com/microsoft/LoRA
4
+ # ------------------------------------------------------------------------------------------
5
+ # Copyright (c) Microsoft Corporation. All rights reserved.
6
+ # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
7
+ # ------------------------------------------------------------------------------------------
8
+
9
+ r"""
10
+ Low Ranking Adaptation for LLMs scheme.
11
+
12
+ ┌───────────────────┐
13
+ ┆ h ┆
14
+ └───────────────────┘
15
+
16
+ |
17
+ +
18
+ / \
19
+ ┌─────────────────┐ ╭───────────────╮ Matrix initialization:
20
+ ┆ ┆ \ B / B = 0
21
+ ┆ pretrained ┆ \ r*d / A = N(0, sigma^2)
22
+ ┆ weights ┆ ╰─────────╯
23
+ ┆ ┆ | r | r - rank
24
+ ┆ W e R^(d*d) ┆ | ◀─────▶ |
25
+ ┆ ┆ ╭─────────╮
26
+ └─────────────────┘ / A \
27
+ ▲ / d*r \
28
+ \ ╰───────────────╯
29
+ \ ▲
30
+ \ /
31
+ \ /
32
+ ┌───────────────────┐
33
+ ┆ x ┆
34
+ └───────────────────┘
35
+
36
+ With LoRA (Low Ranking Adaptation: https://arxiv.org/abs/2106.09685) instead of learning weights of size d*d,
37
+ we can freeze the pretrained weights and instead learn two matrices of size d*r and r*d (they will store weight updates
38
+ for the pretrained weights): the number of parameters in this case will be reduced drastically (depending on the rank of
39
+ course) yet after multiplication of matrices d*r and r*d we will get a matrix d*d which we can sum with frozen
40
+ pretrained weights and thus fine-tune the model.
41
+
42
+ The goal of this approach is to move weight updates into a separate matrix which is decomposed with
43
+ two matrices of a lower rank.
44
+ """
45
+
46
+ import math
47
+ from dataclasses import dataclass
48
+ from typing import Any, Dict, Optional, Tuple, Type, Union
49
+
50
+ import torch
51
+ import torch.nn as nn
52
+ from torch.nn import functional as F
53
+ from typing_extensions import Self
54
+
55
+ import litgpt
56
+ from litgpt.config import Config as BaseConfig
57
+ from litgpt.model import GPT as BaseModel
58
+ from litgpt.model import Block as BaseBlock
59
+ from litgpt.model import CausalSelfAttention as BaseCausalSelfAttention
60
+ from litgpt.scripts.convert_hf_checkpoint import qkv_reassemble
61
+ from litgpt.utils import map_old_state_dict_weights
62
+
63
+
64
+ class LoRALayer(nn.Module):
65
+ def __init__(self, r: int, lora_alpha: int, lora_dropout: float):
66
+ """Store LoRA specific attributes in a class.
67
+
68
+ Args:
69
+ r: rank of the weight update matrices. To make sense of using LoRA the rank should be smaller than the rank of
70
+ the weights of the model. The rank can be as low as 1: https://arxiv.org/pdf/2106.09685.pdf (section 7.2)
71
+ lora_alpha: alpha is needed for scaling updates as alpha/r
72
+ "This scaling helps to reduce the need to retune hyperparameters when we vary r"
73
+ https://arxiv.org/pdf/2106.09685.pdf (section 4.1)
74
+ lora_dropout: dropout that is applied on the input in the LoRA branch (before multiplying by matrix A)
75
+ """
76
+ super().__init__()
77
+ assert r >= 0
78
+ self.r = r
79
+ self.lora_alpha = lora_alpha
80
+ # Optional dropout
81
+ if lora_dropout > 0.0:
82
+ self.lora_dropout = nn.Dropout(p=lora_dropout)
83
+ else:
84
+ self.lora_dropout = lambda x: x
85
+ # Mark the weight as unmerged
86
+ self.merged = False
87
+
88
+
89
+ class LoRALinear(LoRALayer):
90
+ # LoRA implemented in a dense layer
91
+ def __init__(
92
+ self,
93
+ # ↓ this part is for pretrained weights
94
+ in_features: int,
95
+ out_features: int,
96
+ # ↓ the remaining part is for LoRA
97
+ r: int = 0,
98
+ lora_alpha: int = 1,
99
+ lora_dropout: float = 0.0,
100
+ **kwargs: Any,
101
+ ):
102
+ """LoRA wrapper around linear class.
103
+
104
+ This class has three weight matrices:
105
+ 1. Pretrained weights are stored as `self.linear.weight`
106
+ 2. LoRA A matrix as `self.lora_A`
107
+ 3. LoRA B matrix as `self.lora_B`
108
+ Only LoRA's A and B matrices are updated, pretrained weights stay frozen.
109
+
110
+ Args:
111
+ in_features: number of input features of the pretrained weights
112
+ out_features: number of output features of the pretrained weights
113
+ r: rank of the weight update matrices. To make sense of using LoRA the rank should be smaller than the rank of
114
+ the weights of the model. The rank can be as low as 1: https://arxiv.org/pdf/2106.09685.pdf (section 7.2)
115
+ lora_alpha: alpha is needed for scaling updates as alpha/r
116
+ "This scaling helps to reduce the need to retune hyperparameters when we vary r"
117
+ https://arxiv.org/pdf/2106.09685.pdf (section 4.1)
118
+ lora_dropout: dropout that is applied on the input in the LoRA branch (before multiplying by matrix A)
119
+ """
120
+ super().__init__(r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout)
121
+ self.linear = torch.nn.Linear(in_features, out_features, **kwargs)
122
+
123
+ # Actual trainable parameters
124
+ if r > 0:
125
+ self.lora_A = nn.Parameter(torch.empty((r, in_features)))
126
+ self.lora_B = nn.Parameter(torch.empty((out_features, r)))
127
+ self.scaling = self.lora_alpha / self.r
128
+ self.reset_parameters()
129
+
130
+ def reset_parameters(self) -> None:
131
+ """Reset all the weights, even including pretrained ones."""
132
+ if hasattr(self, "lora_A"):
133
+ # initialize A the same way as the default for nn.Linear and B to zero
134
+ # Wondering why 'a' is equal to math.sqrt(5)?: https://github.com/pytorch/pytorch/issues/15314
135
+ nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
136
+ nn.init.zeros_(self.lora_B)
137
+
138
+ def get_lora_AB(self) -> torch.Tensor:
139
+ """Return merged lora_A and lora_B matrices with the same shape as the pretrained weights."""
140
+ return (self.lora_B @ self.lora_A) * self.scaling
141
+
142
+ def merge(self) -> None:
143
+ """Merges the LoRA weights into the full-rank weights (W = W + delta_W)."""
144
+ if self.r > 0 and not self.merged:
145
+ pretrained_dtype = self.linear.weight.data.dtype
146
+ lora_data = self.get_lora_AB()
147
+ # if only the pretrained are in quantized form - dequantize, sum with LoRA and quantize the result
148
+ if pretrained_dtype == torch.uint8:
149
+ import bitsandbytes as bnb
150
+
151
+ weight = self.linear.weight
152
+ # dequantize the pretrained weights
153
+ weight_data = bnb.functional.dequantize_4bit(weight.data, weight.quant_state).to(lora_data.dtype)
154
+ # add pretrained and LoRA weights
155
+ weight_data += lora_data
156
+ # assign updated weights and quantize by moving to CUDA device
157
+ self.linear.weight = bnb.nn.Params4bit(weight_data, requires_grad=False, **weight.__dict__)
158
+ self.linear.weight.cuda(weight.device)
159
+ else:
160
+ # self.linear might be on CPU and lora_data on CUDA
161
+ # the inplace add will preserve the dtype of linear.weight
162
+ self.linear.weight.data += lora_data.to(device=self.linear.weight.data.device)
163
+ self.merged = True
164
+
165
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
166
+ # if weights are merged or rank is less or equal to zero (LoRA is disabled) - it's only a regular nn.Linear forward pass;
167
+ # otherwise in addition do the forward pass with LoRA weights and add it's output to the output from pretrained weights
168
+ pretrained = self.linear(x)
169
+ if self.r == 0 or self.merged:
170
+ return pretrained
171
+ lora = (self.lora_dropout(x) @ self.lora_A.transpose(0, 1) @ self.lora_B.transpose(0, 1)) * self.scaling
172
+ return pretrained + lora
173
+
174
+
175
+ class LoRAQKVLinear(LoRALinear):
176
+ # LoRA implemented in a dense layer
177
+ def __init__(
178
+ self,
179
+ # ↓ this part is for pretrained weights
180
+ in_features: int,
181
+ out_features: int,
182
+ # ↓ the remaining part is for LoRA
183
+ head_size: int,
184
+ n_head: int,
185
+ n_query_groups: int,
186
+ r: int = 0,
187
+ lora_alpha: int = 1,
188
+ lora_dropout: float = 0.0,
189
+ enable_lora: Union[bool, Tuple[bool, bool, bool]] = False,
190
+ **kwargs: Any,
191
+ ):
192
+ """LoRA wrapper around linear class that is used for calculation of q, k and v matrices.
193
+
194
+ This class has three weight matrices:
195
+ 1. Pretrained weights are stored as `self.linear.weight`
196
+ 2. LoRA A matrix as `self.lora_A`
197
+ 3. LoRA B matrix as `self.lora_B`
198
+ Only LoRA's A and B matrices are updated, pretrained weights stay frozen.
199
+
200
+ Args:
201
+ in_features: number of input features of the pretrained weights
202
+ out_features: number of output features of the pretrained weights
203
+ head_size: size of a single attention head
204
+ n_head: number of attention heads
205
+ n_query_groups: number of query groups (see diagram in `litgpt/config.py`)
206
+ r: rank of the weight update matrices. To make sense of using LoRA the rank should be smaller than the rank of
207
+ the weights of the model. The rank can be as low as 1: https://arxiv.org/pdf/2106.09685.pdf (section 7.2)
208
+ lora_alpha: alpha is needed for scaling updates as alpha/r
209
+ "This scaling helps to reduce the need to retune hyperparameters when we vary r"
210
+ https://arxiv.org/pdf/2106.09685.pdf (section 4.1)
211
+ lora_dropout: dropout that is applied on the input in the LoRA branch (before multiplying by matrix A)
212
+ enable_lora: MergeLinear class is for attention mechanism where qkv are calculated with a single weight matrix. If we
213
+ don't want to apply LoRA we can set it as False. For example if we want to apply LoRA only to `query`
214
+ and `value` but keep `key` without weight updates we should pass `[True, False, True]`
215
+ """
216
+ super(LoRALinear, self).__init__(r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout)
217
+ self.linear = torch.nn.Linear(in_features, out_features, **kwargs)
218
+ self.head_size = head_size
219
+ self.n_head = n_head
220
+ self.n_query_groups = n_query_groups
221
+ if isinstance(enable_lora, bool):
222
+ enable_lora = [enable_lora] * 3
223
+ assert len(enable_lora) == 3
224
+ self.enable_lora = enable_lora
225
+
226
+ # Actual trainable parameters
227
+ # To better understand initialization let's imagine that we have such parameters:
228
+ # ⚬ in_features: 128 (embeddings_size)
229
+ # ⚬ out_features: 384 (3 * embedding_size)
230
+ # ⚬ r: 2
231
+ # ⚬ enable_lora: [True, False, True]
232
+ if r > 0 and any(enable_lora):
233
+ self.lora_A = nn.Parameter(torch.empty((r * sum(enable_lora), in_features))) # (4, 128)
234
+ enable_q, enable_k, enable_v = enable_lora
235
+ # qkv_shapes will be used to split a tensor with weights correctly
236
+ qkv_shapes = (
237
+ # if `head_size` is explicitly specified in the config, `n_embd` (or `in_features`)
238
+ # might not be equal to `head_size * n_head`, thus we use it directly here
239
+ head_size * n_head * enable_q,
240
+ head_size * n_query_groups * enable_k,
241
+ head_size * n_query_groups * enable_v,
242
+ )
243
+ self.qkv_shapes = [s for s in qkv_shapes if s]
244
+ self.lora_B = nn.Parameter(torch.empty(sum(self.qkv_shapes), r)) # (256, 2))
245
+ # Notes about shapes above
246
+ # - self.lora_A has shape (4, 128): 4 because rank is 2 and LoRA is applied only to two matrices;
247
+ # 128 is the input size of the x (embedding size). (4, 128) and not (128, 4) because later on in
248
+ # F.linear function weights are automatically transposed. In addition conv1d requires channels to
249
+ # be before seq length
250
+ # - self.lora_B has shape (256, 2): 256 because LoRA is applied only to two matrices, so the output is
251
+ # 128*2; 2 tells to have two channels per group for group convolution
252
+
253
+ # Scaling:
254
+ # This balances the pretrained model`s knowledge and the new task-specific adaptation
255
+ # https://lightning.ai/pages/community/tutorial/lora-llm/
256
+ # So, set alpha to 1.0 to fully add LoRA. If the LoRA seems to have too much effect (i.e., overfitted), set
257
+ # alpha to lower value. If the LoRA seems to have too little effect, set alpha to higher than 1.0. You can
258
+ # tune these values to your needs. This value can be even slightly greater than 1.0!
259
+ # https://github.com/cloneofsimo/lora
260
+ self.scaling = self.lora_alpha / self.r
261
+
262
+ self.reset_parameters()
263
+
264
+ @property
265
+ def lora_ind(self) -> torch.Tensor:
266
+ """Lazy creation of a buffer with LoRA indices to overcome the limitation when FSDP with meta device is used."""
267
+ # Indices are needed to properly pad weight updates with zeros.
268
+ if not hasattr(self, "_lora_ind"):
269
+ enable_q, enable_k, enable_v = self.enable_lora
270
+ kv_embd_size = self.linear.in_features // (self.n_head // self.n_query_groups)
271
+ lora_ind = []
272
+ if enable_q:
273
+ lora_ind.extend(range(0, self.linear.in_features))
274
+ if enable_k:
275
+ lora_ind.extend(range(self.linear.in_features, self.linear.in_features + kv_embd_size))
276
+ if enable_v:
277
+ lora_ind.extend(range(self.linear.in_features + kv_embd_size, self.linear.out_features))
278
+ self.register_buffer(
279
+ "_lora_ind", torch.tensor(lora_ind, device=self.linear.weight.device), persistent=False
280
+ )
281
+
282
+ return self._lora_ind
283
+
284
+ def zero_pad(self, x: torch.Tensor) -> torch.Tensor:
285
+ """Properly pad the last dimension of weight updates with zeros.
286
+
287
+ If, based on `self.enable_lora`, we want to fine-tune queries and values, but not keys,
288
+ then the weights update should be:
289
+
290
+ [[ΔW,ΔW,ΔW, ..., 0,0,0, ..., ΔW,ΔW,ΔW,],
291
+ [....................................],
292
+ [ΔW,ΔW,ΔW, ..., 0,0,0, ..., ΔW,ΔW,ΔW,]]
293
+ ↑ ↑ ↑
294
+ ________________________________________
295
+ | query | key | value |
296
+ ----------------------------------------
297
+
298
+ Args:
299
+ x: tensor with weights update that will be padded with zeros if necessary
300
+
301
+ Returns:
302
+ A tensor with weight updates and zeros for deselected q, k or v
303
+ """
304
+ # we need to do zero padding only if LoRA is disabled for one of QKV matrices
305
+ if all(self.enable_lora):
306
+ return x
307
+
308
+ # Let's image that:
309
+ # ⚬ input x has shape (64, 64, 256): (batch_size, sequence_length, embeddings_size)
310
+ # ⚬ embeddings_size: 128
311
+ # ⚬ self.linear.out_features: 384 (3 * embeddings_size)
312
+ # ⚬ enable_lora: [True, False, True]
313
+ # Then x has embeddings_size of 256 (2 * 128 as enable_lora only for query and value, not keys) and expected
314
+ # embeddings_size is 384 (self.linear.out_features), so that means that we need to pad from 256 to 384 with zeros, but
315
+ # only for key updates (this is where self.lora_ind comes in handy)
316
+
317
+ result = x.new_zeros(*x.shape[:-1], self.linear.out_features) # (64, 64, 384)
318
+ if result.device.type == "mps":
319
+ result[..., self.lora_ind] = x
320
+ return result
321
+ else:
322
+ return result.index_copy_(dim=-1, index=self.lora_ind, source=x) # (64, 64, 384)
323
+
324
+ def conv1d(self, input: torch.Tensor, weight: torch.Tensor) -> torch.Tensor:
325
+ """An extension of the `torch.nn.functional.conv1d` function with a logic specific to grouped queries.
326
+
327
+ If the number of heads is equal to the number of query groups - grouped queries are disabled
328
+ (see scheme in `litgpt/config.py:Config`). In this case the combined QKV matrix consists of equally sized
329
+ query, key and value parts, which means we can utilize `groups` argument from `conv1d`: with this argument the
330
+ input and weight matrices will be split in equally sized parts and applied separately (like having multiple
331
+ conv layers side by side).
332
+
333
+ Otherwise QKV matrix consists of unequally sized parts and thus we have to split input and weight matrices manually,
334
+ apply each part of the weight matrix to the corresponding input's part and concatenate the result.
335
+
336
+ Args:
337
+ input: input matrix of shape (B, C, T)
338
+ weight: weight matrix of shape (C_output, rank, 1).
339
+ "C_output" is defined as a sum of embedding sizes for each enabled LoRA layer (see init method of the class).
340
+
341
+ Returns:
342
+ A tensor with a shape (B, C_output, T)
343
+
344
+ """
345
+ if self.n_head == self.n_query_groups:
346
+ return F.conv1d(input, weight, groups=sum(self.enable_lora)) # (B, C_output, T)
347
+
348
+ # Notation:
349
+ # ⚬ N: number of enabled LoRA layers (self.enable_lora)
350
+ # ⚬ C_output': embeddings size for each LoRA layer (not equal in size)
351
+ # ⚬ r: rank of all LoRA layers (equal in size)
352
+
353
+ input_splitted = input.chunk(sum(self.enable_lora), dim=1) # N * (B, C // N, T)
354
+ weight_splitted = weight.split(self.qkv_shapes) # N * (C_output', r, 1)
355
+ return torch.cat(
356
+ [F.conv1d(a, b) for a, b in zip(input_splitted, weight_splitted)],
357
+ dim=1, # (B, C_output', T)
358
+ ) # (B, C_output, T)
359
+
360
+ def get_lora_AB(self) -> torch.Tensor:
361
+ """Return merged lora_A and lora_B matrices with the same shape as the pretrained weights."""
362
+ # Let's assume that:
363
+ # ⚬ self.linear.weight.data: (384, 128) or (3 * embedding_size, embedding_size)
364
+ # ⚬ self.lora_A.data: (4, 128)
365
+ # ⚬ self.lora_B.data: (256, 2)
366
+ lora = self.conv1d(
367
+ self.lora_A.data.unsqueeze(0), # (4, 128) -> (1, 4, 128)
368
+ self.lora_B.data.unsqueeze(-1), # (256, 2) -> (256, 2, 1)
369
+ ).squeeze(0) # (1, 4, 128) @ (256, 2, 1) -> (1, 256, 128) -> (256, 128)
370
+ return self.zero_pad(lora.T * self.scaling).T # (256, 128) after zero_pad (384, 128)
371
+
372
+ def merge(self) -> None:
373
+ """Merges the LoRA weights into the full-rank weights (W = W + delta_W)."""
374
+ if self.r > 0 and any(self.enable_lora) and not self.merged:
375
+ super().merge()
376
+
377
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
378
+ """Do the forward pass.
379
+
380
+ If LoRA's weights are merged with pretrained ones then it's a simple matrix multiplication.
381
+ If not, then multiply pretrained weights with input, apply LoRA on input and do summation.
382
+
383
+ Args:
384
+ x: input tensor of shape (batch_size, context_length, embedding_size)
385
+
386
+ Returns:
387
+ Output tensor of shape (batch_size, context_length, 3 * embedding_size)
388
+ """
389
+
390
+ # Let's assume that:
391
+ # ⚬ x: (64, 64, 128) or (batch_size, context_length, embedding_size)
392
+ # ⚬ self.linear.weight: (384, 128) or (3 * embedding_size, embedding_size)
393
+ # ⚬ self.lora_A.data: (4, 128)
394
+ # ⚬ self.lora_B.data: (256, 2)
395
+
396
+ # if weights are merged or LoRA is disabled (r <= 0 or all `enable_lora` are False) - it's only a regular nn.Linear forward pass;
397
+ # otherwise in addition do the forward pass with LoRA weights and add it's output to the output from pretrained weights
398
+ pretrained = self.linear(x)
399
+ if self.r == 0 or not any(self.enable_lora) or self.merged:
400
+ return pretrained
401
+ after_A = F.linear(self.lora_dropout(x), self.lora_A) # (64, 64, 128) @ (4, 128) -> (64, 64, 4)
402
+ # For F.conv1d:
403
+ # ⚬ input: input tensor of shape (mini-batch, in_channels, iW)
404
+ # ⚬ weight: filters of shape (out_channels, in_channels/groups, kW)
405
+ after_B = self.conv1d(
406
+ after_A.transpose(-2, -1), # (64, 64, 4) -> (64, 4, 64)
407
+ self.lora_B.unsqueeze(-1), # (256, 2) -> (256, 2, 1)
408
+ ).transpose(-2, -1) # (64, 4, 64) @ (256, 2, 1) -> (64, 256, 64) -> (64, 64, 256)
409
+ lora = self.zero_pad(after_B) * self.scaling # (64, 64, 256) after zero_pad (64, 64, 384)
410
+ return pretrained + lora
411
+
412
+
413
+ def mark_only_lora_as_trainable(model: nn.Module, bias: str = "none") -> None:
414
+ """Freeze all modules except LoRA's and depending on 'bias' value unfreezes bias weights.
415
+
416
+ Args:
417
+ model: model with LoRA layers
418
+ bias:
419
+ ``"none"``: all bias weights will be frozen,
420
+ ``"lora_only"``: only bias weight for LoRA layers will be unfrozen,
421
+ ``"all"``: all bias weights will be unfrozen.
422
+
423
+ Raises:
424
+ NotImplementedError: if `bias` not in ["none", "lora_only", "all"]
425
+ """
426
+ # freeze all layers except LoRA's
427
+ for n, p in model.named_parameters():
428
+ if "lora_" not in n:
429
+ p.requires_grad = False
430
+
431
+ # depending on the `bias` value unfreeze bias weights
432
+ if bias == "none":
433
+ return
434
+ if bias == "all":
435
+ for n, p in model.named_parameters():
436
+ if "bias" in n:
437
+ p.requires_grad = True
438
+ elif bias == "lora_only":
439
+ for m in model.modules():
440
+ if isinstance(m, LoRALayer) and hasattr(m, "bias") and m.bias is not None:
441
+ m.bias.requires_grad = True
442
+ else:
443
+ raise NotImplementedError
444
+
445
+
446
+ def lora_filter(key: str, value: Any) -> bool:
447
+ return "lora_" in key
448
+
449
+
450
+ @dataclass
451
+ class Config(BaseConfig):
452
+ """
453
+ Args:
454
+ lora_r: rank of the weight update matrices. To make sense of using LoRA the rank should be smaller than the rank of
455
+ the weights of the model. The rank can be as low as 1: https://arxiv.org/pdf/2106.09685.pdf (section 7.2)
456
+ lora_alpha: alpha is needed for scaling updates as alpha/r
457
+ "This scaling helps to reduce the need to retune hyperparameters when we vary r"
458
+ https://arxiv.org/pdf/2106.09685.pdf (section 4.1)
459
+ lora_dropout: dropout that is applied on the input in the LoRA branch (before multiplying by matrix A)
460
+ lora_*: whether to apply LoRA to the specified weights or not
461
+ """
462
+
463
+ lora_r: int = 0
464
+ lora_alpha: int = 1
465
+ lora_dropout: float = 0.0
466
+ lora_query: bool = False
467
+ lora_key: bool = False
468
+ lora_value: bool = False
469
+ lora_projection: bool = False
470
+ lora_mlp: bool = False
471
+ lora_head: bool = False
472
+
473
+ @property
474
+ def mlp_class(self) -> Type:
475
+ return getattr(litgpt.lora, self.mlp_class_name)
476
+
477
+
478
+ class GPT(BaseModel):
479
+ # Copy & paste from :class:`model.GPT`. Note that :class:`Block` is new here.
480
+ def __init__(self, config: Config) -> None:
481
+ nn.Module.__init__(self)
482
+ assert config.padded_vocab_size is not None
483
+ self.config = config
484
+
485
+ self.lm_head = create_lora_linear(
486
+ config,
487
+ config.n_embd,
488
+ config.padded_vocab_size,
489
+ bias=config.lm_head_bias,
490
+ use_r=config.lora_head,
491
+ )
492
+ self.transformer = nn.ModuleDict(
493
+ dict(
494
+ wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
495
+ h=nn.ModuleList(Block(config, block_idx) for block_idx in range(config.n_layer)),
496
+ ln_f=config.norm_class(config.n_embd, eps=config.norm_eps),
497
+ )
498
+ )
499
+ self.mask_cache: Optional[torch.Tensor] = None
500
+ self.max_seq_length = self.config.block_size
501
+
502
+ @classmethod
503
+ def from_name(cls, name: str, **kwargs: Any) -> Self:
504
+ return cls(Config.from_name(name, **kwargs))
505
+
506
+ def _init_weights(self, module: nn.Module) -> None:
507
+ """Meant to be used with `gpt.apply(gpt._init_weights)`. Unused method left for completeness."""
508
+ super()._init_weights(module)
509
+ if isinstance(module, LoRALinear):
510
+ module.reset_parameters()
511
+
512
+ def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
513
+ """For compatibility with base checkpoints."""
514
+ mapping = {"lm_head.weight": "lm_head.linear.weight", "lm_head.bias": "lm_head.linear.bias"}
515
+ state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
516
+ super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
517
+
518
+
519
+ class Block(BaseBlock):
520
+ def __init__(self, config: Config, block_idx: int) -> None:
521
+ super().__init__(config, block_idx)
522
+ self.attn = CausalSelfAttention(config, block_idx)
523
+ self.mlp = config.mlp_class(config)
524
+
525
+
526
+ class CausalSelfAttention(BaseCausalSelfAttention):
527
+ def __init__(self, config: Config, block_idx: int) -> None:
528
+ super().__init__(config, block_idx)
529
+ # key, query, value projections for all heads, but in a batch
530
+ shape = (config.n_head + 2 * config.n_query_groups) * config.head_size
531
+ self.qkv = LoRAQKVLinear(
532
+ in_features=config.n_embd,
533
+ out_features=shape,
534
+ r=config.lora_r,
535
+ lora_alpha=config.lora_alpha,
536
+ lora_dropout=config.lora_dropout,
537
+ enable_lora=(config.lora_query, config.lora_key, config.lora_value),
538
+ bias=config.bias or config.attn_bias,
539
+ # for MQA/GQA support
540
+ head_size=config.head_size,
541
+ n_head=config.n_head,
542
+ n_query_groups=config.n_query_groups,
543
+ )
544
+ # output projection
545
+ self.proj = create_lora_linear(
546
+ config,
547
+ config.head_size * config.n_head,
548
+ config.n_embd,
549
+ use_r=config.lora_projection,
550
+ )
551
+
552
+ def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
553
+ """For compatibility with base and/or legacy checkpoints."""
554
+ mapping = {
555
+ "qkv.weight": "qkv.linear.weight",
556
+ "qkv.bias": "qkv.linear.bias",
557
+ "proj.weight": "proj.linear.weight",
558
+ "proj.bias": "proj.linear.bias",
559
+ }
560
+ state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
561
+
562
+ for attr in ("weight", "bias"):
563
+ legacy_key = f"{prefix}attn.linear.{attr}"
564
+ current_key = f"{prefix}qkv.linear.{attr}"
565
+ if legacy_key in state_dict:
566
+ state_dict[current_key] = qkv_reassemble(state_dict.pop(legacy_key), self.config)
567
+
568
+ super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
569
+
570
+
571
+ def create_lora_linear(
572
+ config: Config,
573
+ in_size: int,
574
+ out_size: int,
575
+ bias: Optional[Union[float, bool]] = None,
576
+ use_r: Optional[bool] = None,
577
+ ) -> LoRALinear:
578
+ if bias is None:
579
+ bias = config.bias
580
+ if use_r is None:
581
+ use_r = config.lora_mlp
582
+ return LoRALinear(
583
+ in_size,
584
+ out_size,
585
+ bias=bias,
586
+ r=(config.lora_r if use_r else 0),
587
+ lora_alpha=config.lora_alpha,
588
+ lora_dropout=config.lora_dropout,
589
+ )
590
+
591
+
592
+ class GptNeoxMLP(litgpt.model.GptNeoxMLP):
593
+ def __init__(self, config: Config) -> None:
594
+ nn.Module.__init__(self)
595
+ self.fc = create_lora_linear(config, config.n_embd, config.intermediate_size)
596
+ self.proj = create_lora_linear(config, config.intermediate_size, config.n_embd)
597
+ self.config = config
598
+
599
+ def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
600
+ """For compatibility with base checkpoints."""
601
+ mapping = {
602
+ "fc.weight": "fc.linear.weight",
603
+ "fc.bias": "fc.linear.bias",
604
+ "proj.weight": "proj.linear.weight",
605
+ "proj.bias": "proj.linear.bias",
606
+ }
607
+ state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
608
+ super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
609
+
610
+
611
+ class LLaMAMLP(litgpt.model.LLaMAMLP):
612
+ def __init__(self, config: Config, intermediate_size: Optional[int] = None) -> None:
613
+ nn.Module.__init__(self)
614
+ self.intermediate_size = intermediate_size or config.intermediate_size
615
+ self.fc_1 = create_lora_linear(config, config.n_embd, self.intermediate_size)
616
+ self.fc_2 = create_lora_linear(config, config.n_embd, self.intermediate_size)
617
+ self.proj = create_lora_linear(config, self.intermediate_size, config.n_embd)
618
+ self.config = config
619
+
620
+ def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
621
+ """For compatibility with base checkpoints."""
622
+ mapping = {
623
+ "fc_1.weight": "fc_1.linear.weight",
624
+ "fc_1.bias": "fc_1.linear.bias",
625
+ "fc_2.weight": "fc_2.linear.weight",
626
+ "fc_2.bias": "fc_2.linear.bias",
627
+ "proj.weight": "proj.linear.weight",
628
+ "proj.bias": "proj.linear.bias",
629
+ }
630
+ state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
631
+ super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
632
+
633
+
634
+ class GemmaMLP(LLaMAMLP):
635
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
636
+ x_fc_1 = self.fc_1(x)
637
+ x_fc_2 = self.fc_2(x)
638
+ x = torch.nn.functional.gelu(x_fc_1, approximate=self.config.gelu_approximate) * x_fc_2
639
+ return self.proj(x)
640
+
641
+
642
+ class LLaMAMoE(litgpt.model.LLaMAMoE):
643
+ def __init__(self, config: Config) -> None:
644
+ nn.Module.__init__(self)
645
+ self.gate = create_lora_linear(config, config.n_embd, config.n_expert, bias=False)
646
+ self.experts = nn.ModuleList(
647
+ LLaMAMLP(config, intermediate_size=config.moe_intermediate_size) for _ in range(config.n_expert)
648
+ )
649
+ self.config = config
650
+
651
+ def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
652
+ """For compatibility with base checkpoints."""
653
+ mapping = {"gate.weight": "gate.linear.weight"}
654
+ state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
655
+ super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
656
+
657
+
658
+ def merge_lora_weights(model: GPT) -> None:
659
+ """Merge LoRA weights into the full-rank weights to speed up inference."""
660
+ for module in model.modules():
661
+ if isinstance(module, LoRALinear):
662
+ module.merge()
litgpt/model.py ADDED
@@ -0,0 +1,876 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
2
+
3
+ """Full definition of a decoder-only transformer-based language model, all of it in this single file.
4
+
5
+ Based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT and
6
+ https://github.com/EleutherAI/gpt-neox/tree/main/megatron/model.
7
+ """
8
+
9
+ import math
10
+ from functools import partial
11
+ from typing import Any, List, Optional, Tuple, Union
12
+
13
+ import torch
14
+ import torch.nn as nn
15
+ import torch.nn.functional as F
16
+ from typing_extensions import Self
17
+
18
+ from litgpt.config import Config
19
+ from litgpt.scripts.convert_hf_checkpoint import qkv_reassemble
20
+
21
+
22
+ class GPT(nn.Module):
23
+ def __init__(self, config: Config) -> None:
24
+ super().__init__()
25
+ assert config.padded_vocab_size is not None
26
+ self.config = config
27
+
28
+ self.lm_head = nn.Linear(config.n_embd, config.padded_vocab_size, bias=config.lm_head_bias)
29
+ self.transformer = nn.ModuleDict(
30
+ dict(
31
+ wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
32
+ h=nn.ModuleList(Block(config, block_idx) for block_idx in range(config.n_layer)),
33
+ ln_f=config.norm_class(config.n_embd, eps=config.norm_eps),
34
+ )
35
+ )
36
+ self.mask_cache: Optional[torch.Tensor] = None
37
+ self.max_seq_length = self.config.block_size
38
+
39
+ @property
40
+ def max_seq_length(self) -> int:
41
+ return self._max_seq_length
42
+
43
+ @max_seq_length.setter
44
+ def max_seq_length(self, value: int) -> None:
45
+ """
46
+ When doing inference, the sequences used might be shorter than the model's context length.
47
+ This allows setting a smaller number to avoid allocating unused memory
48
+ """
49
+ if value > self.config.block_size:
50
+ raise ValueError(
51
+ f"Cannot attend to {value}, block size is only {self.config.block_size}."
52
+ " This is likely because the input text exceeds the supported context length of this model."
53
+ )
54
+ self._max_seq_length = value
55
+ if not hasattr(self, "cos"):
56
+ # first call
57
+ cos, sin = self.rope_cache()
58
+ self.register_buffer("cos", cos, persistent=False)
59
+ self.register_buffer("sin", sin, persistent=False)
60
+ # override
61
+ elif value != self.cos.size(0):
62
+ self.cos, self.sin = self.rope_cache(device=self.cos.device)
63
+ # the mask and kv cache size will get updated on `set_kv_cache`. we cannot update it here because we don't know
64
+ # if the kv cache is expected
65
+ if self.mask_cache is not None and self.mask_cache.shape[-1] < value:
66
+ print(
67
+ f"Warning: KV cache has length {self.mask_cache.shape[-1]} < {value} = max_seq_length. Call 'set_kv_cache' before doing any forwards!"
68
+ )
69
+
70
+ def reset_parameters(self) -> None:
71
+ # Trigger resetting the rope-cache
72
+ self.cos, self.sin = self.rope_cache(device=self.cos.device)
73
+
74
+ def _init_weights(self, module: nn.Module) -> None:
75
+ """Meant to be used with `gpt.apply(gpt._init_weights)`."""
76
+ if isinstance(module, nn.Linear):
77
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
78
+ if module.bias is not None:
79
+ torch.nn.init.zeros_(module.bias)
80
+ elif isinstance(module, nn.Embedding):
81
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
82
+
83
+ def forward(
84
+ self,
85
+ idx: torch.Tensor,
86
+ input_pos: Optional[torch.Tensor] = None,
87
+ input_pos_maxp1: Optional[int] = None,
88
+ lm_head_chunk_size: int = 0,
89
+ ) -> Union[torch.Tensor, List[torch.Tensor]]:
90
+ """
91
+ If `input_pos` is provided, the KV cache uses K and V vectors for
92
+ positions smaller than entries in `input_pos`. For efficiency, pass
93
+ `input_pos_maxp1` as `max(input_pos) + 1` if already available from
94
+ your forward algorithm. This slices the KV cache buffers and speeds
95
+ up multi-head attention.
96
+
97
+ Without `input_pos_maxp1`, the computation uses the full KV cache
98
+ (`max_seq_length`) with masking applied. Note that inferring
99
+ `input_pos_maxp1` from `input_pos` causes graph breaks and prevents
100
+ compilation.
101
+
102
+ Args:
103
+ idx: Token indices of input sequences, shape `(B, T)`, where `B`
104
+ is batch size.
105
+ input_pos: Optional. Positions of input tokens. The default is
106
+ `arange(T)`. Can have shape `(T,)` or `(B, T)` (batched index).
107
+ input_pos_maxp1: Optional. See above.
108
+ lm_head_chunk_size: Optional. If `lm_head_chunk_size > 0`, the final
109
+ `lm_head` computation is done in chunks of this size.
110
+
111
+ Returns:
112
+ Logit outputs, shape `(B, T, config.padded_vocab_size)`. If
113
+ `lm_head_chunk_size > 0`, this is a list of chunks of shape
114
+ `(B, lm_head_chunk_size, config.padded_vocab_size)`, the final
115
+ entry can be shorter.
116
+
117
+ """
118
+ T = idx.size(1)
119
+ if self.max_seq_length < T:
120
+ raise ValueError(f"Cannot forward sequence of length {T}, max seq length is only {self.max_seq_length}.")
121
+
122
+ if input_pos is not None: # use the kv cache
123
+ if input_pos.dim() > 2:
124
+ # otherwise, things go wrong in `apply_rope`
125
+ raise ValueError(f"input_pos must have 1 or 2 dimensions, input_pos.shape = {input_pos.shape}")
126
+ if input_pos.shape[-1] != T:
127
+ raise ValueError(f"input_pos.shape[-1] = {input_pos.shape[-1]} != {T} = idx.shape[1], must be the same")
128
+ cos = batched_index_select(self.cos, 0, input_pos)
129
+ sin = batched_index_select(self.sin, 0, input_pos)
130
+ if input_pos.dim() == 1:
131
+ cos = cos.unsqueeze(0)
132
+ sin = sin.unsqueeze(0)
133
+ if self.mask_cache is None:
134
+ raise TypeError("You need to call `gpt.set_kv_cache()`")
135
+ mask = batched_index_select(self.mask_cache, 2, input_pos)
136
+ if mask.dim() > 4:
137
+ # the mask cache has a batch dim of 1 in addition to the one
138
+ # we get if input_pos has a batch dimension
139
+ mask = mask.view(*(mask.shape[0:1] + mask.shape[2:]))
140
+ if input_pos_maxp1 is not None:
141
+ # Shorten final dimension so it just covers all `input_pos` entries
142
+ if input_pos_maxp1 > self.max_seq_length:
143
+ raise ValueError(f"Positions in 'input_pos' must be in [0,{self.max_seq_length})")
144
+ mask = mask[..., :input_pos_maxp1]
145
+ else:
146
+ # unsqueeze to have a batch dimension
147
+ cos = self.cos[:T].unsqueeze(0)
148
+ sin = self.sin[:T].unsqueeze(0)
149
+ # `cos`, `sin` have shape (1, T, config.rope_n_elem)
150
+ mask = None # defaults to causal mask
151
+ input_pos_maxp1 = None
152
+
153
+ x = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
154
+ if self.config.scale_embeddings:
155
+ x = x * torch.tensor(self.config.n_embd**0.5, dtype=x.dtype)
156
+
157
+ for block_idx, block in enumerate(self.transformer.h):
158
+ if self.config.rope_indices is not None:
159
+ x = block(
160
+ x,
161
+ cos[..., self.config.rope_indices[block_idx]],
162
+ sin[..., self.config.rope_indices[block_idx]],
163
+ mask,
164
+ input_pos,
165
+ input_pos_maxp1,
166
+ )
167
+ else:
168
+ x = block(x, cos, sin, mask, input_pos, input_pos_maxp1)
169
+ x = self.transformer.ln_f(x)
170
+ clamp_head = (
171
+ partial(do_softcapping, thresh=self.config.final_logit_softcapping)
172
+ if self.config.final_logit_softcapping is not None
173
+ else nn.Identity()
174
+ )
175
+ if lm_head_chunk_size > 0:
176
+ # chunk the lm head logits to reduce the peak memory used by autograd
177
+ return [clamp_head(self.lm_head(x_i)) for x_i in x.split(lm_head_chunk_size, dim=1)]
178
+ else:
179
+ return clamp_head(self.lm_head(x)) # (B, T, padded_vocab_size)
180
+
181
+ @classmethod
182
+ def from_name(cls, name: str, **kwargs: Any) -> Self:
183
+ return cls(Config.from_name(name, **kwargs))
184
+
185
+ def rope_cache(self, device: Optional[torch.device] = None) -> Tuple[torch.Tensor, torch.Tensor]:
186
+ if self.config.rope_adjustments is None:
187
+ extra_config = None
188
+
189
+ else:
190
+ adjusted_params_required = ["factor", "low_freq_factor", "high_freq_factor", "original_max_seq_len"]
191
+ params_present = [param in self.config.rope_adjustments for param in adjusted_params_required]
192
+ num_params_present = sum(params_present)
193
+
194
+ if num_params_present == 0:
195
+ extra_config = None # uses standard RoPE
196
+ elif num_params_present == 4:
197
+ # These parameters should always be used together so that we don't interfere with standard rope
198
+ extra_config = {name: self.config.rope_adjustments[name] for name in adjusted_params_required}
199
+ elif "factor" in self.config.rope_adjustments:
200
+ # linear RoPE
201
+ adjusted_params_required = ["factor"]
202
+ extra_config = {name: self.config.rope_adjustments[name] for name in adjusted_params_required}
203
+ else:
204
+ # Some but not all parameters are specified; raise an error
205
+ missing_params = [
206
+ param for param, present in zip(adjusted_params_required, params_present) if not present
207
+ ]
208
+ raise ValueError(
209
+ f"The following adjusted RoPE parameters are missing in rope_adjustments: {', '.join(missing_params)}. "
210
+ "All adjusted RoPE parameters must be specified together."
211
+ )
212
+
213
+ return build_rope_cache(
214
+ seq_len=self.max_seq_length,
215
+ n_elem=self.config.rope_n_elem,
216
+ device=device,
217
+ condense_ratio=self.config.rope_condense_ratio,
218
+ base=self.config.rope_base,
219
+ extra_config=extra_config,
220
+ rope_local_base_freq=self.config.rope_local_base_freq,
221
+ )
222
+
223
+ def set_kv_cache(
224
+ self,
225
+ batch_size: int,
226
+ max_seq_length: Optional[int] = None,
227
+ rope_cache_length: Optional[int] = None,
228
+ device: Optional[torch.device] = None,
229
+ dtype: Optional[torch.dtype] = None,
230
+ ) -> None:
231
+ if rope_cache_length is None:
232
+ if len(self.cos.shape) == 2:
233
+ rope_cache_length = self.cos.size(-1)
234
+ else:
235
+ rope_cache_length = self.cos[..., 0].size(-1)
236
+
237
+ if max_seq_length is None:
238
+ max_seq_length = self.max_seq_length
239
+
240
+ # initialize the kv cache for all blocks
241
+ for block in self.transformer.h:
242
+ block.attn.kv_cache = block.attn.build_kv_cache(
243
+ batch_size,
244
+ max_seq_length,
245
+ rope_cache_length,
246
+ device,
247
+ dtype,
248
+ )
249
+
250
+ if self.mask_cache is None or self.mask_cache.size(3) != max_seq_length:
251
+ # passing `attn_mask` to SDPA disables the flash implementation. since we only need the mask
252
+ # for the kv-cache support (only during inference), we only create it in that situation
253
+ self.mask_cache = build_mask_cache(max_seq_length, device)
254
+
255
+ def clear_kv_cache(self) -> None:
256
+ self.mask_cache = None
257
+ for block in self.transformer.h:
258
+ block.attn.kv_cache = None
259
+
260
+
261
+ class Block(nn.Module):
262
+ def __init__(
263
+ self,
264
+ config: Config,
265
+ block_idx: int,
266
+ ) -> None:
267
+ super().__init__()
268
+ if not config.parallel_residual and config.shared_attention_norm:
269
+ raise NotImplementedError(
270
+ "No checkpoint amongst the ones we support uses this configuration"
271
+ " (non-parallel residual and shared attention norm)."
272
+ )
273
+
274
+ self.norm_1 = nn.Identity() if not config.norm_1 else config.norm_class(config.n_embd, eps=config.norm_eps)
275
+ self.attn = CausalSelfAttention(config, block_idx)
276
+ self.post_attention_norm = (
277
+ config.norm_class(config.n_embd, eps=config.norm_eps) if config.post_attention_norm else nn.Identity()
278
+ )
279
+ self.norm_2 = (
280
+ nn.Identity()
281
+ if not config.norm_2
282
+ else (None if config.shared_attention_norm else config.norm_class(config.n_embd, eps=config.norm_eps))
283
+ )
284
+ self.mlp = config.mlp_class(config)
285
+ self.post_mlp_norm = (
286
+ config.norm_class(config.n_embd, eps=config.norm_eps) if config.post_mlp_norm else nn.Identity()
287
+ )
288
+
289
+ self.config = config
290
+
291
+ def forward(
292
+ self,
293
+ x: torch.Tensor,
294
+ cos: torch.Tensor,
295
+ sin: torch.Tensor,
296
+ mask: Optional[torch.Tensor] = None,
297
+ input_pos: Optional[torch.Tensor] = None,
298
+ input_pos_maxp1: Optional[int] = None,
299
+ ) -> torch.Tensor:
300
+ """
301
+ Non-parallel residual Parallel residual
302
+ ┌─ x ┌─ x ──────────────────┐ Note: if `shared_attention_norm` is True,
303
+ │ ↓ │ ↓ ↓ the output from `norm_1` is reused
304
+ │ norm_1 │ norm_1 ───────► norm_2
305
+ │ ↓ │ ↓ ↓
306
+ │ attn │ attn MLP
307
+ │ ↓ │ ↓ ↓
308
+ | post_attn_norm | post_attn_norm post_mlp_norm
309
+ | ↓ | ↓ ↓
310
+ ┌─ └► + └► + ◄─────────────────┘
311
+ | ↓
312
+ │ norm_2
313
+ │ ↓
314
+ │ MLP
315
+ │ ↓
316
+ | post_mlp_norm
317
+ | ↓
318
+ └───► +
319
+ """
320
+
321
+ x_normed = self.norm_1(x)
322
+ attention_output = self.attn(x_normed, cos, sin, mask, input_pos, input_pos_maxp1)
323
+ attention_output = self.post_attention_norm(attention_output)
324
+
325
+ if self.config.parallel_residual:
326
+ if not self.config.shared_attention_norm:
327
+ x_normed = self.norm_2(x)
328
+ x = attention_output + x
329
+ else:
330
+ x = attention_output + x
331
+ x_normed = self.norm_2(x)
332
+
333
+ return self.post_mlp_norm(self.mlp(x_normed)) + x
334
+
335
+
336
+ class CausalSelfAttention(nn.Module):
337
+ def __init__(self, config: Config, block_idx: int) -> None:
338
+ super().__init__()
339
+ # key, query and value projections for all heads, but in a batch
340
+ self.qkv = nn.Linear(
341
+ config.n_embd,
342
+ (config.n_head + 2 * config.n_query_groups) * config.head_size, # support for grouped/multi queries
343
+ bias=config.bias or config.attn_bias,
344
+ )
345
+ # output projection
346
+ self.proj = nn.Linear(config.head_size * config.n_head, config.n_embd, bias=config.bias)
347
+ # disabled by default
348
+ self.kv_cache: Optional[KVCache] = None
349
+ self.apply_sliding_window_attention = False
350
+ if config.sliding_window_size is not None and config.sliding_window_indices is not None:
351
+ self.apply_sliding_window_attention = config.sliding_window_indices[block_idx]
352
+
353
+ if config.norm_qk:
354
+ norm_q_size = config.n_head * config.head_size if config.norm_qk_type == "olmo2" else config.head_size
355
+ norm_k_size = (
356
+ config.n_query_groups * config.head_size if config.norm_qk_type == "olmo2" else config.head_size
357
+ )
358
+ self.norm_q = config.norm_class(norm_q_size, eps=config.norm_eps)
359
+ self.norm_k = config.norm_class(norm_k_size, eps=config.norm_eps)
360
+ else:
361
+ self.norm_q = self.norm_k = None
362
+
363
+ self.config = config
364
+ self.block_idx = block_idx
365
+
366
+ def forward(
367
+ self,
368
+ x: torch.Tensor,
369
+ cos: torch.Tensor,
370
+ sin: torch.Tensor,
371
+ mask: Optional[torch.Tensor] = None,
372
+ input_pos: Optional[torch.Tensor] = None,
373
+ input_pos_maxp1: Optional[int] = None,
374
+ ) -> torch.Tensor:
375
+ # Notation:
376
+ # - B | batch size
377
+ # - T | time-step (sequence length)
378
+ # - C | model's embeddings size (n_embd)
379
+ # - C* | attentions's embeddings size
380
+ # - hs | head size
381
+ # - nh_(q,k,v) | number of heads for query, key and value
382
+ # - n_query_groups = nh_k = nh_v | number of query groups sharing key and value heads
383
+ # alternative notation: num_kv_groups = n_query_groups
384
+ # ┌───┐┌───┐┌───┐┌───┐ ┌───┐ ┌───┐ ┌───┐
385
+ # │ v ││ v ││ v ││ v │ │ v │ │ v │ │ v │
386
+ # └───┘└───┘└───┘└───┘ └───┘ └───┘ └───┘
387
+ # │ │ │ │ │ │ │
388
+ # ┌───┐┌───┐┌───┐┌───┐ ┌───┐ ┌───┐ ┌───┐
389
+ # │ k ││ k ││ k ││ k │ │ k │ │ k │ │ k │
390
+ # └───┘└───┘└───┘└───┘ └───┘ └───┘ └───┘
391
+ # │ │ │ │ ┌──┴──┐ ┌──┴──┐ ┌────┬──┴─┬────┐
392
+ # ┌───┐┌───┐┌───┐┌───┐ ┌───┐┌───┐┌───┐┌───┐ ┌───┐┌───┐┌───┐┌───┐
393
+ # │ q ││ q ││ q ││ q │ │ q ││ q ││ q ││ q │ │ q ││ q ││ q ││ q │
394
+ # └───┘└───┘└───┘└───┘ └───┘└───┘└───┘└───┘ └───┘└───┘└───┘└───┘
395
+ # ◀──────────────────▶ ◀──────────────────▶ ◀──────────────────▶
396
+ # MHA GQA MQA
397
+ # n_query_groups=4 n_query_groups=2 n_query_groups=1
398
+ #
399
+ # credit https://arxiv.org/pdf/2305.13245.pdf
400
+ head_size = self.config.head_size
401
+ n_head = self.config.n_head
402
+ n_query_groups = self.config.n_query_groups
403
+ rope_n_elem = self.config.rope_n_elem
404
+ B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
405
+
406
+ # Perform a single multiplication operation using a combined QKV matrix to calculate `query`, `key`, and `value`
407
+ # instead of individually multiplying the input `x` with the respective weight matrices.
408
+ qkv = self.qkv(x) # (B, T, 3xC*)
409
+
410
+ # Define query, key and value sizes.
411
+ # If grouped/multi query is enabled, these sizes are not equal (see the diagram above).
412
+ query_size = n_head * head_size
413
+ key_size = value_size = n_query_groups * head_size
414
+ # Split qkv into query, key and value matrices.
415
+ q, k, v = qkv.split((query_size, key_size, value_size), dim=-1) # 3x(B, T, C*)
416
+
417
+ if self.config.norm_qk and self.config.norm_qk_type == "olmo2":
418
+ q = self.norm_q(q)
419
+ k = self.norm_k(k)
420
+
421
+ # To place the num_heads (nh) dimension right after the batch (B) dimension, the first step is to decouple the
422
+ # embedding size (C) into num_heads (nh) and head_size (hs).
423
+
424
+ # The original GQA paper is followed here and the term query groups is used.
425
+ # alternative notation: Query groups are also referred to as KV groups.
426
+ q = q.view(B, T, n_head, head_size) # (B, T, nh_q, hs)
427
+ k = k.view(B, T, n_query_groups, head_size) # (B, T, n_query_groups, hs)
428
+ v = v.view(B, T, n_query_groups, head_size) # (B, T, n_query_groups, hs)
429
+
430
+ # The tensors `query`, `key`, and `value` are now accurately structured: within each batch element (B), there are
431
+ # multiple heads (nh), and within each head, there is a sequence of elements (T), each represented by a vector
432
+ # of size `hs`.
433
+ q = q.transpose(1, 2) # (B, nh_q, T, hs)
434
+ k = k.transpose(1, 2) # (B, nh_k, T, hs)
435
+ v = v.transpose(1, 2) # (B, nh_v, T, hs)
436
+
437
+ if self.config.norm_qk and self.config.norm_qk_type == "default":
438
+ q = self.norm_q(q)
439
+ k = self.norm_k(k)
440
+
441
+ # Unlike standard positional embeddings rotary embeddings must be applied at every layer.
442
+ q_roped = apply_rope(q[..., :rope_n_elem], cos, sin)
443
+ k_roped = apply_rope(k[..., :rope_n_elem], cos, sin)
444
+ q = torch.cat((q_roped, q[..., rope_n_elem:]), dim=-1) # (B, nh_q, T, hs)
445
+ k = torch.cat((k_roped, k[..., rope_n_elem:]), dim=-1) # (B, nh_k, T, hs)
446
+
447
+ # Apply kv-cache during inference.
448
+ if input_pos is not None:
449
+ if not isinstance(self.kv_cache, KVCache):
450
+ raise TypeError("You need to call `gpt.set_kv_cache()`")
451
+ k, v = self.kv_cache(input_pos, k, v)
452
+ if input_pos_maxp1 is not None:
453
+ # Subselect along sequence dimension
454
+ k = k[..., :input_pos_maxp1, :]
455
+ v = v[..., :input_pos_maxp1, :]
456
+ # k, v: (B, nh_k, input_pos_maxp1, hs)
457
+ # If input_pos_maxp1 is None -> max_seq_length
458
+
459
+ # Grouped queries: balance the number of heads across all three matrices.
460
+ # NOTE: flash attention requires it in training mode.
461
+ # Multi-query: this step can be skipped since there is only 1 head, allowing us to use broadcasting.
462
+ if n_query_groups != n_head and (input_pos is None or n_query_groups != 1):
463
+ q_per_kv = n_head // n_query_groups
464
+ k = k.repeat_interleave(q_per_kv, dim=1) # (B, nh_q, T, hs)
465
+ v = v.repeat_interleave(q_per_kv, dim=1) # (B, nh_q, T, hs)
466
+
467
+ if self.apply_sliding_window_attention:
468
+ """
469
+ Global Window Sliding window Sliding window
470
+ attention mask + bias = attention mask
471
+ ┌────────────────────────┐ ┌───────────────────────┐ ┌─────────────────────────┐
472
+ │ True False False False │ │ True True True True │ │ True False False False │
473
+ │ True True False False │ │ True True True True │ │ True True False False │
474
+ │ True True True False │ │ False True True True │ │ False True True False │
475
+ │ True True True True │ │ False False True True │ │ False False True True │
476
+ └────────────────────────┘ └───────────────────────┘ └─────────────────────────┘
477
+ """
478
+ if mask is None:
479
+ mask = torch.ones(T, T, dtype=q.dtype, device=q.device).triu(diagonal=1)
480
+ mask.masked_fill_(mask.bool(), float("-inf"))
481
+ mask = mask.view(1, 1, *mask.shape)
482
+ sliding_window_bias = torch.ones_like(mask).tril(diagonal=-self.config.sliding_window_size)
483
+ sliding_window_bias.masked_fill_(sliding_window_bias.bool(), float("-inf"))
484
+ mask += sliding_window_bias
485
+
486
+ # Efficient attention using Flash Attention CUDA kernels.
487
+ # NOTE: efficient implementation is disabled if `mask` is not None or softcapping is enabled.
488
+ # ↓ (B, nh, T, hs) @ (B, nh, T, hs).mT --> (B, nh, T, T) @ (B, nh, T, hs) --> (B, nh, T, hs)
489
+ y = self.scaled_dot_product_attention(q, k, v, mask)
490
+
491
+ # Re-assemble all head outputs side by side.
492
+ y = y.reshape(B, T, head_size * n_head)
493
+
494
+ # Output projection.
495
+ return self.proj(y) # (B, T, C)
496
+
497
+ def scaled_dot_product_attention(
498
+ self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, mask: Optional[torch.Tensor] = None
499
+ ) -> torch.Tensor:
500
+ scale = 1.0 / math.sqrt(self.config.attention_scores_scalar or self.config.head_size)
501
+
502
+ # with softcapping we cannot use SDPA
503
+ if self.config.attention_logit_softcapping is not None:
504
+ scores = q @ k.mT * scale
505
+ scores = do_softcapping(scores, self.config.attention_logit_softcapping)
506
+ if mask is None:
507
+ mask = torch.ones(q.size(2), q.size(2), dtype=q.dtype, device=q.device).triu(diagonal=1)
508
+ mask.masked_fill_(mask.bool(), torch.finfo(q.dtype).min)
509
+ scores = scores + mask
510
+ scores = F.softmax(scores, dim=-1, dtype=torch.float).to(dtype=q.dtype)
511
+ y = scores @ v
512
+ else:
513
+ y = F.scaled_dot_product_attention(
514
+ q, k, v, attn_mask=mask, dropout_p=0.0, scale=scale, is_causal=mask is None
515
+ )
516
+ return y.transpose(1, 2)
517
+
518
+ def build_kv_cache(
519
+ self,
520
+ batch_size: int,
521
+ max_seq_length: int,
522
+ rope_cache_length: Optional[int] = None,
523
+ device: Optional[torch.device] = None,
524
+ dtype: Optional[torch.dtype] = None,
525
+ ) -> "KVCache":
526
+ v_shape = (batch_size, self.config.n_query_groups, max_seq_length, self.config.head_size)
527
+ if rope_cache_length is None:
528
+ if self.config.rotary_percentage != 1.0:
529
+ raise TypeError("Please pass the `rope_cache_length=gpt.cos.size(-1)` value")
530
+ k_shape = v_shape
531
+ else:
532
+ k_shape = (
533
+ batch_size,
534
+ self.config.n_query_groups,
535
+ max_seq_length,
536
+ rope_cache_length + self.config.head_size - self.config.rope_n_elem,
537
+ )
538
+ return KVCache(k_shape, v_shape, device=device, dtype=dtype)
539
+
540
+ def _load_from_state_dict(self, state_dict: dict, prefix: str, *args: Any, **kwargs: Any) -> None:
541
+ """For compatibility with legacy checkpoints."""
542
+
543
+ for attr in ("weight", "bias"):
544
+ legacy_key = f"{prefix}attn.{attr}"
545
+ current_key = f"{prefix}qkv.{attr}"
546
+ if legacy_key in state_dict:
547
+ state_dict[current_key] = qkv_reassemble(state_dict.pop(legacy_key), self.config)
548
+
549
+ super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
550
+
551
+
552
+ class GptNeoxMLP(nn.Module):
553
+ def __init__(self, config: Config, intermediate_size: Optional[int] = None) -> None:
554
+ super().__init__()
555
+ self.intermediate_size = intermediate_size or config.intermediate_size
556
+ self.fc = nn.Linear(config.n_embd, self.intermediate_size, bias=config.bias)
557
+ self.proj = nn.Linear(self.intermediate_size, config.n_embd, bias=config.bias)
558
+ self.config = config
559
+
560
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
561
+ x = self.fc(x)
562
+ x = F.gelu(x, approximate=self.config.gelu_approximate)
563
+ return self.proj(x)
564
+
565
+
566
+ class LLaMAMLP(nn.Module):
567
+ def __init__(self, config: Config, intermediate_size: Optional[int] = None) -> None:
568
+ super().__init__()
569
+ self.intermediate_size = intermediate_size or config.intermediate_size
570
+ self.fc_1 = nn.Linear(config.n_embd, self.intermediate_size, bias=config.bias)
571
+ self.fc_2 = nn.Linear(config.n_embd, self.intermediate_size, bias=config.bias)
572
+ self.proj = nn.Linear(self.intermediate_size, config.n_embd, bias=config.bias)
573
+ self.config = config
574
+
575
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
576
+ x_fc_1 = self.fc_1(x)
577
+ x_fc_2 = self.fc_2(x)
578
+ x = F.silu(x_fc_1) * x_fc_2
579
+ return self.proj(x)
580
+
581
+
582
+ class GemmaMLP(LLaMAMLP):
583
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
584
+ x_fc_1 = self.fc_1(x)
585
+ x_fc_2 = self.fc_2(x)
586
+ x = F.gelu(x_fc_1, approximate=self.config.gelu_approximate) * x_fc_2
587
+ return self.proj(x)
588
+
589
+
590
+ class LLaMAMoE(nn.Module):
591
+ def __init__(self, config: Config) -> None:
592
+ super().__init__()
593
+ self.gate = nn.Linear(config.n_embd, config.n_expert, bias=False)
594
+ self.experts = nn.ModuleList(
595
+ LLaMAMLP(config, intermediate_size=config.moe_intermediate_size) for _ in range(config.n_expert)
596
+ )
597
+ self.config = config
598
+
599
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
600
+ """
601
+ Derived from: https://github.com/mistralai/mistral-src/blob/b46d6/moe_one_file_ref.py#L203-L219
602
+ See also figure 1 in https://arxiv.org/abs/2211.15841
603
+ """
604
+ B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
605
+ x = x.view(-1, C) # (B*T, C)
606
+ router = self.gate(x) # (B*T, n_expert)
607
+ probs, indices = torch.topk(router, self.config.n_expert_per_token) # (B*T, n_expert_per_token)
608
+ probs = probs.softmax(dim=1, dtype=torch.float).to(dtype=x.dtype)
609
+ masks = indices.unsqueeze(-1) == torch.arange(self.config.n_expert, device=x.device)
610
+ masks = masks.permute(2, 0, 1) # (n_expert, B*T, n_expert_per_token)
611
+ y = torch.zeros_like(x) # (B*T, C)
612
+ for mask, expert in zip(masks, self.experts):
613
+ token_idx, expert_idx = torch.where(mask)
614
+ y[token_idx] += probs[token_idx, expert_idx, None] * expert(x[token_idx])
615
+ return y.view(B, T, C)
616
+
617
+
618
+ def build_rope_cache(
619
+ seq_len: int,
620
+ n_elem: int,
621
+ device: Optional[torch.device] = None,
622
+ base: int = 10000,
623
+ condense_ratio: int = 1,
624
+ extra_config: Optional[dict] = None,
625
+ rope_local_base_freq: Optional[float] = None,
626
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
627
+ """
628
+ Enhanced Transformer with Rotary Position Embedding.
629
+
630
+ Args:
631
+ seq_len (int): Sequence length.
632
+ n_elem (int): Number of elements (head dimension).
633
+ device (torch.device, optional): Device for tensor allocations.
634
+ base (int, optional): Base for computing inverse frequencies.
635
+ condense_ratio (int, optional): Ratio to condense the position indices.
636
+ extra_config (dict, optional): Configuration parameters for frequency adjustments (used by Llama 3.1 and 3.2)
637
+
638
+ Returns:
639
+ Tuple[torch.Tensor, torch.Tensor]: Cosine and sine caches for RoPE.
640
+ Shapes are `(seq_len, n_elem)`.
641
+ """
642
+
643
+ # Compute the inverse frequencies theta
644
+ theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, device=device).float() / n_elem))
645
+
646
+ if extra_config is not None:
647
+ factor = extra_config["factor"]
648
+ if "original_max_seq_len" in extra_config:
649
+ orig_context_len = extra_config["original_max_seq_len"]
650
+ low_freq_factor = extra_config["low_freq_factor"]
651
+ high_freq_factor = extra_config["high_freq_factor"]
652
+
653
+ wavelen = 2 * torch.pi / theta
654
+ ratio = orig_context_len / wavelen
655
+ smooth_factor = (ratio - low_freq_factor) / (high_freq_factor - low_freq_factor)
656
+ smooth_factor = torch.clamp(smooth_factor, min=0.0, max=1.0)
657
+
658
+ # Compute adjusted_theta without masked indexing
659
+ adjusted_theta = (1 - smooth_factor) * (theta / factor) + smooth_factor * theta
660
+ theta = adjusted_theta
661
+ else:
662
+ theta = theta / factor
663
+
664
+ # Create position indices `[0, 1, ..., seq_len - 1]`
665
+ seq_idx = torch.arange(seq_len, device=device) / condense_ratio
666
+
667
+ # Calculate the product of position index and $\theta_i$
668
+ idx_theta = torch.outer(seq_idx, theta).repeat(1, 2)
669
+ # If `n_elem` is odd, the final dimension of `idx_theta` has size
670
+ # `n_elem + 1`, so need to cut something off.
671
+ # Due to a current bug in Hugging Face, in the case `n_elem == 1`, we leave
672
+ # `idx_theta`, `cos`, `sin` as is. Things work out in `apply_rope` due to
673
+ # broadcasting. If we shorten `idx_theta`, unit tests comparing to
674
+ # Hugging Face fail.
675
+ # https://github.com/huggingface/transformers/issues/35233
676
+ if idx_theta.shape[-1] > n_elem > 1:
677
+ idx_theta = idx_theta[..., :n_elem]
678
+
679
+ # if rope_local_base_freq is given, have a separate rope value for local embedding
680
+ # For now, we use default RoPE for local embedding
681
+ if rope_local_base_freq is not None:
682
+ local_theta = 1.0 / (rope_local_base_freq ** (torch.arange(0, n_elem, 2, device=device).float() / n_elem))
683
+ local_idx_theta = torch.outer(seq_idx, local_theta)
684
+ local_idx_theta = local_idx_theta.repeat(1, 2)
685
+ if local_idx_theta.shape[-1] > n_elem > 1:
686
+ local_idx_theta = local_idx_theta[..., :n_elem]
687
+
688
+ idx_theta = torch.stack((idx_theta, local_idx_theta), dim=-1)
689
+
690
+ return torch.cos(idx_theta), torch.sin(idx_theta)
691
+
692
+
693
+ def batched_index_select(t, dim, idx):
694
+ """index_select for batched index and unbatched t"""
695
+ if idx.dim() == 1:
696
+ return torch.index_select(t, dim, idx)
697
+
698
+ *batch_shape, idx_size = idx.shape
699
+ res = torch.index_select(t, dim, idx.reshape(-1)) # flat index
700
+ # split out single batch idx
701
+ res = res.view(*t.shape[:dim], -1, idx_size, *t.shape[dim + 1 :])
702
+ if dim > 0:
703
+ # move batch dim to front, this is np.rollaxis(res, dim, 0) for tensors
704
+ dims = [dim] + list(range(res.dim()))
705
+ del dims[dim + 1]
706
+ res = res.permute(dims)
707
+ # unflatten batch dims
708
+ res = res.view(*batch_shape, *res.shape[1:])
709
+ return res
710
+
711
+
712
+ def batched_index_copy_(t, dim, idx, val):
713
+ """Index copy for batched t, idx, val"""
714
+
715
+ if t.device.type == "mps":
716
+ # Normalize negative dimensions
717
+ if dim < 0:
718
+ dim = t.dim() + dim
719
+ if idx.dim() == 1:
720
+ idx_shape = [1] * val.dim()
721
+ idx_shape[dim] = -1
722
+ idx_expanded = idx.view(*idx_shape)
723
+ idx_expanded = idx_expanded.expand_as(val)
724
+ t.scatter_(dim, idx_expanded, val)
725
+ return t
726
+
727
+ elif idx.dim() == 2:
728
+ assert dim != 0, "Cannot index the batch dimension"
729
+ batch_size = idx.size(0)
730
+ idx_size = idx.size(1)
731
+ assert batch_size == t.size(0) == val.size(0)
732
+
733
+ idx_shape = [batch_size] + [1] * (val.dim() - 1)
734
+ idx_shape[dim] = idx_size
735
+ idx_expanded = idx.view(*idx_shape)
736
+ idx_expanded = idx_expanded.expand_as(val)
737
+
738
+ t.scatter_(dim, idx_expanded, val)
739
+ return t
740
+ else:
741
+ raise NotImplementedError(f"idx.dim() == {idx.dim()} not supported")
742
+
743
+ else:
744
+ if idx.dim() == 1:
745
+ return t.index_copy_(dim, idx, val)
746
+
747
+ assert idx.dim() == 2, f"multiple batch dims not yet {idx.shape=}"
748
+ assert dim != 0, f"cannot index batch dim {dim=}"
749
+ batch_size, idx_size = idx.shape
750
+ assert batch_size == t.size(0)
751
+ assert batch_size == val.size(0)
752
+
753
+ # if we can view the batch and indexed dimensions together, we could
754
+ # do index trickery. This is, sadly, not the case for kvcache so we
755
+ # fall back to for loop
756
+ for i in range(batch_size):
757
+ unbatched_dim = dim if dim < 0 else dim - 1
758
+ t[i].index_copy_(unbatched_dim, idx[i], val[i])
759
+ return t
760
+
761
+
762
+ def apply_rope(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
763
+ """
764
+ Applies RoPE transform to `x`. Note that `cos`, `sin` need to have a batch
765
+ dimension.
766
+
767
+ Args:
768
+ x: Input tensor, `(B, ..., T, head_size)`
769
+ cos: Cached cosines, `(B, T, head_size)` or `(1, T, head_size)`
770
+ sin: Cached sines, `(B, T, head_size)` or `(1, T, head_size)`
771
+
772
+ Returns:
773
+ Encoded tensor, `(B, ..., T, head_size)`
774
+ """
775
+ if cos.dim() != 3:
776
+ raise ValueError(f"cos must be three-dimensional, but shape is {cos.shape}")
777
+ if cos.shape != sin.shape:
778
+ raise ValueError(f"cos, sin must have same shape, but cos.shape={cos.shape}, sin.shape={sin.shape}")
779
+ head_size_half = x.size(-1) // 2
780
+ x1 = x[..., :head_size_half] # (B, ..., T, head_size/2)
781
+ x2 = x[..., head_size_half:] # (B, ..., T, head_size/2)
782
+ rotated = torch.cat((-x2, x1), dim=-1) # (B, ..., T, head_size)
783
+ dims_diff = x.dim() - cos.dim()
784
+ if dims_diff > 0:
785
+ # Ensure that shapes of `x`, `cos`, `sin` align
786
+ new_shape = cos.shape[0:1] + (1,) * dims_diff + cos.shape[1:]
787
+ cos = cos.view(*new_shape)
788
+ sin = sin.view(*new_shape)
789
+
790
+ roped = (x * cos) + (rotated * sin)
791
+ return roped.to(dtype=x.dtype)
792
+
793
+
794
+ def do_softcapping(x: torch.Tensor, thresh: float) -> torch.Tensor:
795
+ return torch.tanh(x / thresh) * thresh
796
+
797
+
798
+ class KVCache(nn.Module):
799
+ """
800
+ Buffers `k`, `v` have shape
801
+ `(batch_size, n_query_groups, max_seq_length, head_size)`.
802
+ """
803
+
804
+ def __init__(
805
+ self,
806
+ k_shape: Tuple[int, int, int, int],
807
+ v_shape: Tuple[int, int, int, int],
808
+ device: Optional[torch.device] = None,
809
+ dtype: Optional[torch.dtype] = None,
810
+ ) -> None:
811
+ super().__init__()
812
+ self.register_buffer("k", torch.zeros(k_shape, device=device, dtype=dtype), persistent=False)
813
+ self.register_buffer("v", torch.zeros(v_shape, device=device, dtype=dtype), persistent=False)
814
+
815
+ def forward(self, input_pos: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
816
+ """
817
+ Writes new values `k` and `v` into the cache at the positions specified
818
+ by `input_pos` along the sequence dimension (`max_seq_length`). The batch
819
+ size of `k` and `v` (`bs`) must be smaller or equal to `KVCache` batch
820
+ size. Returns the full buffers, adjusted to the batch size `bs`.
821
+
822
+ Args:
823
+ input_pos: Position index, `(bs, T)` or `(T,)`
824
+ k: New values, `(bs, n_query_groups, T, head_size)`
825
+ v: New values, `(bs, n_query_groups, T, head_size)`
826
+
827
+ Returns:
828
+ k_full, v_full, `(bs, n_query_groups, max_seq_length, head_size)`
829
+
830
+ """
831
+ # move the buffer to the activation dtype for when AMP is used
832
+ if self.k.dtype != k.dtype:
833
+ self.k = self.k.to(k.dtype)
834
+ if self.v.dtype != v.dtype:
835
+ self.v = self.v.to(v.dtype)
836
+ # update the cache
837
+ bs = k.size(0)
838
+ k = batched_index_copy_(self.k[:bs, ...], -2, input_pos, k)
839
+ v = batched_index_copy_(self.v[:bs, ...], -2, input_pos, v)
840
+ return k, v
841
+
842
+ def reset_parameters(self) -> None:
843
+ torch.nn.init.zeros_(self.k)
844
+ torch.nn.init.zeros_(self.v)
845
+
846
+
847
+ def build_mask_cache(max_seq_length: int, device: Optional[torch.device] = None) -> torch.Tensor:
848
+ ones = torch.ones((max_seq_length, max_seq_length), device=device, dtype=torch.bool)
849
+ return torch.tril(ones).unsqueeze(0).unsqueeze(0)
850
+
851
+
852
+ class RMSNorm(torch.nn.Module):
853
+ """Root Mean Square Layer Normalization.
854
+
855
+ Derived from https://github.com/bzhangGo/rmsnorm/blob/master/rmsnorm_torch.py. BSD 3-Clause License:
856
+ https://github.com/bzhangGo/rmsnorm/blob/master/LICENSE.
857
+ """
858
+
859
+ def __init__(self, size: int, dim: int = -1, eps: float = 1e-6, add_unit_offset: bool = False) -> None:
860
+ super().__init__()
861
+ self.weight = torch.nn.Parameter(torch.ones(size))
862
+ self.eps = eps
863
+ self.dim = dim
864
+ self.add_unit_offset = add_unit_offset
865
+
866
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
867
+ dtype = x.dtype
868
+ x = x.float()
869
+ # NOTE: the original RMSNorm paper implementation is not equivalent
870
+ norm_x = torch.mean(x * x, dim=self.dim, keepdim=True)
871
+ x_normed = x * torch.rsqrt(norm_x + self.eps)
872
+ weight = (1 + self.weight) if self.add_unit_offset else self.weight
873
+ return (x_normed * weight.float()).to(dtype=dtype)
874
+
875
+ def reset_parameters(self) -> None:
876
+ torch.nn.init.ones_(self.weight)
litgpt/perplexity.py ADDED
@@ -0,0 +1,513 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
2
+
3
+ import math
4
+ import pprint
5
+ import time
6
+ import os
7
+ import json
8
+ from dataclasses import asdict
9
+ from datetime import timedelta
10
+ from functools import partial
11
+ from pathlib import Path
12
+ from typing import Dict, Optional, Tuple, Union
13
+
14
+ import lightning as L
15
+ import torch
16
+ import torch.nn as nn
17
+ from lightning.fabric.strategies import FSDPStrategy
18
+ from lightning.fabric.utilities.throughput import ThroughputMonitor, measure_flops
19
+ from torch.utils.data import DataLoader
20
+ from torchmetrics.aggregation import RunningMean
21
+ from typing_extensions import Literal
22
+
23
+ from litgpt import Tokenizer
24
+ from litgpt.args import EvalArgs, LogArgs, TrainArgs
25
+ from litgpt.config import name_to_config
26
+ from litgpt.data import DataModule, TinyLlama, Arxiv
27
+ from litgpt.model import GPT, Block, CausalSelfAttention, Config, LLaMAMLP
28
+ from litgpt.utils import (
29
+ CycleIterator,
30
+ capture_hparams,
31
+ check_nvlink_connectivity,
32
+ choose_logger,
33
+ chunked_cross_entropy,
34
+ copy_config_files,
35
+ extend_checkpoint_dir,
36
+ find_resume_path,
37
+ get_default_supported_precision,
38
+ init_out_dir,
39
+ instantiate_torch_optimizer,
40
+ num_parameters,
41
+ parse_devices,
42
+ reset_parameters,
43
+ save_config,
44
+ save_hyperparameters,
45
+ )
46
+
47
+
48
+ def setup(
49
+ model_name: str,
50
+ model_config: Optional[Config] = None,
51
+ out_dir: Path = Path("out/pretrain"),
52
+ precision: Literal["bf16-true", "bf16-mixed", "32-true", None] = None,
53
+ initial_checkpoint_dir: Optional[Path] = None,
54
+ resume: Union[bool, Literal["auto"], Path] = False,
55
+ data: Optional[DataModule] = None,
56
+ data_dir: Path = None,
57
+ train: TrainArgs = TrainArgs(
58
+ save_interval=1000,
59
+ log_interval=1,
60
+ global_batch_size=512,
61
+ micro_batch_size=4,
62
+ max_tokens=int(3e12), # 3 trillion
63
+ max_norm=1.0,
64
+ min_lr=4e-5,
65
+ lr_warmup_steps=2000,
66
+ tie_embeddings=False,
67
+ ),
68
+ eval: EvalArgs = EvalArgs(interval=1000, max_iters=100),
69
+ log: LogArgs = LogArgs(),
70
+ optimizer: Union[str, Dict] = "AdamW",
71
+ devices: Union[int, str] = "auto",
72
+ num_nodes: int = 1,
73
+ tokenizer_dir: Optional[Path] = None,
74
+ logger_name: Literal["wandb", "tensorboard", "csv", "mlflow"] = "tensorboard",
75
+ seed: int = 42,
76
+ multi_month: bool = False,
77
+ ):
78
+ """Pretrain a model.
79
+
80
+ Arguments:
81
+ model_name: The name of the model to pretrain. Choose from names in ``litgpt.config``. Use "list" to list the supported models.
82
+ model_config: A ``litgpt.Config`` object to define the model architecture. Mutually exclusive with
83
+ ``model_config``. Overrides the `model_name` if specified.
84
+ out_dir: Directory in which to save checkpoints and logs. If running in a Lightning Studio Job, look for it in
85
+ /teamspace/jobs/<job-name>/share.
86
+ precision: The precision to use for finetuning. Determines a compatible precision setting by default.
87
+ initial_checkpoint_dir: Optional path to a checkpoint directory to initialize the model from.
88
+ Useful for continued pretraining. Mutually exclusive with ``resume``.
89
+ resume: Path to a checkpoint directory to resume from in case training was interrupted, or ``True`` to resume
90
+ from the latest checkpoint in ``out_dir``. An error will be raised if no checkpoint is found. Passing
91
+ ``'auto'`` will resume from the latest checkpoint but not error if no checkpoint exists.
92
+ data: Data-related arguments. If not provided, the default is ``litgpt.data.TinyLlama``.
93
+ train: Training-related arguments. See ``litgpt.args.TrainArgs`` for details.
94
+ eval: Evaluation-related arguments. See ``litgpt.args.EvalArgs`` for details.
95
+ optimizer: An optimizer name (such as "AdamW") or config.
96
+
97
+ devices: How many devices/GPUs to use. Uses all GPUs by default.
98
+ num_nodes: How many nodes the code is being run on.
99
+ tokenizer_dir: Optional path to the tokenizer dir that was used for preprocessing the dataset. Only some data
100
+ module require this.
101
+ logger_name: The name of the logger to send metrics to.
102
+ seed: The random seed to use for reproducibility.
103
+ """
104
+ if model_name == "list":
105
+ available_models = "\n".join(sorted(name_to_config))
106
+ print(f"Available values:\n{available_models}")
107
+ quit()
108
+
109
+ if initial_checkpoint_dir is not None:
110
+ initial_checkpoint_dir = extend_checkpoint_dir(initial_checkpoint_dir)
111
+
112
+ if tokenizer_dir is not None:
113
+ tokenizer_dir = extend_checkpoint_dir(tokenizer_dir)
114
+
115
+ if model_config is None:
116
+ # Support both model_name options: meta-llama/Meta-Llama-3-8B & Meta-Llama-3-8B
117
+ try:
118
+ model_config = Config.from_name(model_name)
119
+ except ValueError:
120
+ print(f"Model name {model_name} is not supported.\n")
121
+ available_models = "\n".join(sorted(name_to_config))
122
+ print(f"Available values:\n{available_models}")
123
+ quit()
124
+
125
+ hparams = capture_hparams()
126
+
127
+ config = Config.from_name(model_name) if model_config is None else model_config
128
+ precision = precision or get_default_supported_precision(training=True)
129
+ devices = parse_devices(devices)
130
+ out_dir = init_out_dir(out_dir)
131
+ # in case the dataset requires the Tokenizer
132
+ tokenizer = Tokenizer(tokenizer_dir) if tokenizer_dir is not None else None
133
+
134
+ logger = choose_logger(
135
+ logger_name,
136
+ out_dir,
137
+ name=f"pretrain-{config.name}",
138
+ resume=bool(resume),
139
+ log_interval=train.log_interval,
140
+ log_args=asdict(log),
141
+ )
142
+
143
+ if devices * num_nodes > 1:
144
+ strategy = FSDPStrategy(auto_wrap_policy={Block}, state_dict_type="full", sharding_strategy="HYBRID_SHARD")
145
+ else:
146
+ strategy = "auto"
147
+
148
+ fabric = L.Fabric(devices=devices, num_nodes=num_nodes, strategy=strategy, precision=precision, loggers=[logger])
149
+
150
+ if torch.cuda.is_available() and devices > 1:
151
+ check_nvlink_connectivity(fabric)
152
+
153
+ fabric.launch()
154
+
155
+ fabric.print(pprint.pformat(hparams))
156
+ if logger_name in ("tensorboard", "wandb", "mlflow"):
157
+ fabric.logger.log_hyperparams(hparams)
158
+
159
+ main(
160
+ fabric=fabric,
161
+ devices=devices,
162
+ seed=seed,
163
+ initial_checkpoint_dir=initial_checkpoint_dir,
164
+ resume=resume,
165
+ config=config,
166
+ data=data,
167
+ data_dir=data_dir,
168
+ out_dir=out_dir,
169
+ tokenizer=tokenizer,
170
+ train=train,
171
+ eval=eval,
172
+ optimizer=optimizer,
173
+ multi_month=multi_month,
174
+ )
175
+
176
+
177
+ def main(
178
+ fabric: L.Fabric,
179
+ devices: int,
180
+ seed: int,
181
+ initial_checkpoint_dir: Optional[Path],
182
+ resume: Union[bool, Literal["auto"], Path],
183
+ config: Config,
184
+ data: DataModule,
185
+ data_dir: Path,
186
+ out_dir: Path,
187
+ tokenizer: Optional[Tokenizer],
188
+ train: TrainArgs,
189
+ eval: EvalArgs,
190
+ optimizer: Union[str, Dict],
191
+ multi_month: bool = False,
192
+ ) -> None:
193
+ validate_args(train, eval, initial_checkpoint_dir, resume)
194
+
195
+ if fabric.global_rank == 0:
196
+ out_dir.mkdir(parents=True, exist_ok=True)
197
+
198
+ fabric.seed_everything(seed) # same seed for every process to init model (FSDP)
199
+
200
+ t0 = time.perf_counter()
201
+ with fabric.init_module(empty_init=True):
202
+ model = GPT(config)
203
+
204
+ initialize_weights(fabric, model, n_layer=config.n_layer, n_embd=config.n_embd)
205
+
206
+ if train.tie_embeddings:
207
+ model.transformer.wte.weight = model.lm_head.weight
208
+ if train.max_seq_length:
209
+ model.max_seq_length = train.max_seq_length
210
+
211
+ fabric.print(f"Time to instantiate model: {time.perf_counter() - t0:.02f} seconds.")
212
+ fabric.print(f"Total parameters: {num_parameters(model):,}")
213
+
214
+ model = torch.compile(model)
215
+ model = fabric.setup(model)
216
+
217
+ extra_kwargs = {"fused": fabric.device.type == "cuda"}
218
+ optimizer = instantiate_torch_optimizer(optimizer, model.parameters(), **extra_kwargs)
219
+ optimizer = fabric.setup_optimizers(optimizer)
220
+
221
+ if initial_checkpoint_dir:
222
+ ckpt_path = initial_checkpoint_dir / "lit_model.pth"
223
+
224
+ if fabric.global_rank == 0:
225
+ try:
226
+ obj = torch.load(ckpt_path, map_location="cpu")
227
+ except Exception as e:
228
+ raise RuntimeError(f"[load] Unable to read {ckpt_path}: {e}")
229
+
230
+ if isinstance(obj, dict) and "model" in obj:
231
+ import os
232
+ print(f"[fix] {ckpt_path} the full state, extract 'model' and write bacl", flush=True)
233
+ sd = obj["model"]
234
+ if len(sd) and next(iter(sd)).startswith("module."):
235
+ sd = {k[7:]: v for k, v in sd.items()}
236
+
237
+ tmp = ckpt_path.with_suffix(".pth.tmp")
238
+ torch.save(sd, tmp)
239
+ os.replace(tmp, ckpt_path)
240
+ try:
241
+ os.sync()
242
+ except Exception:
243
+ pass
244
+ print(f"[fix] rewrite to make it 'model' only: {ckpt_path}", flush=True)
245
+ else:
246
+ print(f"[ok] {ckpt_path} already 'model' only", flush=True)
247
+
248
+ fabric.barrier()
249
+
250
+ fabric.load_raw(ckpt_path, model, strict=False)
251
+
252
+ from litgpt.data import Arxiv
253
+
254
+ if not multi_month:
255
+ if isinstance(data, Arxiv):
256
+ data.arxiv_train = str(data_dir).rstrip("/") + "/train"
257
+ data.arxiv_val = str(data_dir).rstrip("/") + "/train"
258
+ else:
259
+ NotImplementedError()
260
+ train_dataloader, val_dataloader = get_dataloaders(fabric, data, tokenizer, train, model.max_seq_length)
261
+ train_dataloader, val_dataloader = fabric.setup_dataloaders(train_dataloader, val_dataloader)
262
+
263
+ state = {
264
+ "model": model,
265
+ "optimizer": optimizer,
266
+ "train_dataloader": train_dataloader,
267
+ "iter_num": 0,
268
+ "step_count": 0,
269
+ }
270
+
271
+ resume = find_resume_path(resume, out_dir)
272
+ if resume:
273
+ fabric.print(f"Resuming training from {resume}")
274
+ fabric.load(resume, state)
275
+
276
+ train_time = time.perf_counter()
277
+
278
+ # work around PyTorch issue https://github.com/pytorch/pytorch/issues/152162
279
+ # which does not like the lazy initialization to be called in dynamo.
280
+ # Happens with PyTorch 2.7.
281
+ if (
282
+ torch.__version__.startswith("2.7.")
283
+ and (model._forward_module.__class__.__name__ == "OptimizedModule")
284
+ and (model._forward_module._orig_mod.__class__.__name__ == "FullyShardedDataParallel")
285
+ ):
286
+ from torch.distributed.fsdp._runtime_utils import _root_pre_forward
287
+
288
+ _root_pre_forward(model._forward_module._orig_mod, model._forward_module._orig_mod, [], {})
289
+
290
+ ppl(
291
+ fabric=fabric,
292
+ state=state,
293
+ val_dataloader=val_dataloader,
294
+ out_dir=out_dir,
295
+ train=train,
296
+ eval=eval,
297
+ )
298
+
299
+
300
+ total_tokens = state["iter_num"] * train.micro_batch_size * model.max_seq_length * fabric.world_size
301
+
302
+ # Print formatted output
303
+ separator = "-" * 40
304
+ fabric.print(separator)
305
+ fabric.print("| Performance")
306
+ fabric.print(f"| - Total tokens : {total_tokens:,}")
307
+ fabric.print(f"| - Training Time : {(time.perf_counter() - train_time):.2f} s")
308
+ fabric.print(f"| - Tok/sec : {total_tokens / train_time:.2f} tok/s")
309
+ fabric.print("| " + "-" * 40)
310
+
311
+ if fabric.device.type == "cuda":
312
+ memory_used = torch.cuda.max_memory_allocated() / 1e9
313
+ fabric.print("| Memory Usage")
314
+ fabric.print(f"| - Memory Used : {memory_used:.2f} GB")
315
+ fabric.print(separator)
316
+
317
+ else:
318
+ months = [
319
+ "2407", "2408", "2409", "2410", "2411", "2412",
320
+ "2501", "2502", "2503", "2504", "2505", "2506"
321
+ ]
322
+ for month in months:
323
+ if isinstance(data, Arxiv):
324
+ data.arxiv_train = str(data_dir).rstrip("/") + f"/{month}/train"
325
+ data.arxiv_val = str(data_dir).rstrip("/") + f"/{month}/train"
326
+ else:
327
+ NotImplementedError()
328
+ train_dataloader, val_dataloader = get_dataloaders(fabric, data, tokenizer, train, model.max_seq_length)
329
+ train_dataloader, val_dataloader = fabric.setup_dataloaders(train_dataloader, val_dataloader)
330
+
331
+ state = {
332
+ "model": model,
333
+ "optimizer": optimizer,
334
+ "train_dataloader": train_dataloader,
335
+ "iter_num": 0,
336
+ "step_count": 0,
337
+ }
338
+
339
+ resume = find_resume_path(resume, out_dir)
340
+ if resume:
341
+ fabric.print(f"Resuming training from {resume}")
342
+ fabric.load(resume, state)
343
+
344
+ train_time = time.perf_counter()
345
+
346
+ # work around PyTorch issue https://github.com/pytorch/pytorch/issues/152162
347
+ # which does not like the lazy initialization to be called in dynamo.
348
+ # Happens with PyTorch 2.7.
349
+ if (
350
+ torch.__version__.startswith("2.7.")
351
+ and (model._forward_module.__class__.__name__ == "OptimizedModule")
352
+ and (model._forward_module._orig_mod.__class__.__name__ == "FullyShardedDataParallel")
353
+ ):
354
+ from torch.distributed.fsdp._runtime_utils import _root_pre_forward
355
+
356
+ _root_pre_forward(model._forward_module._orig_mod, model._forward_module._orig_mod, [], {})
357
+
358
+ ppl(
359
+ fabric=fabric,
360
+ state=state,
361
+ val_dataloader=val_dataloader,
362
+ out_dir=out_dir/month,
363
+ train=train,
364
+ eval=eval,
365
+ month=month,
366
+ )
367
+
368
+ total_tokens = state["iter_num"] * train.micro_batch_size * model.max_seq_length * fabric.world_size
369
+
370
+ # Print formatted output
371
+ separator = "-" * 40
372
+ fabric.print(separator)
373
+ fabric.print("| Performance")
374
+ fabric.print(f"| - Total tokens : {total_tokens:,}")
375
+ fabric.print(f"| - Training Time : {(time.perf_counter() - train_time):.2f} s")
376
+ fabric.print(f"| - Tok/sec : {total_tokens / train_time:.2f} tok/s")
377
+ fabric.print("| " + "-" * 40)
378
+
379
+ if fabric.device.type == "cuda":
380
+ memory_used = torch.cuda.max_memory_allocated() / 1e9
381
+ fabric.print("| Memory Usage")
382
+ fabric.print(f"| - Memory Used : {memory_used:.2f} GB")
383
+ fabric.print(separator)
384
+
385
+
386
+ def ppl(
387
+ fabric: L.Fabric,
388
+ state: dict,
389
+ val_dataloader: DataLoader,
390
+ out_dir: Path,
391
+ train: TrainArgs,
392
+ eval: EvalArgs,
393
+ month: Optional[str] = None,
394
+ ) -> None:
395
+ model = state["model"]
396
+
397
+ with torch.device("meta"):
398
+ meta_model = GPT(model.config)
399
+ x = torch.randint(0, 1, (train.micro_batch_size, meta_model.max_seq_length))
400
+ model_fwd = lambda: meta_model(x) # noqa: F821
401
+ model_loss = lambda y: chunked_cross_entropy(y, x, chunk_size=0) # noqa: F821
402
+ measured_flops = measure_flops(meta_model, model_fwd, model_loss)
403
+ fabric.print(f"Measured TFLOPs: {measured_flops * fabric.world_size / 1e12:.2f}")
404
+ del meta_model, x
405
+
406
+ val_loss = validate(fabric, model, val_dataloader, max_iters=eval.max_iters)
407
+ metrics = {"val_loss": val_loss, "val_ppl": math.exp(val_loss)}
408
+ fabric.log_dict(metrics, step=state["iter_num"])
409
+ fabric.print(f"Final evaluation | val loss: {val_loss.item():.3f} | val ppl: {math.exp(val_loss):.3f}")
410
+
411
+ if month is not None:
412
+ metrics = {
413
+ "month": month,
414
+ "val_loss": float(val_loss),
415
+ "val_ppl": float(math.exp(val_loss)),
416
+ "rank": fabric.global_rank,
417
+ }
418
+ else:
419
+ metrics = {
420
+ "val_loss": float(val_loss),
421
+ "val_ppl": float(math.exp(val_loss)),
422
+ }
423
+ jsonl_path = out_dir.parent / "ppl_metrics.jsonl"
424
+ os.makedirs(out_dir, exist_ok=True)
425
+ with open(jsonl_path, "a", encoding="utf-8") as f:
426
+ f.write(json.dumps(metrics, ensure_ascii=False) + "\n")
427
+
428
+
429
+ @torch.no_grad()
430
+ def validate(
431
+ fabric: L.Fabric, model: nn.Module, val_dataloader: DataLoader, max_iters: int, verbose: bool = True
432
+ ) -> torch.Tensor:
433
+ fabric.barrier()
434
+ if verbose:
435
+ fabric.print("Validating ...")
436
+ model.eval()
437
+
438
+ losses = []
439
+ for k, batch in enumerate(val_dataloader):
440
+ if k >= max_iters:
441
+ break
442
+ input_ids = batch[:, 0 : model.max_seq_length].contiguous().long()
443
+ targets = batch[:, 1 : (model.max_seq_length + 1)].contiguous().long()
444
+ logits = model(input_ids)
445
+ loss = chunked_cross_entropy(logits, targets)
446
+ losses.append(loss)
447
+
448
+ val_loss = torch.stack(losses).mean()
449
+ model.train()
450
+ fabric.barrier()
451
+ return val_loss
452
+
453
+
454
+ def get_dataloaders(
455
+ fabric: L.Fabric, data: DataModule, tokenizer: Tokenizer, train: TrainArgs, block_size: int
456
+ ) -> Tuple[DataLoader, DataLoader]:
457
+ data.connect(tokenizer=tokenizer, batch_size=train.micro_batch_size, max_seq_length=block_size)
458
+ with fabric.rank_zero_first():
459
+ data.prepare_data()
460
+ data.setup()
461
+ train_dataloader = data.train_dataloader()
462
+ val_dataloader = data.val_dataloader()
463
+ return train_dataloader, val_dataloader
464
+
465
+
466
+ def save_checkpoint(fabric, state, tokenizer_dir, checkpoint_file):
467
+ model = state["model"]
468
+ checkpoint_file.parent.mkdir(parents=True, exist_ok=True)
469
+ fabric.print(f"Saving checkpoint to {str(checkpoint_file)!r}")
470
+ fabric.save(checkpoint_file, state)
471
+ if fabric.global_rank == 0:
472
+ save_hyperparameters(setup, checkpoint_file.parent)
473
+ if tokenizer_dir is not None:
474
+ copy_config_files(tokenizer_dir, checkpoint_file.parent)
475
+ save_config(model.config, checkpoint_file.parent)
476
+
477
+ def initialize_weights(fabric: L.Fabric, model: GPT, n_layer: int, n_embd: int) -> None:
478
+ """GPT-NeoX weight initialization (https://arxiv.org/abs/2204.06745)."""
479
+ # Adapted from https://github.com/jzhang38/TinyLlama
480
+
481
+ def init_weights(module, std):
482
+ nn.init.normal_(module.weight, mean=0.0, std=std)
483
+ if getattr(module, "bias", None) is not None:
484
+ nn.init.zeros_(module.bias)
485
+
486
+ for mod in model.modules():
487
+ if isinstance(mod, (nn.Embedding, nn.Linear)):
488
+ mod.reset_parameters = partial(init_weights, mod, std=math.sqrt(2.0 / 5 / n_embd))
489
+
490
+ # need a separate loop because `mod.proj` below is a `nn.Linear` too
491
+ for mod in model.modules():
492
+ if isinstance(mod, (LLaMAMLP, CausalSelfAttention)):
493
+ mod.proj.reset_parameters = partial(init_weights, mod.proj, std=(1 / math.sqrt(n_embd) / n_layer))
494
+
495
+ if not isinstance(fabric.strategy, FSDPStrategy):
496
+ reset_parameters(model)
497
+
498
+ def validate_args(train: TrainArgs, eval: EvalArgs, initial_checkpoint_dir, resume) -> None:
499
+ issues = []
500
+ unsupported = [(train, ["max_steps", "epochs"]), (eval, ["max_new_tokens"])]
501
+ for args, names in unsupported:
502
+ for name in names:
503
+ if getattr(args, name) is not None:
504
+ issues.append(f"{__file__} doesn't support the {name!r} argument. This is set in {args}")
505
+ required = [(train, ["max_tokens", "max_norm"])]
506
+ for args, names in required:
507
+ for name in names:
508
+ if getattr(args, name) is None:
509
+ issues.append(f"{__file__} requires the {name!r} argument. This is set in {args}")
510
+ if initial_checkpoint_dir and resume:
511
+ issues.append("Can't provide both `--resume` and `--initial_checkpoint_dir`. Choose one.")
512
+ if issues:
513
+ raise ValueError("\n".join(issues))
litgpt/pretrain.py ADDED
@@ -0,0 +1,564 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
2
+
3
+ import math
4
+ import pprint
5
+ import time
6
+ import os
7
+ import json
8
+ from dataclasses import asdict
9
+ from datetime import timedelta
10
+ from functools import partial
11
+ from pathlib import Path
12
+ from typing import Dict, Optional, Tuple, Union
13
+
14
+ import lightning as L
15
+ import torch
16
+ import torch.nn as nn
17
+ from lightning.fabric.strategies import FSDPStrategy
18
+ from lightning.fabric.utilities.throughput import ThroughputMonitor, measure_flops
19
+ from torch.utils.data import DataLoader
20
+ from torchmetrics.aggregation import RunningMean
21
+ from typing_extensions import Literal
22
+
23
+ from litgpt import Tokenizer
24
+ from litgpt.args import EvalArgs, LogArgs, TrainArgs
25
+ from litgpt.config import name_to_config
26
+ from litgpt.data import DataModule, TinyLlama, Arxiv
27
+ from litgpt.model import GPT, Block, CausalSelfAttention, Config, LLaMAMLP
28
+ from litgpt.utils import (
29
+ CycleIterator,
30
+ capture_hparams,
31
+ check_nvlink_connectivity,
32
+ choose_logger,
33
+ chunked_cross_entropy,
34
+ copy_config_files,
35
+ extend_checkpoint_dir,
36
+ find_resume_path,
37
+ get_default_supported_precision,
38
+ init_out_dir,
39
+ instantiate_torch_optimizer,
40
+ num_parameters,
41
+ parse_devices,
42
+ reset_parameters,
43
+ save_config,
44
+ save_hyperparameters,
45
+ )
46
+
47
+
48
+ def setup(
49
+ model_name: str,
50
+ model_config: Optional[Config] = None,
51
+ out_dir: Path = Path("out/pretrain"),
52
+ precision: Literal["bf16-true", "bf16-mixed", "32-true", None] = None,
53
+ initial_checkpoint_dir: Optional[Path] = None,
54
+ resume: Union[bool, Literal["auto"], Path] = False,
55
+ data: Optional[DataModule] = None,
56
+ data_dir: Path = None,
57
+ train: TrainArgs = TrainArgs(
58
+ save_interval=1000,
59
+ log_interval=1,
60
+ global_batch_size=512,
61
+ micro_batch_size=4,
62
+ max_tokens=int(3e12), # 3 trillion
63
+ max_norm=1.0,
64
+ min_lr=4e-5,
65
+ lr_warmup_steps=2000,
66
+ tie_embeddings=False,
67
+ ),
68
+ eval: EvalArgs = EvalArgs(interval=1000, max_iters=100),
69
+ log: LogArgs = LogArgs(),
70
+ optimizer: Union[str, Dict] = "AdamW",
71
+ devices: Union[int, str] = "auto",
72
+ num_nodes: int = 1,
73
+ tokenizer_dir: Optional[Path] = None,
74
+ logger_name: Literal["wandb", "tensorboard", "csv", "mlflow"] = "tensorboard",
75
+ seed: int = 42,
76
+ ):
77
+ """Pretrain a model.
78
+
79
+ Arguments:
80
+ model_name: The name of the model to pretrain. Choose from names in ``litgpt.config``. Use "list" to list the supported models.
81
+ model_config: A ``litgpt.Config`` object to define the model architecture. Mutually exclusive with
82
+ ``model_config``. Overrides the `model_name` if specified.
83
+ out_dir: Directory in which to save checkpoints and logs. If running in a Lightning Studio Job, look for it in
84
+ /teamspace/jobs/<job-name>/share.
85
+ precision: The precision to use for finetuning. Determines a compatible precision setting by default.
86
+ initial_checkpoint_dir: Optional path to a checkpoint directory to initialize the model from.
87
+ Useful for continued pretraining. Mutually exclusive with ``resume``.
88
+ resume: Path to a checkpoint directory to resume from in case training was interrupted, or ``True`` to resume
89
+ from the latest checkpoint in ``out_dir``. An error will be raised if no checkpoint is found. Passing
90
+ ``'auto'`` will resume from the latest checkpoint but not error if no checkpoint exists.
91
+ data: Data-related arguments. If not provided, the default is ``litgpt.data.TinyLlama``.
92
+ train: Training-related arguments. See ``litgpt.args.TrainArgs`` for details.
93
+ eval: Evaluation-related arguments. See ``litgpt.args.EvalArgs`` for details.
94
+ optimizer: An optimizer name (such as "AdamW") or config.
95
+
96
+ devices: How many devices/GPUs to use. Uses all GPUs by default.
97
+ num_nodes: How many nodes the code is being run on.
98
+ tokenizer_dir: Optional path to the tokenizer dir that was used for preprocessing the dataset. Only some data
99
+ module require this.
100
+ logger_name: The name of the logger to send metrics to.
101
+ seed: The random seed to use for reproducibility.
102
+ """
103
+ if model_name == "list":
104
+ available_models = "\n".join(sorted(name_to_config))
105
+ print(f"Available values:\n{available_models}")
106
+ quit()
107
+
108
+ if initial_checkpoint_dir is not None:
109
+ initial_checkpoint_dir = extend_checkpoint_dir(initial_checkpoint_dir)
110
+
111
+ if tokenizer_dir is not None:
112
+ tokenizer_dir = extend_checkpoint_dir(tokenizer_dir)
113
+
114
+ if model_config is None:
115
+ # Support both model_name options: meta-llama/Meta-Llama-3-8B & Meta-Llama-3-8B
116
+ try:
117
+ model_config = Config.from_name(model_name)
118
+ except ValueError:
119
+ print(f"Model name {model_name} is not supported.\n")
120
+ available_models = "\n".join(sorted(name_to_config))
121
+ print(f"Available values:\n{available_models}")
122
+ quit()
123
+
124
+ hparams = capture_hparams()
125
+
126
+ from litgpt.data import Arxiv
127
+ if isinstance(data, Arxiv):
128
+ data.arxiv_train = str(data_dir).rstrip("/") + "/train"
129
+ data.arxiv_val = str(data_dir).rstrip("/") + "/train"
130
+ else:
131
+ data = TinyLlama() if data is None else data
132
+
133
+ config = Config.from_name(model_name) if model_config is None else model_config
134
+ precision = precision or get_default_supported_precision(training=True)
135
+ devices = parse_devices(devices)
136
+ out_dir = init_out_dir(out_dir)
137
+ # in case the dataset requires the Tokenizer
138
+ tokenizer = Tokenizer(tokenizer_dir) if tokenizer_dir is not None else None
139
+
140
+ logger = choose_logger(
141
+ logger_name,
142
+ out_dir,
143
+ name=f"pretrain-{config.name}",
144
+ resume=bool(resume),
145
+ log_interval=train.log_interval,
146
+ log_args=asdict(log),
147
+ )
148
+
149
+ if devices * num_nodes > 1:
150
+ strategy = FSDPStrategy(auto_wrap_policy={Block}, state_dict_type="full", sharding_strategy="HYBRID_SHARD")
151
+ else:
152
+ strategy = "auto"
153
+
154
+ fabric = L.Fabric(devices=devices, num_nodes=num_nodes, strategy=strategy, precision=precision, loggers=[logger])
155
+
156
+ if torch.cuda.is_available() and devices > 1:
157
+ check_nvlink_connectivity(fabric)
158
+
159
+ fabric.launch()
160
+
161
+ fabric.print(pprint.pformat(hparams))
162
+ if logger_name in ("tensorboard", "wandb", "mlflow"):
163
+ fabric.logger.log_hyperparams(hparams)
164
+
165
+ main(
166
+ fabric=fabric,
167
+ devices=devices,
168
+ num_nodes=num_nodes,
169
+ seed=seed,
170
+ initial_checkpoint_dir=initial_checkpoint_dir,
171
+ resume=resume,
172
+ config=config,
173
+ data=data,
174
+ out_dir=out_dir,
175
+ tokenizer_dir=tokenizer_dir,
176
+ tokenizer=tokenizer,
177
+ train=train,
178
+ eval=eval,
179
+ optimizer=optimizer,
180
+ )
181
+
182
+
183
+ def main(
184
+ fabric: L.Fabric,
185
+ devices: int,
186
+ seed: int,
187
+ initial_checkpoint_dir: Optional[Path],
188
+ resume: Union[bool, Literal["auto"], Path],
189
+ config: Config,
190
+ data: DataModule,
191
+ out_dir: Path,
192
+ tokenizer_dir: Optional[Path],
193
+ tokenizer: Optional[Tokenizer],
194
+ train: TrainArgs,
195
+ eval: EvalArgs,
196
+ optimizer: Union[str, Dict],
197
+ num_nodes: int = 1,
198
+ ) -> None:
199
+ validate_args(train, eval, initial_checkpoint_dir, resume)
200
+
201
+ if fabric.global_rank == 0:
202
+ out_dir.mkdir(parents=True, exist_ok=True)
203
+
204
+ fabric.seed_everything(seed) # same seed for every process to init model (FSDP)
205
+
206
+ t0 = time.perf_counter()
207
+ with fabric.init_module(empty_init=True):
208
+ model = GPT(config)
209
+
210
+ initialize_weights(fabric, model, n_layer=config.n_layer, n_embd=config.n_embd)
211
+
212
+ if train.tie_embeddings:
213
+ model.transformer.wte.weight = model.lm_head.weight
214
+ if train.max_seq_length:
215
+ model.max_seq_length = train.max_seq_length
216
+
217
+ fabric.print(f"Time to instantiate model: {time.perf_counter() - t0:.02f} seconds.")
218
+ fabric.print(f"Total parameters: {num_parameters(model):,}")
219
+
220
+ model = torch.compile(model)
221
+ model = fabric.setup(model)
222
+
223
+ extra_kwargs = {"fused": fabric.device.type == "cuda"}
224
+ optimizer = instantiate_torch_optimizer(optimizer, model.parameters(), **extra_kwargs)
225
+ optimizer = fabric.setup_optimizers(optimizer)
226
+
227
+ train_dataloader, val_dataloader = get_dataloaders(fabric, data, tokenizer, train, model.max_seq_length)
228
+ train_dataloader, val_dataloader = fabric.setup_dataloaders(train_dataloader, val_dataloader)
229
+
230
+ if initial_checkpoint_dir:
231
+ ckpt_path = initial_checkpoint_dir / "lit_model.pth"
232
+
233
+ if fabric.global_rank == 0:
234
+ try:
235
+ obj = torch.load(ckpt_path, map_location="cpu")
236
+ except Exception as e:
237
+ raise RuntimeError(f"[load] 无法读取 {ckpt_path}: {e}")
238
+
239
+ if isinstance(obj, dict) and "model" in obj:
240
+ import os
241
+ print(f"[fix] {ckpt_path} 是整包 state,提取 model 权重并原子覆盖...", flush=True)
242
+ sd = obj["model"]
243
+ # 去掉可能的 'module.' 前缀
244
+ if len(sd) and next(iter(sd)).startswith("module."):
245
+ sd = {k[7:]: v for k, v in sd.items()}
246
+
247
+ tmp = ckpt_path.with_suffix(".pth.tmp")
248
+ torch.save(sd, tmp)
249
+ os.replace(tmp, ckpt_path) # 原子替换,避免半文件
250
+ try:
251
+ os.sync() # 刷盘(若权限允许)
252
+ except Exception:
253
+ pass
254
+ print(f"[fix] 已覆盖为纯权重: {ckpt_path}", flush=True)
255
+ else:
256
+ print(f"[ok] {ckpt_path} 已是纯权重", flush=True)
257
+
258
+ fabric.barrier()
259
+
260
+ fabric.load_raw(ckpt_path, model, strict=False)
261
+
262
+ state = {
263
+ "model": model,
264
+ "optimizer": optimizer,
265
+ "train_dataloader": train_dataloader,
266
+ "iter_num": 0,
267
+ "step_count": 0,
268
+ }
269
+
270
+ resume = find_resume_path(resume, out_dir)
271
+ if resume:
272
+ fabric.print(f"Resuming training from {resume}")
273
+ fabric.load(resume, state)
274
+
275
+ train_time = time.perf_counter()
276
+
277
+ # work around PyTorch issue https://github.com/pytorch/pytorch/issues/152162
278
+ # which does not like the lazy initialization to be called in dynamo.
279
+ # Happens with PyTorch 2.7.
280
+ if (
281
+ torch.__version__.startswith("2.7.")
282
+ and (model._forward_module.__class__.__name__ == "OptimizedModule")
283
+ and (model._forward_module._orig_mod.__class__.__name__ == "FullyShardedDataParallel")
284
+ ):
285
+ from torch.distributed.fsdp._runtime_utils import _root_pre_forward
286
+
287
+ _root_pre_forward(model._forward_module._orig_mod, model._forward_module._orig_mod, [], {})
288
+
289
+ fit(
290
+ fabric=fabric,
291
+ devices=devices,
292
+ num_nodes=num_nodes,
293
+ state=state,
294
+ train_dataloader=train_dataloader,
295
+ val_dataloader=val_dataloader,
296
+ out_dir=out_dir,
297
+ tokenizer_dir=tokenizer_dir,
298
+ train=train,
299
+ eval=eval,
300
+ )
301
+
302
+ # Save final checkpoi
303
+ save_checkpoint(fabric, state, tokenizer_dir, out_dir / "final" / "lit_model.pth")
304
+
305
+ total_tokens = state["iter_num"] * train.micro_batch_size * model.max_seq_length * fabric.world_size
306
+
307
+ # Print formatted output
308
+ separator = "-" * 40
309
+ fabric.print(separator)
310
+ fabric.print("| Performance")
311
+ fabric.print(f"| - Total tokens : {total_tokens:,}")
312
+ fabric.print(f"| - Training Time : {(time.perf_counter() - train_time):.2f} s")
313
+ fabric.print(f"| - Tok/sec : {total_tokens / train_time:.2f} tok/s")
314
+ fabric.print("| " + "-" * 40)
315
+
316
+ if fabric.device.type == "cuda":
317
+ memory_used = torch.cuda.max_memory_allocated() / 1e9
318
+ fabric.print("| Memory Usage")
319
+ fabric.print(f"| - Memory Used : {memory_used:.2f} GB")
320
+ fabric.print(separator)
321
+
322
+
323
+ def fit(
324
+ fabric: L.Fabric,
325
+ devices: int,
326
+ state: dict,
327
+ train_dataloader: DataLoader,
328
+ val_dataloader: DataLoader,
329
+ out_dir: Path,
330
+ tokenizer_dir: Optional[Path],
331
+ train: TrainArgs,
332
+ eval: EvalArgs,
333
+ num_nodes: int = 1,
334
+ ) -> None:
335
+ model = state["model"]
336
+ optimizer = state["optimizer"]
337
+
338
+ if eval.initial_validation:
339
+ val_loss = validate(fabric, model, val_dataloader, max_iters=eval.max_iters)
340
+ val_loss = f"{val_loss:.3f}"
341
+ else:
342
+ fabric.print("Verifying settings ...")
343
+ validate(fabric, model, val_dataloader, max_iters=2, verbose=False) # sanity check
344
+ val_loss = "n/a"
345
+
346
+ throughput = ThroughputMonitor(fabric, window_size=5)
347
+
348
+ with torch.device("meta"):
349
+ meta_model = GPT(model.config)
350
+ x = torch.randint(0, 1, (train.micro_batch_size, meta_model.max_seq_length))
351
+ model_fwd = lambda: meta_model(x) # noqa: F821
352
+ model_loss = lambda y: chunked_cross_entropy(y, x, chunk_size=0) # noqa: F821
353
+ measured_flops = measure_flops(meta_model, model_fwd, model_loss)
354
+ fabric.print(f"Measured TFLOPs: {measured_flops * fabric.world_size / 1e12:.2f}")
355
+ del meta_model, x
356
+
357
+
358
+ max_tokens_per_device = train.max_tokens // fabric.world_size
359
+ tokens_per_iter = train.micro_batch_size * model.max_seq_length
360
+ max_iters = max_tokens_per_device // tokens_per_iter
361
+ log_iter_interval = train.log_interval * train.gradient_accumulation_iters(devices, num_nodes)
362
+ initial_iter = state["iter_num"]
363
+ train_iterator = CycleIterator(train_dataloader)
364
+
365
+ running_loss = RunningMean(window=train.gradient_accumulation_iters(devices, num_nodes), sync_on_compute=False).to(
366
+ fabric.device
367
+ )
368
+ fabric.barrier()
369
+ total_t0 = time.perf_counter()
370
+
371
+ warmup_iters = train.warmup_iters(devices, num_nodes, max_iters, train_dataloader)
372
+
373
+ for train_data in train_iterator:
374
+ if state["iter_num"] >= max_iters:
375
+ break
376
+
377
+ # determine and set the learning rate for this iteration
378
+ lr = get_lr(optimizer.defaults["lr"], state["iter_num"], warmup_iters, max_iters, train.min_lr)
379
+ for param_group in optimizer.param_groups:
380
+ param_group["lr"] = lr
381
+
382
+ state["iter_num"] += 1
383
+ iter_t0 = time.perf_counter()
384
+
385
+ input_ids = train_data[:, 0 : model.max_seq_length].contiguous().long()
386
+ targets = train_data[:, 1 : (model.max_seq_length + 1)].contiguous().long()
387
+
388
+ is_accumulating = state["iter_num"] % train.gradient_accumulation_iters(devices, num_nodes) != 0
389
+ with fabric.no_backward_sync(model, enabled=is_accumulating):
390
+ logits = model(input_ids)
391
+ loss = chunked_cross_entropy(logits, targets)
392
+ fabric.backward(loss / train.gradient_accumulation_iters(devices, num_nodes))
393
+
394
+ running_loss.update(loss.detach())
395
+
396
+ if not is_accumulating:
397
+ fabric.clip_gradients(model, optimizer, max_norm=train.max_norm)
398
+ optimizer.step()
399
+ optimizer.zero_grad()
400
+ state["step_count"] += 1
401
+
402
+ if state["iter_num"] % log_iter_interval == 0:
403
+ loss = running_loss.compute().item() # expensive device-to-host synchronization
404
+ t1 = time.perf_counter()
405
+ throughput.update(
406
+ time=(t1 - total_t0),
407
+ flops=(measured_flops * log_iter_interval),
408
+ batches=state["iter_num"],
409
+ samples=(state["iter_num"] * train.micro_batch_size),
410
+ lengths=(state["iter_num"] * train.micro_batch_size * model.max_seq_length),
411
+ )
412
+ metrics = {
413
+ "loss": loss,
414
+ "iter": state["iter_num"],
415
+ "step": state["step_count"],
416
+ "epoch": train_iterator.epoch,
417
+ "iter_time": t1 - iter_t0,
418
+ "remaining_time": (
419
+ (t1 - total_t0) / (state["iter_num"] - initial_iter) * (max_iters - state["iter_num"])
420
+ ),
421
+ "tokens": state["iter_num"] * train.micro_batch_size * model.max_seq_length,
422
+ "total_tokens": (state["iter_num"] * train.micro_batch_size * model.max_seq_length * fabric.world_size),
423
+ "learning_rate": lr,
424
+ }
425
+ if isinstance(val_loss, float):
426
+ val_loss = f"{val_loss:.3f}"
427
+ fabric.print(
428
+ f"Epoch {metrics['epoch'] + 1} | iter {metrics['iter']} step {metrics['step']} |"
429
+ f" loss train: {metrics['loss']:.3f},"
430
+ f" val: {val_loss} |"
431
+ f" iter time: {metrics['iter_time'] * 1000:.2f} ms"
432
+ f"{' (step)' if not is_accumulating else ''}"
433
+ f" remaining time: {timedelta(seconds=int(metrics['remaining_time']))!s}",
434
+ flush=True
435
+ )
436
+
437
+ throughput_metrics = throughput.compute()
438
+ metrics.update(throughput_metrics)
439
+ fabric.log_dict(metrics, step=state["iter_num"] - 1)
440
+
441
+ if val_dataloader is not None and not is_accumulating and state["step_count"] % eval.interval == 0:
442
+ t0 = time.perf_counter()
443
+ val_loss = validate(fabric, model, val_dataloader, max_iters=eval.max_iters)
444
+ val_loss = val_loss.item()
445
+ td = time.perf_counter() - t0
446
+
447
+ fabric.print(f"iter {state['iter_num']}: val loss {val_loss:.4f}, val time: {td * 1000:.2f} ms")
448
+ metrics = {"val_loss": val_loss, "val_ppl": math.exp(val_loss)}
449
+ fabric.log_dict(metrics, step=state["iter_num"] - 1)
450
+ fabric.barrier()
451
+
452
+ if train.save_interval is not None and not is_accumulating and state["step_count"] % train.save_interval == 0:
453
+ save_checkpoint(fabric, state, tokenizer_dir, out_dir / f"step-{state['step_count']:08d}" / "lit_model.pth")
454
+
455
+ # Final validation
456
+ if eval.final_validation:
457
+ val_loss = validate(fabric, model, val_dataloader, max_iters=eval.max_iters)
458
+ metrics = {"val_loss": val_loss, "val_ppl": math.exp(val_loss)}
459
+ fabric.log_dict(metrics, step=state["iter_num"])
460
+ fabric.print(f"Final evaluation | val loss: {val_loss.item():.3f} | val ppl: {math.exp(val_loss):.3f}")
461
+
462
+
463
+ @torch.no_grad()
464
+ def validate(
465
+ fabric: L.Fabric, model: nn.Module, val_dataloader: DataLoader, max_iters: int, verbose: bool = True
466
+ ) -> torch.Tensor:
467
+ fabric.barrier()
468
+ if verbose:
469
+ fabric.print("Validating ...")
470
+ model.eval()
471
+
472
+ losses = []
473
+ for k, batch in enumerate(val_dataloader):
474
+ if k >= max_iters:
475
+ break
476
+ input_ids = batch[:, 0 : model.max_seq_length].contiguous().long()
477
+ targets = batch[:, 1 : (model.max_seq_length + 1)].contiguous().long()
478
+ logits = model(input_ids)
479
+ loss = chunked_cross_entropy(logits, targets)
480
+ losses.append(loss)
481
+
482
+ val_loss = torch.stack(losses).mean()
483
+ model.train()
484
+ fabric.barrier()
485
+ return val_loss
486
+
487
+
488
+ def get_dataloaders(
489
+ fabric: L.Fabric, data: DataModule, tokenizer: Tokenizer, train: TrainArgs, block_size: int
490
+ ) -> Tuple[DataLoader, DataLoader]:
491
+ data.connect(tokenizer=tokenizer, batch_size=train.micro_batch_size, max_seq_length=block_size)
492
+ with fabric.rank_zero_first():
493
+ data.prepare_data()
494
+ data.setup()
495
+ train_dataloader = data.train_dataloader()
496
+ val_dataloader = data.val_dataloader()
497
+ return train_dataloader, val_dataloader
498
+
499
+
500
+ # learning rate decay scheduler (cosine with linear warmup)
501
+ def get_lr(learning_rate: float, it: int, warmup_iters: int, max_iters: int, min_lr: float) -> float:
502
+ # 1) linear warmup for warmup_iters steps
503
+ if it < warmup_iters:
504
+ return learning_rate * it / warmup_iters
505
+ # 2) if it > max_iters, return min learning rate
506
+ if it > max_iters:
507
+ return min_lr
508
+ # 3) in between, use cosine decay down to min learning rate
509
+ decay_ratio = (it - warmup_iters) / (max_iters - warmup_iters)
510
+ assert 0 <= decay_ratio <= 1
511
+ coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1
512
+ return min_lr + coeff * (learning_rate - min_lr)
513
+
514
+
515
+ def initialize_weights(fabric: L.Fabric, model: GPT, n_layer: int, n_embd: int) -> None:
516
+ """GPT-NeoX weight initialization (https://arxiv.org/abs/2204.06745)."""
517
+ # Adapted from https://github.com/jzhang38/TinyLlama
518
+
519
+ def init_weights(module, std):
520
+ nn.init.normal_(module.weight, mean=0.0, std=std)
521
+ if getattr(module, "bias", None) is not None:
522
+ nn.init.zeros_(module.bias)
523
+
524
+ for mod in model.modules():
525
+ if isinstance(mod, (nn.Embedding, nn.Linear)):
526
+ mod.reset_parameters = partial(init_weights, mod, std=math.sqrt(2.0 / 5 / n_embd))
527
+
528
+ # need a separate loop because `mod.proj` below is a `nn.Linear` too
529
+ for mod in model.modules():
530
+ if isinstance(mod, (LLaMAMLP, CausalSelfAttention)):
531
+ mod.proj.reset_parameters = partial(init_weights, mod.proj, std=(1 / math.sqrt(n_embd) / n_layer))
532
+
533
+ if not isinstance(fabric.strategy, FSDPStrategy):
534
+ reset_parameters(model)
535
+
536
+
537
+ def save_checkpoint(fabric, state, tokenizer_dir, checkpoint_file):
538
+ model = state["model"]
539
+ checkpoint_file.parent.mkdir(parents=True, exist_ok=True)
540
+ fabric.print(f"Saving checkpoint to {str(checkpoint_file)!r}")
541
+ fabric.save(checkpoint_file, state)
542
+ if fabric.global_rank == 0:
543
+ save_hyperparameters(setup, checkpoint_file.parent)
544
+ if tokenizer_dir is not None:
545
+ copy_config_files(tokenizer_dir, checkpoint_file.parent)
546
+ save_config(model.config, checkpoint_file.parent)
547
+
548
+
549
+ def validate_args(train: TrainArgs, eval: EvalArgs, initial_checkpoint_dir, resume) -> None:
550
+ issues = []
551
+ unsupported = [(train, ["max_steps", "epochs"]), (eval, ["max_new_tokens"])]
552
+ for args, names in unsupported:
553
+ for name in names:
554
+ if getattr(args, name) is not None:
555
+ issues.append(f"{__file__} doesn't support the {name!r} argument. This is set in {args}")
556
+ required = [(train, ["max_tokens", "max_norm"])]
557
+ for args, names in required:
558
+ for name in names:
559
+ if getattr(args, name) is None:
560
+ issues.append(f"{__file__} requires the {name!r} argument. This is set in {args}")
561
+ if initial_checkpoint_dir and resume:
562
+ issues.append("Can't provide both `--resume` and `--initial_checkpoint_dir`. Choose one.")
563
+ if issues:
564
+ raise ValueError("\n".join(issues))
litgpt/prompts.py ADDED
@@ -0,0 +1,541 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
2
+ import importlib
3
+ import re
4
+ from abc import abstractmethod
5
+ from json import dumps
6
+ from pathlib import Path
7
+ from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Type, Union
8
+
9
+ import yaml
10
+
11
+ from litgpt.config import Config
12
+
13
+ if TYPE_CHECKING:
14
+ from litgpt import Tokenizer
15
+
16
+
17
+ class PromptStyle:
18
+ """Base interface for prompt styles."""
19
+
20
+ @abstractmethod
21
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
22
+ return prompt
23
+
24
+ def stop_tokens(self, tokenizer: "Tokenizer") -> Tuple[List[int], ...]:
25
+ return ([tokenizer.eos_id],)
26
+
27
+ @classmethod
28
+ def from_name(cls, name: str) -> "PromptStyle":
29
+ return prompt_styles[name]()
30
+
31
+ @classmethod
32
+ def from_config(cls, config: Config) -> "PromptStyle":
33
+ return model_name_to_prompt_style(config.name)
34
+
35
+
36
+ class Default(PromptStyle):
37
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
38
+ return prompt
39
+
40
+ def stop_tokens(self, tokenizer: "Tokenizer") -> Tuple[List[int], ...]:
41
+ return ([tokenizer.eos_id],)
42
+
43
+
44
+ class Alpaca(PromptStyle):
45
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
46
+ if kwargs.get("input"):
47
+ sys_prompt = sys_prompt or (
48
+ "Below is an instruction that describes a task, paired with an input that provides further context. "
49
+ "Write a response that appropriately completes the request.\n\n"
50
+ )
51
+ return f"{sys_prompt}### Instruction:\n{prompt}\n\n### Input:\n{kwargs['input']}\n\n### Response:\n"
52
+
53
+ sys_prompt = sys_prompt or (
54
+ "Below is an instruction that describes a task. "
55
+ "Write a response that appropriately completes the request.\n\n"
56
+ )
57
+ return f"{sys_prompt}### Instruction:\n{prompt}\n\n### Response:\n"
58
+
59
+
60
+ class FLAN(PromptStyle):
61
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
62
+ sys_prompt = sys_prompt or (
63
+ "Below is an instruction that describes a task. "
64
+ "Write a response that appropriately completes the request.\n\n"
65
+ )
66
+ return f"{sys_prompt}### Instruction:\n{prompt}\n\n### Response:\n"
67
+
68
+
69
+ class Longform(PromptStyle):
70
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
71
+ sys_prompt = sys_prompt or (
72
+ "Below is an instruction that describes a task, paired with an input that provides further context. "
73
+ "Write a response that appropriately completes the request.\n\n"
74
+ )
75
+ return f"{sys_prompt}### Instruction:\n{prompt}\n\n### Response:\n"
76
+
77
+
78
+ class StableLMAlpha(PromptStyle):
79
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
80
+ sys_prompt = sys_prompt or (
81
+ "# StableLM Tuned (Alpha version)\n- StableLM is a helpful and harmless open-source AI language"
82
+ " model developed by StabilityAI.\n- StableLM is excited to be able to help the user, but will refuse to do"
83
+ " anything that could be considered harmful to the user.\n- StableLM is more than just an information"
84
+ " source, StableLM is also able to write poetry, short stories, and make jokes.\n- StableLM will refuse to"
85
+ " participate in anything that could harm a human."
86
+ )
87
+ return f"<|SYSTEM|>{sys_prompt}<|USER|>{prompt}<|ASSISTANT|>"
88
+
89
+ def stop_tokens(self, tokenizer: "Tokenizer") -> Tuple[List[int], ...]:
90
+ return (
91
+ [tokenizer.eos_id],
92
+ [tokenizer.token_to_id("<|SYSTEM|>")],
93
+ [tokenizer.token_to_id("<|ASSISTANT|>")],
94
+ [tokenizer.token_to_id("<|USER|>")],
95
+ )
96
+
97
+
98
+ class StableLMZephyr(PromptStyle):
99
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
100
+ return f"<|user|>\n{prompt}<|endoftext|>\n<|assistant|>\n"
101
+
102
+
103
+ class Falcon(PromptStyle):
104
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
105
+ return f"{prompt}\nAnswer:"
106
+
107
+ def stop_tokens(self, tokenizer: "Tokenizer") -> Tuple[List[int], ...]:
108
+ return (
109
+ [tokenizer.eos_id],
110
+ # the model rarely emits the eos token and instead outputs newlines, but we cannot use them
111
+ # to stop or else things like code generation wouldn't work
112
+ [tokenizer.token_to_id("User"), tokenizer.token_to_id(":")],
113
+ [193, tokenizer.token_to_id("User")], # 193: '\n'
114
+ )
115
+
116
+
117
+ class Falcon3(PromptStyle):
118
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
119
+ return f"<|user|>\n{prompt}<|endoftext|>\n<|assistant|>\n"
120
+
121
+ def stop_tokens(self, tokenizer: "Tokenizer") -> Tuple[List[int], ...]:
122
+ return (
123
+ [tokenizer.eos_id],
124
+ [tokenizer.token_to_id("<|endoftext|>")],
125
+ )
126
+
127
+
128
+ class Llama2FunctionCalling(PromptStyle):
129
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
130
+ # Has to be before the llama config
131
+ b_func, e_func = "<FUNCTIONS>", "</FUNCTIONS>\n\n"
132
+ b_inst, e_inst = "[INST]", "[/INST]"
133
+ b_sys, e_sys = "<<SYS>>\n", "\n<</SYS>>\n\n"
134
+ # This is an example for how to format functions for the model
135
+ function_metadata = {
136
+ "function": "search_bing",
137
+ "description": (
138
+ "Search the web for content on Bing. This allows users to search online/the internet/the web for"
139
+ " content."
140
+ ),
141
+ "arguments": [{"name": "query", "type": "string", "description": "The search query string"}],
142
+ }
143
+
144
+ system_prompt = sys_prompt or (
145
+ "You are a helpful, respectful and honest assistant. Always answer as helpfully as"
146
+ "possible. Your only response should be JSON formatted functions"
147
+ )
148
+ # replace the curly braces with double curly braces to escape them
149
+ function_list = dumps(function_metadata).replace("{", "{{").replace("}", "}}")
150
+ return (
151
+ f"{b_func}{function_list.strip()}{e_func}{b_inst}{b_sys}{system_prompt.strip()}{e_sys}{prompt}{e_inst}\n\n"
152
+ )
153
+
154
+
155
+ class Llama2(PromptStyle):
156
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
157
+ b_inst, e_inst = "[INST]", "[/INST]"
158
+ b_sys, e_sys = "<<SYS>>\n", "\n<</SYS>>\n\n"
159
+ sys_prompt = sys_prompt or (
160
+ "You are a helpful, respectful and honest assistant. Always answer as helpfully as"
161
+ " possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist,"
162
+ " toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and"
163
+ " positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why"
164
+ " instead of answering something not correct. If you don't know the answer to a question, please don't"
165
+ " share false information."
166
+ )
167
+ return f"{b_inst} {b_sys}{sys_prompt}{e_sys} {prompt} {e_inst} "
168
+
169
+
170
+ class Llama3(PromptStyle):
171
+ def apply(
172
+ self, prompt: Union[str, List[Dict[str, str]]], *, sys_prompt: Optional[str] = None, **kwargs: str
173
+ ) -> str:
174
+ default_system_prompt = sys_prompt or "You are a helpful assistant."
175
+
176
+ # https://github.com/meta-llama/llama3/blob/359887376f0aaf30e433f23e25df858d8c2a9833/llama/tokenizer.py#L202-L229
177
+ if isinstance(prompt, str):
178
+ return (
179
+ "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n"
180
+ f"{default_system_prompt}<|eot_id|>" # No newline
181
+ "<|start_header_id|>user<|end_header_id|>\n\n"
182
+ f"{prompt}<|eot_id|>" # No newline
183
+ "<|start_header_id|>assistant<|end_header_id|>\n\n"
184
+ )
185
+ elif isinstance(prompt, list):
186
+
187
+ def encode_header(role: str) -> List[str]:
188
+ return [f"<|start_header_id|>{role}<|end_header_id|>\n\n"]
189
+
190
+ def encode_message(message: Dict[str, str]) -> List[str]:
191
+ tokens = encode_header(message["role"])
192
+ # NOTE: Meta stripped this. I'm not sure I agree, but who am I to argue?
193
+ tokens.append(message["content"].strip())
194
+ tokens.append("<|eot_id|>")
195
+ return tokens
196
+
197
+ def has_system_prompt(messages: List[Dict[str, str]]) -> bool:
198
+ return messages[0].get("role", "") == "system" if len(messages) else False
199
+
200
+ tokens = ["<|begin_of_text|>"]
201
+ if not has_system_prompt(prompt):
202
+ tokens.extend(encode_message({"role": "system", "content": default_system_prompt}))
203
+ for i, message in enumerate(prompt):
204
+ if i != 0 and message["role"] == "system":
205
+ raise ValueError("'system' role is only allowed at the beginning of the conversation list.")
206
+ if message["role"] not in ["assistant", "user", "system"]:
207
+ raise ValueError(
208
+ f"Unknown role: '{message['role']}'. Supported roles are 'assistant', 'user', and 'system'."
209
+ )
210
+ tokens.extend(encode_message(message))
211
+ tokens.extend(encode_header("assistant"))
212
+ return "".join(tokens)
213
+ else:
214
+ raise ValueError(f"Unsupported prompt type: {type(prompt)}")
215
+
216
+ def stop_tokens(self, tokenizer: "Tokenizer") -> Tuple[List[int], ...]:
217
+ return (
218
+ [tokenizer.eos_id],
219
+ [tokenizer.token_to_id("<|eot_id|>")],
220
+ )
221
+
222
+
223
+ class R1Base(PromptStyle):
224
+ def apply(
225
+ self, prompt: Union[str, List[Dict[str, str]]], *, sys_prompt: Optional[str] = None, **kwargs: str
226
+ ) -> str:
227
+ default_system_prompt = sys_prompt or ""
228
+
229
+ bos_token = "<|begin▁of▁sentence|>"
230
+ eos_token = ""
231
+
232
+ if isinstance(prompt, str):
233
+ return f"{default_system_prompt}<|User|>{prompt}<|Assistant|>" # Prepares for assistant response
234
+ elif isinstance(prompt, list):
235
+
236
+ def encode_message(message: Dict[str, str]) -> str:
237
+ role = message["role"]
238
+ content = message["content"].strip()
239
+
240
+ if role == "system":
241
+ return content # System prompt is prepended at the start
242
+ elif role == "user":
243
+ return f"<|User|>{content}"
244
+ elif role == "assistant":
245
+ return f"<|Assistant|>{content}{eos_token}"
246
+ else:
247
+ raise ValueError(f"Unknown role: '{role}'. Supported roles are 'assistant', 'user', and 'system'.")
248
+
249
+ # Extract system prompt (if any)
250
+ system_prompt = ""
251
+ if prompt[0].get("role") == "system":
252
+ system_prompt = prompt[0]["content"]
253
+ prompt = prompt[1:] # Remove system message from the list
254
+
255
+ # Construct the formatted prompt
256
+ formatted_prompt = system_prompt
257
+ for message in prompt:
258
+ formatted_prompt += encode_message(message)
259
+
260
+ formatted_prompt += "<|Assistant|>" # Prepares for assistant response
261
+ return formatted_prompt
262
+ else:
263
+ raise ValueError(f"Unsupported prompt type: {type(prompt)}")
264
+
265
+ def stop_tokens(self, tokenizer: "Tokenizer") -> Tuple[List[int], ...]:
266
+ return (
267
+ [tokenizer.eos_id],
268
+ [tokenizer.token_to_id("<|end▁of▁sentence|>")],
269
+ )
270
+
271
+
272
+ class FreeWilly2(PromptStyle):
273
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
274
+ sys_prompt = sys_prompt or "This is a system prompt, please behave and help the user."
275
+ return f"### System:\n{sys_prompt}\n\n### User:\n{prompt}\n\n### Assistant:\n"
276
+
277
+
278
+ class Platypus(PromptStyle):
279
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
280
+ return f"### Instruction:\n\n{prompt}\n\n### Response:\n"
281
+
282
+
283
+ class StableCode(PromptStyle):
284
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
285
+ return f"###Instruction\n{prompt}###Response\n"
286
+
287
+
288
+ class CodeLlama(PromptStyle):
289
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
290
+ # for CodeLLama, we don't set a default system prompt, but it is supported:
291
+ # https://huggingface.co/blog/codellama#conversational-instructions
292
+ # Mistral does not: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1#instruction-format
293
+ b_inst, e_inst = "[INST]", "[/INST]"
294
+ if sys_prompt:
295
+ b_sys, e_sys = "<<SYS>>\n", "\n<</SYS>>\n\n"
296
+ return f"{b_inst} {b_sys}{sys_prompt}{e_sys}{prompt} {e_inst}"
297
+ return f"{b_inst} {prompt} {e_inst}"
298
+
299
+
300
+ class Phi1(PromptStyle):
301
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
302
+ return f"{prompt}\n\nAnswer:"
303
+
304
+ def stop_tokens(self, tokenizer: "Tokenizer") -> Tuple[List[int], ...]:
305
+ return (
306
+ [tokenizer.eos_id],
307
+ [tokenizer.token_to_id("Answer"), tokenizer.token_to_id(":")],
308
+ [198, tokenizer.token_to_id("Answer"), tokenizer.token_to_id(":")],
309
+ # the model rarely emits the eos token and instead outputs newlines, but we cannot use them
310
+ # to stop or else things like code generation wouldn't work
311
+ # [198, 198], # '\n', '\n'
312
+ )
313
+
314
+
315
+ class Phi2(PromptStyle):
316
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
317
+ return f"Instruct: {prompt}\nOutput:"
318
+
319
+
320
+ class Phi3(PromptStyle):
321
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
322
+ sys_prompt = sys_prompt or "You are a helpful assistant."
323
+ return f"<|system|>\n{sys_prompt}<|end|>\n<|user|>\n{prompt}<|end|>\n<|assistant|>\n"
324
+
325
+
326
+ class Phi4(PromptStyle):
327
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
328
+ res = ""
329
+ if sys_prompt:
330
+ res += f"<|im_start|>system<|im_sep|>{sys_prompt}<|im_end|>"
331
+ res += f"<|im_start|>user<|im_sep|>{prompt}<|im_end|><|im_start|>assistant<|im_sep|>"
332
+ return res
333
+
334
+
335
+ class Phi4Reasoning(PromptStyle):
336
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
337
+ sys_prompt = (
338
+ sys_prompt
339
+ or "You are Phi, a language model trained by Microsoft to help users. Your role as an assistant involves thoroughly exploring questions through a systematic thinking process before providing the final precise and accurate solutions. This requires engaging in a comprehensive cycle of analysis, summarizing, exploration, reassessment, reflection, backtracing, and iteration to develop well-considered thinking process. Please structure your response into two main sections: Thought and Solution using the specified format: <think> {Thought section} </think> {Solution section}. In the Thought section, detail your reasoning process in steps. Each step should include detailed considerations such as analysing questions, summarizing relevant findings, brainstorming new ideas, verifying the accuracy of the current steps, refining any errors, and revisiting previous steps. In the Solution section, based on various attempts, explorations, and reflections from the Thought section, systematically present the final solution that you deem correct. The Solution section should be logical, accurate, and concise and detail necessary steps needed to reach the conclusion. Now, try to solve the following question through the above guidelines:"
340
+ )
341
+ return f"<|im_start>system<|im_sep|>{sys_prompt}<|im_end|><|im_start|>user<|im_sep|>{prompt}<|im_end|><|im_start|>assistant<|im_sep|>"
342
+
343
+
344
+ class Phi4Mini(PromptStyle):
345
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
346
+ res = ""
347
+ if sys_prompt:
348
+ res += f"<|system|>{sys_prompt}<|end|>"
349
+ res += f"<|user|>{prompt}<|end|><|assistant|>"
350
+ return res
351
+
352
+
353
+ class Phi4MiniReasoning(PromptStyle):
354
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
355
+ sys_prompt = sys_prompt or "Your name is Phi, an AI math expert developed by Microsoft."
356
+ return f"<|system|>{sys_prompt}<|end|><|user|>{prompt}<|end|><|assistant|>"
357
+
358
+
359
+ class TinyLlama(PromptStyle):
360
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
361
+ sys_prompt = sys_prompt or "You are a friendly chatbot who always gives helpful, detailed, and polite answers."
362
+ return f"<|system|>\n{sys_prompt}</s>\n<|user|>\n{prompt}</s>\n<|assistant|>\n"
363
+
364
+
365
+ class Gemma(PromptStyle):
366
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
367
+ return f"<start_of_turn>user\n{prompt}<end_of_turn>\n<start_of_turn>model\n"
368
+
369
+
370
+ class OLMo(PromptStyle):
371
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
372
+ return f"<|endoftext|><|user|>\n{prompt}\n<|assistant|>\n"
373
+
374
+
375
+ class ChatML(PromptStyle):
376
+ def __init__(self, system_message: Optional[str] = None):
377
+ self.system_message = system_message
378
+
379
+ def apply(self, prompt: str, *, sys_prompt: Optional[str] = None, **kwargs: str) -> str:
380
+ sys_prompt = sys_prompt or self.system_message
381
+ return (
382
+ f"<|im_start|>system\n{sys_prompt}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
383
+ )
384
+
385
+
386
+ class Qwen2_5(ChatML):
387
+ def __init__(self):
388
+ super().__init__("You are Qwen, created by Alibaba Cloud. You are a helpful assistant.")
389
+
390
+
391
+ class Qwen2_5_Math(ChatML):
392
+ def __init__(self):
393
+ super().__init__("Please reason step by step, and put your final answer within \\boxed{}.")
394
+
395
+
396
+ class QwQ(ChatML):
397
+ def __init__(self):
398
+ super().__init__(
399
+ "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."
400
+ )
401
+
402
+
403
+ class Qwen3(ChatML):
404
+ def __init__(self):
405
+ super().__init__()
406
+
407
+
408
+ class SmolLM2(ChatML):
409
+ def __init__(self):
410
+ super().__init__("You are a helpful AI assistant named SmolLM, trained by Hugging Face")
411
+
412
+
413
+ class Salamandra(ChatML):
414
+ def __init__(self):
415
+ super().__init__(
416
+ "I am Salamandra, an AI language model developed at the Barcelona Supercomputing Centre (BSC) by the Language Technologies Unit. My knowledge base was last updated on August 2023. Today Date: 2024-09-30\nSoy Salamandra, un modelo lingüístico de IA desarrollado en el Barcelona Supercomputing Centre (BSC) por la Language Technologies Unit. Mi base de conocimientos se actualizó por última vez en agosto de 2023.\nSoc Salamandra, un model de llenguatge d'IA desenvolupat al Barcelona Supercomputing Centre (BSC) per la Language Technologies Unit."
417
+ )
418
+
419
+
420
+ # Maps prompt style names to PromptStyle classes
421
+ prompt_styles: Dict[str, Type[PromptStyle]] = {
422
+ # Dataset-specific prompt styles
423
+ "default": Default,
424
+ "alpaca": Alpaca,
425
+ "flan": FLAN,
426
+ "longform": Longform,
427
+ # Model-specific prompt styles
428
+ "stablelm-alpha": StableLMAlpha,
429
+ "stablelm-zephyr": StableLMZephyr,
430
+ "falcon": Falcon,
431
+ "llama2-function-calling": Llama2FunctionCalling,
432
+ "llama2": Llama2,
433
+ "freewilly2": FreeWilly2,
434
+ "platypus": Platypus,
435
+ "stablecode": StableCode,
436
+ "codellama": CodeLlama,
437
+ "phi-1": Phi1,
438
+ "phi-2": Phi2,
439
+ "phi-3": Phi3,
440
+ "phi-4": Phi4,
441
+ "phi-4-reasoning": Phi4Reasoning,
442
+ "phi-4-mini": Phi4Mini,
443
+ "phi-4-mini-reasoning": Phi4MiniReasoning,
444
+ "tinyllama": TinyLlama,
445
+ "gemma": Gemma,
446
+ "llama3": Llama3,
447
+ "olmo": OLMo,
448
+ "qwen2.5": Qwen2_5,
449
+ "qwen2.5-math": Qwen2_5_Math,
450
+ "qwq": QwQ,
451
+ "qwen3": Qwen3,
452
+ "smollm2": SmolLM2,
453
+ "salamandra": Salamandra,
454
+ }
455
+
456
+
457
+ def model_name_to_prompt_style(model_name: str) -> PromptStyle:
458
+ if re.search(r"stablelm-tuned-alpha", model_name):
459
+ return StableLMAlpha()
460
+ if re.search(r"stablelm-zephyr-3b", model_name):
461
+ return StableLMZephyr()
462
+ if re.search("stablecode-instruct", model_name):
463
+ return StableCode()
464
+ if re.search(r"Falcon3.*-Instruct", model_name):
465
+ return Falcon3()
466
+ if re.search(r"falcon.*-instruct", model_name):
467
+ return Falcon()
468
+ if re.search("Llama-2-7b-chat-hf-function-calling-v2", model_name):
469
+ return Llama2FunctionCalling()
470
+ if re.search("Llama-2.*-chat", model_name):
471
+ return Llama2()
472
+ if re.search("Llama-3.*-Instruct", model_name):
473
+ return Llama3()
474
+ if re.search("Llama-3.*-Instruct-*", model_name):
475
+ return Llama3()
476
+ if re.search("OLMo-2.*-(Instruct|SFT|DPO)", model_name):
477
+ return Llama3()
478
+ if re.search("R1", model_name):
479
+ return R1Base()
480
+ if re.search("FreeWilly2", model_name):
481
+ return FreeWilly2()
482
+ if re.search("Platypus", model_name):
483
+ return Platypus()
484
+ if re.search("CodeLlama|Mi[sx]tral.*Instruct", model_name):
485
+ return CodeLlama()
486
+ if re.search("phi-1", model_name):
487
+ return Phi1()
488
+ if re.search("phi-2", model_name):
489
+ return Phi2()
490
+ if re.search("Phi-3", model_name):
491
+ return Phi3()
492
+ if re.search("Phi-4-reasoning", model_name):
493
+ return Phi4Reasoning()
494
+ if re.search("Phi-4-mini-reasoning", model_name):
495
+ return Phi4MiniReasoning()
496
+ if re.search("Phi-4-mini", model_name):
497
+ return Phi4Mini()
498
+ if re.search("phi-4", model_name):
499
+ return Phi4()
500
+ if re.search(r"tiny-llama.*chat", model_name):
501
+ return TinyLlama()
502
+ if re.search(r"(Code)?Gemma.*-it", model_name):
503
+ return Gemma()
504
+ if re.search(r"OLMo.*-hf", model_name):
505
+ return OLMo()
506
+ if re.search(r"Qwen2\.5-Math-.*", model_name):
507
+ return Qwen2_5_Math()
508
+ if re.search(r"Qwen2\.5-.*", model_name):
509
+ return Qwen2_5()
510
+ if re.search(r"QwQ-.*", model_name):
511
+ return QwQ()
512
+ if re.search(r"Qwen3-.*", model_name):
513
+ return Qwen3()
514
+ if re.search(r"SmolLM2.*-Instruct", model_name):
515
+ return SmolLM2()
516
+ if re.search(r"salamandra-.*-instruct", model_name):
517
+ return Salamandra()
518
+ return Default()
519
+
520
+
521
+ def save_prompt_style(style: Union[str, PromptStyle], checkpoint_dir: Path) -> None:
522
+ style = PromptStyle.from_name(style) if isinstance(style, str) else style
523
+ cls = type(style)
524
+ # Allow saving the full module path for user-defined prompt classes
525
+ config = {"class_path": f"{cls.__module__}.{cls.__name__}"}
526
+ with open(checkpoint_dir / "prompt_style.yaml", "w", encoding="utf-8") as file:
527
+ yaml.dump(config, file)
528
+
529
+
530
+ def load_prompt_style(checkpoint_dir: Path) -> PromptStyle:
531
+ with open(checkpoint_dir / "prompt_style.yaml", encoding="utf-8") as file:
532
+ config = yaml.safe_load(file)
533
+ # Support loading the full module path for user-defined prompt classes
534
+ full_module_path, cls_name = config["class_path"].rsplit(".", 1)
535
+ module = importlib.import_module(full_module_path)
536
+ cls = getattr(module, cls_name)
537
+ return cls()
538
+
539
+
540
+ def has_prompt_style(checkpoint_dir: Path) -> bool:
541
+ return (checkpoint_dir / "prompt_style.yaml").is_file()
litgpt/tokenizer.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
2
+
3
+ import json
4
+ from pathlib import Path
5
+ from typing import Iterable, Iterator, Optional, Union
6
+
7
+ import torch
8
+
9
+ from litgpt.utils import fix_and_load_json
10
+
11
+
12
+ class Tokenizer:
13
+ def __init__(self, checkpoint_dir: Union[Path, str]) -> None:
14
+ checkpoint_dir = Path(checkpoint_dir)
15
+ if not checkpoint_dir.exists():
16
+ raise NotADirectoryError(f"The checkpoint directory does not exist: {str(checkpoint_dir)}")
17
+
18
+ self.model_name = checkpoint_dir.stem
19
+ self.use_bos = self.check_if_bos_token_used(checkpoint_dir)
20
+ self.bos_id = None
21
+ self.eos_id = None
22
+
23
+ # some checkpoints have both files, `.json` takes precedence
24
+ if (vocabulary_path := checkpoint_dir / "tokenizer.json").is_file():
25
+ from tokenizers import Tokenizer as HFTokenizer
26
+
27
+ self.processor = HFTokenizer.from_file(str(vocabulary_path))
28
+ self.backend = "huggingface"
29
+
30
+ if (special_tokens_path := checkpoint_dir / "tokenizer_config.json").is_file():
31
+ with open(special_tokens_path, encoding="utf-8") as fp:
32
+ config = json.load(fp)
33
+ bos_token = config.get("bos_token")
34
+ eos_token = config.get("eos_token")
35
+ if bos_token is not None and isinstance(bos_token, dict):
36
+ bos_token = bos_token.get("content")
37
+ if eos_token is not None and isinstance(eos_token, dict):
38
+ eos_token = eos_token.get("content")
39
+ self.bos_id = self.token_to_id(bos_token) if bos_token is not None else None
40
+ self.eos_id = self.token_to_id(eos_token) if eos_token is not None else None
41
+ if (special_tokens_path := checkpoint_dir / "generation_config.json").is_file():
42
+ try:
43
+ with open(special_tokens_path, encoding="utf-8") as fp:
44
+ config = json.load(fp)
45
+ except json.JSONDecodeError: # Some files like the Llama 3.2 one have bugs
46
+ with open(special_tokens_path, encoding="utf-8") as fp:
47
+ json_string = fp.read()
48
+ config = fix_and_load_json(json_string)
49
+ if self.bos_id is None:
50
+ self.bos_id = config.get("bos_token_id")
51
+ if self.eos_id is None:
52
+ self.eos_id = config.get("eos_token_id")
53
+
54
+ elif (vocabulary_path := checkpoint_dir / "tokenizer.model").is_file():
55
+ from sentencepiece import SentencePieceProcessor
56
+
57
+ self.processor = SentencePieceProcessor(model_file=str(vocabulary_path))
58
+ self.backend = "sentencepiece"
59
+ self.bos_id = self.processor.bos_id()
60
+ self.eos_id = self.processor.eos_id()
61
+ else:
62
+ raise NotImplementedError
63
+
64
+ # NOTE: A temporary fix until it's resolved on Tokenizers side.
65
+ # LlaMA tokenizer strips leading spaces if to decode a single token at a time.
66
+ # https://github.com/huggingface/transformers/issues/31643
67
+ self.apply_decoding_fix = None
68
+ if (config_path := checkpoint_dir / "tokenizer_config.json").is_file():
69
+ with open(config_path, encoding="utf-8") as fp:
70
+ self.apply_decoding_fix = "LlamaTokenizer" in json.load(fp)["tokenizer_class"]
71
+
72
+ @property
73
+ def vocab_size(self) -> int:
74
+ if self.backend == "huggingface":
75
+ return self.processor.get_vocab_size(with_added_tokens=False)
76
+ if self.backend == "sentencepiece":
77
+ return self.processor.vocab_size()
78
+ raise RuntimeError
79
+
80
+ def token_to_id(self, token: str) -> int:
81
+ if self.backend == "huggingface":
82
+ id_ = self.processor.token_to_id(token)
83
+ elif self.backend == "sentencepiece":
84
+ id_ = self.processor.piece_to_id(token)
85
+ else:
86
+ raise RuntimeError
87
+ if id_ is None:
88
+ raise ValueError(f"token {token!r} not found in the collection.")
89
+ return id_
90
+
91
+ def check_if_bos_token_used(self, checkpoint_dir: Path) -> bool:
92
+ if not (tokenizer_config_path := checkpoint_dir / "tokenizer_config.json").is_file():
93
+ return False
94
+ with open(tokenizer_config_path, encoding="utf-8") as fp:
95
+ config = json.load(fp)
96
+ # for LlaMA-3 tokenizer there is no `add_bos_token` at all and `tokenizer_class` is only
97
+ # `PreTrainedTokenizerFast`
98
+ if checkpoint_dir.stem.startswith(("Meta-Llama-3", "Llama-3")):
99
+ return True
100
+ if checkpoint_dir.stem.startswith("SmolLM2") and checkpoint_dir.name.endswith("Instruct"):
101
+ return True
102
+ if "add_bos_token" in config:
103
+ return config["add_bos_token"]
104
+ # if `add_bos_token` isn't in the config file, but LLaMA tokenizer is used - return True.
105
+ # ex: https://huggingface.co/stabilityai/StableBeluga2/blob/main/tokenizer_config.json#L2
106
+ return config.get("tokenizer_class") == "LlamaTokenizer"
107
+
108
+ def encode(
109
+ self,
110
+ string: str,
111
+ device: Optional[torch.device] = None,
112
+ bos: Optional[bool] = None,
113
+ eos: bool = False,
114
+ max_length: int = -1,
115
+ ) -> torch.Tensor:
116
+ if self.backend == "huggingface":
117
+ tokens = self.processor.encode(string).ids
118
+ elif self.backend == "sentencepiece":
119
+ tokens = self.processor.encode(string)
120
+ else:
121
+ raise RuntimeError(f"`{self.backend}` is not supported.")
122
+ if tokens is None:
123
+ raise ValueError("`self.processor` returned tokens of None value.")
124
+
125
+ if bos or (bos is None and self.use_bos):
126
+ if self.bos_id is None:
127
+ raise NotImplementedError("This tokenizer does not have a defined bos token.")
128
+ if not tokens or tokens[0] != self.bos_id:
129
+ tokens = [self.bos_id] + tokens
130
+ # if the processor misbehaves and adds `bos` token no matter what
131
+ elif tokens and tokens[0] == self.bos_id:
132
+ tokens = tokens[1:]
133
+
134
+ if eos and (not tokens or tokens[-1] != self.eos_id):
135
+ tokens = tokens + [self.eos_id]
136
+ # if the processor misbehaves and adds `eos` token no matter what
137
+ elif tokens and tokens[-1] == self.eos_id:
138
+ tokens = tokens[:-1]
139
+
140
+ if max_length > 0:
141
+ tokens = tokens[:max_length]
142
+ return torch.tensor(tokens, dtype=torch.int, device=device)
143
+
144
+ def decode(self, tensor: torch.Tensor) -> str:
145
+ tokens = [tensor.item()] if tensor.ndim == 0 else tensor.tolist()
146
+ if len(tokens) == 1 and self.apply_decoding_fix:
147
+ dummy_token_id = 33 # \x1e
148
+ dummy_token = self.processor.decode([dummy_token_id])
149
+ if dummy_token != "\x1e":
150
+ dummy_token_id = 165 # \x1e is different in salamandra tokenizers
151
+ dummy_token = self.processor.decode([dummy_token_id])
152
+ return self.processor.decode([dummy_token_id] + tokens)[len(dummy_token) :]
153
+ return self.processor.decode(tokens)
154
+
155
+ def decode_stream(
156
+ self, token_stream: Iterable[torch.Tensor], device: Optional[torch.device] = None
157
+ ) -> Iterator[str]:
158
+ if self.backend == "huggingface":
159
+ try:
160
+ for token in token_stream:
161
+ yield self.decode(token)
162
+ except KeyboardInterrupt:
163
+ return
164
+ elif self.backend == "sentencepiece":
165
+ # TODO: Is there a way to not have to do this?
166
+ # This may actually affect our tokens per second.
167
+
168
+ # sentencepiece does not support decoding token-by-token because it adds spaces based on the surrounding tokens
169
+ # meaning that we need to decode everything each time
170
+ so_far = torch.tensor([], dtype=torch.long, device=device)
171
+ decoded_so_far = ""
172
+ try:
173
+ for token in token_stream:
174
+ so_far = so_far.to(device=token.device)
175
+ so_far = torch.cat((so_far, token.view(-1)))
176
+ decoded_new = self.decode(so_far)
177
+ yield decoded_new[len(decoded_so_far) :]
178
+ decoded_so_far = decoded_new
179
+ except KeyboardInterrupt:
180
+ return
181
+ else:
182
+ raise NotImplementedError(self.backend)
litgpt/utils.py ADDED
@@ -0,0 +1,875 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
2
+
3
+ """Utility functions for training and inference."""
4
+
5
+ import inspect
6
+ import json
7
+ import math
8
+ import os
9
+ import pickle
10
+ import random
11
+ import re
12
+ import shutil
13
+ import subprocess
14
+ import sys
15
+ import warnings
16
+ from dataclasses import asdict, is_dataclass
17
+ from io import BytesIO
18
+ from pathlib import Path
19
+ from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Literal, Mapping, Optional, TypeVar, Union
20
+
21
+ import lightning as L
22
+ import psutil
23
+ import torch
24
+ import torch.nn as nn
25
+ import torch.utils._device
26
+ import yaml
27
+ from lightning.fabric.loggers import CSVLogger, TensorBoardLogger
28
+ from lightning.fabric.strategies import FSDPStrategy
29
+ from lightning.fabric.utilities.load import _lazy_load as lazy_load
30
+ from lightning.pytorch.cli import instantiate_class
31
+ from lightning.pytorch.loggers import MLFlowLogger, WandbLogger
32
+ from lightning_utilities.core.imports import module_available
33
+ from packaging import version
34
+ from torch.serialization import normalize_storage_type
35
+ from typing_extensions import Self
36
+
37
+ if TYPE_CHECKING:
38
+ from litgpt import GPT, Config
39
+
40
+ _THUNDER_AVAILABLE = module_available("thunder")
41
+ _TRITON_AVAILABLE = module_available("triton")
42
+
43
+
44
+ def init_out_dir(out_dir: Path) -> Path:
45
+ if not isinstance(out_dir, Path):
46
+ out_dir = Path(out_dir)
47
+ if not out_dir.is_absolute() and "LIGHTNING_ARTIFACTS_DIR" in os.environ:
48
+ return Path(os.getenv("LIGHTNING_ARTIFACTS_DIR")) / out_dir
49
+ return out_dir
50
+
51
+
52
+ def find_resume_path(resume: Union[bool, Literal["auto"], Path], out_dir: Path) -> Optional[Path]:
53
+ if not resume or isinstance(resume, Path):
54
+ return resume
55
+
56
+ resume_path = max(out_dir.rglob("step-*/*.pth"), key=(lambda p: int(p.parent.name.split("-")[1])), default=None)
57
+ if resume == "auto":
58
+ return resume_path
59
+ if resume is True and resume_path is None:
60
+ raise FileNotFoundError(
61
+ f"You passed `--resume=True`, but no checkpoint file was found in `--out_dir={out_dir}`."
62
+ )
63
+ return resume_path
64
+
65
+
66
+ def num_parameters(module: nn.Module, requires_grad: Optional[bool] = None) -> int:
67
+ total = 0
68
+ for p in module.parameters():
69
+ if requires_grad is None or p.requires_grad == requires_grad:
70
+ if hasattr(p, "quant_state"):
71
+ # bitsandbytes 4bit layer support
72
+ total += math.prod(p.quant_state.shape)
73
+ else:
74
+ total += p.numel()
75
+ return total
76
+
77
+
78
+ def reset_parameters(module: nn.Module) -> None:
79
+ """Calls `reset_parameters` on the module and all its submodules."""
80
+ for mod in module.modules():
81
+ if callable(getattr(mod, "reset_parameters", None)):
82
+ mod.reset_parameters()
83
+
84
+
85
+ def check_valid_checkpoint_dir(
86
+ checkpoint_dir: Path,
87
+ model_filename: str = "lit_model.pth",
88
+ verbose: bool = True,
89
+ raise_error: bool = False,
90
+ ignore_tokenizer_files: bool = False,
91
+ ) -> None:
92
+ files = {
93
+ model_filename: (checkpoint_dir / model_filename).is_file(),
94
+ "model_config.yaml": (checkpoint_dir / "model_config.yaml").is_file(),
95
+ }
96
+ if not ignore_tokenizer_files:
97
+ files.update(
98
+ {
99
+ "tokenizer.json OR tokenizer.model": (checkpoint_dir / "tokenizer.json").is_file()
100
+ or (checkpoint_dir / "tokenizer.model").is_file(),
101
+ "tokenizer_config.json": (checkpoint_dir / "tokenizer_config.json").is_file(),
102
+ }
103
+ )
104
+
105
+ if checkpoint_dir.is_dir():
106
+ if all(files.values()):
107
+ # we're good
108
+ return
109
+ problem = f" is missing the files: {[f for f, exists in files.items() if not exists]!r}"
110
+ else:
111
+ problem = " is not a checkpoint directory"
112
+
113
+ # list locally available checkpoints
114
+ available = list(Path("checkpoints").glob("*/*"))
115
+ if available:
116
+ options = "\n".join([""] + [repr(str(p.resolve())) for p in available])
117
+ extra = f"\nYou have downloaded locally:{options}\n"
118
+ else:
119
+ extra = ""
120
+
121
+ if verbose:
122
+ error_message = (
123
+ f"checkpoint_dir {str(checkpoint_dir.absolute())!r}{problem}."
124
+ "\nFind download instructions at https://github.com/Lightning-AI/litgpt/blob/main/tutorials\n"
125
+ f"{extra}\nSee all download options by running:\n litgpt download"
126
+ )
127
+ print(error_message, file=sys.stderr)
128
+
129
+ if raise_error:
130
+ raise FileNotFoundError(f"checkpoint_dir {str(checkpoint_dir.absolute())!r}{problem}.")
131
+ else:
132
+ raise SystemExit(1)
133
+
134
+
135
+ class SavingProxyForStorage:
136
+ def __init__(self, obj, saver, protocol_version=5):
137
+ self.protocol_version = protocol_version
138
+ self.saver = saver
139
+ if not (isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj)):
140
+ raise TypeError(f"expected storage, not {type(obj)}")
141
+
142
+ # this logic is taken from PyTorch 2.0+ torch/serialization.py
143
+ if isinstance(obj, torch.storage.TypedStorage):
144
+ # PT upstream wants to deprecate this eventually...
145
+ storage = obj._untyped_storage
146
+ storage_type_str = obj._pickle_storage_type()
147
+ storage_type = getattr(torch, storage_type_str)
148
+ storage_numel = obj._size()
149
+ else:
150
+ storage = obj
151
+ storage_type = normalize_storage_type(type(obj))
152
+ storage_numel = storage.nbytes()
153
+
154
+ storage_key = saver._write_storage_and_return_key(storage)
155
+ location = torch.serialization.location_tag(storage)
156
+
157
+ self.storage_info = ("storage", storage_type, storage_key, location, storage_numel)
158
+
159
+ def __reduce_ex__(self, protocol_version):
160
+ assert False, "this should be handled with out of band"
161
+
162
+
163
+ class SavingProxyForTensor:
164
+ def __init__(self, tensor, saver, protocol_version=5):
165
+ self.protocol_version = protocol_version
166
+ self.reduce_ret_fn, reduce_args = tensor.__reduce_ex__(protocol_version)
167
+ if reduce_args[0] == torch._utils._rebuild_tensor_v2:
168
+ # for Tensors with Python attributes
169
+ (a0, a1, (storage, *a2_other), *other_reduce_args) = reduce_args
170
+ assert isinstance(storage, (torch.storage.TypedStorage, torch.storage.UntypedStorage)), (
171
+ "Please check for updates"
172
+ )
173
+ storage_proxy = SavingProxyForStorage(storage, saver, protocol_version=protocol_version)
174
+ self.reduce_args = (a0, a1, (storage_proxy, *a2_other), *other_reduce_args)
175
+ else:
176
+ (storage, *other_reduce_args) = reduce_args
177
+ assert isinstance(storage, (torch.storage.TypedStorage, torch.storage.UntypedStorage)), (
178
+ "Please check for updates"
179
+ )
180
+ storage_proxy = SavingProxyForStorage(storage, saver, protocol_version=protocol_version)
181
+ self.reduce_args = (storage_proxy, *other_reduce_args)
182
+
183
+ def __reduce_ex__(self, protocol_version):
184
+ if protocol_version != self.protocol_version:
185
+ raise RuntimeError(f"Unexpected protocol version: expected {self.protocol_version}, got {protocol_version}")
186
+ return self.reduce_ret_fn, self.reduce_args
187
+
188
+
189
+ class IncrementalPyTorchPickler(pickle.Pickler):
190
+ def __init__(self, saver, *args, **kwargs):
191
+ super().__init__(*args, **kwargs)
192
+ self.storage_dtypes = {}
193
+ self.saver = saver
194
+ self.id_map = {}
195
+
196
+ # this logic is taken from PyTorch 2.0+ torch/serialization.py
197
+ def persistent_id(self, obj):
198
+ # FIXME: the docs say that persistent_id should only return a string
199
+ # but torch store returns tuples. This works only in the binary protocol
200
+ # see
201
+ # https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
202
+ # https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
203
+ if isinstance(obj, SavingProxyForStorage):
204
+ return obj.storage_info
205
+
206
+ if isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj):
207
+ if isinstance(obj, torch.storage.TypedStorage):
208
+ # TODO: Once we decide to break serialization FC, this case
209
+ # can be deleted
210
+ storage = obj._untyped_storage
211
+ storage_dtype = obj.dtype
212
+ storage_type_str = obj._pickle_storage_type()
213
+ storage_type = getattr(torch, storage_type_str)
214
+ storage_numel = obj._size()
215
+
216
+ else:
217
+ storage = obj
218
+ storage_dtype = torch.uint8
219
+ storage_type = normalize_storage_type(type(obj))
220
+ storage_numel = storage.nbytes()
221
+
222
+ # If storage is allocated, ensure that any other saved storages
223
+ # pointing to the same data all have the same dtype. If storage is
224
+ # not allocated, don't perform this check
225
+ if storage.data_ptr() != 0:
226
+ if storage.data_ptr() in self.storage_dtypes:
227
+ if storage_dtype != self.storage_dtypes[storage.data_ptr()]:
228
+ raise RuntimeError(
229
+ "Cannot save multiple tensors or storages that view the same data as different types"
230
+ )
231
+ else:
232
+ self.storage_dtypes[storage.data_ptr()] = storage_dtype
233
+
234
+ storage_key = self.id_map.get(storage._cdata)
235
+ if storage_key is None:
236
+ storage_key = self.saver._write_storage_and_return_key(storage)
237
+ self.id_map[storage._cdata] = storage_key
238
+ location = torch.serialization.location_tag(storage)
239
+
240
+ return ("storage", storage_type, storage_key, location, storage_numel)
241
+
242
+ return None
243
+
244
+
245
+ class incremental_save:
246
+ def __init__(self, name):
247
+ self.name = name
248
+ self.zipfile = torch._C.PyTorchFileWriter(str(name))
249
+ self.has_saved = False
250
+ self.next_key = 0
251
+ self.protocol_version = 2
252
+
253
+ def __enter__(self):
254
+ return self
255
+
256
+ def store_early(self, tensor):
257
+ if isinstance(tensor, torch.Tensor):
258
+ return SavingProxyForTensor(tensor, self, protocol_version=self.protocol_version)
259
+ raise TypeError(f"can only store tensors early, not {type(tensor)}")
260
+
261
+ def save(self, obj):
262
+ if self.has_saved:
263
+ raise RuntimeError("have already saved")
264
+ # Write the pickle data for `obj`
265
+ data_buf = BytesIO()
266
+ pickler = IncrementalPyTorchPickler(self, data_buf, protocol=self.protocol_version)
267
+ pickler.dump(obj)
268
+ data_value = data_buf.getvalue()
269
+ self.zipfile.write_record("data.pkl", data_value, len(data_value))
270
+ self.has_saved = True
271
+
272
+ def _write_storage_and_return_key(self, storage):
273
+ if self.has_saved:
274
+ raise RuntimeError("have already saved")
275
+ key = self.next_key
276
+ self.next_key += 1
277
+ name = f"data/{key}"
278
+ if storage.device.type != "cpu":
279
+ storage = storage.cpu()
280
+ num_bytes = storage.nbytes()
281
+
282
+ current_version = version.parse(torch.__version__)
283
+ threshold_version = version.parse("2.2.2")
284
+ if current_version <= threshold_version:
285
+ self.zipfile.write_record(name, storage.data_ptr(), num_bytes)
286
+ else:
287
+ self.zipfile.write_record(name, storage, num_bytes)
288
+
289
+ return key
290
+
291
+ def __exit__(self, type, value, traceback):
292
+ self.zipfile.write_end_of_file()
293
+
294
+
295
+ T = TypeVar("T")
296
+
297
+
298
+ def chunked_cross_entropy(
299
+ logits: Union[torch.Tensor, List[torch.Tensor]],
300
+ targets: torch.Tensor,
301
+ chunk_size: int = 128,
302
+ ignore_index: int = -100,
303
+ ) -> torch.Tensor:
304
+ # with large max_sequence_lengths, the beginning of `backward` allocates a large memory chunk which can dominate
305
+ # the memory usage in fine-tuning settings with low number of parameters.
306
+ # as a workaround hack, the cross entropy computation is chunked to force it to deallocate on the go, reducing
307
+ # the memory spike's magnitude
308
+
309
+ # lm_head was chunked (we are fine-tuning)
310
+ if isinstance(logits, list):
311
+ # don't want to chunk cross entropy
312
+ if chunk_size == 0:
313
+ logits = torch.cat(logits, dim=1)
314
+ logits = logits.reshape(-1, logits.size(-1))
315
+ targets = targets.reshape(-1)
316
+ return torch.nn.functional.cross_entropy(logits, targets, ignore_index=ignore_index)
317
+
318
+ # chunk cross entropy
319
+ logit_chunks = [logit_chunk.reshape(-1, logit_chunk.size(-1)) for logit_chunk in logits]
320
+ target_chunks = [target_chunk.reshape(-1) for target_chunk in targets.split(logits[0].size(1), dim=1)]
321
+ loss_chunks = [
322
+ torch.nn.functional.cross_entropy(logit_chunk, target_chunk, ignore_index=ignore_index, reduction="none")
323
+ for logit_chunk, target_chunk in zip(logit_chunks, target_chunks)
324
+ ]
325
+ non_masked_elems = (targets != ignore_index).sum()
326
+ # See [non_masked_elems div note]
327
+ return torch.cat(loss_chunks).sum() / non_masked_elems.maximum(torch.ones_like(non_masked_elems))
328
+
329
+ # no chunking at all
330
+ logits = logits.reshape(-1, logits.size(-1))
331
+ targets = targets.reshape(-1)
332
+ if chunk_size == 0:
333
+ return torch.nn.functional.cross_entropy(logits, targets, ignore_index=ignore_index)
334
+
335
+ # lm_head wasn't chunked, chunk cross entropy
336
+ logit_chunks = logits.split(chunk_size)
337
+ target_chunks = targets.split(chunk_size)
338
+ loss_chunks = [
339
+ torch.nn.functional.cross_entropy(logit_chunk, target_chunk, ignore_index=ignore_index, reduction="none")
340
+ for logit_chunk, target_chunk in zip(logit_chunks, target_chunks)
341
+ ]
342
+ non_masked_elems = (targets != ignore_index).sum()
343
+ # [non_masked_elems div note]:
344
+ # max(1, non_masked_elems) would be more ergonomic to avoid a division by zero. However that
345
+ # results in a python int which is then passed back to torch division. By using the
346
+ # `x.maximum(torch.ones_like(x))` pattern we avoid a cudaStreamSynchronize.
347
+ return torch.cat(loss_chunks).sum() / non_masked_elems.maximum(torch.ones_like(non_masked_elems))
348
+
349
+
350
+ def map_old_state_dict_weights(state_dict: Dict, mapping: Mapping, prefix: str) -> Dict:
351
+ for checkpoint_name, attribute_name in mapping.items():
352
+ full_checkpoint_name = prefix + checkpoint_name
353
+ if full_checkpoint_name in state_dict:
354
+ full_attribute_name = prefix + attribute_name
355
+ state_dict[full_attribute_name] = state_dict.pop(full_checkpoint_name)
356
+ return state_dict
357
+
358
+
359
+ def get_default_supported_precision(training: bool) -> str:
360
+ """
361
+ Return the default precision that is supported by the hardware: either `bf16` or `16`.
362
+
363
+ Args:
364
+ training: If True, returns '-mixed' version of the precision; if False, returns '-true' version.
365
+
366
+ Returns:
367
+ The default precision that is suitable for the task and is supported by the hardware.
368
+ """
369
+ import torch
370
+
371
+ if torch.cuda.is_available():
372
+ if torch.cuda.is_bf16_supported():
373
+ return "bf16-mixed" if training else "bf16-true"
374
+ else:
375
+ return "16-mixed" if training else "16-true"
376
+ return "bf16-mixed" if training else "bf16-true"
377
+
378
+
379
+ def load_checkpoint(fabric: L.Fabric, model: nn.Module, checkpoint_path: Path, strict: bool = True) -> None:
380
+ if isinstance(fabric.strategy, FSDPStrategy):
381
+ fabric.load_raw(checkpoint_path, model, strict=strict)
382
+ else:
383
+ state_dict = lazy_load(checkpoint_path)
384
+ state_dict = state_dict.get("model", state_dict)
385
+ model.load_state_dict(state_dict, strict=strict)
386
+
387
+
388
+ def load_checkpoint_update(
389
+ fabric: L.Fabric, adapter_path: Path, model: nn.Module, checkpoint_path: Path, strict: bool = True
390
+ ) -> None:
391
+ if isinstance(fabric.strategy, FSDPStrategy):
392
+ fabric.load_raw(checkpoint_path, model, strict=strict)
393
+ else:
394
+ state_dict = lazy_load(checkpoint_path)
395
+ state_dict = state_dict.get("model", state_dict)
396
+ adapter_cp = lazy_load(adapter_path)
397
+ state_dict.update(adapter_cp)
398
+ model.load_state_dict(state_dict, strict=strict)
399
+
400
+
401
+ def flops_per_param(max_seq_length: int, n_layer: int, n_embd: int, n_params: int) -> int:
402
+ flops_per_token = 2 * n_params # each parameter is used for a MAC (2 FLOPS) per network operation
403
+ # this assumes that all samples have a fixed length equal to the block size
404
+ # which is most likely false during finetuning
405
+ flops_per_seq = flops_per_token * max_seq_length
406
+ attn_flops_per_seq = n_layer * 2 * 2 * (n_embd * (max_seq_length**2))
407
+ return flops_per_seq + attn_flops_per_seq
408
+
409
+
410
+ def estimate_flops(model: "GPT", training: bool) -> int:
411
+ """Measures estimated FLOPs for MFU.
412
+
413
+ Refs:
414
+ * https://ar5iv.labs.arxiv.org/html/2205.05198#A1
415
+ * https://ar5iv.labs.arxiv.org/html/2204.02311#A2
416
+ """
417
+ # using all parameters for this is a naive over estimation because not all model parameters actually contribute to
418
+ # this FLOP computation (e.g. embedding, norm). For this reason, the result will be higher by a fixed percentage
419
+ # (~10%) compared to the measured FLOPs, making those lower but more realistic.
420
+ # For a proper estimate, this needs a more fine-grained calculation as in Appendix A of the paper.
421
+ n_trainable_params = num_parameters(model, requires_grad=True)
422
+ trainable_flops = flops_per_param(
423
+ model.max_seq_length, model.config.n_layer, model.config.n_embd, n_trainable_params
424
+ )
425
+ # forward + backward + gradients (assumes no gradient accumulation)
426
+ ops_per_step = 3 if training else 1
427
+ n_frozen_params = num_parameters(model, requires_grad=False)
428
+ frozen_flops = flops_per_param(model.max_seq_length, model.config.n_layer, model.config.n_embd, n_frozen_params)
429
+ # forward + backward
430
+ frozen_ops_per_step = 2 if training else 1
431
+ return ops_per_step * trainable_flops + frozen_ops_per_step * frozen_flops
432
+
433
+
434
+ class CycleIterator:
435
+ """An iterator that cycles through an iterable indefinitely.
436
+
437
+ Example:
438
+ >>> iterator = CycleIterator([1, 2, 3])
439
+ >>> [next(iterator) for _ in range(5)]
440
+ [1, 2, 3, 1, 2]
441
+
442
+ Note:
443
+ Unlike ``itertools.cycle``, this iterator does not cache the values of the iterable.
444
+ """
445
+
446
+ def __init__(self, iterable: Iterable) -> None:
447
+ self.iterable = iterable
448
+ self.epoch = 0
449
+ self._iterator = None
450
+
451
+ def __next__(self) -> Any:
452
+ if self._iterator is None:
453
+ self._iterator = iter(self.iterable)
454
+ try:
455
+ return next(self._iterator)
456
+ except StopIteration:
457
+ self._iterator = iter(self.iterable)
458
+ self.epoch += 1
459
+ return next(self._iterator)
460
+
461
+ def __iter__(self) -> Self:
462
+ return self
463
+
464
+
465
+ def copy_config_files(source_dir: Path, out_dir: Path) -> None:
466
+ """Copies the specified configuration and tokenizer files into the output directory."""
467
+
468
+ config_files = ["config.json", "generation_config.json", "model_config.yaml"]
469
+ tokenizer_files = ["tokenizer.json", "tokenizer.model", "tokenizer_config.json"]
470
+
471
+ for file_name in config_files + tokenizer_files:
472
+ src_path = source_dir / file_name
473
+ if src_path.exists():
474
+ shutil.copy(src_path, out_dir)
475
+
476
+
477
+ def CLI(*args: Any, **kwargs: Any) -> Any:
478
+ from jsonargparse import CLI, set_config_read_mode, set_docstring_parse_options
479
+
480
+ set_docstring_parse_options(attribute_docstrings=True)
481
+ set_config_read_mode(urls_enabled=True)
482
+
483
+ return CLI(*args, **kwargs)
484
+
485
+
486
+ def capture_hparams() -> Dict[str, Any]:
487
+ """Captures the local variables ('hyperparameters') from where this function gets called."""
488
+ caller_frame = inspect.currentframe().f_back
489
+ locals_of_caller = caller_frame.f_locals
490
+ hparams = {}
491
+ for name, value in locals_of_caller.items():
492
+ if value is None or isinstance(value, (int, float, str, bool, Path)):
493
+ hparams[name] = value
494
+ elif is_dataclass(value):
495
+ hparams[name] = asdict(value)
496
+ else:
497
+ hparams[name] = str(value)
498
+ return hparams
499
+
500
+
501
+ def save_hyperparameters(function: callable, checkpoint_dir: Path) -> None:
502
+ """Captures the CLI parameters passed to `function` without running `function` and saves them to the checkpoint."""
503
+ from jsonargparse import capture_parser
504
+
505
+ # TODO: Make this more robust
506
+ # This hack strips away the subcommands from the top-level CLI
507
+ # to parse the file as if it was called as a script
508
+ known_commands = [
509
+ ("finetune_full",), # For subcommands, use `("finetune", "full")` etc
510
+ ("finetune_lora",),
511
+ ("finetune_adapter",),
512
+ ("finetune_adapter_v2",),
513
+ ("finetune",),
514
+ ("pretrain",),
515
+ ]
516
+ for known_command in known_commands:
517
+ unwanted = slice(1, 1 + len(known_command))
518
+ if tuple(sys.argv[unwanted]) == known_command:
519
+ sys.argv[unwanted] = []
520
+
521
+ parser = capture_parser(lambda: CLI(function))
522
+ config = parser.parse_args()
523
+ parser.save(config, checkpoint_dir / "hyperparameters.yaml", overwrite=True)
524
+
525
+
526
+ def save_config(config: "Config", checkpoint_dir: Path) -> None:
527
+ config_dict = asdict(config)
528
+ with open(checkpoint_dir / "model_config.yaml", "w", encoding="utf-8") as fp:
529
+ yaml.dump(config_dict, fp)
530
+
531
+
532
+ def parse_devices(devices: Union[str, int]) -> int:
533
+ if devices in (-1, "auto"):
534
+ return torch.cuda.device_count() or 1
535
+ if isinstance(devices, int) and devices > 0:
536
+ return devices
537
+ raise ValueError(f"Devices must be 'auto' or a positive integer, got: {devices!r}")
538
+
539
+
540
+ def choose_logger(
541
+ logger_name: Literal["csv", "tensorboard", "wandb", "mlflow"],
542
+ out_dir: Path,
543
+ name: str,
544
+ log_interval: int = 1,
545
+ log_args: Optional[Dict] = None,
546
+ resume: Optional[bool] = None,
547
+ **kwargs: Any,
548
+ ):
549
+ if logger_name == "csv":
550
+ return CSVLogger(root_dir=(out_dir / "logs"), name="csv", flush_logs_every_n_steps=log_interval, **kwargs)
551
+ if logger_name == "tensorboard":
552
+ return TensorBoardLogger(root_dir=(out_dir / "logs"), name="tensorboard", **kwargs)
553
+ if logger_name == "wandb":
554
+ project = log_args.pop("project", name)
555
+ run = log_args.pop("run", os.environ.get("WANDB_RUN_NAME"))
556
+ group = log_args.pop("group", os.environ.get("WANDB_RUN_GROUP"))
557
+ return WandbLogger(project=project, name=run, group=group, resume=resume, **kwargs)
558
+ if logger_name == "mlflow":
559
+ return MLFlowLogger(experiment_name=name, **kwargs)
560
+ raise ValueError(f"`--logger_name={logger_name}` is not a valid option. Choose from 'csv', 'tensorboard', 'wandb'.")
561
+
562
+
563
+ def get_argument_names(cls):
564
+ sig = inspect.signature(cls.__init__)
565
+ return {
566
+ name
567
+ for name, param in sig.parameters.items()
568
+ if param.kind in [inspect.Parameter.POSITIONAL_OR_KEYWORD, inspect.Parameter.KEYWORD_ONLY]
569
+ }
570
+
571
+
572
+ def instantiate_bnb_optimizer(optimizer, model_parameters):
573
+ if (isinstance(optimizer, str) and "AdamW" not in optimizer) or (
574
+ isinstance(optimizer, dict) and "AdamW" not in optimizer.get("class_path", "")
575
+ ):
576
+ raise ValueError("The chosen quantization format only supports the AdamW optimizer.")
577
+
578
+ import bitsandbytes as bnb
579
+
580
+ if isinstance(optimizer, str):
581
+ optimizer = bnb.optim.PagedAdamW(model_parameters)
582
+ else:
583
+ optim_args = get_argument_names(bnb.optim.PagedAdamW)
584
+ allowed_kwargs = {key: optimizer["init_args"][key] for key in optim_args & optimizer["init_args"].keys()}
585
+ optimizer = bnb.optim.PagedAdamW(model_parameters, **allowed_kwargs)
586
+ return optimizer
587
+
588
+
589
+ def instantiate_torch_optimizer(optimizer, model_parameters, **kwargs):
590
+ # Special care taken where some optimizers do not have some parameters referenced in some of the code, for example "fused" in the pretrain.py script:
591
+ # bnb.optim.AdamW8bit
592
+ # grokadamw.GrokAdamW
593
+ # torch.optim.RMSprop
594
+
595
+ if isinstance(optimizer, str):
596
+ if "." in optimizer:
597
+ class_module, class_name = optimizer.rsplit(".", 1)
598
+ else:
599
+ class_module, class_name = "torch.optim", optimizer
600
+
601
+ module = __import__(class_module, fromlist=[class_name])
602
+ optimizer_cls = getattr(module, class_name)
603
+
604
+ valid_params = set(inspect.signature(optimizer_cls).parameters)
605
+ kwargs = {key: value for key, value in dict(kwargs).items() if key in valid_params}
606
+ optimizer = optimizer_cls(model_parameters, **kwargs)
607
+ elif isinstance(optimizer, dict):
608
+ optimizer = dict(optimizer)
609
+ class_module, class_name = optimizer["class_path"].rsplit(".", 1)
610
+ module = __import__(class_module, fromlist=[class_name])
611
+ optimizer_cls = getattr(module, class_name)
612
+
613
+ valid_params = set(inspect.signature(optimizer_cls).parameters)
614
+ kwargs = {key: value for key, value in dict(kwargs).items() if key in valid_params}
615
+
616
+ optimizer["init_args"].update(kwargs)
617
+ optimizer = instantiate_class(model_parameters, optimizer)
618
+ else:
619
+ raise ValueError(f'Unrecognized "optimizer" value: {optimizer}')
620
+
621
+ return optimizer
622
+
623
+
624
+ def extend_checkpoint_dir(checkpoint_dir: Path) -> Path:
625
+ new_checkpoint_dir = "checkpoints" / checkpoint_dir
626
+ should_return_new_dir = (
627
+ not checkpoint_dir.is_dir()
628
+ and checkpoint_dir.parts[0] != "checkpoints"
629
+ and not checkpoint_dir.is_absolute()
630
+ and new_checkpoint_dir.exists()
631
+ )
632
+ return new_checkpoint_dir if should_return_new_dir else checkpoint_dir
633
+
634
+
635
+ def check_file_size_on_cpu_and_warn(checkpoint_path, device, size_limit=4_509_715_660):
636
+ """
637
+ Checks the file size and raises a warning if it exceeds the size_limit.
638
+ The default size limit is 4.2 GB, the size of TinyLlama 1.1B: 4.2 * 1024 * 1024 * 1024 = 4_509_715_660
639
+ """
640
+ size = 0.0
641
+ if os.path.exists(checkpoint_path):
642
+ size = os.path.getsize(checkpoint_path)
643
+ if size > size_limit and str(device) == "cpu":
644
+ warnings.warn(
645
+ f"The file size of {checkpoint_path} is over {size_limit / 1024 / 1024 / 1024:.1f} GB. Using a model "
646
+ "with more than 1B parameters on a CPU can be slow, it is recommended to switch to a GPU."
647
+ )
648
+ return size
649
+
650
+
651
+ def auto_download_checkpoint(model_name, access_token=None, ignore_tokenizer_files=False):
652
+ from litgpt.scripts.download import download_from_hub # moved here due to circular import issue
653
+
654
+ checkpoint_dir = extend_checkpoint_dir(Path(model_name))
655
+ try:
656
+ check_valid_checkpoint_dir(
657
+ checkpoint_dir, verbose=False, raise_error=True, ignore_tokenizer_files=ignore_tokenizer_files
658
+ )
659
+ except FileNotFoundError as e:
660
+ if access_token is None:
661
+ access_token = os.getenv("HF_TOKEN")
662
+
663
+ if checkpoint_dir.parts[0] != "checkpoints" and not checkpoint_dir.is_absolute():
664
+ download_from_hub(repo_id=str(model_name), access_token=access_token)
665
+ checkpoint_dir = Path("checkpoints") / checkpoint_dir
666
+ else:
667
+ raise e
668
+
669
+ return checkpoint_dir
670
+
671
+
672
+ def check_nvlink_connectivity(fabric=None):
673
+ """Checks GPU connectivity for both NVIDIA and AMD GPUs.
674
+
675
+ This function delegates to vendor-specific implementations based on
676
+ the detected GPU vendor.
677
+ """
678
+ if fabric is not None:
679
+ custom_print = fabric.print
680
+ else:
681
+ custom_print = print
682
+
683
+ if os.getenv("RANK", "0") == "0":
684
+ try:
685
+ if torch.cuda.is_available():
686
+ device_properties = torch.cuda.get_device_properties(0)
687
+ gpu_name = device_properties.name.lower()
688
+ if "nvidia" in gpu_name:
689
+ _check_nvidia_connectivity(custom_print)
690
+ elif "advanced micro devices" in gpu_name or "amd" in gpu_name:
691
+ _check_amd_connectivity(custom_print)
692
+ else:
693
+ custom_print(f"Unrecognized GPU vendor: {device_properties.name}")
694
+ else:
695
+ custom_print("No GPUs available")
696
+ except Exception as e:
697
+ custom_print(f"An error occurred while checking GPU connectivity: {e}")
698
+
699
+
700
+ def _check_nvidia_connectivity(custom_print):
701
+ """Checks NVLink connectivity on NVIDIA GPUs."""
702
+ result = subprocess.run(["nvidia-smi", "topo", "-m"], stdout=subprocess.PIPE, text=True)
703
+ if result.returncode != 0:
704
+ custom_print("Failed to run nvidia-smi")
705
+ return
706
+
707
+ lines = result.stdout.strip().split("\n")
708
+ start_index = next((i for i, line in enumerate(lines) if "GPU0" in line), None)
709
+ if start_index is None:
710
+ custom_print("Failed to parse nvidia-smi output")
711
+ return
712
+
713
+ headers_line = lines[start_index]
714
+ headers = headers_line.split()
715
+ gpu_regex = re.compile(r"^GPU\d+$")
716
+ gpu_count = len([header for header in headers if gpu_regex.match(header)])
717
+
718
+ all_nvlink = True
719
+ for line in lines[start_index + 1 : start_index + 1 + gpu_count]:
720
+ columns = line.split()
721
+ connections = columns[1 : 1 + gpu_count]
722
+ if not all("NV" in conn for conn in connections if conn != "X"):
723
+ all_nvlink = False
724
+ break
725
+
726
+ if all_nvlink:
727
+ custom_print("All GPUs are fully connected via NVLink.")
728
+ else:
729
+ custom_print(
730
+ "Warning: Not all GPUs are fully connected via NVLink. Some GPUs are connected via slower interfaces. "
731
+ "It is recommended to switch to a different machine with faster GPU connections for optimal multi-GPU training performance."
732
+ )
733
+
734
+
735
+ def _check_amd_connectivity(custom_print):
736
+ """Checks XGMI connectivity on AMD GPUs."""
737
+ result = subprocess.run(["rocm-smi", "--showtopotype"], stdout=subprocess.PIPE, text=True)
738
+ if result.returncode != 0:
739
+ custom_print("Failed to run rocm-smi")
740
+ return
741
+
742
+ lines = result.stdout.strip().split("\n")
743
+ gpu_header_index = next((i for i, line in enumerate(lines) if re.match(r"^\s*GPU0", line)), None)
744
+ if gpu_header_index is None or gpu_header_index == 0:
745
+ custom_print("Failed to parse rocm-smi output (no GPU headers found)")
746
+ return
747
+
748
+ header_line = lines[gpu_header_index - 1]
749
+ headers = header_line.strip().split()
750
+ gpu_regex = re.compile(r"^GPU\d+$")
751
+ gpu_count = len([header for header in headers if gpu_regex.match(header)])
752
+
753
+ gpu_lines = []
754
+ for line in lines[gpu_header_index : gpu_header_index + gpu_count]:
755
+ if re.match(r"^\s*GPU\d+", line):
756
+ gpu_lines.append(line.strip())
757
+ if len(gpu_lines) != gpu_count:
758
+ custom_print("Mismatch in GPU count when parsing rocm-smi output")
759
+ return
760
+
761
+ all_xgmi = True
762
+ for line in gpu_lines:
763
+ columns = line.split()
764
+ connections = columns[1 : 1 + gpu_count]
765
+ for conn in connections:
766
+ if conn not in ("XGMI", "0"):
767
+ all_xgmi = False
768
+ break
769
+ if not all_xgmi:
770
+ break
771
+
772
+ if all_xgmi:
773
+ custom_print("All GPUs are fully connected via XGMI.")
774
+ else:
775
+ custom_print(
776
+ "Warning: Not all GPUs are fully connected via XGMI. Some GPUs are connected via slower interfaces. "
777
+ "It is recommended to switch to a different machine with faster GPU connections for optimal multi-GPU training performance."
778
+ )
779
+
780
+
781
+ def fix_and_load_json(s):
782
+ # Remove trailing commas before } or ]
783
+ s = re.sub(r",(\s*[}\]])", r"\1", s)
784
+
785
+ # Insert missing commas between properties
786
+ # Match positions where a value is followed by a newline and then a quote without a comma
787
+ pattern = r'(?<=[}\]0-9truefalsenull"])\s*(\n\s*)"'
788
+ replacement = r',\1"'
789
+ s = re.sub(pattern, replacement, s)
790
+
791
+ # Now try to parse the JSON
792
+ try:
793
+ return json.loads(s)
794
+ except json.JSONDecodeError as e:
795
+ raise ValueError(f"Failed to parse JSON after fixing: {e}")
796
+
797
+
798
+ def create_finetuning_performance_report(training_time, token_counts, device_type):
799
+ tok_sec = token_counts["raw_tokens_plus_prompt_template_and_padding"] / training_time
800
+ output = f"""
801
+ | ------------------------------------------------------
802
+ | Token Counts
803
+ | - Input Tokens : {token_counts["raw_tokens"]:>5}
804
+ | - Tokens w/ Prompt : {token_counts["raw_tokens_plus_prompt_template"]:>5}
805
+ | - Total Tokens (w/ Padding) : {token_counts["raw_tokens_plus_prompt_template_and_padding"]:>5}
806
+ | -----------------------------------------------------
807
+ | Performance
808
+ | - Training Time : {training_time:.2f} s
809
+ | - Tok/sec : {tok_sec:.2f} tok/s
810
+ | -----------------------------------------------------
811
+ """
812
+
813
+ if device_type == "cuda":
814
+ memory_used = torch.cuda.max_memory_allocated() / 1e9
815
+ output += "| Memory Usage \n"
816
+ output += f"| - Memory Used : {memory_used:.02f} GB \n"
817
+ output += "-------------------------------------------------------\n"
818
+
819
+ return output
820
+
821
+
822
+ def select_sft_generate_example(eval, data):
823
+ if eval.evaluate_example == "first":
824
+ if len(data.test_dataset.data):
825
+ instruction = data.test_dataset.data[0]["instruction"]
826
+ else:
827
+ instruction = data.train_dataset.data[0]["instruction"]
828
+
829
+ elif eval.evaluate_example == "random":
830
+ if len(data.test_dataset.data):
831
+ random_idx = random.randint(0, len(data.test_dataset.data) - 1)
832
+ instruction = data.test_dataset.data[random_idx]["instruction"]
833
+ else:
834
+ random_idx = random.randint(0, len(data.train_dataset.data) - 1)
835
+ instruction = data.train_dataset.data[random_idx]["instruction"]
836
+
837
+ elif isinstance(eval.evaluate_example, int):
838
+ index = eval.evaluate_example
839
+ if len(data.test_dataset.data) > index:
840
+ instruction = data.test_dataset.data[index]["instruction"]
841
+ elif len(data.train_dataset.data) > index:
842
+ instruction = data.train_dataset.data[index]["instruction"]
843
+ else:
844
+ raise IndexError(f"Index {index} is out of range for both test and training datasets.")
845
+
846
+ else:
847
+ raise ValueError(f"Unknown evaluation example type: {eval.evaluate_example}")
848
+ return instruction
849
+
850
+
851
+ def _RunIf(thunder: bool = False, **kwargs):
852
+ import pytest
853
+ from lightning.fabric.utilities.testing import _runif_reasons
854
+
855
+ reasons, marker_kwargs = _runif_reasons(**kwargs)
856
+
857
+ if thunder and not module_available("thunder"):
858
+ # if we require Thunder, but it's not available, we should skip
859
+ reasons.append("Thunder")
860
+
861
+ return pytest.mark.skipif(condition=len(reasons) > 0, reason=f"Requires: [{' + '.join(reasons)}]", **marker_kwargs)
862
+
863
+
864
+ def kill_process_tree(pid: int):
865
+ """
866
+ Kill a process and all its child processes given the parent PID.
867
+ """
868
+ try:
869
+ parent = psutil.Process(pid)
870
+ children = parent.children(recursive=True)
871
+ for child in children:
872
+ child.kill()
873
+ parent.kill()
874
+ except psutil.NoSuchProcess:
875
+ pass # Process already exited
out/eval/tinyllama_benches/monthly_metrics.csv ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ month,task,metric,value
2
+ 2407,arc_challenge,acc,0.26621160409556316
3
+ 2408,arc_challenge,acc,0.25426621160409557
4
+ 2409,arc_challenge,acc,0.23890784982935154
5
+ 2410,arc_challenge,acc,0.24146757679180889
6
+ 2411,arc_challenge,acc,0.2380546075085324
7
+ 2412,arc_challenge,acc,0.23464163822525597
8
+ 2501,arc_challenge,acc,0.22525597269624573
9
+ 2502,arc_challenge,acc,0.21928327645051193
10
+ 2503,arc_challenge,acc,0.22013651877133106
11
+ 2504,arc_challenge,acc,0.22781569965870307
12
+ 2505,arc_challenge,acc,0.2175767918088737
13
+ 2506,arc_challenge,acc,0.23976109215017063
14
+ 2407,arc_challenge,acc_norm,0.3046075085324232
15
+ 2408,arc_challenge,acc_norm,0.2883959044368601
16
+ 2409,arc_challenge,acc_norm,0.2764505119453925
17
+ 2410,arc_challenge,acc_norm,0.26535836177474403
18
+ 2411,arc_challenge,acc_norm,0.27047781569965873
19
+ 2412,arc_challenge,acc_norm,0.25170648464163825
20
+ 2501,arc_challenge,acc_norm,0.2568259385665529
21
+ 2502,arc_challenge,acc_norm,0.24061433447098976
22
+ 2503,arc_challenge,acc_norm,0.26023890784982934
23
+ 2504,arc_challenge,acc_norm,0.24829351535836178
24
+ 2505,arc_challenge,acc_norm,0.26535836177474403
25
+ 2506,arc_challenge,acc_norm,0.2687713310580205
26
+ 2407,arc_easy,acc,0.5757575757575758
27
+ 2408,arc_easy,acc,0.5391414141414141
28
+ 2409,arc_easy,acc,0.5260942760942761
29
+ 2410,arc_easy,acc,0.5244107744107744
30
+ 2411,arc_easy,acc,0.5071548821548821
31
+ 2412,arc_easy,acc,0.48569023569023567
32
+ 2501,arc_easy,acc,0.4941077441077441
33
+ 2502,arc_easy,acc,0.47095959595959597
34
+ 2503,arc_easy,acc,0.4852693602693603
35
+ 2504,arc_easy,acc,0.4659090909090909
36
+ 2505,arc_easy,acc,0.4722222222222222
37
+ 2506,arc_easy,acc,0.47769360269360267
38
+ 2407,arc_easy,acc_norm,0.531986531986532
39
+ 2408,arc_easy,acc_norm,0.5004208754208754
40
+ 2409,arc_easy,acc_norm,0.49957912457912457
41
+ 2410,arc_easy,acc_norm,0.49326599326599324
42
+ 2411,arc_easy,acc_norm,0.4819023569023569
43
+ 2412,arc_easy,acc_norm,0.4511784511784512
44
+ 2501,arc_easy,acc_norm,0.4583333333333333
45
+ 2502,arc_easy,acc_norm,0.4318181818181818
46
+ 2503,arc_easy,acc_norm,0.4537037037037037
47
+ 2504,arc_easy,acc_norm,0.44023569023569026
48
+ 2505,arc_easy,acc_norm,0.44191919191919193
49
+ 2506,arc_easy,acc_norm,0.45664983164983164
50
+ 2407,hellaswag,acc,0.416849233220474
51
+ 2408,hellaswag,acc,0.3974307906791476
52
+ 2409,hellaswag,acc,0.38498307110137425
53
+ 2410,hellaswag,acc,0.3686516630153356
54
+ 2411,hellaswag,acc,0.35610436168094006
55
+ 2412,hellaswag,acc,0.3496315475004979
56
+ 2501,hellaswag,acc,0.34405496912965544
57
+ 2502,hellaswag,acc,0.33409679346743676
58
+ 2503,hellaswag,acc,0.33738299143596895
59
+ 2504,hellaswag,acc,0.3301135232025493
60
+ 2505,hellaswag,acc,0.3280223063134834
61
+ 2506,hellaswag,acc,0.3253335988846843
62
+ 2407,hellaswag,acc_norm,0.5473013343955387
63
+ 2408,hellaswag,acc_norm,0.5153355905198168
64
+ 2409,hellaswag,acc_norm,0.489344752041426
65
+ 2410,hellaswag,acc_norm,0.46484763991236805
66
+ 2411,hellaswag,acc_norm,0.44343756223859787
67
+ 2412,hellaswag,acc_norm,0.4257120095598486
68
+ 2501,hellaswag,acc_norm,0.4239195379406493
69
+ 2502,hellaswag,acc_norm,0.4017128062139016
70
+ 2503,hellaswag,acc_norm,0.40201155148376816
71
+ 2504,hellaswag,acc_norm,0.39543915554670384
72
+ 2505,hellaswag,acc_norm,0.3903604859589723
73
+ 2506,hellaswag,acc_norm,0.38697470623381797
74
+ 2407,mmlu,acc,0.241917105825381
75
+ 2408,mmlu,acc,0.2318758011679248
76
+ 2409,mmlu,acc,0.22959692351516878
77
+ 2410,mmlu,acc,0.23807149978635522
78
+ 2411,mmlu,acc,0.23508047286711295
79
+ 2412,mmlu,acc,0.2352229027204102
80
+ 2501,mmlu,acc,0.2380002848597066
81
+ 2502,mmlu,acc,0.23593505198689646
82
+ 2503,mmlu,acc,0.2318758011679248
83
+ 2504,mmlu,acc,0.23251673550776242
84
+ 2505,mmlu,acc,0.23678963110667997
85
+ 2506,mmlu,acc,0.24291411479846176
86
+ 2407,sciq,acc,0.882
87
+ 2408,sciq,acc,0.87
88
+ 2409,sciq,acc,0.882
89
+ 2410,sciq,acc,0.866
90
+ 2411,sciq,acc,0.857
91
+ 2412,sciq,acc,0.855
92
+ 2501,sciq,acc,0.854
93
+ 2502,sciq,acc,0.836
94
+ 2503,sciq,acc,0.82
95
+ 2504,sciq,acc,0.833
96
+ 2505,sciq,acc,0.834
97
+ 2506,sciq,acc,0.847
98
+ 2407,sciq,acc_norm,0.844
99
+ 2408,sciq,acc_norm,0.804
100
+ 2409,sciq,acc_norm,0.819
101
+ 2410,sciq,acc_norm,0.811
102
+ 2411,sciq,acc_norm,0.822
103
+ 2412,sciq,acc_norm,0.811
104
+ 2501,sciq,acc_norm,0.802
105
+ 2502,sciq,acc_norm,0.781
106
+ 2503,sciq,acc_norm,0.771
107
+ 2504,sciq,acc_norm,0.778
108
+ 2505,sciq,acc_norm,0.786
109
+ 2506,sciq,acc_norm,0.795
110
+ 2407,truthfulqa_mc1,acc,0.2423500611995104
111
+ 2408,truthfulqa_mc1,acc,0.2594859241126071
112
+ 2409,truthfulqa_mc1,acc,0.2386780905752754
113
+ 2410,truthfulqa_mc1,acc,0.2521419828641371
114
+ 2411,truthfulqa_mc1,acc,0.2607099143206854
115
+ 2412,truthfulqa_mc1,acc,0.26805385556915545
116
+ 2501,truthfulqa_mc1,acc,0.27906976744186046
117
+ 2502,truthfulqa_mc1,acc,0.2974296205630355
118
+ 2503,truthfulqa_mc1,acc,0.26193390452876375
119
+ 2504,truthfulqa_mc1,acc,0.27050183598531213
120
+ 2505,truthfulqa_mc1,acc,0.26438188494492043
121
+ 2506,truthfulqa_mc1,acc,0.26805385556915545
122
+ 2407,truthfulqa_mc2,acc,0.41171296428698934
123
+ 2408,truthfulqa_mc2,acc,0.4127800755882328
124
+ 2409,truthfulqa_mc2,acc,0.40520433625245705
125
+ 2410,truthfulqa_mc2,acc,0.42608784023385377
126
+ 2411,truthfulqa_mc2,acc,0.42431987710612645
127
+ 2412,truthfulqa_mc2,acc,0.426638224947852
128
+ 2501,truthfulqa_mc2,acc,0.43294939737693783
129
+ 2502,truthfulqa_mc2,acc,0.45673716541282944
130
+ 2503,truthfulqa_mc2,acc,0.4308698731928784
131
+ 2504,truthfulqa_mc2,acc,0.4490762477503484
132
+ 2505,truthfulqa_mc2,acc,0.43051964732093856
133
+ 2506,truthfulqa_mc2,acc,0.4367369684704035
out/eval/tinyllama_full_arc_arxiv_mc/2407/config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "bos_token_id": 1,
6
+ "eos_token_id": 2,
7
+ "hidden_act": "silu",
8
+ "hidden_size": 2048,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 5632,
11
+ "max_position_embeddings": 2048,
12
+ "model_type": "llama",
13
+ "num_attention_heads": 32,
14
+ "num_hidden_layers": 22,
15
+ "num_key_value_heads": 4,
16
+ "pretraining_tp": 1,
17
+ "rms_norm_eps": 1e-05,
18
+ "rope_scaling": null,
19
+ "tie_word_embeddings": false,
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.31.0.dev0",
22
+ "use_cache": true,
23
+ "vocab_size": 32000
24
+ }
out/eval/tinyllama_full_arc_arxiv_mc/2407/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "eos_token_id": 2,
4
+ "pad_token_id": 0,
5
+ "max_length": 2048,
6
+ "transformers_version": "4.31.0.dev0"
7
+ }
out/eval/tinyllama_full_arc_arxiv_mc/2407/log.txt ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
  0%| | 0/100 [00:00<?, ?it/s]
 
1
  0%| | 0/100 [00:00<?, ?it/s]
 
2
  0%| | 0/100 [00:00<?, ?it/s]
 
3
  0%| | 0/100 [00:00<?, ?it/s]
 
4
  0%| | 0/100 [00:00<?, ?it/s]
 
5
  0%| | 0/100 [00:00<?, ?it/s]
 
6
  0%| | 0/100 [00:00<?, ?it/s]
 
7
  0%| | 0/100 [00:00<?, ?it/s]
 
8
  0%| | 0/100 [00:00<?, ?it/s]
 
9
  0%| | 0/100 [00:00<?, ?it/s]
 
10
  0%| | 0/100 [00:00<?, ?it/s]
 
11
  0%| | 0/100 [00:00<?, ?it/s]
 
 
1
+ {'access_token': None,
2
+ 'batch_size': 4,
3
+ 'checkpoint_dir': PosixPath('out/finetune/tinyllama_full_arc/2407/final'),
4
+ 'device': None,
5
+ 'dtype': None,
6
+ 'force_conversion': False,
7
+ 'limit': None,
8
+ 'num_fewshot': None,
9
+ 'out_dir': PosixPath('out/eval/tinyllama_full_arc_arxiv_mc/2407'),
10
+ 'save_filepath': None,
11
+ 'seed': 1234,
12
+ 'tasks': 'arxiv_mc'}
13
+ INFO 09-24 14:45:19 [__init__.py:241] Automatically detected platform cuda.
14
+ Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
15
+ {'checkpoint_dir': PosixPath('out/finetune/tinyllama_full_arc/2407/final'),
16
+ 'output_dir': PosixPath('out/eval/tinyllama_full_arc_arxiv_mc/2407')}
17
+
18
  0%| | 0/100 [00:00<?, ?it/s]
19
+
20
  0%| | 0/100 [00:00<?, ?it/s]
21
+
22
  0%| | 0/100 [00:00<?, ?it/s]
23
+
24
  0%| | 0/100 [00:00<?, ?it/s]
25
+
26
  0%| | 0/100 [00:00<?, ?it/s]
27
+
28
  0%| | 0/100 [00:00<?, ?it/s]
29
+
30
  0%| | 0/100 [00:00<?, ?it/s]
31
+
32
  0%| | 0/100 [00:00<?, ?it/s]
33
+
34
  0%| | 0/100 [00:00<?, ?it/s]
35
+
36
  0%| | 0/100 [00:00<?, ?it/s]
37
+
38
  0%| | 0/100 [00:00<?, ?it/s]
39
+
40
  0%| | 0/100 [00:00<?, ?it/s]
41
+
out/eval/tinyllama_full_arc_arxiv_mc/2407/model_config.yaml ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ attention_logit_softcapping: null
2
+ attention_scores_scalar: null
3
+ attn_bias: false
4
+ bias: false
5
+ block_size: 2048
6
+ final_logit_softcapping: null
7
+ gelu_approximate: none
8
+ head_size: 64
9
+ hf_config:
10
+ name: TinyLlama-1.1B-intermediate-step-1431k-3T
11
+ org: TinyLlama
12
+ intermediate_size: 5632
13
+ lm_head_bias: false
14
+ mlp_class_name: LLaMAMLP
15
+ moe_intermediate_size: null
16
+ n_embd: 2048
17
+ n_expert: 0
18
+ n_expert_per_token: 0
19
+ n_head: 32
20
+ n_layer: 22
21
+ n_query_groups: 4
22
+ name: tiny-llama-1.1b
23
+ norm_1: true
24
+ norm_2: true
25
+ norm_class_name: RMSNorm
26
+ norm_eps: 1.0e-05
27
+ norm_qk: false
28
+ norm_qk_type: default
29
+ padded_vocab_size: 32000
30
+ padding_multiple: 64
31
+ parallel_residual: false
32
+ post_attention_norm: false
33
+ post_mlp_norm: false
34
+ rope_adjustments: null
35
+ rope_base: 10000
36
+ rope_condense_ratio: 1
37
+ rope_indices: null
38
+ rope_local_base_freq: null
39
+ rotary_percentage: 1.0
40
+ scale_embeddings: false
41
+ shared_attention_norm: false
42
+ sliding_window_indices: null
43
+ sliding_window_size: null
44
+ vocab_size: 32000
out/eval/tinyllama_full_arc_arxiv_mc/2407/results.json ADDED
The diff for this file is too large to render. See raw diff
 
out/eval/tinyllama_full_arc_arxiv_mc/2407/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
out/eval/tinyllama_full_arc_arxiv_mc/2407/tokenizer_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "legacy": false,
22
+ "model_max_length": 1000000000000000019884624838656,
23
+ "pad_token": null,
24
+ "padding_side": "right",
25
+ "sp_model_kwargs": {},
26
+ "tokenizer_class": "LlamaTokenizer",
27
+ "unk_token": {
28
+ "__type": "AddedToken",
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
out/eval/tinyllama_full_arc_arxiv_mc/2407/values.json ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "tasks": [
3
+ {
4
+ "task": "arxiv_mc",
5
+ "metric": "acc",
6
+ "value": 0.16583333333333333
7
+ },
8
+ {
9
+ "task": "arxiv_mc",
10
+ "metric": "acc_stderr",
11
+ "value": 0.01074491240245708
12
+ },
13
+ {
14
+ "task": "arxiv_mc",
15
+ "metric": "acc_norm",
16
+ "value": 0.23916666666666667
17
+ },
18
+ {
19
+ "task": "arxiv_mc",
20
+ "metric": "acc_norm_stderr",
21
+ "value": 0.012288331311441483
22
+ },
23
+ {
24
+ "task": "arxiv_mc_2407",
25
+ "metric": "acc",
26
+ "value": 0.2
27
+ },
28
+ {
29
+ "task": "arxiv_mc_2407",
30
+ "metric": "acc_stderr",
31
+ "value": 0.04020151261036846
32
+ },
33
+ {
34
+ "task": "arxiv_mc_2407",
35
+ "metric": "acc_norm",
36
+ "value": 0.33
37
+ },
38
+ {
39
+ "task": "arxiv_mc_2407",
40
+ "metric": "acc_norm_stderr",
41
+ "value": 0.047258156262526045
42
+ },
43
+ {
44
+ "task": "arxiv_mc_2408",
45
+ "metric": "acc",
46
+ "value": 0.16
47
+ },
48
+ {
49
+ "task": "arxiv_mc_2408",
50
+ "metric": "acc_stderr",
51
+ "value": 0.036845294917747115
52
+ },
53
+ {
54
+ "task": "arxiv_mc_2408",
55
+ "metric": "acc_norm",
56
+ "value": 0.18
57
+ },
58
+ {
59
+ "task": "arxiv_mc_2408",
60
+ "metric": "acc_norm_stderr",
61
+ "value": 0.03861229196653697
62
+ },
63
+ {
64
+ "task": "arxiv_mc_2409",
65
+ "metric": "acc",
66
+ "value": 0.14
67
+ },
68
+ {
69
+ "task": "arxiv_mc_2409",
70
+ "metric": "acc_stderr",
71
+ "value": 0.03487350880197772
72
+ },
73
+ {
74
+ "task": "arxiv_mc_2409",
75
+ "metric": "acc_norm",
76
+ "value": 0.24
77
+ },
78
+ {
79
+ "task": "arxiv_mc_2409",
80
+ "metric": "acc_norm_stderr",
81
+ "value": 0.04292346959909283
82
+ },
83
+ {
84
+ "task": "arxiv_mc_2410",
85
+ "metric": "acc",
86
+ "value": 0.2
87
+ },
88
+ {
89
+ "task": "arxiv_mc_2410",
90
+ "metric": "acc_stderr",
91
+ "value": 0.04020151261036846
92
+ },
93
+ {
94
+ "task": "arxiv_mc_2410",
95
+ "metric": "acc_norm",
96
+ "value": 0.23
97
+ },
98
+ {
99
+ "task": "arxiv_mc_2410",
100
+ "metric": "acc_norm_stderr",
101
+ "value": 0.042295258468165044
102
+ },
103
+ {
104
+ "task": "arxiv_mc_2411",
105
+ "metric": "acc",
106
+ "value": 0.24
107
+ },
108
+ {
109
+ "task": "arxiv_mc_2411",
110
+ "metric": "acc_stderr",
111
+ "value": 0.04292346959909282
112
+ },
113
+ {
114
+ "task": "arxiv_mc_2411",
115
+ "metric": "acc_norm",
116
+ "value": 0.34
117
+ },
118
+ {
119
+ "task": "arxiv_mc_2411",
120
+ "metric": "acc_norm_stderr",
121
+ "value": 0.04760952285695235
122
+ },
123
+ {
124
+ "task": "arxiv_mc_2412",
125
+ "metric": "acc",
126
+ "value": 0.11
127
+ },
128
+ {
129
+ "task": "arxiv_mc_2412",
130
+ "metric": "acc_stderr",
131
+ "value": 0.031446603773522035
132
+ },
133
+ {
134
+ "task": "arxiv_mc_2412",
135
+ "metric": "acc_norm",
136
+ "value": 0.23
137
+ },
138
+ {
139
+ "task": "arxiv_mc_2412",
140
+ "metric": "acc_norm_stderr",
141
+ "value": 0.04229525846816506
142
+ },
143
+ {
144
+ "task": "arxiv_mc_2501",
145
+ "metric": "acc",
146
+ "value": 0.14
147
+ },
148
+ {
149
+ "task": "arxiv_mc_2501",
150
+ "metric": "acc_stderr",
151
+ "value": 0.03487350880197771
152
+ },
153
+ {
154
+ "task": "arxiv_mc_2501",
155
+ "metric": "acc_norm",
156
+ "value": 0.24
157
+ },
158
+ {
159
+ "task": "arxiv_mc_2501",
160
+ "metric": "acc_norm_stderr",
161
+ "value": 0.04292346959909284
162
+ },
163
+ {
164
+ "task": "arxiv_mc_2502",
165
+ "metric": "acc",
166
+ "value": 0.14
167
+ },
168
+ {
169
+ "task": "arxiv_mc_2502",
170
+ "metric": "acc_stderr",
171
+ "value": 0.034873508801977704
172
+ },
173
+ {
174
+ "task": "arxiv_mc_2502",
175
+ "metric": "acc_norm",
176
+ "value": 0.2
177
+ },
178
+ {
179
+ "task": "arxiv_mc_2502",
180
+ "metric": "acc_norm_stderr",
181
+ "value": 0.040201512610368445
182
+ },
183
+ {
184
+ "task": "arxiv_mc_2503",
185
+ "metric": "acc",
186
+ "value": 0.17
187
+ },
188
+ {
189
+ "task": "arxiv_mc_2503",
190
+ "metric": "acc_stderr",
191
+ "value": 0.0377525168068637
192
+ },
193
+ {
194
+ "task": "arxiv_mc_2503",
195
+ "metric": "acc_norm",
196
+ "value": 0.2
197
+ },
198
+ {
199
+ "task": "arxiv_mc_2503",
200
+ "metric": "acc_norm_stderr",
201
+ "value": 0.04020151261036843
202
+ },
203
+ {
204
+ "task": "arxiv_mc_2504",
205
+ "metric": "acc",
206
+ "value": 0.15
207
+ },
208
+ {
209
+ "task": "arxiv_mc_2504",
210
+ "metric": "acc_stderr",
211
+ "value": 0.035887028128263734
212
+ },
213
+ {
214
+ "task": "arxiv_mc_2504",
215
+ "metric": "acc_norm",
216
+ "value": 0.17
217
+ },
218
+ {
219
+ "task": "arxiv_mc_2504",
220
+ "metric": "acc_norm_stderr",
221
+ "value": 0.0377525168068637
222
+ },
223
+ {
224
+ "task": "arxiv_mc_2505",
225
+ "metric": "acc",
226
+ "value": 0.19
227
+ },
228
+ {
229
+ "task": "arxiv_mc_2505",
230
+ "metric": "acc_stderr",
231
+ "value": 0.03942772444036623
232
+ },
233
+ {
234
+ "task": "arxiv_mc_2505",
235
+ "metric": "acc_norm",
236
+ "value": 0.24
237
+ },
238
+ {
239
+ "task": "arxiv_mc_2505",
240
+ "metric": "acc_norm_stderr",
241
+ "value": 0.042923469599092816
242
+ },
243
+ {
244
+ "task": "arxiv_mc_2506",
245
+ "metric": "acc",
246
+ "value": 0.15
247
+ },
248
+ {
249
+ "task": "arxiv_mc_2506",
250
+ "metric": "acc_stderr",
251
+ "value": 0.03588702812826371
252
+ },
253
+ {
254
+ "task": "arxiv_mc_2506",
255
+ "metric": "acc_norm",
256
+ "value": 0.27
257
+ },
258
+ {
259
+ "task": "arxiv_mc_2506",
260
+ "metric": "acc_norm_stderr",
261
+ "value": 0.0446196043338474
262
+ }
263
+ ],
264
+ "groups": [
265
+ {
266
+ "group": "arxiv_mc",
267
+ "metric": "acc",
268
+ "value": 0.16583333333333333
269
+ },
270
+ {
271
+ "group": "arxiv_mc",
272
+ "metric": "acc_stderr",
273
+ "value": 0.01074491240245708
274
+ },
275
+ {
276
+ "group": "arxiv_mc",
277
+ "metric": "acc_norm",
278
+ "value": 0.23916666666666667
279
+ },
280
+ {
281
+ "group": "arxiv_mc",
282
+ "metric": "acc_norm_stderr",
283
+ "value": 0.012288331311441483
284
+ }
285
+ ]
286
+ }
out/eval/tinyllama_full_ppl/2407_full/ppl_metrics.jsonl ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"month": "2407", "val_loss": 1.3401238918304443, "val_ppl": 3.8195166829675764, "rank": 2}
2
+ {"month": "2407", "val_loss": 1.3308329582214355, "val_ppl": 3.784194150788953, "rank": 1}
3
+ {"month": "2407", "val_loss": 1.4430962800979614, "val_ppl": 4.23378452615237, "rank": 3}
4
+ {"month": "2407", "val_loss": 1.3418890237808228, "val_ppl": 3.826264587618703, "rank": 0}
5
+ {"month": "2408", "val_loss": 1.4649615287780762, "val_ppl": 4.327376757626807, "rank": 2}
6
+ {"month": "2408", "val_loss": 1.4553765058517456, "val_ppl": 4.286096902413764, "rank": 1}
7
+ {"month": "2408", "val_loss": 1.4550942182540894, "val_ppl": 4.284887161171367, "rank": 3}
8
+ {"month": "2408", "val_loss": 1.4382472038269043, "val_ppl": 4.213304277344344, "rank": 0}
9
+ {"month": "2409", "val_loss": 1.4172937870025635, "val_ppl": 4.125939646771969, "rank": 2}
10
+ {"month": "2409", "val_loss": 1.470693588256836, "val_ppl": 4.352252765856388, "rank": 1}
11
+ {"month": "2409", "val_loss": 1.4720611572265625, "val_ppl": 4.35820884343254, "rank": 3}
12
+ {"month": "2409", "val_loss": 1.4188635349273682, "val_ppl": 4.132421418012854, "rank": 0}
13
+ {"month": "2410", "val_loss": 1.3499130010604858, "val_ppl": 3.8570899533641967, "rank": 2}
14
+ {"month": "2410", "val_loss": 1.3595799207687378, "val_ppl": 3.894556935633931, "rank": 1}
15
+ {"month": "2410", "val_loss": 1.4495704174041748, "val_ppl": 4.261283548672918, "rank": 3}
16
+ {"month": "2410", "val_loss": 1.5745606422424316, "val_ppl": 4.828619660488959, "rank": 0}
17
+ {"month": "2411", "val_loss": 1.4264885187149048, "val_ppl": 4.164051500513005, "rank": 2}
18
+ {"month": "2411", "val_loss": 1.4281030893325806, "val_ppl": 4.170780086142855, "rank": 1}
19
+ {"month": "2411", "val_loss": 1.4030014276504517, "val_ppl": 4.067389640213666, "rank": 3}
20
+ {"month": "2411", "val_loss": 1.4369604587554932, "val_ppl": 4.207886315346613, "rank": 0}
21
+ {"month": "2412", "val_loss": 1.4747017621994019, "val_ppl": 4.369732359207785, "rank": 1}
22
+ {"month": "2412", "val_loss": 1.408434271812439, "val_ppl": 4.089547269247822, "rank": 3}
23
+ {"month": "2412", "val_loss": 1.411298155784607, "val_ppl": 4.1012760450356875, "rank": 2}
24
+ {"month": "2412", "val_loss": 1.4237630367279053, "val_ppl": 4.152717904926461, "rank": 0}
25
+ {"month": "2501", "val_loss": 1.3047839403152466, "val_ppl": 3.6868924188297223, "rank": 1}
26
+ {"month": "2501", "val_loss": 1.4822993278503418, "val_ppl": 4.403058124724474, "rank": 2}
27
+ {"month": "2501", "val_loss": 1.355212688446045, "val_ppl": 3.8775855865882565, "rank": 3}
28
+ {"month": "2501", "val_loss": 1.4138273000717163, "val_ppl": 4.111661892031496, "rank": 0}
29
+ {"month": "2502", "val_loss": 1.3723409175872803, "val_ppl": 3.944573818198906, "rank": 1}
30
+ {"month": "2502", "val_loss": 1.4143813848495483, "val_ppl": 4.113940732574589, "rank": 2}
31
+ {"month": "2502", "val_loss": 1.421377182006836, "val_ppl": 4.142821933177419, "rank": 3}
32
+ {"month": "2502", "val_loss": 1.404603362083435, "val_ppl": 4.073910553373853, "rank": 0}
33
+ {"month": "2503", "val_loss": 1.426881194114685, "val_ppl": 4.165686942178515, "rank": 1}
34
+ {"month": "2503", "val_loss": 1.438934326171875, "val_ppl": 4.216200327715984, "rank": 2}
35
+ {"month": "2503", "val_loss": 1.4343088865280151, "val_ppl": 4.196743580268452, "rank": 3}
36
+ {"month": "2503", "val_loss": 1.456992745399475, "val_ppl": 4.293029862886088, "rank": 0}
37
+ {"month": "2504", "val_loss": 1.4529080390930176, "val_ppl": 4.275529862244869, "rank": 2}
38
+ {"month": "2504", "val_loss": 1.4284093379974365, "val_ppl": 4.172057577580683, "rank": 3}
39
+ {"month": "2504", "val_loss": 1.4099334478378296, "val_ppl": 4.095682818453564, "rank": 1}
40
+ {"month": "2504", "val_loss": 1.4458612203598022, "val_ppl": 4.245506885792738, "rank": 0}
41
+ {"month": "2505", "val_loss": 1.4609925746917725, "val_ppl": 4.3102356366241965, "rank": 2}
42
+ {"month": "2505", "val_loss": 1.4186663627624512, "val_ppl": 4.131606699858025, "rank": 3}
43
+ {"month": "2505", "val_loss": 1.4786559343338013, "val_ppl": 4.387045239634099, "rank": 1}
44
+ {"month": "2505", "val_loss": 1.4452773332595825, "val_ppl": 4.243028712645302, "rank": 0}
45
+ {"month": "2506", "val_loss": 1.4663327932357788, "val_ppl": 4.333314805956465, "rank": 2}
46
+ {"month": "2506", "val_loss": 1.3949086666107178, "val_ppl": 4.0346060615577555, "rank": 3}
47
+ {"month": "2506", "val_loss": 1.4446309804916382, "val_ppl": 4.240287105410576, "rank": 1}
48
+ {"month": "2506", "val_loss": 1.443738341331482, "val_ppl": 4.23650374792772, "rank": 0}
out/eval/tinyllama_full_ppl/2408_full/ppl_metrics.jsonl ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"month": "2407", "val_loss": 1.362528920173645, "val_ppl": 3.906058933075612, "rank": 2}
2
+ {"month": "2407", "val_loss": 1.4777755737304688, "val_ppl": 4.3831847573976574, "rank": 3}
3
+ {"month": "2407", "val_loss": 1.3729832172393799, "val_ppl": 3.9471082304289324, "rank": 0}
4
+ {"month": "2407", "val_loss": 1.3674103021621704, "val_ppl": 3.9251725111825952, "rank": 1}
5
+ {"month": "2408", "val_loss": 1.2508023977279663, "val_ppl": 3.4931447246362146, "rank": 2}
6
+ {"month": "2408", "val_loss": 1.2579619884490967, "val_ppl": 3.5182439540845136, "rank": 3}
7
+ {"month": "2408", "val_loss": 1.2399872541427612, "val_ppl": 3.4555694202874743, "rank": 0}
8
+ {"month": "2408", "val_loss": 1.2464643716812134, "val_ppl": 3.478024192179584, "rank": 1}
9
+ {"month": "2409", "val_loss": 1.4675408601760864, "val_ppl": 4.338552903664771, "rank": 3}
10
+ {"month": "2409", "val_loss": 1.4120129346847534, "val_ppl": 4.104208598555189, "rank": 2}
11
+ {"month": "2409", "val_loss": 1.4647713899612427, "val_ppl": 4.326554033548489, "rank": 1}
12
+ {"month": "2409", "val_loss": 1.4133905172348022, "val_ppl": 4.109866380838644, "rank": 0}
13
+ {"month": "2410", "val_loss": 1.4405683279037476, "val_ppl": 4.223095237966944, "rank": 3}
14
+ {"month": "2410", "val_loss": 1.3448939323425293, "val_ppl": 3.8377794547343513, "rank": 2}
15
+ {"month": "2410", "val_loss": 1.3568646907806396, "val_ppl": 3.883996661126899, "rank": 1}
16
+ {"month": "2410", "val_loss": 1.573472261428833, "val_ppl": 4.823367142382782, "rank": 0}
17
+ {"month": "2411", "val_loss": 1.3975845575332642, "val_ppl": 4.045416684867629, "rank": 3}
18
+ {"month": "2411", "val_loss": 1.4199227094650269, "val_ppl": 4.1368006923562195, "rank": 2}
19
+ {"month": "2411", "val_loss": 1.4218403100967407, "val_ppl": 4.144741034746768, "rank": 1}
20
+ {"month": "2411", "val_loss": 1.4330910444259644, "val_ppl": 4.1916357201597405, "rank": 0}
21
+ {"month": "2412", "val_loss": 1.4037216901779175, "val_ppl": 4.070320283845813, "rank": 3}
22
+ {"month": "2412", "val_loss": 1.4028061628341675, "val_ppl": 4.066595499659191, "rank": 2}
23
+ {"month": "2412", "val_loss": 1.4695839881896973, "val_ppl": 4.347426184178079, "rank": 1}
24
+ {"month": "2412", "val_loss": 1.417596459388733, "val_ppl": 4.1271886437789655, "rank": 0}
25
+ {"month": "2501", "val_loss": 1.3509228229522705, "val_ppl": 3.8609868945147734, "rank": 3}
26
+ {"month": "2501", "val_loss": 1.2983866930007935, "val_ppl": 3.663381738204649, "rank": 1}
27
+ {"month": "2501", "val_loss": 1.476736307144165, "val_ppl": 4.378631826202121, "rank": 2}
28
+ {"month": "2501", "val_loss": 1.4069976806640625, "val_ppl": 4.083676479811697, "rank": 0}
29
+ {"month": "2502", "val_loss": 1.4095300436019897, "val_ppl": 4.094030935866561, "rank": 2}
30
+ {"month": "2502", "val_loss": 1.4141857624053955, "val_ppl": 4.113136032144681, "rank": 3}
31
+ {"month": "2502", "val_loss": 1.3664177656173706, "val_ppl": 3.9212785667813335, "rank": 1}
32
+ {"month": "2502", "val_loss": 1.3973371982574463, "val_ppl": 4.044416137278543, "rank": 0}
33
+ {"month": "2503", "val_loss": 1.4294711351394653, "val_ppl": 4.1764898090418745, "rank": 2}
34
+ {"month": "2503", "val_loss": 1.4288697242736816, "val_ppl": 4.1739787778462905, "rank": 3}
35
+ {"month": "2503", "val_loss": 1.419816255569458, "val_ppl": 4.136360337246501, "rank": 1}
36
+ {"month": "2503", "val_loss": 1.4511704444885254, "val_ppl": 4.2681071753028474, "rank": 0}
37
+ {"month": "2504", "val_loss": 1.4489697217941284, "val_ppl": 4.2587245830087355, "rank": 2}
38
+ {"month": "2504", "val_loss": 1.4048845767974854, "val_ppl": 4.075056358066205, "rank": 1}
39
+ {"month": "2504", "val_loss": 1.4212480783462524, "val_ppl": 4.142287114224986, "rank": 3}
40
+ {"month": "2504", "val_loss": 1.4392225742340088, "val_ppl": 4.21741581446245, "rank": 0}
41
+ {"month": "2505", "val_loss": 1.417108178138733, "val_ppl": 4.125173906868153, "rank": 3}
42
+ {"month": "2505", "val_loss": 1.454293131828308, "val_ppl": 4.2814559707540765, "rank": 2}
43
+ {"month": "2505", "val_loss": 1.47247314453125, "val_ppl": 4.360004740065115, "rank": 1}
44
+ {"month": "2505", "val_loss": 1.438664197921753, "val_ppl": 4.215061566711977, "rank": 0}
45
+ {"month": "2506", "val_loss": 1.3888366222381592, "val_ppl": 4.010181981617138, "rank": 3}
46
+ {"month": "2506", "val_loss": 1.460412859916687, "val_ppl": 4.307737653470374, "rank": 2}
47
+ {"month": "2506", "val_loss": 1.4377959966659546, "val_ppl": 4.211403633107536, "rank": 1}
48
+ {"month": "2506", "val_loss": 1.438284993171692, "val_ppl": 4.2134634983607855, "rank": 0}
out/eval/tinyllama_full_ppl/2409_full/ppl_metrics.jsonl ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"month": "2407", "val_loss": 1.485063910484314, "val_ppl": 4.415247584373104, "rank": 3}
2
+ {"month": "2407", "val_loss": 1.3649768829345703, "val_ppl": 3.915632533012995, "rank": 2}
3
+ {"month": "2407", "val_loss": 1.3764039278030396, "val_ppl": 3.9606332646741, "rank": 1}
4
+ {"month": "2407", "val_loss": 1.379693627357483, "val_ppl": 3.97368401291081, "rank": 0}
5
+ {"month": "2408", "val_loss": 1.3427562713623047, "val_ppl": 3.8295843456464147, "rank": 2}
6
+ {"month": "2408", "val_loss": 1.3247745037078857, "val_ppl": 3.7613370917958093, "rank": 3}
7
+ {"month": "2408", "val_loss": 1.3265122175216675, "val_ppl": 3.7678789014688667, "rank": 0}
8
+ {"month": "2408", "val_loss": 1.31806480884552, "val_ppl": 3.7361841462953675, "rank": 1}
9
+ {"month": "2409", "val_loss": 1.2037886381149292, "val_ppl": 3.332719502488496, "rank": 2}
10
+ {"month": "2409", "val_loss": 1.261081337928772, "val_ppl": 3.5292357212007732, "rank": 1}
11
+ {"month": "2409", "val_loss": 1.2550549507141113, "val_ppl": 3.508031137862438, "rank": 3}
12
+ {"month": "2409", "val_loss": 1.2141947746276855, "val_ppl": 3.367581310364588, "rank": 0}
13
+ {"month": "2410", "val_loss": 1.3304420709609985, "val_ppl": 3.78271524656563, "rank": 2}
14
+ {"month": "2410", "val_loss": 1.4265085458755493, "val_ppl": 4.164134895476417, "rank": 3}
15
+ {"month": "2410", "val_loss": 1.3427306413650513, "val_ppl": 3.829486194667964, "rank": 1}
16
+ {"month": "2410", "val_loss": 1.5633049011230469, "val_ppl": 4.774574696275717, "rank": 0}
17
+ {"month": "2411", "val_loss": 1.3834478855133057, "val_ppl": 3.9886302870557864, "rank": 3}
18
+ {"month": "2411", "val_loss": 1.4033945798873901, "val_ppl": 4.0689890579359425, "rank": 2}
19
+ {"month": "2411", "val_loss": 1.4083776473999023, "val_ppl": 4.089315707592243, "rank": 1}
20
+ {"month": "2411", "val_loss": 1.4190096855163574, "val_ppl": 4.133025417973448, "rank": 0}
21
+ {"month": "2412", "val_loss": 1.3886818885803223, "val_ppl": 4.009561519494955, "rank": 2}
22
+ {"month": "2412", "val_loss": 1.3894152641296387, "val_ppl": 4.012503112391143, "rank": 3}
23
+ {"month": "2412", "val_loss": 1.4546624422073364, "val_ppl": 4.2830374488916, "rank": 1}
24
+ {"month": "2412", "val_loss": 1.4025143384933472, "val_ppl": 4.065408941249854, "rank": 0}
25
+ {"month": "2501", "val_loss": 1.4628865718841553, "val_ppl": 4.318406946594848, "rank": 2}
26
+ {"month": "2501", "val_loss": 1.3351476192474365, "val_ppl": 3.8005569403668753, "rank": 3}
27
+ {"month": "2501", "val_loss": 1.2839248180389404, "val_ppl": 3.610783619993481, "rank": 1}
28
+ {"month": "2501", "val_loss": 1.3923919200897217, "val_ppl": 4.024464747699859, "rank": 0}
29
+ {"month": "2502", "val_loss": 1.3984625339508057, "val_ppl": 4.048970024962219, "rank": 3}
30
+ {"month": "2502", "val_loss": 1.351839303970337, "val_ppl": 3.8645270377038248, "rank": 1}
31
+ {"month": "2502", "val_loss": 1.3960250616073608, "val_ppl": 4.039112790755192, "rank": 2}
32
+ {"month": "2502", "val_loss": 1.383058786392212, "val_ppl": 3.987078616413143, "rank": 0}
33
+ {"month": "2503", "val_loss": 1.4119216203689575, "val_ppl": 4.1038338426656775, "rank": 3}
34
+ {"month": "2503", "val_loss": 1.4145982265472412, "val_ppl": 4.114832903193648, "rank": 2}
35
+ {"month": "2503", "val_loss": 1.4040486812591553, "val_ppl": 4.0716514599059, "rank": 1}
36
+ {"month": "2503", "val_loss": 1.4355839490890503, "val_ppl": 4.202098103836741, "rank": 0}
37
+ {"month": "2504", "val_loss": 1.407296895980835, "val_ppl": 4.084898561186815, "rank": 3}
38
+ {"month": "2504", "val_loss": 1.4341951608657837, "val_ppl": 4.196266329963888, "rank": 2}
39
+ {"month": "2504", "val_loss": 1.3897756338119507, "val_ppl": 4.013949357438815, "rank": 1}
40
+ {"month": "2504", "val_loss": 1.423025131225586, "val_ppl": 4.149654721843654, "rank": 0}
41
+ {"month": "2505", "val_loss": 1.4383201599121094, "val_ppl": 4.213611674743316, "rank": 2}
42
+ {"month": "2505", "val_loss": 1.406368374824524, "val_ppl": 4.081107406807272, "rank": 3}
43
+ {"month": "2505", "val_loss": 1.454991102218628, "val_ppl": 4.284445343374549, "rank": 1}
44
+ {"month": "2505", "val_loss": 1.4232839345932007, "val_ppl": 4.150728805442337, "rank": 0}
45
+ {"month": "2506", "val_loss": 1.443969964981079, "val_ppl": 4.237485136039307, "rank": 2}
46
+ {"month": "2506", "val_loss": 1.3735177516937256, "val_ppl": 3.9492186597714762, "rank": 3}
47
+ {"month": "2506", "val_loss": 1.4226653575897217, "val_ppl": 4.148162054004164, "rank": 1}
48
+ {"month": "2506", "val_loss": 1.4236834049224854, "val_ppl": 4.152387229668601, "rank": 0}
out/eval/tinyllama_full_ppl/2410_full/ppl_metrics.jsonl ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"month": "2407", "val_loss": 1.3625130653381348, "val_ppl": 3.9059970036446767, "rank": 2}
2
+ {"month": "2407", "val_loss": 1.4842785596847534, "val_ppl": 4.4117814274051845, "rank": 3}
3
+ {"month": "2407", "val_loss": 1.377859115600586, "val_ppl": 3.9664009253683554, "rank": 1}
4
+ {"month": "2407", "val_loss": 1.3787990808486938, "val_ppl": 3.9701309571737657, "rank": 0}
5
+ {"month": "2408", "val_loss": 1.343483805656433, "val_ppl": 3.832371513347234, "rank": 3}
6
+ {"month": "2408", "val_loss": 1.3664422035217285, "val_ppl": 3.921374395782834, "rank": 2}
7
+ {"month": "2408", "val_loss": 1.344637393951416, "val_ppl": 3.836795043242655, "rank": 1}
8
+ {"month": "2408", "val_loss": 1.3435213565826416, "val_ppl": 3.832515425149129, "rank": 0}
9
+ {"month": "2409", "val_loss": 1.2931017875671387, "val_ppl": 3.6440721816842823, "rank": 2}
10
+ {"month": "2409", "val_loss": 1.3426209688186646, "val_ppl": 3.829066228195459, "rank": 3}
11
+ {"month": "2409", "val_loss": 1.3356683254241943, "val_ppl": 3.80253642916214, "rank": 1}
12
+ {"month": "2409", "val_loss": 1.298521876335144, "val_ppl": 3.663876999837824, "rank": 0}
13
+ {"month": "2410", "val_loss": 1.1201715469360352, "val_ppl": 3.065380014740353, "rank": 1}
14
+ {"month": "2410", "val_loss": 1.2227020263671875, "val_ppl": 3.3963523801706224, "rank": 3}
15
+ {"month": "2410", "val_loss": 1.1426008939743042, "val_ppl": 3.1349113431069515, "rank": 2}
16
+ {"month": "2410", "val_loss": 1.3279122114181519, "val_ppl": 3.7731576031464997, "rank": 0}
17
+ {"month": "2411", "val_loss": 1.3699663877487183, "val_ppl": 3.935218421697037, "rank": 3}
18
+ {"month": "2411", "val_loss": 1.3956365585327148, "val_ppl": 4.0375438877986864, "rank": 1}
19
+ {"month": "2411", "val_loss": 1.3899426460266113, "val_ppl": 4.014619791994358, "rank": 2}
20
+ {"month": "2411", "val_loss": 1.4060338735580444, "val_ppl": 4.079742499505393, "rank": 0}
21
+ {"month": "2412", "val_loss": 1.3763186931610107, "val_ppl": 3.9602956959020594, "rank": 3}
22
+ {"month": "2412", "val_loss": 1.3741707801818848, "val_ppl": 3.951798454310262, "rank": 2}
23
+ {"month": "2412", "val_loss": 1.4407111406326294, "val_ppl": 4.223698392790274, "rank": 1}
24
+ {"month": "2412", "val_loss": 1.3878103494644165, "val_ppl": 4.006068552143023, "rank": 0}
25
+ {"month": "2501", "val_loss": 1.2720528841018677, "val_ppl": 3.5681700884164584, "rank": 1}
26
+ {"month": "2501", "val_loss": 1.4463121891021729, "val_ppl": 4.247421908468978, "rank": 2}
27
+ {"month": "2501", "val_loss": 1.3237147331237793, "val_ppl": 3.7573530488476545, "rank": 3}
28
+ {"month": "2501", "val_loss": 1.3789067268371582, "val_ppl": 3.970558348848071, "rank": 0}
29
+ {"month": "2502", "val_loss": 1.3828585147857666, "val_ppl": 3.9862801977265754, "rank": 3}
30
+ {"month": "2502", "val_loss": 1.3822216987609863, "val_ppl": 3.983742478733221, "rank": 2}
31
+ {"month": "2502", "val_loss": 1.336174726486206, "val_ppl": 3.8044625252956084, "rank": 1}
32
+ {"month": "2502", "val_loss": 1.3672521114349365, "val_ppl": 3.9245516343983025, "rank": 0}
33
+ {"month": "2503", "val_loss": 1.3872737884521484, "val_ppl": 4.003919628511345, "rank": 1}
34
+ {"month": "2503", "val_loss": 1.3932018280029297, "val_ppl": 4.0277255138273516, "rank": 2}
35
+ {"month": "2503", "val_loss": 1.3974146842956543, "val_ppl": 4.04472953520371, "rank": 3}
36
+ {"month": "2503", "val_loss": 1.4191503524780273, "val_ppl": 4.133606838993904, "rank": 0}
37
+ {"month": "2504", "val_loss": 1.4196085929870605, "val_ppl": 4.1355014591586485, "rank": 2}
38
+ {"month": "2504", "val_loss": 1.3901379108428955, "val_ppl": 4.0154037825308855, "rank": 3}
39
+ {"month": "2504", "val_loss": 1.3766632080078125, "val_ppl": 3.961660311618713, "rank": 1}
40
+ {"month": "2504", "val_loss": 1.40700101852417, "val_ppl": 4.083690110575259, "rank": 0}
41
+ {"month": "2505", "val_loss": 1.4231395721435547, "val_ppl": 4.150129639313753, "rank": 2}
42
+ {"month": "2505", "val_loss": 1.391589879989624, "val_ppl": 4.021238259650132, "rank": 3}
43
+ {"month": "2505", "val_loss": 1.4063525199890137, "val_ppl": 4.081042702033581, "rank": 0}
44
+ {"month": "2505", "val_loss": 1.4384384155273438, "val_ppl": 4.214109987447828, "rank": 1}
45
+ {"month": "2506", "val_loss": 1.4291367530822754, "val_ppl": 4.175093499251175, "rank": 2}
46
+ {"month": "2506", "val_loss": 1.357244849205017, "val_ppl": 3.885473475871877, "rank": 3}
47
+ {"month": "2506", "val_loss": 1.4066842794418335, "val_ppl": 4.082396851140804, "rank": 1}
48
+ {"month": "2506", "val_loss": 1.4085280895233154, "val_ppl": 4.089930959209319, "rank": 0}
out/eval/tinyllama_full_ppl/2411_full/ppl_metrics.jsonl ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"month": "2407", "val_loss": 1.4872686862945557, "val_ppl": 4.424992954673992, "rank": 3}
2
+ {"month": "2407", "val_loss": 1.3803930282592773, "val_ppl": 3.9764641832063625, "rank": 1}
3
+ {"month": "2407", "val_loss": 1.380758285522461, "val_ppl": 3.9779168809191128, "rank": 0}
4
+ {"month": "2407", "val_loss": 1.3626710176467896, "val_ppl": 3.906614013616793, "rank": 2}
5
+ {"month": "2408", "val_loss": 1.3559932708740234, "val_ppl": 3.88061354339132, "rank": 1}
6
+ {"month": "2408", "val_loss": 1.353184461593628, "val_ppl": 3.869728933609592, "rank": 3}
7
+ {"month": "2408", "val_loss": 1.3515592813491821, "val_ppl": 3.8634450342130005, "rank": 0}
8
+ {"month": "2408", "val_loss": 1.377118468284607, "val_ppl": 3.963464308801716, "rank": 2}
9
+ {"month": "2409", "val_loss": 1.3564050197601318, "val_ppl": 3.8822117106944525, "rank": 1}
10
+ {"month": "2409", "val_loss": 1.313551425933838, "val_ppl": 3.7193593136317187, "rank": 2}
11
+ {"month": "2409", "val_loss": 1.3636155128479004, "val_ppl": 3.910305534842863, "rank": 3}
12
+ {"month": "2409", "val_loss": 1.317995309829712, "val_ppl": 3.735924494197209, "rank": 0}
13
+ {"month": "2410", "val_loss": 1.1867964267730713, "val_ppl": 3.2765676514970967, "rank": 1}
14
+ {"month": "2410", "val_loss": 1.307090163230896, "val_ppl": 3.695405026826404, "rank": 3}
15
+ {"month": "2410", "val_loss": 1.220895767211914, "val_ppl": 3.3902232246774173, "rank": 2}
16
+ {"month": "2410", "val_loss": 1.3971407413482666, "val_ppl": 4.043621661827428, "rank": 0}
17
+ {"month": "2411", "val_loss": 1.1956223249435425, "val_ppl": 3.305614296752107, "rank": 1}
18
+ {"month": "2411", "val_loss": 1.1755108833312988, "val_ppl": 3.239797679744836, "rank": 3}
19
+ {"month": "2411", "val_loss": 1.1895569562911987, "val_ppl": 3.2856252092930816, "rank": 2}
20
+ {"month": "2411", "val_loss": 1.2081102132797241, "val_ppl": 3.3471532661552215, "rank": 0}
21
+ {"month": "2412", "val_loss": 1.4345154762268066, "val_ppl": 4.197610673823818, "rank": 1}
22
+ {"month": "2412", "val_loss": 1.3702863454818726, "val_ppl": 3.9364777267141564, "rank": 3}
23
+ {"month": "2412", "val_loss": 1.366951823234558, "val_ppl": 3.9233733147773107, "rank": 2}
24
+ {"month": "2412", "val_loss": 1.3812273740768433, "val_ppl": 3.979783313925192, "rank": 0}
25
+ {"month": "2501", "val_loss": 1.2640061378479004, "val_ppl": 3.539573139623763, "rank": 1}
26
+ {"month": "2501", "val_loss": 1.3158841133117676, "val_ppl": 3.7280455433470294, "rank": 3}
27
+ {"month": "2501", "val_loss": 1.4420026540756226, "val_ppl": 4.229156880139874, "rank": 2}
28
+ {"month": "2501", "val_loss": 1.3726694583892822, "val_ppl": 3.945869984554801, "rank": 0}
29
+ {"month": "2502", "val_loss": 1.3292156457901, "val_ppl": 3.7780788730366375, "rank": 1}
30
+ {"month": "2502", "val_loss": 1.3757652044296265, "val_ppl": 3.958104323367374, "rank": 3}
31
+ {"month": "2502", "val_loss": 1.37555992603302, "val_ppl": 3.9572918934482804, "rank": 2}
32
+ {"month": "2502", "val_loss": 1.3592376708984375, "val_ppl": 3.8932242520962257, "rank": 0}
33
+ {"month": "2503", "val_loss": 1.382246494293213, "val_ppl": 3.9838412589728835, "rank": 1}
34
+ {"month": "2503", "val_loss": 1.3877980709075928, "val_ppl": 4.006019363704648, "rank": 2}
35
+ {"month": "2503", "val_loss": 1.3916492462158203, "val_ppl": 4.021476992476507, "rank": 3}
36
+ {"month": "2503", "val_loss": 1.413512110710144, "val_ppl": 4.110366144158445, "rank": 0}
37
+ {"month": "2504", "val_loss": 1.3709253072738647, "val_ppl": 3.938993789324889, "rank": 1}
38
+ {"month": "2504", "val_loss": 1.3838448524475098, "val_ppl": 3.99021395570376, "rank": 3}
39
+ {"month": "2504", "val_loss": 1.412560224533081, "val_ppl": 4.1064554050277025, "rank": 2}
40
+ {"month": "2504", "val_loss": 1.4007281064987183, "val_ppl": 4.058153659465043, "rank": 0}
41
+ {"month": "2505", "val_loss": 1.4315732717514038, "val_ppl": 4.1852785955573495, "rank": 1}
42
+ {"month": "2505", "val_loss": 1.3883154392242432, "val_ppl": 4.008092487437342, "rank": 3}
43
+ {"month": "2505", "val_loss": 1.4160114526748657, "val_ppl": 4.120652203588402, "rank": 2}
44
+ {"month": "2505", "val_loss": 1.40048086643219, "val_ppl": 4.057150445306773, "rank": 0}
45
+ {"month": "2506", "val_loss": 1.399654507637024, "val_ppl": 4.053799168222336, "rank": 1}
46
+ {"month": "2506", "val_loss": 1.3464387655258179, "val_ppl": 3.843712765593928, "rank": 3}
47
+ {"month": "2506", "val_loss": 1.41997492313385, "val_ppl": 4.137016695536668, "rank": 2}
48
+ {"month": "2506", "val_loss": 1.4047600030899048, "val_ppl": 4.07454874480537, "rank": 0}