_id
stringlengths
2
7
title
stringlengths
1
88
partition
stringclasses
3 values
text
stringlengths
75
19.8k
language
stringclasses
1 value
meta_information
dict
q8500
RequestHandler.get
train
def get(self, url, params=None): """ Initiate a GET request """ r = self.session.get(url, params=params) return self._response_parser(r, expect_json=False)
python
{ "resource": "" }
q8501
RequestHandler.post
train
def post(self, url, data, params=None): """ Initiate a POST request """ r = self.session.post(url, data=data, params=params) return self._response_parser(r, expect_json=False)
python
{ "resource": "" }
q8502
RequestHandler.send
train
def send(self, request, expect_json=True, ignore_content=False): """ Send a formatted API request :param request: a formatted request object :type request: :class:`.Request` :param bool expect_json: if True, raise :class:`.InvalidAPIAccess` if response is not in JSON format :param bool ignore_content: whether to ignore setting content of the Response object """ r = self.session.request(method=request.method, url=request.url, params=request.params, data=request.data, files=request.files, headers=request.headers) return self._response_parser(r, expect_json, ignore_content)
python
{ "resource": "" }
q8503
API.login
train
def login(self, username=None, password=None, section='default'): """ Created the passport with ``username`` and ``password`` and log in. If either ``username`` or ``password`` is None or omitted, the credentials file will be parsed. :param str username: username to login (email, phone number or user ID) :param str password: password :param str section: section name in the credential file :raise: raises :class:`.AuthenticationError` if failed to login """ if self.has_logged_in: return True if username is None or password is None: credential = conf.get_credential(section) username = credential['username'] password = credential['password'] passport = Passport(username, password) r = self.http.post(LOGIN_URL, passport.form) if r.state is True: # Bind this passport to API self.passport = passport passport.data = r.content['data'] self._user_id = r.content['data']['USER_ID'] return True else: msg = None if 'err_name' in r.content: if r.content['err_name'] == 'account': msg = 'Account does not exist.' elif r.content['err_name'] == 'passwd': msg = 'Password is incorrect.' raise AuthenticationError(msg)
python
{ "resource": "" }
q8504
API.user_id
train
def user_id(self): """ User id of the current API user """ if self._user_id is None: if self.has_logged_in: self._user_id = self._req_get_user_aq()['data']['uid'] else: raise AuthenticationError('Not logged in.') return self._user_id
python
{ "resource": "" }
q8505
API.username
train
def username(self): """ Username of the current API user """ if self._username is None: if self.has_logged_in: self._username = self._get_username() else: raise AuthenticationError('Not logged in.') return self._username
python
{ "resource": "" }
q8506
API.has_logged_in
train
def has_logged_in(self): """Check whether the API has logged in""" r = self.http.get(CHECKPOINT_URL) if r.state is False: return True # If logged out, flush cache self._reset_cache() return False
python
{ "resource": "" }
q8507
API.receiver_directory
train
def receiver_directory(self): """Parent directory of the downloads directory""" if self._receiver_directory is None: self._receiver_directory = self.downloads_directory.parent return self._receiver_directory
python
{ "resource": "" }
q8508
API.add_task_bt
train
def add_task_bt(self, filename, select=False): """ Add a new BT task :param str filename: path to torrent file to upload :param bool select: whether to select files in the torrent. * True: it returns the opened torrent (:class:`.Torrent`) and can then iterate files in :attr:`.Torrent.files` and select/unselect them before calling :meth:`.Torrent.submit` * False: it will submit the torrent with default selected files """ filename = eval_path(filename) u = self.upload(filename, self.torrents_directory) t = self._load_torrent(u) if select: return t return t.submit()
python
{ "resource": "" }
q8509
API.get_storage_info
train
def get_storage_info(self, human=False): """ Get storage info :param bool human: whether return human-readable size :return: total and used storage :rtype: dict """ res = self._req_get_storage_info() if human: res['total'] = humanize.naturalsize(res['total'], binary=True) res['used'] = humanize.naturalsize(res['used'], binary=True) return res
python
{ "resource": "" }
q8510
API.upload
train
def upload(self, filename, directory=None): """ Upload a file ``filename`` to ``directory`` :param str filename: path to the file to upload :param directory: destionation :class:`.Directory`, defaults to :attribute:`.API.downloads_directory` if None :return: the uploaded file :rtype: :class:`.File` """ filename = eval_path(filename) if directory is None: directory = self.downloads_directory # First request res1 = self._req_upload(filename, directory) data1 = res1['data'] file_id = data1['file_id'] # Second request res2 = self._req_file(file_id) data2 = res2['data'][0] data2.update(**data1) return _instantiate_uploaded_file(self, data2)
python
{ "resource": "" }
q8511
API.download
train
def download(self, obj, path=None, show_progress=True, resume=True, auto_retry=True, proapi=False): """ Download a file :param obj: :class:`.File` object :param str path: local path :param bool show_progress: whether to show download progress :param bool resume: whether to resume on unfinished downloads identified by filename :param bool auto_retry: whether to retry automatically upon closed transfer until the file's download is finished :param bool proapi: whether to use pro API """ url = obj.get_download_url(proapi) download(url, path=path, session=self.http.session, show_progress=show_progress, resume=resume, auto_retry=auto_retry)
python
{ "resource": "" }
q8512
API.search
train
def search(self, keyword, count=30): """ Search files or directories :param str keyword: keyword :param int count: number of entries to be listed """ kwargs = {} kwargs['search_value'] = keyword root = self.root_directory entries = root._load_entries(func=self._req_files_search, count=count, page=1, **kwargs) res = [] for entry in entries: if 'pid' in entry: res.append(_instantiate_directory(self, entry)) else: res.append(_instantiate_file(self, entry)) return res
python
{ "resource": "" }
q8513
API._req_offline_space
train
def _req_offline_space(self): """Required before accessing lixian tasks""" url = 'http://115.com/' params = { 'ct': 'offline', 'ac': 'space', '_': get_timestamp(13) } _sign = os.environ.get('U115_BROWSER_SIGN') if _sign is not None: _time = os.environ.get('U115_BROWSER_TIME') if _time is None: msg = 'U115_BROWSER_TIME is required given U115_BROWSER_SIGN.' raise APIError(msg) params['sign'] = _sign params['time'] = _time params['uid'] = self.user_id req = Request(url=url, params=params) r = self.http.send(req) if r.state: self._signatures['offline_space'] = r.content['sign'] self._lixian_timestamp = r.content['time'] else: msg = 'Failed to retrieve signatures.' raise RequestFailure(msg)
python
{ "resource": "" }
q8514
API._req_lixian_task_lists
train
def _req_lixian_task_lists(self, page=1): """ This request will cause the system to create a default downloads directory if it does not exist """ url = 'http://115.com/lixian/' params = {'ct': 'lixian', 'ac': 'task_lists'} self._load_signatures() data = { 'page': page, 'uid': self.user_id, 'sign': self._signatures['offline_space'], 'time': self._lixian_timestamp, } req = Request(method='POST', url=url, params=params, data=data) res = self.http.send(req) if res.state: self._task_count = res.content['count'] self._task_quota = res.content['quota'] return res.content['tasks'] else: msg = 'Failed to get tasks.' raise RequestFailure(msg)
python
{ "resource": "" }
q8515
API._req_lixian_get_id
train
def _req_lixian_get_id(self, torrent=False): """Get `cid` of lixian space directory""" url = 'http://115.com/' params = { 'ct': 'lixian', 'ac': 'get_id', 'torrent': 1 if torrent else None, '_': get_timestamp(13) } req = Request(method='GET', url=url, params=params) res = self.http.send(req) return res.content
python
{ "resource": "" }
q8516
API._req_files_edit
train
def _req_files_edit(self, fid, file_name=None, is_mark=0): """Edit a file or directory""" url = self.web_api_url + '/edit' data = locals() del data['self'] req = Request(method='POST', url=url, data=data) res = self.http.send(req) if res.state: return True else: raise RequestFailure('Failed to access files API.')
python
{ "resource": "" }
q8517
API._req_directory
train
def _req_directory(self, cid): """Return name and pid of by cid""" res = self._req_files(cid=cid, offset=0, limit=1, show_dir=1) path = res['path'] count = res['count'] for d in path: if str(d['cid']) == str(cid): res = { 'cid': d['cid'], 'name': d['name'], 'pid': d['pid'], 'count': count, } return res else: raise RequestFailure('No directory found.')
python
{ "resource": "" }
q8518
API._req_upload
train
def _req_upload(self, filename, directory): """Raw request to upload a file ``filename``""" self._upload_url = self._load_upload_url() self.http.get('http://upload.115.com/crossdomain.xml') b = os.path.basename(filename) target = 'U_1_' + str(directory.cid) files = { 'Filename': ('', quote(b), ''), 'target': ('', target, ''), 'Filedata': (quote(b), open(filename, 'rb'), ''), 'Upload': ('', 'Submit Query', ''), } req = Request(method='POST', url=self._upload_url, files=files) res = self.http.send(req) if res.state: return res.content else: msg = None if res.content['code'] == 990002: msg = 'Invalid parameter.' elif res.content['code'] == 1001: msg = 'Torrent upload failed. Please try again later.' raise RequestFailure(msg)
python
{ "resource": "" }
q8519
API._load_root_directory
train
def _load_root_directory(self): """ Load root directory, which has a cid of 0 """ kwargs = self._req_directory(0) self._root_directory = Directory(api=self, **kwargs)
python
{ "resource": "" }
q8520
API._load_torrents_directory
train
def _load_torrents_directory(self): """ Load torrents directory If it does not exist yet, this request will cause the system to create one """ r = self._req_lixian_get_id(torrent=True) self._downloads_directory = self._load_directory(r['cid'])
python
{ "resource": "" }
q8521
API._load_downloads_directory
train
def _load_downloads_directory(self): """ Load downloads directory If it does not exist yet, this request will cause the system to create one """ r = self._req_lixian_get_id(torrent=False) self._downloads_directory = self._load_directory(r['cid'])
python
{ "resource": "" }
q8522
API._parse_src_js_var
train
def _parse_src_js_var(self, variable): """Parse JavaScript variables in the source page""" src_url = 'http://115.com' r = self.http.get(src_url) soup = BeautifulSoup(r.content) scripts = [script.text for script in soup.find_all('script')] text = '\n'.join(scripts) pattern = "%s\s*=\s*(.*);" % (variable.upper()) m = re.search(pattern, text) if not m: msg = 'Cannot parse source JavaScript for %s.' % variable raise APIError(msg) return json.loads(m.group(1).strip())
python
{ "resource": "" }
q8523
BaseFile.delete
train
def delete(self): """ Delete this file or directory :return: whether deletion is successful :raise: :class:`.APIError` if this file or directory is already deleted """ fcid = None pid = None if isinstance(self, File): fcid = self.fid pid = self.cid elif isinstance(self, Directory): fcid = self.cid pid = self.pid else: raise APIError('Invalid BaseFile instance.') if not self._deleted: if self.api._req_rb_delete(fcid, pid): self._deleted = True return True else: raise APIError('This file or directory is already deleted.')
python
{ "resource": "" }
q8524
BaseFile.edit
train
def edit(self, name, mark=False): """ Edit this file or directory :param str name: new name for this entry :param bool mark: whether to bookmark this entry """ self.api.edit(self, name, mark)
python
{ "resource": "" }
q8525
File.directory
train
def directory(self): """Directory that holds this file""" if self._directory is None: self._directory = self.api._load_directory(self.cid) return self._directory
python
{ "resource": "" }
q8526
File.get_download_url
train
def get_download_url(self, proapi=False): """ Get this file's download URL :param bool proapi: whether to use pro API """ if self._download_url is None: self._download_url = \ self.api._req_files_download_url(self.pickcode, proapi) return self._download_url
python
{ "resource": "" }
q8527
File.download
train
def download(self, path=None, show_progress=True, resume=True, auto_retry=True, proapi=False): """Download this file""" self.api.download(self, path, show_progress, resume, auto_retry, proapi)
python
{ "resource": "" }
q8528
File.reload
train
def reload(self): """ Reload file info and metadata * name * sha * pickcode """ res = self.api._req_file(self.fid) data = res['data'][0] self.name = data['file_name'] self.sha = data['sha1'] self.pickcode = data['pick_code']
python
{ "resource": "" }
q8529
Directory.parent
train
def parent(self): """Parent directory that holds this directory""" if self._parent is None: if self.pid is not None: self._parent = self.api._load_directory(self.pid) return self._parent
python
{ "resource": "" }
q8530
Directory.reload
train
def reload(self): """ Reload directory info and metadata * `name` * `pid` * `count` """ r = self.api._req_directory(self.cid) self.pid = r['pid'] self.name = r['name'] self._count = r['count']
python
{ "resource": "" }
q8531
Directory.list
train
def list(self, count=30, order='user_ptime', asc=False, show_dir=True, natsort=True): """ List directory contents :param int count: number of entries to be listed :param str order: order of entries, originally named `o`. This value may be one of `user_ptime` (default), `file_size` and `file_name` :param bool asc: whether in ascending order :param bool show_dir: whether to show directories :param bool natsort: whether to use natural sort Return a list of :class:`.File` or :class:`.Directory` objects """ if self.cid is None: return False self.reload() kwargs = {} # `cid` is the only required argument kwargs['cid'] = self.cid kwargs['asc'] = 1 if asc is True else 0 kwargs['show_dir'] = 1 if show_dir is True else 0 kwargs['natsort'] = 1 if natsort is True else 0 kwargs['o'] = order # When the downloads directory exists along with its parent directory, # the receiver directory, its parent's count (receiver directory's # count) does not include the downloads directory. This behavior is # similar to its parent's parent (root), the count of which does not # include the receiver directory. # The following code fixed this behavior so that a directory's # count correctly reflects the actual number of entries in it # The side-effect that this code may ensure that downloads directory # exists, causing the system to create the receiver directory and # downloads directory, if they do not exist. if self.is_root or self == self.api.receiver_directory: self._count += 1 if self.count <= count: # count should never be greater than self.count count = self.count try: entries = self._load_entries(func=self.api._req_files, count=count, page=1, **kwargs) # When natsort=1 and order='file_name', API access will fail except RequestFailure as e: if natsort is True and order == 'file_name': entries = \ self._load_entries(func=self.api._req_aps_natsort_files, count=count, page=1, **kwargs) else: raise e res = [] for entry in entries: if 'pid' in entry: res.append(_instantiate_directory(self.api, entry)) else: res.append(_instantiate_file(self.api, entry)) return res
python
{ "resource": "" }
q8532
Task.status_human
train
def status_human(self): """ Human readable status :return: * `DOWNLOADING`: the task is downloading files * `BEING TRANSFERRED`: the task is being transferred * `TRANSFERRED`: the task has been transferred to downloads \ directory * `SEARCHING RESOURCES`: the task is searching resources * `FAILED`: the task is failed * `DELETED`: the task is deleted * `UNKNOWN STATUS` :rtype: str """ res = None if self._deleted: return 'DELETED' if self.status == 1: res = 'DOWNLOADING' elif self.status == 2: if self.move == 0: res = 'BEING TRANSFERRED' elif self.move == 1: res = 'TRANSFERRED' elif self.move == 2: res = 'PARTIALLY TRANSFERRED' elif self.status == 4: res = 'SEARCHING RESOURCES' elif self.status == -1: res = 'FAILED' if res is not None: return res return 'UNKNOWN STATUS'
python
{ "resource": "" }
q8533
Task.directory
train
def directory(self): """Associated directory, if any, with this task""" if not self.is_directory: msg = 'This task is a file task with no associated directory.' raise TaskError(msg) if self._directory is None: if self.is_transferred: self._directory = self.api._load_directory(self.cid) if self._directory is None: msg = 'No directory assciated with this task: Task is %s.' % \ self.status_human.lower() raise TaskError(msg) return self._directory
python
{ "resource": "" }
q8534
Task.list
train
def list(self, count=30, order='user_ptime', asc=False, show_dir=True, natsort=True): """ List files of the associated directory to this task. :param int count: number of entries to be listed :param str order: originally named `o` :param bool asc: whether in ascending order :param bool show_dir: whether to show directories """ return self.directory.list(count, order, asc, show_dir, natsort)
python
{ "resource": "" }
q8535
Torrent.submit
train
def submit(self): """Submit this torrent and create a new task""" if self.api._req_lixian_add_task_bt(self): self.submitted = True return True return False
python
{ "resource": "" }
q8536
Command.get_needful_files
train
def get_needful_files(self): """ Returns currently used static files. Assumes that manifest staticfiles.json is up-to-date. """ manifest = self.storage.load_manifest() if self.keep_unhashed_files: if PY3: needful_files = set(manifest.keys() | manifest.values()) else: needful_files = set(manifest.keys() + manifest.values()) needful_files = {self.storage.clean_name(file) for file in needful_files} else: needful_files = set(manifest.values()) return {self.process_file(file) for file in needful_files}
python
{ "resource": "" }
q8537
Command.model_file_fields
train
def model_file_fields(self, model): """ Generator yielding all instances of FileField and its subclasses of a model. """ for field in model._meta.fields: if isinstance(field, models.FileField): yield field
python
{ "resource": "" }
q8538
Command.get_resource_types
train
def get_resource_types(self): """ Returns set of resource types of FileFields of all registered models. Needed by Cloudinary as resource type is needed to browse or delete specific files. """ resource_types = set() for model in self.models(): for field in self.model_file_fields(model): resource_type = field.storage.RESOURCE_TYPE resource_types.add(resource_type) return resource_types
python
{ "resource": "" }
q8539
Command.get_needful_files
train
def get_needful_files(self): """ Returns set of media files associated with models. Those files won't be deleted. """ needful_files = [] for model in self.models(): media_fields = [] for field in self.model_file_fields(model): media_fields.append(field.name) if media_fields: exclude_options = {media_field: '' for media_field in media_fields} model_uploaded_media = model.objects.exclude(**exclude_options).values_list(*media_fields) needful_files.extend(model_uploaded_media) return set(chain.from_iterable(needful_files))
python
{ "resource": "" }
q8540
Command.get_files_to_remove
train
def get_files_to_remove(self): """ Returns orphaned media files to be removed grouped by resource type. All files which paths start with any of exclude paths are ignored. """ files_to_remove = {} needful_files = self.get_needful_files() for resources_type, resources in self.get_uploaded_resources(): exclude_paths = self.get_exclude_paths() resources = {resource for resource in resources if not resource.startswith(exclude_paths)} files_to_remove[resources_type] = resources - needful_files return files_to_remove
python
{ "resource": "" }
q8541
StaticCloudinaryStorage._get_resource_type
train
def _get_resource_type(self, name): """ Implemented as static files can be of different resource types. Because web developers are the people who control those files, we can distinguish them simply by looking at their extensions, we don't need any content based validation. """ extension = self._get_file_extension(name) if extension is None: return self.RESOURCE_TYPE elif extension in app_settings.STATIC_IMAGES_EXTENSIONS: return RESOURCE_TYPES['IMAGE'] elif extension in app_settings.STATIC_VIDEOS_EXTENSIONS: return RESOURCE_TYPES['VIDEO'] else: return self.RESOURCE_TYPE
python
{ "resource": "" }
q8542
StaticCloudinaryStorage._remove_extension_for_non_raw_file
train
def _remove_extension_for_non_raw_file(self, name): """ Implemented as image and video files' Cloudinary public id shouldn't contain file extensions, otherwise Cloudinary url would contain doubled extension - Cloudinary adds extension to url to allow file conversion to arbitrary file, like png to jpg. """ file_resource_type = self._get_resource_type(name) if file_resource_type is None or file_resource_type == self.RESOURCE_TYPE: return name else: extension = self._get_file_extension(name) return name[:-len(extension) - 1]
python
{ "resource": "" }
q8543
StaticCloudinaryStorage._exists_with_etag
train
def _exists_with_etag(self, name, content): """ Checks whether a file with a name and a content is already uploaded to Cloudinary. Uses ETAG header and MD5 hash for the content comparison. """ url = self._get_url(name) response = requests.head(url) if response.status_code == 404: return False etag = response.headers['ETAG'].split('"')[1] hash = self.file_hash(name, content) return etag.startswith(hash)
python
{ "resource": "" }
q8544
StaticCloudinaryStorage._save
train
def _save(self, name, content): """ Saves only when a file with a name and a content is not already uploaded to Cloudinary. """ name = self.clean_name(name) # to change to UNIX style path on windows if necessary if not self._exists_with_etag(name, content): content.seek(0) super(StaticCloudinaryStorage, self)._save(name, content) return self._prepend_prefix(name)
python
{ "resource": "" }
q8545
BaseCart.add
train
def add(self, pk, quantity=1, **kwargs): """Add an item to the cart. If the item is already in the cart, then its quantity will be increased by `quantity` units. Parameters ---------- pk : str or int The primary key of the item. quantity : int-convertible A number of units of to add. **kwargs Extra keyword arguments to pass to the item class constructor. Raises ------ ItemNotInDatabase NegativeItemQuantity NonConvertibleItemQuantity TooLargeItemQuantity ZeroItemQuantity """ pk = str(pk) if pk in self.items: existing_item = self.items[pk] existing_item.quantity += _clean_quantity(quantity) else: queryset = self.get_queryset([pk]) try: obj = queryset[0] except IndexError: raise ItemNotInDatabase(pk=pk) obj = self.process_object(obj) self.items[pk] = self.item_class(obj, quantity, **kwargs) self.update()
python
{ "resource": "" }
q8546
BaseCart.change_quantity
train
def change_quantity(self, pk, quantity): """Change the quantity of an item. Parameters ---------- pk : str or int The primary key of the item. quantity : int-convertible A new quantity. Raises ------ ItemNotInCart NegativeItemQuantity NonConvertibleItemQuantity TooLargeItemQuantity ZeroItemQuantity """ pk = str(pk) try: item = self.items[pk] except KeyError: raise ItemNotInCart(pk=pk) item.quantity = quantity self.update()
python
{ "resource": "" }
q8547
BaseCart.remove
train
def remove(self, pk): """Remove an item from the cart. Parameters ---------- pk : str or int The primary key of the item. Raises ------ ItemNotInCart """ pk = str(pk) try: del self.items[pk] except KeyError: raise ItemNotInCart(pk=pk) self.update()
python
{ "resource": "" }
q8548
BaseCart.list_items
train
def list_items(self, sort_key=None, reverse=False): """Return a list of cart items. Parameters ---------- sort_key : func A function to customize the list order, same as the 'key' argument to the built-in :func:`sorted`. reverse: bool If set to True, the sort order will be reversed. Returns ------- list List of :attr:`item_class` instances. Examples -------- >>> cart = Cart(request) >>> cart.list_items(lambda item: item.obj.name) [<CartItem: obj=bar, quantity=3>, <CartItem: obj=foo, quantity=1>, <CartItem: obj=nox, quantity=5>] >>> cart.list_items(lambda item: item.quantity, reverse=True) [<CartItem: obj=nox, quantity=5>, <CartItem: obj=bar, quantity=3>, <CartItem: obj=foo, quantity=1>] """ items = list(self.items.values()) if sort_key: items.sort(key=sort_key, reverse=reverse) return items
python
{ "resource": "" }
q8549
BaseCart.encode
train
def encode(self, formatter=None): """Return a representation of the cart as a JSON-response. Parameters ---------- formatter : func, optional A function that accepts the cart representation and returns its formatted version. Returns ------- django.http.JsonResponse Examples -------- Assume that items with primary keys "1" and "4" are already in the cart. >>> cart = Cart(request) >>> def format_total_price(cart_repr): ... return intcomma(cart_repr['totalPrice']) ... >>> json_response = cart.encode(format_total_price) >>> json_response.content b'{ "items": { '1': {"price": 100, "quantity": 10, "total": 1000}, '4': {"price": 50, "quantity": 20, "total": 1000}, }, "itemCount": 2, "totalPrice": "2,000", }' """ items = {} # The prices are converted to strings, because they may have a # type that can't be serialized to JSON (e.g. Decimal). for item in self.items.values(): pk = str(item.obj.pk) items[pk] = { 'price': str(item.price), 'quantity': item.quantity, 'total': item.total, } cart_repr = { 'items': items, 'itemCount': self.item_count, 'totalPrice': str(self.total_price), } if formatter: cart_repr = formatter(cart_repr) return JsonResponse(cart_repr)
python
{ "resource": "" }
q8550
BaseCart.create_items
train
def create_items(self, session_items): """Instantiate cart items from session data. The value returned by this method is used to populate the cart's `items` attribute. Parameters ---------- session_items : dict A dictionary of pk-quantity mappings (each pk is a string). For example: ``{'1': 5, '3': 2}``. Returns ------- dict A map between the `session_items` keys and instances of :attr:`item_class`. For example:: {'1': <CartItem: obj=foo, quantity=5>, '3': <CartItem: obj=bar, quantity=2>} """ pks = list(session_items.keys()) items = {} item_class = self.item_class process_object = self.process_object for obj in self.get_queryset(pks): pk = str(obj.pk) obj = process_object(obj) items[pk] = item_class(obj, **session_items[pk]) if len(items) < len(session_items): self._stale_pks = set(session_items).difference(items) return items
python
{ "resource": "" }
q8551
BaseCart.update
train
def update(self): """Update the cart. First this method updates attributes dependent on the cart's `items`, such as `total_price` or `item_count`. After that, it saves the new cart state to the session. Generally, you'll need to call this method by yourself, only when implementing new methods that directly change the `items` attribute. """ self.item_count = self.count_items() self.total_price = self.count_total_price() # Update the session session = self.request.session session_items = {} for pk, item in self.items.items(): session_items[pk] = dict(quantity=item.quantity, **item._kwargs) session_data = session[session_key] session_data['items'] = session_items session_data['itemCount'] = self.item_count # The price can be of a type that can't be serialized to JSON session_data['totalPrice'] = str(self.total_price) session.modified = True
python
{ "resource": "" }
q8552
BaseCart.count_items
train
def count_items(self, unique=True): """Count items in the cart. Parameters ---------- unique : bool-convertible, optional Returns ------- int If `unique` is truthy, then the result is the number of items in the cart. Otherwise, it's the sum of all item quantities. """ if unique: return len(self.items) return sum([item.quantity for item in self.items.values()])
python
{ "resource": "" }
q8553
hill_climber
train
def hill_climber(objective_function, initial_array, lower_bound=-float('inf'), acceptance_criteria=None, max_iterations=10 ** 3): """ Implement a basic hill climbing algorithm. Has two stopping conditions: 1. Maximum number of iterations; 2. A known lower bound, a none is passed then this is not used. If acceptance_criteria (a callable) is not None then this is used to obtain an upper bound on some other measure (different to the objective function). In practice this is used when optimising the objective function to ensure that we don't accept a solution that improves the objective function but tht adds more constraint violations. """ X = initial_array if acceptance_criteria is not None: acceptance_bound = acceptance_criteria(X) iterations = 0 current_energy = objective_function(X) while current_energy > lower_bound and iterations <= max_iterations: iterations += 1 candidate = element_from_neighbourhood(X) candidate_energy = objective_function(candidate) if (candidate_energy < current_energy and (acceptance_criteria is None or acceptance_criteria(candidate) <= acceptance_bound)): X = candidate current_energy = candidate_energy if lower_bound > -float('inf') and current_energy != lower_bound: warnings.warn(f"Lower bound {lower_bound} not achieved after {max_iterations} iterations") return X
python
{ "resource": "" }
q8554
simulated_annealing
train
def simulated_annealing(objective_function, initial_array, initial_temperature=10 ** 4, cooldown_rate=0.7, acceptance_criteria=None, lower_bound=-float('inf'), max_iterations=10 ** 3): """ Implement a simulated annealing algorithm with exponential cooling Has two stopping conditions: 1. Maximum number of iterations; 2. A known lower bound, a none is passed then this is not used. Note that starting with an initial_temperature corresponds to a hill climbing algorithm """ X = initial_array if acceptance_criteria is not None: acceptance_bound = acceptance_criteria(X) best_X = X iterations = 0 current_energy = objective_function(X) best_energy = current_energy temperature = initial_temperature while current_energy > lower_bound and iterations <= max_iterations: iterations += 1 candidate = element_from_neighbourhood(X) candidate_energy = objective_function(candidate) delta = candidate_energy - current_energy if (candidate_energy < best_energy and (acceptance_criteria is None or acceptance_criteria(candidate) <= acceptance_bound)): best_energy = candidate_energy best_X = candidate if delta < 0 or (temperature > 0 and np.random.random() < np.exp(-delta / temperature)): X = candidate current_energy = candidate_energy temperature *= (cooldown_rate) ** iterations if lower_bound > -float('inf') and current_energy != lower_bound: warnings.warn(f"Lower bound {lower_bound} not achieved after {max_iterations} iterations") return best_X
python
{ "resource": "" }
q8555
_events_available_in_scheduled_slot
train
def _events_available_in_scheduled_slot(events, slots, X, **kwargs): """ Constraint that ensures that an event is scheduled in slots for which it is available """ slot_availability_array = lpu.slot_availability_array(slots=slots, events=events) label = 'Event scheduled when not available' for row, event in enumerate(slot_availability_array): for col, availability in enumerate(event): if availability == 0: yield Constraint( f'{label} - event: {row}, slot: {col}', X[row, col] <= availability )
python
{ "resource": "" }
q8556
_events_available_during_other_events
train
def _events_available_during_other_events( events, slots, X, summation_type=None, **kwargs ): """ Constraint that ensures that an event is not scheduled at the same time as another event for which it is unavailable. Unavailability of events is either because it is explicitly defined or because they share a tag. """ summation = lpu.summation_functions[summation_type] event_availability_array = lpu.event_availability_array(events) label = 'Event clashes with another event' for slot1, slot2 in lpu.concurrent_slots(slots): for row, event in enumerate(event_availability_array): if events[row].unavailability: for col, availability in enumerate(event): if availability == 0: yield Constraint( f'{label} - event: {row} and event: {col}', summation( (X[row, slot1], X[col, slot2]) ) <= 1 + availability )
python
{ "resource": "" }
q8557
_upper_bound_on_event_overflow
train
def _upper_bound_on_event_overflow( events, slots, X, beta, summation_type=None, **kwargs ): """ This is an artificial constraint that is used by the objective function aiming to minimise the maximum overflow in a slot. """ label = 'Artificial upper bound constraint' for row, event in enumerate(events): for col, slot in enumerate(slots): yield Constraint( f'{label} - slot: {col} and event: {row}', event.demand * X[row, col] - slot.capacity <= beta)
python
{ "resource": "" }
q8558
heuristic
train
def heuristic(events, slots, objective_function=None, algorithm=heu.hill_climber, initial_solution=None, initial_solution_algorithm_kwargs={}, objective_function_algorithm_kwargs={}, **kwargs): """ Compute a schedule using a heuristic Parameters ---------- events : list or tuple of :py:class:`resources.Event` instances slots : list or tuple of :py:class:`resources.Slot` instances algorithm : callable a heuristic algorithm from conference_scheduler.heuristics initial_solution_algorithm_kwargs : dict kwargs for the heuristic algorithm for the initial solution objective_function_algorithm_kwargs : dict kwargs for the heuristic algorithm for the objective function (if necessary. objective_function: callable from lp_problem.objective_functions kwargs : keyword arguments arguments for the objective function Returns ------- list A list of tuples giving the event and slot index (for the given events and slots lists) for all scheduled items. Example ------- For a solution where * event 0 is scheduled in slot 1 * event 1 is scheduled in slot 4 * event 2 is scheduled in slot 5 the resulting list would be:: [(0, 1), (1, 4), (2, 5)] """ def count_violations(array): return len(list(val.array_violations(array, events, slots))) if initial_solution is None: X = heu.get_initial_array(events=events, slots=slots) X = algorithm(initial_array=X, objective_function=count_violations, lower_bound=0, **initial_solution_algorithm_kwargs) else: X = initial_solution if objective_function is not None: kwargs["beta"] = float('inf') def func(array): return objective_function( events=events, slots=slots, X=array, **kwargs) X = algorithm(initial_array=X, objective_function=func, acceptance_criteria=count_violations, **objective_function_algorithm_kwargs) return list(zip(*np.nonzero(X)))
python
{ "resource": "" }
q8559
solution
train
def solution(events, slots, objective_function=None, solver=None, **kwargs): """Compute a schedule in solution form Parameters ---------- events : list or tuple of :py:class:`resources.Event` instances slots : list or tuple of :py:class:`resources.Slot` instances solver : pulp.solver a pulp solver objective_function: callable from lp_problem.objective_functions kwargs : keyword arguments arguments for the objective function Returns ------- list A list of tuples giving the event and slot index (for the given events and slots lists) for all scheduled items. Example ------- For a solution where * event 0 is scheduled in slot 1 * event 1 is scheduled in slot 4 * event 2 is scheduled in slot 5 the resulting list would be:: [(0, 1), (1, 4), (2, 5)] """ shape = Shape(len(events), len(slots)) problem = pulp.LpProblem() X = lp.utils.variables(shape) beta = pulp.LpVariable("upper_bound") for constraint in lp.constraints.all_constraints( events, slots, X, beta, 'lpsum' ): problem += constraint.condition if objective_function is not None: problem += objective_function(events=events, slots=slots, X=X, beta=beta, **kwargs) status = problem.solve(solver=solver) if status == 1: return [item for item, variable in X.items() if variable.value() > 0] else: raise ValueError('No valid solution found')
python
{ "resource": "" }
q8560
array
train
def array(events, slots, objective_function=None, solver=None, **kwargs): """Compute a schedule in array form Parameters ---------- events : list or tuple of :py:class:`resources.Event` instances slots : list or tuple of :py:class:`resources.Slot` instances objective_function : callable from lp_problem.objective_functions Returns ------- np.array An E by S array (X) where E is the number of events and S the number of slots. Xij is 1 if event i is scheduled in slot j and zero otherwise Example ------- For 3 events, 7 slots and a solution where * event 0 is scheduled in slot 1 * event 1 is scheduled in slot 4 * event 2 is scheduled in slot 5 the resulting array would be:: [[0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0]] """ return conv.solution_to_array( solution(events, slots, objective_function, solver=solver, **kwargs), events, slots )
python
{ "resource": "" }
q8561
schedule
train
def schedule(events, slots, objective_function=None, solver=None, **kwargs): """Compute a schedule in schedule form Parameters ---------- events : list or tuple of :py:class:`resources.Event` instances slots : list or tuple of :py:class:`resources.Slot` instances solver : pulp.solver a pulp solver objective_function : callable from lp_problem.objective_functions kwargs : keyword arguments arguments for the objective function Returns ------- list A list of instances of :py:class:`resources.ScheduledItem` """ return conv.solution_to_schedule( solution(events, slots, objective_function, solver=solver, **kwargs), events, slots )
python
{ "resource": "" }
q8562
event_schedule_difference
train
def event_schedule_difference(old_schedule, new_schedule): """Compute the difference between two schedules from an event perspective Parameters ---------- old_schedule : list or tuple of :py:class:`resources.ScheduledItem` objects new_schedule : list or tuple of :py:class:`resources.ScheduledItem` objects Returns ------- list A list of :py:class:`resources.ChangedEventScheduledItem` objects Example ------- >>> from conference_scheduler.resources import Event, Slot, ScheduledItem >>> from conference_scheduler.scheduler import event_schedule_difference >>> events = [Event(f'event_{i}', 30, 0) for i in range(5)] >>> slots = [Slot(f'venue_{i}', '', 30, 100, None) for i in range(5)] >>> old_schedule = ( ... ScheduledItem(events[0], slots[0]), ... ScheduledItem(events[1], slots[1]), ... ScheduledItem(events[2], slots[2])) >>> new_schedule = ( ... ScheduledItem(events[0], slots[0]), ... ScheduledItem(events[1], slots[2]), ... ScheduledItem(events[2], slots[3]), ... ScheduledItem(events[3], slots[4])) >>> diff = (event_schedule_difference(old_schedule, new_schedule)) >>> print([item.event.name for item in diff]) ['event_1', 'event_2', 'event_3'] """ old = {item.event.name: item for item in old_schedule} new = {item.event.name: item for item in new_schedule} common_events = set(old.keys()).intersection(new.keys()) added_events = new.keys() - old.keys() removed_events = old.keys() - new.keys() changed = [ ChangedEventScheduledItem( old[event].event, old[event].slot, new[event].slot) for event in common_events if old[event].slot != new[event].slot ] added = [ ChangedEventScheduledItem(new[event].event, None, new[event].slot) for event in added_events ] removed = [ ChangedEventScheduledItem(old[event].event, old[event].slot, None) for event in removed_events ] return sorted(changed + added + removed, key=lambda item: item.event.name)
python
{ "resource": "" }
q8563
slot_schedule_difference
train
def slot_schedule_difference(old_schedule, new_schedule): """Compute the difference between two schedules from a slot perspective Parameters ---------- old_schedule : list or tuple of :py:class:`resources.ScheduledItem` objects new_schedule : list or tuple of :py:class:`resources.ScheduledItem` objects Returns ------- list A list of :py:class:`resources.ChangedSlotScheduledItem` objects Example ------- >>> from conference_scheduler.resources import Event, Slot, ScheduledItem >>> from conference_scheduler.scheduler import slot_schedule_difference >>> events = [Event(f'event_{i}', 30, 0) for i in range(5)] >>> slots = [Slot(f'venue_{i}', '', 30, 100, None) for i in range(5)] >>> old_schedule = ( ... ScheduledItem(events[0], slots[0]), ... ScheduledItem(events[1], slots[1]), ... ScheduledItem(events[2], slots[2])) >>> new_schedule = ( ... ScheduledItem(events[0], slots[0]), ... ScheduledItem(events[1], slots[2]), ... ScheduledItem(events[2], slots[3]), ... ScheduledItem(events[3], slots[4])) >>> diff = slot_schedule_difference(old_schedule, new_schedule) >>> print([item.slot.venue for item in diff]) ['venue_1', 'venue_2', 'venue_3', 'venue_4'] """ old = {item.slot: item for item in old_schedule} new = {item.slot: item for item in new_schedule} common_slots = set(old.keys()).intersection(new.keys()) added_slots = new.keys() - old.keys() removed_slots = old.keys() - new.keys() changed = [ ChangedSlotScheduledItem( old[slot].slot, old[slot].event, new[slot].event) for slot in common_slots if old[slot].event != new[slot].event ] added = [ ChangedSlotScheduledItem(new[slot].slot, None, new[slot].event) for slot in added_slots ] removed = [ ChangedSlotScheduledItem(old[slot].slot, old[slot].event, None) for slot in removed_slots ] return sorted( changed + added + removed, key=lambda item: (item.slot.venue, item.slot.starts_at) )
python
{ "resource": "" }
q8564
array_violations
train
def array_violations(array, events, slots, beta=None): """Take a schedule in array form and return any violated constraints Parameters ---------- array : np.array a schedule in array form events : list or tuple of resources.Event instances slots : list or tuple of resources.Slot instances constraints : list or tuple of generator functions which each produce instances of resources.Constraint Returns ------- Generator of a list of strings indicating the nature of the violated constraints """ return ( c.label for c in constraints.all_constraints(events, slots, array, beta=beta) if not c.condition )
python
{ "resource": "" }
q8565
is_valid_array
train
def is_valid_array(array, events, slots): """Take a schedule in array form and return whether it is a valid solution for the given constraints Parameters ---------- array : np.array a schedule in array form events : list or tuple of resources.Event instances slots : list or tuple of resources.Slot instances Returns ------- bool True if array represents a valid solution """ if len(array) == 0: return False violations = sum(1 for c in (array_violations(array, events, slots))) return violations == 0
python
{ "resource": "" }
q8566
is_valid_solution
train
def is_valid_solution(solution, events, slots): """Take a solution and return whether it is valid for the given constraints Parameters ---------- solution: list or tuple a schedule in solution form events : list or tuple of resources.Event instances slots : list or tuple of resources.Slot instances Returns ------- bool True if schedule is a valid solution """ if len(solution) == 0: return False array = converter.solution_to_array(solution, events, slots) return is_valid_array(array, events, slots)
python
{ "resource": "" }
q8567
solution_violations
train
def solution_violations(solution, events, slots): """Take a solution and return a list of violated constraints Parameters ---------- solution: list or tuple a schedule in solution form events : list or tuple of resources.Event instances slots : list or tuple of resources.Slot instances Returns ------- Generator of a list of strings indicating the nature of the violated constraints """ array = converter.solution_to_array(solution, events, slots) return array_violations(array, events, slots)
python
{ "resource": "" }
q8568
is_valid_schedule
train
def is_valid_schedule(schedule, events, slots): """Take a schedule and return whether it is a valid solution for the given constraints Parameters ---------- schedule : list or tuple a schedule in schedule form events : list or tuple of resources.Event instances slots : list or tuple of resources.Slot instances Returns ------- bool True if schedule is a valid solution """ if len(schedule) == 0: return False array = converter.schedule_to_array(schedule, events, slots) return is_valid_array(array, events, slots)
python
{ "resource": "" }
q8569
schedule_violations
train
def schedule_violations(schedule, events, slots): """Take a schedule and return a list of violated constraints Parameters ---------- schedule : list or tuple a schedule in schedule form events : list or tuple of resources.Event instances slots : list or tuple of resources.Slot instances Returns ------- Generator of a list of strings indicating the nature of the violated constraints """ array = converter.schedule_to_array(schedule, events, slots) return array_violations(array, events, slots)
python
{ "resource": "" }
q8570
tag_array
train
def tag_array(events): """ Return a numpy array mapping events to tags - Rows corresponds to events - Columns correspond to tags """ all_tags = sorted(set(tag for event in events for tag in event.tags)) array = np.zeros((len(events), len(all_tags))) for row, event in enumerate(events): for tag in event.tags: array[row, all_tags.index(tag)] = 1 return array
python
{ "resource": "" }
q8571
session_array
train
def session_array(slots): """ Return a numpy array mapping sessions to slots - Rows corresponds to sessions - Columns correspond to slots """ # Flatten the list: this assumes that the sessions do not share slots sessions = sorted(set([slot.session for slot in slots])) array = np.zeros((len(sessions), len(slots))) for col, slot in enumerate(slots): array[sessions.index(slot.session), col] = 1 return array
python
{ "resource": "" }
q8572
slot_availability_array
train
def slot_availability_array(events, slots): """ Return a numpy array mapping events to slots - Rows corresponds to events - Columns correspond to stags Array has value 0 if event cannot be scheduled in a given slot (1 otherwise) """ array = np.ones((len(events), len(slots))) for row, event in enumerate(events): for col, slot in enumerate(slots): if slot in event.unavailability or event.duration > slot.duration: array[row, col] = 0 return array
python
{ "resource": "" }
q8573
event_availability_array
train
def event_availability_array(events): """ Return a numpy array mapping events to events - Rows corresponds to events - Columns correspond to events Array has value 0 if event cannot be scheduled at same time as other event (1 otherwise) """ array = np.ones((len(events), len(events))) for row, event in enumerate(events): for col, other_event in enumerate(events): if row != col: tags = set(event.tags) events_share_tag = len(tags.intersection(other_event.tags)) > 0 if (other_event in event.unavailability) or events_share_tag: array[row, col] = 0 array[col, row] = 0 return array
python
{ "resource": "" }
q8574
concurrent_slots
train
def concurrent_slots(slots): """ Yields all concurrent slot indices. """ for i, slot in enumerate(slots): for j, other_slot in enumerate(slots[i + 1:]): if slots_overlap(slot, other_slot): yield (i, j + i + 1)
python
{ "resource": "" }
q8575
_events_with_diff_tag
train
def _events_with_diff_tag(talk, tag_array): """ Return the indices of the events with no tag in common as tag """ event_categories = np.nonzero(tag_array[talk])[0] return np.nonzero(sum(tag_array.transpose()[event_categories]) == 0)[0]
python
{ "resource": "" }
q8576
solution_to_array
train
def solution_to_array(solution, events, slots): """Convert a schedule from solution to array form Parameters ---------- solution : list or tuple of tuples of event index and slot index for each scheduled item events : list or tuple of :py:class:`resources.Event` instances slots : list or tuple of :py:class:`resources.Slot` instances Returns ------- np.array An E by S array (X) where E is the number of events and S the number of slots. Xij is 1 if event i is scheduled in slot j and zero otherwise Example ------- For For 3 events, 7 slots and the solution:: [(0, 1), (1, 4), (2, 5)] The resulting array would be:: [[0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0]] """ array = np.zeros((len(events), len(slots)), dtype=np.int8) for item in solution: array[item[0], item[1]] = 1 return array
python
{ "resource": "" }
q8577
solution_to_schedule
train
def solution_to_schedule(solution, events, slots): """Convert a schedule from solution to schedule form Parameters ---------- solution : list or tuple of tuples of event index and slot index for each scheduled item events : list or tuple of :py:class:`resources.Event` instances slots : list or tuple of :py:class:`resources.Slot` instances Returns ------- list A list of instances of :py:class:`resources.ScheduledItem` """ return [ ScheduledItem( event=events[item[0]], slot=slots[item[1]] ) for item in solution ]
python
{ "resource": "" }
q8578
schedule_to_array
train
def schedule_to_array(schedule, events, slots): """Convert a schedule from schedule to array form Parameters ---------- schedule : list or tuple of instances of :py:class:`resources.ScheduledItem` events : list or tuple of :py:class:`resources.Event` instances slots : list or tuple of :py:class:`resources.Slot` instances Returns ------- np.array An E by S array (X) where E is the number of events and S the number of slots. Xij is 1 if event i is scheduled in slot j and zero otherwise """ array = np.zeros((len(events), len(slots)), dtype=np.int8) for item in schedule: array[events.index(item.event), slots.index(item.slot)] = 1 return array
python
{ "resource": "" }
q8579
array_to_schedule
train
def array_to_schedule(array, events, slots): """Convert a schedule from array to schedule form Parameters ---------- array : np.array An E by S array (X) where E is the number of events and S the number of slots. Xij is 1 if event i is scheduled in slot j and zero otherwise events : list or tuple of :py:class:`resources.Event` instances slots : list or tuple of :py:class:`resources.Slot` instances Returns ------- list A list of instances of :py:class:`resources.ScheduledItem` """ scheduled = np.transpose(np.nonzero(array)) return [ ScheduledItem(event=events[item[0]], slot=slots[item[1]]) for item in scheduled ]
python
{ "resource": "" }
q8580
add_line
train
def add_line(self, line, source, *lineno): """Append one line of generated reST to the output.""" if 'conference_scheduler.scheduler' in source: module = 'scheduler' else: module = 'resources' rst[module].append(line) self.directive.result.append(self.indent + line, source, *lineno)
python
{ "resource": "" }
q8581
efficiency_capacity_demand_difference
train
def efficiency_capacity_demand_difference(slots, events, X, **kwargs): """ A function that calculates the total difference between demand for an event and the slot capacity it is scheduled in. """ overflow = 0 for row, event in enumerate(events): for col, slot in enumerate(slots): overflow += (event.demand - slot.capacity) * X[row, col] return overflow
python
{ "resource": "" }
q8582
get_initial_array
train
def get_initial_array(events, slots, seed=None): """ Obtain a random initial array. """ if seed is not None: np.random.seed(seed) m = len(events) n = len(slots) X = np.zeros((m, n)) for i, row in enumerate(X): X[i, i] = 1 np.random.shuffle(X) return X
python
{ "resource": "" }
q8583
fcs
train
def fcs(bits): ''' Append running bitwise FCS CRC checksum to end of generator ''' fcs = FCS() for bit in bits: yield bit fcs.update_bit(bit) # test = bitarray() # for byte in (digest & 0xff, digest >> 8): # print byte # for i in range(8): # b = (byte >> i) & 1 == 1 # test.append(b) # yield b # append fcs digest to bit stream # n.b. wire format is little-bit-endianness in addition to little-endian digest = bitarray(endian="little") digest.frombytes(fcs.digest()) for bit in digest: yield bit
python
{ "resource": "" }
q8584
modulate
train
def modulate(data): ''' Generate Bell 202 AFSK samples for the given symbol generator Consumes raw wire symbols and produces the corresponding AFSK samples. ''' seconds_per_sample = 1.0 / audiogen.sampler.FRAME_RATE phase, seconds, bits = 0, 0, 0 # construct generators clock = (x / BAUD_RATE for x in itertools.count(1)) tones = (MARK_HZ if bit else SPACE_HZ for bit in data) for boundary, frequency in itertools.izip(clock, tones): # frequency of current symbol is determined by how much # we advance the signal's phase in each audio frame phase_change_per_sample = TWO_PI / (audiogen.sampler.FRAME_RATE / frequency) # produce samples for the current symbol # until we reach the next clock boundary while seconds < boundary: yield math.sin(phase) seconds += seconds_per_sample phase += phase_change_per_sample if phase > TWO_PI: phase -= TWO_PI bits += 1 logger.debug("bits = %d, time = %.7f ms, expected time = %.7f ms, error = %.7f ms, baud rate = %.6f Hz" \ % (bits, 1000 * seconds, 1000 * bits / BAUD_RATE, 1000 * (seconds - bits / BAUD_RATE), bits / seconds))
python
{ "resource": "" }
q8585
HackerNews._get_sync
train
def _get_sync(self, url): """Internal method used for GET requests Args: url (str): URL to fetch Returns: Individual URL request's response Raises: HTTPError: If HTTP request failed. """ response = self.session.get(url) if response.status_code == requests.codes.ok: return response.json() else: raise HTTPError
python
{ "resource": "" }
q8586
HackerNews._get_async
train
async def _get_async(self, url, session): """Asynchronous internal method used for GET requests Args: url (str): URL to fetch session (obj): aiohttp client session for async loop Returns: data (obj): Individual URL request's response corountine """ data = None async with session.get(url) as resp: if resp.status == 200: data = await resp.json() return data
python
{ "resource": "" }
q8587
HackerNews._async_loop
train
async def _async_loop(self, urls): """Asynchronous internal method used to request multiple URLs Args: urls (list): URLs to fetch Returns: responses (obj): All URL requests' response coroutines """ results = [] async with aiohttp.ClientSession( connector=aiohttp.TCPConnector(ssl=False) ) as session: for url in urls: result = asyncio.ensure_future(self._get_async(url, session)) results.append(result) responses = await asyncio.gather(*results) return responses
python
{ "resource": "" }
q8588
HackerNews._run_async
train
def _run_async(self, urls): """Asynchronous event loop execution Args: urls (list): URLs to fetch Returns: results (obj): All URL requests' responses """ loop = asyncio.get_event_loop() results = loop.run_until_complete(self._async_loop(urls)) return results
python
{ "resource": "" }
q8589
HackerNews.get_item
train
def get_item(self, item_id, expand=False): """Returns Hacker News `Item` object. Fetches the data from url: https://hacker-news.firebaseio.com/v0/item/<item_id>.json e.g. https://hacker-news.firebaseio.com/v0/item/69696969.json Args: item_id (int or string): Unique item id of Hacker News story, comment etc. expand (bool): expand (bool): Flag to indicate whether to transform all IDs into objects. Returns: `Item` object representing Hacker News item. Raises: InvalidItemID: If corresponding Hacker News story does not exist. """ url = urljoin(self.item_url, F"{item_id}.json") response = self._get_sync(url) if not response: raise InvalidItemID item = Item(response) if expand: item.by = self.get_user(item.by) item.kids = self.get_items_by_ids(item.kids) if item.kids else None item.parent = self.get_item(item.parent) if item.parent else None item.poll = self.get_item(item.poll) if item.poll else None item.parts = ( self.get_items_by_ids(item.parts) if item.parts else None ) return item
python
{ "resource": "" }
q8590
HackerNews.get_items_by_ids
train
def get_items_by_ids(self, item_ids, item_type=None): """Given a list of item ids, return all the Item objects Args: item_ids (obj): List of item IDs to query item_type (str): (optional) Item type to filter results with Returns: List of `Item` objects for given item IDs and given item type """ urls = [urljoin(self.item_url, F"{i}.json") for i in item_ids] result = self._run_async(urls=urls) items = [Item(r) for r in result if r] if item_type: return [item for item in items if item.item_type == item_type] else: return items
python
{ "resource": "" }
q8591
HackerNews.get_user
train
def get_user(self, user_id, expand=False): """Returns Hacker News `User` object. Fetches data from the url: https://hacker-news.firebaseio.com/v0/user/<user_id>.json e.g. https://hacker-news.firebaseio.com/v0/user/pg.json Args: user_id (string): unique user id of a Hacker News user. expand (bool): Flag to indicate whether to transform all IDs into objects. Returns: `User` object representing a user on Hacker News. Raises: InvalidUserID: If no such user exists on Hacker News. """ url = urljoin(self.user_url, F"{user_id}.json") response = self._get_sync(url) if not response: raise InvalidUserID user = User(response) if expand and user.submitted: items = self.get_items_by_ids(user.submitted) user_opt = { 'stories': 'story', 'comments': 'comment', 'jobs': 'job', 'polls': 'poll', 'pollopts': 'pollopt' } for key, value in user_opt.items(): setattr( user, key, [i for i in items if i.item_type == value] ) return user
python
{ "resource": "" }
q8592
HackerNews.get_users_by_ids
train
def get_users_by_ids(self, user_ids): """ Given a list of user ids, return all the User objects """ urls = [urljoin(self.user_url, F"{i}.json") for i in user_ids] result = self._run_async(urls=urls) return [User(r) for r in result if r]
python
{ "resource": "" }
q8593
HackerNews.top_stories
train
def top_stories(self, raw=False, limit=None): """Returns list of item ids of current top stories Args: limit (int): specifies the number of stories to be returned. raw (bool): Flag to indicate whether to represent all objects in raw json. Returns: `list` object containing ids of top stories. """ top_stories = self._get_stories('topstories', limit) if raw: top_stories = [story.raw for story in top_stories] return top_stories
python
{ "resource": "" }
q8594
HackerNews.new_stories
train
def new_stories(self, raw=False, limit=None): """Returns list of item ids of current new stories Args: limit (int): specifies the number of stories to be returned. raw (bool): Flag to indicate whether to transform all objects into raw json. Returns: `list` object containing ids of new stories. """ new_stories = self._get_stories('newstories', limit) if raw: new_stories = [story.raw for story in new_stories] return new_stories
python
{ "resource": "" }
q8595
HackerNews.ask_stories
train
def ask_stories(self, raw=False, limit=None): """Returns list of item ids of latest Ask HN stories Args: limit (int): specifies the number of stories to be returned. raw (bool): Flag to indicate whether to transform all objects into raw json. Returns: `list` object containing ids of Ask HN stories. """ ask_stories = self._get_stories('askstories', limit) if raw: ask_stories = [story.raw for story in ask_stories] return ask_stories
python
{ "resource": "" }
q8596
HackerNews.show_stories
train
def show_stories(self, raw=False, limit=None): """Returns list of item ids of latest Show HN stories Args: limit (int): specifies the number of stories to be returned. raw (bool): Flag to indicate whether to transform all objects into raw json. Returns: `list` object containing ids of Show HN stories. """ show_stories = self._get_stories('showstories', limit) if raw: show_stories = [story.raw for story in show_stories] return show_stories
python
{ "resource": "" }
q8597
HackerNews.job_stories
train
def job_stories(self, raw=False, limit=None): """Returns list of item ids of latest Job stories Args: limit (int): specifies the number of stories to be returned. raw (bool): Flag to indicate whether to transform all objects into raw json. Returns: `list` object containing ids of Job stories. """ job_stories = self._get_stories('jobstories', limit) if raw: job_stories = [story.raw for story in job_stories] return job_stories
python
{ "resource": "" }
q8598
HackerNews.get_max_item
train
def get_max_item(self, expand=False): """The current largest item id Fetches data from URL: https://hacker-news.firebaseio.com/v0/maxitem.json Args: expand (bool): Flag to indicate whether to transform all IDs into objects. Returns: `int` if successful. """ url = urljoin(self.base_url, 'maxitem.json') response = self._get_sync(url) if expand: return self.get_item(response) else: return response
python
{ "resource": "" }
q8599
HackerNews.get_last
train
def get_last(self, num=10): """Returns last `num` of HN stories Downloads all the HN articles and returns them as Item objects Returns: `list` object containing ids of HN stories. """ max_item = self.get_max_item() urls = [urljoin(self.item_url, F"{i}.json") for i in range( max_item - num + 1, max_item + 1)] result = self._run_async(urls=urls) return [Item(r) for r in result if r]
python
{ "resource": "" }