id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
6,800
google-research/batch-ppo
agents/scripts/utility.py
define_saver
def define_saver(exclude=None): """Create a saver for the variables we want to checkpoint. Args: exclude: List of regexes to match variable names to exclude. Returns: Saver object. """ variables = [] exclude = exclude or [] exclude = [re.compile(regex) for regex in exclude] for variable in tf.global_variables(): if any(regex.match(variable.name) for regex in exclude): continue variables.append(variable) saver = tf.train.Saver(variables, keep_checkpoint_every_n_hours=5) return saver
python
def define_saver(exclude=None): """Create a saver for the variables we want to checkpoint. Args: exclude: List of regexes to match variable names to exclude. Returns: Saver object. """ variables = [] exclude = exclude or [] exclude = [re.compile(regex) for regex in exclude] for variable in tf.global_variables(): if any(regex.match(variable.name) for regex in exclude): continue variables.append(variable) saver = tf.train.Saver(variables, keep_checkpoint_every_n_hours=5) return saver
[ "def", "define_saver", "(", "exclude", "=", "None", ")", ":", "variables", "=", "[", "]", "exclude", "=", "exclude", "or", "[", "]", "exclude", "=", "[", "re", ".", "compile", "(", "regex", ")", "for", "regex", "in", "exclude", "]", "for", "variable", "in", "tf", ".", "global_variables", "(", ")", ":", "if", "any", "(", "regex", ".", "match", "(", "variable", ".", "name", ")", "for", "regex", "in", "exclude", ")", ":", "continue", "variables", ".", "append", "(", "variable", ")", "saver", "=", "tf", ".", "train", ".", "Saver", "(", "variables", ",", "keep_checkpoint_every_n_hours", "=", "5", ")", "return", "saver" ]
Create a saver for the variables we want to checkpoint. Args: exclude: List of regexes to match variable names to exclude. Returns: Saver object.
[ "Create", "a", "saver", "for", "the", "variables", "we", "want", "to", "checkpoint", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/scripts/utility.py#L80-L97
6,801
google-research/batch-ppo
agents/scripts/utility.py
initialize_variables
def initialize_variables(sess, saver, logdir, checkpoint=None, resume=None): """Initialize or restore variables from a checkpoint if available. Args: sess: Session to initialize variables in. saver: Saver to restore variables. logdir: Directory to search for checkpoints. checkpoint: Specify what checkpoint name to use; defaults to most recent. resume: Whether to expect recovering a checkpoint or starting a new run. Raises: ValueError: If resume expected but no log directory specified. RuntimeError: If no resume expected but a checkpoint was found. """ sess.run(tf.group( tf.local_variables_initializer(), tf.global_variables_initializer())) if resume and not (logdir or checkpoint): raise ValueError('Need to specify logdir to resume a checkpoint.') if logdir: state = tf.train.get_checkpoint_state(logdir) if checkpoint: checkpoint = os.path.join(logdir, checkpoint) if not checkpoint and state and state.model_checkpoint_path: checkpoint = state.model_checkpoint_path if checkpoint and resume is False: message = 'Found unexpected checkpoint when starting a new run.' raise RuntimeError(message) if checkpoint: saver.restore(sess, checkpoint)
python
def initialize_variables(sess, saver, logdir, checkpoint=None, resume=None): """Initialize or restore variables from a checkpoint if available. Args: sess: Session to initialize variables in. saver: Saver to restore variables. logdir: Directory to search for checkpoints. checkpoint: Specify what checkpoint name to use; defaults to most recent. resume: Whether to expect recovering a checkpoint or starting a new run. Raises: ValueError: If resume expected but no log directory specified. RuntimeError: If no resume expected but a checkpoint was found. """ sess.run(tf.group( tf.local_variables_initializer(), tf.global_variables_initializer())) if resume and not (logdir or checkpoint): raise ValueError('Need to specify logdir to resume a checkpoint.') if logdir: state = tf.train.get_checkpoint_state(logdir) if checkpoint: checkpoint = os.path.join(logdir, checkpoint) if not checkpoint and state and state.model_checkpoint_path: checkpoint = state.model_checkpoint_path if checkpoint and resume is False: message = 'Found unexpected checkpoint when starting a new run.' raise RuntimeError(message) if checkpoint: saver.restore(sess, checkpoint)
[ "def", "initialize_variables", "(", "sess", ",", "saver", ",", "logdir", ",", "checkpoint", "=", "None", ",", "resume", "=", "None", ")", ":", "sess", ".", "run", "(", "tf", ".", "group", "(", "tf", ".", "local_variables_initializer", "(", ")", ",", "tf", ".", "global_variables_initializer", "(", ")", ")", ")", "if", "resume", "and", "not", "(", "logdir", "or", "checkpoint", ")", ":", "raise", "ValueError", "(", "'Need to specify logdir to resume a checkpoint.'", ")", "if", "logdir", ":", "state", "=", "tf", ".", "train", ".", "get_checkpoint_state", "(", "logdir", ")", "if", "checkpoint", ":", "checkpoint", "=", "os", ".", "path", ".", "join", "(", "logdir", ",", "checkpoint", ")", "if", "not", "checkpoint", "and", "state", "and", "state", ".", "model_checkpoint_path", ":", "checkpoint", "=", "state", ".", "model_checkpoint_path", "if", "checkpoint", "and", "resume", "is", "False", ":", "message", "=", "'Found unexpected checkpoint when starting a new run.'", "raise", "RuntimeError", "(", "message", ")", "if", "checkpoint", ":", "saver", ".", "restore", "(", "sess", ",", "checkpoint", ")" ]
Initialize or restore variables from a checkpoint if available. Args: sess: Session to initialize variables in. saver: Saver to restore variables. logdir: Directory to search for checkpoints. checkpoint: Specify what checkpoint name to use; defaults to most recent. resume: Whether to expect recovering a checkpoint or starting a new run. Raises: ValueError: If resume expected but no log directory specified. RuntimeError: If no resume expected but a checkpoint was found.
[ "Initialize", "or", "restore", "variables", "from", "a", "checkpoint", "if", "available", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/scripts/utility.py#L100-L129
6,802
google-research/batch-ppo
agents/scripts/utility.py
save_config
def save_config(config, logdir=None): """Save a new configuration by name. If a logging directory is specified, is will be created and the configuration will be stored there. Otherwise, a log message will be printed. Args: config: Configuration object. logdir: Location for writing summaries and checkpoints if specified. Returns: Configuration object. """ if logdir: with config.unlocked: config.logdir = logdir message = 'Start a new run and write summaries and checkpoints to {}.' tf.logging.info(message.format(config.logdir)) tf.gfile.MakeDirs(config.logdir) config_path = os.path.join(config.logdir, 'config.yaml') with tf.gfile.FastGFile(config_path, 'w') as file_: yaml.dump(config, file_, default_flow_style=False) else: message = ( 'Start a new run without storing summaries and checkpoints since no ' 'logging directory was specified.') tf.logging.info(message) return config
python
def save_config(config, logdir=None): """Save a new configuration by name. If a logging directory is specified, is will be created and the configuration will be stored there. Otherwise, a log message will be printed. Args: config: Configuration object. logdir: Location for writing summaries and checkpoints if specified. Returns: Configuration object. """ if logdir: with config.unlocked: config.logdir = logdir message = 'Start a new run and write summaries and checkpoints to {}.' tf.logging.info(message.format(config.logdir)) tf.gfile.MakeDirs(config.logdir) config_path = os.path.join(config.logdir, 'config.yaml') with tf.gfile.FastGFile(config_path, 'w') as file_: yaml.dump(config, file_, default_flow_style=False) else: message = ( 'Start a new run without storing summaries and checkpoints since no ' 'logging directory was specified.') tf.logging.info(message) return config
[ "def", "save_config", "(", "config", ",", "logdir", "=", "None", ")", ":", "if", "logdir", ":", "with", "config", ".", "unlocked", ":", "config", ".", "logdir", "=", "logdir", "message", "=", "'Start a new run and write summaries and checkpoints to {}.'", "tf", ".", "logging", ".", "info", "(", "message", ".", "format", "(", "config", ".", "logdir", ")", ")", "tf", ".", "gfile", ".", "MakeDirs", "(", "config", ".", "logdir", ")", "config_path", "=", "os", ".", "path", ".", "join", "(", "config", ".", "logdir", ",", "'config.yaml'", ")", "with", "tf", ".", "gfile", ".", "FastGFile", "(", "config_path", ",", "'w'", ")", "as", "file_", ":", "yaml", ".", "dump", "(", "config", ",", "file_", ",", "default_flow_style", "=", "False", ")", "else", ":", "message", "=", "(", "'Start a new run without storing summaries and checkpoints since no '", "'logging directory was specified.'", ")", "tf", ".", "logging", ".", "info", "(", "message", ")", "return", "config" ]
Save a new configuration by name. If a logging directory is specified, is will be created and the configuration will be stored there. Otherwise, a log message will be printed. Args: config: Configuration object. logdir: Location for writing summaries and checkpoints if specified. Returns: Configuration object.
[ "Save", "a", "new", "configuration", "by", "name", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/scripts/utility.py#L132-L159
6,803
google-research/batch-ppo
agents/scripts/utility.py
load_config
def load_config(logdir): # pylint: disable=missing-raises-doc """Load a configuration from the log directory. Args: logdir: The logging directory containing the configuration file. Raises: IOError: The logging directory does not contain a configuration file. Returns: Configuration object. """ config_path = logdir and os.path.join(logdir, 'config.yaml') if not config_path or not tf.gfile.Exists(config_path): message = ( 'Cannot resume an existing run since the logging directory does not ' 'contain a configuration file.') raise IOError(message) with tf.gfile.FastGFile(config_path, 'r') as file_: config = yaml.load(file_, Loader=yaml.Loader) message = 'Resume run and write summaries and checkpoints to {}.' tf.logging.info(message.format(config.logdir)) return config
python
def load_config(logdir): # pylint: disable=missing-raises-doc """Load a configuration from the log directory. Args: logdir: The logging directory containing the configuration file. Raises: IOError: The logging directory does not contain a configuration file. Returns: Configuration object. """ config_path = logdir and os.path.join(logdir, 'config.yaml') if not config_path or not tf.gfile.Exists(config_path): message = ( 'Cannot resume an existing run since the logging directory does not ' 'contain a configuration file.') raise IOError(message) with tf.gfile.FastGFile(config_path, 'r') as file_: config = yaml.load(file_, Loader=yaml.Loader) message = 'Resume run and write summaries and checkpoints to {}.' tf.logging.info(message.format(config.logdir)) return config
[ "def", "load_config", "(", "logdir", ")", ":", "# pylint: disable=missing-raises-doc", "config_path", "=", "logdir", "and", "os", ".", "path", ".", "join", "(", "logdir", ",", "'config.yaml'", ")", "if", "not", "config_path", "or", "not", "tf", ".", "gfile", ".", "Exists", "(", "config_path", ")", ":", "message", "=", "(", "'Cannot resume an existing run since the logging directory does not '", "'contain a configuration file.'", ")", "raise", "IOError", "(", "message", ")", "with", "tf", ".", "gfile", ".", "FastGFile", "(", "config_path", ",", "'r'", ")", "as", "file_", ":", "config", "=", "yaml", ".", "load", "(", "file_", ",", "Loader", "=", "yaml", ".", "Loader", ")", "message", "=", "'Resume run and write summaries and checkpoints to {}.'", "tf", ".", "logging", ".", "info", "(", "message", ".", "format", "(", "config", ".", "logdir", ")", ")", "return", "config" ]
Load a configuration from the log directory. Args: logdir: The logging directory containing the configuration file. Raises: IOError: The logging directory does not contain a configuration file. Returns: Configuration object.
[ "Load", "a", "configuration", "from", "the", "log", "directory", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/scripts/utility.py#L162-L185
6,804
google-research/batch-ppo
agents/scripts/utility.py
set_up_logging
def set_up_logging(): """Configure the TensorFlow logger.""" tf.logging.set_verbosity(tf.logging.INFO) logging.getLogger('tensorflow').propagate = False
python
def set_up_logging(): """Configure the TensorFlow logger.""" tf.logging.set_verbosity(tf.logging.INFO) logging.getLogger('tensorflow').propagate = False
[ "def", "set_up_logging", "(", ")", ":", "tf", ".", "logging", ".", "set_verbosity", "(", "tf", ".", "logging", ".", "INFO", ")", "logging", ".", "getLogger", "(", "'tensorflow'", ")", ".", "propagate", "=", "False" ]
Configure the TensorFlow logger.
[ "Configure", "the", "TensorFlow", "logger", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/scripts/utility.py#L188-L191
6,805
google-research/batch-ppo
agents/scripts/visualize.py
_define_loop
def _define_loop(graph, eval_steps): """Create and configure an evaluation loop. Args: graph: Object providing graph elements via attributes. eval_steps: Number of evaluation steps per epoch. Returns: Loop object. """ loop = tools.Loop( None, graph.step, graph.should_log, graph.do_report, graph.force_reset) loop.add_phase( 'eval', graph.done, graph.score, graph.summary, eval_steps, report_every=eval_steps, log_every=None, checkpoint_every=None, feed={graph.is_training: False}) return loop
python
def _define_loop(graph, eval_steps): """Create and configure an evaluation loop. Args: graph: Object providing graph elements via attributes. eval_steps: Number of evaluation steps per epoch. Returns: Loop object. """ loop = tools.Loop( None, graph.step, graph.should_log, graph.do_report, graph.force_reset) loop.add_phase( 'eval', graph.done, graph.score, graph.summary, eval_steps, report_every=eval_steps, log_every=None, checkpoint_every=None, feed={graph.is_training: False}) return loop
[ "def", "_define_loop", "(", "graph", ",", "eval_steps", ")", ":", "loop", "=", "tools", ".", "Loop", "(", "None", ",", "graph", ".", "step", ",", "graph", ".", "should_log", ",", "graph", ".", "do_report", ",", "graph", ".", "force_reset", ")", "loop", ".", "add_phase", "(", "'eval'", ",", "graph", ".", "done", ",", "graph", ".", "score", ",", "graph", ".", "summary", ",", "eval_steps", ",", "report_every", "=", "eval_steps", ",", "log_every", "=", "None", ",", "checkpoint_every", "=", "None", ",", "feed", "=", "{", "graph", ".", "is_training", ":", "False", "}", ")", "return", "loop" ]
Create and configure an evaluation loop. Args: graph: Object providing graph elements via attributes. eval_steps: Number of evaluation steps per epoch. Returns: Loop object.
[ "Create", "and", "configure", "an", "evaluation", "loop", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/scripts/visualize.py#L74-L92
6,806
google-research/batch-ppo
agents/scripts/visualize.py
visualize
def visualize( logdir, outdir, num_agents, num_episodes, checkpoint=None, env_processes=True): """Recover checkpoint and render videos from it. Args: logdir: Logging directory of the trained algorithm. outdir: Directory to store rendered videos in. num_agents: Number of environments to simulate in parallel. num_episodes: Total number of episodes to simulate. checkpoint: Checkpoint name to load; defaults to most recent. env_processes: Whether to step environments in separate processes. """ config = utility.load_config(logdir) with tf.device('/cpu:0'): batch_env = utility.define_batch_env( lambda: _create_environment(config, outdir), num_agents, env_processes) graph = utility.define_simulation_graph( batch_env, config.algorithm, config) total_steps = num_episodes * config.max_length loop = _define_loop(graph, total_steps) saver = utility.define_saver( exclude=(r'.*_temporary.*', r'global_step')) sess_config = tf.ConfigProto(allow_soft_placement=True) sess_config.gpu_options.allow_growth = True with tf.Session(config=sess_config) as sess: utility.initialize_variables( sess, saver, config.logdir, checkpoint, resume=True) for unused_score in loop.run(sess, saver, total_steps): pass batch_env.close()
python
def visualize( logdir, outdir, num_agents, num_episodes, checkpoint=None, env_processes=True): """Recover checkpoint and render videos from it. Args: logdir: Logging directory of the trained algorithm. outdir: Directory to store rendered videos in. num_agents: Number of environments to simulate in parallel. num_episodes: Total number of episodes to simulate. checkpoint: Checkpoint name to load; defaults to most recent. env_processes: Whether to step environments in separate processes. """ config = utility.load_config(logdir) with tf.device('/cpu:0'): batch_env = utility.define_batch_env( lambda: _create_environment(config, outdir), num_agents, env_processes) graph = utility.define_simulation_graph( batch_env, config.algorithm, config) total_steps = num_episodes * config.max_length loop = _define_loop(graph, total_steps) saver = utility.define_saver( exclude=(r'.*_temporary.*', r'global_step')) sess_config = tf.ConfigProto(allow_soft_placement=True) sess_config.gpu_options.allow_growth = True with tf.Session(config=sess_config) as sess: utility.initialize_variables( sess, saver, config.logdir, checkpoint, resume=True) for unused_score in loop.run(sess, saver, total_steps): pass batch_env.close()
[ "def", "visualize", "(", "logdir", ",", "outdir", ",", "num_agents", ",", "num_episodes", ",", "checkpoint", "=", "None", ",", "env_processes", "=", "True", ")", ":", "config", "=", "utility", ".", "load_config", "(", "logdir", ")", "with", "tf", ".", "device", "(", "'/cpu:0'", ")", ":", "batch_env", "=", "utility", ".", "define_batch_env", "(", "lambda", ":", "_create_environment", "(", "config", ",", "outdir", ")", ",", "num_agents", ",", "env_processes", ")", "graph", "=", "utility", ".", "define_simulation_graph", "(", "batch_env", ",", "config", ".", "algorithm", ",", "config", ")", "total_steps", "=", "num_episodes", "*", "config", ".", "max_length", "loop", "=", "_define_loop", "(", "graph", ",", "total_steps", ")", "saver", "=", "utility", ".", "define_saver", "(", "exclude", "=", "(", "r'.*_temporary.*'", ",", "r'global_step'", ")", ")", "sess_config", "=", "tf", ".", "ConfigProto", "(", "allow_soft_placement", "=", "True", ")", "sess_config", ".", "gpu_options", ".", "allow_growth", "=", "True", "with", "tf", ".", "Session", "(", "config", "=", "sess_config", ")", "as", "sess", ":", "utility", ".", "initialize_variables", "(", "sess", ",", "saver", ",", "config", ".", "logdir", ",", "checkpoint", ",", "resume", "=", "True", ")", "for", "unused_score", "in", "loop", ".", "run", "(", "sess", ",", "saver", ",", "total_steps", ")", ":", "pass", "batch_env", ".", "close", "(", ")" ]
Recover checkpoint and render videos from it. Args: logdir: Logging directory of the trained algorithm. outdir: Directory to store rendered videos in. num_agents: Number of environments to simulate in parallel. num_episodes: Total number of episodes to simulate. checkpoint: Checkpoint name to load; defaults to most recent. env_processes: Whether to step environments in separate processes.
[ "Recover", "checkpoint", "and", "render", "videos", "from", "it", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/scripts/visualize.py#L95-L126
6,807
google-research/batch-ppo
agents/scripts/visualize.py
main
def main(_): """Load a trained algorithm and render videos.""" utility.set_up_logging() if not FLAGS.logdir or not FLAGS.outdir: raise KeyError('You must specify logging and outdirs directories.') FLAGS.logdir = os.path.expanduser(FLAGS.logdir) FLAGS.outdir = os.path.expanduser(FLAGS.outdir) visualize( FLAGS.logdir, FLAGS.outdir, FLAGS.num_agents, FLAGS.num_episodes, FLAGS.checkpoint, FLAGS.env_processes)
python
def main(_): """Load a trained algorithm and render videos.""" utility.set_up_logging() if not FLAGS.logdir or not FLAGS.outdir: raise KeyError('You must specify logging and outdirs directories.') FLAGS.logdir = os.path.expanduser(FLAGS.logdir) FLAGS.outdir = os.path.expanduser(FLAGS.outdir) visualize( FLAGS.logdir, FLAGS.outdir, FLAGS.num_agents, FLAGS.num_episodes, FLAGS.checkpoint, FLAGS.env_processes)
[ "def", "main", "(", "_", ")", ":", "utility", ".", "set_up_logging", "(", ")", "if", "not", "FLAGS", ".", "logdir", "or", "not", "FLAGS", ".", "outdir", ":", "raise", "KeyError", "(", "'You must specify logging and outdirs directories.'", ")", "FLAGS", ".", "logdir", "=", "os", ".", "path", ".", "expanduser", "(", "FLAGS", ".", "logdir", ")", "FLAGS", ".", "outdir", "=", "os", ".", "path", ".", "expanduser", "(", "FLAGS", ".", "outdir", ")", "visualize", "(", "FLAGS", ".", "logdir", ",", "FLAGS", ".", "outdir", ",", "FLAGS", ".", "num_agents", ",", "FLAGS", ".", "num_episodes", ",", "FLAGS", ".", "checkpoint", ",", "FLAGS", ".", "env_processes", ")" ]
Load a trained algorithm and render videos.
[ "Load", "a", "trained", "algorithm", "and", "render", "videos", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/scripts/visualize.py#L129-L138
6,808
google-research/batch-ppo
agents/algorithms/ppo/utility.py
reinit_nested_vars
def reinit_nested_vars(variables, indices=None): """Reset all variables in a nested tuple to zeros. Args: variables: Nested tuple or list of variables. indices: Batch indices to reset, defaults to all. Returns: Operation. """ if isinstance(variables, (tuple, list)): return tf.group(*[ reinit_nested_vars(variable, indices) for variable in variables]) if indices is None: return variables.assign(tf.zeros_like(variables)) else: zeros = tf.zeros([tf.shape(indices)[0]] + variables.shape[1:].as_list()) return tf.scatter_update(variables, indices, zeros)
python
def reinit_nested_vars(variables, indices=None): """Reset all variables in a nested tuple to zeros. Args: variables: Nested tuple or list of variables. indices: Batch indices to reset, defaults to all. Returns: Operation. """ if isinstance(variables, (tuple, list)): return tf.group(*[ reinit_nested_vars(variable, indices) for variable in variables]) if indices is None: return variables.assign(tf.zeros_like(variables)) else: zeros = tf.zeros([tf.shape(indices)[0]] + variables.shape[1:].as_list()) return tf.scatter_update(variables, indices, zeros)
[ "def", "reinit_nested_vars", "(", "variables", ",", "indices", "=", "None", ")", ":", "if", "isinstance", "(", "variables", ",", "(", "tuple", ",", "list", ")", ")", ":", "return", "tf", ".", "group", "(", "*", "[", "reinit_nested_vars", "(", "variable", ",", "indices", ")", "for", "variable", "in", "variables", "]", ")", "if", "indices", "is", "None", ":", "return", "variables", ".", "assign", "(", "tf", ".", "zeros_like", "(", "variables", ")", ")", "else", ":", "zeros", "=", "tf", ".", "zeros", "(", "[", "tf", ".", "shape", "(", "indices", ")", "[", "0", "]", "]", "+", "variables", ".", "shape", "[", "1", ":", "]", ".", "as_list", "(", ")", ")", "return", "tf", ".", "scatter_update", "(", "variables", ",", "indices", ",", "zeros", ")" ]
Reset all variables in a nested tuple to zeros. Args: variables: Nested tuple or list of variables. indices: Batch indices to reset, defaults to all. Returns: Operation.
[ "Reset", "all", "variables", "in", "a", "nested", "tuple", "to", "zeros", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/algorithms/ppo/utility.py#L28-L45
6,809
google-research/batch-ppo
agents/algorithms/ppo/utility.py
assign_nested_vars
def assign_nested_vars(variables, tensors, indices=None): """Assign tensors to matching nested tuple of variables. Args: variables: Nested tuple or list of variables to update. tensors: Nested tuple or list of tensors to assign. indices: Batch indices to assign to; default to all. Returns: Operation. """ if isinstance(variables, (tuple, list)): return tf.group(*[ assign_nested_vars(variable, tensor) for variable, tensor in zip(variables, tensors)]) if indices is None: return variables.assign(tensors) else: return tf.scatter_update(variables, indices, tensors)
python
def assign_nested_vars(variables, tensors, indices=None): """Assign tensors to matching nested tuple of variables. Args: variables: Nested tuple or list of variables to update. tensors: Nested tuple or list of tensors to assign. indices: Batch indices to assign to; default to all. Returns: Operation. """ if isinstance(variables, (tuple, list)): return tf.group(*[ assign_nested_vars(variable, tensor) for variable, tensor in zip(variables, tensors)]) if indices is None: return variables.assign(tensors) else: return tf.scatter_update(variables, indices, tensors)
[ "def", "assign_nested_vars", "(", "variables", ",", "tensors", ",", "indices", "=", "None", ")", ":", "if", "isinstance", "(", "variables", ",", "(", "tuple", ",", "list", ")", ")", ":", "return", "tf", ".", "group", "(", "*", "[", "assign_nested_vars", "(", "variable", ",", "tensor", ")", "for", "variable", ",", "tensor", "in", "zip", "(", "variables", ",", "tensors", ")", "]", ")", "if", "indices", "is", "None", ":", "return", "variables", ".", "assign", "(", "tensors", ")", "else", ":", "return", "tf", ".", "scatter_update", "(", "variables", ",", "indices", ",", "tensors", ")" ]
Assign tensors to matching nested tuple of variables. Args: variables: Nested tuple or list of variables to update. tensors: Nested tuple or list of tensors to assign. indices: Batch indices to assign to; default to all. Returns: Operation.
[ "Assign", "tensors", "to", "matching", "nested", "tuple", "of", "variables", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/algorithms/ppo/utility.py#L48-L66
6,810
google-research/batch-ppo
agents/algorithms/ppo/utility.py
discounted_return
def discounted_return(reward, length, discount): """Discounted Monte-Carlo returns.""" timestep = tf.range(reward.shape[1].value) mask = tf.cast(timestep[None, :] < length[:, None], tf.float32) return_ = tf.reverse(tf.transpose(tf.scan( lambda agg, cur: cur + discount * agg, tf.transpose(tf.reverse(mask * reward, [1]), [1, 0]), tf.zeros_like(reward[:, -1]), 1, False), [1, 0]), [1]) return tf.check_numerics(tf.stop_gradient(return_), 'return')
python
def discounted_return(reward, length, discount): """Discounted Monte-Carlo returns.""" timestep = tf.range(reward.shape[1].value) mask = tf.cast(timestep[None, :] < length[:, None], tf.float32) return_ = tf.reverse(tf.transpose(tf.scan( lambda agg, cur: cur + discount * agg, tf.transpose(tf.reverse(mask * reward, [1]), [1, 0]), tf.zeros_like(reward[:, -1]), 1, False), [1, 0]), [1]) return tf.check_numerics(tf.stop_gradient(return_), 'return')
[ "def", "discounted_return", "(", "reward", ",", "length", ",", "discount", ")", ":", "timestep", "=", "tf", ".", "range", "(", "reward", ".", "shape", "[", "1", "]", ".", "value", ")", "mask", "=", "tf", ".", "cast", "(", "timestep", "[", "None", ",", ":", "]", "<", "length", "[", ":", ",", "None", "]", ",", "tf", ".", "float32", ")", "return_", "=", "tf", ".", "reverse", "(", "tf", ".", "transpose", "(", "tf", ".", "scan", "(", "lambda", "agg", ",", "cur", ":", "cur", "+", "discount", "*", "agg", ",", "tf", ".", "transpose", "(", "tf", ".", "reverse", "(", "mask", "*", "reward", ",", "[", "1", "]", ")", ",", "[", "1", ",", "0", "]", ")", ",", "tf", ".", "zeros_like", "(", "reward", "[", ":", ",", "-", "1", "]", ")", ",", "1", ",", "False", ")", ",", "[", "1", ",", "0", "]", ")", ",", "[", "1", "]", ")", "return", "tf", ".", "check_numerics", "(", "tf", ".", "stop_gradient", "(", "return_", ")", ",", "'return'", ")" ]
Discounted Monte-Carlo returns.
[ "Discounted", "Monte", "-", "Carlo", "returns", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/algorithms/ppo/utility.py#L69-L77
6,811
google-research/batch-ppo
agents/algorithms/ppo/utility.py
fixed_step_return
def fixed_step_return(reward, value, length, discount, window): """N-step discounted return.""" timestep = tf.range(reward.shape[1].value) mask = tf.cast(timestep[None, :] < length[:, None], tf.float32) return_ = tf.zeros_like(reward) for _ in range(window): return_ += reward reward = discount * tf.concat( [reward[:, 1:], tf.zeros_like(reward[:, -1:])], 1) return_ += discount ** window * tf.concat( [value[:, window:], tf.zeros_like(value[:, -window:])], 1) return tf.check_numerics(tf.stop_gradient(mask * return_), 'return')
python
def fixed_step_return(reward, value, length, discount, window): """N-step discounted return.""" timestep = tf.range(reward.shape[1].value) mask = tf.cast(timestep[None, :] < length[:, None], tf.float32) return_ = tf.zeros_like(reward) for _ in range(window): return_ += reward reward = discount * tf.concat( [reward[:, 1:], tf.zeros_like(reward[:, -1:])], 1) return_ += discount ** window * tf.concat( [value[:, window:], tf.zeros_like(value[:, -window:])], 1) return tf.check_numerics(tf.stop_gradient(mask * return_), 'return')
[ "def", "fixed_step_return", "(", "reward", ",", "value", ",", "length", ",", "discount", ",", "window", ")", ":", "timestep", "=", "tf", ".", "range", "(", "reward", ".", "shape", "[", "1", "]", ".", "value", ")", "mask", "=", "tf", ".", "cast", "(", "timestep", "[", "None", ",", ":", "]", "<", "length", "[", ":", ",", "None", "]", ",", "tf", ".", "float32", ")", "return_", "=", "tf", ".", "zeros_like", "(", "reward", ")", "for", "_", "in", "range", "(", "window", ")", ":", "return_", "+=", "reward", "reward", "=", "discount", "*", "tf", ".", "concat", "(", "[", "reward", "[", ":", ",", "1", ":", "]", ",", "tf", ".", "zeros_like", "(", "reward", "[", ":", ",", "-", "1", ":", "]", ")", "]", ",", "1", ")", "return_", "+=", "discount", "**", "window", "*", "tf", ".", "concat", "(", "[", "value", "[", ":", ",", "window", ":", "]", ",", "tf", ".", "zeros_like", "(", "value", "[", ":", ",", "-", "window", ":", "]", ")", "]", ",", "1", ")", "return", "tf", ".", "check_numerics", "(", "tf", ".", "stop_gradient", "(", "mask", "*", "return_", ")", ",", "'return'", ")" ]
N-step discounted return.
[ "N", "-", "step", "discounted", "return", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/algorithms/ppo/utility.py#L80-L91
6,812
google-research/batch-ppo
agents/algorithms/ppo/utility.py
lambda_return
def lambda_return(reward, value, length, discount, lambda_): """TD-lambda returns.""" timestep = tf.range(reward.shape[1].value) mask = tf.cast(timestep[None, :] < length[:, None], tf.float32) sequence = mask * reward + discount * value * (1 - lambda_) discount = mask * discount * lambda_ sequence = tf.stack([sequence, discount], 2) return_ = tf.reverse(tf.transpose(tf.scan( lambda agg, cur: cur[0] + cur[1] * agg, tf.transpose(tf.reverse(sequence, [1]), [1, 2, 0]), tf.zeros_like(value[:, -1]), 1, False), [1, 0]), [1]) return tf.check_numerics(tf.stop_gradient(return_), 'return')
python
def lambda_return(reward, value, length, discount, lambda_): """TD-lambda returns.""" timestep = tf.range(reward.shape[1].value) mask = tf.cast(timestep[None, :] < length[:, None], tf.float32) sequence = mask * reward + discount * value * (1 - lambda_) discount = mask * discount * lambda_ sequence = tf.stack([sequence, discount], 2) return_ = tf.reverse(tf.transpose(tf.scan( lambda agg, cur: cur[0] + cur[1] * agg, tf.transpose(tf.reverse(sequence, [1]), [1, 2, 0]), tf.zeros_like(value[:, -1]), 1, False), [1, 0]), [1]) return tf.check_numerics(tf.stop_gradient(return_), 'return')
[ "def", "lambda_return", "(", "reward", ",", "value", ",", "length", ",", "discount", ",", "lambda_", ")", ":", "timestep", "=", "tf", ".", "range", "(", "reward", ".", "shape", "[", "1", "]", ".", "value", ")", "mask", "=", "tf", ".", "cast", "(", "timestep", "[", "None", ",", ":", "]", "<", "length", "[", ":", ",", "None", "]", ",", "tf", ".", "float32", ")", "sequence", "=", "mask", "*", "reward", "+", "discount", "*", "value", "*", "(", "1", "-", "lambda_", ")", "discount", "=", "mask", "*", "discount", "*", "lambda_", "sequence", "=", "tf", ".", "stack", "(", "[", "sequence", ",", "discount", "]", ",", "2", ")", "return_", "=", "tf", ".", "reverse", "(", "tf", ".", "transpose", "(", "tf", ".", "scan", "(", "lambda", "agg", ",", "cur", ":", "cur", "[", "0", "]", "+", "cur", "[", "1", "]", "*", "agg", ",", "tf", ".", "transpose", "(", "tf", ".", "reverse", "(", "sequence", ",", "[", "1", "]", ")", ",", "[", "1", ",", "2", ",", "0", "]", ")", ",", "tf", ".", "zeros_like", "(", "value", "[", ":", ",", "-", "1", "]", ")", ",", "1", ",", "False", ")", ",", "[", "1", ",", "0", "]", ")", ",", "[", "1", "]", ")", "return", "tf", ".", "check_numerics", "(", "tf", ".", "stop_gradient", "(", "return_", ")", ",", "'return'", ")" ]
TD-lambda returns.
[ "TD", "-", "lambda", "returns", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/algorithms/ppo/utility.py#L94-L105
6,813
google-research/batch-ppo
agents/algorithms/ppo/utility.py
lambda_advantage
def lambda_advantage(reward, value, length, discount, gae_lambda): """Generalized Advantage Estimation.""" timestep = tf.range(reward.shape[1].value) mask = tf.cast(timestep[None, :] < length[:, None], tf.float32) next_value = tf.concat([value[:, 1:], tf.zeros_like(value[:, -1:])], 1) delta = reward + discount * next_value - value advantage = tf.reverse(tf.transpose(tf.scan( lambda agg, cur: cur + gae_lambda * discount * agg, tf.transpose(tf.reverse(mask * delta, [1]), [1, 0]), tf.zeros_like(delta[:, -1]), 1, False), [1, 0]), [1]) return tf.check_numerics(tf.stop_gradient(advantage), 'advantage')
python
def lambda_advantage(reward, value, length, discount, gae_lambda): """Generalized Advantage Estimation.""" timestep = tf.range(reward.shape[1].value) mask = tf.cast(timestep[None, :] < length[:, None], tf.float32) next_value = tf.concat([value[:, 1:], tf.zeros_like(value[:, -1:])], 1) delta = reward + discount * next_value - value advantage = tf.reverse(tf.transpose(tf.scan( lambda agg, cur: cur + gae_lambda * discount * agg, tf.transpose(tf.reverse(mask * delta, [1]), [1, 0]), tf.zeros_like(delta[:, -1]), 1, False), [1, 0]), [1]) return tf.check_numerics(tf.stop_gradient(advantage), 'advantage')
[ "def", "lambda_advantage", "(", "reward", ",", "value", ",", "length", ",", "discount", ",", "gae_lambda", ")", ":", "timestep", "=", "tf", ".", "range", "(", "reward", ".", "shape", "[", "1", "]", ".", "value", ")", "mask", "=", "tf", ".", "cast", "(", "timestep", "[", "None", ",", ":", "]", "<", "length", "[", ":", ",", "None", "]", ",", "tf", ".", "float32", ")", "next_value", "=", "tf", ".", "concat", "(", "[", "value", "[", ":", ",", "1", ":", "]", ",", "tf", ".", "zeros_like", "(", "value", "[", ":", ",", "-", "1", ":", "]", ")", "]", ",", "1", ")", "delta", "=", "reward", "+", "discount", "*", "next_value", "-", "value", "advantage", "=", "tf", ".", "reverse", "(", "tf", ".", "transpose", "(", "tf", ".", "scan", "(", "lambda", "agg", ",", "cur", ":", "cur", "+", "gae_lambda", "*", "discount", "*", "agg", ",", "tf", ".", "transpose", "(", "tf", ".", "reverse", "(", "mask", "*", "delta", ",", "[", "1", "]", ")", ",", "[", "1", ",", "0", "]", ")", ",", "tf", ".", "zeros_like", "(", "delta", "[", ":", ",", "-", "1", "]", ")", ",", "1", ",", "False", ")", ",", "[", "1", ",", "0", "]", ")", ",", "[", "1", "]", ")", "return", "tf", ".", "check_numerics", "(", "tf", ".", "stop_gradient", "(", "advantage", ")", ",", "'advantage'", ")" ]
Generalized Advantage Estimation.
[ "Generalized", "Advantage", "Estimation", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/algorithms/ppo/utility.py#L108-L118
6,814
google-research/batch-ppo
agents/algorithms/ppo/utility.py
available_gpus
def available_gpus(): """List of GPU device names detected by TensorFlow.""" local_device_protos = device_lib.list_local_devices() return [x.name for x in local_device_protos if x.device_type == 'GPU']
python
def available_gpus(): """List of GPU device names detected by TensorFlow.""" local_device_protos = device_lib.list_local_devices() return [x.name for x in local_device_protos if x.device_type == 'GPU']
[ "def", "available_gpus", "(", ")", ":", "local_device_protos", "=", "device_lib", ".", "list_local_devices", "(", ")", "return", "[", "x", ".", "name", "for", "x", "in", "local_device_protos", "if", "x", ".", "device_type", "==", "'GPU'", "]" ]
List of GPU device names detected by TensorFlow.
[ "List", "of", "GPU", "device", "names", "detected", "by", "TensorFlow", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/algorithms/ppo/utility.py#L121-L124
6,815
google-research/batch-ppo
agents/algorithms/ppo/utility.py
gradient_summaries
def gradient_summaries(grad_vars, groups=None, scope='gradients'): """Create histogram summaries of the gradient. Summaries can be grouped via regexes matching variables names. Args: grad_vars: List of (gradient, variable) tuples as returned by optimizers. groups: Mapping of name to regex for grouping summaries. scope: Name scope for this operation. Returns: Summary tensor. """ groups = groups or {r'all': r'.*'} grouped = collections.defaultdict(list) for grad, var in grad_vars: if grad is None: continue for name, pattern in groups.items(): if re.match(pattern, var.name): name = re.sub(pattern, name, var.name) grouped[name].append(grad) for name in groups: if name not in grouped: tf.logging.warn("No variables matching '{}' group.".format(name)) summaries = [] for name, grads in grouped.items(): grads = [tf.reshape(grad, [-1]) for grad in grads] grads = tf.concat(grads, 0) summaries.append(tf.summary.histogram(scope + '/' + name, grads)) return tf.summary.merge(summaries)
python
def gradient_summaries(grad_vars, groups=None, scope='gradients'): """Create histogram summaries of the gradient. Summaries can be grouped via regexes matching variables names. Args: grad_vars: List of (gradient, variable) tuples as returned by optimizers. groups: Mapping of name to regex for grouping summaries. scope: Name scope for this operation. Returns: Summary tensor. """ groups = groups or {r'all': r'.*'} grouped = collections.defaultdict(list) for grad, var in grad_vars: if grad is None: continue for name, pattern in groups.items(): if re.match(pattern, var.name): name = re.sub(pattern, name, var.name) grouped[name].append(grad) for name in groups: if name not in grouped: tf.logging.warn("No variables matching '{}' group.".format(name)) summaries = [] for name, grads in grouped.items(): grads = [tf.reshape(grad, [-1]) for grad in grads] grads = tf.concat(grads, 0) summaries.append(tf.summary.histogram(scope + '/' + name, grads)) return tf.summary.merge(summaries)
[ "def", "gradient_summaries", "(", "grad_vars", ",", "groups", "=", "None", ",", "scope", "=", "'gradients'", ")", ":", "groups", "=", "groups", "or", "{", "r'all'", ":", "r'.*'", "}", "grouped", "=", "collections", ".", "defaultdict", "(", "list", ")", "for", "grad", ",", "var", "in", "grad_vars", ":", "if", "grad", "is", "None", ":", "continue", "for", "name", ",", "pattern", "in", "groups", ".", "items", "(", ")", ":", "if", "re", ".", "match", "(", "pattern", ",", "var", ".", "name", ")", ":", "name", "=", "re", ".", "sub", "(", "pattern", ",", "name", ",", "var", ".", "name", ")", "grouped", "[", "name", "]", ".", "append", "(", "grad", ")", "for", "name", "in", "groups", ":", "if", "name", "not", "in", "grouped", ":", "tf", ".", "logging", ".", "warn", "(", "\"No variables matching '{}' group.\"", ".", "format", "(", "name", ")", ")", "summaries", "=", "[", "]", "for", "name", ",", "grads", "in", "grouped", ".", "items", "(", ")", ":", "grads", "=", "[", "tf", ".", "reshape", "(", "grad", ",", "[", "-", "1", "]", ")", "for", "grad", "in", "grads", "]", "grads", "=", "tf", ".", "concat", "(", "grads", ",", "0", ")", "summaries", ".", "append", "(", "tf", ".", "summary", ".", "histogram", "(", "scope", "+", "'/'", "+", "name", ",", "grads", ")", ")", "return", "tf", ".", "summary", ".", "merge", "(", "summaries", ")" ]
Create histogram summaries of the gradient. Summaries can be grouped via regexes matching variables names. Args: grad_vars: List of (gradient, variable) tuples as returned by optimizers. groups: Mapping of name to regex for grouping summaries. scope: Name scope for this operation. Returns: Summary tensor.
[ "Create", "histogram", "summaries", "of", "the", "gradient", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/algorithms/ppo/utility.py#L127-L157
6,816
google-research/batch-ppo
agents/algorithms/ppo/utility.py
variable_summaries
def variable_summaries(vars_, groups=None, scope='weights'): """Create histogram summaries for the provided variables. Summaries can be grouped via regexes matching variables names. Args: vars_: List of variables to summarize. groups: Mapping of name to regex for grouping summaries. scope: Name scope for this operation. Returns: Summary tensor. """ groups = groups or {r'all': r'.*'} grouped = collections.defaultdict(list) for var in vars_: for name, pattern in groups.items(): if re.match(pattern, var.name): name = re.sub(pattern, name, var.name) grouped[name].append(var) for name in groups: if name not in grouped: tf.logging.warn("No variables matching '{}' group.".format(name)) summaries = [] # pylint: disable=redefined-argument-from-local for name, vars_ in grouped.items(): vars_ = [tf.reshape(var, [-1]) for var in vars_] vars_ = tf.concat(vars_, 0) summaries.append(tf.summary.histogram(scope + '/' + name, vars_)) return tf.summary.merge(summaries)
python
def variable_summaries(vars_, groups=None, scope='weights'): """Create histogram summaries for the provided variables. Summaries can be grouped via regexes matching variables names. Args: vars_: List of variables to summarize. groups: Mapping of name to regex for grouping summaries. scope: Name scope for this operation. Returns: Summary tensor. """ groups = groups or {r'all': r'.*'} grouped = collections.defaultdict(list) for var in vars_: for name, pattern in groups.items(): if re.match(pattern, var.name): name = re.sub(pattern, name, var.name) grouped[name].append(var) for name in groups: if name not in grouped: tf.logging.warn("No variables matching '{}' group.".format(name)) summaries = [] # pylint: disable=redefined-argument-from-local for name, vars_ in grouped.items(): vars_ = [tf.reshape(var, [-1]) for var in vars_] vars_ = tf.concat(vars_, 0) summaries.append(tf.summary.histogram(scope + '/' + name, vars_)) return tf.summary.merge(summaries)
[ "def", "variable_summaries", "(", "vars_", ",", "groups", "=", "None", ",", "scope", "=", "'weights'", ")", ":", "groups", "=", "groups", "or", "{", "r'all'", ":", "r'.*'", "}", "grouped", "=", "collections", ".", "defaultdict", "(", "list", ")", "for", "var", "in", "vars_", ":", "for", "name", ",", "pattern", "in", "groups", ".", "items", "(", ")", ":", "if", "re", ".", "match", "(", "pattern", ",", "var", ".", "name", ")", ":", "name", "=", "re", ".", "sub", "(", "pattern", ",", "name", ",", "var", ".", "name", ")", "grouped", "[", "name", "]", ".", "append", "(", "var", ")", "for", "name", "in", "groups", ":", "if", "name", "not", "in", "grouped", ":", "tf", ".", "logging", ".", "warn", "(", "\"No variables matching '{}' group.\"", ".", "format", "(", "name", ")", ")", "summaries", "=", "[", "]", "# pylint: disable=redefined-argument-from-local", "for", "name", ",", "vars_", "in", "grouped", ".", "items", "(", ")", ":", "vars_", "=", "[", "tf", ".", "reshape", "(", "var", ",", "[", "-", "1", "]", ")", "for", "var", "in", "vars_", "]", "vars_", "=", "tf", ".", "concat", "(", "vars_", ",", "0", ")", "summaries", ".", "append", "(", "tf", ".", "summary", ".", "histogram", "(", "scope", "+", "'/'", "+", "name", ",", "vars_", ")", ")", "return", "tf", ".", "summary", ".", "merge", "(", "summaries", ")" ]
Create histogram summaries for the provided variables. Summaries can be grouped via regexes matching variables names. Args: vars_: List of variables to summarize. groups: Mapping of name to regex for grouping summaries. scope: Name scope for this operation. Returns: Summary tensor.
[ "Create", "histogram", "summaries", "for", "the", "provided", "variables", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/algorithms/ppo/utility.py#L160-L189
6,817
google-research/batch-ppo
agents/algorithms/ppo/utility.py
set_dimension
def set_dimension(tensor, axis, value): """Set the length of a tensor along the specified dimension. Args: tensor: Tensor to define shape of. axis: Dimension to set the static shape for. value: Integer holding the length. Raises: ValueError: When the tensor already has a different length specified. """ shape = tensor.shape.as_list() if shape[axis] not in (value, None): message = 'Cannot set dimension {} of tensor {} to {}; is already {}.' raise ValueError(message.format(axis, tensor.name, value, shape[axis])) shape[axis] = value tensor.set_shape(shape)
python
def set_dimension(tensor, axis, value): """Set the length of a tensor along the specified dimension. Args: tensor: Tensor to define shape of. axis: Dimension to set the static shape for. value: Integer holding the length. Raises: ValueError: When the tensor already has a different length specified. """ shape = tensor.shape.as_list() if shape[axis] not in (value, None): message = 'Cannot set dimension {} of tensor {} to {}; is already {}.' raise ValueError(message.format(axis, tensor.name, value, shape[axis])) shape[axis] = value tensor.set_shape(shape)
[ "def", "set_dimension", "(", "tensor", ",", "axis", ",", "value", ")", ":", "shape", "=", "tensor", ".", "shape", ".", "as_list", "(", ")", "if", "shape", "[", "axis", "]", "not", "in", "(", "value", ",", "None", ")", ":", "message", "=", "'Cannot set dimension {} of tensor {} to {}; is already {}.'", "raise", "ValueError", "(", "message", ".", "format", "(", "axis", ",", "tensor", ".", "name", ",", "value", ",", "shape", "[", "axis", "]", ")", ")", "shape", "[", "axis", "]", "=", "value", "tensor", ".", "set_shape", "(", "shape", ")" ]
Set the length of a tensor along the specified dimension. Args: tensor: Tensor to define shape of. axis: Dimension to set the static shape for. value: Integer holding the length. Raises: ValueError: When the tensor already has a different length specified.
[ "Set", "the", "length", "of", "a", "tensor", "along", "the", "specified", "dimension", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/algorithms/ppo/utility.py#L192-L208
6,818
google-research/batch-ppo
agents/scripts/configs.py
default
def default(): """Default configuration for PPO.""" # General algorithm = algorithms.PPO num_agents = 30 eval_episodes = 30 use_gpu = False # Environment normalize_ranges = True # Network network = networks.feed_forward_gaussian weight_summaries = dict( all=r'.*', policy=r'.*/policy/.*', value=r'.*/value/.*') policy_layers = 200, 100 value_layers = 200, 100 init_output_factor = 0.1 init_std = 0.35 # Optimization update_every = 30 update_epochs = 25 optimizer = tf.train.AdamOptimizer learning_rate = 1e-4 # Losses discount = 0.995 kl_target = 1e-2 kl_cutoff_factor = 2 kl_cutoff_coef = 1000 kl_init_penalty = 1 return locals()
python
def default(): """Default configuration for PPO.""" # General algorithm = algorithms.PPO num_agents = 30 eval_episodes = 30 use_gpu = False # Environment normalize_ranges = True # Network network = networks.feed_forward_gaussian weight_summaries = dict( all=r'.*', policy=r'.*/policy/.*', value=r'.*/value/.*') policy_layers = 200, 100 value_layers = 200, 100 init_output_factor = 0.1 init_std = 0.35 # Optimization update_every = 30 update_epochs = 25 optimizer = tf.train.AdamOptimizer learning_rate = 1e-4 # Losses discount = 0.995 kl_target = 1e-2 kl_cutoff_factor = 2 kl_cutoff_coef = 1000 kl_init_penalty = 1 return locals()
[ "def", "default", "(", ")", ":", "# General", "algorithm", "=", "algorithms", ".", "PPO", "num_agents", "=", "30", "eval_episodes", "=", "30", "use_gpu", "=", "False", "# Environment", "normalize_ranges", "=", "True", "# Network", "network", "=", "networks", ".", "feed_forward_gaussian", "weight_summaries", "=", "dict", "(", "all", "=", "r'.*'", ",", "policy", "=", "r'.*/policy/.*'", ",", "value", "=", "r'.*/value/.*'", ")", "policy_layers", "=", "200", ",", "100", "value_layers", "=", "200", ",", "100", "init_output_factor", "=", "0.1", "init_std", "=", "0.35", "# Optimization", "update_every", "=", "30", "update_epochs", "=", "25", "optimizer", "=", "tf", ".", "train", ".", "AdamOptimizer", "learning_rate", "=", "1e-4", "# Losses", "discount", "=", "0.995", "kl_target", "=", "1e-2", "kl_cutoff_factor", "=", "2", "kl_cutoff_coef", "=", "1000", "kl_init_penalty", "=", "1", "return", "locals", "(", ")" ]
Default configuration for PPO.
[ "Default", "configuration", "for", "PPO", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/scripts/configs.py#L29-L57
6,819
google-research/batch-ppo
agents/scripts/configs.py
pendulum
def pendulum(): """Configuration for the pendulum classic control task.""" locals().update(default()) # Environment env = 'Pendulum-v0' max_length = 200 steps = 1e6 # 1M # Optimization batch_size = 20 chunk_length = 50 return locals()
python
def pendulum(): """Configuration for the pendulum classic control task.""" locals().update(default()) # Environment env = 'Pendulum-v0' max_length = 200 steps = 1e6 # 1M # Optimization batch_size = 20 chunk_length = 50 return locals()
[ "def", "pendulum", "(", ")", ":", "locals", "(", ")", ".", "update", "(", "default", "(", ")", ")", "# Environment", "env", "=", "'Pendulum-v0'", "max_length", "=", "200", "steps", "=", "1e6", "# 1M", "# Optimization", "batch_size", "=", "20", "chunk_length", "=", "50", "return", "locals", "(", ")" ]
Configuration for the pendulum classic control task.
[ "Configuration", "for", "the", "pendulum", "classic", "control", "task", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/scripts/configs.py#L60-L70
6,820
google-research/batch-ppo
agents/scripts/configs.py
cartpole
def cartpole(): """Configuration for the cart pole classic control task.""" locals().update(default()) # Environment env = 'CartPole-v1' max_length = 500 steps = 2e5 # 200k normalize_ranges = False # The env reports wrong ranges. # Network network = networks.feed_forward_categorical return locals()
python
def cartpole(): """Configuration for the cart pole classic control task.""" locals().update(default()) # Environment env = 'CartPole-v1' max_length = 500 steps = 2e5 # 200k normalize_ranges = False # The env reports wrong ranges. # Network network = networks.feed_forward_categorical return locals()
[ "def", "cartpole", "(", ")", ":", "locals", "(", ")", ".", "update", "(", "default", "(", ")", ")", "# Environment", "env", "=", "'CartPole-v1'", "max_length", "=", "500", "steps", "=", "2e5", "# 200k", "normalize_ranges", "=", "False", "# The env reports wrong ranges.", "# Network", "network", "=", "networks", ".", "feed_forward_categorical", "return", "locals", "(", ")" ]
Configuration for the cart pole classic control task.
[ "Configuration", "for", "the", "cart", "pole", "classic", "control", "task", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/scripts/configs.py#L73-L83
6,821
google-research/batch-ppo
agents/scripts/configs.py
reacher
def reacher(): """Configuration for MuJoCo's reacher task.""" locals().update(default()) # Environment env = 'Reacher-v2' max_length = 1000 steps = 5e6 # 5M discount = 0.985 update_every = 60 return locals()
python
def reacher(): """Configuration for MuJoCo's reacher task.""" locals().update(default()) # Environment env = 'Reacher-v2' max_length = 1000 steps = 5e6 # 5M discount = 0.985 update_every = 60 return locals()
[ "def", "reacher", "(", ")", ":", "locals", "(", ")", ".", "update", "(", "default", "(", ")", ")", "# Environment", "env", "=", "'Reacher-v2'", "max_length", "=", "1000", "steps", "=", "5e6", "# 5M", "discount", "=", "0.985", "update_every", "=", "60", "return", "locals", "(", ")" ]
Configuration for MuJoCo's reacher task.
[ "Configuration", "for", "MuJoCo", "s", "reacher", "task", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/scripts/configs.py#L86-L95
6,822
google-research/batch-ppo
agents/scripts/configs.py
bullet_ant
def bullet_ant(): """Configuration for PyBullet's ant task.""" locals().update(default()) # Environment import pybullet_envs # noqa pylint: disable=unused-import env = 'AntBulletEnv-v0' max_length = 1000 steps = 3e7 # 30M update_every = 60 return locals()
python
def bullet_ant(): """Configuration for PyBullet's ant task.""" locals().update(default()) # Environment import pybullet_envs # noqa pylint: disable=unused-import env = 'AntBulletEnv-v0' max_length = 1000 steps = 3e7 # 30M update_every = 60 return locals()
[ "def", "bullet_ant", "(", ")", ":", "locals", "(", ")", ".", "update", "(", "default", "(", ")", ")", "# Environment", "import", "pybullet_envs", "# noqa pylint: disable=unused-import", "env", "=", "'AntBulletEnv-v0'", "max_length", "=", "1000", "steps", "=", "3e7", "# 30M", "update_every", "=", "60", "return", "locals", "(", ")" ]
Configuration for PyBullet's ant task.
[ "Configuration", "for", "PyBullet", "s", "ant", "task", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/scripts/configs.py#L151-L160
6,823
google-research/batch-ppo
agents/tools/batch_env.py
BatchEnv.step
def step(self, actions): """Forward a batch of actions to the wrapped environments. Args: actions: Batched action to apply to the environment. Raises: ValueError: Invalid actions. Returns: Batch of observations, rewards, and done flags. """ for index, (env, action) in enumerate(zip(self._envs, actions)): if not env.action_space.contains(action): message = 'Invalid action at index {}: {}' raise ValueError(message.format(index, action)) if self._blocking: transitions = [ env.step(action) for env, action in zip(self._envs, actions)] else: transitions = [ env.step(action, blocking=False) for env, action in zip(self._envs, actions)] transitions = [transition() for transition in transitions] observs, rewards, dones, infos = zip(*transitions) observ = np.stack(observs) reward = np.stack(rewards) done = np.stack(dones) info = tuple(infos) return observ, reward, done, info
python
def step(self, actions): """Forward a batch of actions to the wrapped environments. Args: actions: Batched action to apply to the environment. Raises: ValueError: Invalid actions. Returns: Batch of observations, rewards, and done flags. """ for index, (env, action) in enumerate(zip(self._envs, actions)): if not env.action_space.contains(action): message = 'Invalid action at index {}: {}' raise ValueError(message.format(index, action)) if self._blocking: transitions = [ env.step(action) for env, action in zip(self._envs, actions)] else: transitions = [ env.step(action, blocking=False) for env, action in zip(self._envs, actions)] transitions = [transition() for transition in transitions] observs, rewards, dones, infos = zip(*transitions) observ = np.stack(observs) reward = np.stack(rewards) done = np.stack(dones) info = tuple(infos) return observ, reward, done, info
[ "def", "step", "(", "self", ",", "actions", ")", ":", "for", "index", ",", "(", "env", ",", "action", ")", "in", "enumerate", "(", "zip", "(", "self", ".", "_envs", ",", "actions", ")", ")", ":", "if", "not", "env", ".", "action_space", ".", "contains", "(", "action", ")", ":", "message", "=", "'Invalid action at index {}: {}'", "raise", "ValueError", "(", "message", ".", "format", "(", "index", ",", "action", ")", ")", "if", "self", ".", "_blocking", ":", "transitions", "=", "[", "env", ".", "step", "(", "action", ")", "for", "env", ",", "action", "in", "zip", "(", "self", ".", "_envs", ",", "actions", ")", "]", "else", ":", "transitions", "=", "[", "env", ".", "step", "(", "action", ",", "blocking", "=", "False", ")", "for", "env", ",", "action", "in", "zip", "(", "self", ".", "_envs", ",", "actions", ")", "]", "transitions", "=", "[", "transition", "(", ")", "for", "transition", "in", "transitions", "]", "observs", ",", "rewards", ",", "dones", ",", "infos", "=", "zip", "(", "*", "transitions", ")", "observ", "=", "np", ".", "stack", "(", "observs", ")", "reward", "=", "np", ".", "stack", "(", "rewards", ")", "done", "=", "np", ".", "stack", "(", "dones", ")", "info", "=", "tuple", "(", "infos", ")", "return", "observ", ",", "reward", ",", "done", ",", "info" ]
Forward a batch of actions to the wrapped environments. Args: actions: Batched action to apply to the environment. Raises: ValueError: Invalid actions. Returns: Batch of observations, rewards, and done flags.
[ "Forward", "a", "batch", "of", "actions", "to", "the", "wrapped", "environments", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/tools/batch_env.py#L69-L99
6,824
google-research/batch-ppo
agents/tools/wrappers.py
ExternalProcess.call
def call(self, name, *args, **kwargs): """Asynchronously call a method of the external environment. Args: name: Name of the method to call. *args: Positional arguments to forward to the method. **kwargs: Keyword arguments to forward to the method. Returns: Promise object that blocks and provides the return value when called. """ payload = name, args, kwargs self._conn.send((self._CALL, payload)) return self._receive
python
def call(self, name, *args, **kwargs): """Asynchronously call a method of the external environment. Args: name: Name of the method to call. *args: Positional arguments to forward to the method. **kwargs: Keyword arguments to forward to the method. Returns: Promise object that blocks and provides the return value when called. """ payload = name, args, kwargs self._conn.send((self._CALL, payload)) return self._receive
[ "def", "call", "(", "self", ",", "name", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "payload", "=", "name", ",", "args", ",", "kwargs", "self", ".", "_conn", ".", "send", "(", "(", "self", ".", "_CALL", ",", "payload", ")", ")", "return", "self", ".", "_receive" ]
Asynchronously call a method of the external environment. Args: name: Name of the method to call. *args: Positional arguments to forward to the method. **kwargs: Keyword arguments to forward to the method. Returns: Promise object that blocks and provides the return value when called.
[ "Asynchronously", "call", "a", "method", "of", "the", "external", "environment", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/tools/wrappers.py#L363-L376
6,825
google-research/batch-ppo
agents/tools/wrappers.py
ExternalProcess.close
def close(self): """Send a close message to the external process and join it.""" try: self._conn.send((self._CLOSE, None)) self._conn.close() except IOError: # The connection was already closed. pass self._process.join()
python
def close(self): """Send a close message to the external process and join it.""" try: self._conn.send((self._CLOSE, None)) self._conn.close() except IOError: # The connection was already closed. pass self._process.join()
[ "def", "close", "(", "self", ")", ":", "try", ":", "self", ".", "_conn", ".", "send", "(", "(", "self", ".", "_CLOSE", ",", "None", ")", ")", "self", ".", "_conn", ".", "close", "(", ")", "except", "IOError", ":", "# The connection was already closed.", "pass", "self", ".", "_process", ".", "join", "(", ")" ]
Send a close message to the external process and join it.
[ "Send", "a", "close", "message", "to", "the", "external", "process", "and", "join", "it", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/tools/wrappers.py#L378-L386
6,826
google-research/batch-ppo
agents/tools/wrappers.py
ExternalProcess.step
def step(self, action, blocking=True): """Step the environment. Args: action: The action to apply to the environment. blocking: Whether to wait for the result. Returns: Transition tuple when blocking, otherwise callable that returns the transition tuple. """ promise = self.call('step', action) if blocking: return promise() else: return promise
python
def step(self, action, blocking=True): """Step the environment. Args: action: The action to apply to the environment. blocking: Whether to wait for the result. Returns: Transition tuple when blocking, otherwise callable that returns the transition tuple. """ promise = self.call('step', action) if blocking: return promise() else: return promise
[ "def", "step", "(", "self", ",", "action", ",", "blocking", "=", "True", ")", ":", "promise", "=", "self", ".", "call", "(", "'step'", ",", "action", ")", "if", "blocking", ":", "return", "promise", "(", ")", "else", ":", "return", "promise" ]
Step the environment. Args: action: The action to apply to the environment. blocking: Whether to wait for the result. Returns: Transition tuple when blocking, otherwise callable that returns the transition tuple.
[ "Step", "the", "environment", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/tools/wrappers.py#L388-L403
6,827
google-research/batch-ppo
agents/tools/wrappers.py
ExternalProcess._receive
def _receive(self): """Wait for a message from the worker process and return its payload. Raises: Exception: An exception was raised inside the worker process. KeyError: The received message is of an unknown type. Returns: Payload object of the message. """ message, payload = self._conn.recv() # Re-raise exceptions in the main process. if message == self._EXCEPTION: stacktrace = payload raise Exception(stacktrace) if message == self._RESULT: return payload raise KeyError('Received message of unexpected type {}'.format(message))
python
def _receive(self): """Wait for a message from the worker process and return its payload. Raises: Exception: An exception was raised inside the worker process. KeyError: The received message is of an unknown type. Returns: Payload object of the message. """ message, payload = self._conn.recv() # Re-raise exceptions in the main process. if message == self._EXCEPTION: stacktrace = payload raise Exception(stacktrace) if message == self._RESULT: return payload raise KeyError('Received message of unexpected type {}'.format(message))
[ "def", "_receive", "(", "self", ")", ":", "message", ",", "payload", "=", "self", ".", "_conn", ".", "recv", "(", ")", "# Re-raise exceptions in the main process.", "if", "message", "==", "self", ".", "_EXCEPTION", ":", "stacktrace", "=", "payload", "raise", "Exception", "(", "stacktrace", ")", "if", "message", "==", "self", ".", "_RESULT", ":", "return", "payload", "raise", "KeyError", "(", "'Received message of unexpected type {}'", ".", "format", "(", "message", ")", ")" ]
Wait for a message from the worker process and return its payload. Raises: Exception: An exception was raised inside the worker process. KeyError: The received message is of an unknown type. Returns: Payload object of the message.
[ "Wait", "for", "a", "message", "from", "the", "worker", "process", "and", "return", "its", "payload", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/tools/wrappers.py#L421-L438
6,828
google-research/batch-ppo
agents/tools/wrappers.py
ExternalProcess._worker
def _worker(self, constructor, conn): """The process waits for actions and sends back environment results. Args: constructor: Constructor for the OpenAI Gym environment. conn: Connection for communication to the main process. Raises: KeyError: When receiving a message of unknown type. """ try: env = constructor() while True: try: # Only block for short times to have keyboard exceptions be raised. if not conn.poll(0.1): continue message, payload = conn.recv() except (EOFError, KeyboardInterrupt): break if message == self._ACCESS: name = payload result = getattr(env, name) conn.send((self._RESULT, result)) continue if message == self._CALL: name, args, kwargs = payload result = getattr(env, name)(*args, **kwargs) conn.send((self._RESULT, result)) continue if message == self._CLOSE: assert payload is None break raise KeyError('Received message of unknown type {}'.format(message)) except Exception: # pylint: disable=broad-except stacktrace = ''.join(traceback.format_exception(*sys.exc_info())) tf.logging.error('Error in environment process: {}'.format(stacktrace)) conn.send((self._EXCEPTION, stacktrace)) conn.close()
python
def _worker(self, constructor, conn): """The process waits for actions and sends back environment results. Args: constructor: Constructor for the OpenAI Gym environment. conn: Connection for communication to the main process. Raises: KeyError: When receiving a message of unknown type. """ try: env = constructor() while True: try: # Only block for short times to have keyboard exceptions be raised. if not conn.poll(0.1): continue message, payload = conn.recv() except (EOFError, KeyboardInterrupt): break if message == self._ACCESS: name = payload result = getattr(env, name) conn.send((self._RESULT, result)) continue if message == self._CALL: name, args, kwargs = payload result = getattr(env, name)(*args, **kwargs) conn.send((self._RESULT, result)) continue if message == self._CLOSE: assert payload is None break raise KeyError('Received message of unknown type {}'.format(message)) except Exception: # pylint: disable=broad-except stacktrace = ''.join(traceback.format_exception(*sys.exc_info())) tf.logging.error('Error in environment process: {}'.format(stacktrace)) conn.send((self._EXCEPTION, stacktrace)) conn.close()
[ "def", "_worker", "(", "self", ",", "constructor", ",", "conn", ")", ":", "try", ":", "env", "=", "constructor", "(", ")", "while", "True", ":", "try", ":", "# Only block for short times to have keyboard exceptions be raised.", "if", "not", "conn", ".", "poll", "(", "0.1", ")", ":", "continue", "message", ",", "payload", "=", "conn", ".", "recv", "(", ")", "except", "(", "EOFError", ",", "KeyboardInterrupt", ")", ":", "break", "if", "message", "==", "self", ".", "_ACCESS", ":", "name", "=", "payload", "result", "=", "getattr", "(", "env", ",", "name", ")", "conn", ".", "send", "(", "(", "self", ".", "_RESULT", ",", "result", ")", ")", "continue", "if", "message", "==", "self", ".", "_CALL", ":", "name", ",", "args", ",", "kwargs", "=", "payload", "result", "=", "getattr", "(", "env", ",", "name", ")", "(", "*", "args", ",", "*", "*", "kwargs", ")", "conn", ".", "send", "(", "(", "self", ".", "_RESULT", ",", "result", ")", ")", "continue", "if", "message", "==", "self", ".", "_CLOSE", ":", "assert", "payload", "is", "None", "break", "raise", "KeyError", "(", "'Received message of unknown type {}'", ".", "format", "(", "message", ")", ")", "except", "Exception", ":", "# pylint: disable=broad-except", "stacktrace", "=", "''", ".", "join", "(", "traceback", ".", "format_exception", "(", "*", "sys", ".", "exc_info", "(", ")", ")", ")", "tf", ".", "logging", ".", "error", "(", "'Error in environment process: {}'", ".", "format", "(", "stacktrace", ")", ")", "conn", ".", "send", "(", "(", "self", ".", "_EXCEPTION", ",", "stacktrace", ")", ")", "conn", ".", "close", "(", ")" ]
The process waits for actions and sends back environment results. Args: constructor: Constructor for the OpenAI Gym environment. conn: Connection for communication to the main process. Raises: KeyError: When receiving a message of unknown type.
[ "The", "process", "waits", "for", "actions", "and", "sends", "back", "environment", "results", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/tools/wrappers.py#L440-L478
6,829
google-research/batch-ppo
agents/tools/wrappers.py
ConvertTo32Bit.step
def step(self, action): """Forward action to the wrapped environment. Args: action: Action to apply to the environment. Raises: ValueError: Invalid action. Returns: Converted observation, converted reward, done flag, and info object. """ observ, reward, done, info = self._env.step(action) observ = self._convert_observ(observ) reward = self._convert_reward(reward) return observ, reward, done, info
python
def step(self, action): """Forward action to the wrapped environment. Args: action: Action to apply to the environment. Raises: ValueError: Invalid action. Returns: Converted observation, converted reward, done flag, and info object. """ observ, reward, done, info = self._env.step(action) observ = self._convert_observ(observ) reward = self._convert_reward(reward) return observ, reward, done, info
[ "def", "step", "(", "self", ",", "action", ")", ":", "observ", ",", "reward", ",", "done", ",", "info", "=", "self", ".", "_env", ".", "step", "(", "action", ")", "observ", "=", "self", ".", "_convert_observ", "(", "observ", ")", "reward", "=", "self", ".", "_convert_reward", "(", "reward", ")", "return", "observ", ",", "reward", ",", "done", ",", "info" ]
Forward action to the wrapped environment. Args: action: Action to apply to the environment. Raises: ValueError: Invalid action. Returns: Converted observation, converted reward, done flag, and info object.
[ "Forward", "action", "to", "the", "wrapped", "environment", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/tools/wrappers.py#L503-L518
6,830
google-research/batch-ppo
agents/tools/wrappers.py
ConvertTo32Bit._convert_observ
def _convert_observ(self, observ): """Convert the observation to 32 bits. Args: observ: Numpy observation. Raises: ValueError: Observation contains infinite values. Returns: Numpy observation with 32-bit data type. """ if not np.isfinite(observ).all(): raise ValueError('Infinite observation encountered.') if observ.dtype == np.float64: return observ.astype(np.float32) if observ.dtype == np.int64: return observ.astype(np.int32) return observ
python
def _convert_observ(self, observ): """Convert the observation to 32 bits. Args: observ: Numpy observation. Raises: ValueError: Observation contains infinite values. Returns: Numpy observation with 32-bit data type. """ if not np.isfinite(observ).all(): raise ValueError('Infinite observation encountered.') if observ.dtype == np.float64: return observ.astype(np.float32) if observ.dtype == np.int64: return observ.astype(np.int32) return observ
[ "def", "_convert_observ", "(", "self", ",", "observ", ")", ":", "if", "not", "np", ".", "isfinite", "(", "observ", ")", ".", "all", "(", ")", ":", "raise", "ValueError", "(", "'Infinite observation encountered.'", ")", "if", "observ", ".", "dtype", "==", "np", ".", "float64", ":", "return", "observ", ".", "astype", "(", "np", ".", "float32", ")", "if", "observ", ".", "dtype", "==", "np", ".", "int64", ":", "return", "observ", ".", "astype", "(", "np", ".", "int32", ")", "return", "observ" ]
Convert the observation to 32 bits. Args: observ: Numpy observation. Raises: ValueError: Observation contains infinite values. Returns: Numpy observation with 32-bit data type.
[ "Convert", "the", "observation", "to", "32", "bits", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/tools/wrappers.py#L530-L548
6,831
google-research/batch-ppo
agents/tools/wrappers.py
ConvertTo32Bit._convert_reward
def _convert_reward(self, reward): """Convert the reward to 32 bits. Args: reward: Numpy reward. Raises: ValueError: Rewards contain infinite values. Returns: Numpy reward with 32-bit data type. """ if not np.isfinite(reward).all(): raise ValueError('Infinite reward encountered.') return np.array(reward, dtype=np.float32)
python
def _convert_reward(self, reward): """Convert the reward to 32 bits. Args: reward: Numpy reward. Raises: ValueError: Rewards contain infinite values. Returns: Numpy reward with 32-bit data type. """ if not np.isfinite(reward).all(): raise ValueError('Infinite reward encountered.') return np.array(reward, dtype=np.float32)
[ "def", "_convert_reward", "(", "self", ",", "reward", ")", ":", "if", "not", "np", ".", "isfinite", "(", "reward", ")", ".", "all", "(", ")", ":", "raise", "ValueError", "(", "'Infinite reward encountered.'", ")", "return", "np", ".", "array", "(", "reward", ",", "dtype", "=", "np", ".", "float32", ")" ]
Convert the reward to 32 bits. Args: reward: Numpy reward. Raises: ValueError: Rewards contain infinite values. Returns: Numpy reward with 32-bit data type.
[ "Convert", "the", "reward", "to", "32", "bits", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/tools/wrappers.py#L550-L564
6,832
google-research/batch-ppo
agents/tools/streaming_mean.py
StreamingMean.value
def value(self): """The current value of the mean.""" return self._sum / tf.cast(self._count, self._dtype)
python
def value(self): """The current value of the mean.""" return self._sum / tf.cast(self._count, self._dtype)
[ "def", "value", "(", "self", ")", ":", "return", "self", ".", "_sum", "/", "tf", ".", "cast", "(", "self", ".", "_count", ",", "self", ".", "_dtype", ")" ]
The current value of the mean.
[ "The", "current", "value", "of", "the", "mean", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/tools/streaming_mean.py#L42-L44
6,833
google-research/batch-ppo
agents/tools/streaming_mean.py
StreamingMean.submit
def submit(self, value): """Submit a single or batch tensor to refine the streaming mean.""" # Add a batch dimension if necessary. if value.shape.ndims == self._sum.shape.ndims: value = value[None, ...] return tf.group( self._sum.assign_add(tf.reduce_sum(value, 0)), self._count.assign_add(tf.shape(value)[0]))
python
def submit(self, value): """Submit a single or batch tensor to refine the streaming mean.""" # Add a batch dimension if necessary. if value.shape.ndims == self._sum.shape.ndims: value = value[None, ...] return tf.group( self._sum.assign_add(tf.reduce_sum(value, 0)), self._count.assign_add(tf.shape(value)[0]))
[ "def", "submit", "(", "self", ",", "value", ")", ":", "# Add a batch dimension if necessary.", "if", "value", ".", "shape", ".", "ndims", "==", "self", ".", "_sum", ".", "shape", ".", "ndims", ":", "value", "=", "value", "[", "None", ",", "...", "]", "return", "tf", ".", "group", "(", "self", ".", "_sum", ".", "assign_add", "(", "tf", ".", "reduce_sum", "(", "value", ",", "0", ")", ")", ",", "self", ".", "_count", ".", "assign_add", "(", "tf", ".", "shape", "(", "value", ")", "[", "0", "]", ")", ")" ]
Submit a single or batch tensor to refine the streaming mean.
[ "Submit", "a", "single", "or", "batch", "tensor", "to", "refine", "the", "streaming", "mean", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/tools/streaming_mean.py#L51-L58
6,834
google-research/batch-ppo
agents/tools/streaming_mean.py
StreamingMean.clear
def clear(self): """Return the mean estimate and reset the streaming statistics.""" value = self._sum / tf.cast(self._count, self._dtype) with tf.control_dependencies([value]): reset_value = self._sum.assign(tf.zeros_like(self._sum)) reset_count = self._count.assign(0) with tf.control_dependencies([reset_value, reset_count]): return tf.identity(value)
python
def clear(self): """Return the mean estimate and reset the streaming statistics.""" value = self._sum / tf.cast(self._count, self._dtype) with tf.control_dependencies([value]): reset_value = self._sum.assign(tf.zeros_like(self._sum)) reset_count = self._count.assign(0) with tf.control_dependencies([reset_value, reset_count]): return tf.identity(value)
[ "def", "clear", "(", "self", ")", ":", "value", "=", "self", ".", "_sum", "/", "tf", ".", "cast", "(", "self", ".", "_count", ",", "self", ".", "_dtype", ")", "with", "tf", ".", "control_dependencies", "(", "[", "value", "]", ")", ":", "reset_value", "=", "self", ".", "_sum", ".", "assign", "(", "tf", ".", "zeros_like", "(", "self", ".", "_sum", ")", ")", "reset_count", "=", "self", ".", "_count", ".", "assign", "(", "0", ")", "with", "tf", ".", "control_dependencies", "(", "[", "reset_value", ",", "reset_count", "]", ")", ":", "return", "tf", ".", "identity", "(", "value", ")" ]
Return the mean estimate and reset the streaming statistics.
[ "Return", "the", "mean", "estimate", "and", "reset", "the", "streaming", "statistics", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/tools/streaming_mean.py#L60-L67
6,835
google-research/batch-ppo
agents/tools/nested.py
zip_
def zip_(*structures, **kwargs): # pylint: disable=differing-param-doc,missing-param-doc """Combine corresponding elements in multiple nested structure to tuples. The nested structures can consist of any combination of lists, tuples, and dicts. All provided structures must have the same nesting. Args: *structures: Nested structures. flatten: Whether to flatten the resulting structure into a tuple. Keys of dictionaries will be discarded. Returns: Nested structure. """ # Named keyword arguments are not allowed after *args in Python 2. flatten = kwargs.pop('flatten', False) assert not kwargs, 'zip() got unexpected keyword arguments.' return map( lambda *x: x if len(x) > 1 else x[0], *structures, flatten=flatten)
python
def zip_(*structures, **kwargs): # pylint: disable=differing-param-doc,missing-param-doc """Combine corresponding elements in multiple nested structure to tuples. The nested structures can consist of any combination of lists, tuples, and dicts. All provided structures must have the same nesting. Args: *structures: Nested structures. flatten: Whether to flatten the resulting structure into a tuple. Keys of dictionaries will be discarded. Returns: Nested structure. """ # Named keyword arguments are not allowed after *args in Python 2. flatten = kwargs.pop('flatten', False) assert not kwargs, 'zip() got unexpected keyword arguments.' return map( lambda *x: x if len(x) > 1 else x[0], *structures, flatten=flatten)
[ "def", "zip_", "(", "*", "structures", ",", "*", "*", "kwargs", ")", ":", "# pylint: disable=differing-param-doc,missing-param-doc", "# Named keyword arguments are not allowed after *args in Python 2.", "flatten", "=", "kwargs", ".", "pop", "(", "'flatten'", ",", "False", ")", "assert", "not", "kwargs", ",", "'zip() got unexpected keyword arguments.'", "return", "map", "(", "lambda", "*", "x", ":", "x", "if", "len", "(", "x", ")", ">", "1", "else", "x", "[", "0", "]", ",", "*", "structures", ",", "flatten", "=", "flatten", ")" ]
Combine corresponding elements in multiple nested structure to tuples. The nested structures can consist of any combination of lists, tuples, and dicts. All provided structures must have the same nesting. Args: *structures: Nested structures. flatten: Whether to flatten the resulting structure into a tuple. Keys of dictionaries will be discarded. Returns: Nested structure.
[ "Combine", "corresponding", "elements", "in", "multiple", "nested", "structure", "to", "tuples", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/tools/nested.py#L29-L50
6,836
google-research/batch-ppo
agents/tools/nested.py
map_
def map_(function, *structures, **kwargs): # pylint: disable=differing-param-doc,missing-param-doc """Apply a function to every element in a nested structure. If multiple structures are provided as input, their structure must match and the function will be applied to corresponding groups of elements. The nested structure can consist of any combination of lists, tuples, and dicts. Args: function: The function to apply to the elements of the structure. Receives one argument for every structure that is provided. *structures: One of more nested structures. flatten: Whether to flatten the resulting structure into a tuple. Keys of dictionaries will be discarded. Returns: Nested structure. """ # Named keyword arguments are not allowed after *args in Python 2. flatten = kwargs.pop('flatten', False) assert not kwargs, 'map() got unexpected keyword arguments.' def impl(function, *structures): if len(structures) == 0: # pylint: disable=len-as-condition return structures if all(isinstance(s, (tuple, list)) for s in structures): if len(set(len(x) for x in structures)) > 1: raise ValueError('Cannot merge tuples or lists of different length.') args = tuple((impl(function, *x) for x in _builtin_zip(*structures))) if hasattr(structures[0], '_fields'): # namedtuple return type(structures[0])(*args) else: # tuple, list return type(structures[0])(args) if all(isinstance(s, dict) for s in structures): if len(set(frozenset(x.keys()) for x in structures)) > 1: raise ValueError('Cannot merge dicts with different keys.') merged = { k: impl(function, *(s[k] for s in structures)) for k in structures[0]} return type(structures[0])(merged) return function(*structures) result = impl(function, *structures) if flatten: result = flatten_(result) return result
python
def map_(function, *structures, **kwargs): # pylint: disable=differing-param-doc,missing-param-doc """Apply a function to every element in a nested structure. If multiple structures are provided as input, their structure must match and the function will be applied to corresponding groups of elements. The nested structure can consist of any combination of lists, tuples, and dicts. Args: function: The function to apply to the elements of the structure. Receives one argument for every structure that is provided. *structures: One of more nested structures. flatten: Whether to flatten the resulting structure into a tuple. Keys of dictionaries will be discarded. Returns: Nested structure. """ # Named keyword arguments are not allowed after *args in Python 2. flatten = kwargs.pop('flatten', False) assert not kwargs, 'map() got unexpected keyword arguments.' def impl(function, *structures): if len(structures) == 0: # pylint: disable=len-as-condition return structures if all(isinstance(s, (tuple, list)) for s in structures): if len(set(len(x) for x in structures)) > 1: raise ValueError('Cannot merge tuples or lists of different length.') args = tuple((impl(function, *x) for x in _builtin_zip(*structures))) if hasattr(structures[0], '_fields'): # namedtuple return type(structures[0])(*args) else: # tuple, list return type(structures[0])(args) if all(isinstance(s, dict) for s in structures): if len(set(frozenset(x.keys()) for x in structures)) > 1: raise ValueError('Cannot merge dicts with different keys.') merged = { k: impl(function, *(s[k] for s in structures)) for k in structures[0]} return type(structures[0])(merged) return function(*structures) result = impl(function, *structures) if flatten: result = flatten_(result) return result
[ "def", "map_", "(", "function", ",", "*", "structures", ",", "*", "*", "kwargs", ")", ":", "# pylint: disable=differing-param-doc,missing-param-doc", "# Named keyword arguments are not allowed after *args in Python 2.", "flatten", "=", "kwargs", ".", "pop", "(", "'flatten'", ",", "False", ")", "assert", "not", "kwargs", ",", "'map() got unexpected keyword arguments.'", "def", "impl", "(", "function", ",", "*", "structures", ")", ":", "if", "len", "(", "structures", ")", "==", "0", ":", "# pylint: disable=len-as-condition", "return", "structures", "if", "all", "(", "isinstance", "(", "s", ",", "(", "tuple", ",", "list", ")", ")", "for", "s", "in", "structures", ")", ":", "if", "len", "(", "set", "(", "len", "(", "x", ")", "for", "x", "in", "structures", ")", ")", ">", "1", ":", "raise", "ValueError", "(", "'Cannot merge tuples or lists of different length.'", ")", "args", "=", "tuple", "(", "(", "impl", "(", "function", ",", "*", "x", ")", "for", "x", "in", "_builtin_zip", "(", "*", "structures", ")", ")", ")", "if", "hasattr", "(", "structures", "[", "0", "]", ",", "'_fields'", ")", ":", "# namedtuple", "return", "type", "(", "structures", "[", "0", "]", ")", "(", "*", "args", ")", "else", ":", "# tuple, list", "return", "type", "(", "structures", "[", "0", "]", ")", "(", "args", ")", "if", "all", "(", "isinstance", "(", "s", ",", "dict", ")", "for", "s", "in", "structures", ")", ":", "if", "len", "(", "set", "(", "frozenset", "(", "x", ".", "keys", "(", ")", ")", "for", "x", "in", "structures", ")", ")", ">", "1", ":", "raise", "ValueError", "(", "'Cannot merge dicts with different keys.'", ")", "merged", "=", "{", "k", ":", "impl", "(", "function", ",", "*", "(", "s", "[", "k", "]", "for", "s", "in", "structures", ")", ")", "for", "k", "in", "structures", "[", "0", "]", "}", "return", "type", "(", "structures", "[", "0", "]", ")", "(", "merged", ")", "return", "function", "(", "*", "structures", ")", "result", "=", "impl", "(", "function", ",", "*", "structures", ")", "if", "flatten", ":", "result", "=", "flatten_", "(", "result", ")", "return", "result" ]
Apply a function to every element in a nested structure. If multiple structures are provided as input, their structure must match and the function will be applied to corresponding groups of elements. The nested structure can consist of any combination of lists, tuples, and dicts. Args: function: The function to apply to the elements of the structure. Receives one argument for every structure that is provided. *structures: One of more nested structures. flatten: Whether to flatten the resulting structure into a tuple. Keys of dictionaries will be discarded. Returns: Nested structure.
[ "Apply", "a", "function", "to", "every", "element", "in", "a", "nested", "structure", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/tools/nested.py#L53-L98
6,837
google-research/batch-ppo
agents/tools/nested.py
flatten_
def flatten_(structure): """Combine all leaves of a nested structure into a tuple. The nested structure can consist of any combination of tuples, lists, and dicts. Dictionary keys will be discarded but values will ordered by the sorting of the keys. Args: structure: Nested structure. Returns: Flat tuple. """ if isinstance(structure, dict): if structure: structure = zip(*sorted(structure.items(), key=lambda x: x[0]))[1] else: # Zip doesn't work on an the items of an empty dictionary. structure = () if isinstance(structure, (tuple, list)): result = [] for element in structure: result += flatten_(element) return tuple(result) return (structure,)
python
def flatten_(structure): """Combine all leaves of a nested structure into a tuple. The nested structure can consist of any combination of tuples, lists, and dicts. Dictionary keys will be discarded but values will ordered by the sorting of the keys. Args: structure: Nested structure. Returns: Flat tuple. """ if isinstance(structure, dict): if structure: structure = zip(*sorted(structure.items(), key=lambda x: x[0]))[1] else: # Zip doesn't work on an the items of an empty dictionary. structure = () if isinstance(structure, (tuple, list)): result = [] for element in structure: result += flatten_(element) return tuple(result) return (structure,)
[ "def", "flatten_", "(", "structure", ")", ":", "if", "isinstance", "(", "structure", ",", "dict", ")", ":", "if", "structure", ":", "structure", "=", "zip", "(", "*", "sorted", "(", "structure", ".", "items", "(", ")", ",", "key", "=", "lambda", "x", ":", "x", "[", "0", "]", ")", ")", "[", "1", "]", "else", ":", "# Zip doesn't work on an the items of an empty dictionary.", "structure", "=", "(", ")", "if", "isinstance", "(", "structure", ",", "(", "tuple", ",", "list", ")", ")", ":", "result", "=", "[", "]", "for", "element", "in", "structure", ":", "result", "+=", "flatten_", "(", "element", ")", "return", "tuple", "(", "result", ")", "return", "(", "structure", ",", ")" ]
Combine all leaves of a nested structure into a tuple. The nested structure can consist of any combination of tuples, lists, and dicts. Dictionary keys will be discarded but values will ordered by the sorting of the keys. Args: structure: Nested structure. Returns: Flat tuple.
[ "Combine", "all", "leaves", "of", "a", "nested", "structure", "into", "a", "tuple", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/tools/nested.py#L101-L125
6,838
google-research/batch-ppo
agents/tools/nested.py
filter_
def filter_(predicate, *structures, **kwargs): # pylint: disable=differing-param-doc,missing-param-doc, too-many-branches """Select elements of a nested structure based on a predicate function. If multiple structures are provided as input, their structure must match and the function will be applied to corresponding groups of elements. The nested structure can consist of any combination of lists, tuples, and dicts. Args: predicate: The function to determine whether an element should be kept. Receives one argument for every structure that is provided. *structures: One of more nested structures. flatten: Whether to flatten the resulting structure into a tuple. Keys of dictionaries will be discarded. Returns: Nested structure. """ # Named keyword arguments are not allowed after *args in Python 2. flatten = kwargs.pop('flatten', False) assert not kwargs, 'filter() got unexpected keyword arguments.' def impl(predicate, *structures): if len(structures) == 0: # pylint: disable=len-as-condition return structures if all(isinstance(s, (tuple, list)) for s in structures): if len(set(len(x) for x in structures)) > 1: raise ValueError('Cannot merge tuples or lists of different length.') # Only wrap in tuples if more than one structure provided. if len(structures) > 1: filtered = (impl(predicate, *x) for x in _builtin_zip(*structures)) else: filtered = (impl(predicate, x) for x in structures[0]) # Remove empty containers and construct result structure. if hasattr(structures[0], '_fields'): # namedtuple filtered = (x if x != () else None for x in filtered) return type(structures[0])(*filtered) else: # tuple, list filtered = ( x for x in filtered if not isinstance(x, (tuple, list, dict)) or x) return type(structures[0])(filtered) if all(isinstance(s, dict) for s in structures): if len(set(frozenset(x.keys()) for x in structures)) > 1: raise ValueError('Cannot merge dicts with different keys.') # Only wrap in tuples if more than one structure provided. if len(structures) > 1: filtered = { k: impl(predicate, *(s[k] for s in structures)) for k in structures[0]} else: filtered = {k: impl(predicate, v) for k, v in structures[0].items()} # Remove empty containers and construct result structure. filtered = { k: v for k, v in filtered.items() if not isinstance(v, (tuple, list, dict)) or v} return type(structures[0])(filtered) if len(structures) > 1: return structures if predicate(*structures) else () else: return structures[0] if predicate(structures[0]) else () result = impl(predicate, *structures) if flatten: result = flatten_(result) return result
python
def filter_(predicate, *structures, **kwargs): # pylint: disable=differing-param-doc,missing-param-doc, too-many-branches """Select elements of a nested structure based on a predicate function. If multiple structures are provided as input, their structure must match and the function will be applied to corresponding groups of elements. The nested structure can consist of any combination of lists, tuples, and dicts. Args: predicate: The function to determine whether an element should be kept. Receives one argument for every structure that is provided. *structures: One of more nested structures. flatten: Whether to flatten the resulting structure into a tuple. Keys of dictionaries will be discarded. Returns: Nested structure. """ # Named keyword arguments are not allowed after *args in Python 2. flatten = kwargs.pop('flatten', False) assert not kwargs, 'filter() got unexpected keyword arguments.' def impl(predicate, *structures): if len(structures) == 0: # pylint: disable=len-as-condition return structures if all(isinstance(s, (tuple, list)) for s in structures): if len(set(len(x) for x in structures)) > 1: raise ValueError('Cannot merge tuples or lists of different length.') # Only wrap in tuples if more than one structure provided. if len(structures) > 1: filtered = (impl(predicate, *x) for x in _builtin_zip(*structures)) else: filtered = (impl(predicate, x) for x in structures[0]) # Remove empty containers and construct result structure. if hasattr(structures[0], '_fields'): # namedtuple filtered = (x if x != () else None for x in filtered) return type(structures[0])(*filtered) else: # tuple, list filtered = ( x for x in filtered if not isinstance(x, (tuple, list, dict)) or x) return type(structures[0])(filtered) if all(isinstance(s, dict) for s in structures): if len(set(frozenset(x.keys()) for x in structures)) > 1: raise ValueError('Cannot merge dicts with different keys.') # Only wrap in tuples if more than one structure provided. if len(structures) > 1: filtered = { k: impl(predicate, *(s[k] for s in structures)) for k in structures[0]} else: filtered = {k: impl(predicate, v) for k, v in structures[0].items()} # Remove empty containers and construct result structure. filtered = { k: v for k, v in filtered.items() if not isinstance(v, (tuple, list, dict)) or v} return type(structures[0])(filtered) if len(structures) > 1: return structures if predicate(*structures) else () else: return structures[0] if predicate(structures[0]) else () result = impl(predicate, *structures) if flatten: result = flatten_(result) return result
[ "def", "filter_", "(", "predicate", ",", "*", "structures", ",", "*", "*", "kwargs", ")", ":", "# pylint: disable=differing-param-doc,missing-param-doc, too-many-branches", "# Named keyword arguments are not allowed after *args in Python 2.", "flatten", "=", "kwargs", ".", "pop", "(", "'flatten'", ",", "False", ")", "assert", "not", "kwargs", ",", "'filter() got unexpected keyword arguments.'", "def", "impl", "(", "predicate", ",", "*", "structures", ")", ":", "if", "len", "(", "structures", ")", "==", "0", ":", "# pylint: disable=len-as-condition", "return", "structures", "if", "all", "(", "isinstance", "(", "s", ",", "(", "tuple", ",", "list", ")", ")", "for", "s", "in", "structures", ")", ":", "if", "len", "(", "set", "(", "len", "(", "x", ")", "for", "x", "in", "structures", ")", ")", ">", "1", ":", "raise", "ValueError", "(", "'Cannot merge tuples or lists of different length.'", ")", "# Only wrap in tuples if more than one structure provided.", "if", "len", "(", "structures", ")", ">", "1", ":", "filtered", "=", "(", "impl", "(", "predicate", ",", "*", "x", ")", "for", "x", "in", "_builtin_zip", "(", "*", "structures", ")", ")", "else", ":", "filtered", "=", "(", "impl", "(", "predicate", ",", "x", ")", "for", "x", "in", "structures", "[", "0", "]", ")", "# Remove empty containers and construct result structure.", "if", "hasattr", "(", "structures", "[", "0", "]", ",", "'_fields'", ")", ":", "# namedtuple", "filtered", "=", "(", "x", "if", "x", "!=", "(", ")", "else", "None", "for", "x", "in", "filtered", ")", "return", "type", "(", "structures", "[", "0", "]", ")", "(", "*", "filtered", ")", "else", ":", "# tuple, list", "filtered", "=", "(", "x", "for", "x", "in", "filtered", "if", "not", "isinstance", "(", "x", ",", "(", "tuple", ",", "list", ",", "dict", ")", ")", "or", "x", ")", "return", "type", "(", "structures", "[", "0", "]", ")", "(", "filtered", ")", "if", "all", "(", "isinstance", "(", "s", ",", "dict", ")", "for", "s", "in", "structures", ")", ":", "if", "len", "(", "set", "(", "frozenset", "(", "x", ".", "keys", "(", ")", ")", "for", "x", "in", "structures", ")", ")", ">", "1", ":", "raise", "ValueError", "(", "'Cannot merge dicts with different keys.'", ")", "# Only wrap in tuples if more than one structure provided.", "if", "len", "(", "structures", ")", ">", "1", ":", "filtered", "=", "{", "k", ":", "impl", "(", "predicate", ",", "*", "(", "s", "[", "k", "]", "for", "s", "in", "structures", ")", ")", "for", "k", "in", "structures", "[", "0", "]", "}", "else", ":", "filtered", "=", "{", "k", ":", "impl", "(", "predicate", ",", "v", ")", "for", "k", ",", "v", "in", "structures", "[", "0", "]", ".", "items", "(", ")", "}", "# Remove empty containers and construct result structure.", "filtered", "=", "{", "k", ":", "v", "for", "k", ",", "v", "in", "filtered", ".", "items", "(", ")", "if", "not", "isinstance", "(", "v", ",", "(", "tuple", ",", "list", ",", "dict", ")", ")", "or", "v", "}", "return", "type", "(", "structures", "[", "0", "]", ")", "(", "filtered", ")", "if", "len", "(", "structures", ")", ">", "1", ":", "return", "structures", "if", "predicate", "(", "*", "structures", ")", "else", "(", ")", "else", ":", "return", "structures", "[", "0", "]", "if", "predicate", "(", "structures", "[", "0", "]", ")", "else", "(", ")", "result", "=", "impl", "(", "predicate", ",", "*", "structures", ")", "if", "flatten", ":", "result", "=", "flatten_", "(", "result", ")", "return", "result" ]
Select elements of a nested structure based on a predicate function. If multiple structures are provided as input, their structure must match and the function will be applied to corresponding groups of elements. The nested structure can consist of any combination of lists, tuples, and dicts. Args: predicate: The function to determine whether an element should be kept. Receives one argument for every structure that is provided. *structures: One of more nested structures. flatten: Whether to flatten the resulting structure into a tuple. Keys of dictionaries will be discarded. Returns: Nested structure.
[ "Select", "elements", "of", "a", "nested", "structure", "based", "on", "a", "predicate", "function", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/tools/nested.py#L128-L192
6,839
google-research/batch-ppo
agents/tools/loop.py
Loop.add_phase
def add_phase( self, name, done, score, summary, steps, report_every=None, log_every=None, checkpoint_every=None, feed=None): """Add a phase to the loop protocol. If the model breaks long computation into multiple steps, the done tensor indicates whether the current score should be added to the mean counter. For example, in reinforcement learning we only have a valid score at the end of the episode. Score and done tensors can either be scalars or vectors, to support single and batched computations. Args: name: Name for the phase, used for the summary writer. done: Tensor indicating whether current score can be used. score: Tensor holding the current, possibly intermediate, score. summary: Tensor holding summary string to write if not an empty string. steps: Duration of the phase in steps. report_every: Yield mean score every this number of steps. log_every: Request summaries via `log` tensor every this number of steps. checkpoint_every: Write checkpoint every this number of steps. feed: Additional feed dictionary for the session run call. Raises: ValueError: Unknown rank for done or score tensors. """ done = tf.convert_to_tensor(done, tf.bool) score = tf.convert_to_tensor(score, tf.float32) summary = tf.convert_to_tensor(summary, tf.string) feed = feed or {} if done.shape.ndims is None or score.shape.ndims is None: raise ValueError("Rank of 'done' and 'score' tensors must be known.") writer = self._logdir and tf.summary.FileWriter( os.path.join(self._logdir, name), tf.get_default_graph(), flush_secs=60) op = self._define_step(done, score, summary) batch = 1 if score.shape.ndims == 0 else score.shape[0].value self._phases.append(_Phase( name, writer, op, batch, int(steps), feed, report_every, log_every, checkpoint_every))
python
def add_phase( self, name, done, score, summary, steps, report_every=None, log_every=None, checkpoint_every=None, feed=None): """Add a phase to the loop protocol. If the model breaks long computation into multiple steps, the done tensor indicates whether the current score should be added to the mean counter. For example, in reinforcement learning we only have a valid score at the end of the episode. Score and done tensors can either be scalars or vectors, to support single and batched computations. Args: name: Name for the phase, used for the summary writer. done: Tensor indicating whether current score can be used. score: Tensor holding the current, possibly intermediate, score. summary: Tensor holding summary string to write if not an empty string. steps: Duration of the phase in steps. report_every: Yield mean score every this number of steps. log_every: Request summaries via `log` tensor every this number of steps. checkpoint_every: Write checkpoint every this number of steps. feed: Additional feed dictionary for the session run call. Raises: ValueError: Unknown rank for done or score tensors. """ done = tf.convert_to_tensor(done, tf.bool) score = tf.convert_to_tensor(score, tf.float32) summary = tf.convert_to_tensor(summary, tf.string) feed = feed or {} if done.shape.ndims is None or score.shape.ndims is None: raise ValueError("Rank of 'done' and 'score' tensors must be known.") writer = self._logdir and tf.summary.FileWriter( os.path.join(self._logdir, name), tf.get_default_graph(), flush_secs=60) op = self._define_step(done, score, summary) batch = 1 if score.shape.ndims == 0 else score.shape[0].value self._phases.append(_Phase( name, writer, op, batch, int(steps), feed, report_every, log_every, checkpoint_every))
[ "def", "add_phase", "(", "self", ",", "name", ",", "done", ",", "score", ",", "summary", ",", "steps", ",", "report_every", "=", "None", ",", "log_every", "=", "None", ",", "checkpoint_every", "=", "None", ",", "feed", "=", "None", ")", ":", "done", "=", "tf", ".", "convert_to_tensor", "(", "done", ",", "tf", ".", "bool", ")", "score", "=", "tf", ".", "convert_to_tensor", "(", "score", ",", "tf", ".", "float32", ")", "summary", "=", "tf", ".", "convert_to_tensor", "(", "summary", ",", "tf", ".", "string", ")", "feed", "=", "feed", "or", "{", "}", "if", "done", ".", "shape", ".", "ndims", "is", "None", "or", "score", ".", "shape", ".", "ndims", "is", "None", ":", "raise", "ValueError", "(", "\"Rank of 'done' and 'score' tensors must be known.\"", ")", "writer", "=", "self", ".", "_logdir", "and", "tf", ".", "summary", ".", "FileWriter", "(", "os", ".", "path", ".", "join", "(", "self", ".", "_logdir", ",", "name", ")", ",", "tf", ".", "get_default_graph", "(", ")", ",", "flush_secs", "=", "60", ")", "op", "=", "self", ".", "_define_step", "(", "done", ",", "score", ",", "summary", ")", "batch", "=", "1", "if", "score", ".", "shape", ".", "ndims", "==", "0", "else", "score", ".", "shape", "[", "0", "]", ".", "value", "self", ".", "_phases", ".", "append", "(", "_Phase", "(", "name", ",", "writer", ",", "op", ",", "batch", ",", "int", "(", "steps", ")", ",", "feed", ",", "report_every", ",", "log_every", ",", "checkpoint_every", ")", ")" ]
Add a phase to the loop protocol. If the model breaks long computation into multiple steps, the done tensor indicates whether the current score should be added to the mean counter. For example, in reinforcement learning we only have a valid score at the end of the episode. Score and done tensors can either be scalars or vectors, to support single and batched computations. Args: name: Name for the phase, used for the summary writer. done: Tensor indicating whether current score can be used. score: Tensor holding the current, possibly intermediate, score. summary: Tensor holding summary string to write if not an empty string. steps: Duration of the phase in steps. report_every: Yield mean score every this number of steps. log_every: Request summaries via `log` tensor every this number of steps. checkpoint_every: Write checkpoint every this number of steps. feed: Additional feed dictionary for the session run call. Raises: ValueError: Unknown rank for done or score tensors.
[ "Add", "a", "phase", "to", "the", "loop", "protocol", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/tools/loop.py#L66-L106
6,840
google-research/batch-ppo
agents/tools/loop.py
Loop.run
def run(self, sess, saver, max_step=None): """Run the loop schedule for a specified number of steps. Call the operation of the current phase until the global step reaches the specified maximum step. Phases are repeated over and over in the order they were added. Args: sess: Session to use to run the phase operation. saver: Saver used for checkpointing. max_step: Run the operations until the step reaches this limit. Yields: Reported mean scores. """ global_step = sess.run(self._step) steps_made = 1 while True: if max_step and global_step >= max_step: break phase, epoch, steps_in = self._find_current_phase(global_step) phase_step = epoch * phase.steps + steps_in if steps_in % phase.steps < steps_made: message = '\n' + ('-' * 50) + '\n' message += 'Phase {} (phase step {}, global step {}).' tf.logging.info(message.format(phase.name, phase_step, global_step)) # Populate book keeping tensors. phase.feed[self._reset] = (steps_in < steps_made) phase.feed[self._log] = ( phase.writer and self._is_every_steps(phase_step, phase.batch, phase.log_every)) phase.feed[self._report] = ( self._is_every_steps(phase_step, phase.batch, phase.report_every)) summary, mean_score, global_step, steps_made = sess.run( phase.op, phase.feed) if self._is_every_steps(phase_step, phase.batch, phase.checkpoint_every): self._store_checkpoint(sess, saver, global_step) if self._is_every_steps(phase_step, phase.batch, phase.report_every): yield mean_score if summary and phase.writer: # We want smaller phases to catch up at the beginnig of each epoch so # that their graphs are aligned. longest_phase = max(phase.steps for phase in self._phases) summary_step = epoch * longest_phase + steps_in phase.writer.add_summary(summary, summary_step)
python
def run(self, sess, saver, max_step=None): """Run the loop schedule for a specified number of steps. Call the operation of the current phase until the global step reaches the specified maximum step. Phases are repeated over and over in the order they were added. Args: sess: Session to use to run the phase operation. saver: Saver used for checkpointing. max_step: Run the operations until the step reaches this limit. Yields: Reported mean scores. """ global_step = sess.run(self._step) steps_made = 1 while True: if max_step and global_step >= max_step: break phase, epoch, steps_in = self._find_current_phase(global_step) phase_step = epoch * phase.steps + steps_in if steps_in % phase.steps < steps_made: message = '\n' + ('-' * 50) + '\n' message += 'Phase {} (phase step {}, global step {}).' tf.logging.info(message.format(phase.name, phase_step, global_step)) # Populate book keeping tensors. phase.feed[self._reset] = (steps_in < steps_made) phase.feed[self._log] = ( phase.writer and self._is_every_steps(phase_step, phase.batch, phase.log_every)) phase.feed[self._report] = ( self._is_every_steps(phase_step, phase.batch, phase.report_every)) summary, mean_score, global_step, steps_made = sess.run( phase.op, phase.feed) if self._is_every_steps(phase_step, phase.batch, phase.checkpoint_every): self._store_checkpoint(sess, saver, global_step) if self._is_every_steps(phase_step, phase.batch, phase.report_every): yield mean_score if summary and phase.writer: # We want smaller phases to catch up at the beginnig of each epoch so # that their graphs are aligned. longest_phase = max(phase.steps for phase in self._phases) summary_step = epoch * longest_phase + steps_in phase.writer.add_summary(summary, summary_step)
[ "def", "run", "(", "self", ",", "sess", ",", "saver", ",", "max_step", "=", "None", ")", ":", "global_step", "=", "sess", ".", "run", "(", "self", ".", "_step", ")", "steps_made", "=", "1", "while", "True", ":", "if", "max_step", "and", "global_step", ">=", "max_step", ":", "break", "phase", ",", "epoch", ",", "steps_in", "=", "self", ".", "_find_current_phase", "(", "global_step", ")", "phase_step", "=", "epoch", "*", "phase", ".", "steps", "+", "steps_in", "if", "steps_in", "%", "phase", ".", "steps", "<", "steps_made", ":", "message", "=", "'\\n'", "+", "(", "'-'", "*", "50", ")", "+", "'\\n'", "message", "+=", "'Phase {} (phase step {}, global step {}).'", "tf", ".", "logging", ".", "info", "(", "message", ".", "format", "(", "phase", ".", "name", ",", "phase_step", ",", "global_step", ")", ")", "# Populate book keeping tensors.", "phase", ".", "feed", "[", "self", ".", "_reset", "]", "=", "(", "steps_in", "<", "steps_made", ")", "phase", ".", "feed", "[", "self", ".", "_log", "]", "=", "(", "phase", ".", "writer", "and", "self", ".", "_is_every_steps", "(", "phase_step", ",", "phase", ".", "batch", ",", "phase", ".", "log_every", ")", ")", "phase", ".", "feed", "[", "self", ".", "_report", "]", "=", "(", "self", ".", "_is_every_steps", "(", "phase_step", ",", "phase", ".", "batch", ",", "phase", ".", "report_every", ")", ")", "summary", ",", "mean_score", ",", "global_step", ",", "steps_made", "=", "sess", ".", "run", "(", "phase", ".", "op", ",", "phase", ".", "feed", ")", "if", "self", ".", "_is_every_steps", "(", "phase_step", ",", "phase", ".", "batch", ",", "phase", ".", "checkpoint_every", ")", ":", "self", ".", "_store_checkpoint", "(", "sess", ",", "saver", ",", "global_step", ")", "if", "self", ".", "_is_every_steps", "(", "phase_step", ",", "phase", ".", "batch", ",", "phase", ".", "report_every", ")", ":", "yield", "mean_score", "if", "summary", "and", "phase", ".", "writer", ":", "# We want smaller phases to catch up at the beginnig of each epoch so", "# that their graphs are aligned.", "longest_phase", "=", "max", "(", "phase", ".", "steps", "for", "phase", "in", "self", ".", "_phases", ")", "summary_step", "=", "epoch", "*", "longest_phase", "+", "steps_in", "phase", ".", "writer", ".", "add_summary", "(", "summary", ",", "summary_step", ")" ]
Run the loop schedule for a specified number of steps. Call the operation of the current phase until the global step reaches the specified maximum step. Phases are repeated over and over in the order they were added. Args: sess: Session to use to run the phase operation. saver: Saver used for checkpointing. max_step: Run the operations until the step reaches this limit. Yields: Reported mean scores.
[ "Run", "the", "loop", "schedule", "for", "a", "specified", "number", "of", "steps", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/tools/loop.py#L108-L152
6,841
google-research/batch-ppo
agents/tools/loop.py
Loop._is_every_steps
def _is_every_steps(self, phase_step, batch, every): """Determine whether a periodic event should happen at this step. Args: phase_step: The incrementing step. batch: The number of steps progressed at once. every: The interval of the period. Returns: Boolean of whether the event should happen. """ if not every: return False covered_steps = range(phase_step, phase_step + batch) return any((step + 1) % every == 0 for step in covered_steps)
python
def _is_every_steps(self, phase_step, batch, every): """Determine whether a periodic event should happen at this step. Args: phase_step: The incrementing step. batch: The number of steps progressed at once. every: The interval of the period. Returns: Boolean of whether the event should happen. """ if not every: return False covered_steps = range(phase_step, phase_step + batch) return any((step + 1) % every == 0 for step in covered_steps)
[ "def", "_is_every_steps", "(", "self", ",", "phase_step", ",", "batch", ",", "every", ")", ":", "if", "not", "every", ":", "return", "False", "covered_steps", "=", "range", "(", "phase_step", ",", "phase_step", "+", "batch", ")", "return", "any", "(", "(", "step", "+", "1", ")", "%", "every", "==", "0", "for", "step", "in", "covered_steps", ")" ]
Determine whether a periodic event should happen at this step. Args: phase_step: The incrementing step. batch: The number of steps progressed at once. every: The interval of the period. Returns: Boolean of whether the event should happen.
[ "Determine", "whether", "a", "periodic", "event", "should", "happen", "at", "this", "step", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/tools/loop.py#L154-L168
6,842
google-research/batch-ppo
agents/tools/loop.py
Loop._find_current_phase
def _find_current_phase(self, global_step): """Determine the current phase based on the global step. This ensures continuing the correct phase after restoring checkoints. Args: global_step: The global number of steps performed across all phases. Returns: Tuple of phase object, epoch number, and phase steps within the epoch. """ epoch_size = sum(phase.steps for phase in self._phases) epoch = int(global_step // epoch_size) steps_in = global_step % epoch_size for phase in self._phases: if steps_in < phase.steps: return phase, epoch, steps_in steps_in -= phase.steps
python
def _find_current_phase(self, global_step): """Determine the current phase based on the global step. This ensures continuing the correct phase after restoring checkoints. Args: global_step: The global number of steps performed across all phases. Returns: Tuple of phase object, epoch number, and phase steps within the epoch. """ epoch_size = sum(phase.steps for phase in self._phases) epoch = int(global_step // epoch_size) steps_in = global_step % epoch_size for phase in self._phases: if steps_in < phase.steps: return phase, epoch, steps_in steps_in -= phase.steps
[ "def", "_find_current_phase", "(", "self", ",", "global_step", ")", ":", "epoch_size", "=", "sum", "(", "phase", ".", "steps", "for", "phase", "in", "self", ".", "_phases", ")", "epoch", "=", "int", "(", "global_step", "//", "epoch_size", ")", "steps_in", "=", "global_step", "%", "epoch_size", "for", "phase", "in", "self", ".", "_phases", ":", "if", "steps_in", "<", "phase", ".", "steps", ":", "return", "phase", ",", "epoch", ",", "steps_in", "steps_in", "-=", "phase", ".", "steps" ]
Determine the current phase based on the global step. This ensures continuing the correct phase after restoring checkoints. Args: global_step: The global number of steps performed across all phases. Returns: Tuple of phase object, epoch number, and phase steps within the epoch.
[ "Determine", "the", "current", "phase", "based", "on", "the", "global", "step", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/tools/loop.py#L170-L187
6,843
google-research/batch-ppo
agents/tools/loop.py
Loop._define_step
def _define_step(self, done, score, summary): """Combine operations of a phase. Keeps track of the mean score and when to report it. Args: done: Tensor indicating whether current score can be used. score: Tensor holding the current, possibly intermediate, score. summary: Tensor holding summary string to write if not an empty string. Returns: Tuple of summary tensor, mean score, and new global step. The mean score is zero for non reporting steps. """ if done.shape.ndims == 0: done = done[None] if score.shape.ndims == 0: score = score[None] score_mean = streaming_mean.StreamingMean((), tf.float32) with tf.control_dependencies([done, score, summary]): done_score = tf.gather(score, tf.where(done)[:, 0]) submit_score = tf.cond( tf.reduce_any(done), lambda: score_mean.submit(done_score), tf.no_op) with tf.control_dependencies([submit_score]): mean_score = tf.cond(self._report, score_mean.clear, float) steps_made = tf.shape(score)[0] next_step = self._step.assign_add(steps_made) with tf.control_dependencies([mean_score, next_step]): return tf.identity(summary), mean_score, next_step, steps_made
python
def _define_step(self, done, score, summary): """Combine operations of a phase. Keeps track of the mean score and when to report it. Args: done: Tensor indicating whether current score can be used. score: Tensor holding the current, possibly intermediate, score. summary: Tensor holding summary string to write if not an empty string. Returns: Tuple of summary tensor, mean score, and new global step. The mean score is zero for non reporting steps. """ if done.shape.ndims == 0: done = done[None] if score.shape.ndims == 0: score = score[None] score_mean = streaming_mean.StreamingMean((), tf.float32) with tf.control_dependencies([done, score, summary]): done_score = tf.gather(score, tf.where(done)[:, 0]) submit_score = tf.cond( tf.reduce_any(done), lambda: score_mean.submit(done_score), tf.no_op) with tf.control_dependencies([submit_score]): mean_score = tf.cond(self._report, score_mean.clear, float) steps_made = tf.shape(score)[0] next_step = self._step.assign_add(steps_made) with tf.control_dependencies([mean_score, next_step]): return tf.identity(summary), mean_score, next_step, steps_made
[ "def", "_define_step", "(", "self", ",", "done", ",", "score", ",", "summary", ")", ":", "if", "done", ".", "shape", ".", "ndims", "==", "0", ":", "done", "=", "done", "[", "None", "]", "if", "score", ".", "shape", ".", "ndims", "==", "0", ":", "score", "=", "score", "[", "None", "]", "score_mean", "=", "streaming_mean", ".", "StreamingMean", "(", "(", ")", ",", "tf", ".", "float32", ")", "with", "tf", ".", "control_dependencies", "(", "[", "done", ",", "score", ",", "summary", "]", ")", ":", "done_score", "=", "tf", ".", "gather", "(", "score", ",", "tf", ".", "where", "(", "done", ")", "[", ":", ",", "0", "]", ")", "submit_score", "=", "tf", ".", "cond", "(", "tf", ".", "reduce_any", "(", "done", ")", ",", "lambda", ":", "score_mean", ".", "submit", "(", "done_score", ")", ",", "tf", ".", "no_op", ")", "with", "tf", ".", "control_dependencies", "(", "[", "submit_score", "]", ")", ":", "mean_score", "=", "tf", ".", "cond", "(", "self", ".", "_report", ",", "score_mean", ".", "clear", ",", "float", ")", "steps_made", "=", "tf", ".", "shape", "(", "score", ")", "[", "0", "]", "next_step", "=", "self", ".", "_step", ".", "assign_add", "(", "steps_made", ")", "with", "tf", ".", "control_dependencies", "(", "[", "mean_score", ",", "next_step", "]", ")", ":", "return", "tf", ".", "identity", "(", "summary", ")", ",", "mean_score", ",", "next_step", ",", "steps_made" ]
Combine operations of a phase. Keeps track of the mean score and when to report it. Args: done: Tensor indicating whether current score can be used. score: Tensor holding the current, possibly intermediate, score. summary: Tensor holding summary string to write if not an empty string. Returns: Tuple of summary tensor, mean score, and new global step. The mean score is zero for non reporting steps.
[ "Combine", "operations", "of", "a", "phase", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/tools/loop.py#L189-L217
6,844
google-research/batch-ppo
agents/tools/loop.py
Loop._store_checkpoint
def _store_checkpoint(self, sess, saver, global_step): """Store a checkpoint if a log directory was provided to the constructor. The directory will be created if needed. Args: sess: Session containing variables to store. saver: Saver used for checkpointing. global_step: Step number of the checkpoint name. """ if not self._logdir or not saver: return tf.gfile.MakeDirs(self._logdir) filename = os.path.join(self._logdir, 'model.ckpt') saver.save(sess, filename, global_step)
python
def _store_checkpoint(self, sess, saver, global_step): """Store a checkpoint if a log directory was provided to the constructor. The directory will be created if needed. Args: sess: Session containing variables to store. saver: Saver used for checkpointing. global_step: Step number of the checkpoint name. """ if not self._logdir or not saver: return tf.gfile.MakeDirs(self._logdir) filename = os.path.join(self._logdir, 'model.ckpt') saver.save(sess, filename, global_step)
[ "def", "_store_checkpoint", "(", "self", ",", "sess", ",", "saver", ",", "global_step", ")", ":", "if", "not", "self", ".", "_logdir", "or", "not", "saver", ":", "return", "tf", ".", "gfile", ".", "MakeDirs", "(", "self", ".", "_logdir", ")", "filename", "=", "os", ".", "path", ".", "join", "(", "self", ".", "_logdir", ",", "'model.ckpt'", ")", "saver", ".", "save", "(", "sess", ",", "filename", ",", "global_step", ")" ]
Store a checkpoint if a log directory was provided to the constructor. The directory will be created if needed. Args: sess: Session containing variables to store. saver: Saver used for checkpointing. global_step: Step number of the checkpoint name.
[ "Store", "a", "checkpoint", "if", "a", "log", "directory", "was", "provided", "to", "the", "constructor", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/tools/loop.py#L219-L233
6,845
google-research/batch-ppo
agents/scripts/train.py
_define_loop
def _define_loop(graph, logdir, train_steps, eval_steps): """Create and configure a training loop with training and evaluation phases. Args: graph: Object providing graph elements via attributes. logdir: Log directory for storing checkpoints and summaries. train_steps: Number of training steps per epoch. eval_steps: Number of evaluation steps per epoch. Returns: Loop object. """ loop = tools.Loop( logdir, graph.step, graph.should_log, graph.do_report, graph.force_reset) loop.add_phase( 'train', graph.done, graph.score, graph.summary, train_steps, report_every=train_steps, log_every=train_steps // 2, checkpoint_every=None, feed={graph.is_training: True}) loop.add_phase( 'eval', graph.done, graph.score, graph.summary, eval_steps, report_every=eval_steps, log_every=eval_steps // 2, checkpoint_every=10 * eval_steps, feed={graph.is_training: False}) return loop
python
def _define_loop(graph, logdir, train_steps, eval_steps): """Create and configure a training loop with training and evaluation phases. Args: graph: Object providing graph elements via attributes. logdir: Log directory for storing checkpoints and summaries. train_steps: Number of training steps per epoch. eval_steps: Number of evaluation steps per epoch. Returns: Loop object. """ loop = tools.Loop( logdir, graph.step, graph.should_log, graph.do_report, graph.force_reset) loop.add_phase( 'train', graph.done, graph.score, graph.summary, train_steps, report_every=train_steps, log_every=train_steps // 2, checkpoint_every=None, feed={graph.is_training: True}) loop.add_phase( 'eval', graph.done, graph.score, graph.summary, eval_steps, report_every=eval_steps, log_every=eval_steps // 2, checkpoint_every=10 * eval_steps, feed={graph.is_training: False}) return loop
[ "def", "_define_loop", "(", "graph", ",", "logdir", ",", "train_steps", ",", "eval_steps", ")", ":", "loop", "=", "tools", ".", "Loop", "(", "logdir", ",", "graph", ".", "step", ",", "graph", ".", "should_log", ",", "graph", ".", "do_report", ",", "graph", ".", "force_reset", ")", "loop", ".", "add_phase", "(", "'train'", ",", "graph", ".", "done", ",", "graph", ".", "score", ",", "graph", ".", "summary", ",", "train_steps", ",", "report_every", "=", "train_steps", ",", "log_every", "=", "train_steps", "//", "2", ",", "checkpoint_every", "=", "None", ",", "feed", "=", "{", "graph", ".", "is_training", ":", "True", "}", ")", "loop", ".", "add_phase", "(", "'eval'", ",", "graph", ".", "done", ",", "graph", ".", "score", ",", "graph", ".", "summary", ",", "eval_steps", ",", "report_every", "=", "eval_steps", ",", "log_every", "=", "eval_steps", "//", "2", ",", "checkpoint_every", "=", "10", "*", "eval_steps", ",", "feed", "=", "{", "graph", ".", "is_training", ":", "False", "}", ")", "return", "loop" ]
Create and configure a training loop with training and evaluation phases. Args: graph: Object providing graph elements via attributes. logdir: Log directory for storing checkpoints and summaries. train_steps: Number of training steps per epoch. eval_steps: Number of evaluation steps per epoch. Returns: Loop object.
[ "Create", "and", "configure", "a", "training", "loop", "with", "training", "and", "evaluation", "phases", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/scripts/train.py#L70-L97
6,846
google-research/batch-ppo
agents/scripts/train.py
train
def train(config, env_processes): """Training and evaluation entry point yielding scores. Resolves some configuration attributes, creates environments, graph, and training loop. By default, assigns all operations to the CPU. Args: config: Object providing configurations via attributes. env_processes: Whether to step environments in separate processes. Yields: Evaluation scores. """ tf.reset_default_graph() if config.update_every % config.num_agents: tf.logging.warn('Number of agents should divide episodes per update.') with tf.device('/cpu:0'): batch_env = utility.define_batch_env( lambda: _create_environment(config), config.num_agents, env_processes) graph = utility.define_simulation_graph( batch_env, config.algorithm, config) loop = _define_loop( graph, config.logdir, config.update_every * config.max_length, config.eval_episodes * config.max_length) total_steps = int( config.steps / config.update_every * (config.update_every + config.eval_episodes)) # Exclude episode related variables since the Python state of environments is # not checkpointed and thus new episodes start after resuming. saver = utility.define_saver(exclude=(r'.*_temporary.*',)) sess_config = tf.ConfigProto(allow_soft_placement=True) sess_config.gpu_options.allow_growth = True with tf.Session(config=sess_config) as sess: utility.initialize_variables(sess, saver, config.logdir) for score in loop.run(sess, saver, total_steps): yield score batch_env.close()
python
def train(config, env_processes): """Training and evaluation entry point yielding scores. Resolves some configuration attributes, creates environments, graph, and training loop. By default, assigns all operations to the CPU. Args: config: Object providing configurations via attributes. env_processes: Whether to step environments in separate processes. Yields: Evaluation scores. """ tf.reset_default_graph() if config.update_every % config.num_agents: tf.logging.warn('Number of agents should divide episodes per update.') with tf.device('/cpu:0'): batch_env = utility.define_batch_env( lambda: _create_environment(config), config.num_agents, env_processes) graph = utility.define_simulation_graph( batch_env, config.algorithm, config) loop = _define_loop( graph, config.logdir, config.update_every * config.max_length, config.eval_episodes * config.max_length) total_steps = int( config.steps / config.update_every * (config.update_every + config.eval_episodes)) # Exclude episode related variables since the Python state of environments is # not checkpointed and thus new episodes start after resuming. saver = utility.define_saver(exclude=(r'.*_temporary.*',)) sess_config = tf.ConfigProto(allow_soft_placement=True) sess_config.gpu_options.allow_growth = True with tf.Session(config=sess_config) as sess: utility.initialize_variables(sess, saver, config.logdir) for score in loop.run(sess, saver, total_steps): yield score batch_env.close()
[ "def", "train", "(", "config", ",", "env_processes", ")", ":", "tf", ".", "reset_default_graph", "(", ")", "if", "config", ".", "update_every", "%", "config", ".", "num_agents", ":", "tf", ".", "logging", ".", "warn", "(", "'Number of agents should divide episodes per update.'", ")", "with", "tf", ".", "device", "(", "'/cpu:0'", ")", ":", "batch_env", "=", "utility", ".", "define_batch_env", "(", "lambda", ":", "_create_environment", "(", "config", ")", ",", "config", ".", "num_agents", ",", "env_processes", ")", "graph", "=", "utility", ".", "define_simulation_graph", "(", "batch_env", ",", "config", ".", "algorithm", ",", "config", ")", "loop", "=", "_define_loop", "(", "graph", ",", "config", ".", "logdir", ",", "config", ".", "update_every", "*", "config", ".", "max_length", ",", "config", ".", "eval_episodes", "*", "config", ".", "max_length", ")", "total_steps", "=", "int", "(", "config", ".", "steps", "/", "config", ".", "update_every", "*", "(", "config", ".", "update_every", "+", "config", ".", "eval_episodes", ")", ")", "# Exclude episode related variables since the Python state of environments is", "# not checkpointed and thus new episodes start after resuming.", "saver", "=", "utility", ".", "define_saver", "(", "exclude", "=", "(", "r'.*_temporary.*'", ",", ")", ")", "sess_config", "=", "tf", ".", "ConfigProto", "(", "allow_soft_placement", "=", "True", ")", "sess_config", ".", "gpu_options", ".", "allow_growth", "=", "True", "with", "tf", ".", "Session", "(", "config", "=", "sess_config", ")", "as", "sess", ":", "utility", ".", "initialize_variables", "(", "sess", ",", "saver", ",", "config", ".", "logdir", ")", "for", "score", "in", "loop", ".", "run", "(", "sess", ",", "saver", ",", "total_steps", ")", ":", "yield", "score", "batch_env", ".", "close", "(", ")" ]
Training and evaluation entry point yielding scores. Resolves some configuration attributes, creates environments, graph, and training loop. By default, assigns all operations to the CPU. Args: config: Object providing configurations via attributes. env_processes: Whether to step environments in separate processes. Yields: Evaluation scores.
[ "Training", "and", "evaluation", "entry", "point", "yielding", "scores", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/scripts/train.py#L100-L138
6,847
google-research/batch-ppo
agents/scripts/train.py
main
def main(_): """Create or load configuration and launch the trainer.""" utility.set_up_logging() if not FLAGS.config: raise KeyError('You must specify a configuration.') logdir = FLAGS.logdir and os.path.expanduser(os.path.join( FLAGS.logdir, '{}-{}'.format(FLAGS.timestamp, FLAGS.config))) try: config = utility.load_config(logdir) except IOError: config = tools.AttrDict(getattr(configs, FLAGS.config)()) config = utility.save_config(config, logdir) for score in train(config, FLAGS.env_processes): tf.logging.info('Score {}.'.format(score))
python
def main(_): """Create or load configuration and launch the trainer.""" utility.set_up_logging() if not FLAGS.config: raise KeyError('You must specify a configuration.') logdir = FLAGS.logdir and os.path.expanduser(os.path.join( FLAGS.logdir, '{}-{}'.format(FLAGS.timestamp, FLAGS.config))) try: config = utility.load_config(logdir) except IOError: config = tools.AttrDict(getattr(configs, FLAGS.config)()) config = utility.save_config(config, logdir) for score in train(config, FLAGS.env_processes): tf.logging.info('Score {}.'.format(score))
[ "def", "main", "(", "_", ")", ":", "utility", ".", "set_up_logging", "(", ")", "if", "not", "FLAGS", ".", "config", ":", "raise", "KeyError", "(", "'You must specify a configuration.'", ")", "logdir", "=", "FLAGS", ".", "logdir", "and", "os", ".", "path", ".", "expanduser", "(", "os", ".", "path", ".", "join", "(", "FLAGS", ".", "logdir", ",", "'{}-{}'", ".", "format", "(", "FLAGS", ".", "timestamp", ",", "FLAGS", ".", "config", ")", ")", ")", "try", ":", "config", "=", "utility", ".", "load_config", "(", "logdir", ")", "except", "IOError", ":", "config", "=", "tools", ".", "AttrDict", "(", "getattr", "(", "configs", ",", "FLAGS", ".", "config", ")", "(", ")", ")", "config", "=", "utility", ".", "save_config", "(", "config", ",", "logdir", ")", "for", "score", "in", "train", "(", "config", ",", "FLAGS", ".", "env_processes", ")", ":", "tf", ".", "logging", ".", "info", "(", "'Score {}.'", ".", "format", "(", "score", ")", ")" ]
Create or load configuration and launch the trainer.
[ "Create", "or", "load", "configuration", "and", "launch", "the", "trainer", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/scripts/train.py#L141-L154
6,848
google-research/batch-ppo
agents/parts/iterate_sequences.py
iterate_sequences
def iterate_sequences( consumer_fn, output_template, sequences, length, chunk_length=None, batch_size=None, num_epochs=1, padding_value=0): """Iterate over batches of chunks of sequences for multiple epochs. The batch dimension of the length tensor must be set because it is used to infer buffer sizes. Args: consumer_fn: Function creating the operation to process the data. output_template: Nested tensors of same shape and dtype as outputs. sequences: Nested collection of tensors with batch and time dimension. length: Tensor containing the length for each sequence. chunk_length: Split sequences into chunks of this size; optional. batch_size: Split epochs into batches of this size; optional. num_epochs: How many times to repeat over the data. padding_value: Value used for padding the last chunk after the sequence. Raises: ValueError: Unknown batch size of the length tensor. Returns: Concatenated nested tensors returned by the consumer. """ if not length.shape[0].value: raise ValueError('Batch size of length tensor must be set.') num_sequences = length.shape[0].value sequences = dict(sequence=sequences, length=length) dataset = tf.data.Dataset.from_tensor_slices(sequences) dataset = dataset.repeat(num_epochs) if chunk_length: dataset = dataset.map(remove_padding).flat_map( # pylint: disable=g-long-lambda lambda x: tf.data.Dataset.from_tensor_slices( chunk_sequence(x, chunk_length, padding_value))) num_chunks = tf.reduce_sum((length - 1) // chunk_length + 1) else: num_chunks = num_sequences if batch_size: dataset = dataset.shuffle(num_sequences // 2) dataset = dataset.batch(batch_size or num_sequences) dataset = dataset.prefetch(num_epochs) iterator = dataset.make_initializable_iterator() with tf.control_dependencies([iterator.initializer]): num_batches = num_epochs * num_chunks // (batch_size or num_sequences) return tf.scan( # pylint: disable=g-long-lambda lambda _1, index: consumer_fn(iterator.get_next()), tf.range(num_batches), output_template, parallel_iterations=1)
python
def iterate_sequences( consumer_fn, output_template, sequences, length, chunk_length=None, batch_size=None, num_epochs=1, padding_value=0): """Iterate over batches of chunks of sequences for multiple epochs. The batch dimension of the length tensor must be set because it is used to infer buffer sizes. Args: consumer_fn: Function creating the operation to process the data. output_template: Nested tensors of same shape and dtype as outputs. sequences: Nested collection of tensors with batch and time dimension. length: Tensor containing the length for each sequence. chunk_length: Split sequences into chunks of this size; optional. batch_size: Split epochs into batches of this size; optional. num_epochs: How many times to repeat over the data. padding_value: Value used for padding the last chunk after the sequence. Raises: ValueError: Unknown batch size of the length tensor. Returns: Concatenated nested tensors returned by the consumer. """ if not length.shape[0].value: raise ValueError('Batch size of length tensor must be set.') num_sequences = length.shape[0].value sequences = dict(sequence=sequences, length=length) dataset = tf.data.Dataset.from_tensor_slices(sequences) dataset = dataset.repeat(num_epochs) if chunk_length: dataset = dataset.map(remove_padding).flat_map( # pylint: disable=g-long-lambda lambda x: tf.data.Dataset.from_tensor_slices( chunk_sequence(x, chunk_length, padding_value))) num_chunks = tf.reduce_sum((length - 1) // chunk_length + 1) else: num_chunks = num_sequences if batch_size: dataset = dataset.shuffle(num_sequences // 2) dataset = dataset.batch(batch_size or num_sequences) dataset = dataset.prefetch(num_epochs) iterator = dataset.make_initializable_iterator() with tf.control_dependencies([iterator.initializer]): num_batches = num_epochs * num_chunks // (batch_size or num_sequences) return tf.scan( # pylint: disable=g-long-lambda lambda _1, index: consumer_fn(iterator.get_next()), tf.range(num_batches), output_template, parallel_iterations=1)
[ "def", "iterate_sequences", "(", "consumer_fn", ",", "output_template", ",", "sequences", ",", "length", ",", "chunk_length", "=", "None", ",", "batch_size", "=", "None", ",", "num_epochs", "=", "1", ",", "padding_value", "=", "0", ")", ":", "if", "not", "length", ".", "shape", "[", "0", "]", ".", "value", ":", "raise", "ValueError", "(", "'Batch size of length tensor must be set.'", ")", "num_sequences", "=", "length", ".", "shape", "[", "0", "]", ".", "value", "sequences", "=", "dict", "(", "sequence", "=", "sequences", ",", "length", "=", "length", ")", "dataset", "=", "tf", ".", "data", ".", "Dataset", ".", "from_tensor_slices", "(", "sequences", ")", "dataset", "=", "dataset", ".", "repeat", "(", "num_epochs", ")", "if", "chunk_length", ":", "dataset", "=", "dataset", ".", "map", "(", "remove_padding", ")", ".", "flat_map", "(", "# pylint: disable=g-long-lambda", "lambda", "x", ":", "tf", ".", "data", ".", "Dataset", ".", "from_tensor_slices", "(", "chunk_sequence", "(", "x", ",", "chunk_length", ",", "padding_value", ")", ")", ")", "num_chunks", "=", "tf", ".", "reduce_sum", "(", "(", "length", "-", "1", ")", "//", "chunk_length", "+", "1", ")", "else", ":", "num_chunks", "=", "num_sequences", "if", "batch_size", ":", "dataset", "=", "dataset", ".", "shuffle", "(", "num_sequences", "//", "2", ")", "dataset", "=", "dataset", ".", "batch", "(", "batch_size", "or", "num_sequences", ")", "dataset", "=", "dataset", ".", "prefetch", "(", "num_epochs", ")", "iterator", "=", "dataset", ".", "make_initializable_iterator", "(", ")", "with", "tf", ".", "control_dependencies", "(", "[", "iterator", ".", "initializer", "]", ")", ":", "num_batches", "=", "num_epochs", "*", "num_chunks", "//", "(", "batch_size", "or", "num_sequences", ")", "return", "tf", ".", "scan", "(", "# pylint: disable=g-long-lambda", "lambda", "_1", ",", "index", ":", "consumer_fn", "(", "iterator", ".", "get_next", "(", ")", ")", ",", "tf", ".", "range", "(", "num_batches", ")", ",", "output_template", ",", "parallel_iterations", "=", "1", ")" ]
Iterate over batches of chunks of sequences for multiple epochs. The batch dimension of the length tensor must be set because it is used to infer buffer sizes. Args: consumer_fn: Function creating the operation to process the data. output_template: Nested tensors of same shape and dtype as outputs. sequences: Nested collection of tensors with batch and time dimension. length: Tensor containing the length for each sequence. chunk_length: Split sequences into chunks of this size; optional. batch_size: Split epochs into batches of this size; optional. num_epochs: How many times to repeat over the data. padding_value: Value used for padding the last chunk after the sequence. Raises: ValueError: Unknown batch size of the length tensor. Returns: Concatenated nested tensors returned by the consumer.
[ "Iterate", "over", "batches", "of", "chunks", "of", "sequences", "for", "multiple", "epochs", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/parts/iterate_sequences.py#L26-L74
6,849
google-research/batch-ppo
agents/parts/iterate_sequences.py
chunk_sequence
def chunk_sequence(sequence, chunk_length=200, padding_value=0): """Split a nested dict of sequence tensors into a batch of chunks. This function does not expect a batch of sequences, but a single sequence. A `length` key is added if it did not exist already. Args: sequence: Nested dict of tensors with time dimension. chunk_length: Size of chunks the sequence will be split into. padding_value: Value used for padding the last chunk after the sequence. Returns: Nested dict of sequence tensors with chunk dimension. """ if 'length' in sequence: length = sequence.pop('length') else: length = tf.shape(tools.nested.flatten(sequence)[0])[0] num_chunks = (length - 1) // chunk_length + 1 padding_length = chunk_length * num_chunks - length padded = tools.nested.map( # pylint: disable=g-long-lambda lambda tensor: tf.concat([ tensor, 0 * tensor[:padding_length] + padding_value], 0), sequence) chunks = tools.nested.map( # pylint: disable=g-long-lambda lambda tensor: tf.reshape( tensor, [num_chunks, chunk_length] + tensor.shape[1:].as_list()), padded) chunks['length'] = tf.concat([ chunk_length * tf.ones((num_chunks - 1,), dtype=tf.int32), [chunk_length - padding_length]], 0) return chunks
python
def chunk_sequence(sequence, chunk_length=200, padding_value=0): """Split a nested dict of sequence tensors into a batch of chunks. This function does not expect a batch of sequences, but a single sequence. A `length` key is added if it did not exist already. Args: sequence: Nested dict of tensors with time dimension. chunk_length: Size of chunks the sequence will be split into. padding_value: Value used for padding the last chunk after the sequence. Returns: Nested dict of sequence tensors with chunk dimension. """ if 'length' in sequence: length = sequence.pop('length') else: length = tf.shape(tools.nested.flatten(sequence)[0])[0] num_chunks = (length - 1) // chunk_length + 1 padding_length = chunk_length * num_chunks - length padded = tools.nested.map( # pylint: disable=g-long-lambda lambda tensor: tf.concat([ tensor, 0 * tensor[:padding_length] + padding_value], 0), sequence) chunks = tools.nested.map( # pylint: disable=g-long-lambda lambda tensor: tf.reshape( tensor, [num_chunks, chunk_length] + tensor.shape[1:].as_list()), padded) chunks['length'] = tf.concat([ chunk_length * tf.ones((num_chunks - 1,), dtype=tf.int32), [chunk_length - padding_length]], 0) return chunks
[ "def", "chunk_sequence", "(", "sequence", ",", "chunk_length", "=", "200", ",", "padding_value", "=", "0", ")", ":", "if", "'length'", "in", "sequence", ":", "length", "=", "sequence", ".", "pop", "(", "'length'", ")", "else", ":", "length", "=", "tf", ".", "shape", "(", "tools", ".", "nested", ".", "flatten", "(", "sequence", ")", "[", "0", "]", ")", "[", "0", "]", "num_chunks", "=", "(", "length", "-", "1", ")", "//", "chunk_length", "+", "1", "padding_length", "=", "chunk_length", "*", "num_chunks", "-", "length", "padded", "=", "tools", ".", "nested", ".", "map", "(", "# pylint: disable=g-long-lambda", "lambda", "tensor", ":", "tf", ".", "concat", "(", "[", "tensor", ",", "0", "*", "tensor", "[", ":", "padding_length", "]", "+", "padding_value", "]", ",", "0", ")", ",", "sequence", ")", "chunks", "=", "tools", ".", "nested", ".", "map", "(", "# pylint: disable=g-long-lambda", "lambda", "tensor", ":", "tf", ".", "reshape", "(", "tensor", ",", "[", "num_chunks", ",", "chunk_length", "]", "+", "tensor", ".", "shape", "[", "1", ":", "]", ".", "as_list", "(", ")", ")", ",", "padded", ")", "chunks", "[", "'length'", "]", "=", "tf", ".", "concat", "(", "[", "chunk_length", "*", "tf", ".", "ones", "(", "(", "num_chunks", "-", "1", ",", ")", ",", "dtype", "=", "tf", ".", "int32", ")", ",", "[", "chunk_length", "-", "padding_length", "]", "]", ",", "0", ")", "return", "chunks" ]
Split a nested dict of sequence tensors into a batch of chunks. This function does not expect a batch of sequences, but a single sequence. A `length` key is added if it did not exist already. Args: sequence: Nested dict of tensors with time dimension. chunk_length: Size of chunks the sequence will be split into. padding_value: Value used for padding the last chunk after the sequence. Returns: Nested dict of sequence tensors with chunk dimension.
[ "Split", "a", "nested", "dict", "of", "sequence", "tensors", "into", "a", "batch", "of", "chunks", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/parts/iterate_sequences.py#L77-L110
6,850
google-research/batch-ppo
agents/parts/iterate_sequences.py
remove_padding
def remove_padding(sequence): """Selects the used frames of a sequence, up to its length. This function does not expect a batch of sequences, but a single sequence. The sequence must be a dict with `length` key, which will removed from the result. Args: sequence: Nested dict of tensors with time dimension. Returns: Nested dict of tensors with padding elements and `length` key removed. """ length = sequence.pop('length') sequence = tools.nested.map(lambda tensor: tensor[:length], sequence) return sequence
python
def remove_padding(sequence): """Selects the used frames of a sequence, up to its length. This function does not expect a batch of sequences, but a single sequence. The sequence must be a dict with `length` key, which will removed from the result. Args: sequence: Nested dict of tensors with time dimension. Returns: Nested dict of tensors with padding elements and `length` key removed. """ length = sequence.pop('length') sequence = tools.nested.map(lambda tensor: tensor[:length], sequence) return sequence
[ "def", "remove_padding", "(", "sequence", ")", ":", "length", "=", "sequence", ".", "pop", "(", "'length'", ")", "sequence", "=", "tools", ".", "nested", ".", "map", "(", "lambda", "tensor", ":", "tensor", "[", ":", "length", "]", ",", "sequence", ")", "return", "sequence" ]
Selects the used frames of a sequence, up to its length. This function does not expect a batch of sequences, but a single sequence. The sequence must be a dict with `length` key, which will removed from the result. Args: sequence: Nested dict of tensors with time dimension. Returns: Nested dict of tensors with padding elements and `length` key removed.
[ "Selects", "the", "used", "frames", "of", "a", "sequence", "up", "to", "its", "length", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/parts/iterate_sequences.py#L113-L128
6,851
google-research/batch-ppo
agents/parts/normalize.py
StreamingNormalize.transform
def transform(self, value): """Normalize a single or batch tensor. Applies the activated transformations in the constructor using current estimates of mean and variance. Args: value: Batch or single value tensor. Returns: Normalized batch or single value tensor. """ with tf.name_scope(self._name + '/transform'): no_batch_dim = value.shape.ndims == self._mean.shape.ndims if no_batch_dim: # Add a batch dimension if necessary. value = value[None, ...] if self._center: value -= self._mean[None, ...] if self._scale: # We cannot scale before seeing at least two samples. value /= tf.cond( self._count > 1, lambda: self._std() + 1e-8, lambda: tf.ones_like(self._var_sum))[None] if self._clip: value = tf.clip_by_value(value, -self._clip, self._clip) # Remove batch dimension if necessary. if no_batch_dim: value = value[0] return tf.check_numerics(value, 'value')
python
def transform(self, value): """Normalize a single or batch tensor. Applies the activated transformations in the constructor using current estimates of mean and variance. Args: value: Batch or single value tensor. Returns: Normalized batch or single value tensor. """ with tf.name_scope(self._name + '/transform'): no_batch_dim = value.shape.ndims == self._mean.shape.ndims if no_batch_dim: # Add a batch dimension if necessary. value = value[None, ...] if self._center: value -= self._mean[None, ...] if self._scale: # We cannot scale before seeing at least two samples. value /= tf.cond( self._count > 1, lambda: self._std() + 1e-8, lambda: tf.ones_like(self._var_sum))[None] if self._clip: value = tf.clip_by_value(value, -self._clip, self._clip) # Remove batch dimension if necessary. if no_batch_dim: value = value[0] return tf.check_numerics(value, 'value')
[ "def", "transform", "(", "self", ",", "value", ")", ":", "with", "tf", ".", "name_scope", "(", "self", ".", "_name", "+", "'/transform'", ")", ":", "no_batch_dim", "=", "value", ".", "shape", ".", "ndims", "==", "self", ".", "_mean", ".", "shape", ".", "ndims", "if", "no_batch_dim", ":", "# Add a batch dimension if necessary.", "value", "=", "value", "[", "None", ",", "...", "]", "if", "self", ".", "_center", ":", "value", "-=", "self", ".", "_mean", "[", "None", ",", "...", "]", "if", "self", ".", "_scale", ":", "# We cannot scale before seeing at least two samples.", "value", "/=", "tf", ".", "cond", "(", "self", ".", "_count", ">", "1", ",", "lambda", ":", "self", ".", "_std", "(", ")", "+", "1e-8", ",", "lambda", ":", "tf", ".", "ones_like", "(", "self", ".", "_var_sum", ")", ")", "[", "None", "]", "if", "self", ".", "_clip", ":", "value", "=", "tf", ".", "clip_by_value", "(", "value", ",", "-", "self", ".", "_clip", ",", "self", ".", "_clip", ")", "# Remove batch dimension if necessary.", "if", "no_batch_dim", ":", "value", "=", "value", "[", "0", "]", "return", "tf", ".", "check_numerics", "(", "value", ",", "'value'", ")" ]
Normalize a single or batch tensor. Applies the activated transformations in the constructor using current estimates of mean and variance. Args: value: Batch or single value tensor. Returns: Normalized batch or single value tensor.
[ "Normalize", "a", "single", "or", "batch", "tensor", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/parts/normalize.py#L50-L79
6,852
google-research/batch-ppo
agents/parts/normalize.py
StreamingNormalize.update
def update(self, value): """Update the mean and variance estimates. Args: value: Batch or single value tensor. Returns: Summary tensor. """ with tf.name_scope(self._name + '/update'): if value.shape.ndims == self._mean.shape.ndims: # Add a batch dimension if necessary. value = value[None, ...] count = tf.shape(value)[0] with tf.control_dependencies([self._count.assign_add(count)]): step = tf.cast(self._count, tf.float32) mean_delta = tf.reduce_sum(value - self._mean[None, ...], 0) new_mean = self._mean + mean_delta / step new_mean = tf.cond(self._count > 1, lambda: new_mean, lambda: value[0]) var_delta = ( value - self._mean[None, ...]) * (value - new_mean[None, ...]) new_var_sum = self._var_sum + tf.reduce_sum(var_delta, 0) with tf.control_dependencies([new_mean, new_var_sum]): update = self._mean.assign(new_mean), self._var_sum.assign(new_var_sum) with tf.control_dependencies(update): if value.shape.ndims == 1: value = tf.reduce_mean(value) return self._summary('value', tf.reduce_mean(value))
python
def update(self, value): """Update the mean and variance estimates. Args: value: Batch or single value tensor. Returns: Summary tensor. """ with tf.name_scope(self._name + '/update'): if value.shape.ndims == self._mean.shape.ndims: # Add a batch dimension if necessary. value = value[None, ...] count = tf.shape(value)[0] with tf.control_dependencies([self._count.assign_add(count)]): step = tf.cast(self._count, tf.float32) mean_delta = tf.reduce_sum(value - self._mean[None, ...], 0) new_mean = self._mean + mean_delta / step new_mean = tf.cond(self._count > 1, lambda: new_mean, lambda: value[0]) var_delta = ( value - self._mean[None, ...]) * (value - new_mean[None, ...]) new_var_sum = self._var_sum + tf.reduce_sum(var_delta, 0) with tf.control_dependencies([new_mean, new_var_sum]): update = self._mean.assign(new_mean), self._var_sum.assign(new_var_sum) with tf.control_dependencies(update): if value.shape.ndims == 1: value = tf.reduce_mean(value) return self._summary('value', tf.reduce_mean(value))
[ "def", "update", "(", "self", ",", "value", ")", ":", "with", "tf", ".", "name_scope", "(", "self", ".", "_name", "+", "'/update'", ")", ":", "if", "value", ".", "shape", ".", "ndims", "==", "self", ".", "_mean", ".", "shape", ".", "ndims", ":", "# Add a batch dimension if necessary.", "value", "=", "value", "[", "None", ",", "...", "]", "count", "=", "tf", ".", "shape", "(", "value", ")", "[", "0", "]", "with", "tf", ".", "control_dependencies", "(", "[", "self", ".", "_count", ".", "assign_add", "(", "count", ")", "]", ")", ":", "step", "=", "tf", ".", "cast", "(", "self", ".", "_count", ",", "tf", ".", "float32", ")", "mean_delta", "=", "tf", ".", "reduce_sum", "(", "value", "-", "self", ".", "_mean", "[", "None", ",", "...", "]", ",", "0", ")", "new_mean", "=", "self", ".", "_mean", "+", "mean_delta", "/", "step", "new_mean", "=", "tf", ".", "cond", "(", "self", ".", "_count", ">", "1", ",", "lambda", ":", "new_mean", ",", "lambda", ":", "value", "[", "0", "]", ")", "var_delta", "=", "(", "value", "-", "self", ".", "_mean", "[", "None", ",", "...", "]", ")", "*", "(", "value", "-", "new_mean", "[", "None", ",", "...", "]", ")", "new_var_sum", "=", "self", ".", "_var_sum", "+", "tf", ".", "reduce_sum", "(", "var_delta", ",", "0", ")", "with", "tf", ".", "control_dependencies", "(", "[", "new_mean", ",", "new_var_sum", "]", ")", ":", "update", "=", "self", ".", "_mean", ".", "assign", "(", "new_mean", ")", ",", "self", ".", "_var_sum", ".", "assign", "(", "new_var_sum", ")", "with", "tf", ".", "control_dependencies", "(", "update", ")", ":", "if", "value", ".", "shape", ".", "ndims", "==", "1", ":", "value", "=", "tf", ".", "reduce_mean", "(", "value", ")", "return", "self", ".", "_summary", "(", "'value'", ",", "tf", ".", "reduce_mean", "(", "value", ")", ")" ]
Update the mean and variance estimates. Args: value: Batch or single value tensor. Returns: Summary tensor.
[ "Update", "the", "mean", "and", "variance", "estimates", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/parts/normalize.py#L81-L108
6,853
google-research/batch-ppo
agents/parts/normalize.py
StreamingNormalize.reset
def reset(self): """Reset the estimates of mean and variance. Resets the full state of this class. Returns: Operation. """ with tf.name_scope(self._name + '/reset'): return tf.group( self._count.assign(0), self._mean.assign(tf.zeros_like(self._mean)), self._var_sum.assign(tf.zeros_like(self._var_sum)))
python
def reset(self): """Reset the estimates of mean and variance. Resets the full state of this class. Returns: Operation. """ with tf.name_scope(self._name + '/reset'): return tf.group( self._count.assign(0), self._mean.assign(tf.zeros_like(self._mean)), self._var_sum.assign(tf.zeros_like(self._var_sum)))
[ "def", "reset", "(", "self", ")", ":", "with", "tf", ".", "name_scope", "(", "self", ".", "_name", "+", "'/reset'", ")", ":", "return", "tf", ".", "group", "(", "self", ".", "_count", ".", "assign", "(", "0", ")", ",", "self", ".", "_mean", ".", "assign", "(", "tf", ".", "zeros_like", "(", "self", ".", "_mean", ")", ")", ",", "self", ".", "_var_sum", ".", "assign", "(", "tf", ".", "zeros_like", "(", "self", ".", "_var_sum", ")", ")", ")" ]
Reset the estimates of mean and variance. Resets the full state of this class. Returns: Operation.
[ "Reset", "the", "estimates", "of", "mean", "and", "variance", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/parts/normalize.py#L110-L122
6,854
google-research/batch-ppo
agents/parts/normalize.py
StreamingNormalize.summary
def summary(self): """Summary string of mean and standard deviation. Returns: Summary tensor. """ with tf.name_scope(self._name + '/summary'): mean_summary = tf.cond( self._count > 0, lambda: self._summary('mean', self._mean), str) std_summary = tf.cond( self._count > 1, lambda: self._summary('stddev', self._std()), str) return tf.summary.merge([mean_summary, std_summary])
python
def summary(self): """Summary string of mean and standard deviation. Returns: Summary tensor. """ with tf.name_scope(self._name + '/summary'): mean_summary = tf.cond( self._count > 0, lambda: self._summary('mean', self._mean), str) std_summary = tf.cond( self._count > 1, lambda: self._summary('stddev', self._std()), str) return tf.summary.merge([mean_summary, std_summary])
[ "def", "summary", "(", "self", ")", ":", "with", "tf", ".", "name_scope", "(", "self", ".", "_name", "+", "'/summary'", ")", ":", "mean_summary", "=", "tf", ".", "cond", "(", "self", ".", "_count", ">", "0", ",", "lambda", ":", "self", ".", "_summary", "(", "'mean'", ",", "self", ".", "_mean", ")", ",", "str", ")", "std_summary", "=", "tf", ".", "cond", "(", "self", ".", "_count", ">", "1", ",", "lambda", ":", "self", ".", "_summary", "(", "'stddev'", ",", "self", ".", "_std", "(", ")", ")", ",", "str", ")", "return", "tf", ".", "summary", ".", "merge", "(", "[", "mean_summary", ",", "std_summary", "]", ")" ]
Summary string of mean and standard deviation. Returns: Summary tensor.
[ "Summary", "string", "of", "mean", "and", "standard", "deviation", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/parts/normalize.py#L124-L135
6,855
google-research/batch-ppo
agents/parts/normalize.py
StreamingNormalize._std
def _std(self): """Computes the current estimate of the standard deviation. Note that the standard deviation is not defined until at least two samples were seen. Returns: Tensor of current variance. """ variance = tf.cond( self._count > 1, lambda: self._var_sum / tf.cast(self._count - 1, tf.float32), lambda: tf.ones_like(self._var_sum) * float('nan')) # The epsilon corrects for small negative variance values caused by # the algorithm. It was empirically chosen to work with all environments # tested. return tf.sqrt(variance + 1e-4)
python
def _std(self): """Computes the current estimate of the standard deviation. Note that the standard deviation is not defined until at least two samples were seen. Returns: Tensor of current variance. """ variance = tf.cond( self._count > 1, lambda: self._var_sum / tf.cast(self._count - 1, tf.float32), lambda: tf.ones_like(self._var_sum) * float('nan')) # The epsilon corrects for small negative variance values caused by # the algorithm. It was empirically chosen to work with all environments # tested. return tf.sqrt(variance + 1e-4)
[ "def", "_std", "(", "self", ")", ":", "variance", "=", "tf", ".", "cond", "(", "self", ".", "_count", ">", "1", ",", "lambda", ":", "self", ".", "_var_sum", "/", "tf", ".", "cast", "(", "self", ".", "_count", "-", "1", ",", "tf", ".", "float32", ")", ",", "lambda", ":", "tf", ".", "ones_like", "(", "self", ".", "_var_sum", ")", "*", "float", "(", "'nan'", ")", ")", "# The epsilon corrects for small negative variance values caused by", "# the algorithm. It was empirically chosen to work with all environments", "# tested.", "return", "tf", ".", "sqrt", "(", "variance", "+", "1e-4", ")" ]
Computes the current estimate of the standard deviation. Note that the standard deviation is not defined until at least two samples were seen. Returns: Tensor of current variance.
[ "Computes", "the", "current", "estimate", "of", "the", "standard", "deviation", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/parts/normalize.py#L137-L153
6,856
google-research/batch-ppo
agents/parts/normalize.py
StreamingNormalize._summary
def _summary(self, name, tensor): """Create a scalar or histogram summary matching the rank of the tensor. Args: name: Name for the summary. tensor: Tensor to summarize. Returns: Summary tensor. """ if tensor.shape.ndims == 0: return tf.summary.scalar(name, tensor) else: return tf.summary.histogram(name, tensor)
python
def _summary(self, name, tensor): """Create a scalar or histogram summary matching the rank of the tensor. Args: name: Name for the summary. tensor: Tensor to summarize. Returns: Summary tensor. """ if tensor.shape.ndims == 0: return tf.summary.scalar(name, tensor) else: return tf.summary.histogram(name, tensor)
[ "def", "_summary", "(", "self", ",", "name", ",", "tensor", ")", ":", "if", "tensor", ".", "shape", ".", "ndims", "==", "0", ":", "return", "tf", ".", "summary", ".", "scalar", "(", "name", ",", "tensor", ")", "else", ":", "return", "tf", ".", "summary", ".", "histogram", "(", "name", ",", "tensor", ")" ]
Create a scalar or histogram summary matching the rank of the tensor. Args: name: Name for the summary. tensor: Tensor to summarize. Returns: Summary tensor.
[ "Create", "a", "scalar", "or", "histogram", "summary", "matching", "the", "rank", "of", "the", "tensor", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/parts/normalize.py#L155-L168
6,857
google-research/batch-ppo
agents/parts/memory.py
EpisodeMemory.length
def length(self, rows=None): """Tensor holding the current length of episodes. Args: rows: Episodes to select length from, defaults to all. Returns: Batch tensor of sequence lengths. """ rows = tf.range(self._capacity) if rows is None else rows return tf.gather(self._length, rows)
python
def length(self, rows=None): """Tensor holding the current length of episodes. Args: rows: Episodes to select length from, defaults to all. Returns: Batch tensor of sequence lengths. """ rows = tf.range(self._capacity) if rows is None else rows return tf.gather(self._length, rows)
[ "def", "length", "(", "self", ",", "rows", "=", "None", ")", ":", "rows", "=", "tf", ".", "range", "(", "self", ".", "_capacity", ")", "if", "rows", "is", "None", "else", "rows", "return", "tf", ".", "gather", "(", "self", ".", "_length", ",", "rows", ")" ]
Tensor holding the current length of episodes. Args: rows: Episodes to select length from, defaults to all. Returns: Batch tensor of sequence lengths.
[ "Tensor", "holding", "the", "current", "length", "of", "episodes", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/parts/memory.py#L52-L62
6,858
google-research/batch-ppo
agents/parts/memory.py
EpisodeMemory.append
def append(self, transitions, rows=None): """Append a batch of transitions to rows of the memory. Args: transitions: Tuple of transition quantities with batch dimension. rows: Episodes to append to, defaults to all. Returns: Operation. """ rows = tf.range(self._capacity) if rows is None else rows assert rows.shape.ndims == 1 assert_capacity = tf.assert_less( rows, self._capacity, message='capacity exceeded') with tf.control_dependencies([assert_capacity]): assert_max_length = tf.assert_less( tf.gather(self._length, rows), self._max_length, message='max length exceeded') with tf.control_dependencies([assert_max_length]): timestep = tf.gather(self._length, rows) indices = tf.stack([rows, timestep], 1) append_ops = tools.nested.map( lambda var, val: tf.scatter_nd_update(var, indices, val), self._buffers, transitions, flatten=True) with tf.control_dependencies(append_ops): episode_mask = tf.reduce_sum(tf.one_hot( rows, self._capacity, dtype=tf.int32), 0) return self._length.assign_add(episode_mask)
python
def append(self, transitions, rows=None): """Append a batch of transitions to rows of the memory. Args: transitions: Tuple of transition quantities with batch dimension. rows: Episodes to append to, defaults to all. Returns: Operation. """ rows = tf.range(self._capacity) if rows is None else rows assert rows.shape.ndims == 1 assert_capacity = tf.assert_less( rows, self._capacity, message='capacity exceeded') with tf.control_dependencies([assert_capacity]): assert_max_length = tf.assert_less( tf.gather(self._length, rows), self._max_length, message='max length exceeded') with tf.control_dependencies([assert_max_length]): timestep = tf.gather(self._length, rows) indices = tf.stack([rows, timestep], 1) append_ops = tools.nested.map( lambda var, val: tf.scatter_nd_update(var, indices, val), self._buffers, transitions, flatten=True) with tf.control_dependencies(append_ops): episode_mask = tf.reduce_sum(tf.one_hot( rows, self._capacity, dtype=tf.int32), 0) return self._length.assign_add(episode_mask)
[ "def", "append", "(", "self", ",", "transitions", ",", "rows", "=", "None", ")", ":", "rows", "=", "tf", ".", "range", "(", "self", ".", "_capacity", ")", "if", "rows", "is", "None", "else", "rows", "assert", "rows", ".", "shape", ".", "ndims", "==", "1", "assert_capacity", "=", "tf", ".", "assert_less", "(", "rows", ",", "self", ".", "_capacity", ",", "message", "=", "'capacity exceeded'", ")", "with", "tf", ".", "control_dependencies", "(", "[", "assert_capacity", "]", ")", ":", "assert_max_length", "=", "tf", ".", "assert_less", "(", "tf", ".", "gather", "(", "self", ".", "_length", ",", "rows", ")", ",", "self", ".", "_max_length", ",", "message", "=", "'max length exceeded'", ")", "with", "tf", ".", "control_dependencies", "(", "[", "assert_max_length", "]", ")", ":", "timestep", "=", "tf", ".", "gather", "(", "self", ".", "_length", ",", "rows", ")", "indices", "=", "tf", ".", "stack", "(", "[", "rows", ",", "timestep", "]", ",", "1", ")", "append_ops", "=", "tools", ".", "nested", ".", "map", "(", "lambda", "var", ",", "val", ":", "tf", ".", "scatter_nd_update", "(", "var", ",", "indices", ",", "val", ")", ",", "self", ".", "_buffers", ",", "transitions", ",", "flatten", "=", "True", ")", "with", "tf", ".", "control_dependencies", "(", "append_ops", ")", ":", "episode_mask", "=", "tf", ".", "reduce_sum", "(", "tf", ".", "one_hot", "(", "rows", ",", "self", ".", "_capacity", ",", "dtype", "=", "tf", ".", "int32", ")", ",", "0", ")", "return", "self", ".", "_length", ".", "assign_add", "(", "episode_mask", ")" ]
Append a batch of transitions to rows of the memory. Args: transitions: Tuple of transition quantities with batch dimension. rows: Episodes to append to, defaults to all. Returns: Operation.
[ "Append", "a", "batch", "of", "transitions", "to", "rows", "of", "the", "memory", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/parts/memory.py#L64-L92
6,859
google-research/batch-ppo
agents/parts/memory.py
EpisodeMemory.replace
def replace(self, episodes, length, rows=None): """Replace full episodes. Args: episodes: Tuple of transition quantities with batch and time dimensions. length: Batch of sequence lengths. rows: Episodes to replace, defaults to all. Returns: Operation. """ rows = tf.range(self._capacity) if rows is None else rows assert rows.shape.ndims == 1 assert_capacity = tf.assert_less( rows, self._capacity, message='capacity exceeded') with tf.control_dependencies([assert_capacity]): assert_max_length = tf.assert_less_equal( length, self._max_length, message='max length exceeded') with tf.control_dependencies([assert_max_length]): replace_ops = tools.nested.map( lambda var, val: tf.scatter_update(var, rows, val), self._buffers, episodes, flatten=True) with tf.control_dependencies(replace_ops): return tf.scatter_update(self._length, rows, length)
python
def replace(self, episodes, length, rows=None): """Replace full episodes. Args: episodes: Tuple of transition quantities with batch and time dimensions. length: Batch of sequence lengths. rows: Episodes to replace, defaults to all. Returns: Operation. """ rows = tf.range(self._capacity) if rows is None else rows assert rows.shape.ndims == 1 assert_capacity = tf.assert_less( rows, self._capacity, message='capacity exceeded') with tf.control_dependencies([assert_capacity]): assert_max_length = tf.assert_less_equal( length, self._max_length, message='max length exceeded') with tf.control_dependencies([assert_max_length]): replace_ops = tools.nested.map( lambda var, val: tf.scatter_update(var, rows, val), self._buffers, episodes, flatten=True) with tf.control_dependencies(replace_ops): return tf.scatter_update(self._length, rows, length)
[ "def", "replace", "(", "self", ",", "episodes", ",", "length", ",", "rows", "=", "None", ")", ":", "rows", "=", "tf", ".", "range", "(", "self", ".", "_capacity", ")", "if", "rows", "is", "None", "else", "rows", "assert", "rows", ".", "shape", ".", "ndims", "==", "1", "assert_capacity", "=", "tf", ".", "assert_less", "(", "rows", ",", "self", ".", "_capacity", ",", "message", "=", "'capacity exceeded'", ")", "with", "tf", ".", "control_dependencies", "(", "[", "assert_capacity", "]", ")", ":", "assert_max_length", "=", "tf", ".", "assert_less_equal", "(", "length", ",", "self", ".", "_max_length", ",", "message", "=", "'max length exceeded'", ")", "with", "tf", ".", "control_dependencies", "(", "[", "assert_max_length", "]", ")", ":", "replace_ops", "=", "tools", ".", "nested", ".", "map", "(", "lambda", "var", ",", "val", ":", "tf", ".", "scatter_update", "(", "var", ",", "rows", ",", "val", ")", ",", "self", ".", "_buffers", ",", "episodes", ",", "flatten", "=", "True", ")", "with", "tf", ".", "control_dependencies", "(", "replace_ops", ")", ":", "return", "tf", ".", "scatter_update", "(", "self", ".", "_length", ",", "rows", ",", "length", ")" ]
Replace full episodes. Args: episodes: Tuple of transition quantities with batch and time dimensions. length: Batch of sequence lengths. rows: Episodes to replace, defaults to all. Returns: Operation.
[ "Replace", "full", "episodes", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/parts/memory.py#L94-L117
6,860
google-research/batch-ppo
agents/parts/memory.py
EpisodeMemory.data
def data(self, rows=None): """Access a batch of episodes from the memory. Padding elements after the length of each episode are unspecified and might contain old data. Args: rows: Episodes to select, defaults to all. Returns: Tuple containing a tuple of transition quantities with batch and time dimensions, and a batch of sequence lengths. """ rows = tf.range(self._capacity) if rows is None else rows assert rows.shape.ndims == 1 episode = tools.nested.map(lambda var: tf.gather(var, rows), self._buffers) length = tf.gather(self._length, rows) return episode, length
python
def data(self, rows=None): """Access a batch of episodes from the memory. Padding elements after the length of each episode are unspecified and might contain old data. Args: rows: Episodes to select, defaults to all. Returns: Tuple containing a tuple of transition quantities with batch and time dimensions, and a batch of sequence lengths. """ rows = tf.range(self._capacity) if rows is None else rows assert rows.shape.ndims == 1 episode = tools.nested.map(lambda var: tf.gather(var, rows), self._buffers) length = tf.gather(self._length, rows) return episode, length
[ "def", "data", "(", "self", ",", "rows", "=", "None", ")", ":", "rows", "=", "tf", ".", "range", "(", "self", ".", "_capacity", ")", "if", "rows", "is", "None", "else", "rows", "assert", "rows", ".", "shape", ".", "ndims", "==", "1", "episode", "=", "tools", ".", "nested", ".", "map", "(", "lambda", "var", ":", "tf", ".", "gather", "(", "var", ",", "rows", ")", ",", "self", ".", "_buffers", ")", "length", "=", "tf", ".", "gather", "(", "self", ".", "_length", ",", "rows", ")", "return", "episode", ",", "length" ]
Access a batch of episodes from the memory. Padding elements after the length of each episode are unspecified and might contain old data. Args: rows: Episodes to select, defaults to all. Returns: Tuple containing a tuple of transition quantities with batch and time dimensions, and a batch of sequence lengths.
[ "Access", "a", "batch", "of", "episodes", "from", "the", "memory", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/parts/memory.py#L119-L136
6,861
google-research/batch-ppo
agents/parts/memory.py
EpisodeMemory.clear
def clear(self, rows=None): """Reset episodes in the memory. Internally, this only sets their lengths to zero. The memory entries will be overridden by future calls to append() or replace(). Args: rows: Episodes to clear, defaults to all. Returns: Operation. """ rows = tf.range(self._capacity) if rows is None else rows assert rows.shape.ndims == 1 return tf.scatter_update(self._length, rows, tf.zeros_like(rows))
python
def clear(self, rows=None): """Reset episodes in the memory. Internally, this only sets their lengths to zero. The memory entries will be overridden by future calls to append() or replace(). Args: rows: Episodes to clear, defaults to all. Returns: Operation. """ rows = tf.range(self._capacity) if rows is None else rows assert rows.shape.ndims == 1 return tf.scatter_update(self._length, rows, tf.zeros_like(rows))
[ "def", "clear", "(", "self", ",", "rows", "=", "None", ")", ":", "rows", "=", "tf", ".", "range", "(", "self", ".", "_capacity", ")", "if", "rows", "is", "None", "else", "rows", "assert", "rows", ".", "shape", ".", "ndims", "==", "1", "return", "tf", ".", "scatter_update", "(", "self", ".", "_length", ",", "rows", ",", "tf", ".", "zeros_like", "(", "rows", ")", ")" ]
Reset episodes in the memory. Internally, this only sets their lengths to zero. The memory entries will be overridden by future calls to append() or replace(). Args: rows: Episodes to clear, defaults to all. Returns: Operation.
[ "Reset", "episodes", "in", "the", "memory", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/parts/memory.py#L138-L152
6,862
google-research/batch-ppo
agents/tools/in_graph_env.py
InGraphEnv._parse_shape
def _parse_shape(self, space): """Get a tensor shape from a OpenAI Gym space. Args: space: Gym space. Raises: NotImplementedError: For spaces other than Box and Discrete. Returns: Shape tuple. """ if isinstance(space, gym.spaces.Discrete): return () if isinstance(space, gym.spaces.Box): return space.shape raise NotImplementedError()
python
def _parse_shape(self, space): """Get a tensor shape from a OpenAI Gym space. Args: space: Gym space. Raises: NotImplementedError: For spaces other than Box and Discrete. Returns: Shape tuple. """ if isinstance(space, gym.spaces.Discrete): return () if isinstance(space, gym.spaces.Box): return space.shape raise NotImplementedError()
[ "def", "_parse_shape", "(", "self", ",", "space", ")", ":", "if", "isinstance", "(", "space", ",", "gym", ".", "spaces", ".", "Discrete", ")", ":", "return", "(", ")", "if", "isinstance", "(", "space", ",", "gym", ".", "spaces", ".", "Box", ")", ":", "return", "space", ".", "shape", "raise", "NotImplementedError", "(", ")" ]
Get a tensor shape from a OpenAI Gym space. Args: space: Gym space. Raises: NotImplementedError: For spaces other than Box and Discrete. Returns: Shape tuple.
[ "Get", "a", "tensor", "shape", "from", "a", "OpenAI", "Gym", "space", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/tools/in_graph_env.py#L134-L150
6,863
google-research/batch-ppo
agents/tools/in_graph_env.py
InGraphEnv._parse_dtype
def _parse_dtype(self, space): """Get a tensor dtype from a OpenAI Gym space. Args: space: Gym space. Raises: NotImplementedError: For spaces other than Box and Discrete. Returns: TensorFlow data type. """ if isinstance(space, gym.spaces.Discrete): return tf.int32 if isinstance(space, gym.spaces.Box): return tf.float32 raise NotImplementedError()
python
def _parse_dtype(self, space): """Get a tensor dtype from a OpenAI Gym space. Args: space: Gym space. Raises: NotImplementedError: For spaces other than Box and Discrete. Returns: TensorFlow data type. """ if isinstance(space, gym.spaces.Discrete): return tf.int32 if isinstance(space, gym.spaces.Box): return tf.float32 raise NotImplementedError()
[ "def", "_parse_dtype", "(", "self", ",", "space", ")", ":", "if", "isinstance", "(", "space", ",", "gym", ".", "spaces", ".", "Discrete", ")", ":", "return", "tf", ".", "int32", "if", "isinstance", "(", "space", ",", "gym", ".", "spaces", ".", "Box", ")", ":", "return", "tf", ".", "float32", "raise", "NotImplementedError", "(", ")" ]
Get a tensor dtype from a OpenAI Gym space. Args: space: Gym space. Raises: NotImplementedError: For spaces other than Box and Discrete. Returns: TensorFlow data type.
[ "Get", "a", "tensor", "dtype", "from", "a", "OpenAI", "Gym", "space", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/tools/in_graph_env.py#L152-L168
6,864
google-research/batch-ppo
agents/algorithms/ppo/ppo.py
PPO.begin_episode
def begin_episode(self, agent_indices): """Reset the recurrent states and stored episode. Args: agent_indices: Tensor containing current batch indices. Returns: Summary tensor. """ with tf.name_scope('begin_episode/'): if self._last_state is None: reset_state = tf.no_op() else: reset_state = utility.reinit_nested_vars( self._last_state, agent_indices) reset_buffer = self._current_episodes.clear(agent_indices) with tf.control_dependencies([reset_state, reset_buffer]): return tf.constant('')
python
def begin_episode(self, agent_indices): """Reset the recurrent states and stored episode. Args: agent_indices: Tensor containing current batch indices. Returns: Summary tensor. """ with tf.name_scope('begin_episode/'): if self._last_state is None: reset_state = tf.no_op() else: reset_state = utility.reinit_nested_vars( self._last_state, agent_indices) reset_buffer = self._current_episodes.clear(agent_indices) with tf.control_dependencies([reset_state, reset_buffer]): return tf.constant('')
[ "def", "begin_episode", "(", "self", ",", "agent_indices", ")", ":", "with", "tf", ".", "name_scope", "(", "'begin_episode/'", ")", ":", "if", "self", ".", "_last_state", "is", "None", ":", "reset_state", "=", "tf", ".", "no_op", "(", ")", "else", ":", "reset_state", "=", "utility", ".", "reinit_nested_vars", "(", "self", ".", "_last_state", ",", "agent_indices", ")", "reset_buffer", "=", "self", ".", "_current_episodes", ".", "clear", "(", "agent_indices", ")", "with", "tf", ".", "control_dependencies", "(", "[", "reset_state", ",", "reset_buffer", "]", ")", ":", "return", "tf", ".", "constant", "(", "''", ")" ]
Reset the recurrent states and stored episode. Args: agent_indices: Tensor containing current batch indices. Returns: Summary tensor.
[ "Reset", "the", "recurrent", "states", "and", "stored", "episode", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/algorithms/ppo/ppo.py#L81-L98
6,865
google-research/batch-ppo
agents/algorithms/ppo/ppo.py
PPO.perform
def perform(self, agent_indices, observ): """Compute batch of actions and a summary for a batch of observation. Args: agent_indices: Tensor containing current batch indices. observ: Tensor of a batch of observations for all agents. Returns: Tuple of action batch tensor and summary tensor. """ with tf.name_scope('perform/'): observ = self._observ_filter.transform(observ) if self._last_state is None: state = None else: state = tools.nested.map( lambda x: tf.gather(x, agent_indices), self._last_state) with tf.device('/gpu:0' if self._use_gpu else '/cpu:0'): output = self._network( observ[:, None], tf.ones(observ.shape[0]), state) action = tf.cond( self._is_training, output.policy.sample, output.policy.mode) logprob = output.policy.log_prob(action)[:, 0] # pylint: disable=g-long-lambda summary = tf.cond(self._should_log, lambda: tf.summary.merge([ tf.summary.histogram('mode', output.policy.mode()[:, 0]), tf.summary.histogram('action', action[:, 0]), tf.summary.histogram('logprob', logprob)]), str) # Remember current policy to append to memory in the experience callback. if self._last_state is None: assign_state = tf.no_op() else: assign_state = utility.assign_nested_vars( self._last_state, output.state, agent_indices) remember_last_action = tf.scatter_update( self._last_action, agent_indices, action[:, 0]) policy_params = tools.nested.filter( lambda x: isinstance(x, tf.Tensor), output.policy.parameters) assert policy_params, 'Policy has no parameters to store.' remember_last_policy = tools.nested.map( lambda var, val: tf.scatter_update(var, agent_indices, val[:, 0]), self._last_policy, policy_params, flatten=True) with tf.control_dependencies(( assign_state, remember_last_action) + remember_last_policy): return action[:, 0], tf.identity(summary)
python
def perform(self, agent_indices, observ): """Compute batch of actions and a summary for a batch of observation. Args: agent_indices: Tensor containing current batch indices. observ: Tensor of a batch of observations for all agents. Returns: Tuple of action batch tensor and summary tensor. """ with tf.name_scope('perform/'): observ = self._observ_filter.transform(observ) if self._last_state is None: state = None else: state = tools.nested.map( lambda x: tf.gather(x, agent_indices), self._last_state) with tf.device('/gpu:0' if self._use_gpu else '/cpu:0'): output = self._network( observ[:, None], tf.ones(observ.shape[0]), state) action = tf.cond( self._is_training, output.policy.sample, output.policy.mode) logprob = output.policy.log_prob(action)[:, 0] # pylint: disable=g-long-lambda summary = tf.cond(self._should_log, lambda: tf.summary.merge([ tf.summary.histogram('mode', output.policy.mode()[:, 0]), tf.summary.histogram('action', action[:, 0]), tf.summary.histogram('logprob', logprob)]), str) # Remember current policy to append to memory in the experience callback. if self._last_state is None: assign_state = tf.no_op() else: assign_state = utility.assign_nested_vars( self._last_state, output.state, agent_indices) remember_last_action = tf.scatter_update( self._last_action, agent_indices, action[:, 0]) policy_params = tools.nested.filter( lambda x: isinstance(x, tf.Tensor), output.policy.parameters) assert policy_params, 'Policy has no parameters to store.' remember_last_policy = tools.nested.map( lambda var, val: tf.scatter_update(var, agent_indices, val[:, 0]), self._last_policy, policy_params, flatten=True) with tf.control_dependencies(( assign_state, remember_last_action) + remember_last_policy): return action[:, 0], tf.identity(summary)
[ "def", "perform", "(", "self", ",", "agent_indices", ",", "observ", ")", ":", "with", "tf", ".", "name_scope", "(", "'perform/'", ")", ":", "observ", "=", "self", ".", "_observ_filter", ".", "transform", "(", "observ", ")", "if", "self", ".", "_last_state", "is", "None", ":", "state", "=", "None", "else", ":", "state", "=", "tools", ".", "nested", ".", "map", "(", "lambda", "x", ":", "tf", ".", "gather", "(", "x", ",", "agent_indices", ")", ",", "self", ".", "_last_state", ")", "with", "tf", ".", "device", "(", "'/gpu:0'", "if", "self", ".", "_use_gpu", "else", "'/cpu:0'", ")", ":", "output", "=", "self", ".", "_network", "(", "observ", "[", ":", ",", "None", "]", ",", "tf", ".", "ones", "(", "observ", ".", "shape", "[", "0", "]", ")", ",", "state", ")", "action", "=", "tf", ".", "cond", "(", "self", ".", "_is_training", ",", "output", ".", "policy", ".", "sample", ",", "output", ".", "policy", ".", "mode", ")", "logprob", "=", "output", ".", "policy", ".", "log_prob", "(", "action", ")", "[", ":", ",", "0", "]", "# pylint: disable=g-long-lambda", "summary", "=", "tf", ".", "cond", "(", "self", ".", "_should_log", ",", "lambda", ":", "tf", ".", "summary", ".", "merge", "(", "[", "tf", ".", "summary", ".", "histogram", "(", "'mode'", ",", "output", ".", "policy", ".", "mode", "(", ")", "[", ":", ",", "0", "]", ")", ",", "tf", ".", "summary", ".", "histogram", "(", "'action'", ",", "action", "[", ":", ",", "0", "]", ")", ",", "tf", ".", "summary", ".", "histogram", "(", "'logprob'", ",", "logprob", ")", "]", ")", ",", "str", ")", "# Remember current policy to append to memory in the experience callback.", "if", "self", ".", "_last_state", "is", "None", ":", "assign_state", "=", "tf", ".", "no_op", "(", ")", "else", ":", "assign_state", "=", "utility", ".", "assign_nested_vars", "(", "self", ".", "_last_state", ",", "output", ".", "state", ",", "agent_indices", ")", "remember_last_action", "=", "tf", ".", "scatter_update", "(", "self", ".", "_last_action", ",", "agent_indices", ",", "action", "[", ":", ",", "0", "]", ")", "policy_params", "=", "tools", ".", "nested", ".", "filter", "(", "lambda", "x", ":", "isinstance", "(", "x", ",", "tf", ".", "Tensor", ")", ",", "output", ".", "policy", ".", "parameters", ")", "assert", "policy_params", ",", "'Policy has no parameters to store.'", "remember_last_policy", "=", "tools", ".", "nested", ".", "map", "(", "lambda", "var", ",", "val", ":", "tf", ".", "scatter_update", "(", "var", ",", "agent_indices", ",", "val", "[", ":", ",", "0", "]", ")", ",", "self", ".", "_last_policy", ",", "policy_params", ",", "flatten", "=", "True", ")", "with", "tf", ".", "control_dependencies", "(", "(", "assign_state", ",", "remember_last_action", ")", "+", "remember_last_policy", ")", ":", "return", "action", "[", ":", ",", "0", "]", ",", "tf", ".", "identity", "(", "summary", ")" ]
Compute batch of actions and a summary for a batch of observation. Args: agent_indices: Tensor containing current batch indices. observ: Tensor of a batch of observations for all agents. Returns: Tuple of action batch tensor and summary tensor.
[ "Compute", "batch", "of", "actions", "and", "a", "summary", "for", "a", "batch", "of", "observation", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/algorithms/ppo/ppo.py#L100-L144
6,866
google-research/batch-ppo
agents/algorithms/ppo/ppo.py
PPO.experience
def experience( self, agent_indices, observ, action, reward, unused_done, unused_nextob): """Process the transition tuple of the current step. When training, add the current transition tuple to the memory and update the streaming statistics for observations and rewards. A summary string is returned if requested at this step. Args: agent_indices: Tensor containing current batch indices. observ: Batch tensor of observations. action: Batch tensor of actions. reward: Batch tensor of rewards. unused_done: Batch tensor of done flags. unused_nextob: Batch tensor of successor observations. Returns: Summary tensor. """ with tf.name_scope('experience/'): return tf.cond( self._is_training, # pylint: disable=g-long-lambda lambda: self._define_experience( agent_indices, observ, action, reward), str)
python
def experience( self, agent_indices, observ, action, reward, unused_done, unused_nextob): """Process the transition tuple of the current step. When training, add the current transition tuple to the memory and update the streaming statistics for observations and rewards. A summary string is returned if requested at this step. Args: agent_indices: Tensor containing current batch indices. observ: Batch tensor of observations. action: Batch tensor of actions. reward: Batch tensor of rewards. unused_done: Batch tensor of done flags. unused_nextob: Batch tensor of successor observations. Returns: Summary tensor. """ with tf.name_scope('experience/'): return tf.cond( self._is_training, # pylint: disable=g-long-lambda lambda: self._define_experience( agent_indices, observ, action, reward), str)
[ "def", "experience", "(", "self", ",", "agent_indices", ",", "observ", ",", "action", ",", "reward", ",", "unused_done", ",", "unused_nextob", ")", ":", "with", "tf", ".", "name_scope", "(", "'experience/'", ")", ":", "return", "tf", ".", "cond", "(", "self", ".", "_is_training", ",", "# pylint: disable=g-long-lambda", "lambda", ":", "self", ".", "_define_experience", "(", "agent_indices", ",", "observ", ",", "action", ",", "reward", ")", ",", "str", ")" ]
Process the transition tuple of the current step. When training, add the current transition tuple to the memory and update the streaming statistics for observations and rewards. A summary string is returned if requested at this step. Args: agent_indices: Tensor containing current batch indices. observ: Batch tensor of observations. action: Batch tensor of actions. reward: Batch tensor of rewards. unused_done: Batch tensor of done flags. unused_nextob: Batch tensor of successor observations. Returns: Summary tensor.
[ "Process", "the", "transition", "tuple", "of", "the", "current", "step", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/algorithms/ppo/ppo.py#L146-L170
6,867
google-research/batch-ppo
agents/algorithms/ppo/ppo.py
PPO.end_episode
def end_episode(self, agent_indices): """Add episodes to the memory and perform update steps if memory is full. During training, add the collected episodes of the batch indices that finished their episode to the memory. If the memory is full, train on it, and then clear the memory. A summary string is returned if requested at this step. Args: agent_indices: Tensor containing current batch indices. Returns: Summary tensor. """ with tf.name_scope('end_episode/'): return tf.cond( self._is_training, lambda: self._define_end_episode(agent_indices), str)
python
def end_episode(self, agent_indices): """Add episodes to the memory and perform update steps if memory is full. During training, add the collected episodes of the batch indices that finished their episode to the memory. If the memory is full, train on it, and then clear the memory. A summary string is returned if requested at this step. Args: agent_indices: Tensor containing current batch indices. Returns: Summary tensor. """ with tf.name_scope('end_episode/'): return tf.cond( self._is_training, lambda: self._define_end_episode(agent_indices), str)
[ "def", "end_episode", "(", "self", ",", "agent_indices", ")", ":", "with", "tf", ".", "name_scope", "(", "'end_episode/'", ")", ":", "return", "tf", ".", "cond", "(", "self", ".", "_is_training", ",", "lambda", ":", "self", ".", "_define_end_episode", "(", "agent_indices", ")", ",", "str", ")" ]
Add episodes to the memory and perform update steps if memory is full. During training, add the collected episodes of the batch indices that finished their episode to the memory. If the memory is full, train on it, and then clear the memory. A summary string is returned if requested at this step. Args: agent_indices: Tensor containing current batch indices. Returns: Summary tensor.
[ "Add", "episodes", "to", "the", "memory", "and", "perform", "update", "steps", "if", "memory", "is", "full", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/algorithms/ppo/ppo.py#L199-L216
6,868
google-research/batch-ppo
agents/algorithms/ppo/ppo.py
PPO._initialize_policy
def _initialize_policy(self): """Initialize the policy. Run the policy network on dummy data to initialize its parameters for later reuse and to analyze the policy distribution. Initializes the attributes `self._network` and `self._policy_type`. Raises: ValueError: Invalid policy distribution. Returns: Parameters of the policy distribution and policy state. """ with tf.device('/gpu:0' if self._use_gpu else '/cpu:0'): network = functools.partial( self._config.network, self._config, self._batch_env.action_space) self._network = tf.make_template('network', network) output = self._network( tf.zeros_like(self._batch_env.observ)[:, None], tf.ones(len(self._batch_env))) if output.policy.event_shape != self._batch_env.action.shape[1:]: message = 'Policy event shape {} does not match action shape {}.' message = message.format( output.policy.event_shape, self._batch_env.action.shape[1:]) raise ValueError(message) self._policy_type = type(output.policy) is_tensor = lambda x: isinstance(x, tf.Tensor) policy_params = tools.nested.filter(is_tensor, output.policy.parameters) set_batch_dim = lambda x: utility.set_dimension(x, 0, len(self._batch_env)) tools.nested.map(set_batch_dim, policy_params) if output.state is not None: tools.nested.map(set_batch_dim, output.state) return policy_params, output.state
python
def _initialize_policy(self): """Initialize the policy. Run the policy network on dummy data to initialize its parameters for later reuse and to analyze the policy distribution. Initializes the attributes `self._network` and `self._policy_type`. Raises: ValueError: Invalid policy distribution. Returns: Parameters of the policy distribution and policy state. """ with tf.device('/gpu:0' if self._use_gpu else '/cpu:0'): network = functools.partial( self._config.network, self._config, self._batch_env.action_space) self._network = tf.make_template('network', network) output = self._network( tf.zeros_like(self._batch_env.observ)[:, None], tf.ones(len(self._batch_env))) if output.policy.event_shape != self._batch_env.action.shape[1:]: message = 'Policy event shape {} does not match action shape {}.' message = message.format( output.policy.event_shape, self._batch_env.action.shape[1:]) raise ValueError(message) self._policy_type = type(output.policy) is_tensor = lambda x: isinstance(x, tf.Tensor) policy_params = tools.nested.filter(is_tensor, output.policy.parameters) set_batch_dim = lambda x: utility.set_dimension(x, 0, len(self._batch_env)) tools.nested.map(set_batch_dim, policy_params) if output.state is not None: tools.nested.map(set_batch_dim, output.state) return policy_params, output.state
[ "def", "_initialize_policy", "(", "self", ")", ":", "with", "tf", ".", "device", "(", "'/gpu:0'", "if", "self", ".", "_use_gpu", "else", "'/cpu:0'", ")", ":", "network", "=", "functools", ".", "partial", "(", "self", ".", "_config", ".", "network", ",", "self", ".", "_config", ",", "self", ".", "_batch_env", ".", "action_space", ")", "self", ".", "_network", "=", "tf", ".", "make_template", "(", "'network'", ",", "network", ")", "output", "=", "self", ".", "_network", "(", "tf", ".", "zeros_like", "(", "self", ".", "_batch_env", ".", "observ", ")", "[", ":", ",", "None", "]", ",", "tf", ".", "ones", "(", "len", "(", "self", ".", "_batch_env", ")", ")", ")", "if", "output", ".", "policy", ".", "event_shape", "!=", "self", ".", "_batch_env", ".", "action", ".", "shape", "[", "1", ":", "]", ":", "message", "=", "'Policy event shape {} does not match action shape {}.'", "message", "=", "message", ".", "format", "(", "output", ".", "policy", ".", "event_shape", ",", "self", ".", "_batch_env", ".", "action", ".", "shape", "[", "1", ":", "]", ")", "raise", "ValueError", "(", "message", ")", "self", ".", "_policy_type", "=", "type", "(", "output", ".", "policy", ")", "is_tensor", "=", "lambda", "x", ":", "isinstance", "(", "x", ",", "tf", ".", "Tensor", ")", "policy_params", "=", "tools", ".", "nested", ".", "filter", "(", "is_tensor", ",", "output", ".", "policy", ".", "parameters", ")", "set_batch_dim", "=", "lambda", "x", ":", "utility", ".", "set_dimension", "(", "x", ",", "0", ",", "len", "(", "self", ".", "_batch_env", ")", ")", "tools", ".", "nested", ".", "map", "(", "set_batch_dim", ",", "policy_params", ")", "if", "output", ".", "state", "is", "not", "None", ":", "tools", ".", "nested", ".", "map", "(", "set_batch_dim", ",", "output", ".", "state", ")", "return", "policy_params", ",", "output", ".", "state" ]
Initialize the policy. Run the policy network on dummy data to initialize its parameters for later reuse and to analyze the policy distribution. Initializes the attributes `self._network` and `self._policy_type`. Raises: ValueError: Invalid policy distribution. Returns: Parameters of the policy distribution and policy state.
[ "Initialize", "the", "policy", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/algorithms/ppo/ppo.py#L218-L250
6,869
google-research/batch-ppo
agents/algorithms/ppo/ppo.py
PPO._initialize_memory
def _initialize_memory(self, policy_params): """Initialize temporary and permanent memory. Args: policy_params: Nested tuple of policy parameters with all dimensions set. Initializes the attributes `self._current_episodes`, `self._finished_episodes`, and `self._num_finished_episodes`. The episodes memory serves to collect multiple episodes in parallel. Finished episodes are copied into the next free slot of the second memory. The memory index points to the next free slot. """ # We store observation, action, policy parameters, and reward. template = ( self._batch_env.observ[0], self._batch_env.action[0], tools.nested.map(lambda x: x[0, 0], policy_params), self._batch_env.reward[0]) with tf.variable_scope('ppo_temporary'): self._current_episodes = parts.EpisodeMemory( template, len(self._batch_env), self._config.max_length, 'episodes') self._finished_episodes = parts.EpisodeMemory( template, self._config.update_every, self._config.max_length, 'memory') self._num_finished_episodes = tf.Variable(0, False)
python
def _initialize_memory(self, policy_params): """Initialize temporary and permanent memory. Args: policy_params: Nested tuple of policy parameters with all dimensions set. Initializes the attributes `self._current_episodes`, `self._finished_episodes`, and `self._num_finished_episodes`. The episodes memory serves to collect multiple episodes in parallel. Finished episodes are copied into the next free slot of the second memory. The memory index points to the next free slot. """ # We store observation, action, policy parameters, and reward. template = ( self._batch_env.observ[0], self._batch_env.action[0], tools.nested.map(lambda x: x[0, 0], policy_params), self._batch_env.reward[0]) with tf.variable_scope('ppo_temporary'): self._current_episodes = parts.EpisodeMemory( template, len(self._batch_env), self._config.max_length, 'episodes') self._finished_episodes = parts.EpisodeMemory( template, self._config.update_every, self._config.max_length, 'memory') self._num_finished_episodes = tf.Variable(0, False)
[ "def", "_initialize_memory", "(", "self", ",", "policy_params", ")", ":", "# We store observation, action, policy parameters, and reward.", "template", "=", "(", "self", ".", "_batch_env", ".", "observ", "[", "0", "]", ",", "self", ".", "_batch_env", ".", "action", "[", "0", "]", ",", "tools", ".", "nested", ".", "map", "(", "lambda", "x", ":", "x", "[", "0", ",", "0", "]", ",", "policy_params", ")", ",", "self", ".", "_batch_env", ".", "reward", "[", "0", "]", ")", "with", "tf", ".", "variable_scope", "(", "'ppo_temporary'", ")", ":", "self", ".", "_current_episodes", "=", "parts", ".", "EpisodeMemory", "(", "template", ",", "len", "(", "self", ".", "_batch_env", ")", ",", "self", ".", "_config", ".", "max_length", ",", "'episodes'", ")", "self", ".", "_finished_episodes", "=", "parts", ".", "EpisodeMemory", "(", "template", ",", "self", ".", "_config", ".", "update_every", ",", "self", ".", "_config", ".", "max_length", ",", "'memory'", ")", "self", ".", "_num_finished_episodes", "=", "tf", ".", "Variable", "(", "0", ",", "False", ")" ]
Initialize temporary and permanent memory. Args: policy_params: Nested tuple of policy parameters with all dimensions set. Initializes the attributes `self._current_episodes`, `self._finished_episodes`, and `self._num_finished_episodes`. The episodes memory serves to collect multiple episodes in parallel. Finished episodes are copied into the next free slot of the second memory. The memory index points to the next free slot.
[ "Initialize", "temporary", "and", "permanent", "memory", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/algorithms/ppo/ppo.py#L252-L275
6,870
google-research/batch-ppo
agents/algorithms/ppo/ppo.py
PPO._training
def _training(self): """Perform multiple training iterations of both policy and value baseline. Training on the episodes collected in the memory. Reset the memory afterwards. Always returns a summary string. Returns: Summary tensor. """ with tf.device('/gpu:0' if self._use_gpu else '/cpu:0'): with tf.name_scope('training'): assert_full = tf.assert_equal( self._num_finished_episodes, self._config.update_every) with tf.control_dependencies([assert_full]): data = self._finished_episodes.data() (observ, action, old_policy_params, reward), length = data # We set padding frames of the parameters to ones to prevent Gaussians # with zero variance. This would result in an infinite KL divergence, # which, even if masked out, would result in NaN gradients. old_policy_params = tools.nested.map( lambda param: self._mask(param, length, 1), old_policy_params) with tf.control_dependencies([tf.assert_greater(length, 0)]): length = tf.identity(length) observ = self._observ_filter.transform(observ) reward = self._reward_filter.transform(reward) update_summary = self._perform_update_steps( observ, action, old_policy_params, reward, length) with tf.control_dependencies([update_summary]): penalty_summary = self._adjust_penalty( observ, old_policy_params, length) with tf.control_dependencies([penalty_summary]): clear_memory = tf.group( self._finished_episodes.clear(), self._num_finished_episodes.assign(0)) with tf.control_dependencies([clear_memory]): weight_summary = utility.variable_summaries( tf.trainable_variables(), self._config.weight_summaries) return tf.summary.merge([ update_summary, penalty_summary, weight_summary])
python
def _training(self): """Perform multiple training iterations of both policy and value baseline. Training on the episodes collected in the memory. Reset the memory afterwards. Always returns a summary string. Returns: Summary tensor. """ with tf.device('/gpu:0' if self._use_gpu else '/cpu:0'): with tf.name_scope('training'): assert_full = tf.assert_equal( self._num_finished_episodes, self._config.update_every) with tf.control_dependencies([assert_full]): data = self._finished_episodes.data() (observ, action, old_policy_params, reward), length = data # We set padding frames of the parameters to ones to prevent Gaussians # with zero variance. This would result in an infinite KL divergence, # which, even if masked out, would result in NaN gradients. old_policy_params = tools.nested.map( lambda param: self._mask(param, length, 1), old_policy_params) with tf.control_dependencies([tf.assert_greater(length, 0)]): length = tf.identity(length) observ = self._observ_filter.transform(observ) reward = self._reward_filter.transform(reward) update_summary = self._perform_update_steps( observ, action, old_policy_params, reward, length) with tf.control_dependencies([update_summary]): penalty_summary = self._adjust_penalty( observ, old_policy_params, length) with tf.control_dependencies([penalty_summary]): clear_memory = tf.group( self._finished_episodes.clear(), self._num_finished_episodes.assign(0)) with tf.control_dependencies([clear_memory]): weight_summary = utility.variable_summaries( tf.trainable_variables(), self._config.weight_summaries) return tf.summary.merge([ update_summary, penalty_summary, weight_summary])
[ "def", "_training", "(", "self", ")", ":", "with", "tf", ".", "device", "(", "'/gpu:0'", "if", "self", ".", "_use_gpu", "else", "'/cpu:0'", ")", ":", "with", "tf", ".", "name_scope", "(", "'training'", ")", ":", "assert_full", "=", "tf", ".", "assert_equal", "(", "self", ".", "_num_finished_episodes", ",", "self", ".", "_config", ".", "update_every", ")", "with", "tf", ".", "control_dependencies", "(", "[", "assert_full", "]", ")", ":", "data", "=", "self", ".", "_finished_episodes", ".", "data", "(", ")", "(", "observ", ",", "action", ",", "old_policy_params", ",", "reward", ")", ",", "length", "=", "data", "# We set padding frames of the parameters to ones to prevent Gaussians", "# with zero variance. This would result in an infinite KL divergence,", "# which, even if masked out, would result in NaN gradients.", "old_policy_params", "=", "tools", ".", "nested", ".", "map", "(", "lambda", "param", ":", "self", ".", "_mask", "(", "param", ",", "length", ",", "1", ")", ",", "old_policy_params", ")", "with", "tf", ".", "control_dependencies", "(", "[", "tf", ".", "assert_greater", "(", "length", ",", "0", ")", "]", ")", ":", "length", "=", "tf", ".", "identity", "(", "length", ")", "observ", "=", "self", ".", "_observ_filter", ".", "transform", "(", "observ", ")", "reward", "=", "self", ".", "_reward_filter", ".", "transform", "(", "reward", ")", "update_summary", "=", "self", ".", "_perform_update_steps", "(", "observ", ",", "action", ",", "old_policy_params", ",", "reward", ",", "length", ")", "with", "tf", ".", "control_dependencies", "(", "[", "update_summary", "]", ")", ":", "penalty_summary", "=", "self", ".", "_adjust_penalty", "(", "observ", ",", "old_policy_params", ",", "length", ")", "with", "tf", ".", "control_dependencies", "(", "[", "penalty_summary", "]", ")", ":", "clear_memory", "=", "tf", ".", "group", "(", "self", ".", "_finished_episodes", ".", "clear", "(", ")", ",", "self", ".", "_num_finished_episodes", ".", "assign", "(", "0", ")", ")", "with", "tf", ".", "control_dependencies", "(", "[", "clear_memory", "]", ")", ":", "weight_summary", "=", "utility", ".", "variable_summaries", "(", "tf", ".", "trainable_variables", "(", ")", ",", "self", ".", "_config", ".", "weight_summaries", ")", "return", "tf", ".", "summary", ".", "merge", "(", "[", "update_summary", ",", "penalty_summary", ",", "weight_summary", "]", ")" ]
Perform multiple training iterations of both policy and value baseline. Training on the episodes collected in the memory. Reset the memory afterwards. Always returns a summary string. Returns: Summary tensor.
[ "Perform", "multiple", "training", "iterations", "of", "both", "policy", "and", "value", "baseline", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/algorithms/ppo/ppo.py#L294-L332
6,871
google-research/batch-ppo
agents/algorithms/ppo/ppo.py
PPO._perform_update_steps
def _perform_update_steps( self, observ, action, old_policy_params, reward, length): """Perform multiple update steps of value function and policy. The advantage is computed once at the beginning and shared across iterations. We need to decide for the summary of one iteration, and thus choose the one after half of the iterations. Args: observ: Sequences of observations. action: Sequences of actions. old_policy_params: Parameters of the behavioral policy. reward: Sequences of rewards. length: Batch of sequence lengths. Returns: Summary tensor. """ return_ = utility.discounted_return( reward, length, self._config.discount) value = self._network(observ, length).value if self._config.gae_lambda: advantage = utility.lambda_advantage( reward, value, length, self._config.discount, self._config.gae_lambda) else: advantage = return_ - value mean, variance = tf.nn.moments(advantage, axes=[0, 1], keep_dims=True) advantage = (advantage - mean) / (tf.sqrt(variance) + 1e-8) advantage = tf.Print( advantage, [tf.reduce_mean(return_), tf.reduce_mean(value)], 'return and value: ') advantage = tf.Print( advantage, [tf.reduce_mean(advantage)], 'normalized advantage: ') episodes = (observ, action, old_policy_params, reward, advantage) value_loss, policy_loss, summary = parts.iterate_sequences( self._update_step, [0., 0., ''], episodes, length, self._config.chunk_length, self._config.batch_size, self._config.update_epochs, padding_value=1) print_losses = tf.group( tf.Print(0, [tf.reduce_mean(value_loss)], 'value loss: '), tf.Print(0, [tf.reduce_mean(policy_loss)], 'policy loss: ')) with tf.control_dependencies([value_loss, policy_loss, print_losses]): return summary[self._config.update_epochs // 2]
python
def _perform_update_steps( self, observ, action, old_policy_params, reward, length): """Perform multiple update steps of value function and policy. The advantage is computed once at the beginning and shared across iterations. We need to decide for the summary of one iteration, and thus choose the one after half of the iterations. Args: observ: Sequences of observations. action: Sequences of actions. old_policy_params: Parameters of the behavioral policy. reward: Sequences of rewards. length: Batch of sequence lengths. Returns: Summary tensor. """ return_ = utility.discounted_return( reward, length, self._config.discount) value = self._network(observ, length).value if self._config.gae_lambda: advantage = utility.lambda_advantage( reward, value, length, self._config.discount, self._config.gae_lambda) else: advantage = return_ - value mean, variance = tf.nn.moments(advantage, axes=[0, 1], keep_dims=True) advantage = (advantage - mean) / (tf.sqrt(variance) + 1e-8) advantage = tf.Print( advantage, [tf.reduce_mean(return_), tf.reduce_mean(value)], 'return and value: ') advantage = tf.Print( advantage, [tf.reduce_mean(advantage)], 'normalized advantage: ') episodes = (observ, action, old_policy_params, reward, advantage) value_loss, policy_loss, summary = parts.iterate_sequences( self._update_step, [0., 0., ''], episodes, length, self._config.chunk_length, self._config.batch_size, self._config.update_epochs, padding_value=1) print_losses = tf.group( tf.Print(0, [tf.reduce_mean(value_loss)], 'value loss: '), tf.Print(0, [tf.reduce_mean(policy_loss)], 'policy loss: ')) with tf.control_dependencies([value_loss, policy_loss, print_losses]): return summary[self._config.update_epochs // 2]
[ "def", "_perform_update_steps", "(", "self", ",", "observ", ",", "action", ",", "old_policy_params", ",", "reward", ",", "length", ")", ":", "return_", "=", "utility", ".", "discounted_return", "(", "reward", ",", "length", ",", "self", ".", "_config", ".", "discount", ")", "value", "=", "self", ".", "_network", "(", "observ", ",", "length", ")", ".", "value", "if", "self", ".", "_config", ".", "gae_lambda", ":", "advantage", "=", "utility", ".", "lambda_advantage", "(", "reward", ",", "value", ",", "length", ",", "self", ".", "_config", ".", "discount", ",", "self", ".", "_config", ".", "gae_lambda", ")", "else", ":", "advantage", "=", "return_", "-", "value", "mean", ",", "variance", "=", "tf", ".", "nn", ".", "moments", "(", "advantage", ",", "axes", "=", "[", "0", ",", "1", "]", ",", "keep_dims", "=", "True", ")", "advantage", "=", "(", "advantage", "-", "mean", ")", "/", "(", "tf", ".", "sqrt", "(", "variance", ")", "+", "1e-8", ")", "advantage", "=", "tf", ".", "Print", "(", "advantage", ",", "[", "tf", ".", "reduce_mean", "(", "return_", ")", ",", "tf", ".", "reduce_mean", "(", "value", ")", "]", ",", "'return and value: '", ")", "advantage", "=", "tf", ".", "Print", "(", "advantage", ",", "[", "tf", ".", "reduce_mean", "(", "advantage", ")", "]", ",", "'normalized advantage: '", ")", "episodes", "=", "(", "observ", ",", "action", ",", "old_policy_params", ",", "reward", ",", "advantage", ")", "value_loss", ",", "policy_loss", ",", "summary", "=", "parts", ".", "iterate_sequences", "(", "self", ".", "_update_step", ",", "[", "0.", ",", "0.", ",", "''", "]", ",", "episodes", ",", "length", ",", "self", ".", "_config", ".", "chunk_length", ",", "self", ".", "_config", ".", "batch_size", ",", "self", ".", "_config", ".", "update_epochs", ",", "padding_value", "=", "1", ")", "print_losses", "=", "tf", ".", "group", "(", "tf", ".", "Print", "(", "0", ",", "[", "tf", ".", "reduce_mean", "(", "value_loss", ")", "]", ",", "'value loss: '", ")", ",", "tf", ".", "Print", "(", "0", ",", "[", "tf", ".", "reduce_mean", "(", "policy_loss", ")", "]", ",", "'policy loss: '", ")", ")", "with", "tf", ".", "control_dependencies", "(", "[", "value_loss", ",", "policy_loss", ",", "print_losses", "]", ")", ":", "return", "summary", "[", "self", ".", "_config", ".", "update_epochs", "//", "2", "]" ]
Perform multiple update steps of value function and policy. The advantage is computed once at the beginning and shared across iterations. We need to decide for the summary of one iteration, and thus choose the one after half of the iterations. Args: observ: Sequences of observations. action: Sequences of actions. old_policy_params: Parameters of the behavioral policy. reward: Sequences of rewards. length: Batch of sequence lengths. Returns: Summary tensor.
[ "Perform", "multiple", "update", "steps", "of", "value", "function", "and", "policy", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/algorithms/ppo/ppo.py#L334-L380
6,872
google-research/batch-ppo
agents/algorithms/ppo/ppo.py
PPO._update_step
def _update_step(self, sequence): """Compute the current combined loss and perform a gradient update step. The sequences must be a dict containing the keys `length` and `sequence`, where the latter is a tuple containing observations, actions, parameters of the behavioral policy, rewards, and advantages. Args: sequence: Sequences of episodes or chunks of episodes. Returns: Tuple of value loss, policy loss, and summary tensor. """ observ, action, old_policy_params, reward, advantage = sequence['sequence'] length = sequence['length'] old_policy = self._policy_type(**old_policy_params) value_loss, value_summary = self._value_loss(observ, reward, length) network = self._network(observ, length) policy_loss, policy_summary = self._policy_loss( old_policy, network.policy, action, advantage, length) network_loss = network.get('loss', 0.0) loss = policy_loss + value_loss + tf.reduce_mean(network_loss) gradients, variables = ( zip(*self._optimizer.compute_gradients(loss))) optimize = self._optimizer.apply_gradients( zip(gradients, variables)) summary = tf.summary.merge([ value_summary, policy_summary, tf.summary.histogram('network_loss', network_loss), tf.summary.scalar('avg_network_loss', tf.reduce_mean(network_loss)), tf.summary.scalar('gradient_norm', tf.global_norm(gradients)), utility.gradient_summaries(zip(gradients, variables))]) with tf.control_dependencies([optimize]): return [tf.identity(x) for x in (value_loss, policy_loss, summary)]
python
def _update_step(self, sequence): """Compute the current combined loss and perform a gradient update step. The sequences must be a dict containing the keys `length` and `sequence`, where the latter is a tuple containing observations, actions, parameters of the behavioral policy, rewards, and advantages. Args: sequence: Sequences of episodes or chunks of episodes. Returns: Tuple of value loss, policy loss, and summary tensor. """ observ, action, old_policy_params, reward, advantage = sequence['sequence'] length = sequence['length'] old_policy = self._policy_type(**old_policy_params) value_loss, value_summary = self._value_loss(observ, reward, length) network = self._network(observ, length) policy_loss, policy_summary = self._policy_loss( old_policy, network.policy, action, advantage, length) network_loss = network.get('loss', 0.0) loss = policy_loss + value_loss + tf.reduce_mean(network_loss) gradients, variables = ( zip(*self._optimizer.compute_gradients(loss))) optimize = self._optimizer.apply_gradients( zip(gradients, variables)) summary = tf.summary.merge([ value_summary, policy_summary, tf.summary.histogram('network_loss', network_loss), tf.summary.scalar('avg_network_loss', tf.reduce_mean(network_loss)), tf.summary.scalar('gradient_norm', tf.global_norm(gradients)), utility.gradient_summaries(zip(gradients, variables))]) with tf.control_dependencies([optimize]): return [tf.identity(x) for x in (value_loss, policy_loss, summary)]
[ "def", "_update_step", "(", "self", ",", "sequence", ")", ":", "observ", ",", "action", ",", "old_policy_params", ",", "reward", ",", "advantage", "=", "sequence", "[", "'sequence'", "]", "length", "=", "sequence", "[", "'length'", "]", "old_policy", "=", "self", ".", "_policy_type", "(", "*", "*", "old_policy_params", ")", "value_loss", ",", "value_summary", "=", "self", ".", "_value_loss", "(", "observ", ",", "reward", ",", "length", ")", "network", "=", "self", ".", "_network", "(", "observ", ",", "length", ")", "policy_loss", ",", "policy_summary", "=", "self", ".", "_policy_loss", "(", "old_policy", ",", "network", ".", "policy", ",", "action", ",", "advantage", ",", "length", ")", "network_loss", "=", "network", ".", "get", "(", "'loss'", ",", "0.0", ")", "loss", "=", "policy_loss", "+", "value_loss", "+", "tf", ".", "reduce_mean", "(", "network_loss", ")", "gradients", ",", "variables", "=", "(", "zip", "(", "*", "self", ".", "_optimizer", ".", "compute_gradients", "(", "loss", ")", ")", ")", "optimize", "=", "self", ".", "_optimizer", ".", "apply_gradients", "(", "zip", "(", "gradients", ",", "variables", ")", ")", "summary", "=", "tf", ".", "summary", ".", "merge", "(", "[", "value_summary", ",", "policy_summary", ",", "tf", ".", "summary", ".", "histogram", "(", "'network_loss'", ",", "network_loss", ")", ",", "tf", ".", "summary", ".", "scalar", "(", "'avg_network_loss'", ",", "tf", ".", "reduce_mean", "(", "network_loss", ")", ")", ",", "tf", ".", "summary", ".", "scalar", "(", "'gradient_norm'", ",", "tf", ".", "global_norm", "(", "gradients", ")", ")", ",", "utility", ".", "gradient_summaries", "(", "zip", "(", "gradients", ",", "variables", ")", ")", "]", ")", "with", "tf", ".", "control_dependencies", "(", "[", "optimize", "]", ")", ":", "return", "[", "tf", ".", "identity", "(", "x", ")", "for", "x", "in", "(", "value_loss", ",", "policy_loss", ",", "summary", ")", "]" ]
Compute the current combined loss and perform a gradient update step. The sequences must be a dict containing the keys `length` and `sequence`, where the latter is a tuple containing observations, actions, parameters of the behavioral policy, rewards, and advantages. Args: sequence: Sequences of episodes or chunks of episodes. Returns: Tuple of value loss, policy loss, and summary tensor.
[ "Compute", "the", "current", "combined", "loss", "and", "perform", "a", "gradient", "update", "step", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/algorithms/ppo/ppo.py#L382-L415
6,873
google-research/batch-ppo
agents/algorithms/ppo/ppo.py
PPO._value_loss
def _value_loss(self, observ, reward, length): """Compute the loss function for the value baseline. The value loss is the difference between empirical and approximated returns over the collected episodes. Returns the loss tensor and a summary strin. Args: observ: Sequences of observations. reward: Sequences of reward. length: Batch of sequence lengths. Returns: Tuple of loss tensor and summary tensor. """ with tf.name_scope('value_loss'): value = self._network(observ, length).value return_ = utility.discounted_return( reward, length, self._config.discount) advantage = return_ - value value_loss = 0.5 * self._mask(advantage ** 2, length) summary = tf.summary.merge([ tf.summary.histogram('value_loss', value_loss), tf.summary.scalar('avg_value_loss', tf.reduce_mean(value_loss))]) value_loss = tf.reduce_mean(value_loss) return tf.check_numerics(value_loss, 'value_loss'), summary
python
def _value_loss(self, observ, reward, length): """Compute the loss function for the value baseline. The value loss is the difference between empirical and approximated returns over the collected episodes. Returns the loss tensor and a summary strin. Args: observ: Sequences of observations. reward: Sequences of reward. length: Batch of sequence lengths. Returns: Tuple of loss tensor and summary tensor. """ with tf.name_scope('value_loss'): value = self._network(observ, length).value return_ = utility.discounted_return( reward, length, self._config.discount) advantage = return_ - value value_loss = 0.5 * self._mask(advantage ** 2, length) summary = tf.summary.merge([ tf.summary.histogram('value_loss', value_loss), tf.summary.scalar('avg_value_loss', tf.reduce_mean(value_loss))]) value_loss = tf.reduce_mean(value_loss) return tf.check_numerics(value_loss, 'value_loss'), summary
[ "def", "_value_loss", "(", "self", ",", "observ", ",", "reward", ",", "length", ")", ":", "with", "tf", ".", "name_scope", "(", "'value_loss'", ")", ":", "value", "=", "self", ".", "_network", "(", "observ", ",", "length", ")", ".", "value", "return_", "=", "utility", ".", "discounted_return", "(", "reward", ",", "length", ",", "self", ".", "_config", ".", "discount", ")", "advantage", "=", "return_", "-", "value", "value_loss", "=", "0.5", "*", "self", ".", "_mask", "(", "advantage", "**", "2", ",", "length", ")", "summary", "=", "tf", ".", "summary", ".", "merge", "(", "[", "tf", ".", "summary", ".", "histogram", "(", "'value_loss'", ",", "value_loss", ")", ",", "tf", ".", "summary", ".", "scalar", "(", "'avg_value_loss'", ",", "tf", ".", "reduce_mean", "(", "value_loss", ")", ")", "]", ")", "value_loss", "=", "tf", ".", "reduce_mean", "(", "value_loss", ")", "return", "tf", ".", "check_numerics", "(", "value_loss", ",", "'value_loss'", ")", ",", "summary" ]
Compute the loss function for the value baseline. The value loss is the difference between empirical and approximated returns over the collected episodes. Returns the loss tensor and a summary strin. Args: observ: Sequences of observations. reward: Sequences of reward. length: Batch of sequence lengths. Returns: Tuple of loss tensor and summary tensor.
[ "Compute", "the", "loss", "function", "for", "the", "value", "baseline", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/algorithms/ppo/ppo.py#L417-L441
6,874
google-research/batch-ppo
agents/algorithms/ppo/ppo.py
PPO._policy_loss
def _policy_loss( self, old_policy, policy, action, advantage, length): """Compute the policy loss composed of multiple components. 1. The policy gradient loss is importance sampled from the data-collecting policy at the beginning of training. 2. The second term is a KL penalty between the policy at the beginning of training and the current policy. 3. Additionally, if this KL already changed more than twice the target amount, we activate a strong penalty discouraging further divergence. Args: old_policy: Action distribution of the behavioral policy. policy: Sequences of distribution params of the current policy. action: Sequences of actions. advantage: Sequences of advantages. length: Batch of sequence lengths. Returns: Tuple of loss tensor and summary tensor. """ with tf.name_scope('policy_loss'): kl = tf.contrib.distributions.kl_divergence(old_policy, policy) # Infinite values in the KL, even for padding frames that we mask out, # cause NaN gradients since TensorFlow computes gradients with respect to # the whole input tensor. kl = tf.check_numerics(kl, 'kl') kl = tf.reduce_mean(self._mask(kl, length), 1) policy_gradient = tf.exp( policy.log_prob(action) - old_policy.log_prob(action)) surrogate_loss = -tf.reduce_mean(self._mask( policy_gradient * tf.stop_gradient(advantage), length), 1) surrogate_loss = tf.check_numerics(surrogate_loss, 'surrogate_loss') kl_penalty = self._penalty * kl cutoff_threshold = self._config.kl_target * self._config.kl_cutoff_factor cutoff_count = tf.reduce_sum( tf.cast(kl > cutoff_threshold, tf.int32)) with tf.control_dependencies([tf.cond( cutoff_count > 0, lambda: tf.Print(0, [cutoff_count], 'kl cutoff! '), int)]): kl_cutoff = ( self._config.kl_cutoff_coef * tf.cast(kl > cutoff_threshold, tf.float32) * (kl - cutoff_threshold) ** 2) policy_loss = surrogate_loss + kl_penalty + kl_cutoff entropy = tf.reduce_mean(policy.entropy(), axis=1) if self._config.entropy_regularization: policy_loss -= self._config.entropy_regularization * entropy summary = tf.summary.merge([ tf.summary.histogram('entropy', entropy), tf.summary.histogram('kl', kl), tf.summary.histogram('surrogate_loss', surrogate_loss), tf.summary.histogram('kl_penalty', kl_penalty), tf.summary.histogram('kl_cutoff', kl_cutoff), tf.summary.histogram('kl_penalty_combined', kl_penalty + kl_cutoff), tf.summary.histogram('policy_loss', policy_loss), tf.summary.scalar('avg_surr_loss', tf.reduce_mean(surrogate_loss)), tf.summary.scalar('avg_kl_penalty', tf.reduce_mean(kl_penalty)), tf.summary.scalar('avg_policy_loss', tf.reduce_mean(policy_loss))]) policy_loss = tf.reduce_mean(policy_loss, 0) return tf.check_numerics(policy_loss, 'policy_loss'), summary
python
def _policy_loss( self, old_policy, policy, action, advantage, length): """Compute the policy loss composed of multiple components. 1. The policy gradient loss is importance sampled from the data-collecting policy at the beginning of training. 2. The second term is a KL penalty between the policy at the beginning of training and the current policy. 3. Additionally, if this KL already changed more than twice the target amount, we activate a strong penalty discouraging further divergence. Args: old_policy: Action distribution of the behavioral policy. policy: Sequences of distribution params of the current policy. action: Sequences of actions. advantage: Sequences of advantages. length: Batch of sequence lengths. Returns: Tuple of loss tensor and summary tensor. """ with tf.name_scope('policy_loss'): kl = tf.contrib.distributions.kl_divergence(old_policy, policy) # Infinite values in the KL, even for padding frames that we mask out, # cause NaN gradients since TensorFlow computes gradients with respect to # the whole input tensor. kl = tf.check_numerics(kl, 'kl') kl = tf.reduce_mean(self._mask(kl, length), 1) policy_gradient = tf.exp( policy.log_prob(action) - old_policy.log_prob(action)) surrogate_loss = -tf.reduce_mean(self._mask( policy_gradient * tf.stop_gradient(advantage), length), 1) surrogate_loss = tf.check_numerics(surrogate_loss, 'surrogate_loss') kl_penalty = self._penalty * kl cutoff_threshold = self._config.kl_target * self._config.kl_cutoff_factor cutoff_count = tf.reduce_sum( tf.cast(kl > cutoff_threshold, tf.int32)) with tf.control_dependencies([tf.cond( cutoff_count > 0, lambda: tf.Print(0, [cutoff_count], 'kl cutoff! '), int)]): kl_cutoff = ( self._config.kl_cutoff_coef * tf.cast(kl > cutoff_threshold, tf.float32) * (kl - cutoff_threshold) ** 2) policy_loss = surrogate_loss + kl_penalty + kl_cutoff entropy = tf.reduce_mean(policy.entropy(), axis=1) if self._config.entropy_regularization: policy_loss -= self._config.entropy_regularization * entropy summary = tf.summary.merge([ tf.summary.histogram('entropy', entropy), tf.summary.histogram('kl', kl), tf.summary.histogram('surrogate_loss', surrogate_loss), tf.summary.histogram('kl_penalty', kl_penalty), tf.summary.histogram('kl_cutoff', kl_cutoff), tf.summary.histogram('kl_penalty_combined', kl_penalty + kl_cutoff), tf.summary.histogram('policy_loss', policy_loss), tf.summary.scalar('avg_surr_loss', tf.reduce_mean(surrogate_loss)), tf.summary.scalar('avg_kl_penalty', tf.reduce_mean(kl_penalty)), tf.summary.scalar('avg_policy_loss', tf.reduce_mean(policy_loss))]) policy_loss = tf.reduce_mean(policy_loss, 0) return tf.check_numerics(policy_loss, 'policy_loss'), summary
[ "def", "_policy_loss", "(", "self", ",", "old_policy", ",", "policy", ",", "action", ",", "advantage", ",", "length", ")", ":", "with", "tf", ".", "name_scope", "(", "'policy_loss'", ")", ":", "kl", "=", "tf", ".", "contrib", ".", "distributions", ".", "kl_divergence", "(", "old_policy", ",", "policy", ")", "# Infinite values in the KL, even for padding frames that we mask out,", "# cause NaN gradients since TensorFlow computes gradients with respect to", "# the whole input tensor.", "kl", "=", "tf", ".", "check_numerics", "(", "kl", ",", "'kl'", ")", "kl", "=", "tf", ".", "reduce_mean", "(", "self", ".", "_mask", "(", "kl", ",", "length", ")", ",", "1", ")", "policy_gradient", "=", "tf", ".", "exp", "(", "policy", ".", "log_prob", "(", "action", ")", "-", "old_policy", ".", "log_prob", "(", "action", ")", ")", "surrogate_loss", "=", "-", "tf", ".", "reduce_mean", "(", "self", ".", "_mask", "(", "policy_gradient", "*", "tf", ".", "stop_gradient", "(", "advantage", ")", ",", "length", ")", ",", "1", ")", "surrogate_loss", "=", "tf", ".", "check_numerics", "(", "surrogate_loss", ",", "'surrogate_loss'", ")", "kl_penalty", "=", "self", ".", "_penalty", "*", "kl", "cutoff_threshold", "=", "self", ".", "_config", ".", "kl_target", "*", "self", ".", "_config", ".", "kl_cutoff_factor", "cutoff_count", "=", "tf", ".", "reduce_sum", "(", "tf", ".", "cast", "(", "kl", ">", "cutoff_threshold", ",", "tf", ".", "int32", ")", ")", "with", "tf", ".", "control_dependencies", "(", "[", "tf", ".", "cond", "(", "cutoff_count", ">", "0", ",", "lambda", ":", "tf", ".", "Print", "(", "0", ",", "[", "cutoff_count", "]", ",", "'kl cutoff! '", ")", ",", "int", ")", "]", ")", ":", "kl_cutoff", "=", "(", "self", ".", "_config", ".", "kl_cutoff_coef", "*", "tf", ".", "cast", "(", "kl", ">", "cutoff_threshold", ",", "tf", ".", "float32", ")", "*", "(", "kl", "-", "cutoff_threshold", ")", "**", "2", ")", "policy_loss", "=", "surrogate_loss", "+", "kl_penalty", "+", "kl_cutoff", "entropy", "=", "tf", ".", "reduce_mean", "(", "policy", ".", "entropy", "(", ")", ",", "axis", "=", "1", ")", "if", "self", ".", "_config", ".", "entropy_regularization", ":", "policy_loss", "-=", "self", ".", "_config", ".", "entropy_regularization", "*", "entropy", "summary", "=", "tf", ".", "summary", ".", "merge", "(", "[", "tf", ".", "summary", ".", "histogram", "(", "'entropy'", ",", "entropy", ")", ",", "tf", ".", "summary", ".", "histogram", "(", "'kl'", ",", "kl", ")", ",", "tf", ".", "summary", ".", "histogram", "(", "'surrogate_loss'", ",", "surrogate_loss", ")", ",", "tf", ".", "summary", ".", "histogram", "(", "'kl_penalty'", ",", "kl_penalty", ")", ",", "tf", ".", "summary", ".", "histogram", "(", "'kl_cutoff'", ",", "kl_cutoff", ")", ",", "tf", ".", "summary", ".", "histogram", "(", "'kl_penalty_combined'", ",", "kl_penalty", "+", "kl_cutoff", ")", ",", "tf", ".", "summary", ".", "histogram", "(", "'policy_loss'", ",", "policy_loss", ")", ",", "tf", ".", "summary", ".", "scalar", "(", "'avg_surr_loss'", ",", "tf", ".", "reduce_mean", "(", "surrogate_loss", ")", ")", ",", "tf", ".", "summary", ".", "scalar", "(", "'avg_kl_penalty'", ",", "tf", ".", "reduce_mean", "(", "kl_penalty", ")", ")", ",", "tf", ".", "summary", ".", "scalar", "(", "'avg_policy_loss'", ",", "tf", ".", "reduce_mean", "(", "policy_loss", ")", ")", "]", ")", "policy_loss", "=", "tf", ".", "reduce_mean", "(", "policy_loss", ",", "0", ")", "return", "tf", ".", "check_numerics", "(", "policy_loss", ",", "'policy_loss'", ")", ",", "summary" ]
Compute the policy loss composed of multiple components. 1. The policy gradient loss is importance sampled from the data-collecting policy at the beginning of training. 2. The second term is a KL penalty between the policy at the beginning of training and the current policy. 3. Additionally, if this KL already changed more than twice the target amount, we activate a strong penalty discouraging further divergence. Args: old_policy: Action distribution of the behavioral policy. policy: Sequences of distribution params of the current policy. action: Sequences of actions. advantage: Sequences of advantages. length: Batch of sequence lengths. Returns: Tuple of loss tensor and summary tensor.
[ "Compute", "the", "policy", "loss", "composed", "of", "multiple", "components", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/algorithms/ppo/ppo.py#L443-L503
6,875
google-research/batch-ppo
agents/algorithms/ppo/ppo.py
PPO._adjust_penalty
def _adjust_penalty(self, observ, old_policy_params, length): """Adjust the KL policy between the behavioral and current policy. Compute how much the policy actually changed during the multiple update steps. Adjust the penalty strength for the next training phase if we overshot or undershot the target divergence too much. Args: observ: Sequences of observations. old_policy_params: Parameters of the behavioral policy. length: Batch of sequence lengths. Returns: Summary tensor. """ old_policy = self._policy_type(**old_policy_params) with tf.name_scope('adjust_penalty'): network = self._network(observ, length) print_penalty = tf.Print(0, [self._penalty], 'current penalty: ') with tf.control_dependencies([print_penalty]): kl_change = tf.reduce_mean(self._mask( tf.contrib.distributions.kl_divergence(old_policy, network.policy), length)) kl_change = tf.Print(kl_change, [kl_change], 'kl change: ') maybe_increase = tf.cond( kl_change > 1.3 * self._config.kl_target, # pylint: disable=g-long-lambda lambda: tf.Print(self._penalty.assign( self._penalty * 1.5), [0], 'increase penalty '), float) maybe_decrease = tf.cond( kl_change < 0.7 * self._config.kl_target, # pylint: disable=g-long-lambda lambda: tf.Print(self._penalty.assign( self._penalty / 1.5), [0], 'decrease penalty '), float) with tf.control_dependencies([maybe_increase, maybe_decrease]): return tf.summary.merge([ tf.summary.scalar('kl_change', kl_change), tf.summary.scalar('penalty', self._penalty)])
python
def _adjust_penalty(self, observ, old_policy_params, length): """Adjust the KL policy between the behavioral and current policy. Compute how much the policy actually changed during the multiple update steps. Adjust the penalty strength for the next training phase if we overshot or undershot the target divergence too much. Args: observ: Sequences of observations. old_policy_params: Parameters of the behavioral policy. length: Batch of sequence lengths. Returns: Summary tensor. """ old_policy = self._policy_type(**old_policy_params) with tf.name_scope('adjust_penalty'): network = self._network(observ, length) print_penalty = tf.Print(0, [self._penalty], 'current penalty: ') with tf.control_dependencies([print_penalty]): kl_change = tf.reduce_mean(self._mask( tf.contrib.distributions.kl_divergence(old_policy, network.policy), length)) kl_change = tf.Print(kl_change, [kl_change], 'kl change: ') maybe_increase = tf.cond( kl_change > 1.3 * self._config.kl_target, # pylint: disable=g-long-lambda lambda: tf.Print(self._penalty.assign( self._penalty * 1.5), [0], 'increase penalty '), float) maybe_decrease = tf.cond( kl_change < 0.7 * self._config.kl_target, # pylint: disable=g-long-lambda lambda: tf.Print(self._penalty.assign( self._penalty / 1.5), [0], 'decrease penalty '), float) with tf.control_dependencies([maybe_increase, maybe_decrease]): return tf.summary.merge([ tf.summary.scalar('kl_change', kl_change), tf.summary.scalar('penalty', self._penalty)])
[ "def", "_adjust_penalty", "(", "self", ",", "observ", ",", "old_policy_params", ",", "length", ")", ":", "old_policy", "=", "self", ".", "_policy_type", "(", "*", "*", "old_policy_params", ")", "with", "tf", ".", "name_scope", "(", "'adjust_penalty'", ")", ":", "network", "=", "self", ".", "_network", "(", "observ", ",", "length", ")", "print_penalty", "=", "tf", ".", "Print", "(", "0", ",", "[", "self", ".", "_penalty", "]", ",", "'current penalty: '", ")", "with", "tf", ".", "control_dependencies", "(", "[", "print_penalty", "]", ")", ":", "kl_change", "=", "tf", ".", "reduce_mean", "(", "self", ".", "_mask", "(", "tf", ".", "contrib", ".", "distributions", ".", "kl_divergence", "(", "old_policy", ",", "network", ".", "policy", ")", ",", "length", ")", ")", "kl_change", "=", "tf", ".", "Print", "(", "kl_change", ",", "[", "kl_change", "]", ",", "'kl change: '", ")", "maybe_increase", "=", "tf", ".", "cond", "(", "kl_change", ">", "1.3", "*", "self", ".", "_config", ".", "kl_target", ",", "# pylint: disable=g-long-lambda", "lambda", ":", "tf", ".", "Print", "(", "self", ".", "_penalty", ".", "assign", "(", "self", ".", "_penalty", "*", "1.5", ")", ",", "[", "0", "]", ",", "'increase penalty '", ")", ",", "float", ")", "maybe_decrease", "=", "tf", ".", "cond", "(", "kl_change", "<", "0.7", "*", "self", ".", "_config", ".", "kl_target", ",", "# pylint: disable=g-long-lambda", "lambda", ":", "tf", ".", "Print", "(", "self", ".", "_penalty", ".", "assign", "(", "self", ".", "_penalty", "/", "1.5", ")", ",", "[", "0", "]", ",", "'decrease penalty '", ")", ",", "float", ")", "with", "tf", ".", "control_dependencies", "(", "[", "maybe_increase", ",", "maybe_decrease", "]", ")", ":", "return", "tf", ".", "summary", ".", "merge", "(", "[", "tf", ".", "summary", ".", "scalar", "(", "'kl_change'", ",", "kl_change", ")", ",", "tf", ".", "summary", ".", "scalar", "(", "'penalty'", ",", "self", ".", "_penalty", ")", "]", ")" ]
Adjust the KL policy between the behavioral and current policy. Compute how much the policy actually changed during the multiple update steps. Adjust the penalty strength for the next training phase if we overshot or undershot the target divergence too much. Args: observ: Sequences of observations. old_policy_params: Parameters of the behavioral policy. length: Batch of sequence lengths. Returns: Summary tensor.
[ "Adjust", "the", "KL", "policy", "between", "the", "behavioral", "and", "current", "policy", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/algorithms/ppo/ppo.py#L505-L544
6,876
google-research/batch-ppo
agents/algorithms/ppo/ppo.py
PPO._mask
def _mask(self, tensor, length, padding_value=0): """Set padding elements of a batch of sequences to a constant. Useful for setting padding elements to zero before summing along the time dimension, or for preventing infinite results in padding elements. Args: tensor: Tensor of sequences. length: Batch of sequence lengths. padding_value: Value to write into padding elements. Returns: Masked sequences. """ with tf.name_scope('mask'): range_ = tf.range(tensor.shape[1].value) mask = range_[None, :] < length[:, None] if tensor.shape.ndims > 2: for _ in range(tensor.shape.ndims - 2): mask = mask[..., None] mask = tf.tile(mask, [1, 1] + tensor.shape[2:].as_list()) masked = tf.where(mask, tensor, padding_value * tf.ones_like(tensor)) return tf.check_numerics(masked, 'masked')
python
def _mask(self, tensor, length, padding_value=0): """Set padding elements of a batch of sequences to a constant. Useful for setting padding elements to zero before summing along the time dimension, or for preventing infinite results in padding elements. Args: tensor: Tensor of sequences. length: Batch of sequence lengths. padding_value: Value to write into padding elements. Returns: Masked sequences. """ with tf.name_scope('mask'): range_ = tf.range(tensor.shape[1].value) mask = range_[None, :] < length[:, None] if tensor.shape.ndims > 2: for _ in range(tensor.shape.ndims - 2): mask = mask[..., None] mask = tf.tile(mask, [1, 1] + tensor.shape[2:].as_list()) masked = tf.where(mask, tensor, padding_value * tf.ones_like(tensor)) return tf.check_numerics(masked, 'masked')
[ "def", "_mask", "(", "self", ",", "tensor", ",", "length", ",", "padding_value", "=", "0", ")", ":", "with", "tf", ".", "name_scope", "(", "'mask'", ")", ":", "range_", "=", "tf", ".", "range", "(", "tensor", ".", "shape", "[", "1", "]", ".", "value", ")", "mask", "=", "range_", "[", "None", ",", ":", "]", "<", "length", "[", ":", ",", "None", "]", "if", "tensor", ".", "shape", ".", "ndims", ">", "2", ":", "for", "_", "in", "range", "(", "tensor", ".", "shape", ".", "ndims", "-", "2", ")", ":", "mask", "=", "mask", "[", "...", ",", "None", "]", "mask", "=", "tf", ".", "tile", "(", "mask", ",", "[", "1", ",", "1", "]", "+", "tensor", ".", "shape", "[", "2", ":", "]", ".", "as_list", "(", ")", ")", "masked", "=", "tf", ".", "where", "(", "mask", ",", "tensor", ",", "padding_value", "*", "tf", ".", "ones_like", "(", "tensor", ")", ")", "return", "tf", ".", "check_numerics", "(", "masked", ",", "'masked'", ")" ]
Set padding elements of a batch of sequences to a constant. Useful for setting padding elements to zero before summing along the time dimension, or for preventing infinite results in padding elements. Args: tensor: Tensor of sequences. length: Batch of sequence lengths. padding_value: Value to write into padding elements. Returns: Masked sequences.
[ "Set", "padding", "elements", "of", "a", "batch", "of", "sequences", "to", "a", "constant", "." ]
3d09705977bae4e7c3eb20339a3b384d2a5531e4
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/algorithms/ppo/ppo.py#L546-L568
6,877
celery/cell
cell/workflow/entities.py
Server.main
def main(self, *args, **kwargs): """Implement the actor main loop by waiting forever for messages.""" self.start(*args, **kwargs) try: while 1: body, message = yield self.receive() handler = self.get_handler(message) handler(body, message) finally: self.stop(*args, **kwargs)
python
def main(self, *args, **kwargs): """Implement the actor main loop by waiting forever for messages.""" self.start(*args, **kwargs) try: while 1: body, message = yield self.receive() handler = self.get_handler(message) handler(body, message) finally: self.stop(*args, **kwargs)
[ "def", "main", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "self", ".", "start", "(", "*", "args", ",", "*", "*", "kwargs", ")", "try", ":", "while", "1", ":", "body", ",", "message", "=", "yield", "self", ".", "receive", "(", ")", "handler", "=", "self", ".", "get_handler", "(", "message", ")", "handler", "(", "body", ",", "message", ")", "finally", ":", "self", ".", "stop", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
Implement the actor main loop by waiting forever for messages.
[ "Implement", "the", "actor", "main", "loop", "by", "waiting", "forever", "for", "messages", "." ]
c7f9b3a0c11ae3429eacb4114279cf2614e94a48
https://github.com/celery/cell/blob/c7f9b3a0c11ae3429eacb4114279cf2614e94a48/cell/workflow/entities.py#L73-L82
6,878
celery/cell
cell/actors.py
Actor.send
def send(self, method, args={}, to=None, nowait=False, **kwargs): """Call method on agent listening to ``routing_key``. See :meth:`call_or_cast` for a full list of supported arguments. If the keyword argument `nowait` is false (default) it will block and return the reply. j """ if to is None: to = self.routing_key r = self.call_or_cast(method, args, routing_key=to, nowait=nowait, **kwargs) if not nowait: return r.get()
python
def send(self, method, args={}, to=None, nowait=False, **kwargs): """Call method on agent listening to ``routing_key``. See :meth:`call_or_cast` for a full list of supported arguments. If the keyword argument `nowait` is false (default) it will block and return the reply. j """ if to is None: to = self.routing_key r = self.call_or_cast(method, args, routing_key=to, nowait=nowait, **kwargs) if not nowait: return r.get()
[ "def", "send", "(", "self", ",", "method", ",", "args", "=", "{", "}", ",", "to", "=", "None", ",", "nowait", "=", "False", ",", "*", "*", "kwargs", ")", ":", "if", "to", "is", "None", ":", "to", "=", "self", ".", "routing_key", "r", "=", "self", ".", "call_or_cast", "(", "method", ",", "args", ",", "routing_key", "=", "to", ",", "nowait", "=", "nowait", ",", "*", "*", "kwargs", ")", "if", "not", "nowait", ":", "return", "r", ".", "get", "(", ")" ]
Call method on agent listening to ``routing_key``. See :meth:`call_or_cast` for a full list of supported arguments. If the keyword argument `nowait` is false (default) it will block and return the reply. j
[ "Call", "method", "on", "agent", "listening", "to", "routing_key", "." ]
c7f9b3a0c11ae3429eacb4114279cf2614e94a48
https://github.com/celery/cell/blob/c7f9b3a0c11ae3429eacb4114279cf2614e94a48/cell/actors.py#L259-L275
6,879
celery/cell
cell/actors.py
Actor.throw
def throw(self, method, args={}, nowait=False, **kwargs): """Call method on one of the agents in round robin. See :meth:`call_or_cast` for a full list of supported arguments. If the keyword argument `nowait` is false (default) it will block and return the reply. """ r = self.call_or_cast(method, args, type=ACTOR_TYPE.RR, nowait=nowait, **kwargs) if not nowait: return r
python
def throw(self, method, args={}, nowait=False, **kwargs): """Call method on one of the agents in round robin. See :meth:`call_or_cast` for a full list of supported arguments. If the keyword argument `nowait` is false (default) it will block and return the reply. """ r = self.call_or_cast(method, args, type=ACTOR_TYPE.RR, nowait=nowait, **kwargs) if not nowait: return r
[ "def", "throw", "(", "self", ",", "method", ",", "args", "=", "{", "}", ",", "nowait", "=", "False", ",", "*", "*", "kwargs", ")", ":", "r", "=", "self", ".", "call_or_cast", "(", "method", ",", "args", ",", "type", "=", "ACTOR_TYPE", ".", "RR", ",", "nowait", "=", "nowait", ",", "*", "*", "kwargs", ")", "if", "not", "nowait", ":", "return", "r" ]
Call method on one of the agents in round robin. See :meth:`call_or_cast` for a full list of supported arguments. If the keyword argument `nowait` is false (default) it will block and return the reply.
[ "Call", "method", "on", "one", "of", "the", "agents", "in", "round", "robin", "." ]
c7f9b3a0c11ae3429eacb4114279cf2614e94a48
https://github.com/celery/cell/blob/c7f9b3a0c11ae3429eacb4114279cf2614e94a48/cell/actors.py#L277-L290
6,880
celery/cell
cell/actors.py
Actor.scatter
def scatter(self, method, args={}, nowait=False, timeout=None, **kwargs): """Broadcast method to all agents. if nowait is False, returns generator to iterate over the results. :keyword limit: Limit number of reads from the queue. Unlimited by default. :keyword timeout: the timeout (in float seconds) waiting for replies. Default is :attr:`default_timeout`. **Examples** ``scatter`` is a generator (if nowait is False):: >>> res = scatter() >>> res.next() # one event consumed, or timed out. >>> res = scatter(limit=2): >>> for i in res: # two events consumed or timeout >>> pass See :meth:`call_or_cast` for a full list of supported arguments. """ timeout = timeout if timeout is not None else self.default_timeout r = self.call_or_cast(method, args, type=ACTOR_TYPE.SCATTER, nowait=nowait, timeout=timeout, **kwargs) if not nowait: return r.gather(timeout=timeout, **kwargs)
python
def scatter(self, method, args={}, nowait=False, timeout=None, **kwargs): """Broadcast method to all agents. if nowait is False, returns generator to iterate over the results. :keyword limit: Limit number of reads from the queue. Unlimited by default. :keyword timeout: the timeout (in float seconds) waiting for replies. Default is :attr:`default_timeout`. **Examples** ``scatter`` is a generator (if nowait is False):: >>> res = scatter() >>> res.next() # one event consumed, or timed out. >>> res = scatter(limit=2): >>> for i in res: # two events consumed or timeout >>> pass See :meth:`call_or_cast` for a full list of supported arguments. """ timeout = timeout if timeout is not None else self.default_timeout r = self.call_or_cast(method, args, type=ACTOR_TYPE.SCATTER, nowait=nowait, timeout=timeout, **kwargs) if not nowait: return r.gather(timeout=timeout, **kwargs)
[ "def", "scatter", "(", "self", ",", "method", ",", "args", "=", "{", "}", ",", "nowait", "=", "False", ",", "timeout", "=", "None", ",", "*", "*", "kwargs", ")", ":", "timeout", "=", "timeout", "if", "timeout", "is", "not", "None", "else", "self", ".", "default_timeout", "r", "=", "self", ".", "call_or_cast", "(", "method", ",", "args", ",", "type", "=", "ACTOR_TYPE", ".", "SCATTER", ",", "nowait", "=", "nowait", ",", "timeout", "=", "timeout", ",", "*", "*", "kwargs", ")", "if", "not", "nowait", ":", "return", "r", ".", "gather", "(", "timeout", "=", "timeout", ",", "*", "*", "kwargs", ")" ]
Broadcast method to all agents. if nowait is False, returns generator to iterate over the results. :keyword limit: Limit number of reads from the queue. Unlimited by default. :keyword timeout: the timeout (in float seconds) waiting for replies. Default is :attr:`default_timeout`. **Examples** ``scatter`` is a generator (if nowait is False):: >>> res = scatter() >>> res.next() # one event consumed, or timed out. >>> res = scatter(limit=2): >>> for i in res: # two events consumed or timeout >>> pass See :meth:`call_or_cast` for a full list of supported arguments.
[ "Broadcast", "method", "to", "all", "agents", "." ]
c7f9b3a0c11ae3429eacb4114279cf2614e94a48
https://github.com/celery/cell/blob/c7f9b3a0c11ae3429eacb4114279cf2614e94a48/cell/actors.py#L292-L320
6,881
celery/cell
cell/actors.py
Actor.call_or_cast
def call_or_cast(self, method, args={}, nowait=False, **kwargs): """Apply remote `method` asynchronously or synchronously depending on the value of `nowait`. :param method: The name of the remote method to perform. :param args: Dictionary of arguments for the method. :keyword nowait: If false the call will block until the result is available and return it (default), if true the call will be non-blocking and no result will be returned. :keyword retry: If set to true then message sending will be retried in the event of connection failures. Default is decided by the :attr:`retry` attributed. :keyword retry_policy: Override retry policies. See :attr:`retry_policy`. This must be a dictionary, and keys will be merged with the default retry policy. :keyword timeout: Timeout to wait for replies in seconds as a float (**only relevant in blocking mode**). :keyword limit: Limit number of replies to wait for (**only relevant in blocking mode**). :keyword callback: If provided, this callback will be called for every reply received (**only relevant in blocking mode**). :keyword \*\*props: Additional message properties. See :meth:`kombu.Producer.publish`. """ return (nowait and self.cast or self.call)(method, args, **kwargs)
python
def call_or_cast(self, method, args={}, nowait=False, **kwargs): """Apply remote `method` asynchronously or synchronously depending on the value of `nowait`. :param method: The name of the remote method to perform. :param args: Dictionary of arguments for the method. :keyword nowait: If false the call will block until the result is available and return it (default), if true the call will be non-blocking and no result will be returned. :keyword retry: If set to true then message sending will be retried in the event of connection failures. Default is decided by the :attr:`retry` attributed. :keyword retry_policy: Override retry policies. See :attr:`retry_policy`. This must be a dictionary, and keys will be merged with the default retry policy. :keyword timeout: Timeout to wait for replies in seconds as a float (**only relevant in blocking mode**). :keyword limit: Limit number of replies to wait for (**only relevant in blocking mode**). :keyword callback: If provided, this callback will be called for every reply received (**only relevant in blocking mode**). :keyword \*\*props: Additional message properties. See :meth:`kombu.Producer.publish`. """ return (nowait and self.cast or self.call)(method, args, **kwargs)
[ "def", "call_or_cast", "(", "self", ",", "method", ",", "args", "=", "{", "}", ",", "nowait", "=", "False", ",", "*", "*", "kwargs", ")", ":", "return", "(", "nowait", "and", "self", ".", "cast", "or", "self", ".", "call", ")", "(", "method", ",", "args", ",", "*", "*", "kwargs", ")" ]
Apply remote `method` asynchronously or synchronously depending on the value of `nowait`. :param method: The name of the remote method to perform. :param args: Dictionary of arguments for the method. :keyword nowait: If false the call will block until the result is available and return it (default), if true the call will be non-blocking and no result will be returned. :keyword retry: If set to true then message sending will be retried in the event of connection failures. Default is decided by the :attr:`retry` attributed. :keyword retry_policy: Override retry policies. See :attr:`retry_policy`. This must be a dictionary, and keys will be merged with the default retry policy. :keyword timeout: Timeout to wait for replies in seconds as a float (**only relevant in blocking mode**). :keyword limit: Limit number of replies to wait for (**only relevant in blocking mode**). :keyword callback: If provided, this callback will be called for every reply received (**only relevant in blocking mode**). :keyword \*\*props: Additional message properties. See :meth:`kombu.Producer.publish`.
[ "Apply", "remote", "method", "asynchronously", "or", "synchronously", "depending", "on", "the", "value", "of", "nowait", "." ]
c7f9b3a0c11ae3429eacb4114279cf2614e94a48
https://github.com/celery/cell/blob/c7f9b3a0c11ae3429eacb4114279cf2614e94a48/cell/actors.py#L322-L347
6,882
celery/cell
cell/actors.py
Actor.cast
def cast(self, method, args={}, declare=None, retry=None, retry_policy=None, type=None, exchange=None, **props): """Send message to actor. Discarding replies.""" retry = self.retry if retry is None else retry body = {'class': self.name, 'method': method, 'args': args} _retry_policy = self.retry_policy if retry_policy: # merge default and custom policies. _retry_policy = dict(_retry_policy, **retry_policy) if type and type not in self.types: raise ValueError('Unsupported type: {0}'.format(type)) elif not type: type = ACTOR_TYPE.DIRECT props.setdefault('routing_key', self.routing_key) props.setdefault('serializer', self.serializer) exchange = exchange or self.type_to_exchange[type]() declare = (maybe_list(declare) or []) + [exchange] with producers[self._connection].acquire(block=True) as producer: return producer.publish(body, exchange=exchange, declare=declare, retry=retry, retry_policy=retry_policy, **props)
python
def cast(self, method, args={}, declare=None, retry=None, retry_policy=None, type=None, exchange=None, **props): """Send message to actor. Discarding replies.""" retry = self.retry if retry is None else retry body = {'class': self.name, 'method': method, 'args': args} _retry_policy = self.retry_policy if retry_policy: # merge default and custom policies. _retry_policy = dict(_retry_policy, **retry_policy) if type and type not in self.types: raise ValueError('Unsupported type: {0}'.format(type)) elif not type: type = ACTOR_TYPE.DIRECT props.setdefault('routing_key', self.routing_key) props.setdefault('serializer', self.serializer) exchange = exchange or self.type_to_exchange[type]() declare = (maybe_list(declare) or []) + [exchange] with producers[self._connection].acquire(block=True) as producer: return producer.publish(body, exchange=exchange, declare=declare, retry=retry, retry_policy=retry_policy, **props)
[ "def", "cast", "(", "self", ",", "method", ",", "args", "=", "{", "}", ",", "declare", "=", "None", ",", "retry", "=", "None", ",", "retry_policy", "=", "None", ",", "type", "=", "None", ",", "exchange", "=", "None", ",", "*", "*", "props", ")", ":", "retry", "=", "self", ".", "retry", "if", "retry", "is", "None", "else", "retry", "body", "=", "{", "'class'", ":", "self", ".", "name", ",", "'method'", ":", "method", ",", "'args'", ":", "args", "}", "_retry_policy", "=", "self", ".", "retry_policy", "if", "retry_policy", ":", "# merge default and custom policies.", "_retry_policy", "=", "dict", "(", "_retry_policy", ",", "*", "*", "retry_policy", ")", "if", "type", "and", "type", "not", "in", "self", ".", "types", ":", "raise", "ValueError", "(", "'Unsupported type: {0}'", ".", "format", "(", "type", ")", ")", "elif", "not", "type", ":", "type", "=", "ACTOR_TYPE", ".", "DIRECT", "props", ".", "setdefault", "(", "'routing_key'", ",", "self", ".", "routing_key", ")", "props", ".", "setdefault", "(", "'serializer'", ",", "self", ".", "serializer", ")", "exchange", "=", "exchange", "or", "self", ".", "type_to_exchange", "[", "type", "]", "(", ")", "declare", "=", "(", "maybe_list", "(", "declare", ")", "or", "[", "]", ")", "+", "[", "exchange", "]", "with", "producers", "[", "self", ".", "_connection", "]", ".", "acquire", "(", "block", "=", "True", ")", "as", "producer", ":", "return", "producer", ".", "publish", "(", "body", ",", "exchange", "=", "exchange", ",", "declare", "=", "declare", ",", "retry", "=", "retry", ",", "retry_policy", "=", "retry_policy", ",", "*", "*", "props", ")" ]
Send message to actor. Discarding replies.
[ "Send", "message", "to", "actor", ".", "Discarding", "replies", "." ]
c7f9b3a0c11ae3429eacb4114279cf2614e94a48
https://github.com/celery/cell/blob/c7f9b3a0c11ae3429eacb4114279cf2614e94a48/cell/actors.py#L398-L420
6,883
celery/cell
cell/actors.py
Actor.handle_call
def handle_call(self, body, message): """Handle call message.""" try: r = self._DISPATCH(body, ticket=message.properties['reply_to']) except self.Next: # don't reply, delegate to other agents. pass else: self.reply(message, r)
python
def handle_call(self, body, message): """Handle call message.""" try: r = self._DISPATCH(body, ticket=message.properties['reply_to']) except self.Next: # don't reply, delegate to other agents. pass else: self.reply(message, r)
[ "def", "handle_call", "(", "self", ",", "body", ",", "message", ")", ":", "try", ":", "r", "=", "self", ".", "_DISPATCH", "(", "body", ",", "ticket", "=", "message", ".", "properties", "[", "'reply_to'", "]", ")", "except", "self", ".", "Next", ":", "# don't reply, delegate to other agents.", "pass", "else", ":", "self", ".", "reply", "(", "message", ",", "r", ")" ]
Handle call message.
[ "Handle", "call", "message", "." ]
c7f9b3a0c11ae3429eacb4114279cf2614e94a48
https://github.com/celery/cell/blob/c7f9b3a0c11ae3429eacb4114279cf2614e94a48/cell/actors.py#L434-L442
6,884
celery/cell
cell/actors.py
Actor._on_message
def _on_message(self, body, message): """What to do when a message is received. This is a kombu consumer callback taking the standard ``body`` and ``message`` arguments. Note that if the properties of the message contains a value for ``reply_to`` then a proper implementation is expected to send a reply. """ if message.properties.get('reply_to'): handler = self.handle_call else: handler = self.handle_cast def handle(): # Do not ack the message if an exceptional error occurs, # but do ack the message if SystemExit or KeyboardInterrupt # is raised, as this is probably intended. try: handler(body, message) except Exception: raise except BaseException: message.ack() raise else: message.ack() handle()
python
def _on_message(self, body, message): """What to do when a message is received. This is a kombu consumer callback taking the standard ``body`` and ``message`` arguments. Note that if the properties of the message contains a value for ``reply_to`` then a proper implementation is expected to send a reply. """ if message.properties.get('reply_to'): handler = self.handle_call else: handler = self.handle_cast def handle(): # Do not ack the message if an exceptional error occurs, # but do ack the message if SystemExit or KeyboardInterrupt # is raised, as this is probably intended. try: handler(body, message) except Exception: raise except BaseException: message.ack() raise else: message.ack() handle()
[ "def", "_on_message", "(", "self", ",", "body", ",", "message", ")", ":", "if", "message", ".", "properties", ".", "get", "(", "'reply_to'", ")", ":", "handler", "=", "self", ".", "handle_call", "else", ":", "handler", "=", "self", ".", "handle_cast", "def", "handle", "(", ")", ":", "# Do not ack the message if an exceptional error occurs,", "# but do ack the message if SystemExit or KeyboardInterrupt", "# is raised, as this is probably intended.", "try", ":", "handler", "(", "body", ",", "message", ")", "except", "Exception", ":", "raise", "except", "BaseException", ":", "message", ".", "ack", "(", ")", "raise", "else", ":", "message", ".", "ack", "(", ")", "handle", "(", ")" ]
What to do when a message is received. This is a kombu consumer callback taking the standard ``body`` and ``message`` arguments. Note that if the properties of the message contains a value for ``reply_to`` then a proper implementation is expected to send a reply.
[ "What", "to", "do", "when", "a", "message", "is", "received", "." ]
c7f9b3a0c11ae3429eacb4114279cf2614e94a48
https://github.com/celery/cell/blob/c7f9b3a0c11ae3429eacb4114279cf2614e94a48/cell/actors.py#L460-L489
6,885
celery/cell
cell/bin/base.py
Command.parse_options
def parse_options(self, prog_name, arguments): """Parse the available options.""" # Don't want to load configuration to just print the version, # so we handle --version manually here. if '--version' in arguments: self.exit_status(self.version, fh=sys.stdout) parser = self.create_parser(prog_name) options, args = parser.parse_args(arguments) return options, args
python
def parse_options(self, prog_name, arguments): """Parse the available options.""" # Don't want to load configuration to just print the version, # so we handle --version manually here. if '--version' in arguments: self.exit_status(self.version, fh=sys.stdout) parser = self.create_parser(prog_name) options, args = parser.parse_args(arguments) return options, args
[ "def", "parse_options", "(", "self", ",", "prog_name", ",", "arguments", ")", ":", "# Don't want to load configuration to just print the version,", "# so we handle --version manually here.", "if", "'--version'", "in", "arguments", ":", "self", ".", "exit_status", "(", "self", ".", "version", ",", "fh", "=", "sys", ".", "stdout", ")", "parser", "=", "self", ".", "create_parser", "(", "prog_name", ")", "options", ",", "args", "=", "parser", ".", "parse_args", "(", "arguments", ")", "return", "options", ",", "args" ]
Parse the available options.
[ "Parse", "the", "available", "options", "." ]
c7f9b3a0c11ae3429eacb4114279cf2614e94a48
https://github.com/celery/cell/blob/c7f9b3a0c11ae3429eacb4114279cf2614e94a48/cell/bin/base.py#L67-L75
6,886
celery/cell
cell/results.py
AsyncResult.get
def get(self, **kwargs): "What kind of arguments should be pass here" kwargs.setdefault('limit', 1) return self._first(self.gather(**kwargs))
python
def get(self, **kwargs): "What kind of arguments should be pass here" kwargs.setdefault('limit', 1) return self._first(self.gather(**kwargs))
[ "def", "get", "(", "self", ",", "*", "*", "kwargs", ")", ":", "kwargs", ".", "setdefault", "(", "'limit'", ",", "1", ")", "return", "self", ".", "_first", "(", "self", ".", "gather", "(", "*", "*", "kwargs", ")", ")" ]
What kind of arguments should be pass here
[ "What", "kind", "of", "arguments", "should", "be", "pass", "here" ]
c7f9b3a0c11ae3429eacb4114279cf2614e94a48
https://github.com/celery/cell/blob/c7f9b3a0c11ae3429eacb4114279cf2614e94a48/cell/results.py#L30-L33
6,887
celery/cell
cell/results.py
AsyncResult._gather
def _gather(self, *args, **kwargs): """Generator over the results """ propagate = kwargs.pop('propagate', True) return (self.to_python(reply, propagate=propagate) for reply in self.actor._collect_replies(*args, **kwargs))
python
def _gather(self, *args, **kwargs): """Generator over the results """ propagate = kwargs.pop('propagate', True) return (self.to_python(reply, propagate=propagate) for reply in self.actor._collect_replies(*args, **kwargs))
[ "def", "_gather", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "propagate", "=", "kwargs", ".", "pop", "(", "'propagate'", ",", "True", ")", "return", "(", "self", ".", "to_python", "(", "reply", ",", "propagate", "=", "propagate", ")", "for", "reply", "in", "self", ".", "actor", ".", "_collect_replies", "(", "*", "args", ",", "*", "*", "kwargs", ")", ")" ]
Generator over the results
[ "Generator", "over", "the", "results" ]
c7f9b3a0c11ae3429eacb4114279cf2614e94a48
https://github.com/celery/cell/blob/c7f9b3a0c11ae3429eacb4114279cf2614e94a48/cell/results.py#L47-L52
6,888
celery/cell
cell/results.py
AsyncResult.to_python
def to_python(self, reply, propagate=True): """Extracts the value out of the reply message. :param reply: In the case of a successful call the reply message will be:: {'ok': return_value, **default_fields} Therefore the method returns: return_value, **default_fields If the method raises an exception the reply message will be:: {'nok': [repr exc, str traceback], **default_fields} :keyword propagate - Propagate exceptions raised instead of returning a result representation of the error. """ try: return reply['ok'] except KeyError: error = self.Error(*reply.get('nok') or ()) if propagate: raise error return error
python
def to_python(self, reply, propagate=True): """Extracts the value out of the reply message. :param reply: In the case of a successful call the reply message will be:: {'ok': return_value, **default_fields} Therefore the method returns: return_value, **default_fields If the method raises an exception the reply message will be:: {'nok': [repr exc, str traceback], **default_fields} :keyword propagate - Propagate exceptions raised instead of returning a result representation of the error. """ try: return reply['ok'] except KeyError: error = self.Error(*reply.get('nok') or ()) if propagate: raise error return error
[ "def", "to_python", "(", "self", ",", "reply", ",", "propagate", "=", "True", ")", ":", "try", ":", "return", "reply", "[", "'ok'", "]", "except", "KeyError", ":", "error", "=", "self", ".", "Error", "(", "*", "reply", ".", "get", "(", "'nok'", ")", "or", "(", ")", ")", "if", "propagate", ":", "raise", "error", "return", "error" ]
Extracts the value out of the reply message. :param reply: In the case of a successful call the reply message will be:: {'ok': return_value, **default_fields} Therefore the method returns: return_value, **default_fields If the method raises an exception the reply message will be:: {'nok': [repr exc, str traceback], **default_fields} :keyword propagate - Propagate exceptions raised instead of returning a result representation of the error.
[ "Extracts", "the", "value", "out", "of", "the", "reply", "message", "." ]
c7f9b3a0c11ae3429eacb4114279cf2614e94a48
https://github.com/celery/cell/blob/c7f9b3a0c11ae3429eacb4114279cf2614e94a48/cell/results.py#L54-L79
6,889
celery/cell
cell/agents.py
dAgent.spawn
def spawn(self, cls, kwargs={}, nowait=False): """Spawn a new actor on a celery worker by sending a remote command to the worker. :param cls: the name of the :class:`~.cell.actors.Actor` class or its derivative. :keyword kwargs: The keyword arguments to pass on to actor __init__ (a :class:`dict`) :keyword nowait: If set to True (default) the call waits for the result of spawning the actor. if False, the spawning is asynchronous. :returns :class:`~.cell.actors.ActorProxy`:, holding the id of the spawned actor. """ actor_id = uuid() if str(qualname(cls)) == '__builtin__.unicode': name = cls else: name = qualname(cls) res = self.call('spawn', {'cls': name, 'id': actor_id, 'kwargs': kwargs}, type=ACTOR_TYPE.RR, nowait=nowait) return ActorProxy(name, actor_id, res, agent=self, connection=self.connection, **kwargs)
python
def spawn(self, cls, kwargs={}, nowait=False): """Spawn a new actor on a celery worker by sending a remote command to the worker. :param cls: the name of the :class:`~.cell.actors.Actor` class or its derivative. :keyword kwargs: The keyword arguments to pass on to actor __init__ (a :class:`dict`) :keyword nowait: If set to True (default) the call waits for the result of spawning the actor. if False, the spawning is asynchronous. :returns :class:`~.cell.actors.ActorProxy`:, holding the id of the spawned actor. """ actor_id = uuid() if str(qualname(cls)) == '__builtin__.unicode': name = cls else: name = qualname(cls) res = self.call('spawn', {'cls': name, 'id': actor_id, 'kwargs': kwargs}, type=ACTOR_TYPE.RR, nowait=nowait) return ActorProxy(name, actor_id, res, agent=self, connection=self.connection, **kwargs)
[ "def", "spawn", "(", "self", ",", "cls", ",", "kwargs", "=", "{", "}", ",", "nowait", "=", "False", ")", ":", "actor_id", "=", "uuid", "(", ")", "if", "str", "(", "qualname", "(", "cls", ")", ")", "==", "'__builtin__.unicode'", ":", "name", "=", "cls", "else", ":", "name", "=", "qualname", "(", "cls", ")", "res", "=", "self", ".", "call", "(", "'spawn'", ",", "{", "'cls'", ":", "name", ",", "'id'", ":", "actor_id", ",", "'kwargs'", ":", "kwargs", "}", ",", "type", "=", "ACTOR_TYPE", ".", "RR", ",", "nowait", "=", "nowait", ")", "return", "ActorProxy", "(", "name", ",", "actor_id", ",", "res", ",", "agent", "=", "self", ",", "connection", "=", "self", ".", "connection", ",", "*", "*", "kwargs", ")" ]
Spawn a new actor on a celery worker by sending a remote command to the worker. :param cls: the name of the :class:`~.cell.actors.Actor` class or its derivative. :keyword kwargs: The keyword arguments to pass on to actor __init__ (a :class:`dict`) :keyword nowait: If set to True (default) the call waits for the result of spawning the actor. if False, the spawning is asynchronous. :returns :class:`~.cell.actors.ActorProxy`:, holding the id of the spawned actor.
[ "Spawn", "a", "new", "actor", "on", "a", "celery", "worker", "by", "sending", "a", "remote", "command", "to", "the", "worker", "." ]
c7f9b3a0c11ae3429eacb4114279cf2614e94a48
https://github.com/celery/cell/blob/c7f9b3a0c11ae3429eacb4114279cf2614e94a48/cell/agents.py#L99-L128
6,890
celery/cell
cell/agents.py
dAgent.select
def select(self, cls, **kwargs): """Get the id of already spawned actor :keyword actor: the name of the :class:`Actor` class """ name = qualname(cls) id = first_reply( self.scatter('select', {'cls': name}, limit=1), cls) return ActorProxy(name, id, agent=self, connection=self.connection, **kwargs)
python
def select(self, cls, **kwargs): """Get the id of already spawned actor :keyword actor: the name of the :class:`Actor` class """ name = qualname(cls) id = first_reply( self.scatter('select', {'cls': name}, limit=1), cls) return ActorProxy(name, id, agent=self, connection=self.connection, **kwargs)
[ "def", "select", "(", "self", ",", "cls", ",", "*", "*", "kwargs", ")", ":", "name", "=", "qualname", "(", "cls", ")", "id", "=", "first_reply", "(", "self", ".", "scatter", "(", "'select'", ",", "{", "'cls'", ":", "name", "}", ",", "limit", "=", "1", ")", ",", "cls", ")", "return", "ActorProxy", "(", "name", ",", "id", ",", "agent", "=", "self", ",", "connection", "=", "self", ".", "connection", ",", "*", "*", "kwargs", ")" ]
Get the id of already spawned actor :keyword actor: the name of the :class:`Actor` class
[ "Get", "the", "id", "of", "already", "spawned", "actor" ]
c7f9b3a0c11ae3429eacb4114279cf2614e94a48
https://github.com/celery/cell/blob/c7f9b3a0c11ae3429eacb4114279cf2614e94a48/cell/agents.py#L130-L139
6,891
celery/cell
cell/agents.py
dAgent.process_message
def process_message(self, actor, body, message): """Process actor message depending depending on the the worker settings. If greenlets are enabled in the worker, the actor message is processed in a greenlet from the greenlet pool, Otherwise, the message is processed by the same thread. The method is invoked from the callback `cell.actors.Actor.on_message` upon receiving of a message. :keyword actor: instance of :class:`Actor` or its derivative. The actor instance to process the message. For the full list of arguments see :meth:`cell.actors.Actor._on_message`. """ if actor is not self and self.is_green(): self.pool.spawn_n(actor._on_message, body, message) else: if not self.is_green() and message.properties.get('reply_to'): warn('Starting a blocking call (%s) on actor (%s) ' 'when greenlets are disabled.', itemgetter('method')(body), actor.__class__) actor._on_message(body, message)
python
def process_message(self, actor, body, message): """Process actor message depending depending on the the worker settings. If greenlets are enabled in the worker, the actor message is processed in a greenlet from the greenlet pool, Otherwise, the message is processed by the same thread. The method is invoked from the callback `cell.actors.Actor.on_message` upon receiving of a message. :keyword actor: instance of :class:`Actor` or its derivative. The actor instance to process the message. For the full list of arguments see :meth:`cell.actors.Actor._on_message`. """ if actor is not self and self.is_green(): self.pool.spawn_n(actor._on_message, body, message) else: if not self.is_green() and message.properties.get('reply_to'): warn('Starting a blocking call (%s) on actor (%s) ' 'when greenlets are disabled.', itemgetter('method')(body), actor.__class__) actor._on_message(body, message)
[ "def", "process_message", "(", "self", ",", "actor", ",", "body", ",", "message", ")", ":", "if", "actor", "is", "not", "self", "and", "self", ".", "is_green", "(", ")", ":", "self", ".", "pool", ".", "spawn_n", "(", "actor", ".", "_on_message", ",", "body", ",", "message", ")", "else", ":", "if", "not", "self", ".", "is_green", "(", ")", "and", "message", ".", "properties", ".", "get", "(", "'reply_to'", ")", ":", "warn", "(", "'Starting a blocking call (%s) on actor (%s) '", "'when greenlets are disabled.'", ",", "itemgetter", "(", "'method'", ")", "(", "body", ")", ",", "actor", ".", "__class__", ")", "actor", ".", "_on_message", "(", "body", ",", "message", ")" ]
Process actor message depending depending on the the worker settings. If greenlets are enabled in the worker, the actor message is processed in a greenlet from the greenlet pool, Otherwise, the message is processed by the same thread. The method is invoked from the callback `cell.actors.Actor.on_message` upon receiving of a message. :keyword actor: instance of :class:`Actor` or its derivative. The actor instance to process the message. For the full list of arguments see :meth:`cell.actors.Actor._on_message`.
[ "Process", "actor", "message", "depending", "depending", "on", "the", "the", "worker", "settings", "." ]
c7f9b3a0c11ae3429eacb4114279cf2614e94a48
https://github.com/celery/cell/blob/c7f9b3a0c11ae3429eacb4114279cf2614e94a48/cell/agents.py#L164-L187
6,892
yhat/pandasql
pandasql/sqldf.py
get_outer_frame_variables
def get_outer_frame_variables(): """ Get a dict of local and global variables of the first outer frame from another file. """ cur_filename = inspect.getframeinfo(inspect.currentframe()).filename outer_frame = next(f for f in inspect.getouterframes(inspect.currentframe()) if f.filename != cur_filename) variables = {} variables.update(outer_frame.frame.f_globals) variables.update(outer_frame.frame.f_locals) return variables
python
def get_outer_frame_variables(): """ Get a dict of local and global variables of the first outer frame from another file. """ cur_filename = inspect.getframeinfo(inspect.currentframe()).filename outer_frame = next(f for f in inspect.getouterframes(inspect.currentframe()) if f.filename != cur_filename) variables = {} variables.update(outer_frame.frame.f_globals) variables.update(outer_frame.frame.f_locals) return variables
[ "def", "get_outer_frame_variables", "(", ")", ":", "cur_filename", "=", "inspect", ".", "getframeinfo", "(", "inspect", ".", "currentframe", "(", ")", ")", ".", "filename", "outer_frame", "=", "next", "(", "f", "for", "f", "in", "inspect", ".", "getouterframes", "(", "inspect", ".", "currentframe", "(", ")", ")", "if", "f", ".", "filename", "!=", "cur_filename", ")", "variables", "=", "{", "}", "variables", ".", "update", "(", "outer_frame", ".", "frame", ".", "f_globals", ")", "variables", ".", "update", "(", "outer_frame", ".", "frame", ".", "f_locals", ")", "return", "variables" ]
Get a dict of local and global variables of the first outer frame from another file.
[ "Get", "a", "dict", "of", "local", "and", "global", "variables", "of", "the", "first", "outer", "frame", "from", "another", "file", "." ]
e799c6f53be9653e8998a25adb5e2f1643442699
https://github.com/yhat/pandasql/blob/e799c6f53be9653e8998a25adb5e2f1643442699/pandasql/sqldf.py#L98-L107
6,893
yhat/pandasql
pandasql/sqldf.py
extract_table_names
def extract_table_names(query): """ Extract table names from an SQL query. """ # a good old fashioned regex. turns out this worked better than actually parsing the code tables_blocks = re.findall(r'(?:FROM|JOIN)\s+(\w+(?:\s*,\s*\w+)*)', query, re.IGNORECASE) tables = [tbl for block in tables_blocks for tbl in re.findall(r'\w+', block)] return set(tables)
python
def extract_table_names(query): """ Extract table names from an SQL query. """ # a good old fashioned regex. turns out this worked better than actually parsing the code tables_blocks = re.findall(r'(?:FROM|JOIN)\s+(\w+(?:\s*,\s*\w+)*)', query, re.IGNORECASE) tables = [tbl for block in tables_blocks for tbl in re.findall(r'\w+', block)] return set(tables)
[ "def", "extract_table_names", "(", "query", ")", ":", "# a good old fashioned regex. turns out this worked better than actually parsing the code", "tables_blocks", "=", "re", ".", "findall", "(", "r'(?:FROM|JOIN)\\s+(\\w+(?:\\s*,\\s*\\w+)*)'", ",", "query", ",", "re", ".", "IGNORECASE", ")", "tables", "=", "[", "tbl", "for", "block", "in", "tables_blocks", "for", "tbl", "in", "re", ".", "findall", "(", "r'\\w+'", ",", "block", ")", "]", "return", "set", "(", "tables", ")" ]
Extract table names from an SQL query.
[ "Extract", "table", "names", "from", "an", "SQL", "query", "." ]
e799c6f53be9653e8998a25adb5e2f1643442699
https://github.com/yhat/pandasql/blob/e799c6f53be9653e8998a25adb5e2f1643442699/pandasql/sqldf.py#L110-L117
6,894
yhat/pandasql
pandasql/sqldf.py
write_table
def write_table(df, tablename, conn): """ Write a dataframe to the database. """ with catch_warnings(): filterwarnings('ignore', message='The provided table name \'%s\' is not found exactly as such in the database' % tablename) to_sql(df, name=tablename, con=conn, index=not any(name is None for name in df.index.names))
python
def write_table(df, tablename, conn): """ Write a dataframe to the database. """ with catch_warnings(): filterwarnings('ignore', message='The provided table name \'%s\' is not found exactly as such in the database' % tablename) to_sql(df, name=tablename, con=conn, index=not any(name is None for name in df.index.names))
[ "def", "write_table", "(", "df", ",", "tablename", ",", "conn", ")", ":", "with", "catch_warnings", "(", ")", ":", "filterwarnings", "(", "'ignore'", ",", "message", "=", "'The provided table name \\'%s\\' is not found exactly as such in the database'", "%", "tablename", ")", "to_sql", "(", "df", ",", "name", "=", "tablename", ",", "con", "=", "conn", ",", "index", "=", "not", "any", "(", "name", "is", "None", "for", "name", "in", "df", ".", "index", ".", "names", ")", ")" ]
Write a dataframe to the database.
[ "Write", "a", "dataframe", "to", "the", "database", "." ]
e799c6f53be9653e8998a25adb5e2f1643442699
https://github.com/yhat/pandasql/blob/e799c6f53be9653e8998a25adb5e2f1643442699/pandasql/sqldf.py#L120-L126
6,895
bsmurphy/PyKrige
benchmarks/kriging_benchmarks.py
make_benchark
def make_benchark(n_train, n_test, n_dim=2): """ Compute the benchmarks for Ordianry Kriging Parameters ---------- n_train : int number of points in the training set n_test : int number of points in the test set n_dim : int number of dimensions (default=2) Returns ------- res : dict a dictionary with the timing results """ X_train = np.random.rand(n_train, n_dim) y_train = np.random.rand(n_train) X_test = np.random.rand(n_test, n_dim) res = {} for variogram_model in VARIOGRAM_MODELS: tic = time() OK = OrdinaryKriging(X_train[:, 0], X_train[:, 1], y_train, variogram_model='linear', verbose=False, enable_plotting=False) res['t_train_{}'.format(variogram_model)] = time() - tic # All the following tests are performed with the linear variogram model for backend in BACKENDS: for n_closest_points in N_MOVING_WINDOW: if backend == 'vectorized' and n_closest_points is not None: continue # this is not supported tic = time() OK.execute('points', X_test[:, 0], X_test[:, 1], backend=backend, n_closest_points=n_closest_points) res['t_test_{}_{}'.format(backend, n_closest_points)] = time() - tic return res
python
def make_benchark(n_train, n_test, n_dim=2): """ Compute the benchmarks for Ordianry Kriging Parameters ---------- n_train : int number of points in the training set n_test : int number of points in the test set n_dim : int number of dimensions (default=2) Returns ------- res : dict a dictionary with the timing results """ X_train = np.random.rand(n_train, n_dim) y_train = np.random.rand(n_train) X_test = np.random.rand(n_test, n_dim) res = {} for variogram_model in VARIOGRAM_MODELS: tic = time() OK = OrdinaryKriging(X_train[:, 0], X_train[:, 1], y_train, variogram_model='linear', verbose=False, enable_plotting=False) res['t_train_{}'.format(variogram_model)] = time() - tic # All the following tests are performed with the linear variogram model for backend in BACKENDS: for n_closest_points in N_MOVING_WINDOW: if backend == 'vectorized' and n_closest_points is not None: continue # this is not supported tic = time() OK.execute('points', X_test[:, 0], X_test[:, 1], backend=backend, n_closest_points=n_closest_points) res['t_test_{}_{}'.format(backend, n_closest_points)] = time() - tic return res
[ "def", "make_benchark", "(", "n_train", ",", "n_test", ",", "n_dim", "=", "2", ")", ":", "X_train", "=", "np", ".", "random", ".", "rand", "(", "n_train", ",", "n_dim", ")", "y_train", "=", "np", ".", "random", ".", "rand", "(", "n_train", ")", "X_test", "=", "np", ".", "random", ".", "rand", "(", "n_test", ",", "n_dim", ")", "res", "=", "{", "}", "for", "variogram_model", "in", "VARIOGRAM_MODELS", ":", "tic", "=", "time", "(", ")", "OK", "=", "OrdinaryKriging", "(", "X_train", "[", ":", ",", "0", "]", ",", "X_train", "[", ":", ",", "1", "]", ",", "y_train", ",", "variogram_model", "=", "'linear'", ",", "verbose", "=", "False", ",", "enable_plotting", "=", "False", ")", "res", "[", "'t_train_{}'", ".", "format", "(", "variogram_model", ")", "]", "=", "time", "(", ")", "-", "tic", "# All the following tests are performed with the linear variogram model", "for", "backend", "in", "BACKENDS", ":", "for", "n_closest_points", "in", "N_MOVING_WINDOW", ":", "if", "backend", "==", "'vectorized'", "and", "n_closest_points", "is", "not", "None", ":", "continue", "# this is not supported", "tic", "=", "time", "(", ")", "OK", ".", "execute", "(", "'points'", ",", "X_test", "[", ":", ",", "0", "]", ",", "X_test", "[", ":", ",", "1", "]", ",", "backend", "=", "backend", ",", "n_closest_points", "=", "n_closest_points", ")", "res", "[", "'t_test_{}_{}'", ".", "format", "(", "backend", ",", "n_closest_points", ")", "]", "=", "time", "(", ")", "-", "tic", "return", "res" ]
Compute the benchmarks for Ordianry Kriging Parameters ---------- n_train : int number of points in the training set n_test : int number of points in the test set n_dim : int number of dimensions (default=2) Returns ------- res : dict a dictionary with the timing results
[ "Compute", "the", "benchmarks", "for", "Ordianry", "Kriging" ]
a4db3003b0b5688658c12faeb95a5a8b2b14b433
https://github.com/bsmurphy/PyKrige/blob/a4db3003b0b5688658c12faeb95a5a8b2b14b433/benchmarks/kriging_benchmarks.py#L14-L57
6,896
bsmurphy/PyKrige
benchmarks/kriging_benchmarks.py
print_benchmark
def print_benchmark(n_train, n_test, n_dim, res): """ Print the benchmarks Parameters ---------- n_train : int number of points in the training set n_test : int number of points in the test set n_dim : int number of dimensions (default=2) res : dict a dictionary with the timing results """ print('='*80) print(' '*10, 'N_dim={}, N_train={}, N_test={}'.format(n_dim, n_train, n_test)) print('='*80) print('\n', '# Training the model', '\n') print('|'.join(['{:>11} '.format(el) for el in ['t_train (s)'] + VARIOGRAM_MODELS])) print('-' * (11 + 2) * (len(VARIOGRAM_MODELS) + 1)) print('|'.join(['{:>11} '.format('Training')] + ['{:>11.2} '.format(el) for el in [res['t_train_{}'.format(mod)] for mod in VARIOGRAM_MODELS]])) print('\n', '# Predicting kriging points', '\n') print('|'.join(['{:>11} '.format(el) for el in ['t_test (s)'] + BACKENDS])) print('-' * (11 + 2) * (len(BACKENDS) + 1)) for n_closest_points in N_MOVING_WINDOW: timing_results = [res.get( 't_test_{}_{}'.format(mod, n_closest_points), '') for mod in BACKENDS] print('|'.join(['{:>11} '.format('N_nn=' + str(n_closest_points))] + ['{:>11.2} '.format(el) for el in timing_results]))
python
def print_benchmark(n_train, n_test, n_dim, res): """ Print the benchmarks Parameters ---------- n_train : int number of points in the training set n_test : int number of points in the test set n_dim : int number of dimensions (default=2) res : dict a dictionary with the timing results """ print('='*80) print(' '*10, 'N_dim={}, N_train={}, N_test={}'.format(n_dim, n_train, n_test)) print('='*80) print('\n', '# Training the model', '\n') print('|'.join(['{:>11} '.format(el) for el in ['t_train (s)'] + VARIOGRAM_MODELS])) print('-' * (11 + 2) * (len(VARIOGRAM_MODELS) + 1)) print('|'.join(['{:>11} '.format('Training')] + ['{:>11.2} '.format(el) for el in [res['t_train_{}'.format(mod)] for mod in VARIOGRAM_MODELS]])) print('\n', '# Predicting kriging points', '\n') print('|'.join(['{:>11} '.format(el) for el in ['t_test (s)'] + BACKENDS])) print('-' * (11 + 2) * (len(BACKENDS) + 1)) for n_closest_points in N_MOVING_WINDOW: timing_results = [res.get( 't_test_{}_{}'.format(mod, n_closest_points), '') for mod in BACKENDS] print('|'.join(['{:>11} '.format('N_nn=' + str(n_closest_points))] + ['{:>11.2} '.format(el) for el in timing_results]))
[ "def", "print_benchmark", "(", "n_train", ",", "n_test", ",", "n_dim", ",", "res", ")", ":", "print", "(", "'='", "*", "80", ")", "print", "(", "' '", "*", "10", ",", "'N_dim={}, N_train={}, N_test={}'", ".", "format", "(", "n_dim", ",", "n_train", ",", "n_test", ")", ")", "print", "(", "'='", "*", "80", ")", "print", "(", "'\\n'", ",", "'# Training the model'", ",", "'\\n'", ")", "print", "(", "'|'", ".", "join", "(", "[", "'{:>11} '", ".", "format", "(", "el", ")", "for", "el", "in", "[", "'t_train (s)'", "]", "+", "VARIOGRAM_MODELS", "]", ")", ")", "print", "(", "'-'", "*", "(", "11", "+", "2", ")", "*", "(", "len", "(", "VARIOGRAM_MODELS", ")", "+", "1", ")", ")", "print", "(", "'|'", ".", "join", "(", "[", "'{:>11} '", ".", "format", "(", "'Training'", ")", "]", "+", "[", "'{:>11.2} '", ".", "format", "(", "el", ")", "for", "el", "in", "[", "res", "[", "'t_train_{}'", ".", "format", "(", "mod", ")", "]", "for", "mod", "in", "VARIOGRAM_MODELS", "]", "]", ")", ")", "print", "(", "'\\n'", ",", "'# Predicting kriging points'", ",", "'\\n'", ")", "print", "(", "'|'", ".", "join", "(", "[", "'{:>11} '", ".", "format", "(", "el", ")", "for", "el", "in", "[", "'t_test (s)'", "]", "+", "BACKENDS", "]", ")", ")", "print", "(", "'-'", "*", "(", "11", "+", "2", ")", "*", "(", "len", "(", "BACKENDS", ")", "+", "1", ")", ")", "for", "n_closest_points", "in", "N_MOVING_WINDOW", ":", "timing_results", "=", "[", "res", ".", "get", "(", "'t_test_{}_{}'", ".", "format", "(", "mod", ",", "n_closest_points", ")", ",", "''", ")", "for", "mod", "in", "BACKENDS", "]", "print", "(", "'|'", ".", "join", "(", "[", "'{:>11} '", ".", "format", "(", "'N_nn='", "+", "str", "(", "n_closest_points", ")", ")", "]", "+", "[", "'{:>11.2} '", ".", "format", "(", "el", ")", "for", "el", "in", "timing_results", "]", ")", ")" ]
Print the benchmarks Parameters ---------- n_train : int number of points in the training set n_test : int number of points in the test set n_dim : int number of dimensions (default=2) res : dict a dictionary with the timing results
[ "Print", "the", "benchmarks" ]
a4db3003b0b5688658c12faeb95a5a8b2b14b433
https://github.com/bsmurphy/PyKrige/blob/a4db3003b0b5688658c12faeb95a5a8b2b14b433/benchmarks/kriging_benchmarks.py#L60-L96
6,897
bsmurphy/PyKrige
pykrige/uk.py
UniversalKriging.display_variogram_model
def display_variogram_model(self): """Displays variogram model with the actual binned data.""" fig = plt.figure() ax = fig.add_subplot(111) ax.plot(self.lags, self.semivariance, 'r*') ax.plot(self.lags, self.variogram_function(self.variogram_model_parameters, self.lags), 'k-') plt.show()
python
def display_variogram_model(self): """Displays variogram model with the actual binned data.""" fig = plt.figure() ax = fig.add_subplot(111) ax.plot(self.lags, self.semivariance, 'r*') ax.plot(self.lags, self.variogram_function(self.variogram_model_parameters, self.lags), 'k-') plt.show()
[ "def", "display_variogram_model", "(", "self", ")", ":", "fig", "=", "plt", ".", "figure", "(", ")", "ax", "=", "fig", ".", "add_subplot", "(", "111", ")", "ax", ".", "plot", "(", "self", ".", "lags", ",", "self", ".", "semivariance", ",", "'r*'", ")", "ax", ".", "plot", "(", "self", ".", "lags", ",", "self", ".", "variogram_function", "(", "self", ".", "variogram_model_parameters", ",", "self", ".", "lags", ")", ",", "'k-'", ")", "plt", ".", "show", "(", ")" ]
Displays variogram model with the actual binned data.
[ "Displays", "variogram", "model", "with", "the", "actual", "binned", "data", "." ]
a4db3003b0b5688658c12faeb95a5a8b2b14b433
https://github.com/bsmurphy/PyKrige/blob/a4db3003b0b5688658c12faeb95a5a8b2b14b433/pykrige/uk.py#L608-L616
6,898
bsmurphy/PyKrige
pykrige/uk.py
UniversalKriging.plot_epsilon_residuals
def plot_epsilon_residuals(self): """Plots the epsilon residuals for the variogram fit.""" fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(range(self.epsilon.size), self.epsilon, c='k', marker='*') ax.axhline(y=0.0) plt.show()
python
def plot_epsilon_residuals(self): """Plots the epsilon residuals for the variogram fit.""" fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(range(self.epsilon.size), self.epsilon, c='k', marker='*') ax.axhline(y=0.0) plt.show()
[ "def", "plot_epsilon_residuals", "(", "self", ")", ":", "fig", "=", "plt", ".", "figure", "(", ")", "ax", "=", "fig", ".", "add_subplot", "(", "111", ")", "ax", ".", "scatter", "(", "range", "(", "self", ".", "epsilon", ".", "size", ")", ",", "self", ".", "epsilon", ",", "c", "=", "'k'", ",", "marker", "=", "'*'", ")", "ax", ".", "axhline", "(", "y", "=", "0.0", ")", "plt", ".", "show", "(", ")" ]
Plots the epsilon residuals for the variogram fit.
[ "Plots", "the", "epsilon", "residuals", "for", "the", "variogram", "fit", "." ]
a4db3003b0b5688658c12faeb95a5a8b2b14b433
https://github.com/bsmurphy/PyKrige/blob/a4db3003b0b5688658c12faeb95a5a8b2b14b433/pykrige/uk.py#L647-L653
6,899
bsmurphy/PyKrige
pykrige/uk.py
UniversalKriging.print_statistics
def print_statistics(self): """Prints out the Q1, Q2, and cR statistics for the variogram fit. NOTE that ideally Q1 is close to zero, Q2 is close to 1, and cR is as small as possible. """ print("Q1 =", self.Q1) print("Q2 =", self.Q2) print("cR =", self.cR)
python
def print_statistics(self): """Prints out the Q1, Q2, and cR statistics for the variogram fit. NOTE that ideally Q1 is close to zero, Q2 is close to 1, and cR is as small as possible. """ print("Q1 =", self.Q1) print("Q2 =", self.Q2) print("cR =", self.cR)
[ "def", "print_statistics", "(", "self", ")", ":", "print", "(", "\"Q1 =\"", ",", "self", ".", "Q1", ")", "print", "(", "\"Q2 =\"", ",", "self", ".", "Q2", ")", "print", "(", "\"cR =\"", ",", "self", ".", "cR", ")" ]
Prints out the Q1, Q2, and cR statistics for the variogram fit. NOTE that ideally Q1 is close to zero, Q2 is close to 1, and cR is as small as possible.
[ "Prints", "out", "the", "Q1", "Q2", "and", "cR", "statistics", "for", "the", "variogram", "fit", ".", "NOTE", "that", "ideally", "Q1", "is", "close", "to", "zero", "Q2", "is", "close", "to", "1", "and", "cR", "is", "as", "small", "as", "possible", "." ]
a4db3003b0b5688658c12faeb95a5a8b2b14b433
https://github.com/bsmurphy/PyKrige/blob/a4db3003b0b5688658c12faeb95a5a8b2b14b433/pykrige/uk.py#L661-L668