Add paper link, robotics task category, and sample usage

#3
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +39 -14
README.md CHANGED
@@ -1,25 +1,27 @@
1
  ---
 
 
2
  license: cc-by-4.0
 
 
3
  task_categories:
4
- - visual-question-answering
5
- - image-to-text
6
- language:
7
- - en
8
  tags:
9
- - spatial-reasoning
10
- - 3d-scenes
11
- - vision-language
12
- - benchmark
13
- size_categories:
14
- - 10K<n<100K
15
  ---
 
16
  # Theory of Space: Visual Scene Dataset
17
 
18
  This dataset provides pre-rendered 3D multi-room environments for evaluating spatial reasoning in Vision Language Models (VLMs). It is designed to support the **Theory of Space (ToS)** benchmark, which tests whether foundation models can actively construct spatial beliefs through exploration.
19
 
20
- **Paper**: Theory of Space: Can foundation models construct spatial beliefs through active perception?
21
- **Project Page**: https://theory-of-space.github.io
22
- **GitHub Repository**: https://github.com/mll-lab-nu/Theory-of-Space
23
 
24
  ## Dataset Overview
25
 
@@ -32,6 +34,7 @@ This dataset provides pre-rendered 3D multi-room environments for evaluating spa
32
 
33
  ## Usage
34
 
 
35
  Download via Hugging Face CLI:
36
 
37
  ```bash
@@ -48,7 +51,20 @@ cd Theory-of-Space
48
  source setup.sh
49
  ```
50
 
51
- Refer to the [GitHub repository](https://github.com/mll-lab-nu/Theory-of-Space) for evaluation instructions.
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
  ## File Structure
54
 
@@ -78,4 +94,13 @@ tos-data/
78
  | `*_fbexp.png` | Images rendered after false-belief modifications |
79
  | `top_down*.png` | Bird's-eye view for visualization and debugging |
80
 
 
81
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
  license: cc-by-4.0
5
+ size_categories:
6
+ - 10K<n<100K
7
  task_categories:
8
+ - robotics
9
+ - visual-question-answering
10
+ - image-to-text
 
11
  tags:
12
+ - spatial-reasoning
13
+ - 3d-scenes
14
+ - vision-language
15
+ - benchmark
 
 
16
  ---
17
+
18
  # Theory of Space: Visual Scene Dataset
19
 
20
  This dataset provides pre-rendered 3D multi-room environments for evaluating spatial reasoning in Vision Language Models (VLMs). It is designed to support the **Theory of Space (ToS)** benchmark, which tests whether foundation models can actively construct spatial beliefs through exploration.
21
 
22
+ **Paper**: [Theory of Space: Can Foundation Models Construct Spatial Beliefs through Active Exploration?](https://huggingface.co/papers/2602.07055)
23
+ **Project Page**: [https://theory-of-space.github.io](https://theory-of-space.github.io)
24
+ **GitHub Repository**: [https://github.com/mll-lab-nu/Theory-of-Space](https://github.com/mll-lab-nu/Theory-of-Space)
25
 
26
  ## Dataset Overview
27
 
 
34
 
35
  ## Usage
36
 
37
+ ### Download
38
  Download via Hugging Face CLI:
39
 
40
  ```bash
 
51
  source setup.sh
52
  ```
53
 
54
+ ### Sample Usage
55
+ To run a full pipeline evaluation (explore + eval + cogmap) using the provided scripts:
56
+
57
+ ```bash
58
+ python scripts/SpatialGym/spatial_run.py \
59
+ --phase all \
60
+ --model-name gpt-5.2 \
61
+ --num 25 \
62
+ --data-dir room_data/3-room/ \
63
+ --output-root result/ \
64
+ --render-mode vision,text \
65
+ --exp-type active,passive \
66
+ --inference-mode batch
67
+ ```
68
 
69
  ## File Structure
70
 
 
94
  | `*_fbexp.png` | Images rendered after false-belief modifications |
95
  | `top_down*.png` | Bird's-eye view for visualization and debugging |
96
 
97
+ ## Citation
98
 
99
+ ```bibtex
100
+ @inproceedings{zhang2026theoryofspace,
101
+ title = {Theory of Space: Can Foundation Models Construct Spatial Beliefs through Active Exploration?},
102
+ author = {Zhang, Pingyue and Huang, Zihan and Wang, Yue and Zhang, Jieyu and Xue, Letian and Wang, Zihan and Wang, Qineng and Chandrasegaran, Keshigeyan and Zhang, Ruohan and Choi, Yejin and Krishna, Ranjay and Wu, Jiajun and Li, Fei-Fei and Li, Manling},
103
+ booktitle = {International Conference on Learning Representations (ICLR)},
104
+ year = {2026},
105
+ }
106
+ ```