_id
stringlengths
2
7
title
stringlengths
1
88
partition
stringclasses
3 values
text
stringlengths
75
19.8k
language
stringclasses
1 value
meta_information
dict
q23300
boolean_sparse
train
def boolean_sparse(a, b, operation=np.logical_and): """ Find common rows between two arrays very quickly using 3D boolean sparse matrices. Parameters ----------- a: (n, d) int, coordinates in space b: (m, d) int, coordinates in space operation: numpy operation function, ie: np.logical_and np.logical_or Returns ----------- coords: (q, d) int, coordinates in space """ # 3D sparse arrays, using wrapped scipy.sparse # pip install sparse import sparse # find the bounding box of both arrays extrema = np.array([a.min(axis=0), a.max(axis=0), b.min(axis=0), b.max(axis=0)]) origin = extrema.min(axis=0) - 1 size = tuple(extrema.ptp(axis=0) + 2) # put nearby voxel arrays into same shape sparse array sp_a = sparse.COO((a - origin).T, data=np.ones(len(a), dtype=np.bool), shape=size) sp_b = sparse.COO((b - origin).T, data=np.ones(len(b), dtype=np.bool), shape=size) # apply the logical operation # get a sparse matrix out applied = operation(sp_a, sp_b) # reconstruct the original coordinates coords = np.column_stack(applied.coords) + origin return coords
python
{ "resource": "" }
q23301
VoxelBase.marching_cubes
train
def marching_cubes(self): """ A marching cubes Trimesh representation of the voxels. No effort was made to clean or smooth the result in any way; it is merely the result of applying the scikit-image measure.marching_cubes function to self.matrix. Returns --------- meshed: Trimesh object representing the current voxel object, as returned by marching cubes algorithm. """ meshed = matrix_to_marching_cubes(matrix=self.matrix, pitch=self.pitch, origin=self.origin) return meshed
python
{ "resource": "" }
q23302
VoxelBase.points
train
def points(self): """ The center of each filled cell as a list of points. Returns ---------- points: (self.filled, 3) float, list of points """ points = matrix_to_points(matrix=self.matrix, pitch=self.pitch, origin=self.origin) return points
python
{ "resource": "" }
q23303
VoxelBase.point_to_index
train
def point_to_index(self, point): """ Convert a point to an index in the matrix array. Parameters ---------- point: (3,) float, point in space Returns --------- index: (3,) int tuple, index in self.matrix """ indices = points_to_indices(points=[point], pitch=self.pitch, origin=self.origin) index = tuple(indices[0]) return index
python
{ "resource": "" }
q23304
VoxelBase.is_filled
train
def is_filled(self, point): """ Query a point to see if the voxel cell it lies in is filled or not. Parameters ---------- point: (3,) float, point in space Returns --------- is_filled: bool, is cell occupied or not """ index = self.point_to_index(point) in_range = (np.array(index) < np.array(self.shape)).all() if in_range: is_filled = self.matrix[index] else: is_filled = False return is_filled
python
{ "resource": "" }
q23305
VoxelMesh.sparse_surface
train
def sparse_surface(self): """ Filled cells on the surface of the mesh. Returns ---------------- voxels: (n, 3) int, filled cells on mesh surface """ if self._method == 'ray': func = voxelize_ray elif self._method == 'subdivide': func = voxelize_subdivide else: raise ValueError('voxelization method incorrect') voxels, origin = func( mesh=self._data['mesh'], pitch=self._data['pitch'], max_iter=self._data['max_iter'][0]) self._cache['origin'] = origin return voxels
python
{ "resource": "" }
q23306
simulated_brick
train
def simulated_brick(face_count, extents, noise, max_iter=10): """ Produce a mesh that is a rectangular solid with noise with a random transform. Parameters ------------- face_count : int Approximate number of faces desired extents : (n,3) float Dimensions of brick noise : float Magnitude of vertex noise to apply """ # create the mesh as a simple box mesh = trimesh.creation.box(extents=extents) # add some systematic error pre- tesselation mesh.vertices[0] += mesh.vertex_normals[0] + (noise * 2) # subdivide until we have more faces than we want for i in range(max_iter): if len(mesh.vertices) > face_count: break mesh = mesh.subdivide() # apply tesselation and random noise mesh = mesh.permutate.noise(noise) # randomly rotation with translation transform = trimesh.transformations.random_rotation_matrix() transform[:3, 3] = (np.random.random(3) - .5) * 1000 mesh.apply_transform(transform) return mesh
python
{ "resource": "" }
q23307
unitize
train
def unitize(vectors, check_valid=False, threshold=None): """ Unitize a vector or an array or row- vectors. Parameters --------- vectors : (n,m) or (j) float Vector or vectors to be unitized check_valid : bool If set, will return mask of nonzero vectors threshold : float Cutoff for a value to be considered zero. Returns --------- unit : (n,m) or (j) float Input vectors but unitized valid : (n,) bool or bool Mask of nonzero vectors returned if `check_valid` """ # make sure we have a numpy array vectors = np.asanyarray(vectors) # allow user to set zero threshold if threshold is None: threshold = TOL_ZERO if len(vectors.shape) == 2: # for (m, d) arrays take the per- row unit vector # using sqrt and avoiding exponents is slightly faster # also dot with ones is faser than .sum(axis=1) norm = np.sqrt(np.dot(vectors * vectors, [1.0] * vectors.shape[1])) # non-zero norms valid = norm > threshold # in-place reciprocal of nonzero norms norm[valid] **= -1 # tile reciprocal of norm tiled = np.tile(norm, (vectors.shape[1], 1)).T # multiply by reciprocal of norm unit = vectors * tiled elif len(vectors.shape) == 1: # treat 1D arrays as a single vector norm = np.sqrt((vectors * vectors).sum()) valid = norm > threshold if valid: unit = vectors / norm else: unit = vectors.copy() else: raise ValueError('vectors must be (n, ) or (n, d)!') if check_valid: return unit[valid], valid return unit
python
{ "resource": "" }
q23308
euclidean
train
def euclidean(a, b): """ Euclidean distance between vectors a and b. Parameters ------------ a : (n,) float First vector b : (n,) float Second vector Returns ------------ distance : float Euclidean distance between A and B """ a = np.asanyarray(a, dtype=np.float64) b = np.asanyarray(b, dtype=np.float64) return np.sqrt(((a - b) ** 2).sum())
python
{ "resource": "" }
q23309
is_none
train
def is_none(obj): """ Check to see if an object is None or not. Handles the case of np.array(None) as well. Parameters ------------- obj : object Any object type to be checked Returns ------------- is_none : bool True if obj is None or numpy None-like """ if obj is None: return True if (is_sequence(obj) and len(obj) == 1 and obj[0] is None): return True return False
python
{ "resource": "" }
q23310
is_sequence
train
def is_sequence(obj): """ Check if an object is a sequence or not. Parameters ------------- obj : object Any object type to be checked Returns ------------- is_sequence : bool True if object is sequence """ seq = (not hasattr(obj, "strip") and hasattr(obj, "__getitem__") or hasattr(obj, "__iter__")) # check to make sure it is not a set, string, or dictionary seq = seq and all(not isinstance(obj, i) for i in (dict, set, basestring)) # PointCloud objects can look like an array but are not seq = seq and type(obj).__name__ not in ['PointCloud'] # numpy sometimes returns objects that are single float64 values # but sure look like sequences, so we check the shape if hasattr(obj, 'shape'): seq = seq and obj.shape != () return seq
python
{ "resource": "" }
q23311
is_shape
train
def is_shape(obj, shape): """ Compare the shape of a numpy.ndarray to a target shape, with any value less than zero being considered a wildcard Note that if a list- like object is passed that is not a numpy array, this function will not convert it and will return False. Parameters --------- obj : np.ndarray Array to check the shape on shape : list or tuple Any negative term will be considered a wildcard Any tuple term will be evaluated as an OR Returns --------- shape_ok: bool, True if shape of obj matches query shape Examples ------------------------ In [1]: a = np.random.random((100, 3)) In [2]: a.shape Out[2]: (100, 3) In [3]: trimesh.util.is_shape(a, (-1, 3)) Out[3]: True In [4]: trimesh.util.is_shape(a, (-1, 3, 5)) Out[4]: False In [5]: trimesh.util.is_shape(a, (100, -1)) Out[5]: True In [6]: trimesh.util.is_shape(a, (-1, (3, 4))) Out[6]: True In [7]: trimesh.util.is_shape(a, (-1, (4, 5))) Out[7]: False """ # if the obj.shape is different length than # the goal shape it means they have different number # of dimensions and thus the obj is not the query shape if (not hasattr(obj, 'shape') or len(obj.shape) != len(shape)): return False # loop through each integer of the two shapes # multiple values are sequences # wildcards are less than zero (i.e. -1) for i, target in zip(obj.shape, shape): # check if current field has multiple acceptable values if is_sequence(target): if i in target: # obj shape is in the accepted values continue else: return False # check if current field is a wildcard if target < 0: if i == 0: # if a dimension is 0, we don't allow # that to match to a wildcard # it would have to be explicitly called out as 0 return False else: continue # since we have a single target and a single value, # if they are not equal we have an answer if target != i: return False # since none of the checks failed the obj.shape # matches the pattern return True
python
{ "resource": "" }
q23312
make_sequence
train
def make_sequence(obj): """ Given an object, if it is a sequence return, otherwise add it to a length 1 sequence and return. Useful for wrapping functions which sometimes return single objects and other times return lists of objects. Parameters -------------- obj : object An object to be made a sequence Returns -------------- as_sequence : (n,) sequence Contains input value """ if is_sequence(obj): return np.array(list(obj)) else: return np.array([obj])
python
{ "resource": "" }
q23313
vector_hemisphere
train
def vector_hemisphere(vectors, return_sign=False): """ For a set of 3D vectors alter the sign so they are all in the upper hemisphere. If the vector lies on the plane all vectors with negative Y will be reversed. If the vector has a zero Z and Y value vectors with a negative X value will be reversed. Parameters ---------- vectors : (n,3) float Input vectors return_sign : bool Return the sign mask or not Returns ---------- oriented: (n, 3) float Vectors with same magnitude as source but possibly reversed to ensure all vectors are in the same hemisphere. sign : (n,) float """ # vectors as numpy array vectors = np.asanyarray(vectors, dtype=np.float64) if is_shape(vectors, (-1, 2)): # 2D vector case # check the Y value and reverse vector # direction if negative. negative = vectors < -TOL_ZERO zero = np.logical_not( np.logical_or(negative, vectors > TOL_ZERO)) signs = np.ones(len(vectors), dtype=np.float64) # negative Y values are reversed signs[negative[:, 1]] = -1.0 # zero Y and negative X are reversed signs[np.logical_and(zero[:, 1], negative[:, 0])] = -1.0 elif is_shape(vectors, (-1, 3)): # 3D vector case negative = vectors < -TOL_ZERO zero = np.logical_not( np.logical_or(negative, vectors > TOL_ZERO)) # move all negative Z to positive # then for zero Z vectors, move all negative Y to positive # then for zero Y vectors, move all negative X to positive signs = np.ones(len(vectors), dtype=np.float64) # all vectors with negative Z values signs[negative[:, 2]] = -1.0 # all on-plane vectors with negative Y values signs[np.logical_and(zero[:, 2], negative[:, 1])] = -1.0 # all on-plane vectors with zero Y values # and negative X values signs[np.logical_and(np.logical_and(zero[:, 2], zero[:, 1]), negative[:, 0])] = -1.0 else: raise ValueError('vectors must be (n,3)!') # apply the signs to the vectors oriented = vectors * signs.reshape((-1, 1)) if return_sign: return oriented, signs return oriented
python
{ "resource": "" }
q23314
pairwise
train
def pairwise(iterable): """ For an iterable, group values into pairs. Parameters ----------- iterable : (m, ) list A sequence of values Returns ----------- pairs: (n, 2) Pairs of sequential values Example ----------- In [1]: data Out[1]: [0, 1, 2, 3, 4, 5, 6] In [2]: list(trimesh.util.pairwise(data)) Out[2]: [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6)] """ # looping through a giant numpy array would be dumb # so special case ndarrays and use numpy operations if isinstance(iterable, np.ndarray): iterable = iterable.reshape(-1) stacked = np.column_stack((iterable, iterable)) pairs = stacked.reshape(-1)[1:-1].reshape((-1, 2)) return pairs # if we have a normal iterable use itertools import itertools a, b = itertools.tee(iterable) # pop the first element of the second item next(b) return zip(a, b)
python
{ "resource": "" }
q23315
diagonal_dot
train
def diagonal_dot(a, b): """ Dot product by row of a and b. There are a lot of ways to do this though performance varies very widely. This method uses the dot product to sum the row and avoids function calls if at all possible. Comparing performance of some equivalent versions: ``` In [1]: import numpy as np; import trimesh In [2]: a = np.random.random((10000, 3)) In [3]: b = np.random.random((10000, 3)) In [4]: %timeit (a * b).sum(axis=1) 1000 loops, best of 3: 181 us per loop In [5]: %timeit np.einsum('ij,ij->i', a, b) 10000 loops, best of 3: 62.7 us per loop In [6]: %timeit np.diag(np.dot(a, b.T)) 1 loop, best of 3: 429 ms per loop In [7]: %timeit np.dot(a * b, np.ones(a.shape[1])) 10000 loops, best of 3: 61.3 us per loop In [8]: %timeit trimesh.util.diagonal_dot(a, b) 10000 loops, best of 3: 55.2 us per loop ``` Parameters ------------ a : (m, d) float First array b : (m, d) float Second array Returns ------------- result : (m,) float Dot product of each row """ # make sure `a` is numpy array # doing it for `a` will force the multiplication to # convert `b` if necessary and avoid function call otherwise a = np.asanyarray(a) # 3x faster than (a * b).sum(axis=1) # avoiding np.ones saves 5-10% sometimes result = np.dot(a * b, [1.0] * a.shape[1]) return result
python
{ "resource": "" }
q23316
grid_linspace
train
def grid_linspace(bounds, count): """ Return a grid spaced inside a bounding box with edges spaced using np.linspace. Parameters --------- bounds: (2,dimension) list of [[min x, min y, etc], [max x, max y, etc]] count: int, or (dimension,) int, number of samples per side Returns ------- grid: (n, dimension) float, points in the specified bounds """ bounds = np.asanyarray(bounds, dtype=np.float64) if len(bounds) != 2: raise ValueError('bounds must be (2, dimension!') count = np.asanyarray(count, dtype=np.int) if count.shape == (): count = np.tile(count, bounds.shape[1]) grid_elements = [np.linspace(*b, num=c) for b, c in zip(bounds.T, count)] grid = np.vstack(np.meshgrid(*grid_elements) ).reshape(bounds.shape[1], -1).T return grid
python
{ "resource": "" }
q23317
multi_dict
train
def multi_dict(pairs): """ Given a set of key value pairs, create a dictionary. If a key occurs multiple times, stack the values into an array. Can be called like the regular dict(pairs) constructor Parameters ---------- pairs: (n,2) array of key, value pairs Returns ---------- result: dict, with all values stored (rather than last with regular dict) """ result = collections.defaultdict(list) for k, v in pairs: result[k].append(v) return result
python
{ "resource": "" }
q23318
distance_to_end
train
def distance_to_end(file_obj): """ For an open file object how far is it to the end Parameters ---------- file_obj: open file- like object Returns ---------- distance: int, bytes to end of file """ position_current = file_obj.tell() file_obj.seek(0, 2) position_end = file_obj.tell() file_obj.seek(position_current) distance = position_end - position_current return distance
python
{ "resource": "" }
q23319
decimal_to_digits
train
def decimal_to_digits(decimal, min_digits=None): """ Return the number of digits to the first nonzero decimal. Parameters ----------- decimal: float min_digits: int, minimum number of digits to return Returns ----------- digits: int, number of digits to the first nonzero decimal """ digits = abs(int(np.log10(decimal))) if min_digits is not None: digits = np.clip(digits, min_digits, 20) return digits
python
{ "resource": "" }
q23320
hash_file
train
def hash_file(file_obj, hash_function=hashlib.md5): """ Get the hash of an open file- like object. Parameters --------- file_obj: file like object hash_function: function to use to hash data Returns --------- hashed: str, hex version of result """ # before we read the file data save the current position # in the file (which is probably 0) file_position = file_obj.tell() # create an instance of the hash object hasher = hash_function() # read all data from the file into the hasher hasher.update(file_obj.read()) # get a hex version of the result hashed = hasher.hexdigest() # return the file object to its original position file_obj.seek(file_position) return hashed
python
{ "resource": "" }
q23321
md5_object
train
def md5_object(obj): """ If an object is hashable, return the string of the MD5. Parameters ----------- obj: object Returns ---------- md5: str, MD5 hash """ hasher = hashlib.md5() if isinstance(obj, basestring) and PY3: # in python3 convert strings to bytes before hashing hasher.update(obj.encode('utf-8')) else: hasher.update(obj) md5 = hasher.hexdigest() return md5
python
{ "resource": "" }
q23322
attach_to_log
train
def attach_to_log(level=logging.DEBUG, handler=None, loggers=None, colors=True, capture_warnings=True, blacklist=None): """ Attach a stream handler to all loggers. Parameters ------------ level: logging level handler: log handler object loggers: list of loggers to attach to if None, will try to attach to all available colors: bool, if True try to use colorlog formatter blacklist: list of str, names of loggers NOT to attach to """ if blacklist is None: blacklist = ['TerminalIPythonApp', 'PYREADLINE', 'pyembree', 'shapely.geos', 'shapely.speedups._speedups', 'parso.cache', 'parso.python.diff'] # make sure we log warnings from the warnings module logging.captureWarnings(capture_warnings) formatter = logging.Formatter( "[%(asctime)s] %(levelname)-7s (%(filename)s:%(lineno)3s) %(message)s", "%Y-%m-%d %H:%M:%S") if colors: try: from colorlog import ColoredFormatter formatter = ColoredFormatter( ("%(log_color)s%(levelname)-8s%(reset)s " + "%(filename)17s:%(lineno)-4s %(blue)4s%(message)s"), datefmt=None, reset=True, log_colors={'DEBUG': 'cyan', 'INFO': 'green', 'WARNING': 'yellow', 'ERROR': 'red', 'CRITICAL': 'red'}) except ImportError: pass # if no handler was passed, use a StreamHandler if handler is None: handler = logging.StreamHandler() # add the formatters and set the level handler.setFormatter(formatter) handler.setLevel(level) # if nothing passed use all available loggers if loggers is None: # de- duplicate loggers using a set loggers = set(logging.Logger.manager.loggerDict.values()) # add the warnings logging loggers.add(logging.getLogger('py.warnings')) # disable pyembree warnings logging.getLogger('pyembree').disabled = True # loop through all available loggers for logger in loggers: # skip loggers on the blacklist if (logger.__class__.__name__ != 'Logger' or logger.name in blacklist): continue logger.addHandler(handler) logger.setLevel(level) # set nicer numpy print options np.set_printoptions(precision=5, suppress=True)
python
{ "resource": "" }
q23323
stack_lines
train
def stack_lines(indices): """ Stack a list of values that represent a polyline into individual line segments with duplicated consecutive values. Parameters ---------- indices: sequence of items Returns --------- stacked: (n,2) set of items In [1]: trimesh.util.stack_lines([0,1,2]) Out[1]: array([[0, 1], [1, 2]]) In [2]: trimesh.util.stack_lines([0,1,2,4,5]) Out[2]: array([[0, 1], [1, 2], [2, 4], [4, 5]]) In [3]: trimesh.util.stack_lines([[0,0],[1,1],[2,2], [3,3]]) Out[3]: array([[0, 0], [1, 1], [1, 1], [2, 2], [2, 2], [3, 3]]) """ indices = np.asanyarray(indices) if is_sequence(indices[0]): shape = (-1, len(indices[0])) else: shape = (-1, 2) return np.column_stack((indices[:-1], indices[1:])).reshape(shape)
python
{ "resource": "" }
q23324
append_faces
train
def append_faces(vertices_seq, faces_seq): """ Given a sequence of zero- indexed faces and vertices combine them into a single array of faces and a single array of vertices. Parameters ----------- vertices_seq : (n, ) sequence of (m, d) float Multiple arrays of verticesvertex arrays faces_seq : (n, ) sequence of (p, j) int Zero indexed faces for matching vertices Returns ---------- vertices : (i, d) float Points in space faces : (j, 3) int Reference vertex indices """ # the length of each vertex array vertices_len = np.array([len(i) for i in vertices_seq]) # how much each group of faces needs to be offset face_offset = np.append(0, np.cumsum(vertices_len)[:-1]) new_faces = [] for offset, faces in zip(face_offset, faces_seq): if len(faces) == 0: continue # apply the index offset new_faces.append(faces + offset) # stack to clean (n, 3) float vertices = vstack_empty(vertices_seq) # stack to clean (n, 3) int faces = vstack_empty(new_faces) return vertices, faces
python
{ "resource": "" }
q23325
array_to_string
train
def array_to_string(array, col_delim=' ', row_delim='\n', digits=8, value_format='{}'): """ Convert a 1 or 2D array into a string with a specified number of digits and delimiter. The reason this exists is that the basic numpy array to string conversions are surprisingly bad. Parameters ---------- array : (n,) or (n, d) float or int Data to be converted If shape is (n,) only column delimiter will be used col_delim : str What string should separate values in a column row_delim : str What string should separate values in a row digits : int How many digits should floating point numbers include value_format : str Format string for each value or sequence of values If multiple values per value_format it must divide into array evenly. Returns ---------- formatted : str String representation of original array """ # convert inputs to correct types array = np.asanyarray(array) digits = int(digits) row_delim = str(row_delim) col_delim = str(col_delim) value_format = str(value_format) # abort for non- flat arrays if len(array.shape) > 2: raise ValueError('conversion only works on 1D/2D arrays not %s!', str(array.shape)) # allow a value to be repeated in a value format repeats = value_format.count('{}') if array.dtype.kind == 'i': # integer types don't need a specified precision format_str = value_format + col_delim elif array.dtype.kind == 'f': # add the digits formatting to floats format_str = value_format.replace( '{}', '{:.' + str(digits) + 'f}') + col_delim else: raise ValueError('dtype %s not convertible!', array.dtype.name) # length of extra delimiters at the end end_junk = len(col_delim) # if we have a 2D array add a row delimiter if len(array.shape) == 2: format_str *= array.shape[1] # cut off the last column delimiter and add a row delimiter format_str = format_str[:-len(col_delim)] + row_delim end_junk = len(row_delim) # expand format string to whole array format_str *= len(array) # if an array is repeated in the value format # do the shaping here so we don't need to specify indexes shaped = np.tile(array.reshape((-1, 1)), (1, repeats)).reshape(-1) # run the format operation and remove the extra delimiters formatted = format_str.format(*shaped)[:-end_junk] return formatted
python
{ "resource": "" }
q23326
array_to_encoded
train
def array_to_encoded(array, dtype=None, encoding='base64'): """ Export a numpy array to a compact serializable dictionary. Parameters ------------ array : array Any numpy array dtype : str or None Optional dtype to encode array encoding : str 'base64' or 'binary' Returns --------- encoded : dict Has keys: 'dtype': str, of dtype 'shape': tuple of shape 'base64': str, base64 encoded string """ array = np.asanyarray(array) shape = array.shape # ravel also forces contiguous flat = np.ravel(array) if dtype is None: dtype = array.dtype encoded = {'dtype': np.dtype(dtype).str, 'shape': shape} if encoding in ['base64', 'dict64']: packed = base64.b64encode(flat.astype(dtype).tostring()) if hasattr(packed, 'decode'): packed = packed.decode('utf-8') encoded['base64'] = packed elif encoding == 'binary': encoded['binary'] = array.tostring(order='C') else: raise ValueError('encoding {} is not available!'.format(encoding)) return encoded
python
{ "resource": "" }
q23327
decode_keys
train
def decode_keys(store, encoding='utf-8'): """ If a dictionary has keys that are bytes decode them to a str. Parameters --------- store : dict Dictionary with data Returns --------- result : dict Values are untouched but keys that were bytes are converted to ASCII strings. Example ----------- In [1]: d Out[1]: {1020: 'nah', b'hi': 'stuff'} In [2]: trimesh.util.decode_keys(d) Out[2]: {1020: 'nah', 'hi': 'stuff'} """ keys = store.keys() for key in keys: if hasattr(key, 'decode'): decoded = key.decode(encoding) if key != decoded: store[key.decode(encoding)] = store[key] store.pop(key) return store
python
{ "resource": "" }
q23328
encoded_to_array
train
def encoded_to_array(encoded): """ Turn a dictionary with base64 encoded strings back into a numpy array. Parameters ------------ encoded : dict Has keys: dtype: string of dtype shape: int tuple of shape base64: base64 encoded string of flat array binary: decode result coming from numpy.tostring Returns ---------- array: numpy array """ if not isinstance(encoded, dict): if is_sequence(encoded): as_array = np.asanyarray(encoded) return as_array else: raise ValueError('Unable to extract numpy array from input') encoded = decode_keys(encoded) dtype = np.dtype(encoded['dtype']) if 'base64' in encoded: array = np.frombuffer(base64.b64decode(encoded['base64']), dtype) elif 'binary' in encoded: array = np.frombuffer(encoded['binary'], dtype=dtype) if 'shape' in encoded: array = array.reshape(encoded['shape']) return array
python
{ "resource": "" }
q23329
type_bases
train
def type_bases(obj, depth=4): """ Return the bases of the object passed. """ bases = collections.deque([list(obj.__class__.__bases__)]) for i in range(depth): bases.append([i.__base__ for i in bases[-1] if i is not None]) try: bases = np.hstack(bases) except IndexError: bases = [] # we do the hasattr as None/NoneType can be in the list of bases bases = [i for i in bases if hasattr(i, '__name__')] return np.array(bases)
python
{ "resource": "" }
q23330
concatenate
train
def concatenate(a, b=None): """ Concatenate two or more meshes. Parameters ---------- a: Trimesh object, or list of such b: Trimesh object, or list of such Returns ---------- result: Trimesh object containing concatenated mesh """ if b is None: b = [] # stack meshes into flat list meshes = np.append(a, b) # extract the trimesh type to avoid a circular import # and assert that both inputs are Trimesh objects trimesh_type = type_named(meshes[0], 'Trimesh') # append faces and vertices of meshes vertices, faces = append_faces( [m.vertices.copy() for m in meshes], [m.faces.copy() for m in meshes]) # only save face normals if already calculated face_normals = None if all('face_normals' in m._cache for m in meshes): face_normals = np.vstack([m.face_normals for m in meshes]) # concatenate visuals visual = meshes[0].visual.concatenate( [m.visual for m in meshes[1:]]) # create the mesh object mesh = trimesh_type(vertices=vertices, faces=faces, face_normals=face_normals, visual=visual, process=False) return mesh
python
{ "resource": "" }
q23331
submesh
train
def submesh(mesh, faces_sequence, only_watertight=False, append=False): """ Return a subset of a mesh. Parameters ---------- mesh : Trimesh Source mesh to take geometry from faces_sequence : sequence (p,) int Indexes of mesh.faces only_watertight : bool Only return submeshes which are watertight. append : bool Return a single mesh which has the faces appended, if this flag is set, only_watertight is ignored Returns --------- if append : Trimesh object else list of Trimesh objects """ # evaluate generators so we can escape early faces_sequence = list(faces_sequence) if len(faces_sequence) == 0: return [] # check to make sure we're not doing a whole bunch of work # to deliver a subset which ends up as the whole mesh if len(faces_sequence[0]) == len(mesh.faces): all_faces = np.array_equal(np.sort(faces_sequence), np.arange(len(faces_sequence))) if all_faces: log.debug('entire mesh requested, returning copy') return mesh.copy() # avoid nuking the cache on the original mesh original_faces = mesh.faces.view(np.ndarray) original_vertices = mesh.vertices.view(np.ndarray) faces = [] vertices = [] normals = [] visuals = [] # for reindexing faces mask = np.arange(len(original_vertices)) for faces_index in faces_sequence: # sanitize indices in case they are coming in as a set or tuple faces_index = np.asanyarray(faces_index, dtype=np.int64) if len(faces_index) == 0: continue faces_current = original_faces[faces_index] unique = np.unique(faces_current.reshape(-1)) # redefine face indices from zero mask[unique] = np.arange(len(unique)) normals.append(mesh.face_normals[faces_index]) faces.append(mask[faces_current]) vertices.append(original_vertices[unique]) visuals.append(mesh.visual.face_subset(faces_index)) # we use type(mesh) rather than importing Trimesh from base # to avoid a circular import trimesh_type = type_named(mesh, 'Trimesh') if append: if all(hasattr(i, 'concatenate') for i in visuals): visuals = np.array(visuals) visual = visuals[0].concatenate(visuals[1:]) else: visual = None vertices, faces = append_faces(vertices, faces) appended = trimesh_type( vertices=vertices, faces=faces, face_normals=np.vstack(normals), visual=visual, process=False) return appended # generate a list of Trimesh objects result = [trimesh_type( vertices=v, faces=f, face_normals=n, visual=c, metadata=copy.deepcopy(mesh.metadata), process=False) for v, f, n, c in zip(vertices, faces, normals, visuals)] result = np.array(result) if len(result) > 0 and only_watertight: # fill_holes will attempt a repair and returns the # watertight status at the end of the repair attempt watertight = np.array([i.fill_holes() and len(i.faces) >= 4 for i in result]) # remove unrepairable meshes result = result[watertight] return result
python
{ "resource": "" }
q23332
jsonify
train
def jsonify(obj, **kwargs): """ A version of json.dumps that can handle numpy arrays by creating a custom encoder for numpy dtypes. Parameters -------------- obj : JSON- serializable blob **kwargs : Passed to json.dumps Returns -------------- dumped : str JSON dump of obj """ class NumpyEncoder(json.JSONEncoder): def default(self, obj): # will work for numpy.ndarrays # as well as their int64/etc objects if hasattr(obj, 'tolist'): return obj.tolist() return json.JSONEncoder.default(self, obj) # run the dumps using our encoder dumped = json.dumps(obj, cls=NumpyEncoder, **kwargs) return dumped
python
{ "resource": "" }
q23333
convert_like
train
def convert_like(item, like): """ Convert an item to have the dtype of another item Parameters ---------- item: item to be converted like: object with target dtype. If None, item is returned unmodified Returns -------- result: item, but in dtype of like """ if isinstance(like, np.ndarray): return np.asanyarray(item, dtype=like.dtype) if isinstance(item, like.__class__) or is_none(like): return item if (is_sequence(item) and len(item) == 1 and isinstance(item[0], like.__class__)): return item[0] item = like.__class__(item) return item
python
{ "resource": "" }
q23334
bounds_tree
train
def bounds_tree(bounds): """ Given a set of axis aligned bounds, create an r-tree for broad- phase collision detection Parameters --------- bounds: (n, dimension*2) list of non- interleaved bounds for a 2D bounds tree: [(minx, miny, maxx, maxy), ...] Returns --------- tree: Rtree object """ bounds = np.asanyarray(copy.deepcopy(bounds), dtype=np.float64) if len(bounds.shape) != 2: raise ValueError('Bounds must be (n,dimension*2)!') dimension = bounds.shape[1] if (dimension % 2) != 0: raise ValueError('Bounds must be (n,dimension*2)!') dimension = int(dimension / 2) import rtree # some versions of rtree screw up indexes on stream loading # do a test here so we know if we are free to use stream loading # or if we have to do a loop to insert things which is 5x slower rtree_test = rtree.index.Index([(1564, [0, 0, 0, 10, 10, 10], None)], properties=rtree.index.Property(dimension=3)) rtree_stream_ok = next(rtree_test.intersection([1, 1, 1, 2, 2, 2])) == 1564 properties = rtree.index.Property(dimension=dimension) if rtree_stream_ok: # stream load was verified working on inport above tree = rtree.index.Index(zip(np.arange(len(bounds)), bounds, [None] * len(bounds)), properties=properties) else: # in some rtree versions stream loading goofs the index log.warning('rtree stream loading broken! Try upgrading rtree!') tree = rtree.index.Index(properties=properties) for i, b in enumerate(bounds): tree.insert(i, b) return tree
python
{ "resource": "" }
q23335
wrap_as_stream
train
def wrap_as_stream(item): """ Wrap a string or bytes object as a file object. Parameters ---------- item: str or bytes Item to be wrapped Returns --------- wrapped: file-like object """ if not PY3: return StringIO(item) if isinstance(item, str): return StringIO(item) elif isinstance(item, bytes): return BytesIO(item) raise ValueError('{} is not wrappable!'.format(type(item).__name__))
python
{ "resource": "" }
q23336
sigfig_round
train
def sigfig_round(values, sigfig=1): """ Round a single value to a specified number of significant figures. Parameters ---------- values: float, value to be rounded sigfig: int, number of significant figures to reduce to Returns ---------- rounded: values, but rounded to the specified number of significant figures Examples ---------- In [1]: trimesh.util.round_sigfig(-232453.00014045456, 1) Out[1]: -200000.0 In [2]: trimesh.util.round_sigfig(.00014045456, 1) Out[2]: 0.0001 In [3]: trimesh.util.round_sigfig(.00014045456, 4) Out[3]: 0.0001405 """ as_int, multiplier = sigfig_int(values, sigfig) rounded = as_int * (10 ** multiplier) return rounded
python
{ "resource": "" }
q23337
sigfig_int
train
def sigfig_int(values, sigfig): """ Convert a set of floating point values into integers with a specified number of significant figures and an exponent. Parameters ------------ values: (n,) float or int, array of values sigfig: (n,) int, number of significant figures to keep Returns ------------ as_int: (n,) int, every value[i] has sigfig[i] digits multiplier: (n, int), exponent, so as_int * 10 ** multiplier is the same order of magnitude as the input """ values = np.asanyarray(values).reshape(-1) sigfig = np.asanyarray(sigfig, dtype=np.int).reshape(-1) if sigfig.shape != values.shape: raise ValueError('sigfig must match identifier') exponent = np.zeros(len(values)) nonzero = np.abs(values) > TOL_ZERO exponent[nonzero] = np.floor(np.log10(np.abs(values[nonzero]))) multiplier = exponent - sigfig + 1 as_int = np.round(values / (10**multiplier)).astype(np.int32) return as_int, multiplier
python
{ "resource": "" }
q23338
decompress
train
def decompress(file_obj, file_type): """ Given an open file object and a file type, return all components of the archive as open file objects in a dict. Parameters ----------- file_obj : file-like Containing compressed data file_type : str File extension, 'zip', 'tar.gz', etc Returns --------- decompressed : dict Data from archive in format {file name : file-like} """ def is_zip(): archive = zipfile.ZipFile(file_obj) result = {name: wrap_as_stream(archive.read(name)) for name in archive.namelist()} return result def is_tar(): import tarfile archive = tarfile.open(fileobj=file_obj, mode='r') result = {name: archive.extractfile(name) for name in archive.getnames()} return result file_type = str(file_type).lower() if isinstance(file_obj, bytes): file_obj = wrap_as_stream(file_obj) if file_type[-3:] == 'zip': return is_zip() if 'tar' in file_type[-6:]: return is_tar() raise ValueError('Unsupported type passed!')
python
{ "resource": "" }
q23339
compress
train
def compress(info): """ Compress data stored in a dict. Parameters ----------- info : dict Data to compress in form: {file name in archive: bytes or file-like object} Returns ----------- compressed : bytes Compressed file data """ if PY3: file_obj = BytesIO() else: file_obj = StringIO() with zipfile.ZipFile( file_obj, mode='w', compression=zipfile.ZIP_DEFLATED) as zipper: for name, data in info.items(): if hasattr(data, 'read'): # if we were passed a file object, read it data = data.read() zipper.writestr(name, data) file_obj.seek(0) compressed = file_obj.read() return compressed
python
{ "resource": "" }
q23340
vstack_empty
train
def vstack_empty(tup): """ A thin wrapper for numpy.vstack that ignores empty lists. Parameters ------------ tup: tuple or list of arrays with the same number of columns Returns ------------ stacked: (n,d) array, with same number of columns as constituent arrays. """ # filter out empty arrays stackable = [i for i in tup if len(i) > 0] # if we only have one array just return it if len(stackable) == 1: return np.asanyarray(stackable[0]) # if we have nothing return an empty numpy array elif len(stackable) == 0: return np.array([]) # otherwise just use vstack as normal return np.vstack(stackable)
python
{ "resource": "" }
q23341
write_encoded
train
def write_encoded(file_obj, stuff, encoding='utf-8'): """ If a file is open in binary mode and a string is passed, encode and write If a file is open in text mode and bytes are passed, decode and write Parameters ----------- file_obj: file object, with 'write' and 'mode' stuff: str or bytes, stuff to be written encoding: str, encoding of text """ binary_file = 'b' in file_obj.mode string_stuff = isinstance(stuff, basestring) binary_stuff = isinstance(stuff, bytes) if not PY3: file_obj.write(stuff) elif binary_file and string_stuff: file_obj.write(stuff.encode(encoding)) elif not binary_file and binary_stuff: file_obj.write(stuff.decode(encoding)) else: file_obj.write(stuff) file_obj.flush() return stuff
python
{ "resource": "" }
q23342
unique_id
train
def unique_id(length=12, increment=0): """ Generate a decent looking alphanumeric unique identifier. First 16 bits are time- incrementing, followed by randomness. This function is used as a nicer looking alternative to: >>> uuid.uuid4().hex Follows the advice in: https://eager.io/blog/how-long-does-an-id-need-to-be/ Parameters ------------ length: int, length of resulting identifier increment: int, number to add to header uint16 useful if calling this function repeatedly in a tight loop executing faster than time can increment the header Returns ------------ unique: str, unique alphanumeric identifier """ # head the identifier with 16 bits of time information # this provides locality and reduces collision chances head = np.array((increment + time.time() * 10) % 2**16, dtype=np.uint16).tostring() # get a bunch of random bytes random = np.random.random(int(np.ceil(length / 5))).tostring() # encode the time header and random information as base64 # replace + and / with spaces unique = base64.b64encode(head + random, b' ').decode('utf-8') # remove spaces and cut to length unique = unique.replace(' ', '')[:length] return unique
python
{ "resource": "" }
q23343
isclose
train
def isclose(a, b, atol): """ A replacement for np.isclose that does fewer checks and validation and as a result is roughly 4x faster. Note that this is used in tight loops, and as such a and b MUST be np.ndarray, not list or "array-like" Parameters ---------- a : np.ndarray To be compared b : np.ndarray To be compared atol : float Acceptable distance between `a` and `b` to be "close" Returns ----------- close : np.ndarray, bool Per- element closeness """ diff = a - b close = np.logical_and(diff > -atol, diff < atol) return close
python
{ "resource": "" }
q23344
svg_to_path
train
def svg_to_path(file_obj, file_type=None): """ Load an SVG file into a Path2D object. Parameters ----------- file_obj : open file object Contains SVG data file_type: None Not used Returns ----------- loaded : dict With kwargs for Path2D constructor """ def element_transform(e, max_depth=100): """ Find a transformation matrix for an XML element. """ matrices = [] current = e for i in range(max_depth): if 'transform' in current.attrib: mat = transform_to_matrices(current.attrib['transform']) matrices.extend(mat) # cached[current] = mat current = current.getparent() if current is None: break if len(matrices) == 0: return np.eye(3) elif len(matrices) == 1: return matrices[0] else: return util.multi_dot(matrices[::-1]) # first parse the XML xml = etree.fromstring(file_obj.read()) # store paths and transforms as # (path string, 3x3 matrix) paths = [] # store every path element for element in xml.iter('{*}path'): paths.append((element.attrib['d'], element_transform(element))) return _svg_path_convert(paths)
python
{ "resource": "" }
q23345
transform_to_matrices
train
def transform_to_matrices(transform): """ Convert an SVG transform string to an array of matrices. > transform = "rotate(-10 50 100) translate(-36 45.5) skewX(40) scale(1 0.5)" Parameters ----------- transform : str Contains transformation information in SVG form Returns ----------- matrices : (n, 3, 3) float Multiple transformation matrices from input transform string """ # split the transform string in to components of: # (operation, args) i.e. (translate, '-1.0, 2.0') components = [ [j.strip() for j in i.strip().split('(') if len(j) > 0] for i in transform.lower().split(')') if len(i) > 0] # store each matrix without dotting matrices = [] for line in components: if len(line) == 0: continue elif len(line) != 2: raise ValueError('should always have two components!') key, args = line # convert string args to array of floats # support either comma or space delimiter values = np.array([float(i) for i in args.replace(',', ' ').split()]) if key == 'translate': # convert translation to a (3, 3) homogenous matrix matrices.append(np.eye(3)) matrices[-1][:2, 2] = values elif key == 'matrix': # [a b c d e f] -> # [[a c e], # [b d f], # [0 0 1]] matrices.append(np.vstack(( values.reshape((3, 2)).T, [0, 0, 1]))) elif key == 'rotate': # SVG rotations are in degrees angle = np.degrees(values[0]) # if there are three values rotate around point if len(values) == 3: point = values[1:] else: point = None matrices.append(planar_matrix(theta=angle, point=point)) elif key == 'scale': # supports (x_scale, y_scale) or (scale) mat = np.eye(3) mat[:2, :2] *= values matrices.append(mat) else: log.warning('unknown SVG transform: {}'.format(key)) return matrices
python
{ "resource": "" }
q23346
_svg_path_convert
train
def _svg_path_convert(paths): """ Convert an SVG path string into a Path2D object Parameters ------------- paths: list of tuples Containing (path string, (3,3) matrix) Returns ------------- drawing : dict Kwargs for Path2D constructor """ def complex_to_float(values): return np.array([[i.real, i.imag] for i in values]) def load_line(svg_line): points = complex_to_float([svg_line.point(0.0), svg_line.point(1.0)]) if starting: # return every vertex and use it return (entities_mod.Line(np.arange(2) + len(vertices)), points) else: # we are not starting so use the last referenced vertex as the # start point return (entities_mod.Line( np.arange(2) + len(vertices) - 1), points[1:]) def load_arc(svg_arc): points = complex_to_float([svg_arc.start, svg_arc.point(.5), svg_arc.end]) if starting: # return every vertex and use it return (entities_mod.Arc(np.arange(3) + len(vertices)), points) else: # we are not starting so use the last referenced vertex as the # start point return (entities_mod.Arc(np.arange(3) + len(vertices) - 1), points[1:]) def load_quadratic(svg_quadratic): points = complex_to_float([svg_quadratic.start, svg_quadratic.control, svg_quadratic.end]) if starting: # return every vertex and use it return (entities_mod.Bezier(np.arange(3) + len(vertices)), points) else: # we are not starting so use the last referenced vertex as the # start point return (entities_mod.Bezier( np.arange(3) + len(vertices) - 1), points[1:]) def load_cubic(svg_cubic): points = complex_to_float([svg_cubic.start, svg_cubic.control1, svg_cubic.control2, svg_cubic.end]) if starting: # return every vertex and use it return (entities_mod.Bezier(np.arange(4) + len(vertices)), points) else: # we are not starting so use the last referenced vertex as the # start point return (entities_mod.Bezier( np.arange(4) + len(vertices) - 1), points[1:]) # store loaded values here entities = [] vertices = [] loaders = {'Arc': load_arc, 'Line': load_line, 'CubicBezier': load_cubic, 'QuadraticBezier': load_quadratic} for path_string, matrix in paths: starting = True for svg_entity in parse_path(path_string): type_name = svg_entity.__class__.__name__ if type_name in loaders: e, v = loaders[type_name](svg_entity) entities.append(e) vertices.extend(transform_points(v, matrix)) # store results as kwargs loaded = {'entities': np.array(entities), 'vertices': np.array(vertices)} return loaded
python
{ "resource": "" }
q23347
_orient3dfast
train
def _orient3dfast(plane, pd): """ Performs a fast 3D orientation test. Parameters ---------- plane: (3,3) float, three points in space that define a plane pd: (3,) float, a single point Returns ------- result: float, if greater than zero then pd is above the plane through the given three points, if less than zero then pd is below the given plane, and if equal to zero then pd is on the given plane. """ pa, pb, pc = plane adx = pa[0] - pd[0] bdx = pb[0] - pd[0] cdx = pc[0] - pd[0] ady = pa[1] - pd[1] bdy = pb[1] - pd[1] cdy = pc[1] - pd[1] adz = pa[2] - pd[2] bdz = pb[2] - pd[2] cdz = pc[2] - pd[2] return (adx * (bdy * cdz - bdz * cdy) + bdx * (cdy * adz - cdz * ady) + cdx * (ady * bdz - adz * bdy))
python
{ "resource": "" }
q23348
_compute_static_prob
train
def _compute_static_prob(tri, com): """ For an object with the given center of mass, compute the probability that the given tri would be the first to hit the ground if the object were dropped with a pose chosen uniformly at random. Parameters ---------- tri: (3,3) float, the vertices of a triangle cm: (3,) float, the center of mass of the object Returns ------- prob: float, the probability in [0,1] for the given triangle """ sv = [(v - com) / np.linalg.norm(v - com) for v in tri] # Use L'Huilier's Formula to compute spherical area a = np.arccos(min(1, max(-1, np.dot(sv[0], sv[1])))) b = np.arccos(min(1, max(-1, np.dot(sv[1], sv[2])))) c = np.arccos(min(1, max(-1, np.dot(sv[2], sv[0])))) s = (a + b + c) / 2.0 # Prevents weirdness with arctan try: return 1.0 / np.pi * np.arctan(np.sqrt(np.tan(s / 2) * np.tan( (s - a) / 2) * np.tan((s - b) / 2) * np.tan((s - c) / 2))) except BaseException: s = s + 1e-8 return 1.0 / np.pi * np.arctan(np.sqrt(np.tan(s / 2) * np.tan( (s - a) / 2) * np.tan((s - b) / 2) * np.tan((s - c) / 2)))
python
{ "resource": "" }
q23349
_create_topple_graph
train
def _create_topple_graph(cvh_mesh, com): """ Constructs a toppling digraph for the given convex hull mesh and center of mass. Each node n_i in the digraph corresponds to a face f_i of the mesh and is labelled with the probability that the mesh will land on f_i if dropped randomly. Not all faces are stable, and node n_i has a directed edge to node n_j if the object will quasi-statically topple from f_i to f_j if it lands on f_i initially. This computation is described in detail in http://goldberg.berkeley.edu/pubs/eps.pdf. Parameters ---------- cvh_mesh : trimesh.Trimesh Rhe convex hull of the target shape com : (3,) float The 3D location of the target shape's center of mass Returns ------- graph : networkx.DiGraph Graph representing static probabilities and toppling order for the convex hull """ adj_graph = nx.Graph() topple_graph = nx.DiGraph() # Create face adjacency graph face_pairs = cvh_mesh.face_adjacency edges = cvh_mesh.face_adjacency_edges graph_edges = [] for fp, e in zip(face_pairs, edges): verts = cvh_mesh.vertices[e] graph_edges.append([fp[0], fp[1], {'verts': verts}]) adj_graph.add_edges_from(graph_edges) # Compute static probabilities of landing on each face for i, tri in enumerate(cvh_mesh.triangles): prob = _compute_static_prob(tri, com) topple_graph.add_node(i, prob=prob) # Compute COM projections onto planes of each triangle in cvh_mesh proj_dists = np.einsum('ij,ij->i', cvh_mesh.face_normals, com - cvh_mesh.triangles[:, 0]) proj_coms = com - np.einsum('i,ij->ij', proj_dists, cvh_mesh.face_normals) barys = points_to_barycentric(cvh_mesh.triangles, proj_coms) unstable_face_indices = np.where(np.any(barys < 0, axis=1))[0] # For each unstable face, compute the face it topples to for fi in unstable_face_indices: proj_com = proj_coms[fi] centroid = cvh_mesh.triangles_center[fi] norm = cvh_mesh.face_normals[fi] for tfi in adj_graph[fi]: v1, v2 = adj_graph[fi][tfi]['verts'] if np.dot(np.cross(v1 - centroid, v2 - centroid), norm) < 0: tmp = v2 v2 = v1 v1 = tmp plane1 = [centroid, v1, v1 + norm] plane2 = [centroid, v2 + norm, v2] if _orient3dfast(plane1, proj_com) >= 0 and _orient3dfast( plane2, proj_com) >= 0: break topple_graph.add_edge(fi, tfi) return topple_graph
python
{ "resource": "" }
q23350
transform
train
def transform(mesh, translation_scale=1000.0): """ Return a permutated variant of a mesh by randomly reording faces and rotatating + translating a mesh by a random matrix. Parameters ---------- mesh: Trimesh object (input will not be altered by this function) Returns ---------- permutated: Trimesh object, same faces as input mesh but rotated and reordered. """ matrix = transformations.random_rotation_matrix() matrix[0:3, 3] = np.random.random(3) * translation_scale triangles = np.random.permutation(mesh.triangles).reshape((-1, 3)) triangles = transformations.transform_points(triangles, matrix) mesh_type = util.type_named(mesh, 'Trimesh') permutated = mesh_type( **triangles_module.to_kwargs(triangles.reshape((-1, 3, 3)))) return permutated
python
{ "resource": "" }
q23351
noise
train
def noise(mesh, magnitude=None): """ Add gaussian noise to every vertex of a mesh. Makes no effort to maintain topology or sanity. Parameters ---------- mesh: Trimesh object (will not be mutated) magnitude: float, what is the maximum distance per axis we can displace a vertex. Default value is mesh.scale/100.0 Returns ---------- permutated: Trimesh object, input mesh with noise applied """ if magnitude is None: magnitude = mesh.scale / 100.0 random = (np.random.random(mesh.vertices.shape) - .5) * magnitude vertices_noise = mesh.vertices.copy() + random # make sure we've re- ordered faces randomly triangles = np.random.permutation(vertices_noise[mesh.faces]) mesh_type = util.type_named(mesh, 'Trimesh') permutated = mesh_type(**triangles_module.to_kwargs(triangles)) return permutated
python
{ "resource": "" }
q23352
tessellation
train
def tessellation(mesh): """ Subdivide each face of a mesh into three faces with the new vertex randomly placed inside the old face. This produces a mesh with exactly the same surface area and volume but with different tessellation. Parameters ---------- mesh: Trimesh object Returns ---------- permutated: Trimesh object with remeshed facets """ # create random barycentric coordinates for each face # pad all coordinates by a small amount to bias new vertex towards center barycentric = np.random.random(mesh.faces.shape) + .05 barycentric /= barycentric.sum(axis=1).reshape((-1, 1)) # create one new vertex somewhere in a face vertex_face = (barycentric.reshape((-1, 3, 1)) * mesh.triangles).sum(axis=1) vertex_face_id = np.arange(len(vertex_face)) + len(mesh.vertices) # new vertices are the old vertices stacked on the vertices in the faces vertices = np.vstack((mesh.vertices, vertex_face)) # there are three new faces per old face, and we maintain correct winding faces = np.vstack((np.column_stack((mesh.faces[:, [0, 1]], vertex_face_id)), np.column_stack( (mesh.faces[:, [1, 2]], vertex_face_id)), np.column_stack((mesh.faces[:, [2, 0]], vertex_face_id)))) # make sure the order of the faces is permutated faces = np.random.permutation(faces) mesh_type = util.type_named(mesh, 'Trimesh') permutated = mesh_type(vertices=vertices, faces=faces) return permutated
python
{ "resource": "" }
q23353
load_ply
train
def load_ply(file_obj, resolver=None, fix_texture=True, *args, **kwargs): """ Load a PLY file from an open file object. Parameters --------- file_obj : an open file- like object Source data, ASCII or binary PLY resolver : trimesh.visual.resolvers.Resolver Object which can resolve assets fix_texture : bool If True, will re- index vertices and faces so vertices with different UV coordinates are disconnected. Returns --------- mesh_kwargs : dict Data which can be passed to Trimesh constructor, eg: a = Trimesh(**mesh_kwargs) """ # OrderedDict which is populated from the header elements, is_ascii, image_name = parse_header(file_obj) # functions will fill in elements from file_obj if is_ascii: ply_ascii(elements, file_obj) else: ply_binary(elements, file_obj) # try to load the referenced image image = None if image_name is not None: try: data = resolver.get(image_name) image = PIL.Image.open(util.wrap_as_stream(data)) except BaseException: log.warning('unable to load image!', exc_info=True) kwargs = elements_to_kwargs(elements, fix_texture=fix_texture, image=image) return kwargs
python
{ "resource": "" }
q23354
export_ply
train
def export_ply(mesh, encoding='binary', vertex_normal=None): """ Export a mesh in the PLY format. Parameters ---------- mesh : Trimesh object encoding : ['ascii'|'binary_little_endian'] vertex_normal : include vertex normals Returns ---------- export : bytes of result """ # evaluate input args # allow a shortcut for binary if encoding == 'binary': encoding = 'binary_little_endian' elif encoding not in ['binary_little_endian', 'ascii']: raise ValueError('encoding must be binary or ascii') # if vertex normals aren't specifically asked for # only export them if they are stored in cache if vertex_normal is None: vertex_normal = 'vertex_normal' in mesh._cache # custom numpy dtypes for exporting dtype_face = [('count', '<u1'), ('index', '<i4', (3))] dtype_vertex = [('vertex', '<f4', (3))] # will be appended to main dtype if needed dtype_vertex_normal = ('normals', '<f4', (3)) dtype_color = ('rgba', '<u1', (4)) # get template strings in dict templates = json.loads(get_resource('ply.template')) # start collecting elements into a string for the header header = templates['intro'] header += templates['vertex'] # if we're exporting vertex normals add them # to the header and dtype if vertex_normal: header += templates['vertex_normal'] dtype_vertex.append(dtype_vertex_normal) # if mesh has a vertex coloradd it to the header if mesh.visual.kind == 'vertex' and encoding != 'ascii': header += templates['color'] dtype_vertex.append(dtype_color) # create and populate the custom dtype for vertices vertex = np.zeros(len(mesh.vertices), dtype=dtype_vertex) vertex['vertex'] = mesh.vertices if vertex_normal: vertex['normals'] = mesh.vertex_normals if mesh.visual.kind == 'vertex': vertex['rgba'] = mesh.visual.vertex_colors header += templates['face'] if mesh.visual.kind == 'face' and encoding != 'ascii': header += templates['color'] dtype_face.append(dtype_color) # put mesh face data into custom dtype to export faces = np.zeros(len(mesh.faces), dtype=dtype_face) faces['count'] = 3 faces['index'] = mesh.faces if mesh.visual.kind == 'face' and encoding != 'ascii': faces['rgba'] = mesh.visual.face_colors header += templates['outro'] header_params = {'vertex_count': len(mesh.vertices), 'face_count': len(mesh.faces), 'encoding': encoding} export = Template(header).substitute(header_params).encode('utf-8') if encoding == 'binary_little_endian': export += vertex.tostring() export += faces.tostring() elif encoding == 'ascii': # ply format is: (face count, v0, v1, v2) fstack = np.column_stack((np.ones(len(mesh.faces), dtype=np.int64) * 3, mesh.faces)) # if we're exporting vertex normals they get stacked if vertex_normal: vstack = np.column_stack((mesh.vertices, mesh.vertex_normals)) else: vstack = mesh.vertices # add the string formatted vertices and faces export += (util.array_to_string(vstack, col_delim=' ', row_delim='\n') + '\n' + util.array_to_string(fstack, col_delim=' ', row_delim='\n')).encode('utf-8') else: raise ValueError('encoding must be ascii or binary!') return export
python
{ "resource": "" }
q23355
parse_header
train
def parse_header(file_obj): """ Read the ASCII header of a PLY file, and leave the file object at the position of the start of data but past the header. Parameters ----------- file_obj : open file object Positioned at the start of the file Returns ----------- elements : collections.OrderedDict Fields and data types populated is_ascii : bool Whether the data is ASCII or binary image_name : None or str File name of TextureFile """ if 'ply' not in str(file_obj.readline()): raise ValueError('not a ply file!') # collect the encoding: binary or ASCII encoding = file_obj.readline().decode('utf-8').strip().lower() is_ascii = 'ascii' in encoding # big or little endian endian = ['<', '>'][int('big' in encoding)] elements = collections.OrderedDict() # store file name of TextureFiles in the header image_name = None while True: line = file_obj.readline() if line is None: raise ValueError("Header not terminated properly!") line = line.decode('utf-8').strip().split() # we're done if 'end_header' in line: break # elements are groups of properties if 'element' in line[0]: # we got a new element so add it name, length = line[1:] elements[name] = { 'length': int(length), 'properties': collections.OrderedDict()} # a property is a member of an element elif 'property' in line[0]: # is the property a simple single value, like: # `propert float x` if len(line) == 3: dtype, field = line[1:] elements[name]['properties'][ str(field)] = endian + dtypes[dtype] # is the property a painful list, like: # `property list uchar int vertex_indices` elif 'list' in line[1]: dtype_count, dtype, field = line[2:] elements[name]['properties'][ str(field)] = ( endian + dtypes[dtype_count] + ', ($LIST,)' + endian + dtypes[dtype]) # referenced as a file name elif 'TextureFile' in line: # textures come listed like: # `comment TextureFile fuze_uv.jpg` index = line.index('TextureFile') + 1 if index < len(line): image_name = line[index] return elements, is_ascii, image_name
python
{ "resource": "" }
q23356
ply_ascii
train
def ply_ascii(elements, file_obj): """ Load data from an ASCII PLY file into an existing elements data structure. Parameters ------------ elements: OrderedDict object, populated from the file header. object will be modified to add data by this function. file_obj: open file object, with current position at the start of the data section (past the header) """ # get the file contents as a string text = str(file_obj.read().decode('utf-8')) # split by newlines lines = str.splitlines(text) # get each line as an array split by whitespace array = np.array([np.fromstring(i, sep=' ') for i in lines]) # store the line position in the file position = 0 # loop through data we need for key, values in elements.items(): # will store (start, end) column index of data columns = collections.deque() # will store the total number of rows rows = 0 for name, dtype in values['properties'].items(): if '$LIST' in dtype: # if an element contains a list property handle it here row = array[position] list_count = int(row[rows]) # ignore the count and take the data columns.append([rows + 1, rows + 1 + list_count]) rows += list_count + 1 # change the datatype to just the dtype for data values['properties'][name] = dtype.split('($LIST,)')[-1] else: # a single column data field columns.append([rows, rows + 1]) rows += 1 # get the lines as a 2D numpy array data = np.vstack(array[position:position + values['length']]) # offset position in file position += values['length'] # store columns we care about by name and convert to data type elements[key]['data'] = {n: data[:, c[0]:c[1]].astype(dt) for n, dt, c in zip( values['properties'].keys(), # field name values['properties'].values(), # data type of field columns)}
python
{ "resource": "" }
q23357
ply_binary
train
def ply_binary(elements, file_obj): """ Load the data from a binary PLY file into the elements data structure. Parameters ------------ elements: OrderedDict object, populated from the file header. object will be modified to add data by this function. file_obj: open file object, with current position at the start of the data section (past the header) """ def populate_listsize(file_obj, elements): """ Given a set of elements populated from the header if there are any list properties seek in the file the length of the list. Note that if you have a list where each instance is different length (if for example you mixed triangles and quads) this won't work at all """ p_start = file_obj.tell() p_current = file_obj.tell() for element_key, element in elements.items(): props = element['properties'] prior_data = '' for k, dtype in props.items(): if '$LIST' in dtype: # every list field has two data types: # the list length (single value), and the list data (multiple) # here we are only reading the single value for list length field_dtype = np.dtype(dtype.split(',')[0]) if len(prior_data) == 0: offset = 0 else: offset = np.dtype(prior_data).itemsize file_obj.seek(p_current + offset) size = np.frombuffer(file_obj.read(field_dtype.itemsize), dtype=field_dtype)[0] props[k] = props[k].replace('$LIST', str(size)) prior_data += props[k] + ',' itemsize = np.dtype(', '.join(props.values())).itemsize p_current += element['length'] * itemsize file_obj.seek(p_start) def populate_data(file_obj, elements): """ Given the data type and field information from the header, read the data and add it to a 'data' field in the element. """ for key in elements.keys(): items = list(elements[key]['properties'].items()) dtype = np.dtype(items) data = file_obj.read(elements[key]['length'] * dtype.itemsize) elements[key]['data'] = np.frombuffer(data, dtype=dtype) return elements def elements_size(elements): """ Given an elements data structure populated from the header, calculate how long the file should be if it is intact. """ size = 0 for element in elements.values(): dtype = np.dtype(','.join(element['properties'].values())) size += element['length'] * dtype.itemsize return size # some elements are passed where the list dimensions # are not included in the header, so this function goes # into the meat of the file and grabs the list dimensions # before we to the main data read as a single operation populate_listsize(file_obj, elements) # how many bytes are left in the file size_file = util.distance_to_end(file_obj) # how many bytes should the data structure described by # the header take up size_elements = elements_size(elements) # if the number of bytes is not the same the file is probably corrupt if size_file != size_elements: raise ValueError('File is unexpected length!') # with everything populated and a reasonable confidence the file # is intact, read the data fields described by the header populate_data(file_obj, elements)
python
{ "resource": "" }
q23358
export_draco
train
def export_draco(mesh): """ Export a mesh using Google's Draco compressed format. Only works if draco_encoder is in your PATH: https://github.com/google/draco Parameters ---------- mesh : Trimesh object Returns ---------- data : str or bytes DRC file bytes """ with tempfile.NamedTemporaryFile(suffix='.ply') as temp_ply: temp_ply.write(export_ply(mesh)) temp_ply.flush() with tempfile.NamedTemporaryFile(suffix='.drc') as encoded: subprocess.check_output([draco_encoder, '-qp', # bits of quantization for position '28', # since our tol.merge is 1e-8, 25 bits # more has a machine epsilon # smaller than that '-i', temp_ply.name, '-o', encoded.name]) encoded.seek(0) data = encoded.read() return data
python
{ "resource": "" }
q23359
load_draco
train
def load_draco(file_obj, **kwargs): """ Load a mesh from Google's Draco format. Parameters ---------- file_obj : file- like object Contains data Returns ---------- kwargs : dict Keyword arguments to construct a Trimesh object """ with tempfile.NamedTemporaryFile(suffix='.drc') as temp_drc: temp_drc.write(file_obj.read()) temp_drc.flush() with tempfile.NamedTemporaryFile(suffix='.ply') as temp_ply: subprocess.check_output([draco_decoder, '-i', temp_drc.name, '-o', temp_ply.name]) temp_ply.seek(0) kwargs = load_ply(temp_ply) return kwargs
python
{ "resource": "" }
q23360
boolean_automatic
train
def boolean_automatic(meshes, operation): """ Automatically pick an engine for booleans based on availability. Parameters -------------- meshes : list of Trimesh Meshes to be booleaned operation : str Type of boolean, i.e. 'union', 'intersection', 'difference' Returns --------------- result : trimesh.Trimesh Result of boolean operation """ if interfaces.blender.exists: result = interfaces.blender.boolean(meshes, operation) elif interfaces.scad.exists: result = interfaces.scad.boolean(meshes, operation) else: raise ValueError('No backends available for boolean operations!') return result
python
{ "resource": "" }
q23361
subdivide
train
def subdivide(vertices, faces, face_index=None): """ Subdivide a mesh into smaller triangles. Note that if `face_index` is passed, only those faces will be subdivided and their neighbors won't be modified making the mesh no longer "watertight." Parameters ---------- vertices : (n, 3) float Vertices in space faces : (n, 3) int Indexes of vertices which make up triangular faces face_index : faces to subdivide. if None: all faces of mesh will be subdivided if (n,) int array of indices: only specified faces Returns ---------- new_vertices : (n, 3) float Vertices in space new_faces : (n, 3) int Remeshed faces """ if face_index is None: face_index = np.arange(len(faces)) else: face_index = np.asanyarray(face_index) # the (c,3) int set of vertex indices faces = faces[face_index] # the (c, 3, 3) float set of points in the triangles triangles = vertices[faces] # the 3 midpoints of each triangle edge # stacked to a (3 * c, 3) float mid = np.vstack([triangles[:, g, :].mean(axis=1) for g in [[0, 1], [1, 2], [2, 0]]]) # for adjacent faces we are going to be generating # the same midpoint twice so merge them here mid_idx = (np.arange(len(face_index) * 3)).reshape((3, -1)).T unique, inverse = grouping.unique_rows(mid) mid = mid[unique] mid_idx = inverse[mid_idx] + len(vertices) # the new faces with correct winding f = np.column_stack([faces[:, 0], mid_idx[:, 0], mid_idx[:, 2], mid_idx[:, 0], faces[:, 1], mid_idx[:, 1], mid_idx[:, 2], mid_idx[:, 1], faces[:, 2], mid_idx[:, 0], mid_idx[:, 1], mid_idx[:, 2]]).reshape((-1, 3)) # add the 3 new faces per old face new_faces = np.vstack((faces, f[len(face_index):])) # replace the old face with a smaller face new_faces[face_index] = f[:len(face_index)] new_vertices = np.vstack((vertices, mid)) return new_vertices, new_faces
python
{ "resource": "" }
q23362
subdivide_to_size
train
def subdivide_to_size(vertices, faces, max_edge, max_iter=10): """ Subdivide a mesh until every edge is shorter than a specified length. Will return a triangle soup, not a nicely structured mesh. Parameters ------------ vertices : (n, 3) float Vertices in space faces : (m, 3) int Indices of vertices which make up triangles max_edge : float Maximum length of any edge in the result max_iter : int The maximum number of times to run subdivision Returns ------------ vertices : (j, 3) float Vertices in space faces : (q, 3) int Indices of vertices """ # store completed done_face = [] done_vert = [] # copy inputs and make sure dtype is correct current_faces = np.array(faces, dtype=np.int64, copy=True) current_vertices = np.array(vertices, dtype=np.float64, copy=True) # loop through iteration cap for i in range(max_iter + 1): # (n, 3, 3) float triangle soup triangles = current_vertices[current_faces] # compute the length of every triangle edge edge_lengths = (np.diff(triangles[:, [0, 1, 2, 0]], axis=1) ** 2).sum(axis=2) ** .5 too_long = (edge_lengths > max_edge).any(axis=1) # clean up the faces a little bit so we don't # store a ton of unused vertices unique, inverse = np.unique( current_faces[np.logical_not(too_long)], return_inverse=True) # store vertices and faces meeting criteria done_vert.append(current_vertices[unique]) done_face.append(inverse.reshape((-1, 3))) # met our goals so abort if not too_long.any(): break # run subdivision again (current_vertices, current_faces) = subdivide(current_vertices, current_faces[too_long]) # stack sequence into nice (n, 3) arrays vertices, faces = util.append_faces(done_vert, done_face) return vertices, faces
python
{ "resource": "" }
q23363
load_dwg
train
def load_dwg(file_obj, **kwargs): """ Load DWG files by converting them to DXF files using TeighaFileConverter. Parameters ------------- file_obj : file- like object Returns ------------- loaded : dict kwargs for a Path2D constructor """ # read the DWG data into a bytes object data = file_obj.read() # convert data into R14 ASCII DXF converted = _teigha_convert(data) # load into kwargs for Path2D constructor result = load_dxf(util.wrap_as_stream(converted)) return result
python
{ "resource": "" }
q23364
cross
train
def cross(triangles): """ Returns the cross product of two edges from input triangles Parameters -------------- triangles: (n, 3, 3) float Vertices of triangles Returns -------------- crosses : (n, 3) float Cross product of two edge vectors """ vectors = np.diff(triangles, axis=1) crosses = np.cross(vectors[:, 0], vectors[:, 1]) return crosses
python
{ "resource": "" }
q23365
area
train
def area(triangles=None, crosses=None, sum=False): """ Calculates the sum area of input triangles Parameters ---------- triangles : (n, 3, 3) float Vertices of triangles crosses : (n, 3) float or None As a speedup don't re- compute cross products sum : bool Return summed area or individual triangle area Returns ---------- area : (n,) float or float Individual or summed area depending on `sum` argument """ if crosses is None: crosses = cross(triangles) area = (np.sum(crosses**2, axis=1)**.5) * .5 if sum: return np.sum(area) return area
python
{ "resource": "" }
q23366
normals
train
def normals(triangles=None, crosses=None): """ Calculates the normals of input triangles Parameters ------------ triangles : (n, 3, 3) float Vertex positions crosses : (n, 3) float Cross products of edge vectors Returns ------------ normals : (m, 3) float Normal vectors valid : (n,) bool Was the face nonzero area or not """ if crosses is None: crosses = cross(triangles) # unitize the cross product vectors unit, valid = util.unitize(crosses, check_valid=True) return unit, valid
python
{ "resource": "" }
q23367
angles
train
def angles(triangles): """ Calculates the angles of input triangles. Parameters ------------ triangles : (n, 3, 3) float Vertex positions Returns ------------ angles : (n, 3) float Angles at vertex positions, in radians """ # get a vector for each edge of the triangle u = triangles[:, 1] - triangles[:, 0] v = triangles[:, 2] - triangles[:, 0] w = triangles[:, 2] - triangles[:, 1] # normalize each vector in place u /= np.linalg.norm(u, axis=1, keepdims=True) v /= np.linalg.norm(v, axis=1, keepdims=True) w /= np.linalg.norm(w, axis=1, keepdims=True) # run the cosine and an einsum that definitely does something a = np.arccos(np.clip(np.einsum('ij, ij->i', u, v), -1, 1)) b = np.arccos(np.clip(np.einsum('ij, ij->i', -u, w), -1, 1)) c = np.pi - a - b return np.column_stack([a, b, c])
python
{ "resource": "" }
q23368
all_coplanar
train
def all_coplanar(triangles): """ Check to see if a list of triangles are all coplanar Parameters ---------------- triangles: (n, 3, 3) float Vertices of triangles Returns --------------- all_coplanar : bool True if all triangles are coplanar """ triangles = np.asanyarray(triangles, dtype=np.float64) if not util.is_shape(triangles, (-1, 3, 3)): raise ValueError('Triangles must be (n,3,3)!') test_normal = normals(triangles)[0] test_vertex = triangles[0][0] distances = point_plane_distance(points=triangles[1:].reshape((-1, 3)), plane_normal=test_normal, plane_origin=test_vertex) all_coplanar = np.all(np.abs(distances) < tol.zero) return all_coplanar
python
{ "resource": "" }
q23369
windings_aligned
train
def windings_aligned(triangles, normals_compare): """ Given a list of triangles and a list of normals determine if the two are aligned Parameters ---------- triangles : (n, 3, 3) float Vertex locations in space normals_compare : (n, 3) float List of normals to compare Returns ---------- aligned : (n,) bool Are normals aligned with triangles """ triangles = np.asanyarray(triangles, dtype=np.float64) if not util.is_shape(triangles, (-1, 3, 3)): raise ValueError('Triangles must be (n,3,3)!') calculated, valid = normals(triangles) difference = util.diagonal_dot(calculated, normals_compare[valid]) aligned = np.zeros(len(triangles), dtype=np.bool) aligned[valid] = difference > 0.0 return aligned
python
{ "resource": "" }
q23370
bounds_tree
train
def bounds_tree(triangles): """ Given a list of triangles, create an r-tree for broad- phase collision detection Parameters --------- triangles : (n, 3, 3) float Triangles in space Returns --------- tree : rtree.Rtree One node per triangle """ triangles = np.asanyarray(triangles, dtype=np.float64) if not util.is_shape(triangles, (-1, 3, 3)): raise ValueError('Triangles must be (n,3,3)!') # the (n,6) interleaved bounding box for every triangle triangle_bounds = np.column_stack((triangles.min(axis=1), triangles.max(axis=1))) tree = util.bounds_tree(triangle_bounds) return tree
python
{ "resource": "" }
q23371
nondegenerate
train
def nondegenerate(triangles, areas=None, height=None): """ Find all triangles which have an oriented bounding box where both of the two sides is larger than a specified height. Degenerate triangles can be when: 1) Two of the three vertices are colocated 2) All three vertices are unique but colinear Parameters ---------- triangles : (n, 3, 3) float Triangles in space height : float Minimum edge length of a triangle to keep Returns ---------- nondegenerate : (n,) bool True if a triangle meets required minimum height """ triangles = np.asanyarray(triangles, dtype=np.float64) if not util.is_shape(triangles, (-1, 3, 3)): raise ValueError('Triangles must be (n,3,3)!') if height is None: height = tol.merge # if both edges of the triangles OBB are longer than tol.merge # we declare them to be nondegenerate ok = (extents(triangles=triangles, areas=areas) > height).all(axis=1) return ok
python
{ "resource": "" }
q23372
extents
train
def extents(triangles, areas=None): """ Return the 2D bounding box size of each triangle. Parameters ---------- triangles : (n, 3, 3) float Triangles in space areas : (n,) float Optional area of input triangles Returns ---------- box : (n, 2) float The size of each triangle's 2D oriented bounding box """ triangles = np.asanyarray(triangles, dtype=np.float64) if not util.is_shape(triangles, (-1, 3, 3)): raise ValueError('Triangles must be (n,3,3)!') if areas is None: areas = area(triangles=triangles, sum=False) # the edge vectors which define the triangle a = triangles[:, 1] - triangles[:, 0] b = triangles[:, 2] - triangles[:, 0] # length of the edge vectors length_a = (a**2).sum(axis=1)**.5 length_b = (b**2).sum(axis=1)**.5 # which edges are acceptable length nonzero_a = length_a > tol.merge nonzero_b = length_b > tol.merge # find the two heights of the triangle # essentially this is the side length of an # oriented bounding box, per triangle box = np.zeros((len(triangles), 2), dtype=np.float64) box[:, 0][nonzero_a] = (areas[nonzero_a] * 2) / length_a[nonzero_a] box[:, 1][nonzero_b] = (areas[nonzero_b] * 2) / length_b[nonzero_b] return box
python
{ "resource": "" }
q23373
barycentric_to_points
train
def barycentric_to_points(triangles, barycentric): """ Convert a list of barycentric coordinates on a list of triangles to cartesian points. Parameters ------------ triangles : (n, 3, 3) float Triangles in space barycentric : (n, 2) float Barycentric coordinates Returns ----------- points : (m, 3) float Points in space """ barycentric = np.asanyarray(barycentric, dtype=np.float64) triangles = np.asanyarray(triangles, dtype=np.float64) if not util.is_shape(triangles, (-1, 3, 3)): raise ValueError('Triangles must be (n,3,3)!') if barycentric.shape == (2,): barycentric = np.ones((len(triangles), 2), dtype=np.float64) * barycentric if util.is_shape(barycentric, (len(triangles), 2)): barycentric = np.column_stack((barycentric, 1.0 - barycentric.sum(axis=1))) elif not util.is_shape(barycentric, (len(triangles), 3)): raise ValueError('Barycentric shape incorrect!') barycentric /= barycentric.sum(axis=1).reshape((-1, 1)) points = (triangles * barycentric.reshape((-1, 3, 1))).sum(axis=1) return points
python
{ "resource": "" }
q23374
points_to_barycentric
train
def points_to_barycentric(triangles, points, method='cramer'): """ Find the barycentric coordinates of points relative to triangles. The Cramer's rule solution implements: http://blackpawn.com/texts/pointinpoly The cross product solution implements: https://www.cs.ubc.ca/~heidrich/Papers/JGT.05.pdf Parameters ----------- triangles : (n, 3, 3) float Triangles vertices in space points : (n, 3) float Point in space associated with a triangle method : str Which method to compute the barycentric coordinates with: - 'cross': uses a method using cross products, roughly 2x slower but different numerical robustness properties - anything else: uses a cramer's rule solution Returns ----------- barycentric : (n, 3) float Barycentric coordinates of each point """ def method_cross(): n = np.cross(edge_vectors[:, 0], edge_vectors[:, 1]) denominator = util.diagonal_dot(n, n) barycentric = np.zeros((len(triangles), 3), dtype=np.float64) barycentric[:, 2] = util.diagonal_dot( np.cross(edge_vectors[:, 0], w), n) / denominator barycentric[:, 1] = util.diagonal_dot( np.cross(w, edge_vectors[:, 1]), n) / denominator barycentric[:, 0] = 1 - barycentric[:, 1] - barycentric[:, 2] return barycentric def method_cramer(): dot00 = util.diagonal_dot(edge_vectors[:, 0], edge_vectors[:, 0]) dot01 = util.diagonal_dot(edge_vectors[:, 0], edge_vectors[:, 1]) dot02 = util.diagonal_dot(edge_vectors[:, 0], w) dot11 = util.diagonal_dot(edge_vectors[:, 1], edge_vectors[:, 1]) dot12 = util.diagonal_dot(edge_vectors[:, 1], w) inverse_denominator = 1.0 / (dot00 * dot11 - dot01 * dot01) barycentric = np.zeros((len(triangles), 3), dtype=np.float64) barycentric[:, 2] = (dot00 * dot12 - dot01 * dot02) * inverse_denominator barycentric[:, 1] = (dot11 * dot02 - dot01 * dot12) * inverse_denominator barycentric[:, 0] = 1 - barycentric[:, 1] - barycentric[:, 2] return barycentric # establish that input triangles and points are sane triangles = np.asanyarray(triangles, dtype=np.float64) points = np.asanyarray(points, dtype=np.float64) if not util.is_shape(triangles, (-1, 3, 3)): raise ValueError('triangles shape incorrect') if not util.is_shape(points, (len(triangles), 3)): raise ValueError('triangles and points must correspond') edge_vectors = triangles[:, 1:] - triangles[:, :1] w = points - triangles[:, 0].reshape((-1, 3)) if method == 'cross': return method_cross() return method_cramer()
python
{ "resource": "" }
q23375
to_kwargs
train
def to_kwargs(triangles): """ Convert a list of triangles to the kwargs for the Trimesh constructor. Parameters --------- triangles : (n, 3, 3) float Triangles in space Returns --------- kwargs : dict Keyword arguments for the trimesh.Trimesh constructor Includes keys 'vertices' and 'faces' Examples --------- >>> mesh = trimesh.Trimesh(**trimesh.triangles.to_kwargs(triangles)) """ triangles = np.asanyarray(triangles, dtype=np.float64) if not util.is_shape(triangles, (-1, 3, 3)): raise ValueError('Triangles must be (n,3,3)!') vertices = triangles.reshape((-1, 3)) faces = np.arange(len(vertices)).reshape((-1, 3)) kwargs = {'vertices': vertices, 'faces': faces} return kwargs
python
{ "resource": "" }
q23376
_Primitive.copy
train
def copy(self): """ Return a copy of the Primitive object. """ result = copy.deepcopy(self) result._cache.clear() return result
python
{ "resource": "" }
q23377
_Primitive.to_mesh
train
def to_mesh(self): """ Return a copy of the Primitive object as a Trimesh object. """ result = Trimesh(vertices=self.vertices.copy(), faces=self.faces.copy(), face_normals=self.face_normals.copy(), process=False) return result
python
{ "resource": "" }
q23378
Cylinder.volume
train
def volume(self): """ The analytic volume of the cylinder primitive. Returns --------- volume : float Volume of the cylinder """ volume = ((np.pi * self.primitive.radius ** 2) * self.primitive.height) return volume
python
{ "resource": "" }
q23379
Cylinder.moment_inertia
train
def moment_inertia(self): """ The analytic inertia tensor of the cylinder primitive. Returns ---------- tensor: (3,3) float, 3D inertia tensor """ tensor = inertia.cylinder_inertia( mass=self.volume, radius=self.primitive.radius, height=self.primitive.height, transform=self.primitive.transform) return tensor
python
{ "resource": "" }
q23380
Cylinder.segment
train
def segment(self): """ A line segment which if inflated by cylinder radius would represent the cylinder primitive. Returns ------------- segment : (2, 3) float Points representing a single line segment """ # half the height half = self.primitive.height / 2.0 # apply the transform to the Z- aligned segment points = np.dot( self.primitive.transform, np.transpose([[0, 0, -half, 1], [0, 0, half, 1]])).T[:, :3] return points
python
{ "resource": "" }
q23381
Sphere.apply_transform
train
def apply_transform(self, matrix): """ Apply a transform to the sphere primitive Parameters ------------ matrix: (4,4) float, homogenous transformation """ matrix = np.asanyarray(matrix, dtype=np.float64) if matrix.shape != (4, 4): raise ValueError('shape must be 4,4') center = np.dot(matrix, np.append(self.primitive.center, 1.0))[:3] self.primitive.center = center
python
{ "resource": "" }
q23382
Sphere.moment_inertia
train
def moment_inertia(self): """ The analytic inertia tensor of the sphere primitive. Returns ---------- tensor: (3,3) float, 3D inertia tensor """ tensor = inertia.sphere_inertia(mass=self.volume, radius=self.primitive.radius) return tensor
python
{ "resource": "" }
q23383
Box.sample_volume
train
def sample_volume(self, count): """ Return random samples from inside the volume of the box. Parameters ------------- count : int Number of samples to return Returns ---------- samples : (count, 3) float Points inside the volume """ samples = sample.volume_rectangular( extents=self.primitive.extents, count=count, transform=self.primitive.transform) return samples
python
{ "resource": "" }
q23384
Box.sample_grid
train
def sample_grid(self, count=None, step=None): """ Return a 3D grid which is contained by the box. Samples are either 'step' distance apart, or there are 'count' samples per box side. Parameters ----------- count : int or (3,) int If specified samples are spaced with np.linspace step : float or (3,) float If specified samples are spaced with np.arange Returns ----------- grid : (n, 3) float Points inside the box """ if (count is not None and step is not None): raise ValueError('only step OR count can be specified!') # create pre- transform bounds from extents bounds = np.array([-self.primitive.extents, self.primitive.extents]) * .5 if step is not None: grid = util.grid_arange(bounds, step=step) elif count is not None: grid = util.grid_linspace(bounds, count=count) else: raise ValueError('either count or step must be specified!') transformed = transformations.transform_points( grid, matrix=self.primitive.transform) return transformed
python
{ "resource": "" }
q23385
Box.is_oriented
train
def is_oriented(self): """ Returns whether or not the current box is rotated at all. """ if util.is_shape(self.primitive.transform, (4, 4)): return not np.allclose(self.primitive.transform[ 0:3, 0:3], np.eye(3)) else: return False
python
{ "resource": "" }
q23386
Box.volume
train
def volume(self): """ Volume of the box Primitive. Returns -------- volume: float, volume of box """ volume = float(np.product(self.primitive.extents)) return volume
python
{ "resource": "" }
q23387
Extrusion.area
train
def area(self): """ The surface area of the primitive extrusion. Calculated from polygon and height to avoid mesh creation. Returns ---------- area: float, surface area of 3D extrusion """ # area of the sides of the extrusion area = abs(self.primitive.height * self.primitive.polygon.length) # area of the two caps of the extrusion area += self.primitive.polygon.area * 2 return area
python
{ "resource": "" }
q23388
Extrusion.volume
train
def volume(self): """ The volume of the primitive extrusion. Calculated from polygon and height to avoid mesh creation. Returns ---------- volume: float, volume of 3D extrusion """ volume = abs(self.primitive.polygon.area * self.primitive.height) return volume
python
{ "resource": "" }
q23389
Extrusion.direction
train
def direction(self): """ Based on the extrudes transform, what is the vector along which the polygon will be extruded Returns --------- direction: (3,) float vector. If self.primitive.transform is an identity matrix this will be [0.0, 0.0, 1.0] """ direction = np.dot(self.primitive.transform[:3, :3], [0.0, 0.0, np.sign(self.primitive.height)]) return direction
python
{ "resource": "" }
q23390
Extrusion.slide
train
def slide(self, distance): """ Alter the transform of the current extrusion to slide it along its extrude_direction vector Parameters ----------- distance: float, distance along self.extrude_direction to move """ distance = float(distance) translation = np.eye(4) translation[2, 3] = distance new_transform = np.dot(self.primitive.transform.copy(), translation.copy()) self.primitive.transform = new_transform
python
{ "resource": "" }
q23391
Extrusion.buffer
train
def buffer(self, distance): """ Return a new Extrusion object which is expanded in profile and in height by a specified distance. Returns ---------- buffered: Extrusion object """ distance = float(distance) # start with current height height = self.primitive.height # if current height is negative offset by negative amount height += np.sign(height) * 2.0 * distance buffered = Extrusion( transform=self.primitive.transform.copy(), polygon=self.primitive.polygon.buffer(distance), height=height) # slide the stock along the axis buffered.slide(-np.sign(height) * distance) return buffered
python
{ "resource": "" }
q23392
enclosure_tree
train
def enclosure_tree(polygons): """ Given a list of shapely polygons with only exteriors, find which curves represent the exterior shell or root curve and which represent holes which penetrate the exterior. This is done with an R-tree for rough overlap detection, and then exact polygon queries for a final result. Parameters ----------- polygons : (n,) shapely.geometry.Polygon Polygons which only have exteriors and may overlap Returns ----------- roots : (m,) int Index of polygons which are root contains : networkx.DiGraph Edges indicate a polygon is contained by another polygon """ tree = Rtree() # nodes are indexes in polygons contains = nx.DiGraph() for i, polygon in enumerate(polygons): # if a polygon is None it means creation # failed due to weird geometry so ignore it if polygon is None or len(polygon.bounds) != 4: continue # insert polygon bounds into rtree tree.insert(i, polygon.bounds) # make sure every valid polygon has a node contains.add_node(i) # loop through every polygon for i in contains.nodes(): polygon = polygons[i] # we first query for bounding box intersections from the R-tree for j in tree.intersection(polygon.bounds): # if we are checking a polygon against itself continue if (i == j): continue # do a more accurate polygon in polygon test # for the enclosure tree information if polygons[i].contains(polygons[j]): contains.add_edge(i, j) elif polygons[j].contains(polygons[i]): contains.add_edge(j, i) # a root or exterior curve has an even number of parents # wrap in dict call to avoid networkx view degree = dict(contains.in_degree()) # convert keys and values to numpy arrays indexes = np.array(list(degree.keys())) degrees = np.array(list(degree.values())) # roots are curves with an even inward degree (parent count) roots = indexes[(degrees % 2) == 0] # if there are multiple nested polygons split the graph # so the contains logic returns the individual polygons if len(degrees) > 0 and degrees.max() > 1: # collect new edges for graph edges = [] # find edges of subgraph for each root and children for root in roots: children = indexes[degrees == degree[root] + 1] edges.extend(contains.subgraph(np.append(children, root)).edges()) # stack edges into new directed graph contains = nx.from_edgelist(edges, nx.DiGraph()) # if roots have no children add them anyway contains.add_nodes_from(roots) return roots, contains
python
{ "resource": "" }
q23393
edges_to_polygons
train
def edges_to_polygons(edges, vertices): """ Given an edge list of indices and associated vertices representing lines, generate a list of polygons. Parameters ----------- edges : (n, 2) int Indexes of vertices which represent lines vertices : (m, 2) float Vertices in 2D space Returns ---------- polygons : (p,) shapely.geometry.Polygon Polygon objects with interiors """ # create closed polygon objects polygons = [] # loop through a sequence of ordered traversals for dfs in graph.traversals(edges, mode='dfs'): try: # try to recover polygons before they are more complicated polygons.append(repair_invalid(Polygon(vertices[dfs]))) except ValueError: continue # if there is only one polygon, just return it if len(polygons) == 1: return polygons # find which polygons contain which other polygons roots, tree = enclosure_tree(polygons) # generate list of polygons with proper interiors complete = [] for root in roots: interior = list(tree[root].keys()) shell = polygons[root].exterior.coords holes = [polygons[i].exterior.coords for i in interior] complete.append(Polygon(shell=shell, holes=holes)) return complete
python
{ "resource": "" }
q23394
polygons_obb
train
def polygons_obb(polygons): """ Find the OBBs for a list of shapely.geometry.Polygons """ rectangles = [None] * len(polygons) transforms = [None] * len(polygons) for i, p in enumerate(polygons): transforms[i], rectangles[i] = polygon_obb(p) return np.array(transforms), np.array(rectangles)
python
{ "resource": "" }
q23395
polygon_obb
train
def polygon_obb(polygon): """ Find the oriented bounding box of a Shapely polygon. The OBB is always aligned with an edge of the convex hull of the polygon. Parameters ------------- polygons: shapely.geometry.Polygon Returns ------------- transform: (3,3) float, transformation matrix which will move input polygon from its original position to the first quadrant where the AABB is the OBB extents: (2,) float, extents of transformed polygon """ if hasattr(polygon, 'exterior'): points = np.asanyarray(polygon.exterior.coords) elif isinstance(polygon, np.ndarray): points = polygon else: raise ValueError('polygon or points must be provided') return bounds.oriented_bounds_2D(points)
python
{ "resource": "" }
q23396
transform_polygon
train
def transform_polygon(polygon, matrix): """ Transform a polygon by a a 2D homogenous transform. Parameters ------------- polygon : shapely.geometry.Polygon 2D polygon to be transformed. matrix : (3, 3) float 2D homogenous transformation. Returns -------------- result : shapely.geometry.Polygon Polygon transformed by matrix. """ matrix = np.asanyarray(matrix, dtype=np.float64) if util.is_sequence(polygon): result = [transform_polygon(p, t) for p, t in zip(polygon, matrix)] return result # transform the outer shell shell = transform_points(np.array(polygon.exterior.coords), matrix)[:, :2] # transform the interiors holes = [transform_points(np.array(i.coords), matrix)[:, :2] for i in polygon.interiors] # create a new polygon with the result result = Polygon(shell=shell, holes=holes) return result
python
{ "resource": "" }
q23397
plot_polygon
train
def plot_polygon(polygon, show=True, **kwargs): """ Plot a shapely polygon using matplotlib. Parameters ------------ polygon : shapely.geometry.Polygon Polygon to be plotted show : bool If True will display immediately **kwargs Passed to plt.plot """ import matplotlib.pyplot as plt def plot_single(single): plt.plot(*single.exterior.xy, **kwargs) for interior in single.interiors: plt.plot(*interior.xy, **kwargs) # make aspect ratio non- stupid plt.axes().set_aspect('equal', 'datalim') if util.is_sequence(polygon): [plot_single(i) for i in polygon] else: plot_single(polygon) if show: plt.show()
python
{ "resource": "" }
q23398
resample_boundaries
train
def resample_boundaries(polygon, resolution, clip=None): """ Return a version of a polygon with boundaries resampled to a specified resolution. Parameters ------------- polygon: shapely.geometry.Polygon object resolution: float, desired distance between points on boundary clip: (2,) int, upper and lower bounds to clip number of samples to (to avoid exploding counts) Returns ------------ kwargs: dict, keyword args for a Polygon(**kwargs) """ def resample_boundary(boundary): # add a polygon.exterior or polygon.interior to # the deque after resampling based on our resolution count = boundary.length / resolution count = int(np.clip(count, *clip)) return resample_path(boundary.coords, count=count) if clip is None: clip = [8, 200] # create a sequence of [(n,2)] points kwargs = {'shell': resample_boundary(polygon.exterior), 'holes': deque()} for interior in polygon.interiors: kwargs['holes'].append(resample_boundary(interior)) kwargs['holes'] = np.array(kwargs['holes']) return kwargs
python
{ "resource": "" }
q23399
medial_axis
train
def medial_axis(polygon, resolution=None, clip=None): """ Given a shapely polygon, find the approximate medial axis using a voronoi diagram of evenly spaced points on the boundary of the polygon. Parameters ---------- polygon : shapely.geometry.Polygon The source geometry resolution : float Distance between each sample on the polygon boundary clip : None, or (2,) int Clip sample count to min of clip[0] and max of clip[1] Returns ---------- edges : (n, 2) int Vertex indices representing line segments on the polygon's medial axis vertices : (m, 2) float Vertex positions in space """ from scipy.spatial import Voronoi if resolution is None: resolution = .01 # get evenly spaced points on the polygons boundaries samples = resample_boundaries(polygon=polygon, resolution=resolution, clip=clip) # stack the boundary into a (m,2) float array samples = stack_boundaries(samples) # create the voronoi diagram on 2D points voronoi = Voronoi(samples) # which voronoi vertices are contained inside the polygon contains = vectorized.contains(polygon, *voronoi.vertices.T) # ridge vertices of -1 are outside, make sure they are False contains = np.append(contains, False) # make sure ridge vertices is numpy array ridge = np.asanyarray(voronoi.ridge_vertices, dtype=np.int64) # only take ridges where every vertex is contained edges = ridge[contains[ridge].all(axis=1)] return edges, voronoi.vertices
python
{ "resource": "" }