""" This script is meant to be the simplest possible starting point for full finetuning a GPT model using lightning fabric with code (not CLI). - no checkpoints - no out dir - no precision - no resume - no train/eval args (or any args in general) - no logger (only to terminal) - no grad accumulation and no other fancy stuff. To add all the above stuff, you can slowly add them in yourself by looking at the code in litgpt/finetune/full.py or the docs for litgpt/fabric. """ import os import lightning as L import torch import torch.nn as nn from litgpt.data import Alpaca from litgpt.model import GPT, Config from litgpt.tokenizer import Tokenizer from litgpt.utils import num_parameters # training params/args SEED = 1337 MODEL_NAME = "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T" # try also "stabilityai/stablelm-base-alpha-3b"! BATCH_SIZE = 4 LR_WARMUP_STEPS = 100 MAX_STEPS = 601 def validate(model, val_dataloader): model.eval() loss = 0 with torch.no_grad(): for batch in val_dataloader: input_ids, targets = batch["input_ids"], batch["labels"] logits = model(input_ids) logits = logits.reshape(-1, logits.size(-1)) targets = targets.reshape(-1) loss += nn.functional.cross_entropy(logits[..., :-1, :], targets[..., 1:]) fabric.print(f"Validation loss: {loss / len(val_dataloader)}") def train(fabric, model, optimizer, scheduler, train_dataloader, val_dataloader): for iter_num, batch in enumerate(train_dataloader): input_ids, targets = batch["input_ids"], batch["labels"] # get model preds (logits) logits = model(input_ids) logits = logits.reshape(-1, logits.size(-1)) # get loss targets = targets.reshape(-1) loss = nn.functional.cross_entropy(logits[..., :-1, :], targets[..., 1:]) # update weights fabric.backward(loss) optimizer.step() optimizer.zero_grad() scheduler.step() # print train loss every 100 steps if iter_num % 100 == 0 or iter_num == 0: fabric.print(f"Train iter {iter_num} - loss {loss}") # validate every 300 steps if iter_num % 300 == 0 or iter_num == 0: validate(model, val_dataloader) model.train() iter_num += 1 if iter_num >= MAX_STEPS: break def main(fabric): fabric.seed_everything(SEED) # setup data, make tokenizer and make dataloaders data = Alpaca() tokenizer = Tokenizer(checkpoint_dir=f"checkpoints/{MODEL_NAME}") data.connect(tokenizer=tokenizer, batch_size=BATCH_SIZE, max_seq_length=1024) data.setup() train_dataloader = data.train_dataloader() val_dataloader = data.val_dataloader() train_dataloader, val_dataloader = fabric.setup_dataloaders(train_dataloader, val_dataloader) # print how many steps in an epoch fabric.print(f"Steps in an epoch: {len(train_dataloader)}") # setup model config = Config.from_file(f"checkpoints/{MODEL_NAME}/model_config.yaml") model = GPT(config) fabric.print(f"Number of trainable parameters: {num_parameters(model, requires_grad=True):,}") model = fabric.setup(model) # setup optimizer optimizer = torch.optim.AdamW(model.parameters(), lr=3e-3, weight_decay=0.02, betas=(0.9, 0.95)) optimizer = fabric.setup_optimizers(optimizer) # setup lr scheduler scheduler1 = torch.optim.lr_scheduler.LambdaLR(optimizer, lambda step: step / LR_WARMUP_STEPS) scheduler2 = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=(MAX_STEPS - LR_WARMUP_STEPS)) scheduler = torch.optim.lr_scheduler.SequentialLR(optimizer, [scheduler1, scheduler2], milestones=[LR_WARMUP_STEPS]) # Start training!!! train(fabric, model, optimizer, scheduler, train_dataloader, val_dataloader) if __name__ == "__main__": # check that the model exists (downloaded to ./checkpoints/) if not os.path.exists(f"checkpoints/{MODEL_NAME}"): print(f"Model {MODEL_NAME} not found. Please download it using `litgpt download --repo {MODEL_NAME}`") exit() ### Setup and launch fabric = L.Fabric(devices="auto", strategy="auto") fabric.launch(main)