_id
stringlengths
2
7
title
stringlengths
1
88
partition
stringclasses
3 values
text
stringlengths
75
19.8k
language
stringclasses
1 value
meta_information
dict
q23400
polygon_hash
train
def polygon_hash(polygon): """ Return a vector containing values representitive of a particular polygon. Parameters --------- polygon : shapely.geometry.Polygon Input geometry Returns --------- hashed: (6), float Representitive values representing input polygon """ result = np.array( [len(polygon.interiors), polygon.convex_hull.area, polygon.convex_hull.length, polygon.area, polygon.length, polygon.exterior.length], dtype=np.float64) return result
python
{ "resource": "" }
q23401
random_polygon
train
def random_polygon(segments=8, radius=1.0): """ Generate a random polygon with a maximum number of sides and approximate radius. Parameters --------- segments: int, the maximum number of sides the random polygon will have radius: float, the approximate radius of the polygon desired Returns --------- polygon: shapely.geometry.Polygon object with random exterior, and no interiors. """ angles = np.sort(np.cumsum(np.random.random( segments) * np.pi * 2) % (np.pi * 2)) radii = np.random.random(segments) * radius points = np.column_stack( (np.cos(angles), np.sin(angles))) * radii.reshape((-1, 1)) points = np.vstack((points, points[0])) polygon = Polygon(points).buffer(0.0) if util.is_sequence(polygon): return polygon[0] return polygon
python
{ "resource": "" }
q23402
polygon_scale
train
def polygon_scale(polygon): """ For a Polygon object, return the diagonal length of the AABB. Parameters ------------ polygon: shapely.geometry.Polygon object Returns ------------ scale: float, length of AABB diagonal """ extents = np.reshape(polygon.bounds, (2, 2)).ptp(axis=0) scale = (extents ** 2).sum() ** .5 return scale
python
{ "resource": "" }
q23403
paths_to_polygons
train
def paths_to_polygons(paths, scale=None): """ Given a sequence of connected points turn them into valid shapely Polygon objects. Parameters ----------- paths : (n,) sequence Of (m,2) float, closed paths scale: float Approximate scale of drawing for precision Returns ----------- polys: (p,) list shapely.geometry.Polygon None """ polygons = [None] * len(paths) for i, path in enumerate(paths): if len(path) < 4: # since the first and last vertices are identical in # a closed loop a 4 vertex path is the minimum for # non-zero area continue try: polygons[i] = repair_invalid(Polygon(path), scale) except ValueError: # raised if a polygon is unrecoverable continue except BaseException: log.error('unrecoverable polygon', exc_info=True) polygons = np.array(polygons) return polygons
python
{ "resource": "" }
q23404
repair_invalid
train
def repair_invalid(polygon, scale=None, rtol=.5): """ Given a shapely.geometry.Polygon, attempt to return a valid version of the polygon through buffering tricks. Parameters ----------- polygon: shapely.geometry.Polygon object rtol: float, how close does a perimeter have to be scale: float, or None Returns ---------- repaired: shapely.geometry.Polygon object Raises ---------- ValueError: if polygon can't be repaired """ if hasattr(polygon, 'is_valid') and polygon.is_valid: return polygon # basic repair involves buffering the polygon outwards # this will fix a subset of problems. basic = polygon.buffer(tol.zero) # if it returned multiple polygons check the largest if util.is_sequence(basic): basic = basic[np.argmax([i.area for i in basic])] # check perimeter of result against original perimeter if basic.is_valid and np.isclose(basic.length, polygon.length, rtol=rtol): return basic if scale is None: distance = tol.buffer * polygon_scale(polygon) else: distance = tol.buffer * scale # if there are no interiors, we can work with just the exterior # ring, which is often more reliable if len(polygon.interiors) == 0: # try buffering the exterior of the polygon # the interior will be offset by -tol.buffer rings = polygon.exterior.buffer(distance).interiors if len(rings) == 1: # reconstruct a single polygon from the interior ring recon = Polygon(shell=rings[0]).buffer(distance) # check perimeter of result against original perimeter if recon.is_valid and np.isclose(recon.length, polygon.length, rtol=rtol): return recon # buffer and unbuffer the whole polygon buffered = polygon.buffer(distance).buffer(-distance) # if it returned multiple polygons check the largest if util.is_sequence(buffered): buffered = buffered[np.argmax([i.area for i in buffered])] # check perimeter of result against original perimeter if buffered.is_valid and np.isclose(buffered.length, polygon.length, rtol=rtol): log.debug('Recovered invalid polygon through double buffering') return buffered raise ValueError('unable to recover polygon!')
python
{ "resource": "" }
q23405
export_gltf
train
def export_gltf(scene, extras=None, include_normals=False): """ Export a scene object as a GLTF directory. This puts each mesh into a separate file (i.e. a `buffer`) as opposed to one larger file. Parameters ----------- scene : trimesh.Scene Scene to be exported Returns ---------- export : dict Format: {file name : file data} """ # if we were passed a bare Trimesh or Path3D object if (not util.is_instance_named(scene, "Scene") and hasattr(scene, "scene")): scene = scene.scene() # create the header and buffer data tree, buffer_items = _create_gltf_structure( scene=scene, extras=extras, include_normals=include_normals) # store files as {name : data} files = {} # make one buffer per buffer_items buffers = [None] * len(buffer_items) # A bufferView is a slice of a file views = [None] * len(buffer_items) # create the buffer views for i, item in enumerate(buffer_items): views[i] = { "buffer": i, "byteOffset": 0, "byteLength": len(item)} buffer_data = _byte_pad(bytes().join(buffer_items[i: i + 2])) buffer_name = "gltf_buffer_{}.bin".format(i) buffers[i] = { "uri": buffer_name, "byteLength": len(buffer_data)} files[buffer_name] = buffer_data tree["buffers"] = buffers tree["bufferViews"] = views files["model.gltf"] = json.dumps(tree).encode("utf-8") return files
python
{ "resource": "" }
q23406
load_gltf
train
def load_gltf(file_obj=None, resolver=None, **mesh_kwargs): """ Load a GLTF file, which consists of a directory structure with multiple files. Parameters ------------- file_obj : None or file-like Object containing header JSON, or None resolver : trimesh.visual.Resolver Object which can be used to load other files by name **mesh_kwargs : dict Passed to mesh constructor Returns -------------- kwargs : dict Arguments to create scene """ try: # see if we've been passed the GLTF header file tree = json.load(file_obj) except BaseException: # otherwise header should be in 'model.gltf' data = resolver['model.gltf'] # old versions of python/json need strings try: tree = json.loads(data) except BaseException: tree = json.loads(data.decode('utf-8')) # use the resolver to get data from file names buffers = [resolver[b['uri']] for b in tree['buffers']] # turn the layout header and data into kwargs # that can be used to instantiate a trimesh.Scene object kwargs = _read_buffers(header=tree, buffers=buffers, mesh_kwargs=mesh_kwargs) return kwargs
python
{ "resource": "" }
q23407
load_glb
train
def load_glb(file_obj, resolver=None, **mesh_kwargs): """ Load a GLTF file in the binary GLB format into a trimesh.Scene. Implemented from specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0 Parameters ------------ file_obj : file- like object Containing GLB data Returns ------------ kwargs : dict Kwargs to instantiate a trimesh.Scene """ # save the start position of the file for referencing # against lengths start = file_obj.tell() # read the first 20 bytes which contain section lengths head_data = file_obj.read(20) head = np.frombuffer(head_data, dtype="<u4") # check to make sure first index is gltf # and second is 2, for GLTF 2.0 if head[0] != _magic["gltf"] or head[1] != 2: raise ValueError("file is not GLTF 2.0") # overall file length # first chunk length # first chunk type length, chunk_length, chunk_type = head[2:] # first chunk should be JSON header if chunk_type != _magic["json"]: raise ValueError("no initial JSON header!") # uint32 causes an error in read, so we convert to native int # for the length passed to read, for the JSON header json_data = file_obj.read(int(chunk_length)) # convert to text if hasattr(json_data, "decode"): json_data = json_data.decode("utf-8") # load the json header to native dict header = json.loads(json_data) # read the binary data referred to by GLTF as 'buffers' buffers = [] while (file_obj.tell() - start) < length: # the last read put us past the JSON chunk # we now read the chunk header, which is 8 bytes chunk_head = file_obj.read(8) if len(chunk_head) != 8: # double check to make sure we didn't # read the whole file break chunk_length, chunk_type = np.frombuffer(chunk_head, dtype="<u4") # make sure we have the right data type if chunk_type != _magic["bin"]: raise ValueError("not binary GLTF!") # read the chunk chunk_data = file_obj.read(int(chunk_length)) if len(chunk_data) != chunk_length: raise ValueError("chunk was not expected length!") buffers.append(chunk_data) # turn the layout header and data into kwargs # that can be used to instantiate a trimesh.Scene object kwargs = _read_buffers(header=header, buffers=buffers, mesh_kwargs=mesh_kwargs) return kwargs
python
{ "resource": "" }
q23408
_mesh_to_material
train
def _mesh_to_material(mesh, metallic=0.0, rough=0.0): """ Create a simple GLTF material for a mesh using the most commonly occurring color in that mesh. Parameters ------------ mesh: trimesh.Trimesh Mesh to create a material from Returns ------------ material: dict In GLTF material format """ try: # just get the most commonly occurring color color = mesh.visual.main_color except BaseException: color = np.array([100, 100, 100, 255], dtype=np.uint8) # convert uint color to 0.0-1.0 float color color = color.astype(float32) / np.iinfo(color.dtype).max material = { "pbrMetallicRoughness": { "baseColorFactor": color.tolist(), "metallicFactor": metallic, "roughnessFactor": rough} } return material
python
{ "resource": "" }
q23409
_create_gltf_structure
train
def _create_gltf_structure(scene, extras=None, include_normals=False): """ Generate a GLTF header. Parameters ------------- scene : trimesh.Scene Input scene data extras : JSON serializable Will be stored in the extras field include_normals : bool Include vertex normals in output file? Returns --------------- tree : dict Contains required keys for a GLTF scene buffer_items : list Contains bytes of data """ # we are defining a single scene, and will be setting the # world node to the 0th index tree = { "scene": 0, "scenes": [{"nodes": [0]}], "asset": {"version": "2.0", "generator": "github.com/mikedh/trimesh"}, "accessors": [], "meshes": [], "materials": [], "cameras": [_convert_camera(scene.camera)]} if extras is not None: tree['extras'] = extras # grab the flattened scene graph in GLTF's format nodes = scene.graph.to_gltf(scene=scene) tree.update(nodes) buffer_items = [] for name, geometry in scene.geometry.items(): if util.is_instance_named(geometry, "Trimesh"): # add the mesh _append_mesh( mesh=geometry, name=name, tree=tree, buffer_items=buffer_items, include_normals=include_normals) elif util.is_instance_named(geometry, "Path"): # add Path2D and Path3D objects _append_path( path=geometry, name=name, tree=tree, buffer_items=buffer_items) # if nothing defined a material remove it from the structure if len(tree["materials"]) == 0: tree.pop("materials") return tree, buffer_items
python
{ "resource": "" }
q23410
_byte_pad
train
def _byte_pad(data, bound=4): """ GLTF wants chunks aligned with 4- byte boundaries so this function will add padding to the end of a chunk of bytes so that it aligns with a specified boundary size Parameters -------------- data : bytes Data to be padded bound : int Length of desired boundary Returns -------------- padded : bytes Result where: (len(padded) % bound) == 0 """ bound = int(bound) if len(data) % bound != 0: pad = bytes(bound - (len(data) % bound)) result = bytes().join([data, pad]) assert (len(result) % bound) == 0 return result return data
python
{ "resource": "" }
q23411
_append_path
train
def _append_path(path, name, tree, buffer_items): """ Append a 2D or 3D path to the scene structure and put the data into buffer_items. Parameters ------------- path : trimesh.Path2D or trimesh.Path3D Source geometry name : str Name of geometry tree : dict Will be updated with data from path buffer_items Will have buffer appended with path data """ # convert the path to the unnamed args for # a pyglet vertex list vxlist = rendering.path_to_vertexlist(path) tree["meshes"].append({ "name": name, "primitives": [{ "attributes": {"POSITION": len(tree["accessors"])}, "mode": 1, # mode 1 is GL_LINES "material": len(tree["materials"])}]}) # if units are defined, store them as an extra: # https://github.com/KhronosGroup/glTF/tree/master/extensions if path.units is not None and 'meter' not in path.units: tree["meshes"][-1]["extras"] = {"units": str(path.units)} tree["accessors"].append( { "bufferView": len(buffer_items), "componentType": 5126, "count": vxlist[0], "type": "VEC3", "byteOffset": 0, "max": path.vertices.max(axis=0).tolist(), "min": path.vertices.min(axis=0).tolist(), } ) # TODO add color support to Path object # this is just exporting everying as black tree["materials"].append(_default_material) # data is the second value of the fourth field # which is a (data type, data) tuple buffer_items.append(_byte_pad( vxlist[4][1].astype(float32).tobytes()))
python
{ "resource": "" }
q23412
_parse_materials
train
def _parse_materials(header, views): """ Convert materials and images stored in a GLTF header and buffer views to PBRMaterial objects. Parameters ------------ header : dict Contains layout of file views : (n,) bytes Raw data Returns ------------ materials : list List of trimesh.visual.texture.Material objects """ try: import PIL.Image except ImportError: log.warning("unable to load textures without pillow!") return None # load any images images = None if "images" in header: # images are referenced by index images = [None] * len(header["images"]) # loop through images for i, img in enumerate(header["images"]): # get the bytes representing an image blob = views[img["bufferView"]] # i.e. 'image/jpeg' # mime = img['mimeType'] try: # load the buffer into a PIL image images[i] = PIL.Image.open(util.wrap_as_stream(blob)) except BaseException: log.error("failed to load image!", exc_info=True) # store materials which reference images materials = [] if "materials" in header: for mat in header["materials"]: # flatten key structure so we can loop it loopable = mat.copy() # this key stores another dict of crap if "pbrMetallicRoughness" in loopable: # add keys of keys to top level dict loopable.update(loopable.pop("pbrMetallicRoughness")) # save flattened keys we can use for kwargs pbr = {} for k, v in loopable.items(): if not isinstance(v, dict): pbr[k] = v elif "index" in v: # get the index of image for texture idx = header["textures"][v["index"]]["source"] # store the actual image as the value pbr[k] = images[idx] # create a PBR material object for the GLTF material materials.append(visual.texture.PBRMaterial(**pbr)) return materials
python
{ "resource": "" }
q23413
_convert_camera
train
def _convert_camera(camera): """ Convert a trimesh camera to a GLTF camera. Parameters ------------ camera : trimesh.scene.cameras.Camera Trimesh camera object Returns ------------- gltf_camera : dict Camera represented as a GLTF dict """ result = { "name": camera.name, "type": "perspective", "perspective": { "aspectRatio": camera.fov[0] / camera.fov[1], "yfov": np.radians(camera.fov[1]), }, } return result
python
{ "resource": "" }
q23414
FilePathResolver.get
train
def get(self, name): """ Get an asset. Parameters ------------- name : str Name of the asset Returns ------------ data : bytes Loaded data from asset """ # load the file by path name with open(os.path.join(self.parent, name.strip()), 'rb') as f: data = f.read() return data
python
{ "resource": "" }
q23415
ZipResolver.get
train
def get(self, name): """ Get an asset from the ZIP archive. Parameters ------------- name : str Name of the asset Returns ------------- data : bytes Loaded data from asset """ # not much we can do with that if name is None: return # if name isn't in archive try some similar values if name not in self.archive: if hasattr(name, 'decode'): name = name.decode('utf-8') # try with cleared whitespace, split paths for option in [name, name.lstrip('./'), name.strip(), name.split('/')[-1]]: if option in self.archive: name = option break # read file object from beginning self.archive[name].seek(0) # data is stored as a file object data = self.archive[name].read() return data
python
{ "resource": "" }
q23416
WebResolver.get
train
def get(self, name): """ Get a resource from the remote site. Parameters ------------- name : str Asset name, i.e. 'quadknot.obj.mtl' """ # do import here to keep soft dependency import requests # append base url to requested name url = urljoin(self.base_url, name) # fetch the data from the remote url response = requests.get(url) # return the bytes of the response return response.content
python
{ "resource": "" }
q23417
Geometry.apply_translation
train
def apply_translation(self, translation): """ Translate the current mesh. Parameters ---------- translation : (3,) float Translation in XYZ """ translation = np.asanyarray(translation, dtype=np.float64) if translation.shape != (3,): raise ValueError('Translation must be (3,)!') matrix = np.eye(4) matrix[:3, 3] = translation self.apply_transform(matrix)
python
{ "resource": "" }
q23418
Geometry.apply_scale
train
def apply_scale(self, scaling): """ Scale the mesh equally on all axis. Parameters ---------- scaling : float Scale factor to apply to the mesh """ scaling = float(scaling) if not np.isfinite(scaling): raise ValueError('Scaling factor must be finite number!') matrix = np.eye(4) matrix[:3, :3] *= scaling # apply_transform will work nicely even on negative scales self.apply_transform(matrix)
python
{ "resource": "" }
q23419
Geometry.bounding_box
train
def bounding_box(self): """ An axis aligned bounding box for the current mesh. Returns ---------- aabb : trimesh.primitives.Box Box object with transform and extents defined representing the axis aligned bounding box of the mesh """ from . import primitives transform = np.eye(4) # translate to center of axis aligned bounds transform[:3, 3] = self.bounds.mean(axis=0) aabb = primitives.Box(transform=transform, extents=self.extents, mutable=False) return aabb
python
{ "resource": "" }
q23420
Geometry.bounding_box_oriented
train
def bounding_box_oriented(self): """ An oriented bounding box for the current mesh. Returns --------- obb : trimesh.primitives.Box Box object with transform and extents defined representing the minimum volume oriented bounding box of the mesh """ from . import primitives, bounds to_origin, extents = bounds.oriented_bounds(self) obb = primitives.Box(transform=np.linalg.inv(to_origin), extents=extents, mutable=False) return obb
python
{ "resource": "" }
q23421
Geometry.bounding_sphere
train
def bounding_sphere(self): """ A minimum volume bounding sphere for the current mesh. Note that the Sphere primitive returned has an unpadded, exact sphere_radius so while the distance of every vertex of the current mesh from sphere_center will be less than sphere_radius, the faceted sphere primitive may not contain every vertex Returns -------- minball: trimesh.primitives.Sphere Sphere primitive containing current mesh """ from . import primitives, nsphere center, radius = nsphere.minimum_nsphere(self) minball = primitives.Sphere(center=center, radius=radius, mutable=False) return minball
python
{ "resource": "" }
q23422
Geometry.bounding_cylinder
train
def bounding_cylinder(self): """ A minimum volume bounding cylinder for the current mesh. Returns -------- mincyl : trimesh.primitives.Cylinder Cylinder primitive containing current mesh """ from . import primitives, bounds kwargs = bounds.minimum_cylinder(self) mincyl = primitives.Cylinder(mutable=False, **kwargs) return mincyl
python
{ "resource": "" }
q23423
export_mesh
train
def export_mesh(mesh, file_obj, file_type=None, **kwargs): """ Export a Trimesh object to a file- like object, or to a filename Parameters --------- file_obj : str, file-like Where should mesh be exported to file_type : str or None Represents file type (eg: 'stl') Returns ---------- exported : bytes or str Result of exporter """ # if we opened a file object in this function # we will want to close it when we're done was_opened = False if util.is_string(file_obj): if file_type is None: file_type = (str(file_obj).split('.')[-1]).lower() if file_type in _mesh_exporters: was_opened = True file_obj = open(file_obj, 'wb') file_type = str(file_type).lower() if not (file_type in _mesh_exporters): raise ValueError('%s exporter not available!', file_type) if isinstance(mesh, (list, tuple, set, np.ndarray)): faces = 0 for m in mesh: faces += len(m.faces) log.debug('Exporting %d meshes with a total of %d faces as %s', len(mesh), faces, file_type.upper()) else: log.debug('Exporting %d faces as %s', len(mesh.faces), file_type.upper()) export = _mesh_exporters[file_type](mesh, **kwargs) if hasattr(file_obj, 'write'): result = util.write_encoded(file_obj, export) else: result = export if was_opened: file_obj.close() return result
python
{ "resource": "" }
q23424
export_off
train
def export_off(mesh, digits=10): """ Export a mesh as an OFF file, a simple text format Parameters ----------- mesh : trimesh.Trimesh Geometry to export digits : int Number of digits to include on floats Returns ----------- export : str OFF format output """ # make sure specified digits is an int digits = int(digits) # prepend a 3 (face count) to each face faces_stacked = np.column_stack((np.ones(len(mesh.faces)) * 3, mesh.faces)).astype(np.int64) export = 'OFF\n' # the header is vertex count, face count, another number export += str(len(mesh.vertices)) + ' ' + str(len(mesh.faces)) + ' 0\n' export += util.array_to_string( mesh.vertices, col_delim=' ', row_delim='\n', digits=digits) + '\n' export += util.array_to_string( faces_stacked, col_delim=' ', row_delim='\n') return export
python
{ "resource": "" }
q23425
export_dict
train
def export_dict(mesh, encoding=None): """ Export a mesh to a dict Parameters ------------ mesh : Trimesh object Mesh to be exported encoding : str, or None 'base64' Returns ------------- """ def encode(item, dtype=None): if encoding is None: return item.tolist() else: if dtype is None: dtype = item.dtype return util.array_to_encoded(item, dtype=dtype, encoding=encoding) # metadata keys we explicitly want to preserve # sometimes there are giant datastructures we don't # care about in metadata which causes exports to be # extremely slow, so skip all but known good keys meta_keys = ['units', 'file_name', 'file_path'] metadata = {k: v for k, v in mesh.metadata.items() if k in meta_keys} export = { 'metadata': metadata, 'faces': encode(mesh.faces), 'face_normals': encode(mesh.face_normals), 'vertices': encode(mesh.vertices) } if mesh.visual.kind == 'face': export['face_colors'] = encode(mesh.visual.face_colors) elif mesh.visual.kind == 'vertex': export['vertex_colors'] = encode(mesh.visual.vertex_colors) return export
python
{ "resource": "" }
q23426
minify
train
def minify(path): """ Load a javascript file and minify. Parameters ------------ path: str, path of resource """ if 'http' in path: data = requests.get(path).content.decode( 'ascii', errors='ignore') else: with open(path, 'rb') as f: # some of these assholes use unicode spaces -_- data = f.read().decode('ascii', errors='ignore') # don't re- minify if '.min.' in path: return data try: return jsmin.jsmin(data) except BaseException: return data
python
{ "resource": "" }
q23427
circle_pattern
train
def circle_pattern(pattern_radius, circle_radius, count, center=[0.0, 0.0], angle=None, **kwargs): """ Create a Path2D representing a circle pattern. Parameters ------------ pattern_radius : float Radius of circle centers circle_radius : float The radius of each circle count : int Number of circles in the pattern center : (2,) float Center of pattern angle : float If defined pattern will span this angle If None, pattern will be evenly spaced Returns ------------- pattern : trimesh.path.Path2D Path containing circular pattern """ from .path import Path2D if angle is None: angles = np.linspace(0.0, np.pi * 2.0, count + 1)[:-1] elif isinstance(angle, float) or isinstance(angle, int): angles = np.linspace(0.0, angle, count) else: raise ValueError('angle must be float or int!') # centers of circles centers = np.column_stack(( np.cos(angles), np.sin(angles))) * pattern_radius vert = [] ents = [] for circle_center in centers: # (3,3) center points of arc three = arc.to_threepoint(angles=[0, np.pi], center=circle_center, radius=circle_radius) # add a single circle entity ents.append( entities.Arc( points=np.arange(3) + len(vert), closed=True)) # keep flat array by extend instead of append vert.extend(three) # translate vertices to pattern center vert = np.array(vert) + center pattern = Path2D(entities=ents, vertices=vert, **kwargs) return pattern
python
{ "resource": "" }
q23428
plane_transform
train
def plane_transform(origin, normal): """ Given the origin and normal of a plane find the transform that will move that plane to be coplanar with the XY plane. Parameters ---------- origin : (3,) float Point that lies on the plane normal : (3,) float Vector that points along normal of plane Returns --------- transform: (4,4) float Transformation matrix to move points onto XY plane """ transform = align_vectors(normal, [0, 0, 1]) transform[0:3, 3] = -np.dot(transform, np.append(origin, 1))[0:3] return transform
python
{ "resource": "" }
q23429
align_vectors
train
def align_vectors(a, b, return_angle=False): """ Find a transform between two 3D vectors. Implements the method described here: http://ethaneade.com/rot_between_vectors.pdf Parameters -------------- a : (3,) float Source vector b : (3,) float Target vector return_angle : bool If True return the angle between the two vectors Returns ------------- transform : (4, 4) float Homogenous transform from a to b angle : float Angle between vectors in radians Only returned if return_angle """ # copy of input vectors a = np.array(a, dtype=np.float64, copy=True) b = np.array(b, dtype=np.float64, copy=True) # make sure vectors are 3D if a.shape != (3,) or b.shape != (3,): raise ValueError('only works for (3,) vectors') # unitize input vectors a /= np.linalg.norm(a) b /= np.linalg.norm(b) # projection of a onto b dot = np.dot(a, b) # are vectors just reversed if dot < (tol.zero - 1): # a reversed vector is 180 degrees angle = np.pi # get an arbitrary perpendicular vector to a perp = util.generate_basis(a)[0] * np.eye(3) # (3, 3) rotation from a to b rotation = (2 * np.dot(perp, perp.T)) - np.eye(3) # are vectors already the same elif dot > (1 - tol.zero): angle = 0.0 # no rotation rotation = np.eye(3) # vectors are at some angle to each other else: # we already handled values out of the range [-1.0, 1.0] angle = np.arccos(dot) # (3,) vector perpendicular to both a and b w = np.cross(a, b) # a float between 0.5 and 1.0 c = 1.0 / (1.0 + dot) # (3, 3) skew- symmetric matrix from the (3,) vector w # the matrix has the property: wx == -wx.T wx = np.array([[0, -w[2], w[1]], [w[2], 0, -w[0]], [-w[1], w[0], 0]]) # (3, 3) rotation from a to b rotation = np.eye(3) + wx + (np.dot(wx, wx) * c) # put rotation into homogenous transformation matrix transform = np.eye(4) transform[:3, :3] = rotation if return_angle: return transform, angle return transform
python
{ "resource": "" }
q23430
vector_angle
train
def vector_angle(pairs): """ Find the angles between pairs of unit vectors. Parameters ---------- pairs : (n, 2, 3) float Unit vector pairs Returns ---------- angles : (n,) float Angles between vectors in radians """ pairs = np.asanyarray(pairs, dtype=np.float64) if len(pairs) == 0: return np.array([]) elif util.is_shape(pairs, (2, 3)): pairs = pairs.reshape((-1, 2, 3)) elif not util.is_shape(pairs, (-1, 2, (2, 3))): raise ValueError('pairs must be (n,2,(2|3))!') # do the dot product between vectors dots = util.diagonal_dot(pairs[:, 0], pairs[:, 1]) # clip for floating point error dots = np.clip(dots, -1.0, 1.0) # do cos and remove arbitrary sign angles = np.abs(np.arccos(dots)) return angles
python
{ "resource": "" }
q23431
triangulate_quads
train
def triangulate_quads(quads): """ Given a set of quad faces, return them as triangle faces. Parameters ----------- quads: (n, 4) int Vertex indices of quad faces Returns ----------- faces : (m, 3) int Vertex indices of triangular faces """ if len(quads) == 0: return quads quads = np.asanyarray(quads) faces = np.vstack((quads[:, [0, 1, 2]], quads[:, [2, 3, 0]])) return faces
python
{ "resource": "" }
q23432
mean_vertex_normals
train
def mean_vertex_normals(vertex_count, faces, face_normals, **kwargs): """ Find vertex normals from the mean of the faces that contain that vertex. Parameters ----------- vertex_count : int The number of vertices faces refer to faces : (n, 3) int List of vertex indices face_normals : (n, 3) float Normal vector for each face Returns ----------- vertex_normals : (vertex_count, 3) float Normals for every vertex Vertices unreferenced by faces will be zero. """ def summed_sparse(): # use a sparse matrix of which face contains each vertex to # figure out the summed normal at each vertex # allow cached sparse matrix to be passed if 'sparse' in kwargs: sparse = kwargs['sparse'] else: sparse = index_sparse(vertex_count, faces) summed = sparse.dot(face_normals) return summed def summed_loop(): # loop through every face, in tests was ~50x slower than # doing this with a sparse matrix summed = np.zeros((vertex_count, 3)) for face, normal in zip(faces, face_normals): summed[face] += normal return summed try: summed = summed_sparse() except BaseException: log.warning( 'unable to generate sparse matrix! Falling back!', exc_info=True) summed = summed_loop() # invalid normals will be returned as zero vertex_normals = util.unitize(summed) return vertex_normals
python
{ "resource": "" }
q23433
index_sparse
train
def index_sparse(column_count, indices): """ Return a sparse matrix for which vertices are contained in which faces. Returns --------- sparse: scipy.sparse.coo_matrix of shape (column_count, len(faces)) dtype is boolean Examples ---------- In [1]: sparse = faces_sparse(len(mesh.vertices), mesh.faces) In [2]: sparse.shape Out[2]: (12, 20) In [3]: mesh.faces.shape Out[3]: (20, 3) In [4]: mesh.vertices.shape Out[4]: (12, 3) In [5]: dense = sparse.toarray().astype(int) In [6]: dense Out[6]: array([[1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0], [0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1], [1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0], [0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1]]) In [7]: dense.sum(axis=0) Out[7]: array([3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]) """ indices = np.asanyarray(indices) column_count = int(column_count) row = indices.reshape(-1) col = np.tile(np.arange(len(indices)).reshape( (-1, 1)), (1, indices.shape[1])).reshape(-1) shape = (column_count, len(indices)) data = np.ones(len(col), dtype=np.bool) sparse = coo_matrix((data, (row, col)), shape=shape, dtype=np.bool) return sparse
python
{ "resource": "" }
q23434
get_json
train
def get_json(file_name='../dxf.json.template'): """ Load the JSON blob into native objects """ with open(file_name, 'r') as f: t = json.load(f) return t
python
{ "resource": "" }
q23435
write_json
train
def write_json(template, file_name='../dxf.json.template'): """ Write a native object to a JSON blob """ with open(file_name, 'w') as f: json.dump(template, f, indent=4)
python
{ "resource": "" }
q23436
replace_whitespace
train
def replace_whitespace(text, SAFE_SPACE='|<^>|', insert=True): """ Replace non-strippable whitepace in a string with a safe space """ if insert: # replace whitespace with safe space chr args = (' ', SAFE_SPACE) else: # replace safe space chr with whitespace args = (SAFE_SPACE, ' ') return '\n'.join(line.strip().replace(*args) for line in str.splitlines(text))
python
{ "resource": "" }
q23437
discretize_arc
train
def discretize_arc(points, close=False, scale=1.0): """ Returns a version of a three point arc consisting of line segments. Parameters --------- points : (3, d) float Points on the arc where d in [2,3] close : boolean If True close the arc into a circle scale : float What is the approximate overall drawing scale Used to establish order of magnitude for precision Returns --------- discrete : (m, d) float Connected points in space """ # make sure points are (n, 3) points, is_2D = util.stack_3D(points, return_2D=True) # find the center of the points center_info = arc_center(points) center, R, N, angle = (center_info['center'], center_info['radius'], center_info['normal'], center_info['span']) # if requested, close arc into a circle if close: angle = np.pi * 2 # the number of facets, based on the angle criteria count_a = angle / res.seg_angle count_l = ((R * angle)) / (res.seg_frac * scale) # figure out the number of line segments count = np.max([count_a, count_l]) # force at LEAST 4 points for the arc # otherwise the endpoints will diverge count = np.clip(count, 4, np.inf) count = int(np.ceil(count)) V1 = util.unitize(points[0] - center) V2 = util.unitize(np.cross(-N, V1)) t = np.linspace(0, angle, count) discrete = np.tile(center, (count, 1)) discrete += R * np.cos(t).reshape((-1, 1)) * V1 discrete += R * np.sin(t).reshape((-1, 1)) * V2 # do an in-process check to make sure result endpoints # match the endpoints of the source arc if not close: arc_dist = np.linalg.norm(points[[0, -1]] - discrete[[0, -1]], axis=1) arc_ok = (arc_dist < tol.merge).all() if not arc_ok: log.warn( 'failed to discretize arc (endpoint distance %s)', str(arc_dist)) log.warn('Failed arc points: %s', str(points)) raise ValueError('Arc endpoints diverging!') discrete = discrete[:, :(3 - is_2D)] return discrete
python
{ "resource": "" }
q23438
to_threepoint
train
def to_threepoint(center, radius, angles=None): """ For 2D arcs, given a center and radius convert them to three points on the arc. Parameters ----------- center : (2,) float Center point on the plane radius : float Radius of arc angles : (2,) float Angles in radians for start and end angle if not specified, will default to (0.0, pi) Returns ---------- three : (3, 2) float Arc control points """ # if no angles provided assume we want a half circle if angles is None: angles = [0.0, np.pi] # force angles to float64 angles = np.asanyarray(angles, dtype=np.float64) if angles.shape != (2,): raise ValueError('angles must be (2,)!') # provide the wrap around if angles[1] < angles[0]: angles[1] += np.pi * 2 center = np.asanyarray(center, dtype=np.float64) if center.shape != (2,): raise ValueError('only valid on 2D arcs!') # turn the angles of [start, end] # into [start, middle, end] angles = np.array([angles[0], angles.mean(), angles[1]], dtype=np.float64) # turn angles into (3,2) points three = np.column_stack((np.cos(angles), np.sin(angles))) * radius three += center return three
python
{ "resource": "" }
q23439
abspath
train
def abspath(rel): """ Take paths relative to the current file and convert them to absolute paths. Parameters ------------ rel : str Relative path, IE '../stuff' Returns ------------- abspath : str Absolute path, IE '/home/user/stuff' """ return os.path.abspath(os.path.join(cwd, rel))
python
{ "resource": "" }
q23440
load_pyassimp
train
def load_pyassimp(file_obj, file_type=None, resolver=None, **kwargs): """ Use the pyassimp library to load a mesh from a file object and type or file name if file_obj is a string Parameters --------- file_obj: str, or file object File path or object containing mesh data file_type : str File extension, aka 'stl' resolver : trimesh.visual.resolvers.Resolver Used to load referenced data (like texture files) kwargs : dict Passed through to mesh constructor Returns --------- scene : trimesh.Scene Native trimesh copy of assimp scene """ def LP_to_TM(lp): # try to get the vertex colors attribute colors = (np.reshape(lp.colors, (-1, 4)) [:, :3] * 255).round().astype(np.uint8) # If no vertex colors, try to extract them from the material if len(colors) == 0: if 'diffuse' in lp.material.properties.keys(): colors = np.array(lp.material.properties['diffuse']) # pass kwargs through to mesh constructor mesh_kwargs = copy.deepcopy(kwargs) # add data from the LP_Mesh mesh_kwargs.update({'vertices': lp.vertices, 'vertex_normals': lp.normals, 'faces': lp.faces, 'vertex_colors': colors}) return mesh_kwargs # did we open the file inside this function opened = False # not a file object if not hasattr(file_obj, 'read'): # if there is no read attribute # we assume we've been passed a file name file_type = (str(file_obj).split('.')[-1]).lower() file_obj = open(file_obj, 'rb') opened = True # we need files to be bytes elif not hasattr(file_obj, 'mode') or file_obj.mode != 'rb': # assimp will crash on anything that isn't binary # so if we have a text mode file or anything else # grab the data, encode as bytes, and then use stream data = file_obj.read() if hasattr(data, 'encode'): data = data.encode('utf-8') file_obj = util.wrap_as_stream(data) # load the scene using pyassimp scene = pyassimp.load(file_obj, file_type=file_type) # save a record of mesh names used so we # don't have to do queries on mesh_id.values() mesh_names = set() # save a mapping for {id(mesh) : name} mesh_id = {} # save results as {name : Trimesh} meshes = {} # loop through scene LPMesh objects for m in scene.meshes: # skip meshes without tri/quad faces if m.faces.shape[1] not in [3, 4]: continue # if this mesh has the name of an existing mesh if m.name in mesh_names: # make it the name plus the unique ID of the object name = m.name + str(id(m)) else: # otherwise just use the name it calls itself by name = m.name # save the name to mark as consumed mesh_names.add(name) # save the id:name mapping mesh_id[id(m)] = name # convert the mesh to a trimesh object meshes[name] = LP_to_TM(m) # now go through and collect the transforms from the scene # we are going to save them as a list of dict kwargs transforms = [] # nodes as (parent, node) tuples # use deque so we can pop from both ends queue = collections.deque( [('world', n) for n in scene.rootnode.children]) # consume the queue while len(queue) > 0: # parent name, node object parent, node = queue.pop() # assimp uses weirdly duplicate node names # object ID's are actually unique and consistent node_name = id(node) transforms.append({'frame_from': parent, 'frame_to': node_name, 'matrix': node.transformation}) # loop through meshes this node uses # note that they are the SAME objects as converted # above so we can find their reference using id() for m in node.meshes: if id(m) not in mesh_id: continue # create kwargs for graph.update edge = {'frame_from': node_name, 'frame_to': str(id(m)) + str(node_name), 'matrix': np.eye(4), 'geometry': mesh_id[id(m)]} transforms.append(edge) # add any children to the queue to be visited for child in node.children: queue.appendleft((node_name, child)) # release the loaded scene pyassimp.release(scene) # if we opened the file in this function close it if opened: file_obj.close() # create kwargs for trimesh.exchange.load.load_kwargs result = {'class': 'Scene', 'geometry': meshes, 'graph': transforms, 'base_frame': 'world'} return result
python
{ "resource": "" }
q23441
load_cyassimp
train
def load_cyassimp(file_obj, file_type=None, resolver=None, **kwargs): """ Load a file using the cyassimp bindings. The easiest way to install these is with conda: conda install -c menpo/label/master cyassimp Parameters --------- file_obj: str, or file object File path or object containing mesh data file_type : str File extension, aka 'stl' resolver : trimesh.visual.resolvers.Resolver Used to load referenced data (like texture files) kwargs : dict Passed through to mesh constructor Returns --------- meshes : (n,) list of dict Contain kwargs for Trimesh constructor """ if hasattr(file_obj, 'read'): # if it has a read attribute it is probably a file object with tempfile.NamedTemporaryFile( suffix=str(file_type)) as file_temp: file_temp.write(file_obj.read()) # file name should be bytes scene = cyassimp.AIImporter( file_temp.name.encode('utf-8')) scene.build_scene() else: scene = cyassimp.AIImporter(file_obj.encode('utf-8')) scene.build_scene() meshes = [] for m in scene.meshes: mesh_kwargs = kwargs.copy() mesh_kwargs.update({'vertices': m.points, 'faces': m.trilist}) meshes.append(mesh_kwargs) if len(meshes) == 1: return meshes[0] return meshes
python
{ "resource": "" }
q23442
load_path
train
def load_path(obj, file_type=None, **kwargs): """ Load a file to a Path object. Parameters ----------- obj : One of the following: - Path, Path2D, or Path3D objects - open file object (dxf or svg) - file name (dxf or svg) - shapely.geometry.Polygon - shapely.geometry.MultiLineString - dict with kwargs for Path constructor - (n,2,(2|3)) float, line segments file_type : str Type of file is required if file object passed. Returns --------- path : Path, Path2D, Path3D object Data as a native trimesh Path object """ if isinstance(obj, Path): # we have been passed a Path object so # do nothing and return the passed object return obj elif util.is_file(obj): # for open file objects use loaders loaded = path_loaders[file_type](obj, file_type=file_type) obj.close() elif util.is_string(obj): # strings passed are evaluated as file objects with open(obj, 'rb') as file_obj: # get the file type from the extension file_type = os.path.splitext(obj)[-1][1:].lower() # call the loader loaded = path_loaders[file_type](file_obj, file_type=file_type) elif util.is_instance_named(obj, 'Polygon'): # convert from shapely polygons to Path2D loaded = misc.polygon_to_path(obj) elif util.is_instance_named(obj, 'MultiLineString'): # convert from shapely LineStrings to Path2D loaded = misc.linestrings_to_path(obj) elif util.is_instance_named(obj, 'dict'): # load as kwargs loaded = misc.dict_to_path(obj) elif util.is_sequence(obj): # load as lines in space loaded = misc.lines_to_path(obj) else: raise ValueError('Not a supported object type!') # pass kwargs through to path loader kwargs.update(loaded) # convert the kwargs to a Path2D or Path3D object path = _create_path(**kwargs) return path
python
{ "resource": "" }
q23443
_create_path
train
def _create_path(entities, vertices, metadata=None, **kwargs): """ Turn entities and vertices into a Path2D or a Path3D object depending on dimension of vertices. Parameters ----------- entities : list Entity objects that reference vertex indices vertices : (n, 2) or (n, 3) float Vertices in space metadata : dict Any metadata about the path object Returns ----------- as_path : Path2D or Path3D object Args in native trimesh object form """ # make sure vertices are numpy array vertices = np.asanyarray(vertices, dtype=np.float64) # check dimension of vertices to decide on object type if vertices.shape[1] == 2: path_type = Path2D elif vertices.shape[1] == 3: path_type = Path3D else: # weird or empty vertices, just use default Path object path_type = Path # create the object as_path = path_type(entities=entities, vertices=vertices, metadata=metadata, **kwargs) return as_path
python
{ "resource": "" }
q23444
split_scene
train
def split_scene(geometry): """ Given a geometry, list of geometries, or a Scene return them as a single Scene object. Parameters ---------- geometry : splittable Returns --------- scene: trimesh.Scene """ # already a scene, so return it if util.is_instance_named(geometry, 'Scene'): return geometry # a list of things if util.is_sequence(geometry): metadata = {} for g in geometry: try: metadata.update(g.metadata) except BaseException: continue return Scene(geometry, metadata=metadata) # a single geometry so we are going to split split = collections.deque() metadata = {} for g in util.make_sequence(geometry): split.extend(g.split()) metadata.update(g.metadata) # if there is only one geometry in the mesh # name it from the file name if len(split) == 1 and 'file_name' in metadata: split = {metadata['file_name']: split[0]} scene = Scene(split, metadata=metadata) return scene
python
{ "resource": "" }
q23445
append_scenes
train
def append_scenes(iterable, common=['world']): """ Concatenate multiple scene objects into one scene. Parameters ------------- iterable : (n,) Trimesh or Scene Geometries that should be appended common : (n,) str Nodes that shouldn't be remapped Returns ------------ result : trimesh.Scene Scene containing all geometry """ if isinstance(iterable, Scene): return iterable # save geometry in dict geometry = {} # save transforms as edge tuples edges = [] # nodes which shouldn't be remapped common = set(common) # nodes which are consumed and need to be remapped consumed = set() def node_remap(node): """ Remap node to new name if necessary Parameters ------------- node : hashable Node name in original scene Returns ------------- name : hashable Node name in concatenated scene """ # if we've already remapped a node use it if node in map_node: return map_node[node] # if a node is consumed and isn't one of the nodes # we're going to hold common between scenes remap it if node not in common and node in consumed: name = str(node) + '-' + util.unique_id().upper() map_node[node] = name node = name # keep track of which nodes have been used # in the current scene current.add(node) return node # loop through every geometry for s in iterable: # allow Trimesh/Path2D geometry to be passed if hasattr(s, 'scene'): s = s.scene() # if we don't have a scene raise an exception if not isinstance(s, Scene): raise ValueError('{} is not a scene!'.format( type(s).__name__)) # remap geometries if they have been consumed map_geom = {} for k, v in s.geometry.items(): # if a geometry already exists add a UUID to the name if k in geometry: name = str(k) + '-' + util.unique_id().upper() else: name = k # store name mapping map_geom[k] = name # store geometry with new name geometry[name] = v # remap nodes and edges so duplicates won't # stomp all over each other map_node = {} # the nodes used in this scene current = set() for a, b, attr in s.graph.to_edgelist(): # remap node names from local names a, b = node_remap(a), node_remap(b) # remap geometry keys # if key is not in map_geom it means one of the scenes # referred to geometry that doesn't exist # rather than crash here we ignore it as the user # possibly intended to add in geometries back later if 'geometry' in attr and attr['geometry'] in map_geom: attr['geometry'] = map_geom[attr['geometry']] # save the new edge edges.append((a, b, attr)) # mark nodes from current scene as consumed consumed.update(current) # add all data to a new scene result = Scene() result.graph.from_edgelist(edges) result.geometry.update(geometry) return result
python
{ "resource": "" }
q23446
Scene.add_geometry
train
def add_geometry(self, geometry, node_name=None, geom_name=None, parent_node_name=None, transform=None): """ Add a geometry to the scene. If the mesh has multiple transforms defined in its metadata, they will all be copied into the TransformForest of the current scene automatically. Parameters ---------- geometry : Trimesh, Path2D, Path3D PointCloud or list Geometry to initially add to the scene base_frame : str or hashable Name of base frame metadata : dict Any metadata about the scene graph : TransformForest or None A passed transform graph to use Returns ---------- node_name : str Name of node in self.graph """ if geometry is None: return # PointCloud objects will look like a sequence elif util.is_sequence(geometry): # if passed a sequence add all elements for value in geometry: self.add_geometry( geometry=value, node_name=node_name, geom_name=geom_name, parent_node_name=parent_node_name, transform=transform, ) return elif isinstance(geometry, dict): # if someone passed us a dict of geometry for key, value in geometry.items(): self.add_geometry(value, geom_name=key) return # get or create a name to reference the geometry by if geom_name is not None: # if name is passed use it name = geom_name elif 'name' in geometry.metadata: # if name is in metadata use it name = geometry.metadata['name'] elif 'file_name' in geometry.metadata: name = geometry.metadata['file_name'] else: # try to create a simple name name = 'geometry_' + str(len(self.geometry)) # if its already taken add a unique random string to it if name in self.geometry: name += ':' + util.unique_id().upper() # save the geometry reference self.geometry[name] = geometry # create a unique node name if not passed if node_name is None: # a random unique identifier unique = util.unique_id(increment=len(self.geometry)) # geometry name + UUID node_name = name + '_' + unique.upper() if transform is None: # create an identity transform from parent_node transform = np.eye(4) self.graph.update(frame_to=node_name, frame_from=parent_node_name, matrix=transform, geometry=name, geometry_flags={'visible': True}) return node_name
python
{ "resource": "" }
q23447
Scene.md5
train
def md5(self): """ MD5 of scene which will change when meshes or transforms are changed Returns -------- hashed: str, MD5 hash of scene """ # start with transforms hash hashes = [self.graph.md5()] for g in self.geometry.values(): if hasattr(g, 'md5'): hashes.append(g.md5()) elif hasattr(g, 'tostring'): hashes.append(str(hash(g.tostring()))) else: # try to just straight up hash # this may raise errors hashes.append(str(hash(g))) md5 = util.md5_object(''.join(hashes)) return md5
python
{ "resource": "" }
q23448
Scene.is_valid
train
def is_valid(self): """ Is every geometry connected to the root node. Returns ----------- is_valid : bool Does every geometry have a transform """ if len(self.geometry) == 0: return True try: referenced = {self.graph[i][1] for i in self.graph.nodes_geometry} except BaseException: # if connectivity to world frame is broken return false return False # every geometry is referenced ok = referenced == set(self.geometry.keys()) return ok
python
{ "resource": "" }
q23449
Scene.bounds_corners
train
def bounds_corners(self): """ A list of points that represent the corners of the AABB of every geometry in the scene. This can be useful if you want to take the AABB in a specific frame. Returns ----------- corners: (n, 3) float, points in space """ # the saved corners of each instance corners_inst = [] # (n, 3) float corners of each geometry corners_geom = {k: bounds_module.corners(v.bounds) for k, v in self.geometry.items()} for node_name in self.graph.nodes_geometry: # access the transform and geometry name from node transform, geometry_name = self.graph[node_name] # not all nodes have associated geometry if geometry_name is None: continue # transform geometry corners into where # the instance of the geometry is located corners_inst.extend( transformations.transform_points( corners_geom[geometry_name], transform)) # make corners numpy array corners_inst = np.array(corners_inst, dtype=np.float64) return corners_inst
python
{ "resource": "" }
q23450
Scene.bounds
train
def bounds(self): """ Return the overall bounding box of the scene. Returns -------- bounds: (2,3) float points for min, max corner """ corners = self.bounds_corners bounds = np.array([corners.min(axis=0), corners.max(axis=0)]) return bounds
python
{ "resource": "" }
q23451
Scene.triangles
train
def triangles(self): """ Return a correctly transformed polygon soup of the current scene. Returns ---------- triangles: (n,3,3) float, triangles in space """ triangles = collections.deque() triangles_node = collections.deque() for node_name in self.graph.nodes_geometry: # which geometry does this node refer to transform, geometry_name = self.graph[node_name] # get the actual potential mesh instance geometry = self.geometry[geometry_name] if not hasattr(geometry, 'triangles'): continue # append the (n, 3, 3) triangles to a sequence triangles.append( transformations.transform_points( geometry.triangles.copy().reshape((-1, 3)), matrix=transform)) # save the node names for each triangle triangles_node.append( np.tile(node_name, len(geometry.triangles))) # save the resulting nodes to the cache self._cache['triangles_node'] = np.hstack(triangles_node) triangles = np.vstack(triangles).reshape((-1, 3, 3)) return triangles
python
{ "resource": "" }
q23452
Scene.geometry_identifiers
train
def geometry_identifiers(self): """ Look up geometries by identifier MD5 Returns --------- identifiers: dict, identifier md5: key in self.geometry """ identifiers = {mesh.identifier_md5: name for name, mesh in self.geometry.items()} return identifiers
python
{ "resource": "" }
q23453
Scene.duplicate_nodes
train
def duplicate_nodes(self): """ Return a sequence of node keys of identical meshes. Will combine meshes duplicated by copying in space with different keys in self.geometry, as well as meshes repeated by self.nodes. Returns ----------- duplicates: (m) sequence of keys to self.nodes that represent identical geometry """ # if there is no geometry we can have no duplicate nodes if len(self.geometry) == 0: return [] # geometry name : md5 of mesh mesh_hash = {k: int(m.identifier_md5, 16) for k, m in self.geometry.items()} # the name of nodes in the scene graph with geometry node_names = np.array(self.graph.nodes_geometry) # the geometry names for each node in the same order node_geom = np.array([self.graph[i][1] for i in node_names]) # the mesh md5 for each node in the same order node_hash = np.array([mesh_hash[v] for v in node_geom]) # indexes of identical hashes node_groups = grouping.group(node_hash) # sequence of node names, where each sublist has identical geometry duplicates = [np.sort(node_names[g]).tolist() for g in node_groups] return duplicates
python
{ "resource": "" }
q23454
Scene.set_camera
train
def set_camera(self, angles=None, distance=None, center=None, resolution=None, fov=None): """ Create a camera object for self.camera, and add a transform to self.graph for it. If arguments are not passed sane defaults will be figured out which show the mesh roughly centered. Parameters ----------- angles : (3,) float Initial euler angles in radians distance : float Distance from centroid center : (3,) float Point camera should be center on camera : Camera object Object that stores camera parameters """ if fov is None: fov = np.array([60, 45]) # if no geometry nothing to set camera to if len(self.geometry) == 0: return # set with no rotation by default if angles is None: angles = np.zeros(3) rotation = transformations.euler_matrix(*angles) transform = cameras.look_at(self.bounds_corners, fov=fov, rotation=rotation, distance=distance, center=center) if hasattr(self, '_camera') and self._camera is not None: self.camera.fov = fov self.camera._scene = self self.camera.transform = transform else: # create a new camera object self.camera = cameras.Camera(fov=fov, scene=self, transform=transform) return self.camera
python
{ "resource": "" }
q23455
Scene.camera
train
def camera(self): """ Get the single camera for the scene. If not manually set one will abe automatically generated. Returns ---------- camera : trimesh.scene.Camera Camera object defined for the scene """ # no camera set for the scene yet if not hasattr(self, '_camera') or self._camera is None: # will create a camera with everything in view return self.set_camera() return self._camera
python
{ "resource": "" }
q23456
Scene.lights
train
def lights(self): """ Get a list of the lights in the scene. If nothing is set it will generate some automatically. Returns ------------- lights : [trimesh.scene.lighting.Light] Lights in the scene. """ if not hasattr(self, '_lights') or self._lights is None: # do some automatic lighting lights, transforms = lighting.autolight(self) # assign the transforms to the scene graph for L, T in zip(lights, transforms): self.graph[L.name] = T # set the lights self._lights = lights return self._lights
python
{ "resource": "" }
q23457
Scene.rezero
train
def rezero(self): """ Move the current scene so that the AABB of the whole scene is centered at the origin. Does this by changing the base frame to a new, offset base frame. """ if self.is_empty or np.allclose(self.centroid, 0.0): # early exit since what we want already exists return # the transformation to move the overall scene to AABB centroid matrix = np.eye(4) matrix[:3, 3] = -self.centroid # we are going to change the base frame new_base = str(self.graph.base_frame) + '_I' self.graph.update(frame_from=new_base, frame_to=self.graph.base_frame, matrix=matrix) self.graph.base_frame = new_base
python
{ "resource": "" }
q23458
Scene.dump
train
def dump(self): """ Append all meshes in scene to a list of meshes. Returns ---------- dumped: (n,) list, of Trimesh objects transformed to their location the scene.graph """ result = collections.deque() for node_name in self.graph.nodes_geometry: transform, geometry_name = self.graph[node_name] current = self.geometry[geometry_name].copy() current.apply_transform(transform) result.append(current) return np.array(result)
python
{ "resource": "" }
q23459
Scene.convex_hull
train
def convex_hull(self): """ The convex hull of the whole scene Returns --------- hull: Trimesh object, convex hull of all meshes in scene """ points = util.vstack_empty([m.vertices for m in self.dump()]) hull = convex.convex_hull(points) return hull
python
{ "resource": "" }
q23460
Scene.export
train
def export(self, file_type=None): """ Export a snapshot of the current scene. Parameters ---------- file_type: what encoding to use for meshes ie: dict, dict64, stl Returns ---------- export: dict with keys: meshes: list of meshes, encoded as per file_type transforms: edge list of transforms, eg: ((u, v, {'matrix' : np.eye(4)})) """ file_type = str(file_type).strip().lower() if file_type == 'gltf': return gltf.export_gltf(self) elif file_type == 'glb': return gltf.export_glb(self) export = {'graph': self.graph.to_edgelist(), 'geometry': {}, 'scene_cache': {'bounds': self.bounds.tolist(), 'extents': self.extents.tolist(), 'centroid': self.centroid.tolist(), 'scale': self.scale}} if file_type is None: file_type = {'Trimesh': 'ply', 'Path2D': 'dxf'} # if the mesh has an export method use it # otherwise put the mesh # itself into the export object for geometry_name, geometry in self.geometry.items(): if hasattr(geometry, 'export'): if isinstance(file_type, dict): # case where we have export types that are different # for different classes of objects. for query_class, query_format in file_type.items(): if util.is_instance_named(geometry, query_class): export_type = query_format break else: # if file_type is not a dict, try to export everything in the # the scene as that value like 'ply' export_type = file_type exported = {'data': geometry.export(file_type=export_type), 'file_type': export_type} export['geometry'][geometry_name] = exported else: # case where mesh object doesn't have exporter # might be that someone replaced the mesh with a URL export['geometry'][geometry_name] = geometry return export
python
{ "resource": "" }
q23461
Scene.save_image
train
def save_image(self, resolution=(1024, 768), **kwargs): """ Get a PNG image of a scene. Parameters ----------- resolution: (2,) int, resolution to render image **kwargs: passed to SceneViewer constructor Returns ----------- png: bytes, render of scene in PNG form """ from ..viewer import render_scene png = render_scene(scene=self, resolution=resolution, **kwargs) return png
python
{ "resource": "" }
q23462
Scene.units
train
def units(self): """ Get the units for every model in the scene, and raise a ValueError if there are mixed units. Returns ----------- units : str Units for every model in the scene """ existing = [i.units for i in self.geometry.values()] if any(existing[0] != e for e in existing): # if all of our geometry doesn't have the same units already # this function will only do some hot nonsense raise ValueError('models in scene have inconsistent units!') return existing[0]
python
{ "resource": "" }
q23463
Scene.units
train
def units(self, value): """ Set the units for every model in the scene without converting any units just setting the tag. Parameters ------------ value : str Value to set every geometry unit value to """ for m in self.geometry.values(): m.units = value
python
{ "resource": "" }
q23464
Scene.convert_units
train
def convert_units(self, desired, guess=False): """ If geometry has units defined convert them to new units. Returns a new scene with geometries and transforms scaled. Parameters ---------- desired : str Desired final unit system: 'inches', 'mm', etc. guess : bool Is the converter allowed to guess scale when models don't have it specified in their metadata. Returns ---------- scaled : trimesh.Scene Copy of scene with scaling applied and units set for every model """ # if there is no geometry do nothing if len(self.geometry) == 0: return self.copy() current = self.units if current is None: # will raise ValueError if not in metadata # and not allowed to guess current = units.units_from_metadata(self, guess=guess) # find the float conversion scale = units.unit_conversion(current=current, desired=desired) # exit early if our current units are the same as desired units if np.isclose(scale, 1.0): result = self.copy() else: result = self.scaled(scale=scale) # apply the units to every geometry of the scaled result result.units = desired return result
python
{ "resource": "" }
q23465
Scene.explode
train
def explode(self, vector=None, origin=None): """ Explode a scene around a point and vector. Parameters ----------- vector : (3,) float or float Explode radially around a direction vector or spherically origin : (3,) float Point to explode around """ if origin is None: origin = self.centroid if vector is None: vector = self.scale / 25.0 vector = np.asanyarray(vector, dtype=np.float64) origin = np.asanyarray(origin, dtype=np.float64) for node_name in self.graph.nodes_geometry: transform, geometry_name = self.graph[node_name] centroid = self.geometry[geometry_name].centroid # transform centroid into nodes location centroid = np.dot(transform, np.append(centroid, 1))[:3] if vector.shape == (): # case where our vector is a single number offset = (centroid - origin) * vector elif np.shape(vector) == (3,): projected = np.dot(vector, (centroid - origin)) offset = vector * projected else: raise ValueError('explode vector wrong shape!') transform[0:3, 3] += offset self.graph[node_name] = transform
python
{ "resource": "" }
q23466
Scene.scaled
train
def scaled(self, scale): """ Return a copy of the current scene, with meshes and scene transforms scaled to the requested factor. Parameters ----------- scale : float Factor to scale meshes and transforms Returns ----------- scaled : trimesh.Scene A copy of the current scene but scaled """ scale = float(scale) # matrix for 2D scaling scale_2D = np.eye(3) * scale # matrix for 3D scaling scale_3D = np.eye(4) * scale # preallocate transforms and geometries nodes = self.graph.nodes_geometry transforms = np.zeros((len(nodes), 4, 4)) geometries = [None] * len(nodes) # collect list of transforms for i, node in enumerate(nodes): transforms[i], geometries[i] = self.graph[node] # result is a copy result = self.copy() # remove all existing transforms result.graph.clear() for group in grouping.group(geometries): # hashable reference to self.geometry geometry = geometries[group[0]] # original transform from world to geometry original = transforms[group[0]] # transform for geometry new_geom = np.dot(scale_3D, original) if result.geometry[geometry].vertices.shape[1] == 2: # if our scene is 2D only scale in 2D result.geometry[geometry].apply_transform(scale_2D) else: # otherwise apply the full transform result.geometry[geometry].apply_transform(new_geom) for node, T in zip(self.graph.nodes_geometry[group], transforms[group]): # generate the new transforms transform = util.multi_dot( [scale_3D, T, np.linalg.inv(new_geom)]) # apply scale to translation transform[:3, 3] *= scale # update scene with new transforms result.graph.update(frame_to=node, matrix=transform, geometry=geometry) return result
python
{ "resource": "" }
q23467
Scene.copy
train
def copy(self): """ Return a deep copy of the current scene Returns ---------- copied : trimesh.Scene Copy of the current scene """ # use the geometries copy method to # allow them to handle references to unpickle-able objects geometry = {n: g.copy() for n, g in self.geometry.items()} # create a new scene with copied geometry and graph copied = Scene(geometry=geometry, graph=self.graph.copy()) return copied
python
{ "resource": "" }
q23468
Scene.show
train
def show(self, viewer=None, **kwargs): """ Display the current scene. Parameters ----------- viewer: str 'gl': open a pyglet window str,'notebook': return ipython.display.HTML None: automatically pick based on whether or not we are in an ipython notebook smooth : bool Turn on or off automatic smooth shading """ if viewer is None: # check to see if we are in a notebook or not from ..viewer import in_notebook viewer = ['gl', 'notebook'][int(in_notebook())] if viewer == 'gl': # this imports pyglet, and will raise an ImportError # if pyglet is not available from ..viewer import SceneViewer return SceneViewer(self, **kwargs) elif viewer == 'notebook': from ..viewer import scene_to_notebook return scene_to_notebook(self, **kwargs) else: raise ValueError('viewer must be "gl", "notebook", or None')
python
{ "resource": "" }
q23469
available_formats
train
def available_formats(): """ Get a list of all available loaders Returns ----------- loaders : list Extensions of available loaders i.e. 'stl', 'ply', 'dxf', etc. """ loaders = mesh_formats() loaders.extend(path_formats()) loaders.extend(compressed_loaders.keys()) return loaders
python
{ "resource": "" }
q23470
load_mesh
train
def load_mesh(file_obj, file_type=None, resolver=None, **kwargs): """ Load a mesh file into a Trimesh object Parameters ----------- file_obj : str or file object File name or file with mesh data file_type : str or None Which file type, e.g. 'stl' kwargs : dict Passed to Trimesh constructor Returns ---------- mesh : trimesh.Trimesh or trimesh.Scene Loaded geometry data """ # parse the file arguments into clean loadable form (file_obj, # file- like object file_type, # str, what kind of file metadata, # dict, any metadata from file name opened, # bool, did we open the file ourselves resolver # object to load referenced resources ) = parse_file_args(file_obj=file_obj, file_type=file_type, resolver=resolver) try: # make sure we keep passed kwargs to loader # but also make sure loader keys override passed keys results = mesh_loaders[file_type](file_obj, file_type=file_type, resolver=resolver, **kwargs) if util.is_file(file_obj): file_obj.close() log.debug('loaded mesh using %s', mesh_loaders[file_type].__name__) if not isinstance(results, list): results = [results] loaded = [] for result in results: kwargs.update(result) loaded.append(load_kwargs(kwargs)) loaded[-1].metadata.update(metadata) if len(loaded) == 1: loaded = loaded[0] finally: # if we failed to load close file if opened: file_obj.close() return loaded
python
{ "resource": "" }
q23471
load_compressed
train
def load_compressed(file_obj, file_type=None, resolver=None, mixed=False, **kwargs): """ Given a compressed archive load all the geometry that we can from it. Parameters ---------- file_obj : open file-like object Containing compressed data file_type : str Type of the archive file mixed : bool If False, for archives containing both 2D and 3D data will only load the 3D data into the Scene. Returns ---------- scene : trimesh.Scene Geometry loaded in to a Scene object """ # parse the file arguments into clean loadable form (file_obj, # file- like object file_type, # str, what kind of file metadata, # dict, any metadata from file name opened, # bool, did we open the file ourselves resolver # object to load referenced resources ) = parse_file_args(file_obj=file_obj, file_type=file_type, resolver=resolver) try: # a dict of 'name' : file-like object files = util.decompress(file_obj=file_obj, file_type=file_type) # store loaded geometries as a list geometries = [] # so loaders can access textures/etc resolver = visual.resolvers.ZipResolver(files) # try to save the files with meaningful metadata if 'file_path' in metadata: archive_name = metadata['file_path'] else: archive_name = 'archive' # populate our available formats if mixed: available = available_formats() else: # all types contained in ZIP archive contains = set(util.split_extension(n).lower() for n in files.keys()) # if there are no mesh formats available if contains.isdisjoint(mesh_formats()): available = path_formats() else: available = mesh_formats() for name, data in files.items(): # only load formats that we support compressed_type = util.split_extension(name).lower() if compressed_type not in available: # don't raise an exception, just try the next one continue # store the file name relative to the archive metadata['file_name'] = (archive_name + '/' + os.path.basename(name)) # load the individual geometry loaded = load(file_obj=data, file_type=compressed_type, resolver=resolver, metadata=metadata, **kwargs) # some loaders return multiple geometries if util.is_sequence(loaded): # if the loader has returned a list of meshes geometries.extend(loaded) else: # if the loader has returned a single geometry geometries.append(loaded) finally: # if we opened the file in this function # clean up after ourselves if opened: file_obj.close() # append meshes or scenes into a single Scene object result = append_scenes(geometries) return result
python
{ "resource": "" }
q23472
load_remote
train
def load_remote(url, **kwargs): """ Load a mesh at a remote URL into a local trimesh object. This must be called explicitly rather than automatically from trimesh.load to ensure users don't accidentally make network requests. Parameters ------------ url : string URL containing mesh file **kwargs : passed to `load` """ # import here to keep requirement soft import requests # download the mesh response = requests.get(url) # wrap as file object file_obj = util.wrap_as_stream(response.content) # so loaders can access textures/etc resolver = visual.resolvers.WebResolver(url) # actually load loaded = load(file_obj=file_obj, file_type=url, resolver=resolver, **kwargs) return loaded
python
{ "resource": "" }
q23473
load_kwargs
train
def load_kwargs(*args, **kwargs): """ Load geometry from a properly formatted dict or kwargs """ def handle_scene(): """ Load a scene from our kwargs: class: Scene geometry: dict, name: Trimesh kwargs graph: list of dict, kwargs for scene.graph.update base_frame: str, base frame of graph """ scene = Scene() scene.geometry.update({k: load_kwargs(v) for k, v in kwargs['geometry'].items()}) for k in kwargs['graph']: if isinstance(k, dict): scene.graph.update(**k) elif util.is_sequence(k) and len(k) == 3: scene.graph.update(k[1], k[0], **k[2]) if 'base_frame' in kwargs: scene.graph.base_frame = kwargs['base_frame'] if 'metadata' in kwargs: scene.metadata.update(kwargs['metadata']) return scene def handle_trimesh_kwargs(): """ Load information with vertices and faces into a mesh or PointCloud object. """ if (isinstance(kwargs['vertices'], dict) or isinstance(kwargs['faces'], dict)): return Trimesh(**misc.load_dict(kwargs)) elif kwargs['faces'] is None: # vertices without faces returns a PointCloud return PointCloud(**kwargs) else: return Trimesh(**kwargs) def handle_trimesh_export(): data, file_type = kwargs['data'], kwargs['file_type'] if not isinstance(data, dict): data = util.wrap_as_stream(data) k = mesh_loaders[file_type](data, file_type=file_type) return Trimesh(**k) # if we've been passed a single dict instead of kwargs # substitute the dict for kwargs if (len(kwargs) == 0 and len(args) == 1 and isinstance(args[0], dict)): kwargs = args[0] # function : list of expected keys handlers = {handle_scene: ('graph', 'geometry'), handle_trimesh_kwargs: ('vertices', 'faces'), handle_trimesh_export: ('file_type', 'data')} # loop through handler functions and expected key handler = None for func, expected in handlers.items(): if all(i in kwargs for i in expected): # all expected kwargs exist handler = func # exit the loop as we found one break if handler is None: raise ValueError('unable to determine type!') return handler()
python
{ "resource": "" }
q23474
parse_file_args
train
def parse_file_args(file_obj, file_type, resolver=None, **kwargs): """ Given a file_obj and a file_type try to turn them into a file-like object and a lowercase string of file type. Parameters ----------- file_obj: str: if string represents a file path, returns ------------------------------------------- file_obj: an 'rb' opened file object of the path file_type: the extension from the file path str: if string is NOT a path, but has JSON-like special characters ------------------------------------------- file_obj: the same string passed as file_obj file_type: set to 'json' str: string is a valid URL ------------------------------------------- file_obj: an open 'rb' file object with retrieved data file_type: from the extension str: string is not an existing path or a JSON-like object ------------------------------------------- ValueError will be raised as we can't do anything with input file like object: we cannot grab information on file_type automatically ------------------------------------------- ValueError will be raised if file_type is None file_obj: same as input file_type: same as input other object: like a shapely.geometry.Polygon, etc: ------------------------------------------- file_obj: same as input file_type: if None initially, set to the class name (in lower case), otherwise passed through file_type: str, type of file and handled according to above Returns ----------- file_obj: loadable object file_type: str, lower case of the type of file (eg 'stl', 'dae', etc) metadata: dict, any metadata opened: bool, did we open the file or not """ metadata = {} opened = False if ('metadata' in kwargs and isinstance(kwargs['metadata'], dict)): metadata.update(kwargs['metadata']) if util.is_file(file_obj) and file_type is None: raise ValueError('file_type must be set when passing file objects!') if util.is_string(file_obj): try: # os.path.isfile will return False incorrectly # if we don't give it an absolute path file_path = os.path.expanduser(file_obj) file_path = os.path.abspath(file_path) exists = os.path.isfile(file_path) except BaseException: exists = False # file obj is a string which exists on filesystm if exists: # if not passed create a resolver to find other files if resolver is None: resolver = visual.resolvers.FilePathResolver(file_path) # save the file name and path to metadata metadata['file_path'] = file_path metadata['file_name'] = os.path.basename(file_obj) # if file_obj is a path that exists use extension as file_type if file_type is None: file_type = util.split_extension( file_path, special=['tar.gz', 'tar.bz2']) # actually open the file file_obj = open(file_path, 'rb') opened = True else: if '{' in file_obj: # if a dict bracket is in the string, its probably a straight # JSON file_type = 'json' elif 'https://' in file_obj or 'http://' in file_obj: # we've been passed a URL, warn to use explicit function # and don't do network calls via magical pipeline raise ValueError( 'use load_remote to load URL: {}'.format(file_obj)) elif file_type is None: raise ValueError('string is not a file: {}'.format(file_obj)) if file_type is None: file_type = file_obj.__class__.__name__ if util.is_string(file_type) and '.' in file_type: # if someone has passed the whole filename as the file_type # use the file extension as the file_type if 'file_path' not in metadata: metadata['file_path'] = file_type metadata['file_name'] = os.path.basename(file_type) file_type = util.split_extension(file_type) if resolver is None and os.path.exists(file_type): resolver = visual.resolvers.FilePathResolver(file_type) # all our stored extensions reference in lower case file_type = file_type.lower() # if we still have no resolver try using file_obj name if (resolver is None and hasattr(file_obj, 'name') and len(file_obj.name) > 0): resolver = visual.resolvers.FilePathResolver(file_obj.name) return file_obj, file_type, metadata, opened, resolver
python
{ "resource": "" }
q23475
pack_rectangles
train
def pack_rectangles(rectangles, sheet_size, shuffle=False): """ Pack smaller rectangles onto a larger rectangle, using a binary space partition tree. Parameters ---------- rectangles : (n, 2) float An array of (width, height) pairs representing the rectangles to be packed. sheet_size : (2,) float Width, height of rectangular sheet shuffle : bool Whether or not to shuffle the insert order of the smaller rectangles, as the final packing density depends on insertion order. Returns --------- density : float Area filled over total sheet area offset : (m,2) float Offsets to move rectangles to their packed location inserted : (n,) bool Which of the original rectangles were packed consumed_box : (2,) float Bounding box size of packed result """ offset = np.zeros((len(rectangles), 2)) inserted = np.zeros(len(rectangles), dtype=np.bool) box_order = np.argsort(np.sum(rectangles**2, axis=1))[::-1] area = 0.0 density = 0.0 if shuffle: shuffle_len = int(np.random.random() * len(rectangles)) - 1 box_order[0:shuffle_len] = np.random.permutation( box_order[0:shuffle_len]) sheet = RectangleBin(size=sheet_size) for index in box_order: insert_location = sheet.insert(rectangles[index]) if insert_location is not None: area += np.prod(rectangles[index]) offset[index] += insert_location inserted[index] = True consumed_box = np.max((offset + rectangles)[inserted], axis=0) density = area / np.product(consumed_box) return density, offset[inserted], inserted, consumed_box
python
{ "resource": "" }
q23476
pack_paths
train
def pack_paths(paths, sheet_size=None): """ Pack a list of Path2D objects into a rectangle. Parameters ------------ paths: (n,) Path2D Geometry to be packed Returns ------------ packed : trimesh.path.Path2D Object containing input geometry inserted : (m,) int Indexes of paths inserted into result """ from .util import concatenate if sheet_size is not None: sheet_size = np.sort(sheet_size)[::-1] quantity = [] for path in paths: if 'quantity' in path.metadata: quantity.append(path.metadata['quantity']) else: quantity.append(1) # pack using exterior polygon (will OBB) polygons = [i.polygons_closed[i.root[0]] for i in paths] # pack the polygons using rectangular bin packing inserted, transforms = multipack(polygons=polygons, quantity=quantity, sheet_size=sheet_size) multi = [] for i, T in zip(inserted, transforms): multi.append(paths[i].copy()) multi[-1].apply_transform(T) # append all packed paths into a single Path object packed = concatenate(multi) return packed, inserted
python
{ "resource": "" }
q23477
multipack
train
def multipack(polygons, sheet_size=None, iterations=50, density_escape=.95, spacing=0.094, quantity=None): """ Pack polygons into a rectangle by taking each Polygon's OBB and then packing that as a rectangle. Parameters ------------ polygons : (n,) shapely.geometry.Polygon Source geometry sheet_size : (2,) float Size of rectangular sheet iterations : int Number of times to run the loop density_escape : float When to exit early (0.0 - 1.0) spacing : float How big a gap to leave between polygons quantity : (n,) int, or None Quantity of each Polygon Returns ------------- overall_inserted : (m,) int Indexes of inserted polygons packed : (m, 3, 3) float Homogeonous transforms from original frame to packed frame """ from .polygons import polygons_obb if quantity is None: quantity = np.ones(len(polygons), dtype=np.int64) else: quantity = np.asanyarray(quantity, dtype=np.int64) if len(quantity) != len(polygons): raise ValueError('quantity must match polygons') # find the oriented bounding box of the polygons obb, rectangles = polygons_obb(polygons) # pad all sides of the rectangle rectangles += 2.0 * spacing # move the OBB transform so the polygon is centered # in the padded rectangle for i, r in enumerate(rectangles): obb[i][0:2, 2] += r * .5 # for polygons occurring multiple times indexes = np.hstack([np.ones(q, dtype=np.int64) * i for i, q in enumerate(quantity)]) # stack using advanced indexing obb = obb[indexes] rectangles = rectangles[indexes] # store timing tic = time.time() overall_density = 0.0 # if no sheet size specified, make a large one if sheet_size is None: max_dim = np.max(rectangles, axis=0) sum_dim = np.sum(rectangles, axis=0) sheet_size = [sum_dim[0], max_dim[1] * 2] log.debug('packing %d polygons', len(polygons)) # run packing for a number of iterations, shuffling insertion order for i in range(iterations): (density, offset, inserted, sheet) = pack_rectangles(rectangles, sheet_size=sheet_size, shuffle=(i != 0)) if density > overall_density: overall_density = density overall_offset = offset overall_inserted = inserted if density > density_escape: break toc = time.time() log.debug('packing finished %i iterations in %f seconds', i + 1, toc - tic) log.debug('%i/%i parts were packed successfully', np.sum(overall_inserted), quantity.sum()) log.debug('final rectangular density is %f.', overall_density) # transformations to packed positions packed = obb[overall_inserted] # apply the offset and inter- polygon spacing packed.reshape(-1, 9)[:, [2, 5]] += overall_offset + spacing return indexes[overall_inserted], packed
python
{ "resource": "" }
q23478
RectangleBin.insert
train
def insert(self, rectangle): """ Insert a rectangle into the bin. Parameters ------------- rectangle: (2,) float, size of rectangle to insert """ rectangle = np.asanyarray(rectangle, dtype=np.float64) for child in self.child: if child is not None: attempt = child.insert(rectangle) if attempt is not None: return attempt if self.occupied: return None # compare the bin size to the insertion candidate size size_test = self.extents - rectangle # this means the inserted rectangle is too big for the cell if np.any(size_test < -tol.zero): return None # since the cell is big enough for the current rectangle, either it # is going to be inserted here, or the cell is going to be split # either way, the cell is now occupied. self.occupied = True # this means the inserted rectangle fits perfectly # since we already checked to see if it was negative, no abs is needed if np.all(size_test < tol.zero): return self.bounds[0:2] # since the rectangle fits but the empty space is too big, # we need to create some children to insert into # first, we decide which way to split vertical = size_test[0] > size_test[1] length = rectangle[int(not vertical)] child_bounds = self.split(length, vertical) self.child[0] = RectangleBin(bounds=child_bounds[0]) self.child[1] = RectangleBin(bounds=child_bounds[1]) return self.child[0].insert(rectangle)
python
{ "resource": "" }
q23479
RectangleBin.split
train
def split(self, length, vertical=True): """ Returns two bounding boxes representing the current bounds split into two smaller boxes. Parameters ------------- length: float, length to split vertical: bool, if True will split box vertically Returns ------------- box: (2,4) float, two bounding boxes consisting of: [minx, miny, maxx, maxy] """ # also know as [minx, miny, maxx, maxy] [left, bottom, right, top] = self.bounds if vertical: box = [[left, bottom, left + length, top], [left + length, bottom, right, top]] else: box = [[left, bottom, right, bottom + length], [left, bottom + length, right, top]] return box
python
{ "resource": "" }
q23480
oriented_bounds_2D
train
def oriented_bounds_2D(points, qhull_options='QbB'): """ Find an oriented bounding box for an array of 2D points. Parameters ---------- points : (n,2) float Points in 2D. Returns ---------- transform : (3,3) float Homogenous 2D transformation matrix to move the input points so that the axis aligned bounding box is CENTERED AT THE ORIGIN. rectangle : (2,) float Size of extents once input points are transformed by transform """ # make sure input is a numpy array points = np.asanyarray(points, dtype=np.float64) # create a convex hull object of our points # 'QbB' is a qhull option which has it scale the input to unit # box to avoid precision issues with very large/small meshes convex = spatial.ConvexHull( points, qhull_options=qhull_options) # (n,2,3) line segments hull_edges = convex.points[convex.simplices] # (n,2) points on the convex hull hull_points = convex.points[convex.vertices] # direction of the edges of the hull polygon edge_vectors = np.diff(hull_edges, axis=1).reshape((-1, 2)) # unitize vectors edge_vectors /= np.linalg.norm(edge_vectors, axis=1).reshape((-1, 1)) # create a set of perpendicular vectors perp_vectors = np.fliplr(edge_vectors) * [-1.0, 1.0] # find the projection of every hull point on every edge vector # this does create a potentially gigantic n^2 array in memory, # and there is the 'rotating calipers' algorithm which avoids this # however, we have reduced n with a convex hull and numpy dot products # are extremely fast so in practice this usually ends up being pretty # reasonable x = np.dot(edge_vectors, hull_points.T) y = np.dot(perp_vectors, hull_points.T) # reduce the projections to maximum and minimum per edge vector bounds = np.column_stack((x.min(axis=1), y.min(axis=1), x.max(axis=1), y.max(axis=1))) # calculate the extents and area for each edge vector pair extents = np.diff(bounds.reshape((-1, 2, 2)), axis=1).reshape((-1, 2)) area = np.product(extents, axis=1) area_min = area.argmin() # (2,) float of smallest rectangle size rectangle = extents[area_min] # find the (3,3) homogenous transformation which moves the input # points to have a bounding box centered at the origin offset = -bounds[area_min][:2] - (rectangle * .5) theta = np.arctan2(*edge_vectors[area_min][::-1]) transform = transformations.planar_matrix(offset, theta) # we would like to consistently return an OBB with # the largest dimension along the X axis rather than # the long axis being arbitrarily X or Y. if np.less(*rectangle): # a 90 degree rotation flip = transformations.planar_matrix(theta=np.pi / 2) # apply the rotation transform = np.dot(flip, transform) # switch X and Y in the OBB extents rectangle = np.roll(rectangle, 1) return transform, rectangle
python
{ "resource": "" }
q23481
corners
train
def corners(bounds): """ Given a pair of axis aligned bounds, return all 8 corners of the bounding box. Parameters ---------- bounds : (2,3) or (2,2) float Axis aligned bounds Returns ---------- corners : (8,3) float Corner vertices of the cube """ bounds = np.asanyarray(bounds, dtype=np.float64) if util.is_shape(bounds, (2, 2)): bounds = np.column_stack((bounds, [0, 0])) elif not util.is_shape(bounds, (2, 3)): raise ValueError('bounds must be (2,2) or (2,3)!') minx, miny, minz, maxx, maxy, maxz = np.arange(6) corner_index = np.array([minx, miny, minz, maxx, miny, minz, maxx, maxy, minz, minx, maxy, minz, minx, miny, maxz, maxx, miny, maxz, maxx, maxy, maxz, minx, maxy, maxz]).reshape((-1, 3)) corners = bounds.reshape(-1)[corner_index] return corners
python
{ "resource": "" }
q23482
contains
train
def contains(bounds, points): """ Do an axis aligned bounding box check on a list of points. Parameters ----------- bounds : (2, dimension) float Axis aligned bounding box points : (n, dimension) float Points in space Returns ----------- points_inside : (n,) bool True if points are inside the AABB """ # make sure we have correct input types bounds = np.asanyarray(bounds, dtype=np.float64) points = np.asanyarray(points, dtype=np.float64) if len(bounds) != 2: raise ValueError('bounds must be (2,dimension)!') if not util.is_shape(points, (-1, bounds.shape[1])): raise ValueError('bounds shape must match points!') # run the simple check points_inside = np.logical_and( (points > bounds[0]).all(axis=1), (points < bounds[1]).all(axis=1)) return points_inside
python
{ "resource": "" }
q23483
in_notebook
train
def in_notebook(): """ Check to see if we are in an IPython or Jypyter notebook. Returns ----------- in_notebook : bool Returns True if we are in a notebook """ try: # function returns IPython context, but only in IPython ipy = get_ipython() # NOQA # we only want to render rich output in notebooks # in terminals we definitely do not want to output HTML name = str(ipy.__class__).lower() terminal = 'terminal' in name # spyder uses ZMQshell, and can appear to be a notebook spyder = '_' in os.environ and 'spyder' in os.environ['_'] # assume we are in a notebook if we are not in # a terminal and we haven't been run by spyder notebook = (not terminal) and (not spyder) return notebook except BaseException: return False
python
{ "resource": "" }
q23484
_ScandinavianStemmer._r1_scandinavian
train
def _r1_scandinavian(self, word, vowels): """ Return the region R1 that is used by the Scandinavian stemmers. R1 is the region after the first non-vowel following a vowel, or is the null region at the end of the word if there is no such non-vowel. But then R1 is adjusted so that the region before it contains at least three letters. :param word: The word whose region R1 is determined. :type word: str or unicode :param vowels: The vowels of the respective language that are used to determine the region R1. :type vowels: unicode :return: the region R1 for the respective word. :rtype: unicode :note: This helper method is invoked by the respective stem method of the subclasses DanishStemmer, NorwegianStemmer, and SwedishStemmer. It is not to be invoked directly! """ r1 = "" for i in range(1, len(word)): if word[i] not in vowels and word[i-1] in vowels: if len(word[:i+1]) < 3 and len(word[:i+1]) > 0: r1 = word[3:] elif len(word[:i+1]) >= 3: r1 = word[i+1:] else: return word break return r1
python
{ "resource": "" }
q23485
_StandardStemmer._r1r2_standard
train
def _r1r2_standard(self, word, vowels): """ Return the standard interpretations of the string regions R1 and R2. R1 is the region after the first non-vowel following a vowel, or is the null region at the end of the word if there is no such non-vowel. R2 is the region after the first non-vowel following a vowel in R1, or is the null region at the end of the word if there is no such non-vowel. :param word: The word whose regions R1 and R2 are determined. :type word: str or unicode :param vowels: The vowels of the respective language that are used to determine the regions R1 and R2. :type vowels: unicode :return: (r1,r2), the regions R1 and R2 for the respective word. :rtype: tuple :note: This helper method is invoked by the respective stem method of the subclasses DutchStemmer, FinnishStemmer, FrenchStemmer, GermanStemmer, ItalianStemmer, PortugueseStemmer, RomanianStemmer, and SpanishStemmer. It is not to be invoked directly! :note: A detailed description of how to define R1 and R2 can be found at http://snowball.tartarus.org/texts/r1r2.html """ r1 = "" r2 = "" for i in range(1, len(word)): if word[i] not in vowels and word[i-1] in vowels: r1 = word[i+1:] break for i in range(1, len(r1)): if r1[i] not in vowels and r1[i-1] in vowels: r2 = r1[i+1:] break return (r1, r2)
python
{ "resource": "" }
q23486
_StandardStemmer._rv_standard
train
def _rv_standard(self, word, vowels): """ Return the standard interpretation of the string region RV. If the second letter is a consonant, RV is the region after the next following vowel. If the first two letters are vowels, RV is the region after the next following consonant. Otherwise, RV is the region after the third letter. :param word: The word whose region RV is determined. :type word: str or unicode :param vowels: The vowels of the respective language that are used to determine the region RV. :type vowels: unicode :return: the region RV for the respective word. :rtype: unicode :note: This helper method is invoked by the respective stem method of the subclasses ItalianStemmer, PortugueseStemmer, RomanianStemmer, and SpanishStemmer. It is not to be invoked directly! """ rv = "" if len(word) >= 2: if word[1] not in vowels: for i in range(2, len(word)): if word[i] in vowels: rv = word[i+1:] break elif word[:2] in vowels: for i in range(2, len(word)): if word[i] not in vowels: rv = word[i+1:] break else: rv = word[3:] return rv
python
{ "resource": "" }
q23487
FrenchStemmer.__rv_french
train
def __rv_french(self, word, vowels): """ Return the region RV that is used by the French stemmer. If the word begins with two vowels, RV is the region after the third letter. Otherwise, it is the region after the first vowel not at the beginning of the word, or the end of the word if these positions cannot be found. (Exceptionally, u'par', u'col' or u'tap' at the beginning of a word is also taken to define RV as the region to their right.) :param word: The French word whose region RV is determined. :type word: str or unicode :param vowels: The French vowels that are used to determine the region RV. :type vowels: unicode :return: the region RV for the respective French word. :rtype: unicode :note: This helper method is invoked by the stem method of the subclass FrenchStemmer. It is not to be invoked directly! """ rv = "" if len(word) >= 2: if (word.startswith(("par", "col", "tap")) or (word[0] in vowels and word[1] in vowels)): rv = word[3:] else: for i in range(1, len(word)): if word[i] in vowels: rv = word[i+1:] break return rv
python
{ "resource": "" }
q23488
HungarianStemmer.__r1_hungarian
train
def __r1_hungarian(self, word, vowels, digraphs): """ Return the region R1 that is used by the Hungarian stemmer. If the word begins with a vowel, R1 is defined as the region after the first consonant or digraph (= two letters stand for one phoneme) in the word. If the word begins with a consonant, it is defined as the region after the first vowel in the word. If the word does not contain both a vowel and consonant, R1 is the null region at the end of the word. :param word: The Hungarian word whose region R1 is determined. :type word: str or unicode :param vowels: The Hungarian vowels that are used to determine the region R1. :type vowels: unicode :param digraphs: The digraphs that are used to determine the region R1. :type digraphs: tuple :return: the region R1 for the respective word. :rtype: unicode :note: This helper method is invoked by the stem method of the subclass HungarianStemmer. It is not to be invoked directly! """ r1 = "" if word[0] in vowels: for digraph in digraphs: if digraph in word[1:]: r1 = word[word.index(digraph[-1])+1:] return r1 for i in range(1, len(word)): if word[i] not in vowels: r1 = word[i+1:] break else: for i in range(1, len(word)): if word[i] in vowels: r1 = word[i+1:] break return r1
python
{ "resource": "" }
q23489
RussianStemmer.__regions_russian
train
def __regions_russian(self, word): """ Return the regions RV and R2 which are used by the Russian stemmer. In any word, RV is the region after the first vowel, or the end of the word if it contains no vowel. R2 is the region after the first non-vowel following a vowel in R1, or the end of the word if there is no such non-vowel. R1 is the region after the first non-vowel following a vowel, or the end of the word if there is no such non-vowel. :param word: The Russian word whose regions RV and R2 are determined. :type word: str or unicode :return: the regions RV and R2 for the respective Russian word. :rtype: tuple :note: This helper method is invoked by the stem method of the subclass RussianStemmer. It is not to be invoked directly! """ r1 = "" r2 = "" rv = "" vowels = ("A", "U", "E", "a", "e", "i", "o", "u", "y") word = (word.replace("i^a", "A") .replace("i^u", "U") .replace("e`", "E")) for i in range(1, len(word)): if word[i] not in vowels and word[i-1] in vowels: r1 = word[i+1:] break for i in range(1, len(r1)): if r1[i] not in vowels and r1[i-1] in vowels: r2 = r1[i+1:] break for i in range(len(word)): if word[i] in vowels: rv = word[i+1:] break r2 = (r2.replace("A", "i^a") .replace("U", "i^u") .replace("E", "e`")) rv = (rv.replace("A", "i^a") .replace("U", "i^u") .replace("E", "e`")) return (rv, r2)
python
{ "resource": "" }
q23490
RussianStemmer.__cyrillic_to_roman
train
def __cyrillic_to_roman(self, word): """ Transliterate a Russian word into the Roman alphabet. A Russian word whose letters consist of the Cyrillic alphabet are transliterated into the Roman alphabet in order to ease the forthcoming stemming process. :param word: The word that is transliterated. :type word: unicode :return: the transliterated word. :rtype: unicode :note: This helper method is invoked by the stem method of the subclass RussianStemmer. It is not to be invoked directly! """ word = (word.replace("\u0410", "a").replace("\u0430", "a") .replace("\u0411", "b").replace("\u0431", "b") .replace("\u0412", "v").replace("\u0432", "v") .replace("\u0413", "g").replace("\u0433", "g") .replace("\u0414", "d").replace("\u0434", "d") .replace("\u0415", "e").replace("\u0435", "e") .replace("\u0401", "e").replace("\u0451", "e") .replace("\u0416", "zh").replace("\u0436", "zh") .replace("\u0417", "z").replace("\u0437", "z") .replace("\u0418", "i").replace("\u0438", "i") .replace("\u0419", "i`").replace("\u0439", "i`") .replace("\u041A", "k").replace("\u043A", "k") .replace("\u041B", "l").replace("\u043B", "l") .replace("\u041C", "m").replace("\u043C", "m") .replace("\u041D", "n").replace("\u043D", "n") .replace("\u041E", "o").replace("\u043E", "o") .replace("\u041F", "p").replace("\u043F", "p") .replace("\u0420", "r").replace("\u0440", "r") .replace("\u0421", "s").replace("\u0441", "s") .replace("\u0422", "t").replace("\u0442", "t") .replace("\u0423", "u").replace("\u0443", "u") .replace("\u0424", "f").replace("\u0444", "f") .replace("\u0425", "kh").replace("\u0445", "kh") .replace("\u0426", "t^s").replace("\u0446", "t^s") .replace("\u0427", "ch").replace("\u0447", "ch") .replace("\u0428", "sh").replace("\u0448", "sh") .replace("\u0429", "shch").replace("\u0449", "shch") .replace("\u042A", "''").replace("\u044A", "''") .replace("\u042B", "y").replace("\u044B", "y") .replace("\u042C", "'").replace("\u044C", "'") .replace("\u042D", "e`").replace("\u044D", "e`") .replace("\u042E", "i^u").replace("\u044E", "i^u") .replace("\u042F", "i^a").replace("\u044F", "i^a")) return word
python
{ "resource": "" }
q23491
RussianStemmer.__roman_to_cyrillic
train
def __roman_to_cyrillic(self, word): """ Transliterate a Russian word back into the Cyrillic alphabet. A Russian word formerly transliterated into the Roman alphabet in order to ease the stemming process, is transliterated back into the Cyrillic alphabet, its original form. :param word: The word that is transliterated. :type word: str or unicode :return: word, the transliterated word. :rtype: unicode :note: This helper method is invoked by the stem method of the subclass RussianStemmer. It is not to be invoked directly! """ word = (word.replace("i^u", "\u044E").replace("i^a", "\u044F") .replace("shch", "\u0449").replace("kh", "\u0445") .replace("t^s", "\u0446").replace("ch", "\u0447") .replace("e`", "\u044D").replace("i`", "\u0439") .replace("sh", "\u0448").replace("k", "\u043A") .replace("e", "\u0435").replace("zh", "\u0436") .replace("a", "\u0430").replace("b", "\u0431") .replace("v", "\u0432").replace("g", "\u0433") .replace("d", "\u0434").replace("e", "\u0435") .replace("z", "\u0437").replace("i", "\u0438") .replace("l", "\u043B").replace("m", "\u043C") .replace("n", "\u043D").replace("o", "\u043E") .replace("p", "\u043F").replace("r", "\u0440") .replace("s", "\u0441").replace("t", "\u0442") .replace("u", "\u0443").replace("f", "\u0444") .replace("''", "\u044A").replace("y", "\u044B") .replace("'", "\u044C")) return word
python
{ "resource": "" }
q23492
SwedishStemmer.stem
train
def stem(self, word): """ Stem a Swedish word and return the stemmed form. :param word: The word that is stemmed. :type word: str or unicode :return: The stemmed form. :rtype: unicode """ word = word.lower() r1 = self._r1_scandinavian(word, self.__vowels) # STEP 1 for suffix in self.__step1_suffixes: if r1.endswith(suffix): if suffix == "s": if word[-2] in self.__s_ending: word = word[:-1] r1 = r1[:-1] else: word = word[:-len(suffix)] r1 = r1[:-len(suffix)] break # STEP 2 for suffix in self.__step2_suffixes: if r1.endswith(suffix): word = word[:-1] r1 = r1[:-1] break # STEP 3 for suffix in self.__step3_suffixes: if r1.endswith(suffix): if suffix in ("els", "lig", "ig"): word = word[:-len(suffix)] elif suffix in ("fullt", "l\xF6st"): word = word[:-1] break return word
python
{ "resource": "" }
q23493
deaccent
train
def deaccent(text): """ Remove accentuation from the given string. """ norm = unicodedata.normalize("NFD", text) result = "".join(ch for ch in norm if unicodedata.category(ch) != 'Mn') return unicodedata.normalize("NFC", result)
python
{ "resource": "" }
q23494
tokenize
train
def tokenize(text, lowercase=False, deacc=False): """ Iteratively yield tokens as unicode strings, optionally also lowercasing them and removing accent marks. """ if lowercase: text = text.lower() if deacc: text = deaccent(text) for match in PAT_ALPHABETIC.finditer(text): yield match.group()
python
{ "resource": "" }
q23495
clean_text_by_sentences
train
def clean_text_by_sentences(text, language="english", additional_stopwords=None): """ Tokenizes a given text into sentences, applying filters and lemmatizing them. Returns a SyntacticUnit list. """ init_textcleanner(language, additional_stopwords) original_sentences = split_sentences(text) filtered_sentences = filter_words(original_sentences) return merge_syntactic_units(original_sentences, filtered_sentences)
python
{ "resource": "" }
q23496
clean_text_by_word
train
def clean_text_by_word(text, language="english", deacc=False, additional_stopwords=None): """ Tokenizes a given text into words, applying filters and lemmatizing them. Returns a dict of word -> syntacticUnit. """ init_textcleanner(language, additional_stopwords) text_without_acronyms = replace_with_separator(text, "", [AB_ACRONYM_LETTERS]) original_words = list(tokenize(text_without_acronyms, lowercase=True, deacc=deacc)) filtered_words = filter_words(original_words) if HAS_PATTERN: tags = tag(" ".join(original_words)) # tag needs the context of the words in the text else: tags = None units = merge_syntactic_units(original_words, filtered_words, tags) return { unit.text : unit for unit in units }
python
{ "resource": "" }
q23497
_get_sentences_with_word_count
train
def _get_sentences_with_word_count(sentences, words): """ Given a list of sentences, returns a list of sentences with a total word count similar to the word count provided. """ word_count = 0 selected_sentences = [] # Loops until the word count is reached. for sentence in sentences: words_in_sentence = len(sentence.text.split()) # Checks if the inclusion of the sentence gives a better approximation # to the word parameter. if abs(words - word_count - words_in_sentence) > abs(words - word_count): return selected_sentences selected_sentences.append(sentence) word_count += words_in_sentence return selected_sentences
python
{ "resource": "" }
q23498
pagerank_weighted
train
def pagerank_weighted(graph, initial_value=None, damping=0.85): """Calculates PageRank for an undirected graph""" if initial_value == None: initial_value = 1.0 / len(graph.nodes()) scores = dict.fromkeys(graph.nodes(), initial_value) iteration_quantity = 0 for iteration_number in range(100): iteration_quantity += 1 convergence_achieved = 0 for i in graph.nodes(): rank = 1 - damping for j in graph.neighbors(i): neighbors_sum = sum(graph.edge_weight((j, k)) for k in graph.neighbors(j)) rank += damping * scores[j] * graph.edge_weight((j, i)) / neighbors_sum if abs(scores[i] - rank) <= CONVERGENCE_THRESHOLD: convergence_achieved += 1 scores[i] = rank if convergence_achieved == len(graph.nodes()): break return scores
python
{ "resource": "" }
q23499
Env.db_url
train
def db_url(self, var=DEFAULT_DATABASE_ENV, default=NOTSET, engine=None): """Returns a config dictionary, defaulting to DATABASE_URL. :rtype: dict """ return self.db_url_config(self.get_value(var, default=default), engine=engine)
python
{ "resource": "" }