_id
stringlengths
2
7
title
stringlengths
1
88
partition
stringclasses
3 values
text
stringlengths
75
19.8k
language
stringclasses
1 value
meta_information
dict
q8400
IrcObject.from_config
train
def from_config(cls, cfg, **kwargs): """return an instance configured with the ``cfg`` dict""" cfg = dict(cfg, **kwargs) pythonpath = cfg.get('pythonpath', []) if 'here' in cfg: pythonpath.append(cfg['here']) for path in pythonpath: sys.path.append(os.path.expanduser(path)) prog = cls.server and 'irc3d' or 'irc3' if cfg.get('debug'): cls.venusian_categories.append(prog + '.debug') if cfg.get('interactive'): # pragma: no cover import irc3.testing context = getattr(irc3.testing, cls.__name__)(**cfg) else: context = cls(**cfg) if cfg.get('raw'): context.include('irc3.plugins.log', venusian_categories=[prog + '.debug']) return context
python
{ "resource": "" }
q8401
AsyncLibrary.async_run
train
def async_run(self, keyword, *args, **kwargs): ''' Executes the provided Robot Framework keyword in a separate thread and immediately returns a handle to be used with async_get ''' handle = self._last_thread_handle thread = self._threaded(keyword, *args, **kwargs) thread.start() self._thread_pool[handle] = thread self._last_thread_handle += 1 return handle
python
{ "resource": "" }
q8402
AsyncLibrary.async_get
train
def async_get(self, handle): ''' Blocks until the thread created by async_run returns ''' assert handle in self._thread_pool, 'Invalid async call handle' result = self._thread_pool[handle].result_queue.get() del self._thread_pool[handle] return result
python
{ "resource": "" }
q8403
AsyncLibrary._get_handler_from_keyword
train
def _get_handler_from_keyword(self, keyword): ''' Gets the Robot Framework handler associated with the given keyword ''' if EXECUTION_CONTEXTS.current is None: raise RobotNotRunningError('Cannot access execution context') return EXECUTION_CONTEXTS.current.get_handler(keyword)
python
{ "resource": "" }
q8404
PMMail._set_attachments
train
def _set_attachments(self, value): ''' A special set function to ensure we're setting with a list ''' if value is None: setattr(self, '_PMMail__attachments', []) elif isinstance(value, list): setattr(self, '_PMMail__attachments', value) else: raise TypeError('Attachments must be a list')
python
{ "resource": "" }
q8405
PMMail._check_values
train
def _check_values(self): ''' Make sure all values are of the appropriate type and are not missing. ''' if not self.__api_key: raise PMMailMissingValueException('Cannot send an e-mail without a Postmark API Key') elif not self.__sender: raise PMMailMissingValueException('Cannot send an e-mail without a sender (.sender field)') elif not self.__to: raise PMMailMissingValueException('Cannot send an e-mail without at least one recipient (.to field)') elif (self.__template_id or self.__template_model) and not all([self.__template_id, self.__template_model]): raise PMMailMissingValueException( 'Cannot send a template e-mail without a both template_id and template_model set') elif not any([self.__template_id, self.__template_model, self.__subject]): raise PMMailMissingValueException('Cannot send an e-mail without a subject') elif not self.__html_body and not self.__text_body and not self.__template_id: raise PMMailMissingValueException('Cannot send an e-mail without either an HTML or text version of your e-mail body') if self.__track_opens and not self.__html_body: print('WARNING: .track_opens set to True with no .html_body set. Tracking opens will not work; message will still send.')
python
{ "resource": "" }
q8406
PMMail.send
train
def send(self, test=None): ''' Send the email through the Postmark system. Pass test=True to just print out the resulting JSON message being sent to Postmark ''' self._check_values() # Set up message dictionary json_message = self.to_json_message() # if (self.__html_body and not self.__text_body) and self.__multipart: # # TODO: Set up regex to strip html # pass # If test is not specified, attempt to read the Django setting if test is None: try: from django.conf import settings as django_settings test = getattr(django_settings, "POSTMARK_TEST_MODE", None) except ImportError: pass # If this is a test, just print the message if test: print('JSON message is:\n%s' % json.dumps(json_message, cls=PMJSONEncoder)) return if self.__template_id: endpoint_url = __POSTMARK_URL__ + 'email/withTemplate/' else: endpoint_url = __POSTMARK_URL__ + 'email' # Set up the url Request req = Request( endpoint_url, json.dumps(json_message, cls=PMJSONEncoder).encode('utf8'), { 'Accept': 'application/json', 'Content-Type': 'application/json', 'X-Postmark-Server-Token': self.__api_key, 'User-agent': self.__user_agent } ) # Attempt send try: # print 'sending request to postmark: %s' % json_message result = urlopen(req) jsontxt = result.read().decode('utf8') result.close() if result.code == 200: self.message_id = json.loads(jsontxt).get('MessageID', None) return True else: raise PMMailSendException('Return code %d: %s' % (result.code, result.msg)) except HTTPError as err: if err.code == 401: raise PMMailUnauthorizedException('Sending Unauthorized - incorrect API key.', err) elif err.code == 422: try: jsontxt = err.read().decode('utf8') jsonobj = json.loads(jsontxt) desc = jsonobj['Message'] error_code = jsonobj['ErrorCode'] except KeyError: raise PMMailUnprocessableEntityException('Unprocessable Entity: Description not given') if error_code == 406: raise PMMailInactiveRecipientException('You tried to send email to a recipient that has been marked as inactive.') raise PMMailUnprocessableEntityException('Unprocessable Entity: %s' % desc) elif err.code == 500: raise PMMailServerErrorException('Internal server error at Postmark. Admins have been alerted.', err) except URLError as err: if hasattr(err, 'reason'): raise PMMailURLException('URLError: Failed to reach the server: %s (See "inner_exception" for details)' % err.reason, err) elif hasattr(err, 'code'): raise PMMailURLException('URLError: %d: The server couldn\'t fufill the request. (See "inner_exception" for details)' % err.code, err) else: raise PMMailURLException('URLError: The server couldn\'t fufill the request. (See "inner_exception" for details)', err)
python
{ "resource": "" }
q8407
PMBatchMail.remove_message
train
def remove_message(self, message): ''' Remove a message from the batch ''' if message in self.__messages: self.__messages.remove(message)
python
{ "resource": "" }
q8408
PMBounceManager.delivery_stats
train
def delivery_stats(self): ''' Returns a summary of inactive emails and bounces by type. ''' self._check_values() req = Request( __POSTMARK_URL__ + 'deliverystats', None, { 'Accept': 'application/json', 'Content-Type': 'application/json', 'X-Postmark-Server-Token': self.__api_key, 'User-agent': self.__user_agent } ) # Attempt send try: # print 'sending request to postmark:' result = urlopen(req) with closing(result): if result.code == 200: return json.loads(result.read()) else: raise PMMailSendException('Return code %d: %s' % (result.code, result.msg)) except HTTPError as err: return err
python
{ "resource": "" }
q8409
PMBounceManager.get_all
train
def get_all(self, inactive='', email_filter='', tag='', count=25, offset=0): ''' Fetches a portion of bounces according to the specified input criteria. The count and offset parameters are mandatory. You should never retrieve all bounces as that could be excessively slow for your application. To know how many bounces you have, you need to request a portion first, usually the first page, and the service will return the count in the TotalCount property of the response. ''' self._check_values() params = '?inactive=' + inactive + '&emailFilter=' + email_filter +'&tag=' + tag params += '&count=' + str(count) + '&offset=' + str(offset) req = Request( __POSTMARK_URL__ + 'bounces' + params, None, { 'Accept': 'application/json', 'Content-Type': 'application/json', 'X-Postmark-Server-Token': self.__api_key, 'User-agent': self.__user_agent } ) # Attempt send try: # print 'sending request to postmark:' result = urlopen(req) with closing(result): if result.code == 200: return json.loads(result.read()) else: raise PMMailSendException('Return code %d: %s' % (result.code, result.msg)) except HTTPError as err: return err
python
{ "resource": "" }
q8410
PMBounceManager.activate
train
def activate(self, bounce_id): ''' Activates a deactivated bounce. ''' self._check_values() req_url = '/bounces/' + str(bounce_id) + '/activate' # print req_url h1 = HTTPConnection('api.postmarkapp.com') dta = urlencode({"data": "blank"}).encode('utf8') req = h1.request( 'PUT', req_url, dta, { 'Accept': 'application/json', 'Content-Type': 'application/json', 'X-Postmark-Server-Token': self.__api_key, 'User-agent': self.__user_agent } ) r = h1.getresponse() return json.loads(r.read())
python
{ "resource": "" }
q8411
EmailBackend._build_message
train
def _build_message(self, message): """A helper method to convert a PMEmailMessage to a PMMail""" if not message.recipients(): return False recipients = ','.join(message.to) recipients_cc = ','.join(message.cc) recipients_bcc = ','.join(message.bcc) text_body = message.body html_body = None if isinstance(message, EmailMultiAlternatives): for alt in message.alternatives: if alt[1] == "text/html": html_body = alt[0] break elif getattr(message, 'content_subtype', None) == 'html': # Don't send html content as plain text text_body = None html_body = message.body reply_to = ','.join(message.reply_to) custom_headers = {} if message.extra_headers and isinstance(message.extra_headers, dict): if 'Reply-To' in message.extra_headers: reply_to = message.extra_headers.pop('Reply-To') if len(message.extra_headers): custom_headers = message.extra_headers attachments = [] if message.attachments and isinstance(message.attachments, list): if len(message.attachments): for item in message.attachments: if isinstance(item, tuple): (f, content, m) = item content = base64.b64encode(content) # b64decode returns bytes on Python 3. PMMail needs a # str (for JSON serialization). Convert on Python 3 # only to avoid a useless performance hit on Python 2. if not isinstance(content, str): content = content.decode() attachments.append((f, content, m)) else: attachments.append(item) postmark_message = PMMail(api_key=self.api_key, subject=message.subject, sender=message.from_email, to=recipients, cc=recipients_cc, bcc=recipients_bcc, text_body=text_body, html_body=html_body, reply_to=reply_to, custom_headers=custom_headers, attachments=attachments) postmark_message.tag = getattr(message, 'tag', None) postmark_message.track_opens = getattr(message, 'track_opens', False) return postmark_message
python
{ "resource": "" }
q8412
Nature.handle_starttag
train
def handle_starttag(self, tag, attrs): ''' PDF link handler; never gets explicitly called by user ''' if tag == 'a' and ( ('class', 'download-pdf') in attrs or ('id', 'download-pdf') in attrs ): for attr in attrs: if attr[0] == 'href': self.download_link = 'http://www.nature.com' + attr[1]
python
{ "resource": "" }
q8413
genpass
train
def genpass(pattern=r'[\w]{32}'): """generates a password with random chararcters """ try: return rstr.xeger(pattern) except re.error as e: raise ValueError(str(e))
python
{ "resource": "" }
q8414
CStruct.unpack
train
def unpack(self, string): """ Unpack the string containing packed C structure data """ if string is None: string = CHAR_ZERO * self.__size__ data = struct.unpack(self.__fmt__, string) i = 0 for field in self.__fields__: (vtype, vlen) = self.__fields_types__[field] if vtype == 'char': # string setattr(self, field, data[i]) i = i + 1 elif isinstance(vtype, CStructMeta): num = int(vlen / vtype.size) if num == 1: # single struct sub_struct = vtype() sub_struct.unpack(EMPTY_BYTES_STRING.join(data[i:i+sub_struct.size])) setattr(self, field, sub_struct) i = i + sub_struct.size else: # multiple struct sub_structs = [] for j in range(0, num): sub_struct = vtype() sub_struct.unpack(EMPTY_BYTES_STRING.join(data[i:i+sub_struct.size])) i = i + sub_struct.size sub_structs.append(sub_struct) setattr(self, field, sub_structs) elif vlen == 1: setattr(self, field, data[i]) i = i + vlen else: setattr(self, field, list(data[i:i+vlen])) i = i + vlen
python
{ "resource": "" }
q8415
CStruct.pack
train
def pack(self): """ Pack the structure data into a string """ data = [] for field in self.__fields__: (vtype, vlen) = self.__fields_types__[field] if vtype == 'char': # string data.append(getattr(self, field)) elif isinstance(vtype, CStructMeta): num = int(vlen / vtype.size) if num == 1: # single struct v = getattr(self, field, vtype()) v = v.pack() if sys.version_info >= (3, 0): v = ([bytes([x]) for x in v]) data.extend(v) else: # multiple struct values = getattr(self, field, []) for j in range(0, num): try: v = values[j] except: v = vtype() v = v.pack() if sys.version_info >= (3, 0): v = ([bytes([x]) for x in v]) data.extend(v) elif vlen == 1: data.append(getattr(self, field)) else: v = getattr(self, field) v = v[:vlen] + [0] * (vlen - len(v)) data.extend(v) return struct.pack(self.__fmt__, *data)
python
{ "resource": "" }
q8416
get_all
train
def get_all(): """Get all subclasses of BaseImporter from module and return and generator """ _import_all_importer_files() for module in (value for key, value in globals().items() if key in __all__): for klass_name, klass in inspect.getmembers(module, inspect.isclass): if klass is not BaseImporter and issubclass(klass, BaseImporter): yield klass for klass in _get_importers_from_entry_points(): yield klass
python
{ "resource": "" }
q8417
list_database
train
def list_database(db): """Print credential as a table""" credentials = db.credentials() if credentials: table = Table( db.config['headers'], table_format=db.config['table_format'], colors=db.config['colors'], hidden=db.config['hidden'], hidden_string=db.config['hidden_string'], ) click.echo(table.render(credentials))
python
{ "resource": "" }
q8418
check_config
train
def check_config(db, level): """Show current configuration for shell""" if level == 'global': configuration = config.read(config.HOMEDIR, '.passpierc') elif level == 'local': configuration = config.read(os.path.join(db.path)) elif level == 'current': configuration = db.config if configuration: click.echo(yaml.safe_dump(configuration, default_flow_style=False))
python
{ "resource": "" }
q8419
RequestHandler.process
train
def process(self, data=None): """Fetch incoming data from the Flask request object when no data is supplied to the process method. By default, the RequestHandler expects the incoming data to be sent as JSON. """ return super(RequestHandler, self).process(data=data or self.get_request_data())
python
{ "resource": "" }
q8420
DBMixin.save
train
def save(self, obj): """Add ``obj`` to the SQLAlchemy session and commit the changes back to the database. :param obj: SQLAlchemy object being saved :returns: The saved object """ session = self.get_db_session() session.add(obj) session.commit() return obj
python
{ "resource": "" }
q8421
DBObjectMixin.filter_by_id
train
def filter_by_id(self, query): """Apply the primary key filter to query to filter the results for a specific instance by id. The filter applied by the this method by default can be controlled using the url_id_param :param query: SQLAlchemy Query :returns: A SQLAlchemy Query object """ if self.model is None: raise ArrestedException('DBObjectMixin requires a model to be set.') idfield = getattr(self.model, self.model_id_param, None) if not idfield: raise ArrestedException('DBObjectMixin could not find a valid Model.id.') return query.filter(idfield == self.kwargs[self.url_id_param])
python
{ "resource": "" }
q8422
DBObjectMixin.delete_object
train
def delete_object(self, obj): """Deletes an object from the session by calling session.delete and then commits the changes to the database. :param obj: The SQLAlchemy instance being deleted :returns: None """ session = self.get_db_session() session.delete(obj) session.commit()
python
{ "resource": "" }
q8423
ArrestedAPI.init_app
train
def init_app(self, app): """Initialise the ArrestedAPI object by storing a pointer to a Flask app object. This method is typically used when initialisation is deferred. :param app: Flask application object Usage:: app = Flask(__name__) ap1_v1 = ArrestedAPI() api_v1.init_app(app) """ self.app = app if self.deferred: self.register_all(self.deferred)
python
{ "resource": "" }
q8424
Endpoint.dispatch_request
train
def dispatch_request(self, *args, **kwargs): """Dispatch the incoming HTTP request to the appropriate handler. """ self.args = args self.kwargs = kwargs self.meth = request.method.lower() self.resource = current_app.blueprints.get(request.blueprint, None) if not any([self.meth in self.methods, self.meth.upper() in self.methods]): return self.return_error(405) self.process_before_request_hooks() resp = super(Endpoint, self).dispatch_request(*args, **kwargs) resp = self.make_response(resp) resp = self.process_after_request_hooks(resp) return resp
python
{ "resource": "" }
q8425
Endpoint.return_error
train
def return_error(self, status, payload=None): """Error handler called by request handlers when an error occurs and the request should be aborted. Usage:: def handle_post_request(self, *args, **kwargs): self.request_handler = self.get_request_handler() try: self.request_handler.process(self.get_data()) except SomeException as e: self.return_error(400, payload=self.request_handler.errors) return self.return_create_response() """ resp = None if payload is not None: payload = json.dumps(payload) resp = self.make_response(payload, status=status) if status in [405]: abort(status) else: abort(status, response=resp)
python
{ "resource": "" }
q8426
KimResponseHandler.handle
train
def handle(self, data, **kwargs): """Run serialization for the specified mapper_class. Supports both .serialize and .many().serialize Kim interfaces. :param data: Objects to be serialized. :returns: Serialized data according to mapper configuration """ if self.many: return self.mapper.many(raw=self.raw, **self.mapper_kwargs).serialize( data, role=self.role ) else: return self.mapper(obj=data, raw=self.raw, **self.mapper_kwargs).serialize( role=self.role )
python
{ "resource": "" }
q8427
KimRequestHandler.handle_error
train
def handle_error(self, exp): """Called if a Mapper returns MappingInvalid. Should handle the error and return it in the appropriate format, can be overridden in order to change the error format. :param exp: MappingInvalid exception raised """ payload = { "message": "Invalid or incomplete data provided.", "errors": exp.errors } self.endpoint.return_error(self.error_status, payload=payload)
python
{ "resource": "" }
q8428
KimRequestHandler.handle
train
def handle(self, data, **kwargs): """Run marshalling for the specified mapper_class. Supports both .marshal and .many().marshal Kim interfaces. Handles errors raised during marshalling and automatically returns a HTTP error response. :param data: Data to be marshaled. :returns: Marshaled object according to mapper configuration :raises: :class:`werkzeug.exceptions.UnprocessableEntity` """ try: if self.many: return self.mapper.many(raw=self.raw, **self.mapper_kwargs).marshal( data, role=self.role ) else: return self.mapper( data=data, obj=self.obj, partial=self.partial, **self.mapper_kwargs ).marshal(role=self.role) except MappingInvalid as e: self.handle_error(e)
python
{ "resource": "" }
q8429
KimEndpoint.get_response_handler_params
train
def get_response_handler_params(self, **params): """Return a config object that will be used to configure the KimResponseHandler :returns: a dictionary of config options :rtype: dict """ params = super(KimEndpoint, self).get_response_handler_params(**params) params['mapper_class'] = self.mapper_class params['role'] = self.serialize_role # After a successfull attempt to marshal an object has been made, a response # is generated using the RepsonseHandler. Rather than taking the class level # setting for many by default, pull it from the request handler params config to # ensure Marshaling and Serializing are run the same way. if self._is_marshal_request(): req_params = self.get_request_handler_params() params['many'] = req_params.get('many', self.many) else: params['many'] = self.many return params
python
{ "resource": "" }
q8430
KimEndpoint.get_request_handler_params
train
def get_request_handler_params(self, **params): """Return a config object that will be used to configure the KimRequestHandler :returns: a dictionary of config options :rtype: dict """ params = super(KimEndpoint, self).get_request_handler_params(**params) params['mapper_class'] = self.mapper_class params['role'] = self.marshal_role params['many'] = False # when handling a PUT or PATCH request, self.obj will be set.. There might be a # more robust way to handle this? params['obj'] = getattr(self, 'obj', None) params['partial'] = self.is_partial() return params
python
{ "resource": "" }
q8431
GetListMixin.list_response
train
def list_response(self, status=200): """Pull the processed data from the response_handler and return a response. :param status: The HTTP status code returned with the response .. seealso: :meth:`Endpoint.make_response` :meth:`Endpoint.handle_get_request` """ return self._response(self.response.get_response_data(), status=status)
python
{ "resource": "" }
q8432
CreateMixin.create_response
train
def create_response(self, status=201): """Generate a Response object for a POST request. By default, the newly created object will be passed to the specified ResponseHandler and will be serialized as the response body. """ self.response = self.get_response_handler() self.response.process(self.obj) return self._response(self.response.get_response_data(), status=status)
python
{ "resource": "" }
q8433
fsm.concatenate
train
def concatenate(*fsms): ''' Concatenate arbitrarily many finite state machines together. ''' alphabet = set().union(*[fsm.alphabet for fsm in fsms]) def connect_all(i, substate): ''' Take a state in the numbered FSM and return a set containing it, plus (if it's final) the first state from the next FSM, plus (if that's final) the first state from the next but one FSM, plus... ''' result = {(i, substate)} while i < len(fsms) - 1 and substate in fsms[i].finals: i += 1 substate = fsms[i].initial result.add((i, substate)) return result # Use a superset containing states from all FSMs at once. # We start at the start of the first FSM. If this state is final in the # first FSM, then we are also at the start of the second FSM. And so on. initial = set() if len(fsms) > 0: initial.update(connect_all(0, fsms[0].initial)) initial = frozenset(initial) def final(state): '''If you're in a final state of the final FSM, it's final''' for (i, substate) in state: if i == len(fsms) - 1 and substate in fsms[i].finals: return True return False def follow(current, symbol): ''' Follow the collection of states through all FSMs at once, jumping to the next FSM if we reach the end of the current one TODO: improve all follow() implementations to allow for dead metastates? ''' next = set() for (i, substate) in current: fsm = fsms[i] if substate in fsm.map and symbol in fsm.map[substate]: next.update(connect_all(i, fsm.map[substate][symbol])) if len(next) == 0: raise OblivionError return frozenset(next) return crawl(alphabet, initial, final, follow).reduce()
python
{ "resource": "" }
q8434
fsm.times
train
def times(self, multiplier): ''' Given an FSM and a multiplier, return the multiplied FSM. ''' if multiplier < 0: raise Exception("Can't multiply an FSM by " + repr(multiplier)) alphabet = self.alphabet # metastate is a set of iterations+states initial = {(self.initial, 0)} def final(state): '''If the initial state is final then multiplying doesn't alter that''' for (substate, iteration) in state: if substate == self.initial \ and (self.initial in self.finals or iteration == multiplier): return True return False def follow(current, symbol): next = [] for (substate, iteration) in current: if iteration < multiplier \ and substate in self.map \ and symbol in self.map[substate]: next.append((self.map[substate][symbol], iteration)) # final of self? merge with initial on next iteration if self.map[substate][symbol] in self.finals: next.append((self.initial, iteration + 1)) if len(next) == 0: raise OblivionError return frozenset(next) return crawl(alphabet, initial, final, follow).reduce()
python
{ "resource": "" }
q8435
fsm.everythingbut
train
def everythingbut(self): ''' Return a finite state machine which will accept any string NOT accepted by self, and will not accept any string accepted by self. This is more complicated if there are missing transitions, because the missing "dead" state must now be reified. ''' alphabet = self.alphabet initial = {0 : self.initial} def follow(current, symbol): next = {} if 0 in current and current[0] in self.map and symbol in self.map[current[0]]: next[0] = self.map[current[0]][symbol] return next # state is final unless the original was def final(state): return not (0 in state and state[0] in self.finals) return crawl(alphabet, initial, final, follow).reduce()
python
{ "resource": "" }
q8436
fsm.islive
train
def islive(self, state): '''A state is "live" if a final state can be reached from it.''' reachable = [state] i = 0 while i < len(reachable): current = reachable[i] if current in self.finals: return True if current in self.map: for symbol in self.map[current]: next = self.map[current][symbol] if next not in reachable: reachable.append(next) i += 1 return False
python
{ "resource": "" }
q8437
fsm.cardinality
train
def cardinality(self): ''' Consider the FSM as a set of strings and return the cardinality of that set, or raise an OverflowError if there are infinitely many ''' num_strings = {} def get_num_strings(state): # Many FSMs have at least one oblivion state if self.islive(state): if state in num_strings: if num_strings[state] is None: # "computing..." # Recursion! There are infinitely many strings recognised raise OverflowError(state) return num_strings[state] num_strings[state] = None # i.e. "computing..." n = 0 if state in self.finals: n += 1 if state in self.map: for symbol in self.map[state]: n += get_num_strings(self.map[state][symbol]) num_strings[state] = n else: # Dead state num_strings[state] = 0 return num_strings[state] return get_num_strings(self.initial)
python
{ "resource": "" }
q8438
call_fsm
train
def call_fsm(method): ''' Take a method which acts on 0 or more regular expression objects... return a new method which simply converts them all to FSMs, calls the FSM method on them instead, then converts the result back to a regular expression. We do this for several of the more annoying operations. ''' fsm_method = getattr(fsm.fsm, method.__name__) def new_method(*legos): alphabet = set().union(*[lego.alphabet() for lego in legos]) return from_fsm(fsm_method(*[lego.to_fsm(alphabet) for lego in legos])) return new_method
python
{ "resource": "" }
q8439
from_fsm
train
def from_fsm(f): ''' Turn the supplied finite state machine into a `lego` object. This is accomplished using the Brzozowski algebraic method. ''' # Make sure the supplied alphabet is kosher. It must contain only single- # character strings or `fsm.anything_else`. for symbol in f.alphabet: if symbol == fsm.anything_else: continue if isinstance(symbol, str) and len(symbol) == 1: continue raise Exception("Symbol " + repr(symbol) + " cannot be used in a regular expression") # We need a new state not already used outside = object() # The set of strings that would be accepted by this FSM if you started # at state i is represented by the regex R_i. # If state i has a sole transition "a" to state j, then we know R_i = a R_j. # If state i is final, then the empty string is also accepted by this regex. # And so on... # From this we can build a set of simultaneous equations in len(f.states) # variables. This system is easily solved for all variables, but we only # need one: R_a, where a is the starting state. # The first thing we need to do is organise the states into order of depth, # so that when we perform our back-substitutions, we can start with the # last (deepest) state and therefore finish with R_a. states = [f.initial] i = 0 while i < len(states): current = states[i] if current in f.map: for symbol in sorted(f.map[current], key=fsm.key): next = f.map[current][symbol] if next not in states: states.append(next) i += 1 # Our system of equations is represented like so: brz = {} for a in f.states: brz[a] = {} for b in f.states | {outside}: brz[a][b] = nothing # Populate it with some initial data. for a in f.map: for symbol in f.map[a]: b = f.map[a][symbol] if symbol == fsm.anything_else: brz[a][b] |= ~charclass(f.alphabet - {fsm.anything_else}) else: brz[a][b] |= charclass({symbol}) if a in f.finals: brz[a][outside] |= emptystring # Now perform our back-substitution for i in reversed(range(len(states))): a = states[i] # Before the equation for R_a can be substituted into the other # equations, we need to resolve the self-transition (if any). # e.g. R_a = 0 R_a | 1 R_b | 2 R_c # becomes R_a = 0*1 R_b | 0*2 R_c loop = brz[a][a] * star # i.e. "0*" del brz[a][a] for right in brz[a]: brz[a][right] = loop + brz[a][right] # Note: even if we're down to our final equation, the above step still # needs to be performed before anything is returned. # Now we can substitute this equation into all of the previous ones. for j in range(i): b = states[j] # e.g. substituting R_a = 0*1 R_b | 0*2 R_c # into R_b = 3 R_a | 4 R_c | 5 R_d # yields R_b = 30*1 R_b | (30*2|4) R_c | 5 R_d univ = brz[b][a] # i.e. "3" del brz[b][a] for right in brz[a]: brz[b][right] |= univ + brz[a][right] return brz[f.initial][outside].reduce()
python
{ "resource": "" }
q8440
multiplier.common
train
def common(self, other): ''' Find the shared part of two multipliers. This is the largest multiplier which can be safely subtracted from both the originals. This may return the "zero" multiplier. ''' mandatory = min(self.mandatory, other.mandatory) optional = min(self.optional, other.optional) return multiplier(mandatory, mandatory + optional)
python
{ "resource": "" }
q8441
conc.dock
train
def dock(self, other): ''' Subtract another conc from this one. This is the opposite of concatenation. For example, if ABC + DEF = ABCDEF, then logically ABCDEF - DEF = ABC. ''' # e.g. self has mults at indices [0, 1, 2, 3, 4, 5, 6] len=7 # e.g. other has mults at indices [0, 1, 2] len=3 new = list(self.mults) for i in reversed(range(len(other.mults))): # [2, 1, 0] # e.g. i = 1, j = 7 - 3 + 1 = 5 j = len(self.mults) - len(other.mults) + i new[j] = new[j].dock(other.mults[i]) if new[j].multiplier == zero: # omit that mult entirely since it has been factored out del new[j] # If the subtraction is incomplete but there is more to # other.mults, then we have a problem. For example, "ABC{2} - BC" # subtracts the C successfully but leaves something behind, # then tries to subtract the B too, which isn't possible else: if i != 0: raise Exception("Can't subtract " + repr(other) + " from " + repr(self)) return conc(*new)
python
{ "resource": "" }
q8442
pattern.dock
train
def dock(self, other): ''' The opposite of concatenation. Remove a common suffix from the present pattern; that is, from each of its constituent concs. AYZ|BYZ|CYZ - YZ = A|B|C. ''' return pattern(*[c.dock(other) for c in self.concs])
python
{ "resource": "" }
q8443
delete_name
train
def delete_name(name): ''' This function don't use the plugin. ''' session = create_session() try: user = session.query(User).filter_by(name=name).first() session.delete(user) session.commit() except SQLAlchemyError, e: session.rollback() raise bottle.HTTPError(500, "Database Error", e) finally: session.close()
python
{ "resource": "" }
q8444
SQLAlchemyPlugin.setup
train
def setup(self, app): ''' Make sure that other installed plugins don't affect the same keyword argument and check if metadata is available.''' for other in app.plugins: if not isinstance(other, SQLAlchemyPlugin): continue if other.keyword == self.keyword: raise bottle.PluginError("Found another SQLAlchemy plugin with "\ "conflicting settings (non-unique keyword).") elif other.name == self.name: self.name += '_%s' % self.keyword if self.create and not self.metadata: raise bottle.PluginError('Define metadata value to create database.')
python
{ "resource": "" }
q8445
GreenSocket.send_multipart
train
def send_multipart(self, *args, **kwargs): """wrap send_multipart to prevent state_changed on each partial send""" self.__in_send_multipart = True try: msg = super(GreenSocket, self).send_multipart(*args, **kwargs) finally: self.__in_send_multipart = False self.__state_changed() return msg
python
{ "resource": "" }
q8446
GreenSocket.recv_multipart
train
def recv_multipart(self, *args, **kwargs): """wrap recv_multipart to prevent state_changed on each partial recv""" self.__in_recv_multipart = True try: msg = super(GreenSocket, self).recv_multipart(*args, **kwargs) finally: self.__in_recv_multipart = False self.__state_changed() return msg
python
{ "resource": "" }
q8447
archive
train
def archive(source, archive, path_in_arc=None, remove_source=False, compression=zipfile.ZIP_DEFLATED, compresslevel=-1): """Archives a MRIO database as zip file This function is a wrapper around zipfile.write, to ease the writing of an archive and removing the source data. Note ---- In contrast to zipfile.write, this function raises an error if the data (path + filename) are identical in the zip archive. Background: the zip standard allows that files with the same name and path are stored side by side in a zip file. This becomes an issue when unpacking this files as they overwrite each other upon extraction. Parameters ---------- source: str or pathlib.Path or list of these Location of the mrio data (folder). If not all data should be archived, pass a list of all files which should be included in the archive (absolute path) archive: str or pathlib.Path Full path with filename for the archive. path_in_arc: string, optional Path within the archive zip file where data should be stored. 'path_in_arc' must be given without leading dot and slash. Thus to point to the data in the root of the compressed file pass '', for data in e.g. the folder 'mrio_v1' pass 'mrio_v1/'. If None (default) data will be stored in the root of the archive. remove_source: boolean, optional If True, deletes the source file from the disk (all files specified in 'source' or the specified directory, depending if a list of files or directory was passed). If False, leaves the original files on disk. Also removes all empty directories in source including source. compression: ZIP compression method, optional This is passed to zipfile.write. By default it is set to ZIP_DEFLATED. NB: This is different from the zipfile default (ZIP_STORED) which would not give any compression. See https://docs.python.org/3/library/zipfile.html#zipfile-objects for further information. Depending on the value given here additional modules might be necessary (e.g. zlib for ZIP_DEFLATED). Futher information on this can also be found in the zipfile python docs. compresslevel: int, optional This is passed to zipfile.write and specifies the compression level. Acceptable values depend on the method specified at the parameter 'compression'. By default, it is set to -1 which gives a compromise between speed and size for the ZIP_DEFLATED compression (this is internally interpreted as 6 as described here: https://docs.python.org/3/library/zlib.html#zlib.compressobj ) NB: This is only used if python version >= 3.7 Raises ------ FileExistsError: In case a file to be archived already present in the archive. """ archive = Path(archive) if type(source) is not list: source_root = str(source) source_files = [f for f in Path(source).glob('**/*') if f.is_file()] else: source_root = os.path.commonpath([str(f) for f in source]) source_files = [Path(f) for f in source] path_in_arc = '' if not path_in_arc else path_in_arc arc_file_names = { str(f): os.path.join(path_in_arc, str(f.relative_to(source_root))) for f in source_files} if archive.exists(): with zipfile.ZipFile(file=str(archive), mode='r') as zf: already_present = zf.namelist() duplicates = {ff: zf for ff, zf in arc_file_names.items() if zf in already_present} if duplicates: raise FileExistsError( 'These files already exists in {arc} for ' 'path_in_arc "{pa}":\n {filelist}'.format( pa=path_in_arc, arc=archive, filelist='\n '.join(duplicates.values()))) if sys.version_info.major == 3 and sys.version_info.minor >= 7: zip_open_para = dict(file=str(archive), mode='a', compression=compression, compresslevel=compresslevel) else: zip_open_para = dict(file=str(archive), mode='a', compression=compression) with zipfile.ZipFile(**zip_open_para) as zz: for fullpath, zippath in arc_file_names.items(): zz.write(str(fullpath), str(zippath)) if remove_source: for f in source_files: os.remove(str(f)) for root, dirs, files in os.walk(source_root, topdown=False): for name in dirs: dir_path = os.path.join(root, name) if not os.listdir(dir_path): os.rmdir(os.path.join(root, name)) try: os.rmdir(source_root) except OSError: pass
python
{ "resource": "" }
q8448
parse_exio12_ext
train
def parse_exio12_ext(ext_file, index_col, name, drop_compartment=True, version=None, year=None, iosystem=None, sep=','): """ Parse an EXIOBASE version 1 or 2 like extension file into pymrio.Extension EXIOBASE like extensions files are assumed to have two rows which are used as columns multiindex (region and sector) and up to three columns for the row index (see Parameters). For EXIOBASE 3 - extension can be loaded directly with pymrio.load Notes ----- So far this only parses factor of production extensions F (not final demand extensions FY nor coeffiecents S). Parameters ---------- ext_file : string or pathlib.Path File to parse index_col : int The number of columns (1 to 3) at the beginning of the file to use as the index. The order of the index_col must be - 1 index column: ['stressor'] - 2 index columns: ['stressor', 'unit'] - 3 index columns: ['stressor', 'compartment', 'unit'] - > 3: everything up to three index columns will be removed name : string Name of the extension drop_compartment : boolean, optional If True (default) removes the compartment from the index. version : string, optional see pymrio.Extension iosystem : string, optional see pymrio.Extension year : string or int see pymrio.Extension sep : string, optional Delimiter to use; default ',' Returns ------- pymrio.Extension with F (and unit if available) """ ext_file = os.path.abspath(str(ext_file)) F = pd.read_table( ext_file, header=[0, 1], index_col=list(range(index_col)), sep=sep) F.columns.names = ['region', 'sector'] if index_col == 1: F.index.names = ['stressor'] elif index_col == 2: F.index.names = ['stressor', 'unit'] elif index_col == 3: F.index.names = ['stressor', 'compartment', 'unit'] else: F.reset_index(level=list(range(3, index_col)), drop=True, inplace=True) F.index.names = ['stressor', 'compartment', 'unit'] unit = None if index_col > 1: unit = pd.DataFrame(F.iloc[:, 0]. reset_index(level='unit').unit) F.reset_index(level='unit', drop=True, inplace=True) if drop_compartment: F.reset_index(level='compartment', drop=True, inplace=True) unit.reset_index(level='compartment', drop=True, inplace=True) return Extension(name=name, F=F, unit=unit, iosystem=iosystem, version=version, year=year, )
python
{ "resource": "" }
q8449
get_exiobase12_version
train
def get_exiobase12_version(filename): """ Returns the EXIOBASE version for the given filename, None if not found """ try: ver_match = re.search(r'(\d+\w*(\.|\-|\_))*\d+\w*', filename) version = ver_match.string[ver_match.start():ver_match.end()] if re.search('\_\d\d\d\d', version[-5:]): version = version[:-5] except AttributeError: version = None return version
python
{ "resource": "" }
q8450
parse_exiobase1
train
def parse_exiobase1(path): """ Parse the exiobase1 raw data files. This function works with - pxp_ita_44_regions_coeff_txt - ixi_fpa_44_regions_coeff_txt - pxp_ita_44_regions_coeff_src_txt - ixi_fpa_44_regions_coeff_src_txt which can be found on www.exiobase.eu The parser works with the compressed (zip) files as well as the unpacked files. Parameters ---------- path : pathlib.Path or string Path of the exiobase 1 data Returns ------- pymrio.IOSystem with exio1 data """ path = os.path.abspath(os.path.normpath(str(path))) exio_files = get_exiobase_files(path) if len(exio_files) == 0: raise ParserError("No EXIOBASE files found at {}".format(path)) system = _get_MRIO_system(path) if not system: logging.warning("Could not determine system (pxp or ixi)" " set system parameter manually") io = generic_exiobase12_parser(exio_files, system=system) return io
python
{ "resource": "" }
q8451
parse_exiobase3
train
def parse_exiobase3(path): """ Parses the public EXIOBASE 3 system This parser works with either the compressed zip archive as downloaded or the extracted system. Note ---- The exiobase 3 parser does so far not include population and characterization data. Parameters ---------- path : string or pathlib.Path Path to the folder with the EXIOBASE files or the compressed archive. Returns ------- IOSystem A IOSystem with the parsed exiobase 3 data """ io = load_all(path) # need to rename the final demand satellite, # wrong name in the standard distribution try: io.satellite.FY = io.satellite.F_hh.copy() del io.satellite.F_hh except AttributeError: pass # some ixi in the exiobase 3.4 official distribution # have a country name mixup. Clean it here: io.rename_regions( {'AUS': 'AU', 'AUT': 'AT', 'BEL': 'BE', 'BGR': 'BG', 'BRA': 'BR', 'CAN': 'CA', 'CHE': 'CH', 'CHN': 'CN', 'CYP': 'CY', 'CZE': 'CZ', 'DEU': 'DE', 'DNK': 'DK', 'ESP': 'ES', 'EST': 'EE', 'FIN': 'FI', 'FRA': 'FR', 'GBR': 'GB', 'GRC': 'GR', 'HRV': 'HR', 'HUN': 'HU', 'IDN': 'ID', 'IND': 'IN', 'IRL': 'IE', 'ITA': 'IT', 'JPN': 'JP', 'KOR': 'KR', 'LTU': 'LT', 'LUX': 'LU', 'LVA': 'LV', 'MEX': 'MX', 'MLT': 'MT', 'NLD': 'NL', 'NOR': 'NO', 'POL': 'PL', 'PRT': 'PT', 'ROM': 'RO', 'RUS': 'RU', 'SVK': 'SK', 'SVN': 'SI', 'SWE': 'SE', 'TUR': 'TR', 'TWN': 'TW', 'USA': 'US', 'ZAF': 'ZA', 'WWA': 'WA', 'WWE': 'WE', 'WWF': 'WF', 'WWL': 'WL', 'WWM': 'WM'}) return io
python
{ "resource": "" }
q8452
__get_WIOD_SEA_extension
train
def __get_WIOD_SEA_extension(root_path, year, data_sheet='DATA'): """ Utility function to get the extension data from the SEA file in WIOD This function is based on the structure in the WIOD_SEA_July14 file. Missing values are set to zero. The function works if the SEA file is either in path or in a subfolder named 'SEA'. Parameters ---------- root_path : string Path to the WIOD data or the path with the SEA data. year : str or int Year to return for the extension sea_data_sheet : string, optional Worksheet with the SEA data in the excel file Returns ------- SEA data as extension for the WIOD MRIO """ sea_ext = '.xlsx' sea_start = 'WIOD_SEA' _SEA_folder = os.path.join(root_path, 'SEA') if not os.path.exists(_SEA_folder): _SEA_folder = root_path sea_folder_content = [ff for ff in os.listdir(_SEA_folder) if os.path.splitext(ff)[-1] == sea_ext and ff[:8] == sea_start] if sea_folder_content: # read data sea_file = os.path.join(_SEA_folder, sorted(sea_folder_content)[0]) df_sea = pd.read_excel(sea_file, sheet_name=data_sheet, header=0, index_col=[0, 1, 2, 3]) # fix years ic_sea = df_sea.columns.tolist() ic_sea = [yystr.lstrip('_') for yystr in ic_sea] df_sea.columns = ic_sea try: ds_sea = df_sea[str(year)] except KeyError: warnings.warn( 'SEA extension does not include data for the ' 'year {} - SEA-Extension not included'.format(year), ParserWarning) return None, None # get useful data (employment) mt_sea = ['EMP', 'EMPE', 'H_EMP', 'H_EMPE'] ds_use_sea = pd.concat( [ds_sea.xs(key=vari, level='Variable', drop_level=False) for vari in mt_sea]) ds_use_sea.drop(labels='TOT', level='Code', inplace=True) ds_use_sea.reset_index('Description', drop=True, inplace=True) # RoW not included in SEA but needed to get it consistent for # all countries. Just add a dummy with 0 for all accounts. if 'RoW' not in ds_use_sea.index.get_level_values('Country'): ds_RoW = ds_use_sea.xs('USA', level='Country', drop_level=False) ds_RoW.ix[:] = 0 df_RoW = ds_RoW.reset_index() df_RoW['Country'] = 'RoW' ds_use_sea = pd.concat( [ds_use_sea.reset_index(), df_RoW]).set_index( ['Country', 'Code', 'Variable']) ds_use_sea.fillna(value=0, inplace=True) df_use_sea = ds_use_sea.unstack(level=['Country', 'Code'])[str(year)] df_use_sea.index.names = IDX_NAMES['VA_row_single'] df_use_sea.columns.names = IDX_NAMES['F_col'] df_use_sea = df_use_sea.astype('float') df_unit = pd.DataFrame( data=[ # this data must be in the same order as mt_sea 'thousand persons', 'thousand persons', 'mill hours', 'mill hours', ], columns=['unit'], index=df_use_sea.index) return df_use_sea, df_unit else: warnings.warn( 'SEA extension raw data file not found - ' 'SEA-Extension not included', ParserWarning) return None, None
python
{ "resource": "" }
q8453
MRIOMetaData._add_history
train
def _add_history(self, entry_type, entry): """ Generic method to add entry as entry_type to the history """ meta_string = "{time} - {etype} - {entry}".format( time=self._time(), etype=entry_type.upper(), entry=entry) self._content['history'].insert(0, meta_string) self.logger(meta_string)
python
{ "resource": "" }
q8454
MRIOMetaData.change_meta
train
def change_meta(self, para, new_value, log=True): """ Changes the meta data This function does nothing if None is passed as new_value. To set a certain value to None pass the str 'None' Parameters ---------- para: str Meta data entry to change new_value: str New value log: boolean, optional If True (default) records the meta data change in the history """ if not new_value: return para = para.lower() if para == 'history': raise ValueError( 'History can only be extended - use method "note"') old_value = self._content.get(para, None) if new_value == old_value: return self._content[para] = new_value if old_value and log: self._add_history(entry_type="METADATA_CHANGE", entry='Changed parameter "{para}" ' 'from "{old}" to "{new}"'.format( para=para, old=old_value, new=new_value))
python
{ "resource": "" }
q8455
MRIOMetaData.save
train
def save(self, location=None): """ Saves the current status of the metadata This saves the metadata at the location of the previously loaded metadata or at the file/path given in location. Specify a location if the metadata should be stored in a different location or was never stored before. Subsequent saves will use the location set here. Parameters ---------- location: str, optional Path or file for saving the metadata. This can be the full file path or just the storage folder. In the latter case, the filename defined in DEFAULT_FILE_NAMES['metadata'] (currently 'metadata.json') is assumed. """ if location: location = Path(location) if os.path.splitext(str(location))[1] == '': self._metadata_file = location / DEFAULT_FILE_NAMES['metadata'] else: self._metadata_file = location if self._metadata_file: with self._metadata_file.open(mode='w') as mdf: json.dump(self._content, mdf, indent=4) else: logging.error("No metadata file given for storing the file")
python
{ "resource": "" }
q8456
calc_x
train
def calc_x(Z, Y): """ Calculate the industry output x from the Z and Y matrix Parameters ---------- Z : pandas.DataFrame or numpy.array Symmetric input output table (flows) Y : pandas.DataFrame or numpy.array final demand with categories (1.order) for each country (2.order) Returns ------- pandas.DataFrame or numpy.array Industry output x as column vector The type is determined by the type of Z. If DataFrame index as Z """ x = np.reshape(np.sum(np.hstack((Z, Y)), 1), (-1, 1)) if type(Z) is pd.DataFrame: x = pd.DataFrame(x, index=Z.index, columns=['indout']) if type(x) is pd.Series: x = pd.DataFrame(x) if type(x) is pd.DataFrame: x.columns = ['indout'] return x
python
{ "resource": "" }
q8457
calc_x_from_L
train
def calc_x_from_L(L, y): """ Calculate the industry output x from L and a y vector Parameters ---------- L : pandas.DataFrame or numpy.array Symmetric input output Leontief table y : pandas.DataFrame or numpy.array a column vector of the total final demand Returns ------- pandas.DataFrame or numpy.array Industry output x as column vector The type is determined by the type of L. If DataFrame index as L """ x = L.dot(y) if type(x) is pd.Series: x = pd.DataFrame(x) if type(x) is pd.DataFrame: x.columns = ['indout'] return x
python
{ "resource": "" }
q8458
calc_L
train
def calc_L(A): """ Calculate the Leontief L from A Parameters ---------- A : pandas.DataFrame or numpy.array Symmetric input output table (coefficients) Returns ------- pandas.DataFrame or numpy.array Leontief input output table L The type is determined by the type of A. If DataFrame index/columns as A """ I = np.eye(A.shape[0]) # noqa if type(A) is pd.DataFrame: return pd.DataFrame(np.linalg.inv(I-A), index=A.index, columns=A.columns) else: return np.linalg.inv(I-A)
python
{ "resource": "" }
q8459
recalc_M
train
def recalc_M(S, D_cba, Y, nr_sectors): """ Calculate Multipliers based on footprints. Parameters ---------- D_cba : pandas.DataFrame or numpy array Footprint per sector and country Y : pandas.DataFrame or numpy array Final demand: aggregated across categories or just one category, one column per country. This will be diagonalized per country block. The diagonolized form must be invertable for this method to work. nr_sectors : int Number of sectors in the MRIO Returns ------- pandas.DataFrame or numpy.array Multipliers M The type is determined by the type of D_cba. If DataFrame index/columns as D_cba """ Y_diag = ioutil.diagonalize_blocks(Y.values, blocksize=nr_sectors) Y_inv = np.linalg.inv(Y_diag) M = D_cba.dot(Y_inv) if type(D_cba) is pd.DataFrame: M.columns = D_cba.columns M.index = D_cba.index return M
python
{ "resource": "" }
q8460
calc_accounts
train
def calc_accounts(S, L, Y, nr_sectors): """ Calculate sector specific cba and pba based accounts, imp and exp accounts The total industry output x for the calculation is recalculated from L and y Parameters ---------- L : pandas.DataFrame Leontief input output table L S : pandas.DataFrame Direct impact coefficients Y : pandas.DataFrame Final demand: aggregated across categories or just one category, one column per country nr_sectors : int Number of sectors in the MRIO Returns ------- Tuple (D_cba, D_pba, D_imp, D_exp) Format: D_row x L_col (=nr_countries*nr_sectors) - D_cba Footprint per sector and country - D_pba Total factur use per sector and country - D_imp Total global factor use to satisfy total final demand in the country per sector - D_exp Total factor use in one country to satisfy final demand in all other countries (per sector) """ # diagonalize each sector block per country # this results in a disaggregated y with final demand per country per # sector in one column Y_diag = ioutil.diagonalize_blocks(Y.values, blocksize=nr_sectors) x_diag = L.dot(Y_diag) x_tot = x_diag.values.sum(1) del Y_diag D_cba = pd.DataFrame(S.values.dot(x_diag), index=S.index, columns=S.columns) # D_pba = S.dot(np.diagflat(x_tot)) # faster broadcasted calculation: D_pba = pd.DataFrame(S.values*x_tot.reshape((1, -1)), index=S.index, columns=S.columns) # for the traded accounts set the domestic industry output to zero dom_block = np.zeros((nr_sectors, nr_sectors)) x_trade = ioutil.set_block(x_diag.values, dom_block) D_imp = pd.DataFrame(S.values.dot(x_trade), index=S.index, columns=S.columns) x_exp = x_trade.sum(1) # D_exp = S.dot(np.diagflat(x_exp)) # faster broadcasted version: D_exp = pd.DataFrame(S.values * x_exp.reshape((1, -1)), index=S.index, columns=S.columns) return (D_cba, D_pba, D_imp, D_exp)
python
{ "resource": "" }
q8461
_get_url_datafiles
train
def _get_url_datafiles(url_db_view, url_db_content, mrio_regex, access_cookie=None): """ Urls of mrio files by parsing url content for mrio_regex Parameters ---------- url_db_view: url str Url which shows the list of mrios in the db url_db_content: url str Url which needs to be appended before the url parsed from the url_db_view to get a valid download link mrio_regex: regex str Regex to parse the mrio datafile from url_db_view access_cookie: dict, optional If needed, cookie to access the database Returns ------- Named tuple: .raw_text: content of url_db_view for later use .data_urls: list of url """ # Use post here - NB: get could be necessary for some other pages # but currently works for wiod and eora returnvalue = namedtuple('url_content', ['raw_text', 'data_urls']) url_text = requests.post(url_db_view, cookies=access_cookie).text data_urls = [url_db_content + ff for ff in re.findall(mrio_regex, url_text)] return returnvalue(raw_text=url_text, data_urls=data_urls)
python
{ "resource": "" }
q8462
_download_urls
train
def _download_urls(url_list, storage_folder, overwrite_existing, meta_handler, access_cookie=None): """ Save url from url_list to storage_folder Parameters ---------- url_list: list of str Valid url to download storage_folder: str, valid path Location to store the download, folder will be created if not existing. If the file is already present in the folder, the download depends on the setting in 'overwrite_existing'. overwrite_existing: boolean, optional If False, skip download of file already existing in the storage folder (default). Set to True to replace files. meta_handler: instance of MRIOMetaData Returns ------- The meta_handler is passed back """ for url in url_list: filename = os.path.basename(url) if not overwrite_existing and filename in os.listdir(storage_folder): continue storage_file = os.path.join(storage_folder, filename) # Using requests here - tried with aiohttp but was actually slower # Also don’t use shutil.copyfileobj - corrupts zips from Eora req = requests.post(url, stream=True, cookies=access_cookie) with open(storage_file, 'wb') as lf: for chunk in req.iter_content(1024*5): lf.write(chunk) meta_handler._add_fileio('Downloaded {} to {}'.format(url, filename)) meta_handler.save() return meta_handler
python
{ "resource": "" }
q8463
download_wiod2013
train
def download_wiod2013(storage_folder, years=None, overwrite_existing=False, satellite_urls=WIOD_CONFIG['satellite_urls']): """ Downloads the 2013 wiod release Note ---- Currently, pymrio only works with the 2013 release of the wiod tables. The more recent 2016 release so far (October 2017) lacks the environmental and social extensions. Parameters ---------- storage_folder: str, valid path Location to store the download, folder will be created if not existing. If the file is already present in the folder, the download of the specific file will be skipped. years: list of int or str, optional If years is given only downloads the specific years. This only applies to the IO tables because extensions are stored by country and not per year. The years can be given in 2 or 4 digits. overwrite_existing: boolean, optional If False, skip download of file already existing in the storage folder (default). Set to True to replace files. satellite_urls : list of str (urls), optional Which satellite accounts to download. Default: satellite urls defined in WIOD_CONFIG - list of all available urls Remove items from this list to only download a subset of extensions """ try: os.makedirs(storage_folder) except FileExistsError: pass if type(years) is int or type(years) is str: years = [years] years = years if years else range(1995, 2012) years = [str(yy).zfill(2)[-2:] for yy in years] wiod_web_content = _get_url_datafiles( url_db_view=WIOD_CONFIG['url_db_view'], url_db_content=WIOD_CONFIG['url_db_content'], mrio_regex='protected.*?wiot\d\d.*?xlsx') restricted_wiod_io_urls = [url for url in wiod_web_content.data_urls if re.search(r"(wiot)(\d\d)", os.path.basename(url)).group(2) in years] meta = MRIOMetaData(location=storage_folder, description='WIOD metadata file for pymrio', name='WIOD', system='ixi', version='data13') meta = _download_urls(url_list=restricted_wiod_io_urls + satellite_urls, storage_folder=storage_folder, overwrite_existing=overwrite_existing, meta_handler=meta) meta.save() return meta
python
{ "resource": "" }
q8464
get_timestamp
train
def get_timestamp(length): """Get a timestamp of `length` in string""" s = '%.6f' % time.time() whole, frac = map(int, s.split('.')) res = '%d%d' % (whole, frac) return res[:length]
python
{ "resource": "" }
q8465
mkdir_p
train
def mkdir_p(path): """mkdir -p path""" if PY3: return os.makedirs(path, exist_ok=True) try: os.makedirs(path) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise
python
{ "resource": "" }
q8466
monkey_patch
train
def monkey_patch(): """ Monkey patches `zmq.Context` and `zmq.Socket` If test_suite is True, the pyzmq test suite will be patched for compatibility as well. """ ozmq = __import__('zmq') ozmq.Socket = zmq.Socket ozmq.Context = zmq.Context ozmq.Poller = zmq.Poller ioloop = __import__('zmq.eventloop.ioloop') ioloop.Poller = zmq.Poller
python
{ "resource": "" }
q8467
CoreSystem.reset_to_coefficients
train
def reset_to_coefficients(self): """ Keeps only the coefficient. This can be used to recalculate the IO tables for a new finald demand. Note ----- The system can not be reconstructed after this steps because all absolute data is removed. Save the Y data in case a reconstruction might be necessary. """ # Development note: The coefficient attributes are # defined in self.__coefficients__ [setattr(self, key, None) for key in self.get_DataFrame( data=False, with_unit=False, with_population=False) if key not in self.__coefficients__] return self
python
{ "resource": "" }
q8468
CoreSystem.copy
train
def copy(self, new_name=None): """ Returns a deep copy of the system Parameters ----------- new_name: str, optional Set a new meta name parameter. Default: <old_name>_copy """ _tmp = copy.deepcopy(self) if not new_name: new_name = self.name + '_copy' if str(type(self)) == "<class 'pymrio.core.mriosystem.IOSystem'>": _tmp.meta.note('IOSystem copy {new} based on {old}'.format( new=new_name, old=self.meta.name)) _tmp.meta.change_meta('name', new_name, log=False) else: _tmp.name = new_name return _tmp
python
{ "resource": "" }
q8469
CoreSystem.get_Y_categories
train
def get_Y_categories(self, entries=None): """ Returns names of y cat. of the IOSystem as unique names in order Parameters ---------- entries : List, optional If given, retuns an list with None for all values not in entries. Returns ------- Index List of categories, None if no attribute to determine list is available """ possible_dataframes = ['Y', 'FY'] for df in possible_dataframes: if (df in self.__dict__) and (getattr(self, df) is not None): try: ind = getattr(self, df).columns.get_level_values( 'category').unique() except (AssertionError, KeyError): ind = getattr(self, df).columns.get_level_values( 1).unique() if entries: if type(entries) is str: entries = [entries] ind = ind.tolist() return [None if ee not in entries else ee for ee in ind] else: return ind else: logging.warn("No attributes available to get Y categories") return None
python
{ "resource": "" }
q8470
CoreSystem.get_index
train
def get_index(self, as_dict=False, grouping_pattern=None): """ Returns the index of the DataFrames in the system Parameters ---------- as_dict: boolean, optional If True, returns a 1:1 key-value matching for further processing prior to groupby functions. Otherwise (default) the index is returned as pandas index. grouping_pattern: dict, optional Dictionary with keys being regex patterns matching index and values the name for the grouping. If the index is a pandas multiindex, the keys must be tuples of length levels in the multiindex, with a valid regex expression at each position. Otherwise, the keys need to be strings. Only relevant if as_dict is True. """ possible_dataframes = ['A', 'L', 'Z', 'Y', 'F', 'FY', 'M', 'S', 'D_cba', 'D_pba', 'D_imp', 'D_exp', 'D_cba_reg', 'D_pba_reg', 'D_imp_reg', 'D_exp_reg', 'D_cba_cap', 'D_pba_cap', 'D_imp_cap', 'D_exp_cap', ] for df in possible_dataframes: if (df in self.__dict__) and (getattr(self, df) is not None): orig_idx = getattr(self, df).index break else: logging.warn("No attributes available to get index") return None if as_dict: dd = {k: k for k in orig_idx} if grouping_pattern: for pattern, new_group in grouping_pattern.items(): if type(pattern) is str: dd.update({k: new_group for k, v in dd.items() if re.match(pattern, k)}) else: dd.update({k: new_group for k, v in dd.items() if all([re.match(pat, k[nr]) for nr, pat in enumerate(pattern)])}) return dd else: return orig_idx
python
{ "resource": "" }
q8471
CoreSystem.set_index
train
def set_index(self, index): """ Sets the pd dataframe index of all dataframes in the system to index """ for df in self.get_DataFrame(data=True, with_population=False): df.index = index
python
{ "resource": "" }
q8472
CoreSystem.get_DataFrame
train
def get_DataFrame(self, data=False, with_unit=True, with_population=True): """ Yields all panda.DataFrames or there names Notes ----- For IOSystem this does not include the DataFrames in the extensions. Parameters ---------- data : boolean, optional If True, returns a generator which yields the DataFrames. If False, returns a generator which yields only the names of the DataFrames with_unit: boolean, optional If True, includes the 'unit' DataFrame If False, does not include the 'unit' DataFrame. The method than only yields the numerical data tables with_population: boolean, optional If True, includes the 'population' vector If False, does not include the 'population' vector. Returns ------- DataFrames or string generator, depending on parameter data """ for key in self.__dict__: if (key is 'unit') and not with_unit: continue if (key is 'population') and not with_population: continue if type(self.__dict__[key]) is pd.DataFrame: if data: yield getattr(self, key) else: yield key
python
{ "resource": "" }
q8473
CoreSystem.save
train
def save(self, path, table_format='txt', sep='\t', table_ext=None, float_format='%.12g'): """ Saving the system to path Parameters ---------- path : pathlib.Path or string path for the saved data (will be created if necessary, data within will be overwritten). table_format : string Format to save the DataFrames: - 'pkl' : Binary pickle files, alias: 'pickle', 'bin', 'binary' - 'txt' : Text files (default), alias: 'text', 'csv' table_ext : string, optional File extension, default depends on table_format(.pkl for pickle, .txt for text) sep : string, optional Field delimiter for the output file, only for txt files. Default: tab ('\t') float_format : string, optional Format for saving the DataFrames, default = '%.12g', only for txt files """ if type(path) is str: path = path.rstrip('\\') path = Path(path) path.mkdir(parents=True, exist_ok=True) para_file_path = path / DEFAULT_FILE_NAMES['filepara'] file_para = dict() file_para['files'] = dict() if table_format in ['text', 'csv', 'txt']: table_format = 'txt' elif table_format in ['pickle', 'bin', 'binary', 'pkl']: table_format = 'pkl' else: raise ValueError('Unknown table format "{}" - ' 'must be "txt" or "pkl"'.format(table_format)) return None if not table_ext: if table_format == 'txt': table_ext = '.txt' if table_format == 'pkl': table_ext = '.pkl' if str(type(self)) == "<class 'pymrio.core.mriosystem.IOSystem'>": file_para['systemtype'] = GENERIC_NAMES['iosys'] elif str(type(self)) == "<class 'pymrio.core.mriosystem.Extension'>": file_para['systemtype'] = GENERIC_NAMES['ext'] file_para['name'] = self.name else: logging.warn('Unknown system type {} - set to "undef"'.format( str(type(self)))) file_para['systemtype'] = 'undef' for df, df_name in zip(self.get_DataFrame(data=True), self.get_DataFrame()): if type(df.index) is pd.MultiIndex: nr_index_col = len(df.index.levels) else: nr_index_col = 1 if type(df.columns) is pd.MultiIndex: nr_header = len(df.columns.levels) else: nr_header = 1 save_file = df_name + table_ext save_file_with_path = path / save_file logging.info('Save file {}'.format(save_file_with_path)) if table_format == 'txt': df.to_csv(save_file_with_path, sep=sep, float_format=float_format) else: df.to_pickle(save_file_with_path) file_para['files'][df_name] = dict() file_para['files'][df_name]['name'] = save_file file_para['files'][df_name]['nr_index_col'] = str(nr_index_col) file_para['files'][df_name]['nr_header'] = str(nr_header) with para_file_path.open(mode='w') as pf: json.dump(file_para, pf, indent=4) if file_para['systemtype'] == GENERIC_NAMES['iosys']: if not self.meta: self.meta = MRIOMetaData(name=self.name, location=path) self.meta._add_fileio("Saved {} to {}".format(self.name, path)) self.meta.save(location=path) return self
python
{ "resource": "" }
q8474
CoreSystem.rename_regions
train
def rename_regions(self, regions): """ Sets new names for the regions Parameters ---------- regions : list or dict In case of dict: {'old_name' : 'new_name'} with a entry for each old_name which should be renamed In case of list: List of new names in order and complete without repetition """ if type(regions) is list: regions = {old: new for old, new in zip(self.get_regions(), regions)} for df in self.get_DataFrame(data=True): df.rename(index=regions, columns=regions, inplace=True) try: for ext in self.get_extensions(data=True): for df in ext.get_DataFrame(data=True): df.rename(index=regions, columns=regions, inplace=True) except: pass self.meta._add_modify("Changed country names") return self
python
{ "resource": "" }
q8475
CoreSystem.rename_sectors
train
def rename_sectors(self, sectors): """ Sets new names for the sectors Parameters ---------- sectors : list or dict In case of dict: {'old_name' : 'new_name'} with an entry for each old_name which should be renamed In case of list: List of new names in order and complete without repetition """ if type(sectors) is list: sectors = {old: new for old, new in zip(self.get_sectors(), sectors)} for df in self.get_DataFrame(data=True): df.rename(index=sectors, columns=sectors, inplace=True) try: for ext in self.get_extensions(data=True): for df in ext.get_DataFrame(data=True): df.rename(index=sectors, columns=sectors, inplace=True) except: pass self.meta._add_modify("Changed sector names") return self
python
{ "resource": "" }
q8476
CoreSystem.rename_Y_categories
train
def rename_Y_categories(self, Y_categories): """ Sets new names for the Y_categories Parameters ---------- Y_categories : list or dict In case of dict: {'old_name' : 'new_name'} with an entry for each old_name which should be renamed In case of list: List of new names in order and complete without repetition """ if type(Y_categories) is list: Y_categories = {old: new for old, new in zip(self.get_Y_categories(), Y_categories)} for df in self.get_DataFrame(data=True): df.rename(index=Y_categories, columns=Y_categories, inplace=True) try: for ext in self.get_extensions(data=True): for df in ext.get_DataFrame(data=True): df.rename(index=Y_categories, columns=Y_categories, inplace=True) except: pass self.meta._add_modify("Changed Y category names") return self
python
{ "resource": "" }
q8477
Extension.get_rows
train
def get_rows(self): """ Returns the name of the rows of the extension""" possible_dataframes = ['F', 'FY', 'M', 'S', 'D_cba', 'D_pba', 'D_imp', 'D_exp', 'D_cba_reg', 'D_pba_reg', 'D_imp_reg', 'D_exp_reg', 'D_cba_cap', 'D_pba_cap', 'D_imp_cap', 'D_exp_cap', ] for df in possible_dataframes: if (df in self.__dict__) and (getattr(self, df) is not None): return getattr(self, df).index.get_values() else: logging.warn("No attributes available to get row names") return None
python
{ "resource": "" }
q8478
Extension.get_row_data
train
def get_row_data(self, row, name=None): """ Returns a dict with all available data for a row in the extension Parameters ---------- row : tuple, list, string A valid index for the extension DataFrames name : string, optional If given, adds a key 'name' with the given value to the dict. In that case the dict can be used directly to build a new extension. Returns ------- dict object with the data (pandas DataFrame)for the specific rows """ retdict = {} for rowname, data in zip(self.get_DataFrame(), self.get_DataFrame(data=True)): retdict[rowname] = pd.DataFrame(data.ix[row]) if name: retdict['name'] = name return retdict
python
{ "resource": "" }
q8479
Extension.diag_stressor
train
def diag_stressor(self, stressor, name=None): """ Diagonalize one row of the stressor matrix for a flow analysis. This method takes one row of the F matrix and diagonalize to the full region/sector format. Footprints calculation based on this matrix show the flow of embodied stressors from the source region/sector (row index) to the final consumer (column index). Note ---- Since the type of analysis based on the disaggregated matrix is based on flow, direct household emissions (FY) are not included. Parameters ---------- stressor : str or int - valid index for one row of the F matrix This must be a tuple for a multiindex, a string otherwise. The stressor to diagonalize. name : string (optional) The new name for the extension, if None (default): string based on the given stressor (row name) Returns ------- Extension """ if type(stressor) is int: stressor = self.F.index[stressor] if len(stressor) == 1: stressor = stressor[0] if not name: if type(stressor) is str: name = stressor else: name = '_'.join(stressor) + '_diag' ext_diag = Extension(name) ext_diag.F = pd.DataFrame( index=self.F.columns, columns=self.F.columns, data=np.diag(self.F.loc[stressor, :]) ) try: ext_diag.unit = pd.DataFrame( index=ext_diag.F.index, columns=self.unit.columns, data=self.unit.loc[stressor].unit) except AttributeError: # If no unit in stressor, self.unit.columns break ext_diag.unit = None return ext_diag
python
{ "resource": "" }
q8480
IOSystem.calc_system
train
def calc_system(self): """ Calculates the missing part of the core IOSystem The method checks Z, x, A, L and calculates all which are None """ # Possible cases: # 1) Z given, rest can be None and calculated # 2) A and x given, rest can be calculated # 3) A and Y , calc L (if not given) - calc x and the rest # this catches case 3 if self.x is None and self.Z is None: # in that case we need L or at least A to calculate it if self.L is None: self.L = calc_L(self.A) logging.info('Leontief matrix L calculated') self.x = calc_x_from_L(self.L, self.Y.sum(axis=1)) self.meta._add_modify('Industry Output x calculated') # this chains of ifs catch cases 1 and 2 if self.Z is None: self.Z = calc_Z(self.A, self.x) self.meta._add_modify('Flow matrix Z calculated') if self.x is None: self.x = calc_x(self.Z, self.Y) self.meta._add_modify('Industry output x calculated') if self.A is None: self.A = calc_A(self.Z, self.x) self.meta._add_modify('Coefficient matrix A calculated') if self.L is None: self.L = calc_L(self.A) self.meta._add_modify('Leontief matrix L calculated') return self
python
{ "resource": "" }
q8481
IOSystem.calc_extensions
train
def calc_extensions(self, extensions=None, Y_agg=None): """ Calculates the extension and their accounts For the calculation, y is aggregated across specified y categories The method calls .calc_system of each extension (or these given in the extensions parameter) Parameters ---------- extensions : list of strings, optional A list of key names of extensions which shall be calculated. Default: all dictionaries of IOSystem are assumed to be extensions Y_agg : pandas.DataFrame or np.array, optional The final demand aggregated (one category per country). Can be used to restrict the calculation of CBA of a specific category (e.g. households). Default: y is aggregated over all categories """ ext_list = list(self.get_extensions(data=False)) extensions = extensions or ext_list if type(extensions) == str: extensions = [extensions] for ext_name in extensions: self.meta._add_modify( 'Calculating accounts for extension {}'.format(ext_name)) ext = getattr(self, ext_name) ext.calc_system(x=self.x, Y=self.Y, L=self.L, Y_agg=Y_agg, population=self.population ) return self
python
{ "resource": "" }
q8482
IOSystem.report_accounts
train
def report_accounts(self, path, per_region=True, per_capita=False, pic_size=1000, format='rst', **kwargs): """ Generates a report to the given path for all extension This method calls .report_accounts for all extensions Notes ----- This looks prettier with the seaborn module (import seaborn before calling this method) Parameters ---------- path : string Root path for the report per_region : boolean, optional If true, reports the accounts per region per_capita : boolean, optional If true, reports the accounts per capita If per_capita and per_region are False, nothing will be done pic_size : int, optional size for the figures in px, 1000 by default format : string, optional file format of the report: 'rst'(default), 'html', 'latex', ... except for rst all depend on the module docutils (all writer_name from docutils can be used as format) ffname : string, optional root file name (without extension, per_capita or per_region will be attached) and folder names If None gets passed (default), self.name with be modified to get a valid name for the operation system without blanks **kwargs : key word arguments, optional This will be passed directly to the pd.DataFrame.plot method (through the self.plot_account method) """ for ext in self.get_extensions(data=True): ext.report_accounts(path=path, per_region=per_region, per_capita=per_capita, pic_size=pic_size, format=format, **kwargs)
python
{ "resource": "" }
q8483
IOSystem.get_extensions
train
def get_extensions(self, data=False): """ Yields the extensions or their names Parameters ---------- data : boolean, optional If True, returns a generator which yields the extensions. If False, returns a generator which yields the names of the extensions (default) Returns ------- Generator for Extension or string """ ext_list = [key for key in self.__dict__ if type(self.__dict__[key]) is Extension] for key in ext_list: if data: yield getattr(self, key) else: yield key
python
{ "resource": "" }
q8484
IOSystem.reset_all_to_flows
train
def reset_all_to_flows(self, force=False): """ Resets the IOSystem and all extensions to absolute flows This method calls reset_to_flows for the IOSystem and for all Extensions in the system. Parameters ---------- force: boolean, optional If True, reset to flows although the system can not be recalculated. Default: False """ self.reset_to_flows(force=force) [ee.reset_to_flows(force=force) for ee in self.get_extensions(data=True)] self.meta._add_modify("Reset full system to absolute flows") return self
python
{ "resource": "" }
q8485
IOSystem.reset_all_to_coefficients
train
def reset_all_to_coefficients(self): """ Resets the IOSystem and all extensions to coefficients. This method calls reset_to_coefficients for the IOSystem and for all Extensions in the system Note ----- The system can not be reconstructed after this steps because all absolute data is removed. Save the Y data in case a reconstruction might be necessary. """ self.reset_to_coefficients() [ee.reset_to_coefficients() for ee in self.get_extensions(data=True)] self.meta._add_modify("Reset full system to coefficients") return self
python
{ "resource": "" }
q8486
IOSystem.save_all
train
def save_all(self, path, table_format='txt', sep='\t', table_ext=None, float_format='%.12g'): """ Saves the system and all extensions Extensions are saved in separate folders (names based on extension) Parameters are passed to the .save methods of the IOSystem and Extensions. See parameters description there. """ if type(path) is str: path = path.rstrip('\\') path = Path(path) path.mkdir(parents=True, exist_ok=True) self.save(path=path, table_format=table_format, sep=sep, table_ext=table_ext, float_format=float_format) for ext, ext_name in zip(self.get_extensions(data=True), self.get_extensions()): ext_path = path / ext_name ext.save(path=ext_path, table_format=table_format, sep=sep, table_ext=table_ext, float_format=float_format) return self
python
{ "resource": "" }
q8487
IOSystem.remove_extension
train
def remove_extension(self, ext=None): """ Remove extension from IOSystem For single Extensions the same can be achieved with del IOSystem_name.Extension_name Parameters ---------- ext : string or list, optional The extension to remove, this can be given as the name of the instance or of Extension.name (the latter will be checked if no instance was found) If ext is None (default) all Extensions will be removed """ if ext is None: ext = list(self.get_extensions()) if type(ext) is str: ext = [ext] for ee in ext: try: del self.__dict__[ee] except KeyError: for exinstancename, exdata in zip( self.get_extensions(data=False), self.get_extensions(data=True)): if exdata.name == ee: del self.__dict__[exinstancename] finally: self.meta._add_modify("Removed extension {}".format(ee)) return self
python
{ "resource": "" }
q8488
is_vector
train
def is_vector(inp): """ Returns true if the input can be interpreted as a 'true' vector Note ---- Does only check dimensions, not if type is numeric Parameters ---------- inp : numpy.ndarray or something that can be converted into ndarray Returns ------- Boolean True for vectors: ndim = 1 or ndim = 2 and shape of one axis = 1 False for all other arrays """ inp = np.asarray(inp) nr_dim = np.ndim(inp) if nr_dim == 1: return True elif (nr_dim == 2) and (1 in inp.shape): return True else: return False
python
{ "resource": "" }
q8489
get_file_para
train
def get_file_para(path, path_in_arc=''): """ Generic method to read the file parameter file Helper function to consistently read the file parameter file, which can either be uncompressed or included in a zip archive. By default, the file name is to be expected as set in DEFAULT_FILE_NAMES['filepara'] (currently file_parameters.json), but can defined otherwise by including the file name of the parameter file in the parameter path. Parameters ---------- path: pathlib.Path or string Path or path with para file name for the data to load. This must either point to the directory containing the uncompressed data or the location of a compressed zip file with the data. In the later case the parameter 'path_in_arc' needs to be specific to further indicate the location of the data in the compressed file. path_in_arc: string, optional Path to the data in the zip file (where the fileparameters file is located). path_in_arc must be given without leading dot and slash; thus to point to the data in the root of the compressed file pass '' (default), for data in e.g. the folder 'emissions' pass 'emissions/'. Only used if parameter 'path' points to an compressed zip file. Returns ------- Returns a namedtuple with .folder: str with the absolute path containing the file parameter file. In case of a zip the path is relative to the root in the zip .name: Filename without folder of the used parameter file. .content: Dictionary with the content oft the file parameter file Raises ------ FileNotFoundError if parameter file not found """ if type(path) is str: path = Path(path.rstrip('\\')) if zipfile.is_zipfile(str(path)): para_file_folder = str(path_in_arc) with zipfile.ZipFile(file=str(path)) as zf: files = zf.namelist() else: para_file_folder = str(path) files = [str(f) for f in path.glob('**/*')] if para_file_folder not in files: para_file_full_path = os.path.join( para_file_folder, DEFAULT_FILE_NAMES['filepara']) else: para_file_full_path = para_file_folder para_file_folder = os.path.dirname(para_file_full_path) if para_file_full_path not in files: raise FileNotFoundError( 'File parameter file {} not found'.format( para_file_full_path)) if zipfile.is_zipfile(str(path)): with zipfile.ZipFile(file=str(path)) as zf: para_file_content = json.loads( zf.read(para_file_full_path).decode('utf-8')) else: with open(para_file_full_path, 'r') as pf: para_file_content = json.load(pf) return namedtuple('file_parameter', ['folder', 'name', 'content'])( para_file_folder, os.path.basename(para_file_full_path), para_file_content)
python
{ "resource": "" }
q8490
build_agg_matrix
train
def build_agg_matrix(agg_vector, pos_dict=None): """ Agg. matrix based on mapping given in input as numerical or str vector. The aggregation matrix has the from nxm with -n new classificaction -m old classification Parameters ---------- agg_vector : list or vector like numpy ndarray This can be row or column vector. Length m with position given for n and -1 if values should not be included or length m with id_string for the aggregation pos_dict : dictionary (only possible if agg_vector is given as string) output order for the new matrix must be given as dict with 'string in agg_vector' = pos (as int, -1 if value should not be included in the aggregation) Example 1: input vector: np.array([0, 1, 1, 2]) or ['a', 'b', 'b', 'c'] agg matrix: m0 m1 m2 m3 n0 1 0 0 0 n1 0 1 1 0 n2 0 0 0 1 Example 2: input vector: np.array([1, 0, 0, 2]) or (['b', 'a', 'a', 'c'], dict(a=0,b=1,c=2)) agg matrix: m0 m1 m2 m3 n0 0 1 1 0 n1 1 0 0 0 n2 0 0 0 1 """ if isinstance(agg_vector, np.ndarray): agg_vector = agg_vector.flatten().tolist() if type(agg_vector[0]) == str: str_vector = agg_vector agg_vector = np.zeros(len(str_vector)) if pos_dict: if len(pos_dict.keys()) != len(set(str_vector)): raise ValueError( 'Posistion elements inconsistent with aggregation vector') seen = pos_dict else: seen = {} counter = 0 for ind, item in enumerate(str_vector): if item not in seen: seen[item] = counter counter += 1 agg_vector[ind] = seen[item] agg_vector = np.array(agg_vector, dtype=int) agg_vector = agg_vector.reshape((1, -1)) row_corr = agg_vector col_corr = np.arange(agg_vector.size) agg_matrix = np.zeros((row_corr.max()+1, col_corr.max()+1)) agg_matrix[row_corr, col_corr] = 1 # set columns with -1 value to 0 agg_matrix[np.tile(agg_vector == -1, (np.shape(agg_matrix)[0], 1))] = 0 return agg_matrix
python
{ "resource": "" }
q8491
diagonalize_blocks
train
def diagonalize_blocks(arr, blocksize): """ Diagonalize sections of columns of an array for the whole array Parameters ---------- arr : numpy array Input array blocksize : int number of rows/colums forming one block Returns ------- numpy ndarray with shape (columns 'arr' * blocksize, columns 'arr' * blocksize) Example -------- arr: output: (blocksize = 3) 3 1 3 0 0 1 0 0 4 2 0 4 0 0 2 0 5 3 0 0 5 0 0 3 6 9 6 0 0 9 0 0 7 6 0 7 0 0 6 0 8 4 0 0 8 0 0 4 """ nr_col = arr.shape[1] nr_row = arr.shape[0] if np.mod(nr_row, blocksize): raise ValueError( 'Number of rows of input array must be a multiple of blocksize') arr_diag = np.zeros((nr_row, blocksize*nr_col)) for col_ind, col_val in enumerate(arr.T): col_start = col_ind*blocksize col_end = blocksize + col_ind*blocksize for _ind in range(int(nr_row/blocksize)): row_start = _ind*blocksize row_end = blocksize + _ind * blocksize arr_diag[row_start:row_end, col_start:col_end] = np.diag(col_val[row_start:row_end]) return arr_diag
python
{ "resource": "" }
q8492
set_block
train
def set_block(arr, arr_block): """ Sets the diagonal blocks of an array to an given array Parameters ---------- arr : numpy ndarray the original array block_arr : numpy ndarray the block array for the new diagonal Returns ------- numpy ndarray (the modified array) """ nr_col = arr.shape[1] nr_row = arr.shape[0] nr_col_block = arr_block.shape[1] nr_row_block = arr_block.shape[0] if np.mod(nr_row, nr_row_block) or np.mod(nr_col, nr_col_block): raise ValueError('Number of rows/columns of the input array ' 'must be a multiple of block shape') if nr_row/nr_row_block != nr_col/nr_col_block: raise ValueError('Block array can not be filled as ' 'diagonal blocks in the given array') arr_out = arr.copy() for row_ind in range(int(nr_row/nr_row_block)): row_start = row_ind*nr_row_block row_end = nr_row_block+nr_row_block*row_ind col_start = row_ind*nr_col_block col_end = nr_col_block+nr_col_block*row_ind arr_out[row_start:row_end, col_start:col_end] = arr_block return arr_out
python
{ "resource": "" }
q8493
unique_element
train
def unique_element(ll): """ returns unique elements from a list preserving the original order """ seen = {} result = [] for item in ll: if item in seen: continue seen[item] = 1 result.append(item) return result
python
{ "resource": "" }
q8494
build_agg_vec
train
def build_agg_vec(agg_vec, **source): """ Builds an combined aggregation vector based on various classifications This function build an aggregation vector based on the order in agg_vec. The naming and actual mapping is given in source, either explicitly or by pointing to a folder with the mapping. >>> build_agg_vec(['EU', 'OECD'], path = 'test') ['EU', 'EU', 'EU', 'OECD', 'REST', 'REST'] >>> build_agg_vec(['OECD', 'EU'], path = 'test', miss='RoW') ['OECD', 'EU', 'OECD', 'OECD', 'RoW', 'RoW'] >>> build_agg_vec(['EU', 'orig_regions'], path = 'test') ['EU', 'EU', 'EU', 'reg4', 'reg5', 'reg6'] >>> build_agg_vec(['supreg1', 'other'], path = 'test', >>> other = [None, None, 'other1', 'other1', 'other2', 'other2']) ['supreg1', 'supreg1', 'other1', 'other1', 'other2', 'other2'] Parameters ---------- agg_vec : list A list of sector or regions to which the IOSystem shall be aggregated. The order in agg_vec is important: If a string was assigned to one specific entry it will not be overwritten if it is given in the next vector, e.g. ['EU', 'OECD'] would aggregate first into EU and the remaining one into OECD, whereas ['OECD', 'EU'] would first aggregate all countries into OECD and than the remaining countries into EU. source : list or string Definition of the vectors in agg_vec. The input vectors (either in the file or given as list for the entries in agg_vec) must be as long as the desired output with a string for every position which should be aggregated and None for position which should not be used. Special keywords: - path : Path to a folder with concordance matrices. The files in the folder can have any extension but must be in text format (tab separated) with one entry per row. The last column in the file will be taken as aggregation vectors (other columns can be used for documentation). Values must be given for every entry in the original classification (string None for all values not used) If the same entry is given in source and as text file in path than the one in source will be used. Two special path entries are available so far: - 'exio2' Concordance matrices for EXIOBASE 2.0 - 'test' Concordance matrices for the test IO system If a entry is not found in source and no path is given the current directory will be searched for the definition. - miss : Entry to use for missing values, default: 'REST' Returns ------- list (aggregation vector) """ # build a dict with aggregation vectors in source and folder if type(agg_vec) is str: agg_vec = [agg_vec] agg_dict = dict() for entry in agg_vec: try: agg_dict[entry] = source[entry] except KeyError: folder = source.get('path', './') folder = os.path.join(PYMRIO_PATH[folder], 'concordance') for file in os.listdir(folder): if entry == os.path.splitext(file)[0]: _tmp = np.genfromtxt(os.path.join(folder, file), dtype=str) if _tmp.ndim == 1: agg_dict[entry] = [None if ee == 'None' else ee for ee in _tmp.tolist()] else: agg_dict[entry] = [None if ee == 'None' else ee for ee in _tmp[:, -1].tolist()] break else: logging.error( 'Aggregation vector -- {} -- not found' .format(str(entry))) # build the summary aggregation vector def _rep(ll, ii, vv): ll[ii] = vv miss_val = source.get('miss', 'REST') vec_list = [agg_dict[ee] for ee in agg_vec] out = [None, ] * len(vec_list[0]) for currvec in vec_list: if len(currvec) != len(out): logging.warn('Inconsistent vector length') [_rep(out, ind, val) for ind, val in enumerate(currvec) if not out[ind]] [_rep(out, ind, miss_val) for ind, val in enumerate(out) if not val] return out
python
{ "resource": "" }
q8495
find_first_number
train
def find_first_number(ll): """ Returns nr of first entry parseable to float in ll, None otherwise""" for nr, entry in enumerate(ll): try: float(entry) except (ValueError, TypeError) as e: pass else: return nr return None
python
{ "resource": "" }
q8496
sniff_csv_format
train
def sniff_csv_format(csv_file, potential_sep=['\t', ',', ';', '|', '-', '_'], max_test_lines=10, zip_file=None): """ Tries to get the separator, nr of index cols and header rows in a csv file Parameters ---------- csv_file: str Path to a csv file potential_sep: list, optional List of potential separators (delimiters) to test. Default: '\t', ',', ';', '|', '-', '_' max_test_lines: int, optional How many lines to test, default: 10 or available lines in csv_file zip_file: str, optional Path to a zip file containing the csv file (if any, default: None). If a zip file is given, the path given at 'csv_file' is assumed to be the path to the file within the zip_file. Returns ------- dict with sep: string (separator) nr_index_col: int nr_header_row: int Entries are set to None if inconsistent information in the file """ def read_first_lines(filehandle): lines = [] for i in range(max_test_lines): line = ff.readline() if line == '': break try: line = line.decode('utf-8') except AttributeError: pass lines.append(line[:-1]) return lines if zip_file: with zipfile.ZipFile(zip_file, 'r') as zz: with zz.open(csv_file, 'r') as ff: test_lines = read_first_lines(ff) else: with open(csv_file, 'r') as ff: test_lines = read_first_lines(ff) sep_aly_lines = [sorted([(line.count(sep), sep) for sep in potential_sep if line.count(sep) > 0], key=lambda x: x[0], reverse=True) for line in test_lines] for nr, (count, sep) in enumerate(sep_aly_lines[0]): for line in sep_aly_lines: if line[nr][0] == count: break else: sep = None if sep: break nr_header_row = None nr_index_col = None if sep: nr_index_col = find_first_number(test_lines[-1].split(sep)) if nr_index_col: for nr_header_row, line in enumerate(test_lines): if find_first_number(line.split(sep)) == nr_index_col: break return dict(sep=sep, nr_header_row=nr_header_row, nr_index_col=nr_index_col)
python
{ "resource": "" }
q8497
GreenPoller._get_descriptors
train
def _get_descriptors(self): """Returns three elements tuple with socket descriptors ready for gevent.select.select """ rlist = [] wlist = [] xlist = [] for socket, flags in self.sockets.items(): if isinstance(socket, zmq.Socket): rlist.append(socket.getsockopt(zmq.FD)) continue elif isinstance(socket, int): fd = socket elif hasattr(socket, 'fileno'): try: fd = int(socket.fileno()) except: raise ValueError('fileno() must return an valid integer fd') else: raise TypeError('Socket must be a 0MQ socket, an integer fd ' 'or have a fileno() method: %r' % socket) if flags & zmq.POLLIN: rlist.append(fd) if flags & zmq.POLLOUT: wlist.append(fd) if flags & zmq.POLLERR: xlist.append(fd) return (rlist, wlist, xlist)
python
{ "resource": "" }
q8498
GreenPoller.poll
train
def poll(self, timeout=-1): """Overridden method to ensure that the green version of Poller is used. Behaves the same as :meth:`zmq.core.Poller.poll` """ if timeout is None: timeout = -1 if timeout < 0: timeout = -1 rlist = None wlist = None xlist = None if timeout > 0: tout = gevent.Timeout.start_new(timeout/1000.0) try: # Loop until timeout or events available rlist, wlist, xlist = self._get_descriptors() while True: events = super(GreenPoller, self).poll(0) if events or timeout == 0: return events # wait for activity on sockets in a green way select.select(rlist, wlist, xlist) except gevent.Timeout, t: if t is not tout: raise return [] finally: if timeout > 0: tout.cancel()
python
{ "resource": "" }
q8499
_instantiate_task
train
def _instantiate_task(api, kwargs): """Create a Task object from raw kwargs""" file_id = kwargs['file_id'] kwargs['file_id'] = file_id if str(file_id).strip() else None kwargs['cid'] = kwargs['file_id'] or None kwargs['rate_download'] = kwargs['rateDownload'] kwargs['percent_done'] = kwargs['percentDone'] kwargs['add_time'] = get_utcdatetime(kwargs['add_time']) kwargs['last_update'] = get_utcdatetime(kwargs['last_update']) is_transferred = (kwargs['status'] == 2 and kwargs['move'] == 1) if is_transferred: kwargs['pid'] = api.downloads_directory.cid else: kwargs['pid'] = None del kwargs['rateDownload'] del kwargs['percentDone'] if 'url' in kwargs: if not kwargs['url']: kwargs['url'] = None else: kwargs['url'] = None task = Task(api, **kwargs) if is_transferred: task._parent = api.downloads_directory return task
python
{ "resource": "" }