id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
6,600
tableau/document-api-python
tableaudocumentapi/xfile.py
xml_open
def xml_open(filename, expected_root=None): """Opens the provided 'filename'. Handles detecting if the file is an archive, detecting the document version, and validating the root tag.""" # Is the file a zip (.twbx or .tdsx) if zipfile.is_zipfile(filename): tree = get_xml_from_archive(filename) else: tree = ET.parse(filename) # Is the file a supported version tree_root = tree.getroot() file_version = Version(tree_root.attrib.get('version', '0.0')) if file_version < MIN_SUPPORTED_VERSION: raise TableauVersionNotSupportedException(file_version) # Does the root tag match the object type (workbook or data source) if expected_root and (expected_root != tree_root.tag): raise TableauInvalidFileException( "'{}'' is not a valid '{}' file".format(filename, expected_root)) return tree
python
def xml_open(filename, expected_root=None): """Opens the provided 'filename'. Handles detecting if the file is an archive, detecting the document version, and validating the root tag.""" # Is the file a zip (.twbx or .tdsx) if zipfile.is_zipfile(filename): tree = get_xml_from_archive(filename) else: tree = ET.parse(filename) # Is the file a supported version tree_root = tree.getroot() file_version = Version(tree_root.attrib.get('version', '0.0')) if file_version < MIN_SUPPORTED_VERSION: raise TableauVersionNotSupportedException(file_version) # Does the root tag match the object type (workbook or data source) if expected_root and (expected_root != tree_root.tag): raise TableauInvalidFileException( "'{}'' is not a valid '{}' file".format(filename, expected_root)) return tree
[ "def", "xml_open", "(", "filename", ",", "expected_root", "=", "None", ")", ":", "# Is the file a zip (.twbx or .tdsx)", "if", "zipfile", ".", "is_zipfile", "(", "filename", ")", ":", "tree", "=", "get_xml_from_archive", "(", "filename", ")", "else", ":", "tree", "=", "ET", ".", "parse", "(", "filename", ")", "# Is the file a supported version", "tree_root", "=", "tree", ".", "getroot", "(", ")", "file_version", "=", "Version", "(", "tree_root", ".", "attrib", ".", "get", "(", "'version'", ",", "'0.0'", ")", ")", "if", "file_version", "<", "MIN_SUPPORTED_VERSION", ":", "raise", "TableauVersionNotSupportedException", "(", "file_version", ")", "# Does the root tag match the object type (workbook or data source)", "if", "expected_root", "and", "(", "expected_root", "!=", "tree_root", ".", "tag", ")", ":", "raise", "TableauInvalidFileException", "(", "\"'{}'' is not a valid '{}' file\"", ".", "format", "(", "filename", ",", "expected_root", ")", ")", "return", "tree" ]
Opens the provided 'filename'. Handles detecting if the file is an archive, detecting the document version, and validating the root tag.
[ "Opens", "the", "provided", "filename", ".", "Handles", "detecting", "if", "the", "file", "is", "an", "archive", "detecting", "the", "document", "version", "and", "validating", "the", "root", "tag", "." ]
9097a5b351622c5dd2653fa94624bc012316d8a4
https://github.com/tableau/document-api-python/blob/9097a5b351622c5dd2653fa94624bc012316d8a4/tableaudocumentapi/xfile.py#L24-L46
6,601
tableau/document-api-python
tableaudocumentapi/xfile.py
build_archive_file
def build_archive_file(archive_contents, zip_file): """Build a Tableau-compatible archive file.""" # This is tested against Desktop and Server, and reverse engineered by lots # of trial and error. Do not change this logic. for root_dir, _, files in os.walk(archive_contents): relative_dir = os.path.relpath(root_dir, archive_contents) for f in files: temp_file_full_path = os.path.join( archive_contents, relative_dir, f) zipname = os.path.join(relative_dir, f) zip_file.write(temp_file_full_path, arcname=zipname)
python
def build_archive_file(archive_contents, zip_file): """Build a Tableau-compatible archive file.""" # This is tested against Desktop and Server, and reverse engineered by lots # of trial and error. Do not change this logic. for root_dir, _, files in os.walk(archive_contents): relative_dir = os.path.relpath(root_dir, archive_contents) for f in files: temp_file_full_path = os.path.join( archive_contents, relative_dir, f) zipname = os.path.join(relative_dir, f) zip_file.write(temp_file_full_path, arcname=zipname)
[ "def", "build_archive_file", "(", "archive_contents", ",", "zip_file", ")", ":", "# This is tested against Desktop and Server, and reverse engineered by lots", "# of trial and error. Do not change this logic.", "for", "root_dir", ",", "_", ",", "files", "in", "os", ".", "walk", "(", "archive_contents", ")", ":", "relative_dir", "=", "os", ".", "path", ".", "relpath", "(", "root_dir", ",", "archive_contents", ")", "for", "f", "in", "files", ":", "temp_file_full_path", "=", "os", ".", "path", ".", "join", "(", "archive_contents", ",", "relative_dir", ",", "f", ")", "zipname", "=", "os", ".", "path", ".", "join", "(", "relative_dir", ",", "f", ")", "zip_file", ".", "write", "(", "temp_file_full_path", ",", "arcname", "=", "zipname", ")" ]
Build a Tableau-compatible archive file.
[ "Build", "a", "Tableau", "-", "compatible", "archive", "file", "." ]
9097a5b351622c5dd2653fa94624bc012316d8a4
https://github.com/tableau/document-api-python/blob/9097a5b351622c5dd2653fa94624bc012316d8a4/tableaudocumentapi/xfile.py#L85-L96
6,602
tableau/document-api-python
tableaudocumentapi/connection.py
Connection.from_attributes
def from_attributes(cls, server, dbname, username, dbclass, port=None, query_band=None, initial_sql=None, authentication=''): """Creates a new connection that can be added into a Data Source. defaults to `''` which will be treated as 'prompt' by Tableau.""" root = ET.Element('connection', authentication=authentication) xml = cls(root) xml.server = server xml.dbname = dbname xml.username = username xml.dbclass = dbclass xml.port = port xml.query_band = query_band xml.initial_sql = initial_sql return xml
python
def from_attributes(cls, server, dbname, username, dbclass, port=None, query_band=None, initial_sql=None, authentication=''): """Creates a new connection that can be added into a Data Source. defaults to `''` which will be treated as 'prompt' by Tableau.""" root = ET.Element('connection', authentication=authentication) xml = cls(root) xml.server = server xml.dbname = dbname xml.username = username xml.dbclass = dbclass xml.port = port xml.query_band = query_band xml.initial_sql = initial_sql return xml
[ "def", "from_attributes", "(", "cls", ",", "server", ",", "dbname", ",", "username", ",", "dbclass", ",", "port", "=", "None", ",", "query_band", "=", "None", ",", "initial_sql", "=", "None", ",", "authentication", "=", "''", ")", ":", "root", "=", "ET", ".", "Element", "(", "'connection'", ",", "authentication", "=", "authentication", ")", "xml", "=", "cls", "(", "root", ")", "xml", ".", "server", "=", "server", "xml", ".", "dbname", "=", "dbname", "xml", ".", "username", "=", "username", "xml", ".", "dbclass", "=", "dbclass", "xml", ".", "port", "=", "port", "xml", ".", "query_band", "=", "query_band", "xml", ".", "initial_sql", "=", "initial_sql", "return", "xml" ]
Creates a new connection that can be added into a Data Source. defaults to `''` which will be treated as 'prompt' by Tableau.
[ "Creates", "a", "new", "connection", "that", "can", "be", "added", "into", "a", "Data", "Source", ".", "defaults", "to", "which", "will", "be", "treated", "as", "prompt", "by", "Tableau", "." ]
9097a5b351622c5dd2653fa94624bc012316d8a4
https://github.com/tableau/document-api-python/blob/9097a5b351622c5dd2653fa94624bc012316d8a4/tableaudocumentapi/connection.py#L28-L43
6,603
tableau/document-api-python
tableaudocumentapi/connection.py
Connection.dbname
def dbname(self, value): """ Set the connection's database name property. Args: value: New name of the database. String. Returns: Nothing. """ self._dbname = value self._connectionXML.set('dbname', value)
python
def dbname(self, value): """ Set the connection's database name property. Args: value: New name of the database. String. Returns: Nothing. """ self._dbname = value self._connectionXML.set('dbname', value)
[ "def", "dbname", "(", "self", ",", "value", ")", ":", "self", ".", "_dbname", "=", "value", "self", ".", "_connectionXML", ".", "set", "(", "'dbname'", ",", "value", ")" ]
Set the connection's database name property. Args: value: New name of the database. String. Returns: Nothing.
[ "Set", "the", "connection", "s", "database", "name", "property", "." ]
9097a5b351622c5dd2653fa94624bc012316d8a4
https://github.com/tableau/document-api-python/blob/9097a5b351622c5dd2653fa94624bc012316d8a4/tableaudocumentapi/connection.py#L51-L63
6,604
tableau/document-api-python
tableaudocumentapi/connection.py
Connection.server
def server(self, value): """ Set the connection's server property. Args: value: New server. String. Returns: Nothing. """ self._server = value self._connectionXML.set('server', value)
python
def server(self, value): """ Set the connection's server property. Args: value: New server. String. Returns: Nothing. """ self._server = value self._connectionXML.set('server', value)
[ "def", "server", "(", "self", ",", "value", ")", ":", "self", ".", "_server", "=", "value", "self", ".", "_connectionXML", ".", "set", "(", "'server'", ",", "value", ")" ]
Set the connection's server property. Args: value: New server. String. Returns: Nothing.
[ "Set", "the", "connection", "s", "server", "property", "." ]
9097a5b351622c5dd2653fa94624bc012316d8a4
https://github.com/tableau/document-api-python/blob/9097a5b351622c5dd2653fa94624bc012316d8a4/tableaudocumentapi/connection.py#L71-L83
6,605
tableau/document-api-python
tableaudocumentapi/connection.py
Connection.username
def username(self, value): """ Set the connection's username property. Args: value: New username value. String. Returns: Nothing. """ self._username = value self._connectionXML.set('username', value)
python
def username(self, value): """ Set the connection's username property. Args: value: New username value. String. Returns: Nothing. """ self._username = value self._connectionXML.set('username', value)
[ "def", "username", "(", "self", ",", "value", ")", ":", "self", ".", "_username", "=", "value", "self", ".", "_connectionXML", ".", "set", "(", "'username'", ",", "value", ")" ]
Set the connection's username property. Args: value: New username value. String. Returns: Nothing.
[ "Set", "the", "connection", "s", "username", "property", "." ]
9097a5b351622c5dd2653fa94624bc012316d8a4
https://github.com/tableau/document-api-python/blob/9097a5b351622c5dd2653fa94624bc012316d8a4/tableaudocumentapi/connection.py#L91-L103
6,606
tableau/document-api-python
tableaudocumentapi/connection.py
Connection.dbclass
def dbclass(self, value): """Set the connection's dbclass property. Args: value: New dbclass value. String. Returns: Nothing. """ if not is_valid_dbclass(value): raise AttributeError("'{}' is not a valid database type".format(value)) self._class = value self._connectionXML.set('class', value)
python
def dbclass(self, value): """Set the connection's dbclass property. Args: value: New dbclass value. String. Returns: Nothing. """ if not is_valid_dbclass(value): raise AttributeError("'{}' is not a valid database type".format(value)) self._class = value self._connectionXML.set('class', value)
[ "def", "dbclass", "(", "self", ",", "value", ")", ":", "if", "not", "is_valid_dbclass", "(", "value", ")", ":", "raise", "AttributeError", "(", "\"'{}' is not a valid database type\"", ".", "format", "(", "value", ")", ")", "self", ".", "_class", "=", "value", "self", ".", "_connectionXML", ".", "set", "(", "'class'", ",", "value", ")" ]
Set the connection's dbclass property. Args: value: New dbclass value. String. Returns: Nothing.
[ "Set", "the", "connection", "s", "dbclass", "property", "." ]
9097a5b351622c5dd2653fa94624bc012316d8a4
https://github.com/tableau/document-api-python/blob/9097a5b351622c5dd2653fa94624bc012316d8a4/tableaudocumentapi/connection.py#L116-L130
6,607
tableau/document-api-python
tableaudocumentapi/connection.py
Connection.port
def port(self, value): """Set the connection's port property. Args: value: New port value. String. Returns: Nothing. """ self._port = value # If port is None we remove the element and don't write it to XML if value is None: try: del self._connectionXML.attrib['port'] except KeyError: pass else: self._connectionXML.set('port', value)
python
def port(self, value): """Set the connection's port property. Args: value: New port value. String. Returns: Nothing. """ self._port = value # If port is None we remove the element and don't write it to XML if value is None: try: del self._connectionXML.attrib['port'] except KeyError: pass else: self._connectionXML.set('port', value)
[ "def", "port", "(", "self", ",", "value", ")", ":", "self", ".", "_port", "=", "value", "# If port is None we remove the element and don't write it to XML", "if", "value", "is", "None", ":", "try", ":", "del", "self", ".", "_connectionXML", ".", "attrib", "[", "'port'", "]", "except", "KeyError", ":", "pass", "else", ":", "self", ".", "_connectionXML", ".", "set", "(", "'port'", ",", "value", ")" ]
Set the connection's port property. Args: value: New port value. String. Returns: Nothing.
[ "Set", "the", "connection", "s", "port", "property", "." ]
9097a5b351622c5dd2653fa94624bc012316d8a4
https://github.com/tableau/document-api-python/blob/9097a5b351622c5dd2653fa94624bc012316d8a4/tableaudocumentapi/connection.py#L138-L156
6,608
tableau/document-api-python
tableaudocumentapi/connection.py
Connection.query_band
def query_band(self, value): """Set the connection's query_band property. Args: value: New query_band value. String. Returns: Nothing. """ self._query_band = value # If query band is None we remove the element and don't write it to XML if value is None: try: del self._connectionXML.attrib['query-band-spec'] except KeyError: pass else: self._connectionXML.set('query-band-spec', value)
python
def query_band(self, value): """Set the connection's query_band property. Args: value: New query_band value. String. Returns: Nothing. """ self._query_band = value # If query band is None we remove the element and don't write it to XML if value is None: try: del self._connectionXML.attrib['query-band-spec'] except KeyError: pass else: self._connectionXML.set('query-band-spec', value)
[ "def", "query_band", "(", "self", ",", "value", ")", ":", "self", ".", "_query_band", "=", "value", "# If query band is None we remove the element and don't write it to XML", "if", "value", "is", "None", ":", "try", ":", "del", "self", ".", "_connectionXML", ".", "attrib", "[", "'query-band-spec'", "]", "except", "KeyError", ":", "pass", "else", ":", "self", ".", "_connectionXML", ".", "set", "(", "'query-band-spec'", ",", "value", ")" ]
Set the connection's query_band property. Args: value: New query_band value. String. Returns: Nothing.
[ "Set", "the", "connection", "s", "query_band", "property", "." ]
9097a5b351622c5dd2653fa94624bc012316d8a4
https://github.com/tableau/document-api-python/blob/9097a5b351622c5dd2653fa94624bc012316d8a4/tableaudocumentapi/connection.py#L164-L182
6,609
tableau/document-api-python
tableaudocumentapi/connection.py
Connection.initial_sql
def initial_sql(self, value): """Set the connection's initial_sql property. Args: value: New initial_sql value. String. Returns: Nothing. """ self._initial_sql = value # If initial_sql is None we remove the element and don't write it to XML if value is None: try: del self._connectionXML.attrib['one-time-sql'] except KeyError: pass else: self._connectionXML.set('one-time-sql', value)
python
def initial_sql(self, value): """Set the connection's initial_sql property. Args: value: New initial_sql value. String. Returns: Nothing. """ self._initial_sql = value # If initial_sql is None we remove the element and don't write it to XML if value is None: try: del self._connectionXML.attrib['one-time-sql'] except KeyError: pass else: self._connectionXML.set('one-time-sql', value)
[ "def", "initial_sql", "(", "self", ",", "value", ")", ":", "self", ".", "_initial_sql", "=", "value", "# If initial_sql is None we remove the element and don't write it to XML", "if", "value", "is", "None", ":", "try", ":", "del", "self", ".", "_connectionXML", ".", "attrib", "[", "'one-time-sql'", "]", "except", "KeyError", ":", "pass", "else", ":", "self", ".", "_connectionXML", ".", "set", "(", "'one-time-sql'", ",", "value", ")" ]
Set the connection's initial_sql property. Args: value: New initial_sql value. String. Returns: Nothing.
[ "Set", "the", "connection", "s", "initial_sql", "property", "." ]
9097a5b351622c5dd2653fa94624bc012316d8a4
https://github.com/tableau/document-api-python/blob/9097a5b351622c5dd2653fa94624bc012316d8a4/tableaudocumentapi/connection.py#L190-L208
6,610
tableau/document-api-python
tableaudocumentapi/datasource.py
base36encode
def base36encode(number): """Converts an integer into a base36 string.""" ALPHABET = "0123456789abcdefghijklmnopqrstuvwxyz" base36 = '' sign = '' if number < 0: sign = '-' number = -number if 0 <= number < len(ALPHABET): return sign + ALPHABET[number] while number != 0: number, i = divmod(number, len(ALPHABET)) base36 = ALPHABET[i] + base36 return sign + base36
python
def base36encode(number): """Converts an integer into a base36 string.""" ALPHABET = "0123456789abcdefghijklmnopqrstuvwxyz" base36 = '' sign = '' if number < 0: sign = '-' number = -number if 0 <= number < len(ALPHABET): return sign + ALPHABET[number] while number != 0: number, i = divmod(number, len(ALPHABET)) base36 = ALPHABET[i] + base36 return sign + base36
[ "def", "base36encode", "(", "number", ")", ":", "ALPHABET", "=", "\"0123456789abcdefghijklmnopqrstuvwxyz\"", "base36", "=", "''", "sign", "=", "''", "if", "number", "<", "0", ":", "sign", "=", "'-'", "number", "=", "-", "number", "if", "0", "<=", "number", "<", "len", "(", "ALPHABET", ")", ":", "return", "sign", "+", "ALPHABET", "[", "number", "]", "while", "number", "!=", "0", ":", "number", ",", "i", "=", "divmod", "(", "number", ",", "len", "(", "ALPHABET", ")", ")", "base36", "=", "ALPHABET", "[", "i", "]", "+", "base36", "return", "sign", "+", "base36" ]
Converts an integer into a base36 string.
[ "Converts", "an", "integer", "into", "a", "base36", "string", "." ]
9097a5b351622c5dd2653fa94624bc012316d8a4
https://github.com/tableau/document-api-python/blob/9097a5b351622c5dd2653fa94624bc012316d8a4/tableaudocumentapi/datasource.py#L63-L82
6,611
tableau/document-api-python
tableaudocumentapi/datasource.py
ConnectionParser.get_connections
def get_connections(self): """Find and return all connections based on file format version.""" if float(self._dsversion) < 10: connections = self._extract_legacy_connection() else: connections = self._extract_federated_connections() return connections
python
def get_connections(self): """Find and return all connections based on file format version.""" if float(self._dsversion) < 10: connections = self._extract_legacy_connection() else: connections = self._extract_federated_connections() return connections
[ "def", "get_connections", "(", "self", ")", ":", "if", "float", "(", "self", ".", "_dsversion", ")", "<", "10", ":", "connections", "=", "self", ".", "_extract_legacy_connection", "(", ")", "else", ":", "connections", "=", "self", ".", "_extract_federated_connections", "(", ")", "return", "connections" ]
Find and return all connections based on file format version.
[ "Find", "and", "return", "all", "connections", "based", "on", "file", "format", "version", "." ]
9097a5b351622c5dd2653fa94624bc012316d8a4
https://github.com/tableau/document-api-python/blob/9097a5b351622c5dd2653fa94624bc012316d8a4/tableaudocumentapi/datasource.py#L108-L115
6,612
tableau/document-api-python
tableaudocumentapi/datasource.py
Datasource.from_connections
def from_connections(cls, caption, connections): """Create a new Data Source give a list of Connections.""" root = ET.Element('datasource', caption=caption, version='10.0', inline='true') outer_connection = ET.SubElement(root, 'connection') outer_connection.set('class', 'federated') named_conns = ET.SubElement(outer_connection, 'named-connections') for conn in connections: nc = ET.SubElement(named_conns, 'named-connection', name=_make_unique_name(conn.dbclass), caption=conn.server) nc.append(conn._connectionXML) return cls(root)
python
def from_connections(cls, caption, connections): """Create a new Data Source give a list of Connections.""" root = ET.Element('datasource', caption=caption, version='10.0', inline='true') outer_connection = ET.SubElement(root, 'connection') outer_connection.set('class', 'federated') named_conns = ET.SubElement(outer_connection, 'named-connections') for conn in connections: nc = ET.SubElement(named_conns, 'named-connection', name=_make_unique_name(conn.dbclass), caption=conn.server) nc.append(conn._connectionXML) return cls(root)
[ "def", "from_connections", "(", "cls", ",", "caption", ",", "connections", ")", ":", "root", "=", "ET", ".", "Element", "(", "'datasource'", ",", "caption", "=", "caption", ",", "version", "=", "'10.0'", ",", "inline", "=", "'true'", ")", "outer_connection", "=", "ET", ".", "SubElement", "(", "root", ",", "'connection'", ")", "outer_connection", ".", "set", "(", "'class'", ",", "'federated'", ")", "named_conns", "=", "ET", ".", "SubElement", "(", "outer_connection", ",", "'named-connections'", ")", "for", "conn", "in", "connections", ":", "nc", "=", "ET", ".", "SubElement", "(", "named_conns", ",", "'named-connection'", ",", "name", "=", "_make_unique_name", "(", "conn", ".", "dbclass", ")", ",", "caption", "=", "conn", ".", "server", ")", "nc", ".", "append", "(", "conn", ".", "_connectionXML", ")", "return", "cls", "(", "root", ")" ]
Create a new Data Source give a list of Connections.
[ "Create", "a", "new", "Data", "Source", "give", "a", "list", "of", "Connections", "." ]
9097a5b351622c5dd2653fa94624bc012316d8a4
https://github.com/tableau/document-api-python/blob/9097a5b351622c5dd2653fa94624bc012316d8a4/tableaudocumentapi/datasource.py#L149-L162
6,613
tableau/document-api-python
tableaudocumentapi/field.py
Field.name
def name(self): """ Provides a nice name for the field which is derived from the alias, caption, or the id. The name resolves as either the alias if it's defined, or the caption if alias is not defined, and finally the id which is the underlying name if neither of the fields exist. """ alias = getattr(self, 'alias', None) if alias: return alias caption = getattr(self, 'caption', None) if caption: return caption return self.id
python
def name(self): """ Provides a nice name for the field which is derived from the alias, caption, or the id. The name resolves as either the alias if it's defined, or the caption if alias is not defined, and finally the id which is the underlying name if neither of the fields exist. """ alias = getattr(self, 'alias', None) if alias: return alias caption = getattr(self, 'caption', None) if caption: return caption return self.id
[ "def", "name", "(", "self", ")", ":", "alias", "=", "getattr", "(", "self", ",", "'alias'", ",", "None", ")", "if", "alias", ":", "return", "alias", "caption", "=", "getattr", "(", "self", ",", "'caption'", ",", "None", ")", "if", "caption", ":", "return", "caption", "return", "self", ".", "id" ]
Provides a nice name for the field which is derived from the alias, caption, or the id. The name resolves as either the alias if it's defined, or the caption if alias is not defined, and finally the id which is the underlying name if neither of the fields exist.
[ "Provides", "a", "nice", "name", "for", "the", "field", "which", "is", "derived", "from", "the", "alias", "caption", "or", "the", "id", "." ]
9097a5b351622c5dd2653fa94624bc012316d8a4
https://github.com/tableau/document-api-python/blob/9097a5b351622c5dd2653fa94624bc012316d8a4/tableaudocumentapi/field.py#L99-L112
6,614
maraujop/requests-oauth2
requests_oauth2/oauth2.py
OAuth2._check_configuration
def _check_configuration(self, *attrs): """Check that each named attr has been configured """ for attr in attrs: if getattr(self, attr, None) is None: raise ConfigurationError("{} not configured".format(attr))
python
def _check_configuration(self, *attrs): """Check that each named attr has been configured """ for attr in attrs: if getattr(self, attr, None) is None: raise ConfigurationError("{} not configured".format(attr))
[ "def", "_check_configuration", "(", "self", ",", "*", "attrs", ")", ":", "for", "attr", "in", "attrs", ":", "if", "getattr", "(", "self", ",", "attr", ",", "None", ")", "is", "None", ":", "raise", "ConfigurationError", "(", "\"{} not configured\"", ".", "format", "(", "attr", ")", ")" ]
Check that each named attr has been configured
[ "Check", "that", "each", "named", "attr", "has", "been", "configured" ]
191995aa571d0fbdf5bb166fb0668d5e73fe7817
https://github.com/maraujop/requests-oauth2/blob/191995aa571d0fbdf5bb166fb0668d5e73fe7817/requests_oauth2/oauth2.py#L41-L46
6,615
maraujop/requests-oauth2
requests_oauth2/oauth2.py
OAuth2._make_request
def _make_request(self, url, **kwargs): """ Make a request to an OAuth2 endpoint """ response = requests.post(url, **kwargs) try: return response.json() except ValueError: pass return parse_qs(response.content)
python
def _make_request(self, url, **kwargs): """ Make a request to an OAuth2 endpoint """ response = requests.post(url, **kwargs) try: return response.json() except ValueError: pass return parse_qs(response.content)
[ "def", "_make_request", "(", "self", ",", "url", ",", "*", "*", "kwargs", ")", ":", "response", "=", "requests", ".", "post", "(", "url", ",", "*", "*", "kwargs", ")", "try", ":", "return", "response", ".", "json", "(", ")", "except", "ValueError", ":", "pass", "return", "parse_qs", "(", "response", ".", "content", ")" ]
Make a request to an OAuth2 endpoint
[ "Make", "a", "request", "to", "an", "OAuth2", "endpoint" ]
191995aa571d0fbdf5bb166fb0668d5e73fe7817
https://github.com/maraujop/requests-oauth2/blob/191995aa571d0fbdf5bb166fb0668d5e73fe7817/requests_oauth2/oauth2.py#L48-L57
6,616
maraujop/requests-oauth2
requests_oauth2/oauth2.py
OAuth2.get_token
def get_token(self, code, headers=None, **kwargs): """ Requests an access token """ self._check_configuration("site", "token_url", "redirect_uri", "client_id", "client_secret") url = "%s%s" % (self.site, quote(self.token_url)) data = { 'redirect_uri': self.redirect_uri, 'client_id': self.client_id, 'client_secret': self.client_secret, 'code': code, } data.update(kwargs) return self._make_request(url, data=data, headers=headers)
python
def get_token(self, code, headers=None, **kwargs): """ Requests an access token """ self._check_configuration("site", "token_url", "redirect_uri", "client_id", "client_secret") url = "%s%s" % (self.site, quote(self.token_url)) data = { 'redirect_uri': self.redirect_uri, 'client_id': self.client_id, 'client_secret': self.client_secret, 'code': code, } data.update(kwargs) return self._make_request(url, data=data, headers=headers)
[ "def", "get_token", "(", "self", ",", "code", ",", "headers", "=", "None", ",", "*", "*", "kwargs", ")", ":", "self", ".", "_check_configuration", "(", "\"site\"", ",", "\"token_url\"", ",", "\"redirect_uri\"", ",", "\"client_id\"", ",", "\"client_secret\"", ")", "url", "=", "\"%s%s\"", "%", "(", "self", ".", "site", ",", "quote", "(", "self", ".", "token_url", ")", ")", "data", "=", "{", "'redirect_uri'", ":", "self", ".", "redirect_uri", ",", "'client_id'", ":", "self", ".", "client_id", ",", "'client_secret'", ":", "self", ".", "client_secret", ",", "'code'", ":", "code", ",", "}", "data", ".", "update", "(", "kwargs", ")", "return", "self", ".", "_make_request", "(", "url", ",", "data", "=", "data", ",", "headers", "=", "headers", ")" ]
Requests an access token
[ "Requests", "an", "access", "token" ]
191995aa571d0fbdf5bb166fb0668d5e73fe7817
https://github.com/maraujop/requests-oauth2/blob/191995aa571d0fbdf5bb166fb0668d5e73fe7817/requests_oauth2/oauth2.py#L77-L92
6,617
maraujop/requests-oauth2
requests_oauth2/oauth2.py
OAuth2.refresh_token
def refresh_token(self, headers=None, **kwargs): """ Request a refreshed token """ self._check_configuration("site", "token_url", "client_id", "client_secret") url = "%s%s" % (self.site, quote(self.token_url)) data = { 'client_id': self.client_id, 'client_secret': self.client_secret, } data.update(kwargs) return self._make_request(url, data=data, headers=headers)
python
def refresh_token(self, headers=None, **kwargs): """ Request a refreshed token """ self._check_configuration("site", "token_url", "client_id", "client_secret") url = "%s%s" % (self.site, quote(self.token_url)) data = { 'client_id': self.client_id, 'client_secret': self.client_secret, } data.update(kwargs) return self._make_request(url, data=data, headers=headers)
[ "def", "refresh_token", "(", "self", ",", "headers", "=", "None", ",", "*", "*", "kwargs", ")", ":", "self", ".", "_check_configuration", "(", "\"site\"", ",", "\"token_url\"", ",", "\"client_id\"", ",", "\"client_secret\"", ")", "url", "=", "\"%s%s\"", "%", "(", "self", ".", "site", ",", "quote", "(", "self", ".", "token_url", ")", ")", "data", "=", "{", "'client_id'", ":", "self", ".", "client_id", ",", "'client_secret'", ":", "self", ".", "client_secret", ",", "}", "data", ".", "update", "(", "kwargs", ")", "return", "self", ".", "_make_request", "(", "url", ",", "data", "=", "data", ",", "headers", "=", "headers", ")" ]
Request a refreshed token
[ "Request", "a", "refreshed", "token" ]
191995aa571d0fbdf5bb166fb0668d5e73fe7817
https://github.com/maraujop/requests-oauth2/blob/191995aa571d0fbdf5bb166fb0668d5e73fe7817/requests_oauth2/oauth2.py#L94-L107
6,618
maraujop/requests-oauth2
requests_oauth2/oauth2.py
OAuth2.revoke_token
def revoke_token(self, token, headers=None, **kwargs): """ Revoke an access token """ self._check_configuration("site", "revoke_uri") url = "%s%s" % (self.site, quote(self.revoke_url)) data = {'token': token} data.update(kwargs) return self._make_request(url, data=data, headers=headers)
python
def revoke_token(self, token, headers=None, **kwargs): """ Revoke an access token """ self._check_configuration("site", "revoke_uri") url = "%s%s" % (self.site, quote(self.revoke_url)) data = {'token': token} data.update(kwargs) return self._make_request(url, data=data, headers=headers)
[ "def", "revoke_token", "(", "self", ",", "token", ",", "headers", "=", "None", ",", "*", "*", "kwargs", ")", ":", "self", ".", "_check_configuration", "(", "\"site\"", ",", "\"revoke_uri\"", ")", "url", "=", "\"%s%s\"", "%", "(", "self", ".", "site", ",", "quote", "(", "self", ".", "revoke_url", ")", ")", "data", "=", "{", "'token'", ":", "token", "}", "data", ".", "update", "(", "kwargs", ")", "return", "self", ".", "_make_request", "(", "url", ",", "data", "=", "data", ",", "headers", "=", "headers", ")" ]
Revoke an access token
[ "Revoke", "an", "access", "token" ]
191995aa571d0fbdf5bb166fb0668d5e73fe7817
https://github.com/maraujop/requests-oauth2/blob/191995aa571d0fbdf5bb166fb0668d5e73fe7817/requests_oauth2/oauth2.py#L109-L118
6,619
jorgenkg/python-neural-network
nimblenet/neuralnet.py
NeuralNet.save_network_to_file
def save_network_to_file(self, filename = "network0.pkl" ): import cPickle, os, re """ This save method pickles the parameters of the current network into a binary file for persistant storage. """ if filename == "network0.pkl": while os.path.exists( os.path.join(os.getcwd(), filename )): filename = re.sub('\d(?!\d)', lambda x: str(int(x.group(0)) + 1), filename) with open( filename , 'wb') as file: store_dict = { "n_inputs" : self.n_inputs, "layers" : self.layers, "n_weights" : self.n_weights, "weights" : self.weights, } cPickle.dump( store_dict, file, 2 )
python
def save_network_to_file(self, filename = "network0.pkl" ): import cPickle, os, re """ This save method pickles the parameters of the current network into a binary file for persistant storage. """ if filename == "network0.pkl": while os.path.exists( os.path.join(os.getcwd(), filename )): filename = re.sub('\d(?!\d)', lambda x: str(int(x.group(0)) + 1), filename) with open( filename , 'wb') as file: store_dict = { "n_inputs" : self.n_inputs, "layers" : self.layers, "n_weights" : self.n_weights, "weights" : self.weights, } cPickle.dump( store_dict, file, 2 )
[ "def", "save_network_to_file", "(", "self", ",", "filename", "=", "\"network0.pkl\"", ")", ":", "import", "cPickle", ",", "os", ",", "re", "if", "filename", "==", "\"network0.pkl\"", ":", "while", "os", ".", "path", ".", "exists", "(", "os", ".", "path", ".", "join", "(", "os", ".", "getcwd", "(", ")", ",", "filename", ")", ")", ":", "filename", "=", "re", ".", "sub", "(", "'\\d(?!\\d)'", ",", "lambda", "x", ":", "str", "(", "int", "(", "x", ".", "group", "(", "0", ")", ")", "+", "1", ")", ",", "filename", ")", "with", "open", "(", "filename", ",", "'wb'", ")", "as", "file", ":", "store_dict", "=", "{", "\"n_inputs\"", ":", "self", ".", "n_inputs", ",", "\"layers\"", ":", "self", ".", "layers", ",", "\"n_weights\"", ":", "self", ".", "n_weights", ",", "\"weights\"", ":", "self", ".", "weights", ",", "}", "cPickle", ".", "dump", "(", "store_dict", ",", "file", ",", "2", ")" ]
This save method pickles the parameters of the current network into a binary file for persistant storage.
[ "This", "save", "method", "pickles", "the", "parameters", "of", "the", "current", "network", "into", "a", "binary", "file", "for", "persistant", "storage", "." ]
617b9940fa157d54d7831c42c0f7ba6857239b9a
https://github.com/jorgenkg/python-neural-network/blob/617b9940fa157d54d7831c42c0f7ba6857239b9a/nimblenet/neuralnet.py#L194-L212
6,620
jorgenkg/python-neural-network
nimblenet/neuralnet.py
NeuralNet.load_network_from_file
def load_network_from_file( filename ): import cPickle """ Load the complete configuration of a previously stored network. """ network = NeuralNet( {"n_inputs":1, "layers":[[0,None]]} ) with open( filename , 'rb') as file: store_dict = cPickle.load(file) network.n_inputs = store_dict["n_inputs"] network.n_weights = store_dict["n_weights"] network.layers = store_dict["layers"] network.weights = store_dict["weights"] return network
python
def load_network_from_file( filename ): import cPickle """ Load the complete configuration of a previously stored network. """ network = NeuralNet( {"n_inputs":1, "layers":[[0,None]]} ) with open( filename , 'rb') as file: store_dict = cPickle.load(file) network.n_inputs = store_dict["n_inputs"] network.n_weights = store_dict["n_weights"] network.layers = store_dict["layers"] network.weights = store_dict["weights"] return network
[ "def", "load_network_from_file", "(", "filename", ")", ":", "import", "cPickle", "network", "=", "NeuralNet", "(", "{", "\"n_inputs\"", ":", "1", ",", "\"layers\"", ":", "[", "[", "0", ",", "None", "]", "]", "}", ")", "with", "open", "(", "filename", ",", "'rb'", ")", "as", "file", ":", "store_dict", "=", "cPickle", ".", "load", "(", "file", ")", "network", ".", "n_inputs", "=", "store_dict", "[", "\"n_inputs\"", "]", "network", ".", "n_weights", "=", "store_dict", "[", "\"n_weights\"", "]", "network", ".", "layers", "=", "store_dict", "[", "\"layers\"", "]", "network", ".", "weights", "=", "store_dict", "[", "\"weights\"", "]", "return", "network" ]
Load the complete configuration of a previously stored network.
[ "Load", "the", "complete", "configuration", "of", "a", "previously", "stored", "network", "." ]
617b9940fa157d54d7831c42c0f7ba6857239b9a
https://github.com/jorgenkg/python-neural-network/blob/617b9940fa157d54d7831c42c0f7ba6857239b9a/nimblenet/neuralnet.py#L216-L231
6,621
jorgenkg/python-neural-network
nimblenet/preprocessing.py
replace_nan
def replace_nan( trainingset, replace_with = None ): # if replace_with = None, replaces with mean value """ Replace instanced of "not a number" with either the mean of the signal feature or a specific value assigned by `replace_nan_with` """ training_data = np.array( [instance.features for instance in trainingset ] ).astype( np.float64 ) def encoder( dataset ): for instance in dataset: instance.features = instance.features.astype( np.float64 ) if np.sum(np.isnan( instance.features )): if replace_with == None: instance.features[ np.isnan( instance.features ) ] = means[ np.isnan( instance.features ) ] else: instance.features[ np.isnan( instance.features ) ] = replace_with return dataset #end if replace_nan_with == None: means = np.mean( np.nan_to_num(training_data), axis=0 ) return encoder
python
def replace_nan( trainingset, replace_with = None ): # if replace_with = None, replaces with mean value """ Replace instanced of "not a number" with either the mean of the signal feature or a specific value assigned by `replace_nan_with` """ training_data = np.array( [instance.features for instance in trainingset ] ).astype( np.float64 ) def encoder( dataset ): for instance in dataset: instance.features = instance.features.astype( np.float64 ) if np.sum(np.isnan( instance.features )): if replace_with == None: instance.features[ np.isnan( instance.features ) ] = means[ np.isnan( instance.features ) ] else: instance.features[ np.isnan( instance.features ) ] = replace_with return dataset #end if replace_nan_with == None: means = np.mean( np.nan_to_num(training_data), axis=0 ) return encoder
[ "def", "replace_nan", "(", "trainingset", ",", "replace_with", "=", "None", ")", ":", "# if replace_with = None, replaces with mean value", "training_data", "=", "np", ".", "array", "(", "[", "instance", ".", "features", "for", "instance", "in", "trainingset", "]", ")", ".", "astype", "(", "np", ".", "float64", ")", "def", "encoder", "(", "dataset", ")", ":", "for", "instance", "in", "dataset", ":", "instance", ".", "features", "=", "instance", ".", "features", ".", "astype", "(", "np", ".", "float64", ")", "if", "np", ".", "sum", "(", "np", ".", "isnan", "(", "instance", ".", "features", ")", ")", ":", "if", "replace_with", "==", "None", ":", "instance", ".", "features", "[", "np", ".", "isnan", "(", "instance", ".", "features", ")", "]", "=", "means", "[", "np", ".", "isnan", "(", "instance", ".", "features", ")", "]", "else", ":", "instance", ".", "features", "[", "np", ".", "isnan", "(", "instance", ".", "features", ")", "]", "=", "replace_with", "return", "dataset", "#end", "if", "replace_nan_with", "==", "None", ":", "means", "=", "np", ".", "mean", "(", "np", ".", "nan_to_num", "(", "training_data", ")", ",", "axis", "=", "0", ")", "return", "encoder" ]
Replace instanced of "not a number" with either the mean of the signal feature or a specific value assigned by `replace_nan_with`
[ "Replace", "instanced", "of", "not", "a", "number", "with", "either", "the", "mean", "of", "the", "signal", "feature", "or", "a", "specific", "value", "assigned", "by", "replace_nan_with" ]
617b9940fa157d54d7831c42c0f7ba6857239b9a
https://github.com/jorgenkg/python-neural-network/blob/617b9940fa157d54d7831c42c0f7ba6857239b9a/nimblenet/preprocessing.py#L47-L69
6,622
jorgenkg/python-neural-network
nimblenet/activation_functions.py
elliot_function
def elliot_function( signal, derivative=False ): """ A fast approximation of sigmoid """ s = 1 # steepness abs_signal = (1 + np.abs(signal * s)) if derivative: return 0.5 * s / abs_signal**2 else: # Return the activation signal return 0.5*(signal * s) / abs_signal + 0.5
python
def elliot_function( signal, derivative=False ): """ A fast approximation of sigmoid """ s = 1 # steepness abs_signal = (1 + np.abs(signal * s)) if derivative: return 0.5 * s / abs_signal**2 else: # Return the activation signal return 0.5*(signal * s) / abs_signal + 0.5
[ "def", "elliot_function", "(", "signal", ",", "derivative", "=", "False", ")", ":", "s", "=", "1", "# steepness", "abs_signal", "=", "(", "1", "+", "np", ".", "abs", "(", "signal", "*", "s", ")", ")", "if", "derivative", ":", "return", "0.5", "*", "s", "/", "abs_signal", "**", "2", "else", ":", "# Return the activation signal", "return", "0.5", "*", "(", "signal", "*", "s", ")", "/", "abs_signal", "+", "0.5" ]
A fast approximation of sigmoid
[ "A", "fast", "approximation", "of", "sigmoid" ]
617b9940fa157d54d7831c42c0f7ba6857239b9a
https://github.com/jorgenkg/python-neural-network/blob/617b9940fa157d54d7831c42c0f7ba6857239b9a/nimblenet/activation_functions.py#L39-L48
6,623
jorgenkg/python-neural-network
nimblenet/activation_functions.py
symmetric_elliot_function
def symmetric_elliot_function( signal, derivative=False ): """ A fast approximation of tanh """ s = 1.0 # steepness abs_signal = (1 + np.abs(signal * s)) if derivative: return s / abs_signal**2 else: # Return the activation signal return (signal * s) / abs_signal
python
def symmetric_elliot_function( signal, derivative=False ): """ A fast approximation of tanh """ s = 1.0 # steepness abs_signal = (1 + np.abs(signal * s)) if derivative: return s / abs_signal**2 else: # Return the activation signal return (signal * s) / abs_signal
[ "def", "symmetric_elliot_function", "(", "signal", ",", "derivative", "=", "False", ")", ":", "s", "=", "1.0", "# steepness", "abs_signal", "=", "(", "1", "+", "np", ".", "abs", "(", "signal", "*", "s", ")", ")", "if", "derivative", ":", "return", "s", "/", "abs_signal", "**", "2", "else", ":", "# Return the activation signal", "return", "(", "signal", "*", "s", ")", "/", "abs_signal" ]
A fast approximation of tanh
[ "A", "fast", "approximation", "of", "tanh" ]
617b9940fa157d54d7831c42c0f7ba6857239b9a
https://github.com/jorgenkg/python-neural-network/blob/617b9940fa157d54d7831c42c0f7ba6857239b9a/nimblenet/activation_functions.py#L52-L61
6,624
jorgenkg/python-neural-network
nimblenet/activation_functions.py
LReLU_function
def LReLU_function( signal, derivative=False, leakage = 0.01 ): """ Leaky Rectified Linear Unit """ if derivative: # Return the partial derivation of the activation function return np.clip(signal > 0, leakage, 1.0) else: # Return the activation signal output = np.copy( signal ) output[ output < 0 ] *= leakage return output
python
def LReLU_function( signal, derivative=False, leakage = 0.01 ): """ Leaky Rectified Linear Unit """ if derivative: # Return the partial derivation of the activation function return np.clip(signal > 0, leakage, 1.0) else: # Return the activation signal output = np.copy( signal ) output[ output < 0 ] *= leakage return output
[ "def", "LReLU_function", "(", "signal", ",", "derivative", "=", "False", ",", "leakage", "=", "0.01", ")", ":", "if", "derivative", ":", "# Return the partial derivation of the activation function", "return", "np", ".", "clip", "(", "signal", ">", "0", ",", "leakage", ",", "1.0", ")", "else", ":", "# Return the activation signal", "output", "=", "np", ".", "copy", "(", "signal", ")", "output", "[", "output", "<", "0", "]", "*=", "leakage", "return", "output" ]
Leaky Rectified Linear Unit
[ "Leaky", "Rectified", "Linear", "Unit" ]
617b9940fa157d54d7831c42c0f7ba6857239b9a
https://github.com/jorgenkg/python-neural-network/blob/617b9940fa157d54d7831c42c0f7ba6857239b9a/nimblenet/activation_functions.py#L74-L85
6,625
mikusjelly/apkutils
apkutils/apkfile.py
is_zipfile
def is_zipfile(filename): """Quickly see if a file is a ZIP file by checking the magic number. The filename argument may be a file or file-like object too. """ result = False try: if hasattr(filename, "read"): result = _check_zipfile(fp=filename) else: with open(filename, "rb") as fp: result = _check_zipfile(fp) except OSError: pass return result
python
def is_zipfile(filename): """Quickly see if a file is a ZIP file by checking the magic number. The filename argument may be a file or file-like object too. """ result = False try: if hasattr(filename, "read"): result = _check_zipfile(fp=filename) else: with open(filename, "rb") as fp: result = _check_zipfile(fp) except OSError: pass return result
[ "def", "is_zipfile", "(", "filename", ")", ":", "result", "=", "False", "try", ":", "if", "hasattr", "(", "filename", ",", "\"read\"", ")", ":", "result", "=", "_check_zipfile", "(", "fp", "=", "filename", ")", "else", ":", "with", "open", "(", "filename", ",", "\"rb\"", ")", "as", "fp", ":", "result", "=", "_check_zipfile", "(", "fp", ")", "except", "OSError", ":", "pass", "return", "result" ]
Quickly see if a file is a ZIP file by checking the magic number. The filename argument may be a file or file-like object too.
[ "Quickly", "see", "if", "a", "file", "is", "a", "ZIP", "file", "by", "checking", "the", "magic", "number", "." ]
2db1ed0cdb610dfc55bfd77266e9a91e4764bba4
https://github.com/mikusjelly/apkutils/blob/2db1ed0cdb610dfc55bfd77266e9a91e4764bba4/apkutils/apkfile.py#L182-L196
6,626
mikusjelly/apkutils
apkutils/apkfile.py
ZipExtFile.readline
def readline(self, limit=-1): """Read and return a line from the stream. If limit is specified, at most limit bytes will be read. """ if not self._universal and limit < 0: # Shortcut common case - newline found in buffer. i = self._readbuffer.find(b'\n', self._offset) + 1 if i > 0: line = self._readbuffer[self._offset: i] self._offset = i return line if not self._universal: return io.BufferedIOBase.readline(self, limit) line = b'' while limit < 0 or len(line) < limit: readahead = self.peek(2) if readahead == b'': return line # # Search for universal newlines or line chunks. # # The pattern returns either a line chunk or a newline, but not # both. Combined with peek(2), we are assured that the sequence # '\r\n' is always retrieved completely and never split into # separate newlines - '\r', '\n' due to coincidental readaheads. # match = self.PATTERN.search(readahead) newline = match.group('newline') if newline is not None: if self.newlines is None: self.newlines = [] if newline not in self.newlines: self.newlines.append(newline) self._offset += len(newline) return line + b'\n' chunk = match.group('chunk') if limit >= 0: chunk = chunk[: limit - len(line)] self._offset += len(chunk) line += chunk return line
python
def readline(self, limit=-1): """Read and return a line from the stream. If limit is specified, at most limit bytes will be read. """ if not self._universal and limit < 0: # Shortcut common case - newline found in buffer. i = self._readbuffer.find(b'\n', self._offset) + 1 if i > 0: line = self._readbuffer[self._offset: i] self._offset = i return line if not self._universal: return io.BufferedIOBase.readline(self, limit) line = b'' while limit < 0 or len(line) < limit: readahead = self.peek(2) if readahead == b'': return line # # Search for universal newlines or line chunks. # # The pattern returns either a line chunk or a newline, but not # both. Combined with peek(2), we are assured that the sequence # '\r\n' is always retrieved completely and never split into # separate newlines - '\r', '\n' due to coincidental readaheads. # match = self.PATTERN.search(readahead) newline = match.group('newline') if newline is not None: if self.newlines is None: self.newlines = [] if newline not in self.newlines: self.newlines.append(newline) self._offset += len(newline) return line + b'\n' chunk = match.group('chunk') if limit >= 0: chunk = chunk[: limit - len(line)] self._offset += len(chunk) line += chunk return line
[ "def", "readline", "(", "self", ",", "limit", "=", "-", "1", ")", ":", "if", "not", "self", ".", "_universal", "and", "limit", "<", "0", ":", "# Shortcut common case - newline found in buffer.", "i", "=", "self", ".", "_readbuffer", ".", "find", "(", "b'\\n'", ",", "self", ".", "_offset", ")", "+", "1", "if", "i", ">", "0", ":", "line", "=", "self", ".", "_readbuffer", "[", "self", ".", "_offset", ":", "i", "]", "self", ".", "_offset", "=", "i", "return", "line", "if", "not", "self", ".", "_universal", ":", "return", "io", ".", "BufferedIOBase", ".", "readline", "(", "self", ",", "limit", ")", "line", "=", "b''", "while", "limit", "<", "0", "or", "len", "(", "line", ")", "<", "limit", ":", "readahead", "=", "self", ".", "peek", "(", "2", ")", "if", "readahead", "==", "b''", ":", "return", "line", "#", "# Search for universal newlines or line chunks.", "#", "# The pattern returns either a line chunk or a newline, but not", "# both. Combined with peek(2), we are assured that the sequence", "# '\\r\\n' is always retrieved completely and never split into", "# separate newlines - '\\r', '\\n' due to coincidental readaheads.", "#", "match", "=", "self", ".", "PATTERN", ".", "search", "(", "readahead", ")", "newline", "=", "match", ".", "group", "(", "'newline'", ")", "if", "newline", "is", "not", "None", ":", "if", "self", ".", "newlines", "is", "None", ":", "self", ".", "newlines", "=", "[", "]", "if", "newline", "not", "in", "self", ".", "newlines", ":", "self", ".", "newlines", ".", "append", "(", "newline", ")", "self", ".", "_offset", "+=", "len", "(", "newline", ")", "return", "line", "+", "b'\\n'", "chunk", "=", "match", ".", "group", "(", "'chunk'", ")", "if", "limit", ">=", "0", ":", "chunk", "=", "chunk", "[", ":", "limit", "-", "len", "(", "line", ")", "]", "self", ".", "_offset", "+=", "len", "(", "chunk", ")", "line", "+=", "chunk", "return", "line" ]
Read and return a line from the stream. If limit is specified, at most limit bytes will be read.
[ "Read", "and", "return", "a", "line", "from", "the", "stream", "." ]
2db1ed0cdb610dfc55bfd77266e9a91e4764bba4
https://github.com/mikusjelly/apkutils/blob/2db1ed0cdb610dfc55bfd77266e9a91e4764bba4/apkutils/apkfile.py#L758-L806
6,627
mikusjelly/apkutils
apkutils/apkfile.py
ZipFile.setpassword
def setpassword(self, pwd): """Set default password for encrypted files.""" if pwd and not isinstance(pwd, bytes): raise TypeError("pwd: expected bytes, got %s" % type(pwd)) if pwd: self.pwd = pwd else: self.pwd = None
python
def setpassword(self, pwd): """Set default password for encrypted files.""" if pwd and not isinstance(pwd, bytes): raise TypeError("pwd: expected bytes, got %s" % type(pwd)) if pwd: self.pwd = pwd else: self.pwd = None
[ "def", "setpassword", "(", "self", ",", "pwd", ")", ":", "if", "pwd", "and", "not", "isinstance", "(", "pwd", ",", "bytes", ")", ":", "raise", "TypeError", "(", "\"pwd: expected bytes, got %s\"", "%", "type", "(", "pwd", ")", ")", "if", "pwd", ":", "self", ".", "pwd", "=", "pwd", "else", ":", "self", ".", "pwd", "=", "None" ]
Set default password for encrypted files.
[ "Set", "default", "password", "for", "encrypted", "files", "." ]
2db1ed0cdb610dfc55bfd77266e9a91e4764bba4
https://github.com/mikusjelly/apkutils/blob/2db1ed0cdb610dfc55bfd77266e9a91e4764bba4/apkutils/apkfile.py#L1204-L1211
6,628
mikusjelly/apkutils
apkutils/apkfile.py
ZipFile._sanitize_windows_name
def _sanitize_windows_name(cls, arcname, pathsep): """Replace bad characters and remove trailing dots from parts.""" table = cls._windows_illegal_name_trans_table if not table: illegal = ':<>|"?*' table = str.maketrans(illegal, '_' * len(illegal)) cls._windows_illegal_name_trans_table = table arcname = arcname.translate(table) # remove trailing dots arcname = (x.rstrip('.') for x in arcname.split(pathsep)) # rejoin, removing empty parts. arcname = pathsep.join(x for x in arcname if x) return arcname
python
def _sanitize_windows_name(cls, arcname, pathsep): """Replace bad characters and remove trailing dots from parts.""" table = cls._windows_illegal_name_trans_table if not table: illegal = ':<>|"?*' table = str.maketrans(illegal, '_' * len(illegal)) cls._windows_illegal_name_trans_table = table arcname = arcname.translate(table) # remove trailing dots arcname = (x.rstrip('.') for x in arcname.split(pathsep)) # rejoin, removing empty parts. arcname = pathsep.join(x for x in arcname if x) return arcname
[ "def", "_sanitize_windows_name", "(", "cls", ",", "arcname", ",", "pathsep", ")", ":", "table", "=", "cls", ".", "_windows_illegal_name_trans_table", "if", "not", "table", ":", "illegal", "=", "':<>|\"?*'", "table", "=", "str", ".", "maketrans", "(", "illegal", ",", "'_'", "*", "len", "(", "illegal", ")", ")", "cls", ".", "_windows_illegal_name_trans_table", "=", "table", "arcname", "=", "arcname", ".", "translate", "(", "table", ")", "# remove trailing dots", "arcname", "=", "(", "x", ".", "rstrip", "(", "'.'", ")", "for", "x", "in", "arcname", ".", "split", "(", "pathsep", ")", ")", "# rejoin, removing empty parts.", "arcname", "=", "pathsep", ".", "join", "(", "x", "for", "x", "in", "arcname", "if", "x", ")", "return", "arcname" ]
Replace bad characters and remove trailing dots from parts.
[ "Replace", "bad", "characters", "and", "remove", "trailing", "dots", "from", "parts", "." ]
2db1ed0cdb610dfc55bfd77266e9a91e4764bba4
https://github.com/mikusjelly/apkutils/blob/2db1ed0cdb610dfc55bfd77266e9a91e4764bba4/apkutils/apkfile.py#L1341-L1353
6,629
mikusjelly/apkutils
apkutils/apkfile.py
ZipFile.close
def close(self): """Close the file, and for mode 'w', 'x' and 'a' write the ending records.""" if self.fp is None: return try: if self.mode in ('w', 'x', 'a') and self._didModify: # write ending records with self._lock: if self._seekable: self.fp.seek(self.start_dir) self._write_end_record() finally: fp = self.fp self.fp = None self._fpclose(fp)
python
def close(self): """Close the file, and for mode 'w', 'x' and 'a' write the ending records.""" if self.fp is None: return try: if self.mode in ('w', 'x', 'a') and self._didModify: # write ending records with self._lock: if self._seekable: self.fp.seek(self.start_dir) self._write_end_record() finally: fp = self.fp self.fp = None self._fpclose(fp)
[ "def", "close", "(", "self", ")", ":", "if", "self", ".", "fp", "is", "None", ":", "return", "try", ":", "if", "self", ".", "mode", "in", "(", "'w'", ",", "'x'", ",", "'a'", ")", "and", "self", ".", "_didModify", ":", "# write ending records", "with", "self", ".", "_lock", ":", "if", "self", ".", "_seekable", ":", "self", ".", "fp", ".", "seek", "(", "self", ".", "start_dir", ")", "self", ".", "_write_end_record", "(", ")", "finally", ":", "fp", "=", "self", ".", "fp", "self", ".", "fp", "=", "None", "self", ".", "_fpclose", "(", "fp", ")" ]
Close the file, and for mode 'w', 'x' and 'a' write the ending records.
[ "Close", "the", "file", "and", "for", "mode", "w", "x", "and", "a", "write", "the", "ending", "records", "." ]
2db1ed0cdb610dfc55bfd77266e9a91e4764bba4
https://github.com/mikusjelly/apkutils/blob/2db1ed0cdb610dfc55bfd77266e9a91e4764bba4/apkutils/apkfile.py#L1588-L1603
6,630
mikusjelly/apkutils
apkutils/elf/elfparser.py
ELF.display_string_dump
def display_string_dump(self, section_spec): """ Display a strings dump of a section. section_spec is either a section number or a name. """ section = _section_from_spec(self.elf_file, section_spec) if section is None: print("Section '%s' does not exist in the file!" % section_spec) return None data = section.data() dataptr = 0 strs = [] while dataptr < len(data): while dataptr < len(data) and not 32 <= byte2int(data[dataptr]) <= 127: dataptr += 1 if dataptr >= len(data): break endptr = dataptr while endptr < len(data) and byte2int(data[endptr]) != 0: endptr += 1 strs.append(binascii.b2a_hex( data[dataptr:endptr]).decode().upper()) dataptr = endptr return strs
python
def display_string_dump(self, section_spec): """ Display a strings dump of a section. section_spec is either a section number or a name. """ section = _section_from_spec(self.elf_file, section_spec) if section is None: print("Section '%s' does not exist in the file!" % section_spec) return None data = section.data() dataptr = 0 strs = [] while dataptr < len(data): while dataptr < len(data) and not 32 <= byte2int(data[dataptr]) <= 127: dataptr += 1 if dataptr >= len(data): break endptr = dataptr while endptr < len(data) and byte2int(data[endptr]) != 0: endptr += 1 strs.append(binascii.b2a_hex( data[dataptr:endptr]).decode().upper()) dataptr = endptr return strs
[ "def", "display_string_dump", "(", "self", ",", "section_spec", ")", ":", "section", "=", "_section_from_spec", "(", "self", ".", "elf_file", ",", "section_spec", ")", "if", "section", "is", "None", ":", "print", "(", "\"Section '%s' does not exist in the file!\"", "%", "section_spec", ")", "return", "None", "data", "=", "section", ".", "data", "(", ")", "dataptr", "=", "0", "strs", "=", "[", "]", "while", "dataptr", "<", "len", "(", "data", ")", ":", "while", "dataptr", "<", "len", "(", "data", ")", "and", "not", "32", "<=", "byte2int", "(", "data", "[", "dataptr", "]", ")", "<=", "127", ":", "dataptr", "+=", "1", "if", "dataptr", ">=", "len", "(", "data", ")", ":", "break", "endptr", "=", "dataptr", "while", "endptr", "<", "len", "(", "data", ")", "and", "byte2int", "(", "data", "[", "endptr", "]", ")", "!=", "0", ":", "endptr", "+=", "1", "strs", ".", "append", "(", "binascii", ".", "b2a_hex", "(", "data", "[", "dataptr", ":", "endptr", "]", ")", ".", "decode", "(", ")", ".", "upper", "(", ")", ")", "dataptr", "=", "endptr", "return", "strs" ]
Display a strings dump of a section. section_spec is either a section number or a name.
[ "Display", "a", "strings", "dump", "of", "a", "section", ".", "section_spec", "is", "either", "a", "section", "number", "or", "a", "name", "." ]
2db1ed0cdb610dfc55bfd77266e9a91e4764bba4
https://github.com/mikusjelly/apkutils/blob/2db1ed0cdb610dfc55bfd77266e9a91e4764bba4/apkutils/elf/elfparser.py#L57-L85
6,631
google/fleetspeak
fleetspeak/src/client/daemonservice/client/client.py
_EnvOpen
def _EnvOpen(var, mode): """Open a file descriptor identified by an environment variable.""" value = os.getenv(var) if value is None: raise ValueError("%s is not set" % var) fd = int(value) # If running on Windows, convert the file handle to a C file descriptor; see: # https://groups.google.com/forum/#!topic/dev-python/GeN5bFJWfJ4 if _WINDOWS: fd = msvcrt.open_osfhandle(fd, 0) return os.fdopen(fd, mode)
python
def _EnvOpen(var, mode): """Open a file descriptor identified by an environment variable.""" value = os.getenv(var) if value is None: raise ValueError("%s is not set" % var) fd = int(value) # If running on Windows, convert the file handle to a C file descriptor; see: # https://groups.google.com/forum/#!topic/dev-python/GeN5bFJWfJ4 if _WINDOWS: fd = msvcrt.open_osfhandle(fd, 0) return os.fdopen(fd, mode)
[ "def", "_EnvOpen", "(", "var", ",", "mode", ")", ":", "value", "=", "os", ".", "getenv", "(", "var", ")", "if", "value", "is", "None", ":", "raise", "ValueError", "(", "\"%s is not set\"", "%", "var", ")", "fd", "=", "int", "(", "value", ")", "# If running on Windows, convert the file handle to a C file descriptor; see:", "# https://groups.google.com/forum/#!topic/dev-python/GeN5bFJWfJ4", "if", "_WINDOWS", ":", "fd", "=", "msvcrt", ".", "open_osfhandle", "(", "fd", ",", "0", ")", "return", "os", ".", "fdopen", "(", "fd", ",", "mode", ")" ]
Open a file descriptor identified by an environment variable.
[ "Open", "a", "file", "descriptor", "identified", "by", "an", "environment", "variable", "." ]
bc95dd6941494461d2e5dff0a7f4c78a07ff724d
https://github.com/google/fleetspeak/blob/bc95dd6941494461d2e5dff0a7f4c78a07ff724d/fleetspeak/src/client/daemonservice/client/client.py#L58-L71
6,632
google/fleetspeak
fleetspeak/src/client/daemonservice/client/client.py
FleetspeakConnection.Send
def Send(self, message): """Send a message through Fleetspeak. Args: message: A message protocol buffer. Returns: Size of the message in bytes. Raises: ValueError: If message is not a common_pb2.Message. """ if not isinstance(message, common_pb2.Message): raise ValueError("Send requires a fleetspeak.Message") if message.destination.service_name == "system": raise ValueError( "Only predefined messages can have destination.service_name == \"system\"") return self._SendImpl(message)
python
def Send(self, message): """Send a message through Fleetspeak. Args: message: A message protocol buffer. Returns: Size of the message in bytes. Raises: ValueError: If message is not a common_pb2.Message. """ if not isinstance(message, common_pb2.Message): raise ValueError("Send requires a fleetspeak.Message") if message.destination.service_name == "system": raise ValueError( "Only predefined messages can have destination.service_name == \"system\"") return self._SendImpl(message)
[ "def", "Send", "(", "self", ",", "message", ")", ":", "if", "not", "isinstance", "(", "message", ",", "common_pb2", ".", "Message", ")", ":", "raise", "ValueError", "(", "\"Send requires a fleetspeak.Message\"", ")", "if", "message", ".", "destination", ".", "service_name", "==", "\"system\"", ":", "raise", "ValueError", "(", "\"Only predefined messages can have destination.service_name == \\\"system\\\"\"", ")", "return", "self", ".", "_SendImpl", "(", "message", ")" ]
Send a message through Fleetspeak. Args: message: A message protocol buffer. Returns: Size of the message in bytes. Raises: ValueError: If message is not a common_pb2.Message.
[ "Send", "a", "message", "through", "Fleetspeak", "." ]
bc95dd6941494461d2e5dff0a7f4c78a07ff724d
https://github.com/google/fleetspeak/blob/bc95dd6941494461d2e5dff0a7f4c78a07ff724d/fleetspeak/src/client/daemonservice/client/client.py#L126-L143
6,633
google/fleetspeak
fleetspeak/src/client/daemonservice/client/client.py
FleetspeakConnection.Recv
def Recv(self): """Accept a message from Fleetspeak. Returns: A tuple (common_pb2.Message, size of the message in bytes). Raises: ProtocolError: If we receive unexpected data from Fleetspeak. """ size = struct.unpack(_STRUCT_FMT, self._ReadN(_STRUCT_LEN))[0] if size > MAX_SIZE: raise ProtocolError("Expected size to be at most %d, got %d" % (MAX_SIZE, size)) with self._read_lock: buf = self._ReadN(size) self._ReadMagic() res = common_pb2.Message() res.ParseFromString(buf) return res, len(buf)
python
def Recv(self): """Accept a message from Fleetspeak. Returns: A tuple (common_pb2.Message, size of the message in bytes). Raises: ProtocolError: If we receive unexpected data from Fleetspeak. """ size = struct.unpack(_STRUCT_FMT, self._ReadN(_STRUCT_LEN))[0] if size > MAX_SIZE: raise ProtocolError("Expected size to be at most %d, got %d" % (MAX_SIZE, size)) with self._read_lock: buf = self._ReadN(size) self._ReadMagic() res = common_pb2.Message() res.ParseFromString(buf) return res, len(buf)
[ "def", "Recv", "(", "self", ")", ":", "size", "=", "struct", ".", "unpack", "(", "_STRUCT_FMT", ",", "self", ".", "_ReadN", "(", "_STRUCT_LEN", ")", ")", "[", "0", "]", "if", "size", ">", "MAX_SIZE", ":", "raise", "ProtocolError", "(", "\"Expected size to be at most %d, got %d\"", "%", "(", "MAX_SIZE", ",", "size", ")", ")", "with", "self", ".", "_read_lock", ":", "buf", "=", "self", ".", "_ReadN", "(", "size", ")", "self", ".", "_ReadMagic", "(", ")", "res", "=", "common_pb2", ".", "Message", "(", ")", "res", ".", "ParseFromString", "(", "buf", ")", "return", "res", ",", "len", "(", "buf", ")" ]
Accept a message from Fleetspeak. Returns: A tuple (common_pb2.Message, size of the message in bytes). Raises: ProtocolError: If we receive unexpected data from Fleetspeak.
[ "Accept", "a", "message", "from", "Fleetspeak", "." ]
bc95dd6941494461d2e5dff0a7f4c78a07ff724d
https://github.com/google/fleetspeak/blob/bc95dd6941494461d2e5dff0a7f4c78a07ff724d/fleetspeak/src/client/daemonservice/client/client.py#L162-L181
6,634
google/fleetspeak
fleetspeak/src/client/daemonservice/client/client.py
FleetspeakConnection.Heartbeat
def Heartbeat(self): """Sends a heartbeat to the Fleetspeak client. If this daemonservice is configured to use heartbeats, clients that don't call this method often enough are considered faulty and are restarted by Fleetspeak. """ heartbeat_msg = common_pb2.Message( message_type="Heartbeat", destination=common_pb2.Address(service_name="system")) self._SendImpl(heartbeat_msg)
python
def Heartbeat(self): """Sends a heartbeat to the Fleetspeak client. If this daemonservice is configured to use heartbeats, clients that don't call this method often enough are considered faulty and are restarted by Fleetspeak. """ heartbeat_msg = common_pb2.Message( message_type="Heartbeat", destination=common_pb2.Address(service_name="system")) self._SendImpl(heartbeat_msg)
[ "def", "Heartbeat", "(", "self", ")", ":", "heartbeat_msg", "=", "common_pb2", ".", "Message", "(", "message_type", "=", "\"Heartbeat\"", ",", "destination", "=", "common_pb2", ".", "Address", "(", "service_name", "=", "\"system\"", ")", ")", "self", ".", "_SendImpl", "(", "heartbeat_msg", ")" ]
Sends a heartbeat to the Fleetspeak client. If this daemonservice is configured to use heartbeats, clients that don't call this method often enough are considered faulty and are restarted by Fleetspeak.
[ "Sends", "a", "heartbeat", "to", "the", "Fleetspeak", "client", "." ]
bc95dd6941494461d2e5dff0a7f4c78a07ff724d
https://github.com/google/fleetspeak/blob/bc95dd6941494461d2e5dff0a7f4c78a07ff724d/fleetspeak/src/client/daemonservice/client/client.py#L183-L193
6,635
google/fleetspeak
fleetspeak/src/client/daemonservice/client/client.py
FleetspeakConnection._ReadN
def _ReadN(self, n): """Reads n characters from the input stream, or until EOF. This is equivalent to the current CPython implementation of read(n), but not guaranteed by the docs. Args: n: int Returns: string """ ret = "" while True: chunk = self._read_file.read(n - len(ret)) ret += chunk if len(ret) == n or not chunk: return ret
python
def _ReadN(self, n): """Reads n characters from the input stream, or until EOF. This is equivalent to the current CPython implementation of read(n), but not guaranteed by the docs. Args: n: int Returns: string """ ret = "" while True: chunk = self._read_file.read(n - len(ret)) ret += chunk if len(ret) == n or not chunk: return ret
[ "def", "_ReadN", "(", "self", ",", "n", ")", ":", "ret", "=", "\"\"", "while", "True", ":", "chunk", "=", "self", ".", "_read_file", ".", "read", "(", "n", "-", "len", "(", "ret", ")", ")", "ret", "+=", "chunk", "if", "len", "(", "ret", ")", "==", "n", "or", "not", "chunk", ":", "return", "ret" ]
Reads n characters from the input stream, or until EOF. This is equivalent to the current CPython implementation of read(n), but not guaranteed by the docs. Args: n: int Returns: string
[ "Reads", "n", "characters", "from", "the", "input", "stream", "or", "until", "EOF", "." ]
bc95dd6941494461d2e5dff0a7f4c78a07ff724d
https://github.com/google/fleetspeak/blob/bc95dd6941494461d2e5dff0a7f4c78a07ff724d/fleetspeak/src/client/daemonservice/client/client.py#L214-L232
6,636
google/fleetspeak
setup.py
_CompileProtos
def _CompileProtos(): """Compiles all Fleetspeak protos.""" proto_files = [] for dir_path, _, filenames in os.walk(THIS_DIRECTORY): for filename in filenames: if filename.endswith(".proto"): proto_files.append(os.path.join(dir_path, filename)) if not proto_files: return protoc_command = [ "python", "-m", "grpc_tools.protoc", "--python_out", THIS_DIRECTORY, "--grpc_python_out", THIS_DIRECTORY, "--proto_path", THIS_DIRECTORY, ] protoc_command.extend(proto_files) subprocess.check_output(protoc_command)
python
def _CompileProtos(): """Compiles all Fleetspeak protos.""" proto_files = [] for dir_path, _, filenames in os.walk(THIS_DIRECTORY): for filename in filenames: if filename.endswith(".proto"): proto_files.append(os.path.join(dir_path, filename)) if not proto_files: return protoc_command = [ "python", "-m", "grpc_tools.protoc", "--python_out", THIS_DIRECTORY, "--grpc_python_out", THIS_DIRECTORY, "--proto_path", THIS_DIRECTORY, ] protoc_command.extend(proto_files) subprocess.check_output(protoc_command)
[ "def", "_CompileProtos", "(", ")", ":", "proto_files", "=", "[", "]", "for", "dir_path", ",", "_", ",", "filenames", "in", "os", ".", "walk", "(", "THIS_DIRECTORY", ")", ":", "for", "filename", "in", "filenames", ":", "if", "filename", ".", "endswith", "(", "\".proto\"", ")", ":", "proto_files", ".", "append", "(", "os", ".", "path", ".", "join", "(", "dir_path", ",", "filename", ")", ")", "if", "not", "proto_files", ":", "return", "protoc_command", "=", "[", "\"python\"", ",", "\"-m\"", ",", "\"grpc_tools.protoc\"", ",", "\"--python_out\"", ",", "THIS_DIRECTORY", ",", "\"--grpc_python_out\"", ",", "THIS_DIRECTORY", ",", "\"--proto_path\"", ",", "THIS_DIRECTORY", ",", "]", "protoc_command", ".", "extend", "(", "proto_files", ")", "subprocess", ".", "check_output", "(", "protoc_command", ")" ]
Compiles all Fleetspeak protos.
[ "Compiles", "all", "Fleetspeak", "protos", "." ]
bc95dd6941494461d2e5dff0a7f4c78a07ff724d
https://github.com/google/fleetspeak/blob/bc95dd6941494461d2e5dff0a7f4c78a07ff724d/setup.py#L42-L58
6,637
google/fleetspeak
fleetspeak/src/server/grpcservice/client/client.py
OutgoingConnection._RetryLoop
def _RetryLoop(self, func, timeout=None): """Retries an operation until success or deadline. Args: func: The function to run. Must take a timeout, in seconds, as a single parameter. If it raises grpc.RpcError and deadline has not be reached, it will be run again. timeout: Retries will continue until timeout seconds have passed. """ timeout = timeout or self.DEFAULT_TIMEOUT deadline = time.time() + timeout sleep = 1 while True: try: return func(timeout) except grpc.RpcError: if time.time() + sleep > deadline: raise time.sleep(sleep) sleep *= 2 timeout = deadline - time.time()
python
def _RetryLoop(self, func, timeout=None): """Retries an operation until success or deadline. Args: func: The function to run. Must take a timeout, in seconds, as a single parameter. If it raises grpc.RpcError and deadline has not be reached, it will be run again. timeout: Retries will continue until timeout seconds have passed. """ timeout = timeout or self.DEFAULT_TIMEOUT deadline = time.time() + timeout sleep = 1 while True: try: return func(timeout) except grpc.RpcError: if time.time() + sleep > deadline: raise time.sleep(sleep) sleep *= 2 timeout = deadline - time.time()
[ "def", "_RetryLoop", "(", "self", ",", "func", ",", "timeout", "=", "None", ")", ":", "timeout", "=", "timeout", "or", "self", ".", "DEFAULT_TIMEOUT", "deadline", "=", "time", ".", "time", "(", ")", "+", "timeout", "sleep", "=", "1", "while", "True", ":", "try", ":", "return", "func", "(", "timeout", ")", "except", "grpc", ".", "RpcError", ":", "if", "time", ".", "time", "(", ")", "+", "sleep", ">", "deadline", ":", "raise", "time", ".", "sleep", "(", "sleep", ")", "sleep", "*=", "2", "timeout", "=", "deadline", "-", "time", ".", "time", "(", ")" ]
Retries an operation until success or deadline. Args: func: The function to run. Must take a timeout, in seconds, as a single parameter. If it raises grpc.RpcError and deadline has not be reached, it will be run again. timeout: Retries will continue until timeout seconds have passed.
[ "Retries", "an", "operation", "until", "success", "or", "deadline", "." ]
bc95dd6941494461d2e5dff0a7f4c78a07ff724d
https://github.com/google/fleetspeak/blob/bc95dd6941494461d2e5dff0a7f4c78a07ff724d/fleetspeak/src/server/grpcservice/client/client.py#L150-L172
6,638
google/fleetspeak
fleetspeak/src/server/grpcservice/client/client.py
OutgoingConnection.InsertMessage
def InsertMessage(self, message, timeout=None): """Inserts a message into the Fleetspeak server. Sets message.source, if unset. Args: message: common_pb2.Message The message to send. timeout: How many seconds to try for. Raises: grpc.RpcError: if the RPC fails. InvalidArgument: if message is not a common_pb2.Message. """ if not isinstance(message, common_pb2.Message): raise InvalidArgument("Attempt to send unexpected message type: %s" % message.__class__.__name__) if not message.HasField("source"): message.source.service_name = self._service_name # Sometimes GRPC reports failure, even though the call succeeded. To prevent # retry logic from creating duplicate messages we fix the message_id. if not message.message_id: message.message_id = os.urandom(32) return self._RetryLoop( lambda t: self._stub.InsertMessage(message, timeout=t))
python
def InsertMessage(self, message, timeout=None): """Inserts a message into the Fleetspeak server. Sets message.source, if unset. Args: message: common_pb2.Message The message to send. timeout: How many seconds to try for. Raises: grpc.RpcError: if the RPC fails. InvalidArgument: if message is not a common_pb2.Message. """ if not isinstance(message, common_pb2.Message): raise InvalidArgument("Attempt to send unexpected message type: %s" % message.__class__.__name__) if not message.HasField("source"): message.source.service_name = self._service_name # Sometimes GRPC reports failure, even though the call succeeded. To prevent # retry logic from creating duplicate messages we fix the message_id. if not message.message_id: message.message_id = os.urandom(32) return self._RetryLoop( lambda t: self._stub.InsertMessage(message, timeout=t))
[ "def", "InsertMessage", "(", "self", ",", "message", ",", "timeout", "=", "None", ")", ":", "if", "not", "isinstance", "(", "message", ",", "common_pb2", ".", "Message", ")", ":", "raise", "InvalidArgument", "(", "\"Attempt to send unexpected message type: %s\"", "%", "message", ".", "__class__", ".", "__name__", ")", "if", "not", "message", ".", "HasField", "(", "\"source\"", ")", ":", "message", ".", "source", ".", "service_name", "=", "self", ".", "_service_name", "# Sometimes GRPC reports failure, even though the call succeeded. To prevent", "# retry logic from creating duplicate messages we fix the message_id.", "if", "not", "message", ".", "message_id", ":", "message", ".", "message_id", "=", "os", ".", "urandom", "(", "32", ")", "return", "self", ".", "_RetryLoop", "(", "lambda", "t", ":", "self", ".", "_stub", ".", "InsertMessage", "(", "message", ",", "timeout", "=", "t", ")", ")" ]
Inserts a message into the Fleetspeak server. Sets message.source, if unset. Args: message: common_pb2.Message The message to send. timeout: How many seconds to try for. Raises: grpc.RpcError: if the RPC fails. InvalidArgument: if message is not a common_pb2.Message.
[ "Inserts", "a", "message", "into", "the", "Fleetspeak", "server", "." ]
bc95dd6941494461d2e5dff0a7f4c78a07ff724d
https://github.com/google/fleetspeak/blob/bc95dd6941494461d2e5dff0a7f4c78a07ff724d/fleetspeak/src/server/grpcservice/client/client.py#L174-L202
6,639
google/fleetspeak
fleetspeak/src/server/grpcservice/client/client.py
OutgoingConnection.ListClients
def ListClients(self, request, timeout=None): """Provides basic information about Fleetspeak clients. Args: request: fleetspeak.admin.ListClientsRequest timeout: How many seconds to try for. Returns: fleetspeak.admin.ListClientsResponse """ return self._RetryLoop( lambda t: self._stub.ListClients(request, timeout=t))
python
def ListClients(self, request, timeout=None): """Provides basic information about Fleetspeak clients. Args: request: fleetspeak.admin.ListClientsRequest timeout: How many seconds to try for. Returns: fleetspeak.admin.ListClientsResponse """ return self._RetryLoop( lambda t: self._stub.ListClients(request, timeout=t))
[ "def", "ListClients", "(", "self", ",", "request", ",", "timeout", "=", "None", ")", ":", "return", "self", ".", "_RetryLoop", "(", "lambda", "t", ":", "self", ".", "_stub", ".", "ListClients", "(", "request", ",", "timeout", "=", "t", ")", ")" ]
Provides basic information about Fleetspeak clients. Args: request: fleetspeak.admin.ListClientsRequest timeout: How many seconds to try for. Returns: fleetspeak.admin.ListClientsResponse
[ "Provides", "basic", "information", "about", "Fleetspeak", "clients", "." ]
bc95dd6941494461d2e5dff0a7f4c78a07ff724d
https://github.com/google/fleetspeak/blob/bc95dd6941494461d2e5dff0a7f4c78a07ff724d/fleetspeak/src/server/grpcservice/client/client.py#L204-L215
6,640
google/fleetspeak
fleetspeak/src/server/grpcservice/client/client.py
InsecureGRPCServiceClient.Send
def Send(self, message): """Send one message. Deprecated, users should migrate to call self.outgoing.InsertMessage directly. """ if not self.outgoing: raise NotConfigured("Send address not provided.") self.outgoing.InsertMessage(message)
python
def Send(self, message): """Send one message. Deprecated, users should migrate to call self.outgoing.InsertMessage directly. """ if not self.outgoing: raise NotConfigured("Send address not provided.") self.outgoing.InsertMessage(message)
[ "def", "Send", "(", "self", ",", "message", ")", ":", "if", "not", "self", ".", "outgoing", ":", "raise", "NotConfigured", "(", "\"Send address not provided.\"", ")", "self", ".", "outgoing", ".", "InsertMessage", "(", "message", ")" ]
Send one message. Deprecated, users should migrate to call self.outgoing.InsertMessage directly.
[ "Send", "one", "message", "." ]
bc95dd6941494461d2e5dff0a7f4c78a07ff724d
https://github.com/google/fleetspeak/blob/bc95dd6941494461d2e5dff0a7f4c78a07ff724d/fleetspeak/src/server/grpcservice/client/client.py#L325-L333
6,641
reiinakano/xcessiv
xcessiv/automatedruns.py
start_naive_bayes
def start_naive_bayes(automated_run, session, path): """Starts naive bayes automated run Args: automated_run (xcessiv.models.AutomatedRun): Automated run object session: Valid SQLAlchemy session path (str, unicode): Path to project folder """ module = functions.import_string_code_as_module(automated_run.source) random_state = 8 if not hasattr(module, 'random_state') else module.random_state assert module.metric_to_optimize in automated_run.base_learner_origin.metric_generators # get non-searchable parameters base_estimator = automated_run.base_learner_origin.return_estimator() base_estimator.set_params(**module.default_params) default_params = functions.make_serializable(base_estimator.get_params()) non_searchable_params = dict((key, val) for key, val in iteritems(default_params) if key not in module.pbounds) # get already calculated base learners in search space existing_base_learners = [] for base_learner in automated_run.base_learner_origin.base_learners: if not base_learner.job_status == 'finished': continue in_search_space = True for key, val in iteritems(non_searchable_params): if base_learner.hyperparameters[key] != val: in_search_space = False break # If no match, move on to the next base learner if in_search_space: existing_base_learners.append(base_learner) # build initialize dictionary target = [] initialization_dict = dict((key, list()) for key in module.pbounds.keys()) for base_learner in existing_base_learners: # check if base learner's searchable hyperparameters are all numerical all_numerical = True for key in module.pbounds.keys(): if not isinstance(base_learner.hyperparameters[key], numbers.Number): all_numerical = False break if not all_numerical: continue # if there is a non-numerical hyperparameter, skip this. for key in module.pbounds.keys(): initialization_dict[key].append(base_learner.hyperparameters[key]) target.append(base_learner.individual_score[module.metric_to_optimize]) initialization_dict['target'] = target if not module.invert_metric \ else list(map(lambda x: -x, target)) print('{} existing in initialization dictionary'. format(len(initialization_dict['target']))) # Create function to be optimized func_to_optimize = return_func_to_optimize( path, session, automated_run.base_learner_origin, module.default_params, module.metric_to_optimize, module.invert_metric, set(module.integers) ) # Create Bayes object bo = BayesianOptimization(func_to_optimize, module.pbounds) bo.initialize(initialization_dict) np.random.seed(random_state) bo.maximize(**module.maximize_config)
python
def start_naive_bayes(automated_run, session, path): """Starts naive bayes automated run Args: automated_run (xcessiv.models.AutomatedRun): Automated run object session: Valid SQLAlchemy session path (str, unicode): Path to project folder """ module = functions.import_string_code_as_module(automated_run.source) random_state = 8 if not hasattr(module, 'random_state') else module.random_state assert module.metric_to_optimize in automated_run.base_learner_origin.metric_generators # get non-searchable parameters base_estimator = automated_run.base_learner_origin.return_estimator() base_estimator.set_params(**module.default_params) default_params = functions.make_serializable(base_estimator.get_params()) non_searchable_params = dict((key, val) for key, val in iteritems(default_params) if key not in module.pbounds) # get already calculated base learners in search space existing_base_learners = [] for base_learner in automated_run.base_learner_origin.base_learners: if not base_learner.job_status == 'finished': continue in_search_space = True for key, val in iteritems(non_searchable_params): if base_learner.hyperparameters[key] != val: in_search_space = False break # If no match, move on to the next base learner if in_search_space: existing_base_learners.append(base_learner) # build initialize dictionary target = [] initialization_dict = dict((key, list()) for key in module.pbounds.keys()) for base_learner in existing_base_learners: # check if base learner's searchable hyperparameters are all numerical all_numerical = True for key in module.pbounds.keys(): if not isinstance(base_learner.hyperparameters[key], numbers.Number): all_numerical = False break if not all_numerical: continue # if there is a non-numerical hyperparameter, skip this. for key in module.pbounds.keys(): initialization_dict[key].append(base_learner.hyperparameters[key]) target.append(base_learner.individual_score[module.metric_to_optimize]) initialization_dict['target'] = target if not module.invert_metric \ else list(map(lambda x: -x, target)) print('{} existing in initialization dictionary'. format(len(initialization_dict['target']))) # Create function to be optimized func_to_optimize = return_func_to_optimize( path, session, automated_run.base_learner_origin, module.default_params, module.metric_to_optimize, module.invert_metric, set(module.integers) ) # Create Bayes object bo = BayesianOptimization(func_to_optimize, module.pbounds) bo.initialize(initialization_dict) np.random.seed(random_state) bo.maximize(**module.maximize_config)
[ "def", "start_naive_bayes", "(", "automated_run", ",", "session", ",", "path", ")", ":", "module", "=", "functions", ".", "import_string_code_as_module", "(", "automated_run", ".", "source", ")", "random_state", "=", "8", "if", "not", "hasattr", "(", "module", ",", "'random_state'", ")", "else", "module", ".", "random_state", "assert", "module", ".", "metric_to_optimize", "in", "automated_run", ".", "base_learner_origin", ".", "metric_generators", "# get non-searchable parameters", "base_estimator", "=", "automated_run", ".", "base_learner_origin", ".", "return_estimator", "(", ")", "base_estimator", ".", "set_params", "(", "*", "*", "module", ".", "default_params", ")", "default_params", "=", "functions", ".", "make_serializable", "(", "base_estimator", ".", "get_params", "(", ")", ")", "non_searchable_params", "=", "dict", "(", "(", "key", ",", "val", ")", "for", "key", ",", "val", "in", "iteritems", "(", "default_params", ")", "if", "key", "not", "in", "module", ".", "pbounds", ")", "# get already calculated base learners in search space", "existing_base_learners", "=", "[", "]", "for", "base_learner", "in", "automated_run", ".", "base_learner_origin", ".", "base_learners", ":", "if", "not", "base_learner", ".", "job_status", "==", "'finished'", ":", "continue", "in_search_space", "=", "True", "for", "key", ",", "val", "in", "iteritems", "(", "non_searchable_params", ")", ":", "if", "base_learner", ".", "hyperparameters", "[", "key", "]", "!=", "val", ":", "in_search_space", "=", "False", "break", "# If no match, move on to the next base learner", "if", "in_search_space", ":", "existing_base_learners", ".", "append", "(", "base_learner", ")", "# build initialize dictionary", "target", "=", "[", "]", "initialization_dict", "=", "dict", "(", "(", "key", ",", "list", "(", ")", ")", "for", "key", "in", "module", ".", "pbounds", ".", "keys", "(", ")", ")", "for", "base_learner", "in", "existing_base_learners", ":", "# check if base learner's searchable hyperparameters are all numerical", "all_numerical", "=", "True", "for", "key", "in", "module", ".", "pbounds", ".", "keys", "(", ")", ":", "if", "not", "isinstance", "(", "base_learner", ".", "hyperparameters", "[", "key", "]", ",", "numbers", ".", "Number", ")", ":", "all_numerical", "=", "False", "break", "if", "not", "all_numerical", ":", "continue", "# if there is a non-numerical hyperparameter, skip this.", "for", "key", "in", "module", ".", "pbounds", ".", "keys", "(", ")", ":", "initialization_dict", "[", "key", "]", ".", "append", "(", "base_learner", ".", "hyperparameters", "[", "key", "]", ")", "target", ".", "append", "(", "base_learner", ".", "individual_score", "[", "module", ".", "metric_to_optimize", "]", ")", "initialization_dict", "[", "'target'", "]", "=", "target", "if", "not", "module", ".", "invert_metric", "else", "list", "(", "map", "(", "lambda", "x", ":", "-", "x", ",", "target", ")", ")", "print", "(", "'{} existing in initialization dictionary'", ".", "format", "(", "len", "(", "initialization_dict", "[", "'target'", "]", ")", ")", ")", "# Create function to be optimized", "func_to_optimize", "=", "return_func_to_optimize", "(", "path", ",", "session", ",", "automated_run", ".", "base_learner_origin", ",", "module", ".", "default_params", ",", "module", ".", "metric_to_optimize", ",", "module", ".", "invert_metric", ",", "set", "(", "module", ".", "integers", ")", ")", "# Create Bayes object", "bo", "=", "BayesianOptimization", "(", "func_to_optimize", ",", "module", ".", "pbounds", ")", "bo", ".", "initialize", "(", "initialization_dict", ")", "np", ".", "random", ".", "seed", "(", "random_state", ")", "bo", ".", "maximize", "(", "*", "*", "module", ".", "maximize_config", ")" ]
Starts naive bayes automated run Args: automated_run (xcessiv.models.AutomatedRun): Automated run object session: Valid SQLAlchemy session path (str, unicode): Path to project folder
[ "Starts", "naive", "bayes", "automated", "run" ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/automatedruns.py#L139-L207
6,642
reiinakano/xcessiv
xcessiv/automatedruns.py
start_tpot
def start_tpot(automated_run, session, path): """Starts a TPOT automated run that exports directly to base learner setup Args: automated_run (xcessiv.models.AutomatedRun): Automated run object session: Valid SQLAlchemy session path (str, unicode): Path to project folder """ module = functions.import_string_code_as_module(automated_run.source) extraction = session.query(models.Extraction).first() X, y = extraction.return_train_dataset() tpot_learner = module.tpot_learner tpot_learner.fit(X, y) temp_filename = os.path.join(path, 'tpot-temp-export-{}'.format(os.getpid())) tpot_learner.export(temp_filename) with open(temp_filename) as f: base_learner_source = f.read() base_learner_source = constants.tpot_learner_docstring + base_learner_source try: os.remove(temp_filename) except OSError: pass blo = models.BaseLearnerOrigin( source=base_learner_source, name='TPOT Learner', meta_feature_generator='predict' ) session.add(blo) session.commit()
python
def start_tpot(automated_run, session, path): """Starts a TPOT automated run that exports directly to base learner setup Args: automated_run (xcessiv.models.AutomatedRun): Automated run object session: Valid SQLAlchemy session path (str, unicode): Path to project folder """ module = functions.import_string_code_as_module(automated_run.source) extraction = session.query(models.Extraction).first() X, y = extraction.return_train_dataset() tpot_learner = module.tpot_learner tpot_learner.fit(X, y) temp_filename = os.path.join(path, 'tpot-temp-export-{}'.format(os.getpid())) tpot_learner.export(temp_filename) with open(temp_filename) as f: base_learner_source = f.read() base_learner_source = constants.tpot_learner_docstring + base_learner_source try: os.remove(temp_filename) except OSError: pass blo = models.BaseLearnerOrigin( source=base_learner_source, name='TPOT Learner', meta_feature_generator='predict' ) session.add(blo) session.commit()
[ "def", "start_tpot", "(", "automated_run", ",", "session", ",", "path", ")", ":", "module", "=", "functions", ".", "import_string_code_as_module", "(", "automated_run", ".", "source", ")", "extraction", "=", "session", ".", "query", "(", "models", ".", "Extraction", ")", ".", "first", "(", ")", "X", ",", "y", "=", "extraction", ".", "return_train_dataset", "(", ")", "tpot_learner", "=", "module", ".", "tpot_learner", "tpot_learner", ".", "fit", "(", "X", ",", "y", ")", "temp_filename", "=", "os", ".", "path", ".", "join", "(", "path", ",", "'tpot-temp-export-{}'", ".", "format", "(", "os", ".", "getpid", "(", ")", ")", ")", "tpot_learner", ".", "export", "(", "temp_filename", ")", "with", "open", "(", "temp_filename", ")", "as", "f", ":", "base_learner_source", "=", "f", ".", "read", "(", ")", "base_learner_source", "=", "constants", ".", "tpot_learner_docstring", "+", "base_learner_source", "try", ":", "os", ".", "remove", "(", "temp_filename", ")", "except", "OSError", ":", "pass", "blo", "=", "models", ".", "BaseLearnerOrigin", "(", "source", "=", "base_learner_source", ",", "name", "=", "'TPOT Learner'", ",", "meta_feature_generator", "=", "'predict'", ")", "session", ".", "add", "(", "blo", ")", "session", ".", "commit", "(", ")" ]
Starts a TPOT automated run that exports directly to base learner setup Args: automated_run (xcessiv.models.AutomatedRun): Automated run object session: Valid SQLAlchemy session path (str, unicode): Path to project folder
[ "Starts", "a", "TPOT", "automated", "run", "that", "exports", "directly", "to", "base", "learner", "setup" ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/automatedruns.py#L210-L248
6,643
reiinakano/xcessiv
xcessiv/automatedruns.py
start_greedy_ensemble_search
def start_greedy_ensemble_search(automated_run, session, path): """Starts an automated ensemble search using greedy forward model selection. The steps for this search are adapted from "Ensemble Selection from Libraries of Models" by Caruana. 1. Start with the empty ensemble 2. Add to the ensemble the model in the library that maximizes the ensemmble's performance on the error metric. 3. Repeat step 2 for a fixed number of iterations or until all models have been used. Args: automated_run (xcessiv.models.AutomatedRun): Automated run object session: Valid SQLAlchemy session path (str, unicode): Path to project folder """ module = functions.import_string_code_as_module(automated_run.source) assert module.metric_to_optimize in automated_run.base_learner_origin.metric_generators best_ensemble = [] # List containing IDs of best performing ensemble for the last round secondary_learner = automated_run.base_learner_origin.return_estimator() secondary_learner.set_params(**module.secondary_learner_hyperparameters) for i in range(module.max_num_base_learners): best_score = -float('inf') # Best metric for this round (not in total!) current_ensemble = best_ensemble[:] # Shallow copy of best ensemble for base_learner in session.query(models.BaseLearner).filter_by(job_status='finished').all(): if base_learner in current_ensemble: # Don't append when learner is already in continue current_ensemble.append(base_learner) # Check if our "best ensemble" already exists existing_ensemble = session.query(models.StackedEnsemble).\ filter_by(base_learner_origin_id=automated_run.base_learner_origin.id, secondary_learner_hyperparameters=secondary_learner.get_params(), base_learner_ids=sorted([bl.id for bl in current_ensemble])).first() if existing_ensemble and existing_ensemble.job_status == 'finished': score = existing_ensemble.individual_score[module.metric_to_optimize] elif existing_ensemble and existing_ensemble.job_status != 'finished': eval_stacked_ensemble(existing_ensemble, session, path) score = existing_ensemble.individual_score[module.metric_to_optimize] else: stacked_ensemble = models.StackedEnsemble( secondary_learner_hyperparameters=secondary_learner.get_params(), base_learners=current_ensemble, base_learner_origin=automated_run.base_learner_origin, job_status='started' ) session.add(stacked_ensemble) session.commit() eval_stacked_ensemble(stacked_ensemble, session, path) score = stacked_ensemble.individual_score[module.metric_to_optimize] score = -score if module.invert_metric else score if best_score < score: best_score = score best_ensemble = current_ensemble[:] current_ensemble.pop()
python
def start_greedy_ensemble_search(automated_run, session, path): """Starts an automated ensemble search using greedy forward model selection. The steps for this search are adapted from "Ensemble Selection from Libraries of Models" by Caruana. 1. Start with the empty ensemble 2. Add to the ensemble the model in the library that maximizes the ensemmble's performance on the error metric. 3. Repeat step 2 for a fixed number of iterations or until all models have been used. Args: automated_run (xcessiv.models.AutomatedRun): Automated run object session: Valid SQLAlchemy session path (str, unicode): Path to project folder """ module = functions.import_string_code_as_module(automated_run.source) assert module.metric_to_optimize in automated_run.base_learner_origin.metric_generators best_ensemble = [] # List containing IDs of best performing ensemble for the last round secondary_learner = automated_run.base_learner_origin.return_estimator() secondary_learner.set_params(**module.secondary_learner_hyperparameters) for i in range(module.max_num_base_learners): best_score = -float('inf') # Best metric for this round (not in total!) current_ensemble = best_ensemble[:] # Shallow copy of best ensemble for base_learner in session.query(models.BaseLearner).filter_by(job_status='finished').all(): if base_learner in current_ensemble: # Don't append when learner is already in continue current_ensemble.append(base_learner) # Check if our "best ensemble" already exists existing_ensemble = session.query(models.StackedEnsemble).\ filter_by(base_learner_origin_id=automated_run.base_learner_origin.id, secondary_learner_hyperparameters=secondary_learner.get_params(), base_learner_ids=sorted([bl.id for bl in current_ensemble])).first() if existing_ensemble and existing_ensemble.job_status == 'finished': score = existing_ensemble.individual_score[module.metric_to_optimize] elif existing_ensemble and existing_ensemble.job_status != 'finished': eval_stacked_ensemble(existing_ensemble, session, path) score = existing_ensemble.individual_score[module.metric_to_optimize] else: stacked_ensemble = models.StackedEnsemble( secondary_learner_hyperparameters=secondary_learner.get_params(), base_learners=current_ensemble, base_learner_origin=automated_run.base_learner_origin, job_status='started' ) session.add(stacked_ensemble) session.commit() eval_stacked_ensemble(stacked_ensemble, session, path) score = stacked_ensemble.individual_score[module.metric_to_optimize] score = -score if module.invert_metric else score if best_score < score: best_score = score best_ensemble = current_ensemble[:] current_ensemble.pop()
[ "def", "start_greedy_ensemble_search", "(", "automated_run", ",", "session", ",", "path", ")", ":", "module", "=", "functions", ".", "import_string_code_as_module", "(", "automated_run", ".", "source", ")", "assert", "module", ".", "metric_to_optimize", "in", "automated_run", ".", "base_learner_origin", ".", "metric_generators", "best_ensemble", "=", "[", "]", "# List containing IDs of best performing ensemble for the last round", "secondary_learner", "=", "automated_run", ".", "base_learner_origin", ".", "return_estimator", "(", ")", "secondary_learner", ".", "set_params", "(", "*", "*", "module", ".", "secondary_learner_hyperparameters", ")", "for", "i", "in", "range", "(", "module", ".", "max_num_base_learners", ")", ":", "best_score", "=", "-", "float", "(", "'inf'", ")", "# Best metric for this round (not in total!)", "current_ensemble", "=", "best_ensemble", "[", ":", "]", "# Shallow copy of best ensemble", "for", "base_learner", "in", "session", ".", "query", "(", "models", ".", "BaseLearner", ")", ".", "filter_by", "(", "job_status", "=", "'finished'", ")", ".", "all", "(", ")", ":", "if", "base_learner", "in", "current_ensemble", ":", "# Don't append when learner is already in", "continue", "current_ensemble", ".", "append", "(", "base_learner", ")", "# Check if our \"best ensemble\" already exists", "existing_ensemble", "=", "session", ".", "query", "(", "models", ".", "StackedEnsemble", ")", ".", "filter_by", "(", "base_learner_origin_id", "=", "automated_run", ".", "base_learner_origin", ".", "id", ",", "secondary_learner_hyperparameters", "=", "secondary_learner", ".", "get_params", "(", ")", ",", "base_learner_ids", "=", "sorted", "(", "[", "bl", ".", "id", "for", "bl", "in", "current_ensemble", "]", ")", ")", ".", "first", "(", ")", "if", "existing_ensemble", "and", "existing_ensemble", ".", "job_status", "==", "'finished'", ":", "score", "=", "existing_ensemble", ".", "individual_score", "[", "module", ".", "metric_to_optimize", "]", "elif", "existing_ensemble", "and", "existing_ensemble", ".", "job_status", "!=", "'finished'", ":", "eval_stacked_ensemble", "(", "existing_ensemble", ",", "session", ",", "path", ")", "score", "=", "existing_ensemble", ".", "individual_score", "[", "module", ".", "metric_to_optimize", "]", "else", ":", "stacked_ensemble", "=", "models", ".", "StackedEnsemble", "(", "secondary_learner_hyperparameters", "=", "secondary_learner", ".", "get_params", "(", ")", ",", "base_learners", "=", "current_ensemble", ",", "base_learner_origin", "=", "automated_run", ".", "base_learner_origin", ",", "job_status", "=", "'started'", ")", "session", ".", "add", "(", "stacked_ensemble", ")", "session", ".", "commit", "(", ")", "eval_stacked_ensemble", "(", "stacked_ensemble", ",", "session", ",", "path", ")", "score", "=", "stacked_ensemble", ".", "individual_score", "[", "module", ".", "metric_to_optimize", "]", "score", "=", "-", "score", "if", "module", ".", "invert_metric", "else", "score", "if", "best_score", "<", "score", ":", "best_score", "=", "score", "best_ensemble", "=", "current_ensemble", "[", ":", "]", "current_ensemble", ".", "pop", "(", ")" ]
Starts an automated ensemble search using greedy forward model selection. The steps for this search are adapted from "Ensemble Selection from Libraries of Models" by Caruana. 1. Start with the empty ensemble 2. Add to the ensemble the model in the library that maximizes the ensemmble's performance on the error metric. 3. Repeat step 2 for a fixed number of iterations or until all models have been used. Args: automated_run (xcessiv.models.AutomatedRun): Automated run object session: Valid SQLAlchemy session path (str, unicode): Path to project folder
[ "Starts", "an", "automated", "ensemble", "search", "using", "greedy", "forward", "model", "selection", "." ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/automatedruns.py#L331-L398
6,644
reiinakano/xcessiv
xcessiv/rqtasks.py
extraction_data_statistics
def extraction_data_statistics(path): """ Generates data statistics for the given data extraction setup stored in Xcessiv notebook. This is in rqtasks.py but not as a job yet. Temporarily call this directly while I'm figuring out Javascript lel. Args: path (str, unicode): Path to xcessiv notebook """ with functions.DBContextManager(path) as session: extraction = session.query(models.Extraction).first() X, y = extraction.return_main_dataset() functions.verify_dataset(X, y) if extraction.test_dataset['method'] == 'split_from_main': X, X_test, y, y_test = train_test_split( X, y, test_size=extraction.test_dataset['split_ratio'], random_state=extraction.test_dataset['split_seed'], stratify=y ) elif extraction.test_dataset['method'] == 'source': if 'source' not in extraction.test_dataset or not extraction.test_dataset['source']: raise exceptions.UserError('Source is empty') extraction_code = extraction.test_dataset["source"] extraction_function = functions.\ import_object_from_string_code(extraction_code, "extract_test_dataset") X_test, y_test = extraction_function() else: X_test, y_test = None, None # test base learner cross-validation extraction_code = extraction.meta_feature_generation['source'] return_splits_iterable = functions.import_object_from_string_code( extraction_code, 'return_splits_iterable' ) number_of_splits = 0 test_indices = [] try: for train_idx, test_idx in return_splits_iterable(X, y): number_of_splits += 1 test_indices.append(test_idx) except Exception as e: raise exceptions.UserError('User code exception', exception_message=str(e)) # preparation before testing stacked ensemble cross-validation test_indices = np.concatenate(test_indices) X, y = X[test_indices], y[test_indices] # test stacked ensemble cross-validation extraction_code = extraction.stacked_ensemble_cv['source'] return_splits_iterable = functions.import_object_from_string_code( extraction_code, 'return_splits_iterable' ) number_of_splits_stacked_cv = 0 try: for train_idx, test_idx in return_splits_iterable(X, y): number_of_splits_stacked_cv += 1 except Exception as e: raise exceptions.UserError('User code exception', exception_message=str(e)) data_stats = dict() data_stats['train_data_stats'] = functions.verify_dataset(X, y) if X_test is not None: data_stats['test_data_stats'] = functions.verify_dataset(X_test, y_test) else: data_stats['test_data_stats'] = None data_stats['holdout_data_stats'] = {'number_of_splits': number_of_splits} data_stats['stacked_ensemble_cv_stats'] = {'number_of_splits': number_of_splits_stacked_cv} extraction.data_statistics = data_stats session.add(extraction) session.commit()
python
def extraction_data_statistics(path): """ Generates data statistics for the given data extraction setup stored in Xcessiv notebook. This is in rqtasks.py but not as a job yet. Temporarily call this directly while I'm figuring out Javascript lel. Args: path (str, unicode): Path to xcessiv notebook """ with functions.DBContextManager(path) as session: extraction = session.query(models.Extraction).first() X, y = extraction.return_main_dataset() functions.verify_dataset(X, y) if extraction.test_dataset['method'] == 'split_from_main': X, X_test, y, y_test = train_test_split( X, y, test_size=extraction.test_dataset['split_ratio'], random_state=extraction.test_dataset['split_seed'], stratify=y ) elif extraction.test_dataset['method'] == 'source': if 'source' not in extraction.test_dataset or not extraction.test_dataset['source']: raise exceptions.UserError('Source is empty') extraction_code = extraction.test_dataset["source"] extraction_function = functions.\ import_object_from_string_code(extraction_code, "extract_test_dataset") X_test, y_test = extraction_function() else: X_test, y_test = None, None # test base learner cross-validation extraction_code = extraction.meta_feature_generation['source'] return_splits_iterable = functions.import_object_from_string_code( extraction_code, 'return_splits_iterable' ) number_of_splits = 0 test_indices = [] try: for train_idx, test_idx in return_splits_iterable(X, y): number_of_splits += 1 test_indices.append(test_idx) except Exception as e: raise exceptions.UserError('User code exception', exception_message=str(e)) # preparation before testing stacked ensemble cross-validation test_indices = np.concatenate(test_indices) X, y = X[test_indices], y[test_indices] # test stacked ensemble cross-validation extraction_code = extraction.stacked_ensemble_cv['source'] return_splits_iterable = functions.import_object_from_string_code( extraction_code, 'return_splits_iterable' ) number_of_splits_stacked_cv = 0 try: for train_idx, test_idx in return_splits_iterable(X, y): number_of_splits_stacked_cv += 1 except Exception as e: raise exceptions.UserError('User code exception', exception_message=str(e)) data_stats = dict() data_stats['train_data_stats'] = functions.verify_dataset(X, y) if X_test is not None: data_stats['test_data_stats'] = functions.verify_dataset(X_test, y_test) else: data_stats['test_data_stats'] = None data_stats['holdout_data_stats'] = {'number_of_splits': number_of_splits} data_stats['stacked_ensemble_cv_stats'] = {'number_of_splits': number_of_splits_stacked_cv} extraction.data_statistics = data_stats session.add(extraction) session.commit()
[ "def", "extraction_data_statistics", "(", "path", ")", ":", "with", "functions", ".", "DBContextManager", "(", "path", ")", "as", "session", ":", "extraction", "=", "session", ".", "query", "(", "models", ".", "Extraction", ")", ".", "first", "(", ")", "X", ",", "y", "=", "extraction", ".", "return_main_dataset", "(", ")", "functions", ".", "verify_dataset", "(", "X", ",", "y", ")", "if", "extraction", ".", "test_dataset", "[", "'method'", "]", "==", "'split_from_main'", ":", "X", ",", "X_test", ",", "y", ",", "y_test", "=", "train_test_split", "(", "X", ",", "y", ",", "test_size", "=", "extraction", ".", "test_dataset", "[", "'split_ratio'", "]", ",", "random_state", "=", "extraction", ".", "test_dataset", "[", "'split_seed'", "]", ",", "stratify", "=", "y", ")", "elif", "extraction", ".", "test_dataset", "[", "'method'", "]", "==", "'source'", ":", "if", "'source'", "not", "in", "extraction", ".", "test_dataset", "or", "not", "extraction", ".", "test_dataset", "[", "'source'", "]", ":", "raise", "exceptions", ".", "UserError", "(", "'Source is empty'", ")", "extraction_code", "=", "extraction", ".", "test_dataset", "[", "\"source\"", "]", "extraction_function", "=", "functions", ".", "import_object_from_string_code", "(", "extraction_code", ",", "\"extract_test_dataset\"", ")", "X_test", ",", "y_test", "=", "extraction_function", "(", ")", "else", ":", "X_test", ",", "y_test", "=", "None", ",", "None", "# test base learner cross-validation", "extraction_code", "=", "extraction", ".", "meta_feature_generation", "[", "'source'", "]", "return_splits_iterable", "=", "functions", ".", "import_object_from_string_code", "(", "extraction_code", ",", "'return_splits_iterable'", ")", "number_of_splits", "=", "0", "test_indices", "=", "[", "]", "try", ":", "for", "train_idx", ",", "test_idx", "in", "return_splits_iterable", "(", "X", ",", "y", ")", ":", "number_of_splits", "+=", "1", "test_indices", ".", "append", "(", "test_idx", ")", "except", "Exception", "as", "e", ":", "raise", "exceptions", ".", "UserError", "(", "'User code exception'", ",", "exception_message", "=", "str", "(", "e", ")", ")", "# preparation before testing stacked ensemble cross-validation", "test_indices", "=", "np", ".", "concatenate", "(", "test_indices", ")", "X", ",", "y", "=", "X", "[", "test_indices", "]", ",", "y", "[", "test_indices", "]", "# test stacked ensemble cross-validation", "extraction_code", "=", "extraction", ".", "stacked_ensemble_cv", "[", "'source'", "]", "return_splits_iterable", "=", "functions", ".", "import_object_from_string_code", "(", "extraction_code", ",", "'return_splits_iterable'", ")", "number_of_splits_stacked_cv", "=", "0", "try", ":", "for", "train_idx", ",", "test_idx", "in", "return_splits_iterable", "(", "X", ",", "y", ")", ":", "number_of_splits_stacked_cv", "+=", "1", "except", "Exception", "as", "e", ":", "raise", "exceptions", ".", "UserError", "(", "'User code exception'", ",", "exception_message", "=", "str", "(", "e", ")", ")", "data_stats", "=", "dict", "(", ")", "data_stats", "[", "'train_data_stats'", "]", "=", "functions", ".", "verify_dataset", "(", "X", ",", "y", ")", "if", "X_test", "is", "not", "None", ":", "data_stats", "[", "'test_data_stats'", "]", "=", "functions", ".", "verify_dataset", "(", "X_test", ",", "y_test", ")", "else", ":", "data_stats", "[", "'test_data_stats'", "]", "=", "None", "data_stats", "[", "'holdout_data_stats'", "]", "=", "{", "'number_of_splits'", ":", "number_of_splits", "}", "data_stats", "[", "'stacked_ensemble_cv_stats'", "]", "=", "{", "'number_of_splits'", ":", "number_of_splits_stacked_cv", "}", "extraction", ".", "data_statistics", "=", "data_stats", "session", ".", "add", "(", "extraction", ")", "session", ".", "commit", "(", ")" ]
Generates data statistics for the given data extraction setup stored in Xcessiv notebook. This is in rqtasks.py but not as a job yet. Temporarily call this directly while I'm figuring out Javascript lel. Args: path (str, unicode): Path to xcessiv notebook
[ "Generates", "data", "statistics", "for", "the", "given", "data", "extraction", "setup", "stored", "in", "Xcessiv", "notebook", "." ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/rqtasks.py#L17-L95
6,645
reiinakano/xcessiv
xcessiv/rqtasks.py
generate_meta_features
def generate_meta_features(path, base_learner_id): """Generates meta-features for specified base learner After generation of meta-features, the file is saved into the meta-features folder Args: path (str): Path to Xcessiv notebook base_learner_id (str): Base learner ID """ with functions.DBContextManager(path) as session: base_learner = session.query(models.BaseLearner).filter_by(id=base_learner_id).first() if not base_learner: raise exceptions.UserError('Base learner {} ' 'does not exist'.format(base_learner_id)) base_learner.job_id = get_current_job().id base_learner.job_status = 'started' session.add(base_learner) session.commit() try: est = base_learner.return_estimator() extraction = session.query(models.Extraction).first() X, y = extraction.return_train_dataset() return_splits_iterable = functions.import_object_from_string_code( extraction.meta_feature_generation['source'], 'return_splits_iterable' ) meta_features_list = [] trues_list = [] for train_index, test_index in return_splits_iterable(X, y): X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] est = est.fit(X_train, y_train) meta_features_list.append( getattr(est, base_learner.base_learner_origin. meta_feature_generator)(X_test) ) trues_list.append(y_test) meta_features = np.concatenate(meta_features_list, axis=0) y_true = np.concatenate(trues_list) for key in base_learner.base_learner_origin.metric_generators: metric_generator = functions.import_object_from_string_code( base_learner.base_learner_origin.metric_generators[key], 'metric_generator' ) base_learner.individual_score[key] = metric_generator(y_true, meta_features) meta_features_path = base_learner.meta_features_path(path) if not os.path.exists(os.path.dirname(meta_features_path)): os.makedirs(os.path.dirname(meta_features_path)) np.save(meta_features_path, meta_features, allow_pickle=False) base_learner.job_status = 'finished' base_learner.meta_features_exists = True session.add(base_learner) session.commit() except: session.rollback() base_learner.job_status = 'errored' base_learner.description['error_type'] = repr(sys.exc_info()[0]) base_learner.description['error_value'] = repr(sys.exc_info()[1]) base_learner.description['error_traceback'] = \ traceback.format_exception(*sys.exc_info()) session.add(base_learner) session.commit() raise
python
def generate_meta_features(path, base_learner_id): """Generates meta-features for specified base learner After generation of meta-features, the file is saved into the meta-features folder Args: path (str): Path to Xcessiv notebook base_learner_id (str): Base learner ID """ with functions.DBContextManager(path) as session: base_learner = session.query(models.BaseLearner).filter_by(id=base_learner_id).first() if not base_learner: raise exceptions.UserError('Base learner {} ' 'does not exist'.format(base_learner_id)) base_learner.job_id = get_current_job().id base_learner.job_status = 'started' session.add(base_learner) session.commit() try: est = base_learner.return_estimator() extraction = session.query(models.Extraction).first() X, y = extraction.return_train_dataset() return_splits_iterable = functions.import_object_from_string_code( extraction.meta_feature_generation['source'], 'return_splits_iterable' ) meta_features_list = [] trues_list = [] for train_index, test_index in return_splits_iterable(X, y): X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] est = est.fit(X_train, y_train) meta_features_list.append( getattr(est, base_learner.base_learner_origin. meta_feature_generator)(X_test) ) trues_list.append(y_test) meta_features = np.concatenate(meta_features_list, axis=0) y_true = np.concatenate(trues_list) for key in base_learner.base_learner_origin.metric_generators: metric_generator = functions.import_object_from_string_code( base_learner.base_learner_origin.metric_generators[key], 'metric_generator' ) base_learner.individual_score[key] = metric_generator(y_true, meta_features) meta_features_path = base_learner.meta_features_path(path) if not os.path.exists(os.path.dirname(meta_features_path)): os.makedirs(os.path.dirname(meta_features_path)) np.save(meta_features_path, meta_features, allow_pickle=False) base_learner.job_status = 'finished' base_learner.meta_features_exists = True session.add(base_learner) session.commit() except: session.rollback() base_learner.job_status = 'errored' base_learner.description['error_type'] = repr(sys.exc_info()[0]) base_learner.description['error_value'] = repr(sys.exc_info()[1]) base_learner.description['error_traceback'] = \ traceback.format_exception(*sys.exc_info()) session.add(base_learner) session.commit() raise
[ "def", "generate_meta_features", "(", "path", ",", "base_learner_id", ")", ":", "with", "functions", ".", "DBContextManager", "(", "path", ")", "as", "session", ":", "base_learner", "=", "session", ".", "query", "(", "models", ".", "BaseLearner", ")", ".", "filter_by", "(", "id", "=", "base_learner_id", ")", ".", "first", "(", ")", "if", "not", "base_learner", ":", "raise", "exceptions", ".", "UserError", "(", "'Base learner {} '", "'does not exist'", ".", "format", "(", "base_learner_id", ")", ")", "base_learner", ".", "job_id", "=", "get_current_job", "(", ")", ".", "id", "base_learner", ".", "job_status", "=", "'started'", "session", ".", "add", "(", "base_learner", ")", "session", ".", "commit", "(", ")", "try", ":", "est", "=", "base_learner", ".", "return_estimator", "(", ")", "extraction", "=", "session", ".", "query", "(", "models", ".", "Extraction", ")", ".", "first", "(", ")", "X", ",", "y", "=", "extraction", ".", "return_train_dataset", "(", ")", "return_splits_iterable", "=", "functions", ".", "import_object_from_string_code", "(", "extraction", ".", "meta_feature_generation", "[", "'source'", "]", ",", "'return_splits_iterable'", ")", "meta_features_list", "=", "[", "]", "trues_list", "=", "[", "]", "for", "train_index", ",", "test_index", "in", "return_splits_iterable", "(", "X", ",", "y", ")", ":", "X_train", ",", "X_test", "=", "X", "[", "train_index", "]", ",", "X", "[", "test_index", "]", "y_train", ",", "y_test", "=", "y", "[", "train_index", "]", ",", "y", "[", "test_index", "]", "est", "=", "est", ".", "fit", "(", "X_train", ",", "y_train", ")", "meta_features_list", ".", "append", "(", "getattr", "(", "est", ",", "base_learner", ".", "base_learner_origin", ".", "meta_feature_generator", ")", "(", "X_test", ")", ")", "trues_list", ".", "append", "(", "y_test", ")", "meta_features", "=", "np", ".", "concatenate", "(", "meta_features_list", ",", "axis", "=", "0", ")", "y_true", "=", "np", ".", "concatenate", "(", "trues_list", ")", "for", "key", "in", "base_learner", ".", "base_learner_origin", ".", "metric_generators", ":", "metric_generator", "=", "functions", ".", "import_object_from_string_code", "(", "base_learner", ".", "base_learner_origin", ".", "metric_generators", "[", "key", "]", ",", "'metric_generator'", ")", "base_learner", ".", "individual_score", "[", "key", "]", "=", "metric_generator", "(", "y_true", ",", "meta_features", ")", "meta_features_path", "=", "base_learner", ".", "meta_features_path", "(", "path", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "os", ".", "path", ".", "dirname", "(", "meta_features_path", ")", ")", ":", "os", ".", "makedirs", "(", "os", ".", "path", ".", "dirname", "(", "meta_features_path", ")", ")", "np", ".", "save", "(", "meta_features_path", ",", "meta_features", ",", "allow_pickle", "=", "False", ")", "base_learner", ".", "job_status", "=", "'finished'", "base_learner", ".", "meta_features_exists", "=", "True", "session", ".", "add", "(", "base_learner", ")", "session", ".", "commit", "(", ")", "except", ":", "session", ".", "rollback", "(", ")", "base_learner", ".", "job_status", "=", "'errored'", "base_learner", ".", "description", "[", "'error_type'", "]", "=", "repr", "(", "sys", ".", "exc_info", "(", ")", "[", "0", "]", ")", "base_learner", ".", "description", "[", "'error_value'", "]", "=", "repr", "(", "sys", ".", "exc_info", "(", ")", "[", "1", "]", ")", "base_learner", ".", "description", "[", "'error_traceback'", "]", "=", "traceback", ".", "format_exception", "(", "*", "sys", ".", "exc_info", "(", ")", ")", "session", ".", "add", "(", "base_learner", ")", "session", ".", "commit", "(", ")", "raise" ]
Generates meta-features for specified base learner After generation of meta-features, the file is saved into the meta-features folder Args: path (str): Path to Xcessiv notebook base_learner_id (str): Base learner ID
[ "Generates", "meta", "-", "features", "for", "specified", "base", "learner" ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/rqtasks.py#L99-L171
6,646
reiinakano/xcessiv
xcessiv/rqtasks.py
start_automated_run
def start_automated_run(path, automated_run_id): """Starts automated run. This will automatically create base learners until the run finishes or errors out. Args: path (str): Path to Xcessiv notebook automated_run_id (str): Automated Run ID """ with functions.DBContextManager(path) as session: automated_run = session.query(models.AutomatedRun).filter_by(id=automated_run_id).first() if not automated_run: raise exceptions.UserError('Automated run {} ' 'does not exist'.format(automated_run_id)) automated_run.job_id = get_current_job().id automated_run.job_status = 'started' session.add(automated_run) session.commit() try: if automated_run.category == 'bayes': automatedruns.start_naive_bayes(automated_run, session, path) elif automated_run.category == 'tpot': automatedruns.start_tpot(automated_run, session, path) elif automated_run.category == 'greedy_ensemble_search': automatedruns.start_greedy_ensemble_search(automated_run, session, path) else: raise Exception('Something went wrong. Invalid category for automated run') automated_run.job_status = 'finished' session.add(automated_run) session.commit() except: session.rollback() automated_run.job_status = 'errored' automated_run.description['error_type'] = repr(sys.exc_info()[0]) automated_run.description['error_value'] = repr(sys.exc_info()[1]) automated_run.description['error_traceback'] = \ traceback.format_exception(*sys.exc_info()) session.add(automated_run) session.commit() raise
python
def start_automated_run(path, automated_run_id): """Starts automated run. This will automatically create base learners until the run finishes or errors out. Args: path (str): Path to Xcessiv notebook automated_run_id (str): Automated Run ID """ with functions.DBContextManager(path) as session: automated_run = session.query(models.AutomatedRun).filter_by(id=automated_run_id).first() if not automated_run: raise exceptions.UserError('Automated run {} ' 'does not exist'.format(automated_run_id)) automated_run.job_id = get_current_job().id automated_run.job_status = 'started' session.add(automated_run) session.commit() try: if automated_run.category == 'bayes': automatedruns.start_naive_bayes(automated_run, session, path) elif automated_run.category == 'tpot': automatedruns.start_tpot(automated_run, session, path) elif automated_run.category == 'greedy_ensemble_search': automatedruns.start_greedy_ensemble_search(automated_run, session, path) else: raise Exception('Something went wrong. Invalid category for automated run') automated_run.job_status = 'finished' session.add(automated_run) session.commit() except: session.rollback() automated_run.job_status = 'errored' automated_run.description['error_type'] = repr(sys.exc_info()[0]) automated_run.description['error_value'] = repr(sys.exc_info()[1]) automated_run.description['error_traceback'] = \ traceback.format_exception(*sys.exc_info()) session.add(automated_run) session.commit() raise
[ "def", "start_automated_run", "(", "path", ",", "automated_run_id", ")", ":", "with", "functions", ".", "DBContextManager", "(", "path", ")", "as", "session", ":", "automated_run", "=", "session", ".", "query", "(", "models", ".", "AutomatedRun", ")", ".", "filter_by", "(", "id", "=", "automated_run_id", ")", ".", "first", "(", ")", "if", "not", "automated_run", ":", "raise", "exceptions", ".", "UserError", "(", "'Automated run {} '", "'does not exist'", ".", "format", "(", "automated_run_id", ")", ")", "automated_run", ".", "job_id", "=", "get_current_job", "(", ")", ".", "id", "automated_run", ".", "job_status", "=", "'started'", "session", ".", "add", "(", "automated_run", ")", "session", ".", "commit", "(", ")", "try", ":", "if", "automated_run", ".", "category", "==", "'bayes'", ":", "automatedruns", ".", "start_naive_bayes", "(", "automated_run", ",", "session", ",", "path", ")", "elif", "automated_run", ".", "category", "==", "'tpot'", ":", "automatedruns", ".", "start_tpot", "(", "automated_run", ",", "session", ",", "path", ")", "elif", "automated_run", ".", "category", "==", "'greedy_ensemble_search'", ":", "automatedruns", ".", "start_greedy_ensemble_search", "(", "automated_run", ",", "session", ",", "path", ")", "else", ":", "raise", "Exception", "(", "'Something went wrong. Invalid category for automated run'", ")", "automated_run", ".", "job_status", "=", "'finished'", "session", ".", "add", "(", "automated_run", ")", "session", ".", "commit", "(", ")", "except", ":", "session", ".", "rollback", "(", ")", "automated_run", ".", "job_status", "=", "'errored'", "automated_run", ".", "description", "[", "'error_type'", "]", "=", "repr", "(", "sys", ".", "exc_info", "(", ")", "[", "0", "]", ")", "automated_run", ".", "description", "[", "'error_value'", "]", "=", "repr", "(", "sys", ".", "exc_info", "(", ")", "[", "1", "]", ")", "automated_run", ".", "description", "[", "'error_traceback'", "]", "=", "traceback", ".", "format_exception", "(", "*", "sys", ".", "exc_info", "(", ")", ")", "session", ".", "add", "(", "automated_run", ")", "session", ".", "commit", "(", ")", "raise" ]
Starts automated run. This will automatically create base learners until the run finishes or errors out. Args: path (str): Path to Xcessiv notebook automated_run_id (str): Automated Run ID
[ "Starts", "automated", "run", ".", "This", "will", "automatically", "create", "base", "learners", "until", "the", "run", "finishes", "or", "errors", "out", "." ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/rqtasks.py#L175-L221
6,647
reiinakano/xcessiv
xcessiv/functions.py
hash_file
def hash_file(path, block_size=65536): """Returns SHA256 checksum of a file Args: path (string): Absolute file path of file to hash block_size (int, optional): Number of bytes to read per block """ sha256 = hashlib.sha256() with open(path, 'rb') as f: for block in iter(lambda: f.read(block_size), b''): sha256.update(block) return sha256.hexdigest()
python
def hash_file(path, block_size=65536): """Returns SHA256 checksum of a file Args: path (string): Absolute file path of file to hash block_size (int, optional): Number of bytes to read per block """ sha256 = hashlib.sha256() with open(path, 'rb') as f: for block in iter(lambda: f.read(block_size), b''): sha256.update(block) return sha256.hexdigest()
[ "def", "hash_file", "(", "path", ",", "block_size", "=", "65536", ")", ":", "sha256", "=", "hashlib", ".", "sha256", "(", ")", "with", "open", "(", "path", ",", "'rb'", ")", "as", "f", ":", "for", "block", "in", "iter", "(", "lambda", ":", "f", ".", "read", "(", "block_size", ")", ",", "b''", ")", ":", "sha256", ".", "update", "(", "block", ")", "return", "sha256", ".", "hexdigest", "(", ")" ]
Returns SHA256 checksum of a file Args: path (string): Absolute file path of file to hash block_size (int, optional): Number of bytes to read per block
[ "Returns", "SHA256", "checksum", "of", "a", "file" ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/functions.py#L16-L28
6,648
reiinakano/xcessiv
xcessiv/functions.py
import_object_from_path
def import_object_from_path(path, object): """Used to import an object from an absolute path. This function takes an absolute path and imports it as a Python module. It then returns the object with name `object` from the imported module. Args: path (string): Absolute file path of .py file to import object (string): Name of object to extract from imported module """ with open(path) as f: return import_object_from_string_code(f.read(), object)
python
def import_object_from_path(path, object): """Used to import an object from an absolute path. This function takes an absolute path and imports it as a Python module. It then returns the object with name `object` from the imported module. Args: path (string): Absolute file path of .py file to import object (string): Name of object to extract from imported module """ with open(path) as f: return import_object_from_string_code(f.read(), object)
[ "def", "import_object_from_path", "(", "path", ",", "object", ")", ":", "with", "open", "(", "path", ")", "as", "f", ":", "return", "import_object_from_string_code", "(", "f", ".", "read", "(", ")", ",", "object", ")" ]
Used to import an object from an absolute path. This function takes an absolute path and imports it as a Python module. It then returns the object with name `object` from the imported module. Args: path (string): Absolute file path of .py file to import object (string): Name of object to extract from imported module
[ "Used", "to", "import", "an", "object", "from", "an", "absolute", "path", "." ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/functions.py#L36-L48
6,649
reiinakano/xcessiv
xcessiv/functions.py
import_object_from_string_code
def import_object_from_string_code(code, object): """Used to import an object from arbitrary passed code. Passed in code is treated as a module and is imported and added to `sys.modules` with its SHA256 hash as key. Args: code (string): Python code to import as module object (string): Name of object to extract from imported module """ sha256 = hashlib.sha256(code.encode('UTF-8')).hexdigest() module = imp.new_module(sha256) try: exec_(code, module.__dict__) except Exception as e: raise exceptions.UserError('User code exception', exception_message=str(e)) sys.modules[sha256] = module try: return getattr(module, object) except AttributeError: raise exceptions.UserError("{} not found in code".format(object))
python
def import_object_from_string_code(code, object): """Used to import an object from arbitrary passed code. Passed in code is treated as a module and is imported and added to `sys.modules` with its SHA256 hash as key. Args: code (string): Python code to import as module object (string): Name of object to extract from imported module """ sha256 = hashlib.sha256(code.encode('UTF-8')).hexdigest() module = imp.new_module(sha256) try: exec_(code, module.__dict__) except Exception as e: raise exceptions.UserError('User code exception', exception_message=str(e)) sys.modules[sha256] = module try: return getattr(module, object) except AttributeError: raise exceptions.UserError("{} not found in code".format(object))
[ "def", "import_object_from_string_code", "(", "code", ",", "object", ")", ":", "sha256", "=", "hashlib", ".", "sha256", "(", "code", ".", "encode", "(", "'UTF-8'", ")", ")", ".", "hexdigest", "(", ")", "module", "=", "imp", ".", "new_module", "(", "sha256", ")", "try", ":", "exec_", "(", "code", ",", "module", ".", "__dict__", ")", "except", "Exception", "as", "e", ":", "raise", "exceptions", ".", "UserError", "(", "'User code exception'", ",", "exception_message", "=", "str", "(", "e", ")", ")", "sys", ".", "modules", "[", "sha256", "]", "=", "module", "try", ":", "return", "getattr", "(", "module", ",", "object", ")", "except", "AttributeError", ":", "raise", "exceptions", ".", "UserError", "(", "\"{} not found in code\"", ".", "format", "(", "object", ")", ")" ]
Used to import an object from arbitrary passed code. Passed in code is treated as a module and is imported and added to `sys.modules` with its SHA256 hash as key. Args: code (string): Python code to import as module object (string): Name of object to extract from imported module
[ "Used", "to", "import", "an", "object", "from", "arbitrary", "passed", "code", "." ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/functions.py#L51-L72
6,650
reiinakano/xcessiv
xcessiv/functions.py
import_string_code_as_module
def import_string_code_as_module(code): """Used to run arbitrary passed code as a module Args: code (string): Python code to import as module Returns: module: Python module """ sha256 = hashlib.sha256(code.encode('UTF-8')).hexdigest() module = imp.new_module(sha256) try: exec_(code, module.__dict__) except Exception as e: raise exceptions.UserError('User code exception', exception_message=str(e)) sys.modules[sha256] = module return module
python
def import_string_code_as_module(code): """Used to run arbitrary passed code as a module Args: code (string): Python code to import as module Returns: module: Python module """ sha256 = hashlib.sha256(code.encode('UTF-8')).hexdigest() module = imp.new_module(sha256) try: exec_(code, module.__dict__) except Exception as e: raise exceptions.UserError('User code exception', exception_message=str(e)) sys.modules[sha256] = module return module
[ "def", "import_string_code_as_module", "(", "code", ")", ":", "sha256", "=", "hashlib", ".", "sha256", "(", "code", ".", "encode", "(", "'UTF-8'", ")", ")", ".", "hexdigest", "(", ")", "module", "=", "imp", ".", "new_module", "(", "sha256", ")", "try", ":", "exec_", "(", "code", ",", "module", ".", "__dict__", ")", "except", "Exception", "as", "e", ":", "raise", "exceptions", ".", "UserError", "(", "'User code exception'", ",", "exception_message", "=", "str", "(", "e", ")", ")", "sys", ".", "modules", "[", "sha256", "]", "=", "module", "return", "module" ]
Used to run arbitrary passed code as a module Args: code (string): Python code to import as module Returns: module: Python module
[ "Used", "to", "run", "arbitrary", "passed", "code", "as", "a", "module" ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/functions.py#L75-L91
6,651
reiinakano/xcessiv
xcessiv/functions.py
verify_dataset
def verify_dataset(X, y): """Verifies if a dataset is valid for use i.e. scikit-learn format Used to verify a dataset by returning shape and basic statistics of returned data. This will also provide quick and dirty check on capability of host machine to process the data. Args: X (array-like): Features array y (array-like): Label array Returns: X_shape (2-tuple of int): Shape of X returned y_shape (1-tuple of int): Shape of y returned Raises: AssertionError: `X_shape` must be of length 2 and `y_shape` must be of length 1. `X` must have the same number of elements as `y` i.e. X_shape[0] == y_shape[0]. If any of these conditions are not met, an AssertionError is raised. """ X_shape, y_shape = np.array(X).shape, np.array(y).shape if len(X_shape) != 2: raise exceptions.UserError("X must be 2-dimensional array") if len(y_shape) != 1: raise exceptions.UserError("y must be 1-dimensional array") if X_shape[0] != y_shape[0]: raise exceptions.UserError("X must have same number of elements as y") return dict( features_shape=X_shape, labels_shape=y_shape )
python
def verify_dataset(X, y): """Verifies if a dataset is valid for use i.e. scikit-learn format Used to verify a dataset by returning shape and basic statistics of returned data. This will also provide quick and dirty check on capability of host machine to process the data. Args: X (array-like): Features array y (array-like): Label array Returns: X_shape (2-tuple of int): Shape of X returned y_shape (1-tuple of int): Shape of y returned Raises: AssertionError: `X_shape` must be of length 2 and `y_shape` must be of length 1. `X` must have the same number of elements as `y` i.e. X_shape[0] == y_shape[0]. If any of these conditions are not met, an AssertionError is raised. """ X_shape, y_shape = np.array(X).shape, np.array(y).shape if len(X_shape) != 2: raise exceptions.UserError("X must be 2-dimensional array") if len(y_shape) != 1: raise exceptions.UserError("y must be 1-dimensional array") if X_shape[0] != y_shape[0]: raise exceptions.UserError("X must have same number of elements as y") return dict( features_shape=X_shape, labels_shape=y_shape )
[ "def", "verify_dataset", "(", "X", ",", "y", ")", ":", "X_shape", ",", "y_shape", "=", "np", ".", "array", "(", "X", ")", ".", "shape", ",", "np", ".", "array", "(", "y", ")", ".", "shape", "if", "len", "(", "X_shape", ")", "!=", "2", ":", "raise", "exceptions", ".", "UserError", "(", "\"X must be 2-dimensional array\"", ")", "if", "len", "(", "y_shape", ")", "!=", "1", ":", "raise", "exceptions", ".", "UserError", "(", "\"y must be 1-dimensional array\"", ")", "if", "X_shape", "[", "0", "]", "!=", "y_shape", "[", "0", "]", ":", "raise", "exceptions", ".", "UserError", "(", "\"X must have same number of elements as y\"", ")", "return", "dict", "(", "features_shape", "=", "X_shape", ",", "labels_shape", "=", "y_shape", ")" ]
Verifies if a dataset is valid for use i.e. scikit-learn format Used to verify a dataset by returning shape and basic statistics of returned data. This will also provide quick and dirty check on capability of host machine to process the data. Args: X (array-like): Features array y (array-like): Label array Returns: X_shape (2-tuple of int): Shape of X returned y_shape (1-tuple of int): Shape of y returned Raises: AssertionError: `X_shape` must be of length 2 and `y_shape` must be of length 1. `X` must have the same number of elements as `y` i.e. X_shape[0] == y_shape[0]. If any of these conditions are not met, an AssertionError is raised.
[ "Verifies", "if", "a", "dataset", "is", "valid", "for", "use", "i", ".", "e", ".", "scikit", "-", "learn", "format" ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/functions.py#L94-L127
6,652
reiinakano/xcessiv
xcessiv/functions.py
make_serializable
def make_serializable(json): """This function ensures that the dictionary is JSON serializable. If not, keys with non-serializable values are removed from the return value. Args: json (dict): Dictionary to convert to serializable Returns: new_dict (dict): New dictionary with non JSON serializable values removed """ new_dict = dict() for key, value in iteritems(json): if is_valid_json(value): new_dict[key] = value return new_dict
python
def make_serializable(json): """This function ensures that the dictionary is JSON serializable. If not, keys with non-serializable values are removed from the return value. Args: json (dict): Dictionary to convert to serializable Returns: new_dict (dict): New dictionary with non JSON serializable values removed """ new_dict = dict() for key, value in iteritems(json): if is_valid_json(value): new_dict[key] = value return new_dict
[ "def", "make_serializable", "(", "json", ")", ":", "new_dict", "=", "dict", "(", ")", "for", "key", ",", "value", "in", "iteritems", "(", "json", ")", ":", "if", "is_valid_json", "(", "value", ")", ":", "new_dict", "[", "key", "]", "=", "value", "return", "new_dict" ]
This function ensures that the dictionary is JSON serializable. If not, keys with non-serializable values are removed from the return value. Args: json (dict): Dictionary to convert to serializable Returns: new_dict (dict): New dictionary with non JSON serializable values removed
[ "This", "function", "ensures", "that", "the", "dictionary", "is", "JSON", "serializable", ".", "If", "not", "keys", "with", "non", "-", "serializable", "values", "are", "removed", "from", "the", "return", "value", "." ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/functions.py#L143-L158
6,653
reiinakano/xcessiv
xcessiv/functions.py
get_sample_dataset
def get_sample_dataset(dataset_properties): """Returns sample dataset Args: dataset_properties (dict): Dictionary corresponding to the properties of the dataset used to verify the estimator and metric generators. Returns: X (array-like): Features array y (array-like): Labels array splits (iterator): This is an iterator that returns train test splits for cross-validation purposes on ``X`` and ``y``. """ kwargs = dataset_properties.copy() data_type = kwargs.pop('type') if data_type == 'multiclass': try: X, y = datasets.make_classification(random_state=8, **kwargs) splits = model_selection.StratifiedKFold(n_splits=2, random_state=8).split(X, y) except Exception as e: raise exceptions.UserError(repr(e)) elif data_type == 'iris': X, y = datasets.load_iris(return_X_y=True) splits = model_selection.StratifiedKFold(n_splits=2, random_state=8).split(X, y) elif data_type == 'mnist': X, y = datasets.load_digits(return_X_y=True) splits = model_selection.StratifiedKFold(n_splits=2, random_state=8).split(X, y) elif data_type == 'breast_cancer': X, y = datasets.load_breast_cancer(return_X_y=True) splits = model_selection.StratifiedKFold(n_splits=2, random_state=8).split(X, y) elif data_type == 'boston': X, y = datasets.load_boston(return_X_y=True) splits = model_selection.KFold(n_splits=2, random_state=8).split(X) elif data_type == 'diabetes': X, y = datasets.load_diabetes(return_X_y=True) splits = model_selection.KFold(n_splits=2, random_state=8).split(X) else: raise exceptions.UserError('Unknown dataset type {}'.format(dataset_properties['type'])) return X, y, splits
python
def get_sample_dataset(dataset_properties): """Returns sample dataset Args: dataset_properties (dict): Dictionary corresponding to the properties of the dataset used to verify the estimator and metric generators. Returns: X (array-like): Features array y (array-like): Labels array splits (iterator): This is an iterator that returns train test splits for cross-validation purposes on ``X`` and ``y``. """ kwargs = dataset_properties.copy() data_type = kwargs.pop('type') if data_type == 'multiclass': try: X, y = datasets.make_classification(random_state=8, **kwargs) splits = model_selection.StratifiedKFold(n_splits=2, random_state=8).split(X, y) except Exception as e: raise exceptions.UserError(repr(e)) elif data_type == 'iris': X, y = datasets.load_iris(return_X_y=True) splits = model_selection.StratifiedKFold(n_splits=2, random_state=8).split(X, y) elif data_type == 'mnist': X, y = datasets.load_digits(return_X_y=True) splits = model_selection.StratifiedKFold(n_splits=2, random_state=8).split(X, y) elif data_type == 'breast_cancer': X, y = datasets.load_breast_cancer(return_X_y=True) splits = model_selection.StratifiedKFold(n_splits=2, random_state=8).split(X, y) elif data_type == 'boston': X, y = datasets.load_boston(return_X_y=True) splits = model_selection.KFold(n_splits=2, random_state=8).split(X) elif data_type == 'diabetes': X, y = datasets.load_diabetes(return_X_y=True) splits = model_selection.KFold(n_splits=2, random_state=8).split(X) else: raise exceptions.UserError('Unknown dataset type {}'.format(dataset_properties['type'])) return X, y, splits
[ "def", "get_sample_dataset", "(", "dataset_properties", ")", ":", "kwargs", "=", "dataset_properties", ".", "copy", "(", ")", "data_type", "=", "kwargs", ".", "pop", "(", "'type'", ")", "if", "data_type", "==", "'multiclass'", ":", "try", ":", "X", ",", "y", "=", "datasets", ".", "make_classification", "(", "random_state", "=", "8", ",", "*", "*", "kwargs", ")", "splits", "=", "model_selection", ".", "StratifiedKFold", "(", "n_splits", "=", "2", ",", "random_state", "=", "8", ")", ".", "split", "(", "X", ",", "y", ")", "except", "Exception", "as", "e", ":", "raise", "exceptions", ".", "UserError", "(", "repr", "(", "e", ")", ")", "elif", "data_type", "==", "'iris'", ":", "X", ",", "y", "=", "datasets", ".", "load_iris", "(", "return_X_y", "=", "True", ")", "splits", "=", "model_selection", ".", "StratifiedKFold", "(", "n_splits", "=", "2", ",", "random_state", "=", "8", ")", ".", "split", "(", "X", ",", "y", ")", "elif", "data_type", "==", "'mnist'", ":", "X", ",", "y", "=", "datasets", ".", "load_digits", "(", "return_X_y", "=", "True", ")", "splits", "=", "model_selection", ".", "StratifiedKFold", "(", "n_splits", "=", "2", ",", "random_state", "=", "8", ")", ".", "split", "(", "X", ",", "y", ")", "elif", "data_type", "==", "'breast_cancer'", ":", "X", ",", "y", "=", "datasets", ".", "load_breast_cancer", "(", "return_X_y", "=", "True", ")", "splits", "=", "model_selection", ".", "StratifiedKFold", "(", "n_splits", "=", "2", ",", "random_state", "=", "8", ")", ".", "split", "(", "X", ",", "y", ")", "elif", "data_type", "==", "'boston'", ":", "X", ",", "y", "=", "datasets", ".", "load_boston", "(", "return_X_y", "=", "True", ")", "splits", "=", "model_selection", ".", "KFold", "(", "n_splits", "=", "2", ",", "random_state", "=", "8", ")", ".", "split", "(", "X", ")", "elif", "data_type", "==", "'diabetes'", ":", "X", ",", "y", "=", "datasets", ".", "load_diabetes", "(", "return_X_y", "=", "True", ")", "splits", "=", "model_selection", ".", "KFold", "(", "n_splits", "=", "2", ",", "random_state", "=", "8", ")", ".", "split", "(", "X", ")", "else", ":", "raise", "exceptions", ".", "UserError", "(", "'Unknown dataset type {}'", ".", "format", "(", "dataset_properties", "[", "'type'", "]", ")", ")", "return", "X", ",", "y", ",", "splits" ]
Returns sample dataset Args: dataset_properties (dict): Dictionary corresponding to the properties of the dataset used to verify the estimator and metric generators. Returns: X (array-like): Features array y (array-like): Labels array splits (iterator): This is an iterator that returns train test splits for cross-validation purposes on ``X`` and ``y``.
[ "Returns", "sample", "dataset" ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/functions.py#L161-L201
6,654
reiinakano/xcessiv
xcessiv/functions.py
verify_estimator_class
def verify_estimator_class(est, meta_feature_generator, metric_generators, dataset_properties): """Verify if estimator object is valid for use i.e. scikit-learn format Verifies if an estimator is fit for use by testing for existence of methods such as `get_params` and `set_params`. Must also be able to properly fit on and predict a sample iris dataset. Args: est: Estimator object with `fit`, `predict`/`predict_proba`, `get_params`, and `set_params` methods. meta_feature_generator (str, unicode): Name of the method used by the estimator to generate meta-features on a set of data. metric_generators (dict): Dictionary of key value pairs where the key signifies the name of the metric calculated and the value is a list of strings, when concatenated, form Python code containing the function used to calculate the metric from true values and the meta-features generated. dataset_properties (dict): Dictionary corresponding to the properties of the dataset used to verify the estimator and metric generators. Returns: performance_dict (mapping): Mapping from performance metric name to performance metric value e.g. "Accuracy": 0.963 hyperparameters (mapping): Mapping from the estimator's hyperparameters to their default values e.g. "n_estimators": 10 """ X, y, splits = get_sample_dataset(dataset_properties) if not hasattr(est, "get_params"): raise exceptions.UserError('Estimator does not have get_params method') if not hasattr(est, "set_params"): raise exceptions.UserError('Estimator does not have set_params method') if not hasattr(est, meta_feature_generator): raise exceptions.UserError('Estimator does not have meta-feature generator' ' {}'.format(meta_feature_generator)) performance_dict = dict() true_labels = [] preds = [] try: for train_index, test_index in splits: X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] est.fit(X_train, y_train) true_labels.append(y_test) preds.append(getattr(est, meta_feature_generator)(X_test)) true_labels = np.concatenate(true_labels) preds = np.concatenate(preds, axis=0) except Exception as e: raise exceptions.UserError(repr(e)) if preds.shape[0] != true_labels.shape[0]: raise exceptions.UserError('Estimator\'s meta-feature generator ' 'does not produce valid shape') for key in metric_generators: metric_generator = import_object_from_string_code( metric_generators[key], 'metric_generator' ) try: performance_dict[key] = metric_generator(true_labels, preds) except Exception as e: raise exceptions.UserError(repr(e)) return performance_dict, make_serializable(est.get_params())
python
def verify_estimator_class(est, meta_feature_generator, metric_generators, dataset_properties): """Verify if estimator object is valid for use i.e. scikit-learn format Verifies if an estimator is fit for use by testing for existence of methods such as `get_params` and `set_params`. Must also be able to properly fit on and predict a sample iris dataset. Args: est: Estimator object with `fit`, `predict`/`predict_proba`, `get_params`, and `set_params` methods. meta_feature_generator (str, unicode): Name of the method used by the estimator to generate meta-features on a set of data. metric_generators (dict): Dictionary of key value pairs where the key signifies the name of the metric calculated and the value is a list of strings, when concatenated, form Python code containing the function used to calculate the metric from true values and the meta-features generated. dataset_properties (dict): Dictionary corresponding to the properties of the dataset used to verify the estimator and metric generators. Returns: performance_dict (mapping): Mapping from performance metric name to performance metric value e.g. "Accuracy": 0.963 hyperparameters (mapping): Mapping from the estimator's hyperparameters to their default values e.g. "n_estimators": 10 """ X, y, splits = get_sample_dataset(dataset_properties) if not hasattr(est, "get_params"): raise exceptions.UserError('Estimator does not have get_params method') if not hasattr(est, "set_params"): raise exceptions.UserError('Estimator does not have set_params method') if not hasattr(est, meta_feature_generator): raise exceptions.UserError('Estimator does not have meta-feature generator' ' {}'.format(meta_feature_generator)) performance_dict = dict() true_labels = [] preds = [] try: for train_index, test_index in splits: X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] est.fit(X_train, y_train) true_labels.append(y_test) preds.append(getattr(est, meta_feature_generator)(X_test)) true_labels = np.concatenate(true_labels) preds = np.concatenate(preds, axis=0) except Exception as e: raise exceptions.UserError(repr(e)) if preds.shape[0] != true_labels.shape[0]: raise exceptions.UserError('Estimator\'s meta-feature generator ' 'does not produce valid shape') for key in metric_generators: metric_generator = import_object_from_string_code( metric_generators[key], 'metric_generator' ) try: performance_dict[key] = metric_generator(true_labels, preds) except Exception as e: raise exceptions.UserError(repr(e)) return performance_dict, make_serializable(est.get_params())
[ "def", "verify_estimator_class", "(", "est", ",", "meta_feature_generator", ",", "metric_generators", ",", "dataset_properties", ")", ":", "X", ",", "y", ",", "splits", "=", "get_sample_dataset", "(", "dataset_properties", ")", "if", "not", "hasattr", "(", "est", ",", "\"get_params\"", ")", ":", "raise", "exceptions", ".", "UserError", "(", "'Estimator does not have get_params method'", ")", "if", "not", "hasattr", "(", "est", ",", "\"set_params\"", ")", ":", "raise", "exceptions", ".", "UserError", "(", "'Estimator does not have set_params method'", ")", "if", "not", "hasattr", "(", "est", ",", "meta_feature_generator", ")", ":", "raise", "exceptions", ".", "UserError", "(", "'Estimator does not have meta-feature generator'", "' {}'", ".", "format", "(", "meta_feature_generator", ")", ")", "performance_dict", "=", "dict", "(", ")", "true_labels", "=", "[", "]", "preds", "=", "[", "]", "try", ":", "for", "train_index", ",", "test_index", "in", "splits", ":", "X_train", ",", "X_test", "=", "X", "[", "train_index", "]", ",", "X", "[", "test_index", "]", "y_train", ",", "y_test", "=", "y", "[", "train_index", "]", ",", "y", "[", "test_index", "]", "est", ".", "fit", "(", "X_train", ",", "y_train", ")", "true_labels", ".", "append", "(", "y_test", ")", "preds", ".", "append", "(", "getattr", "(", "est", ",", "meta_feature_generator", ")", "(", "X_test", ")", ")", "true_labels", "=", "np", ".", "concatenate", "(", "true_labels", ")", "preds", "=", "np", ".", "concatenate", "(", "preds", ",", "axis", "=", "0", ")", "except", "Exception", "as", "e", ":", "raise", "exceptions", ".", "UserError", "(", "repr", "(", "e", ")", ")", "if", "preds", ".", "shape", "[", "0", "]", "!=", "true_labels", ".", "shape", "[", "0", "]", ":", "raise", "exceptions", ".", "UserError", "(", "'Estimator\\'s meta-feature generator '", "'does not produce valid shape'", ")", "for", "key", "in", "metric_generators", ":", "metric_generator", "=", "import_object_from_string_code", "(", "metric_generators", "[", "key", "]", ",", "'metric_generator'", ")", "try", ":", "performance_dict", "[", "key", "]", "=", "metric_generator", "(", "true_labels", ",", "preds", ")", "except", "Exception", "as", "e", ":", "raise", "exceptions", ".", "UserError", "(", "repr", "(", "e", ")", ")", "return", "performance_dict", ",", "make_serializable", "(", "est", ".", "get_params", "(", ")", ")" ]
Verify if estimator object is valid for use i.e. scikit-learn format Verifies if an estimator is fit for use by testing for existence of methods such as `get_params` and `set_params`. Must also be able to properly fit on and predict a sample iris dataset. Args: est: Estimator object with `fit`, `predict`/`predict_proba`, `get_params`, and `set_params` methods. meta_feature_generator (str, unicode): Name of the method used by the estimator to generate meta-features on a set of data. metric_generators (dict): Dictionary of key value pairs where the key signifies the name of the metric calculated and the value is a list of strings, when concatenated, form Python code containing the function used to calculate the metric from true values and the meta-features generated. dataset_properties (dict): Dictionary corresponding to the properties of the dataset used to verify the estimator and metric generators. Returns: performance_dict (mapping): Mapping from performance metric name to performance metric value e.g. "Accuracy": 0.963 hyperparameters (mapping): Mapping from the estimator's hyperparameters to their default values e.g. "n_estimators": 10
[ "Verify", "if", "estimator", "object", "is", "valid", "for", "use", "i", ".", "e", ".", "scikit", "-", "learn", "format" ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/functions.py#L204-L275
6,655
reiinakano/xcessiv
xcessiv/functions.py
get_path_from_query_string
def get_path_from_query_string(req): """Gets path from query string Args: req (flask.request): Request object from Flask Returns: path (str): Value of "path" parameter from query string Raises: exceptions.UserError: If "path" is not found in query string """ if req.args.get('path') is None: raise exceptions.UserError('Path not found in query string') return req.args.get('path')
python
def get_path_from_query_string(req): """Gets path from query string Args: req (flask.request): Request object from Flask Returns: path (str): Value of "path" parameter from query string Raises: exceptions.UserError: If "path" is not found in query string """ if req.args.get('path') is None: raise exceptions.UserError('Path not found in query string') return req.args.get('path')
[ "def", "get_path_from_query_string", "(", "req", ")", ":", "if", "req", ".", "args", ".", "get", "(", "'path'", ")", "is", "None", ":", "raise", "exceptions", ".", "UserError", "(", "'Path not found in query string'", ")", "return", "req", ".", "args", ".", "get", "(", "'path'", ")" ]
Gets path from query string Args: req (flask.request): Request object from Flask Returns: path (str): Value of "path" parameter from query string Raises: exceptions.UserError: If "path" is not found in query string
[ "Gets", "path", "from", "query", "string" ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/functions.py#L278-L292
6,656
reiinakano/xcessiv
xcessiv/models.py
Extraction.return_main_dataset
def return_main_dataset(self): """Returns main data set from self Returns: X (numpy.ndarray): Features y (numpy.ndarray): Labels """ if not self.main_dataset['source']: raise exceptions.UserError('Source is empty') extraction_code = self.main_dataset["source"] extraction_function = functions.import_object_from_string_code(extraction_code, "extract_main_dataset") try: X, y = extraction_function() except Exception as e: raise exceptions.UserError('User code exception', exception_message=str(e)) X, y = np.array(X), np.array(y) return X, y
python
def return_main_dataset(self): """Returns main data set from self Returns: X (numpy.ndarray): Features y (numpy.ndarray): Labels """ if not self.main_dataset['source']: raise exceptions.UserError('Source is empty') extraction_code = self.main_dataset["source"] extraction_function = functions.import_object_from_string_code(extraction_code, "extract_main_dataset") try: X, y = extraction_function() except Exception as e: raise exceptions.UserError('User code exception', exception_message=str(e)) X, y = np.array(X), np.array(y) return X, y
[ "def", "return_main_dataset", "(", "self", ")", ":", "if", "not", "self", ".", "main_dataset", "[", "'source'", "]", ":", "raise", "exceptions", ".", "UserError", "(", "'Source is empty'", ")", "extraction_code", "=", "self", ".", "main_dataset", "[", "\"source\"", "]", "extraction_function", "=", "functions", ".", "import_object_from_string_code", "(", "extraction_code", ",", "\"extract_main_dataset\"", ")", "try", ":", "X", ",", "y", "=", "extraction_function", "(", ")", "except", "Exception", "as", "e", ":", "raise", "exceptions", ".", "UserError", "(", "'User code exception'", ",", "exception_message", "=", "str", "(", "e", ")", ")", "X", ",", "y", "=", "np", ".", "array", "(", "X", ")", ",", "np", ".", "array", "(", "y", ")", "return", "X", ",", "y" ]
Returns main data set from self Returns: X (numpy.ndarray): Features y (numpy.ndarray): Labels
[ "Returns", "main", "data", "set", "from", "self" ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/models.py#L70-L92
6,657
reiinakano/xcessiv
xcessiv/models.py
Extraction.return_train_dataset
def return_train_dataset(self): """Returns train data set Returns: X (numpy.ndarray): Features y (numpy.ndarray): Labels """ X, y = self.return_main_dataset() if self.test_dataset['method'] == 'split_from_main': X, X_test, y, y_test = train_test_split( X, y, test_size=self.test_dataset['split_ratio'], random_state=self.test_dataset['split_seed'], stratify=y ) return X, y
python
def return_train_dataset(self): """Returns train data set Returns: X (numpy.ndarray): Features y (numpy.ndarray): Labels """ X, y = self.return_main_dataset() if self.test_dataset['method'] == 'split_from_main': X, X_test, y, y_test = train_test_split( X, y, test_size=self.test_dataset['split_ratio'], random_state=self.test_dataset['split_seed'], stratify=y ) return X, y
[ "def", "return_train_dataset", "(", "self", ")", ":", "X", ",", "y", "=", "self", ".", "return_main_dataset", "(", ")", "if", "self", ".", "test_dataset", "[", "'method'", "]", "==", "'split_from_main'", ":", "X", ",", "X_test", ",", "y", ",", "y_test", "=", "train_test_split", "(", "X", ",", "y", ",", "test_size", "=", "self", ".", "test_dataset", "[", "'split_ratio'", "]", ",", "random_state", "=", "self", ".", "test_dataset", "[", "'split_seed'", "]", ",", "stratify", "=", "y", ")", "return", "X", ",", "y" ]
Returns train data set Returns: X (numpy.ndarray): Features y (numpy.ndarray): Labels
[ "Returns", "train", "data", "set" ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/models.py#L94-L113
6,658
reiinakano/xcessiv
xcessiv/models.py
BaseLearnerOrigin.return_estimator
def return_estimator(self): """Returns estimator from base learner origin Returns: est (estimator): Estimator object """ extraction_code = self.source estimator = functions.import_object_from_string_code(extraction_code, "base_learner") return estimator
python
def return_estimator(self): """Returns estimator from base learner origin Returns: est (estimator): Estimator object """ extraction_code = self.source estimator = functions.import_object_from_string_code(extraction_code, "base_learner") return estimator
[ "def", "return_estimator", "(", "self", ")", ":", "extraction_code", "=", "self", ".", "source", "estimator", "=", "functions", ".", "import_object_from_string_code", "(", "extraction_code", ",", "\"base_learner\"", ")", "return", "estimator" ]
Returns estimator from base learner origin Returns: est (estimator): Estimator object
[ "Returns", "estimator", "from", "base", "learner", "origin" ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/models.py#L192-L201
6,659
reiinakano/xcessiv
xcessiv/models.py
BaseLearnerOrigin.export_as_file
def export_as_file(self, filepath, hyperparameters): """Generates a Python file with the importable base learner set to ``hyperparameters`` This function generates a Python file in the specified file path that contains the base learner as an importable variable stored in ``base_learner``. The base learner will be set to the appropriate hyperparameters through ``set_params``. Args: filepath (str, unicode): File path to save file in hyperparameters (dict): Dictionary to use for ``set_params`` """ if not filepath.endswith('.py'): filepath += '.py' file_contents = '' file_contents += self.source file_contents += '\n\nbase_learner.set_params(**{})\n'.format(hyperparameters) file_contents += '\nmeta_feature_generator = "{}"\n'.format(self.meta_feature_generator) with open(filepath, 'wb') as f: f.write(file_contents.encode('utf8'))
python
def export_as_file(self, filepath, hyperparameters): """Generates a Python file with the importable base learner set to ``hyperparameters`` This function generates a Python file in the specified file path that contains the base learner as an importable variable stored in ``base_learner``. The base learner will be set to the appropriate hyperparameters through ``set_params``. Args: filepath (str, unicode): File path to save file in hyperparameters (dict): Dictionary to use for ``set_params`` """ if not filepath.endswith('.py'): filepath += '.py' file_contents = '' file_contents += self.source file_contents += '\n\nbase_learner.set_params(**{})\n'.format(hyperparameters) file_contents += '\nmeta_feature_generator = "{}"\n'.format(self.meta_feature_generator) with open(filepath, 'wb') as f: f.write(file_contents.encode('utf8'))
[ "def", "export_as_file", "(", "self", ",", "filepath", ",", "hyperparameters", ")", ":", "if", "not", "filepath", ".", "endswith", "(", "'.py'", ")", ":", "filepath", "+=", "'.py'", "file_contents", "=", "''", "file_contents", "+=", "self", ".", "source", "file_contents", "+=", "'\\n\\nbase_learner.set_params(**{})\\n'", ".", "format", "(", "hyperparameters", ")", "file_contents", "+=", "'\\nmeta_feature_generator = \"{}\"\\n'", ".", "format", "(", "self", ".", "meta_feature_generator", ")", "with", "open", "(", "filepath", ",", "'wb'", ")", "as", "f", ":", "f", ".", "write", "(", "file_contents", ".", "encode", "(", "'utf8'", ")", ")" ]
Generates a Python file with the importable base learner set to ``hyperparameters`` This function generates a Python file in the specified file path that contains the base learner as an importable variable stored in ``base_learner``. The base learner will be set to the appropriate hyperparameters through ``set_params``. Args: filepath (str, unicode): File path to save file in hyperparameters (dict): Dictionary to use for ``set_params``
[ "Generates", "a", "Python", "file", "with", "the", "importable", "base", "learner", "set", "to", "hyperparameters" ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/models.py#L212-L232
6,660
reiinakano/xcessiv
xcessiv/models.py
BaseLearner.return_estimator
def return_estimator(self): """Returns base learner using its origin and the given hyperparameters Returns: est (estimator): Estimator object """ estimator = self.base_learner_origin.return_estimator() estimator = estimator.set_params(**self.hyperparameters) return estimator
python
def return_estimator(self): """Returns base learner using its origin and the given hyperparameters Returns: est (estimator): Estimator object """ estimator = self.base_learner_origin.return_estimator() estimator = estimator.set_params(**self.hyperparameters) return estimator
[ "def", "return_estimator", "(", "self", ")", ":", "estimator", "=", "self", ".", "base_learner_origin", ".", "return_estimator", "(", ")", "estimator", "=", "estimator", ".", "set_params", "(", "*", "*", "self", ".", "hyperparameters", ")", "return", "estimator" ]
Returns base learner using its origin and the given hyperparameters Returns: est (estimator): Estimator object
[ "Returns", "base", "learner", "using", "its", "origin", "and", "the", "given", "hyperparameters" ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/models.py#L307-L315
6,661
reiinakano/xcessiv
xcessiv/models.py
BaseLearner.meta_features_path
def meta_features_path(self, path): """Returns path for meta-features Args: path (str): Absolute/local path of xcessiv folder """ return os.path.join( path, app.config['XCESSIV_META_FEATURES_FOLDER'], str(self.id) ) + '.npy'
python
def meta_features_path(self, path): """Returns path for meta-features Args: path (str): Absolute/local path of xcessiv folder """ return os.path.join( path, app.config['XCESSIV_META_FEATURES_FOLDER'], str(self.id) ) + '.npy'
[ "def", "meta_features_path", "(", "self", ",", "path", ")", ":", "return", "os", ".", "path", ".", "join", "(", "path", ",", "app", ".", "config", "[", "'XCESSIV_META_FEATURES_FOLDER'", "]", ",", "str", "(", "self", ".", "id", ")", ")", "+", "'.npy'" ]
Returns path for meta-features Args: path (str): Absolute/local path of xcessiv folder
[ "Returns", "path", "for", "meta", "-", "features" ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/models.py#L317-L327
6,662
reiinakano/xcessiv
xcessiv/models.py
BaseLearner.delete_meta_features
def delete_meta_features(self, path): """Deletes meta-features of base learner if it exists Args: path (str): Absolute/local path of xcessiv folder """ if os.path.exists(self.meta_features_path(path)): os.remove(self.meta_features_path(path))
python
def delete_meta_features(self, path): """Deletes meta-features of base learner if it exists Args: path (str): Absolute/local path of xcessiv folder """ if os.path.exists(self.meta_features_path(path)): os.remove(self.meta_features_path(path))
[ "def", "delete_meta_features", "(", "self", ",", "path", ")", ":", "if", "os", ".", "path", ".", "exists", "(", "self", ".", "meta_features_path", "(", "path", ")", ")", ":", "os", ".", "remove", "(", "self", ".", "meta_features_path", "(", "path", ")", ")" ]
Deletes meta-features of base learner if it exists Args: path (str): Absolute/local path of xcessiv folder
[ "Deletes", "meta", "-", "features", "of", "base", "learner", "if", "it", "exists" ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/models.py#L342-L349
6,663
reiinakano/xcessiv
xcessiv/models.py
StackedEnsemble.return_secondary_learner
def return_secondary_learner(self): """Returns secondary learner using its origin and the given hyperparameters Returns: est (estimator): Estimator object """ estimator = self.base_learner_origin.return_estimator() estimator = estimator.set_params(**self.secondary_learner_hyperparameters) return estimator
python
def return_secondary_learner(self): """Returns secondary learner using its origin and the given hyperparameters Returns: est (estimator): Estimator object """ estimator = self.base_learner_origin.return_estimator() estimator = estimator.set_params(**self.secondary_learner_hyperparameters) return estimator
[ "def", "return_secondary_learner", "(", "self", ")", ":", "estimator", "=", "self", ".", "base_learner_origin", ".", "return_estimator", "(", ")", "estimator", "=", "estimator", ".", "set_params", "(", "*", "*", "self", ".", "secondary_learner_hyperparameters", ")", "return", "estimator" ]
Returns secondary learner using its origin and the given hyperparameters Returns: est (estimator): Estimator object
[ "Returns", "secondary", "learner", "using", "its", "origin", "and", "the", "given", "hyperparameters" ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/models.py#L402-L410
6,664
reiinakano/xcessiv
xcessiv/models.py
StackedEnsemble.export_as_code
def export_as_code(self, cv_source): """Returns a string value that contains the Python code for the ensemble Args: cv_source (str, unicode): String containing actual code for base learner cross-validation used to generate secondary meta-features. Returns: base_learner_code (str, unicode): String that can be used as Python code """ rand_value = ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(25)) base_learner_code = '' base_learner_code += 'base_learner_list_{} = []\n'.format(rand_value) base_learner_code += 'meta_feature_generators_list_{} = []\n\n'.format(rand_value) for idx, base_learner in enumerate(self.base_learners): base_learner_code += '################################################\n' base_learner_code += '###### Code for building base learner {} ########\n'.format(idx+1) base_learner_code += '################################################\n' base_learner_code += base_learner.base_learner_origin.source base_learner_code += '\n\n' base_learner_code += 'base_learner' \ '.set_params(**{})\n'.format(base_learner.hyperparameters) base_learner_code += 'base_learner_list_{}.append(base_learner)\n'.format(rand_value) base_learner_code += 'meta_feature_generators_list_{}.append("{}")\n'.format( rand_value, base_learner.base_learner_origin.meta_feature_generator ) base_learner_code += '\n\n' base_learner_code += '################################################\n' base_learner_code += '##### Code for building secondary learner ######\n' base_learner_code += '################################################\n' base_learner_code += self.base_learner_origin.source base_learner_code += '\n\n' base_learner_code += 'base_learner' \ '.set_params(**{})\n'.format(self.secondary_learner_hyperparameters) base_learner_code += 'secondary_learner_{} = base_learner\n'.format(rand_value) base_learner_code += '\n\n' base_learner_code += '################################################\n' base_learner_code += '############## Code for CV method ##############\n' base_learner_code += '################################################\n' base_learner_code += cv_source base_learner_code += '\n\n' base_learner_code += '################################################\n' base_learner_code += '######## Code for Xcessiv stacker class ########\n' base_learner_code += '################################################\n' stacker_file_loc = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'stacker.py') with open(stacker_file_loc) as f2: base_learner_code += f2.read() base_learner_code += '\n\n' \ ' def {}(self, X):\n' \ ' return self._process_using_' \ 'meta_feature_generator(X, "{}")\n\n'\ .format(self.base_learner_origin.meta_feature_generator, self.base_learner_origin.meta_feature_generator) base_learner_code += '\n\n' base_learner_code += 'base_learner = XcessivStackedEnsemble' \ '(base_learners=base_learner_list_{},' \ ' meta_feature_generators=meta_feature_generators_list_{},' \ ' secondary_learner=secondary_learner_{},' \ ' cv_function=return_splits_iterable)\n'.format( rand_value, rand_value, rand_value ) return base_learner_code
python
def export_as_code(self, cv_source): """Returns a string value that contains the Python code for the ensemble Args: cv_source (str, unicode): String containing actual code for base learner cross-validation used to generate secondary meta-features. Returns: base_learner_code (str, unicode): String that can be used as Python code """ rand_value = ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(25)) base_learner_code = '' base_learner_code += 'base_learner_list_{} = []\n'.format(rand_value) base_learner_code += 'meta_feature_generators_list_{} = []\n\n'.format(rand_value) for idx, base_learner in enumerate(self.base_learners): base_learner_code += '################################################\n' base_learner_code += '###### Code for building base learner {} ########\n'.format(idx+1) base_learner_code += '################################################\n' base_learner_code += base_learner.base_learner_origin.source base_learner_code += '\n\n' base_learner_code += 'base_learner' \ '.set_params(**{})\n'.format(base_learner.hyperparameters) base_learner_code += 'base_learner_list_{}.append(base_learner)\n'.format(rand_value) base_learner_code += 'meta_feature_generators_list_{}.append("{}")\n'.format( rand_value, base_learner.base_learner_origin.meta_feature_generator ) base_learner_code += '\n\n' base_learner_code += '################################################\n' base_learner_code += '##### Code for building secondary learner ######\n' base_learner_code += '################################################\n' base_learner_code += self.base_learner_origin.source base_learner_code += '\n\n' base_learner_code += 'base_learner' \ '.set_params(**{})\n'.format(self.secondary_learner_hyperparameters) base_learner_code += 'secondary_learner_{} = base_learner\n'.format(rand_value) base_learner_code += '\n\n' base_learner_code += '################################################\n' base_learner_code += '############## Code for CV method ##############\n' base_learner_code += '################################################\n' base_learner_code += cv_source base_learner_code += '\n\n' base_learner_code += '################################################\n' base_learner_code += '######## Code for Xcessiv stacker class ########\n' base_learner_code += '################################################\n' stacker_file_loc = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'stacker.py') with open(stacker_file_loc) as f2: base_learner_code += f2.read() base_learner_code += '\n\n' \ ' def {}(self, X):\n' \ ' return self._process_using_' \ 'meta_feature_generator(X, "{}")\n\n'\ .format(self.base_learner_origin.meta_feature_generator, self.base_learner_origin.meta_feature_generator) base_learner_code += '\n\n' base_learner_code += 'base_learner = XcessivStackedEnsemble' \ '(base_learners=base_learner_list_{},' \ ' meta_feature_generators=meta_feature_generators_list_{},' \ ' secondary_learner=secondary_learner_{},' \ ' cv_function=return_splits_iterable)\n'.format( rand_value, rand_value, rand_value ) return base_learner_code
[ "def", "export_as_code", "(", "self", ",", "cv_source", ")", ":", "rand_value", "=", "''", ".", "join", "(", "random", ".", "choice", "(", "string", ".", "ascii_uppercase", "+", "string", ".", "digits", ")", "for", "_", "in", "range", "(", "25", ")", ")", "base_learner_code", "=", "''", "base_learner_code", "+=", "'base_learner_list_{} = []\\n'", ".", "format", "(", "rand_value", ")", "base_learner_code", "+=", "'meta_feature_generators_list_{} = []\\n\\n'", ".", "format", "(", "rand_value", ")", "for", "idx", ",", "base_learner", "in", "enumerate", "(", "self", ".", "base_learners", ")", ":", "base_learner_code", "+=", "'################################################\\n'", "base_learner_code", "+=", "'###### Code for building base learner {} ########\\n'", ".", "format", "(", "idx", "+", "1", ")", "base_learner_code", "+=", "'################################################\\n'", "base_learner_code", "+=", "base_learner", ".", "base_learner_origin", ".", "source", "base_learner_code", "+=", "'\\n\\n'", "base_learner_code", "+=", "'base_learner'", "'.set_params(**{})\\n'", ".", "format", "(", "base_learner", ".", "hyperparameters", ")", "base_learner_code", "+=", "'base_learner_list_{}.append(base_learner)\\n'", ".", "format", "(", "rand_value", ")", "base_learner_code", "+=", "'meta_feature_generators_list_{}.append(\"{}\")\\n'", ".", "format", "(", "rand_value", ",", "base_learner", ".", "base_learner_origin", ".", "meta_feature_generator", ")", "base_learner_code", "+=", "'\\n\\n'", "base_learner_code", "+=", "'################################################\\n'", "base_learner_code", "+=", "'##### Code for building secondary learner ######\\n'", "base_learner_code", "+=", "'################################################\\n'", "base_learner_code", "+=", "self", ".", "base_learner_origin", ".", "source", "base_learner_code", "+=", "'\\n\\n'", "base_learner_code", "+=", "'base_learner'", "'.set_params(**{})\\n'", ".", "format", "(", "self", ".", "secondary_learner_hyperparameters", ")", "base_learner_code", "+=", "'secondary_learner_{} = base_learner\\n'", ".", "format", "(", "rand_value", ")", "base_learner_code", "+=", "'\\n\\n'", "base_learner_code", "+=", "'################################################\\n'", "base_learner_code", "+=", "'############## Code for CV method ##############\\n'", "base_learner_code", "+=", "'################################################\\n'", "base_learner_code", "+=", "cv_source", "base_learner_code", "+=", "'\\n\\n'", "base_learner_code", "+=", "'################################################\\n'", "base_learner_code", "+=", "'######## Code for Xcessiv stacker class ########\\n'", "base_learner_code", "+=", "'################################################\\n'", "stacker_file_loc", "=", "os", ".", "path", ".", "join", "(", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "dirname", "(", "__file__", ")", ")", ",", "'stacker.py'", ")", "with", "open", "(", "stacker_file_loc", ")", "as", "f2", ":", "base_learner_code", "+=", "f2", ".", "read", "(", ")", "base_learner_code", "+=", "'\\n\\n'", "' def {}(self, X):\\n'", "' return self._process_using_'", "'meta_feature_generator(X, \"{}\")\\n\\n'", ".", "format", "(", "self", ".", "base_learner_origin", ".", "meta_feature_generator", ",", "self", ".", "base_learner_origin", ".", "meta_feature_generator", ")", "base_learner_code", "+=", "'\\n\\n'", "base_learner_code", "+=", "'base_learner = XcessivStackedEnsemble'", "'(base_learners=base_learner_list_{},'", "' meta_feature_generators=meta_feature_generators_list_{},'", "' secondary_learner=secondary_learner_{},'", "' cv_function=return_splits_iterable)\\n'", ".", "format", "(", "rand_value", ",", "rand_value", ",", "rand_value", ")", "return", "base_learner_code" ]
Returns a string value that contains the Python code for the ensemble Args: cv_source (str, unicode): String containing actual code for base learner cross-validation used to generate secondary meta-features. Returns: base_learner_code (str, unicode): String that can be used as Python code
[ "Returns", "a", "string", "value", "that", "contains", "the", "Python", "code", "for", "the", "ensemble" ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/models.py#L412-L486
6,665
reiinakano/xcessiv
xcessiv/models.py
StackedEnsemble.export_as_file
def export_as_file(self, file_path, cv_source): """Export the ensemble as a single Python file and saves it to `file_path`. This is EXPERIMENTAL as putting different modules together would probably wreak havoc especially on modules that make heavy use of global variables. Args: file_path (str, unicode): Absolute/local path of place to save file in cv_source (str, unicode): String containing actual code for base learner cross-validation used to generate secondary meta-features. """ if os.path.exists(file_path): raise exceptions.UserError('{} already exists'.format(file_path)) with open(file_path, 'wb') as f: f.write(self.export_as_code(cv_source).encode('utf8'))
python
def export_as_file(self, file_path, cv_source): """Export the ensemble as a single Python file and saves it to `file_path`. This is EXPERIMENTAL as putting different modules together would probably wreak havoc especially on modules that make heavy use of global variables. Args: file_path (str, unicode): Absolute/local path of place to save file in cv_source (str, unicode): String containing actual code for base learner cross-validation used to generate secondary meta-features. """ if os.path.exists(file_path): raise exceptions.UserError('{} already exists'.format(file_path)) with open(file_path, 'wb') as f: f.write(self.export_as_code(cv_source).encode('utf8'))
[ "def", "export_as_file", "(", "self", ",", "file_path", ",", "cv_source", ")", ":", "if", "os", ".", "path", ".", "exists", "(", "file_path", ")", ":", "raise", "exceptions", ".", "UserError", "(", "'{} already exists'", ".", "format", "(", "file_path", ")", ")", "with", "open", "(", "file_path", ",", "'wb'", ")", "as", "f", ":", "f", ".", "write", "(", "self", ".", "export_as_code", "(", "cv_source", ")", ".", "encode", "(", "'utf8'", ")", ")" ]
Export the ensemble as a single Python file and saves it to `file_path`. This is EXPERIMENTAL as putting different modules together would probably wreak havoc especially on modules that make heavy use of global variables. Args: file_path (str, unicode): Absolute/local path of place to save file in cv_source (str, unicode): String containing actual code for base learner cross-validation used to generate secondary meta-features.
[ "Export", "the", "ensemble", "as", "a", "single", "Python", "file", "and", "saves", "it", "to", "file_path", "." ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/models.py#L488-L504
6,666
reiinakano/xcessiv
xcessiv/models.py
StackedEnsemble.export_as_package
def export_as_package(self, package_path, cv_source): """Exports the ensemble as a Python package and saves it to `package_path`. Args: package_path (str, unicode): Absolute/local path of place to save package in cv_source (str, unicode): String containing actual code for base learner cross-validation used to generate secondary meta-features. Raises: exceptions.UserError: If os.path.join(path, name) already exists. """ if os.path.exists(package_path): raise exceptions.UserError('{} already exists'.format(package_path)) package_name = os.path.basename(os.path.normpath(package_path)) os.makedirs(package_path) # Write __init__.py with open(os.path.join(package_path, '__init__.py'), 'wb') as f: f.write('from {}.builder import xcessiv_ensemble'.format(package_name).encode('utf8')) # Create package baselearners with each base learner having its own module os.makedirs(os.path.join(package_path, 'baselearners')) open(os.path.join(package_path, 'baselearners', '__init__.py'), 'a').close() for idx, base_learner in enumerate(self.base_learners): base_learner.export_as_file(os.path.join(package_path, 'baselearners', 'baselearner' + str(idx))) # Create metalearner.py containing secondary learner self.base_learner_origin.export_as_file( os.path.join(package_path, 'metalearner'), self.secondary_learner_hyperparameters ) # Create cv.py containing CV method for getting meta-features with open(os.path.join(package_path, 'cv.py'), 'wb') as f: f.write(cv_source.encode('utf8')) # Create stacker.py containing class for Xcessiv ensemble ensemble_source = '' stacker_file_loc = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'stacker.py') with open(stacker_file_loc) as f: ensemble_source += f.read() ensemble_source += '\n\n' \ ' def {}(self, X):\n' \ ' return self._process_using_' \ 'meta_feature_generator(X, "{}")\n\n'\ .format(self.base_learner_origin.meta_feature_generator, self.base_learner_origin.meta_feature_generator) with open(os.path.join(package_path, 'stacker.py'), 'wb') as f: f.write(ensemble_source.encode('utf8')) # Create builder.py containing file where `xcessiv_ensemble` is instantiated for import builder_source = '' for idx, base_learner in enumerate(self.base_learners): builder_source += 'from {}.baselearners import baselearner{}\n'.format(package_name, idx) builder_source += 'from {}.cv import return_splits_iterable\n'.format(package_name) builder_source += 'from {} import metalearner\n'.format(package_name) builder_source += 'from {}.stacker import XcessivStackedEnsemble\n'.format(package_name) builder_source += '\nbase_learners = [\n' for idx, base_learner in enumerate(self.base_learners): builder_source += ' baselearner{}.base_learner,\n'.format(idx) builder_source += ']\n' builder_source += '\nmeta_feature_generators = [\n' for idx, base_learner in enumerate(self.base_learners): builder_source += ' baselearner{}.meta_feature_generator,\n'.format(idx) builder_source += ']\n' builder_source += '\nxcessiv_ensemble = XcessivStackedEnsemble(base_learners=base_learners,' \ ' meta_feature_generators=meta_feature_generators,' \ ' secondary_learner=metalearner.base_learner,' \ ' cv_function=return_splits_iterable)\n' with open(os.path.join(package_path, 'builder.py'), 'wb') as f: f.write(builder_source.encode('utf8'))
python
def export_as_package(self, package_path, cv_source): """Exports the ensemble as a Python package and saves it to `package_path`. Args: package_path (str, unicode): Absolute/local path of place to save package in cv_source (str, unicode): String containing actual code for base learner cross-validation used to generate secondary meta-features. Raises: exceptions.UserError: If os.path.join(path, name) already exists. """ if os.path.exists(package_path): raise exceptions.UserError('{} already exists'.format(package_path)) package_name = os.path.basename(os.path.normpath(package_path)) os.makedirs(package_path) # Write __init__.py with open(os.path.join(package_path, '__init__.py'), 'wb') as f: f.write('from {}.builder import xcessiv_ensemble'.format(package_name).encode('utf8')) # Create package baselearners with each base learner having its own module os.makedirs(os.path.join(package_path, 'baselearners')) open(os.path.join(package_path, 'baselearners', '__init__.py'), 'a').close() for idx, base_learner in enumerate(self.base_learners): base_learner.export_as_file(os.path.join(package_path, 'baselearners', 'baselearner' + str(idx))) # Create metalearner.py containing secondary learner self.base_learner_origin.export_as_file( os.path.join(package_path, 'metalearner'), self.secondary_learner_hyperparameters ) # Create cv.py containing CV method for getting meta-features with open(os.path.join(package_path, 'cv.py'), 'wb') as f: f.write(cv_source.encode('utf8')) # Create stacker.py containing class for Xcessiv ensemble ensemble_source = '' stacker_file_loc = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'stacker.py') with open(stacker_file_loc) as f: ensemble_source += f.read() ensemble_source += '\n\n' \ ' def {}(self, X):\n' \ ' return self._process_using_' \ 'meta_feature_generator(X, "{}")\n\n'\ .format(self.base_learner_origin.meta_feature_generator, self.base_learner_origin.meta_feature_generator) with open(os.path.join(package_path, 'stacker.py'), 'wb') as f: f.write(ensemble_source.encode('utf8')) # Create builder.py containing file where `xcessiv_ensemble` is instantiated for import builder_source = '' for idx, base_learner in enumerate(self.base_learners): builder_source += 'from {}.baselearners import baselearner{}\n'.format(package_name, idx) builder_source += 'from {}.cv import return_splits_iterable\n'.format(package_name) builder_source += 'from {} import metalearner\n'.format(package_name) builder_source += 'from {}.stacker import XcessivStackedEnsemble\n'.format(package_name) builder_source += '\nbase_learners = [\n' for idx, base_learner in enumerate(self.base_learners): builder_source += ' baselearner{}.base_learner,\n'.format(idx) builder_source += ']\n' builder_source += '\nmeta_feature_generators = [\n' for idx, base_learner in enumerate(self.base_learners): builder_source += ' baselearner{}.meta_feature_generator,\n'.format(idx) builder_source += ']\n' builder_source += '\nxcessiv_ensemble = XcessivStackedEnsemble(base_learners=base_learners,' \ ' meta_feature_generators=meta_feature_generators,' \ ' secondary_learner=metalearner.base_learner,' \ ' cv_function=return_splits_iterable)\n' with open(os.path.join(package_path, 'builder.py'), 'wb') as f: f.write(builder_source.encode('utf8'))
[ "def", "export_as_package", "(", "self", ",", "package_path", ",", "cv_source", ")", ":", "if", "os", ".", "path", ".", "exists", "(", "package_path", ")", ":", "raise", "exceptions", ".", "UserError", "(", "'{} already exists'", ".", "format", "(", "package_path", ")", ")", "package_name", "=", "os", ".", "path", ".", "basename", "(", "os", ".", "path", ".", "normpath", "(", "package_path", ")", ")", "os", ".", "makedirs", "(", "package_path", ")", "# Write __init__.py", "with", "open", "(", "os", ".", "path", ".", "join", "(", "package_path", ",", "'__init__.py'", ")", ",", "'wb'", ")", "as", "f", ":", "f", ".", "write", "(", "'from {}.builder import xcessiv_ensemble'", ".", "format", "(", "package_name", ")", ".", "encode", "(", "'utf8'", ")", ")", "# Create package baselearners with each base learner having its own module", "os", ".", "makedirs", "(", "os", ".", "path", ".", "join", "(", "package_path", ",", "'baselearners'", ")", ")", "open", "(", "os", ".", "path", ".", "join", "(", "package_path", ",", "'baselearners'", ",", "'__init__.py'", ")", ",", "'a'", ")", ".", "close", "(", ")", "for", "idx", ",", "base_learner", "in", "enumerate", "(", "self", ".", "base_learners", ")", ":", "base_learner", ".", "export_as_file", "(", "os", ".", "path", ".", "join", "(", "package_path", ",", "'baselearners'", ",", "'baselearner'", "+", "str", "(", "idx", ")", ")", ")", "# Create metalearner.py containing secondary learner", "self", ".", "base_learner_origin", ".", "export_as_file", "(", "os", ".", "path", ".", "join", "(", "package_path", ",", "'metalearner'", ")", ",", "self", ".", "secondary_learner_hyperparameters", ")", "# Create cv.py containing CV method for getting meta-features", "with", "open", "(", "os", ".", "path", ".", "join", "(", "package_path", ",", "'cv.py'", ")", ",", "'wb'", ")", "as", "f", ":", "f", ".", "write", "(", "cv_source", ".", "encode", "(", "'utf8'", ")", ")", "# Create stacker.py containing class for Xcessiv ensemble", "ensemble_source", "=", "''", "stacker_file_loc", "=", "os", ".", "path", ".", "join", "(", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "dirname", "(", "__file__", ")", ")", ",", "'stacker.py'", ")", "with", "open", "(", "stacker_file_loc", ")", "as", "f", ":", "ensemble_source", "+=", "f", ".", "read", "(", ")", "ensemble_source", "+=", "'\\n\\n'", "' def {}(self, X):\\n'", "' return self._process_using_'", "'meta_feature_generator(X, \"{}\")\\n\\n'", ".", "format", "(", "self", ".", "base_learner_origin", ".", "meta_feature_generator", ",", "self", ".", "base_learner_origin", ".", "meta_feature_generator", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "package_path", ",", "'stacker.py'", ")", ",", "'wb'", ")", "as", "f", ":", "f", ".", "write", "(", "ensemble_source", ".", "encode", "(", "'utf8'", ")", ")", "# Create builder.py containing file where `xcessiv_ensemble` is instantiated for import", "builder_source", "=", "''", "for", "idx", ",", "base_learner", "in", "enumerate", "(", "self", ".", "base_learners", ")", ":", "builder_source", "+=", "'from {}.baselearners import baselearner{}\\n'", ".", "format", "(", "package_name", ",", "idx", ")", "builder_source", "+=", "'from {}.cv import return_splits_iterable\\n'", ".", "format", "(", "package_name", ")", "builder_source", "+=", "'from {} import metalearner\\n'", ".", "format", "(", "package_name", ")", "builder_source", "+=", "'from {}.stacker import XcessivStackedEnsemble\\n'", ".", "format", "(", "package_name", ")", "builder_source", "+=", "'\\nbase_learners = [\\n'", "for", "idx", ",", "base_learner", "in", "enumerate", "(", "self", ".", "base_learners", ")", ":", "builder_source", "+=", "' baselearner{}.base_learner,\\n'", ".", "format", "(", "idx", ")", "builder_source", "+=", "']\\n'", "builder_source", "+=", "'\\nmeta_feature_generators = [\\n'", "for", "idx", ",", "base_learner", "in", "enumerate", "(", "self", ".", "base_learners", ")", ":", "builder_source", "+=", "' baselearner{}.meta_feature_generator,\\n'", ".", "format", "(", "idx", ")", "builder_source", "+=", "']\\n'", "builder_source", "+=", "'\\nxcessiv_ensemble = XcessivStackedEnsemble(base_learners=base_learners,'", "' meta_feature_generators=meta_feature_generators,'", "' secondary_learner=metalearner.base_learner,'", "' cv_function=return_splits_iterable)\\n'", "with", "open", "(", "os", ".", "path", ".", "join", "(", "package_path", ",", "'builder.py'", ")", ",", "'wb'", ")", "as", "f", ":", "f", ".", "write", "(", "builder_source", ".", "encode", "(", "'utf8'", ")", ")" ]
Exports the ensemble as a Python package and saves it to `package_path`. Args: package_path (str, unicode): Absolute/local path of place to save package in cv_source (str, unicode): String containing actual code for base learner cross-validation used to generate secondary meta-features. Raises: exceptions.UserError: If os.path.join(path, name) already exists.
[ "Exports", "the", "ensemble", "as", "a", "Python", "package", "and", "saves", "it", "to", "package_path", "." ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/models.py#L506-L591
6,667
reiinakano/xcessiv
xcessiv/views.py
verify_full_extraction
def verify_full_extraction(): """This is an experimental endpoint to simultaneously verify data statistics and extraction for training, test, and holdout datasets. With this, the other three verification methods will no longer be necessary. """ path = functions.get_path_from_query_string(request) if request.method == 'POST': rqtasks.extraction_data_statistics(path) with functions.DBContextManager(path) as session: extraction = session.query(models.Extraction).first() return jsonify(extraction.data_statistics)
python
def verify_full_extraction(): """This is an experimental endpoint to simultaneously verify data statistics and extraction for training, test, and holdout datasets. With this, the other three verification methods will no longer be necessary. """ path = functions.get_path_from_query_string(request) if request.method == 'POST': rqtasks.extraction_data_statistics(path) with functions.DBContextManager(path) as session: extraction = session.query(models.Extraction).first() return jsonify(extraction.data_statistics)
[ "def", "verify_full_extraction", "(", ")", ":", "path", "=", "functions", ".", "get_path_from_query_string", "(", "request", ")", "if", "request", ".", "method", "==", "'POST'", ":", "rqtasks", ".", "extraction_data_statistics", "(", "path", ")", "with", "functions", ".", "DBContextManager", "(", "path", ")", "as", "session", ":", "extraction", "=", "session", ".", "query", "(", "models", ".", "Extraction", ")", ".", "first", "(", ")", "return", "jsonify", "(", "extraction", ".", "data_statistics", ")" ]
This is an experimental endpoint to simultaneously verify data statistics and extraction for training, test, and holdout datasets. With this, the other three verification methods will no longer be necessary.
[ "This", "is", "an", "experimental", "endpoint", "to", "simultaneously", "verify", "data", "statistics", "and", "extraction", "for", "training", "test", "and", "holdout", "datasets", ".", "With", "this", "the", "other", "three", "verification", "methods", "will", "no", "longer", "be", "necessary", "." ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/views.py#L156-L169
6,668
reiinakano/xcessiv
xcessiv/views.py
create_base_learner
def create_base_learner(id): """This creates a single base learner from a base learner origin and queues it up""" path = functions.get_path_from_query_string(request) with functions.DBContextManager(path) as session: base_learner_origin = session.query(models.BaseLearnerOrigin).filter_by(id=id).first() if base_learner_origin is None: raise exceptions.UserError('Base learner origin {} not found'.format(id), 404) if not base_learner_origin.final: raise exceptions.UserError('Base learner origin {} is not final'.format(id)) req_body = request.get_json() # Retrieve full hyperparameters est = base_learner_origin.return_estimator() hyperparameters = functions.import_object_from_string_code(req_body['source'], 'params') est.set_params(**hyperparameters) hyperparameters = functions.make_serializable(est.get_params()) base_learners = session.query(models.BaseLearner).\ filter_by(base_learner_origin_id=id, hyperparameters=hyperparameters).all() if base_learners: raise exceptions.UserError('Base learner exists with given hyperparameters') base_learner = models.BaseLearner(hyperparameters, 'queued', base_learner_origin) if 'single_searches' not in base_learner_origin.description: base_learner_origin.description['single_searches'] = [] base_learner_origin.description['single_searches'] += ([req_body['source']]) session.add(base_learner) session.add(base_learner_origin) session.commit() with Connection(get_redis_connection()): rqtasks.generate_meta_features.delay(path, base_learner.id) return jsonify(base_learner.serialize)
python
def create_base_learner(id): """This creates a single base learner from a base learner origin and queues it up""" path = functions.get_path_from_query_string(request) with functions.DBContextManager(path) as session: base_learner_origin = session.query(models.BaseLearnerOrigin).filter_by(id=id).first() if base_learner_origin is None: raise exceptions.UserError('Base learner origin {} not found'.format(id), 404) if not base_learner_origin.final: raise exceptions.UserError('Base learner origin {} is not final'.format(id)) req_body = request.get_json() # Retrieve full hyperparameters est = base_learner_origin.return_estimator() hyperparameters = functions.import_object_from_string_code(req_body['source'], 'params') est.set_params(**hyperparameters) hyperparameters = functions.make_serializable(est.get_params()) base_learners = session.query(models.BaseLearner).\ filter_by(base_learner_origin_id=id, hyperparameters=hyperparameters).all() if base_learners: raise exceptions.UserError('Base learner exists with given hyperparameters') base_learner = models.BaseLearner(hyperparameters, 'queued', base_learner_origin) if 'single_searches' not in base_learner_origin.description: base_learner_origin.description['single_searches'] = [] base_learner_origin.description['single_searches'] += ([req_body['source']]) session.add(base_learner) session.add(base_learner_origin) session.commit() with Connection(get_redis_connection()): rqtasks.generate_meta_features.delay(path, base_learner.id) return jsonify(base_learner.serialize)
[ "def", "create_base_learner", "(", "id", ")", ":", "path", "=", "functions", ".", "get_path_from_query_string", "(", "request", ")", "with", "functions", ".", "DBContextManager", "(", "path", ")", "as", "session", ":", "base_learner_origin", "=", "session", ".", "query", "(", "models", ".", "BaseLearnerOrigin", ")", ".", "filter_by", "(", "id", "=", "id", ")", ".", "first", "(", ")", "if", "base_learner_origin", "is", "None", ":", "raise", "exceptions", ".", "UserError", "(", "'Base learner origin {} not found'", ".", "format", "(", "id", ")", ",", "404", ")", "if", "not", "base_learner_origin", ".", "final", ":", "raise", "exceptions", ".", "UserError", "(", "'Base learner origin {} is not final'", ".", "format", "(", "id", ")", ")", "req_body", "=", "request", ".", "get_json", "(", ")", "# Retrieve full hyperparameters", "est", "=", "base_learner_origin", ".", "return_estimator", "(", ")", "hyperparameters", "=", "functions", ".", "import_object_from_string_code", "(", "req_body", "[", "'source'", "]", ",", "'params'", ")", "est", ".", "set_params", "(", "*", "*", "hyperparameters", ")", "hyperparameters", "=", "functions", ".", "make_serializable", "(", "est", ".", "get_params", "(", ")", ")", "base_learners", "=", "session", ".", "query", "(", "models", ".", "BaseLearner", ")", ".", "filter_by", "(", "base_learner_origin_id", "=", "id", ",", "hyperparameters", "=", "hyperparameters", ")", ".", "all", "(", ")", "if", "base_learners", ":", "raise", "exceptions", ".", "UserError", "(", "'Base learner exists with given hyperparameters'", ")", "base_learner", "=", "models", ".", "BaseLearner", "(", "hyperparameters", ",", "'queued'", ",", "base_learner_origin", ")", "if", "'single_searches'", "not", "in", "base_learner_origin", ".", "description", ":", "base_learner_origin", ".", "description", "[", "'single_searches'", "]", "=", "[", "]", "base_learner_origin", ".", "description", "[", "'single_searches'", "]", "+=", "(", "[", "req_body", "[", "'source'", "]", "]", ")", "session", ".", "add", "(", "base_learner", ")", "session", ".", "add", "(", "base_learner_origin", ")", "session", ".", "commit", "(", ")", "with", "Connection", "(", "get_redis_connection", "(", ")", ")", ":", "rqtasks", ".", "generate_meta_features", ".", "delay", "(", "path", ",", "base_learner", ".", "id", ")", "return", "jsonify", "(", "base_learner", ".", "serialize", ")" ]
This creates a single base learner from a base learner origin and queues it up
[ "This", "creates", "a", "single", "base", "learner", "from", "a", "base", "learner", "origin", "and", "queues", "it", "up" ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/views.py#L306-L348
6,669
reiinakano/xcessiv
xcessiv/views.py
search_base_learner
def search_base_learner(id): """Creates a set of base learners from base learner origin using grid search and queues them up """ path = functions.get_path_from_query_string(request) req_body = request.get_json() if req_body['method'] == 'grid': param_grid = functions.import_object_from_string_code( req_body['source'], 'param_grid' ) iterator = ParameterGrid(param_grid) elif req_body['method'] == 'random': param_distributions = functions.import_object_from_string_code( req_body['source'], 'param_distributions' ) iterator = ParameterSampler(param_distributions, n_iter=req_body['n_iter']) else: raise exceptions.UserError('{} not a valid search method'.format(req_body['method'])) with functions.DBContextManager(path) as session: base_learner_origin = session.query(models.BaseLearnerOrigin).filter_by(id=id).first() if base_learner_origin is None: raise exceptions.UserError('Base learner origin {} not found'.format(id), 404) if not base_learner_origin.final: raise exceptions.UserError('Base learner origin {} is not final'.format(id)) learners = [] for params in iterator: est = base_learner_origin.return_estimator() try: est.set_params(**params) except Exception as e: print(repr(e)) continue hyperparameters = functions.make_serializable(est.get_params()) base_learners = session.query(models.BaseLearner).\ filter_by(base_learner_origin_id=id, hyperparameters=hyperparameters).all() if base_learners: # already exists continue base_learner = models.BaseLearner(hyperparameters, 'queued', base_learner_origin) session.add(base_learner) session.commit() with Connection(get_redis_connection()): rqtasks.generate_meta_features.delay(path, base_learner.id) learners.append(base_learner) if not learners: raise exceptions.UserError('Created 0 new base learners') if req_body['method'] == 'grid': if 'grid_searches' not in base_learner_origin.description: base_learner_origin.description['grid_searches'] = [] base_learner_origin.description['grid_searches'] += ([req_body['source']]) elif req_body['method'] == 'random': if 'random_searches' not in base_learner_origin.description: base_learner_origin.description['random_searches'] = [] base_learner_origin.description['random_searches'] += ([req_body['source']]) session.add(base_learner_origin) session.commit() return jsonify(list(map(lambda x: x.serialize, learners)))
python
def search_base_learner(id): """Creates a set of base learners from base learner origin using grid search and queues them up """ path = functions.get_path_from_query_string(request) req_body = request.get_json() if req_body['method'] == 'grid': param_grid = functions.import_object_from_string_code( req_body['source'], 'param_grid' ) iterator = ParameterGrid(param_grid) elif req_body['method'] == 'random': param_distributions = functions.import_object_from_string_code( req_body['source'], 'param_distributions' ) iterator = ParameterSampler(param_distributions, n_iter=req_body['n_iter']) else: raise exceptions.UserError('{} not a valid search method'.format(req_body['method'])) with functions.DBContextManager(path) as session: base_learner_origin = session.query(models.BaseLearnerOrigin).filter_by(id=id).first() if base_learner_origin is None: raise exceptions.UserError('Base learner origin {} not found'.format(id), 404) if not base_learner_origin.final: raise exceptions.UserError('Base learner origin {} is not final'.format(id)) learners = [] for params in iterator: est = base_learner_origin.return_estimator() try: est.set_params(**params) except Exception as e: print(repr(e)) continue hyperparameters = functions.make_serializable(est.get_params()) base_learners = session.query(models.BaseLearner).\ filter_by(base_learner_origin_id=id, hyperparameters=hyperparameters).all() if base_learners: # already exists continue base_learner = models.BaseLearner(hyperparameters, 'queued', base_learner_origin) session.add(base_learner) session.commit() with Connection(get_redis_connection()): rqtasks.generate_meta_features.delay(path, base_learner.id) learners.append(base_learner) if not learners: raise exceptions.UserError('Created 0 new base learners') if req_body['method'] == 'grid': if 'grid_searches' not in base_learner_origin.description: base_learner_origin.description['grid_searches'] = [] base_learner_origin.description['grid_searches'] += ([req_body['source']]) elif req_body['method'] == 'random': if 'random_searches' not in base_learner_origin.description: base_learner_origin.description['random_searches'] = [] base_learner_origin.description['random_searches'] += ([req_body['source']]) session.add(base_learner_origin) session.commit() return jsonify(list(map(lambda x: x.serialize, learners)))
[ "def", "search_base_learner", "(", "id", ")", ":", "path", "=", "functions", ".", "get_path_from_query_string", "(", "request", ")", "req_body", "=", "request", ".", "get_json", "(", ")", "if", "req_body", "[", "'method'", "]", "==", "'grid'", ":", "param_grid", "=", "functions", ".", "import_object_from_string_code", "(", "req_body", "[", "'source'", "]", ",", "'param_grid'", ")", "iterator", "=", "ParameterGrid", "(", "param_grid", ")", "elif", "req_body", "[", "'method'", "]", "==", "'random'", ":", "param_distributions", "=", "functions", ".", "import_object_from_string_code", "(", "req_body", "[", "'source'", "]", ",", "'param_distributions'", ")", "iterator", "=", "ParameterSampler", "(", "param_distributions", ",", "n_iter", "=", "req_body", "[", "'n_iter'", "]", ")", "else", ":", "raise", "exceptions", ".", "UserError", "(", "'{} not a valid search method'", ".", "format", "(", "req_body", "[", "'method'", "]", ")", ")", "with", "functions", ".", "DBContextManager", "(", "path", ")", "as", "session", ":", "base_learner_origin", "=", "session", ".", "query", "(", "models", ".", "BaseLearnerOrigin", ")", ".", "filter_by", "(", "id", "=", "id", ")", ".", "first", "(", ")", "if", "base_learner_origin", "is", "None", ":", "raise", "exceptions", ".", "UserError", "(", "'Base learner origin {} not found'", ".", "format", "(", "id", ")", ",", "404", ")", "if", "not", "base_learner_origin", ".", "final", ":", "raise", "exceptions", ".", "UserError", "(", "'Base learner origin {} is not final'", ".", "format", "(", "id", ")", ")", "learners", "=", "[", "]", "for", "params", "in", "iterator", ":", "est", "=", "base_learner_origin", ".", "return_estimator", "(", ")", "try", ":", "est", ".", "set_params", "(", "*", "*", "params", ")", "except", "Exception", "as", "e", ":", "print", "(", "repr", "(", "e", ")", ")", "continue", "hyperparameters", "=", "functions", ".", "make_serializable", "(", "est", ".", "get_params", "(", ")", ")", "base_learners", "=", "session", ".", "query", "(", "models", ".", "BaseLearner", ")", ".", "filter_by", "(", "base_learner_origin_id", "=", "id", ",", "hyperparameters", "=", "hyperparameters", ")", ".", "all", "(", ")", "if", "base_learners", ":", "# already exists", "continue", "base_learner", "=", "models", ".", "BaseLearner", "(", "hyperparameters", ",", "'queued'", ",", "base_learner_origin", ")", "session", ".", "add", "(", "base_learner", ")", "session", ".", "commit", "(", ")", "with", "Connection", "(", "get_redis_connection", "(", ")", ")", ":", "rqtasks", ".", "generate_meta_features", ".", "delay", "(", "path", ",", "base_learner", ".", "id", ")", "learners", ".", "append", "(", "base_learner", ")", "if", "not", "learners", ":", "raise", "exceptions", ".", "UserError", "(", "'Created 0 new base learners'", ")", "if", "req_body", "[", "'method'", "]", "==", "'grid'", ":", "if", "'grid_searches'", "not", "in", "base_learner_origin", ".", "description", ":", "base_learner_origin", ".", "description", "[", "'grid_searches'", "]", "=", "[", "]", "base_learner_origin", ".", "description", "[", "'grid_searches'", "]", "+=", "(", "[", "req_body", "[", "'source'", "]", "]", ")", "elif", "req_body", "[", "'method'", "]", "==", "'random'", ":", "if", "'random_searches'", "not", "in", "base_learner_origin", ".", "description", ":", "base_learner_origin", ".", "description", "[", "'random_searches'", "]", "=", "[", "]", "base_learner_origin", ".", "description", "[", "'random_searches'", "]", "+=", "(", "[", "req_body", "[", "'source'", "]", "]", ")", "session", ".", "add", "(", "base_learner_origin", ")", "session", ".", "commit", "(", ")", "return", "jsonify", "(", "list", "(", "map", "(", "lambda", "x", ":", "x", ".", "serialize", ",", "learners", ")", ")", ")" ]
Creates a set of base learners from base learner origin using grid search and queues them up
[ "Creates", "a", "set", "of", "base", "learners", "from", "base", "learner", "origin", "using", "grid", "search", "and", "queues", "them", "up" ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/views.py#L352-L424
6,670
reiinakano/xcessiv
xcessiv/views.py
get_automated_runs
def get_automated_runs(): """Return all automated runs""" path = functions.get_path_from_query_string(request) if request.method == 'GET': with functions.DBContextManager(path) as session: automated_runs = session.query(models.AutomatedRun).all() return jsonify(list(map(lambda x: x.serialize, automated_runs))) if request.method == 'POST': req_body = request.get_json() with functions.DBContextManager(path) as session: base_learner_origin = None if req_body['category'] == 'bayes' or req_body['category'] == 'greedy_ensemble_search': base_learner_origin = session.query(models.BaseLearnerOrigin).\ filter_by(id=req_body['base_learner_origin_id']).first() if base_learner_origin is None: raise exceptions.UserError('Base learner origin {} not found'.format( req_body['base_learner_origin_id'] ), 404) if not base_learner_origin.final: raise exceptions.UserError('Base learner origin {} is not final'.format( req_body['base_learner_origin_id'] )) elif req_body['category'] == 'tpot': pass else: raise exceptions.UserError('Automated run category' ' {} not recognized'.format(req_body['category'])) # Check for any syntax errors module = functions.import_string_code_as_module(req_body['source']) del module automated_run = models.AutomatedRun(req_body['source'], 'queued', req_body['category'], base_learner_origin) session.add(automated_run) session.commit() with Connection(get_redis_connection()): rqtasks.start_automated_run.delay(path, automated_run.id) return jsonify(automated_run.serialize)
python
def get_automated_runs(): """Return all automated runs""" path = functions.get_path_from_query_string(request) if request.method == 'GET': with functions.DBContextManager(path) as session: automated_runs = session.query(models.AutomatedRun).all() return jsonify(list(map(lambda x: x.serialize, automated_runs))) if request.method == 'POST': req_body = request.get_json() with functions.DBContextManager(path) as session: base_learner_origin = None if req_body['category'] == 'bayes' or req_body['category'] == 'greedy_ensemble_search': base_learner_origin = session.query(models.BaseLearnerOrigin).\ filter_by(id=req_body['base_learner_origin_id']).first() if base_learner_origin is None: raise exceptions.UserError('Base learner origin {} not found'.format( req_body['base_learner_origin_id'] ), 404) if not base_learner_origin.final: raise exceptions.UserError('Base learner origin {} is not final'.format( req_body['base_learner_origin_id'] )) elif req_body['category'] == 'tpot': pass else: raise exceptions.UserError('Automated run category' ' {} not recognized'.format(req_body['category'])) # Check for any syntax errors module = functions.import_string_code_as_module(req_body['source']) del module automated_run = models.AutomatedRun(req_body['source'], 'queued', req_body['category'], base_learner_origin) session.add(automated_run) session.commit() with Connection(get_redis_connection()): rqtasks.start_automated_run.delay(path, automated_run.id) return jsonify(automated_run.serialize)
[ "def", "get_automated_runs", "(", ")", ":", "path", "=", "functions", ".", "get_path_from_query_string", "(", "request", ")", "if", "request", ".", "method", "==", "'GET'", ":", "with", "functions", ".", "DBContextManager", "(", "path", ")", "as", "session", ":", "automated_runs", "=", "session", ".", "query", "(", "models", ".", "AutomatedRun", ")", ".", "all", "(", ")", "return", "jsonify", "(", "list", "(", "map", "(", "lambda", "x", ":", "x", ".", "serialize", ",", "automated_runs", ")", ")", ")", "if", "request", ".", "method", "==", "'POST'", ":", "req_body", "=", "request", ".", "get_json", "(", ")", "with", "functions", ".", "DBContextManager", "(", "path", ")", "as", "session", ":", "base_learner_origin", "=", "None", "if", "req_body", "[", "'category'", "]", "==", "'bayes'", "or", "req_body", "[", "'category'", "]", "==", "'greedy_ensemble_search'", ":", "base_learner_origin", "=", "session", ".", "query", "(", "models", ".", "BaseLearnerOrigin", ")", ".", "filter_by", "(", "id", "=", "req_body", "[", "'base_learner_origin_id'", "]", ")", ".", "first", "(", ")", "if", "base_learner_origin", "is", "None", ":", "raise", "exceptions", ".", "UserError", "(", "'Base learner origin {} not found'", ".", "format", "(", "req_body", "[", "'base_learner_origin_id'", "]", ")", ",", "404", ")", "if", "not", "base_learner_origin", ".", "final", ":", "raise", "exceptions", ".", "UserError", "(", "'Base learner origin {} is not final'", ".", "format", "(", "req_body", "[", "'base_learner_origin_id'", "]", ")", ")", "elif", "req_body", "[", "'category'", "]", "==", "'tpot'", ":", "pass", "else", ":", "raise", "exceptions", ".", "UserError", "(", "'Automated run category'", "' {} not recognized'", ".", "format", "(", "req_body", "[", "'category'", "]", ")", ")", "# Check for any syntax errors", "module", "=", "functions", ".", "import_string_code_as_module", "(", "req_body", "[", "'source'", "]", ")", "del", "module", "automated_run", "=", "models", ".", "AutomatedRun", "(", "req_body", "[", "'source'", "]", ",", "'queued'", ",", "req_body", "[", "'category'", "]", ",", "base_learner_origin", ")", "session", ".", "add", "(", "automated_run", ")", "session", ".", "commit", "(", ")", "with", "Connection", "(", "get_redis_connection", "(", ")", ")", ":", "rqtasks", ".", "start_automated_run", ".", "delay", "(", "path", ",", "automated_run", ".", "id", ")", "return", "jsonify", "(", "automated_run", ".", "serialize", ")" ]
Return all automated runs
[ "Return", "all", "automated", "runs" ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/views.py#L428-L476
6,671
reiinakano/xcessiv
xcessiv/stacker.py
XcessivStackedEnsemble._process_using_meta_feature_generator
def _process_using_meta_feature_generator(self, X, meta_feature_generator): """Process using secondary learner meta-feature generator Since secondary learner meta-feature generator can be anything e.g. predict, predict_proba, this internal method gives the ability to use any string. Just make sure secondary learner has the method. Args: X (array-like): Features array meta_feature_generator (str, unicode): Method for use by secondary learner """ all_learner_meta_features = [] for idx, base_learner in enumerate(self.base_learners): single_learner_meta_features = getattr(base_learner, self.meta_feature_generators[idx])(X) if len(single_learner_meta_features.shape) == 1: single_learner_meta_features = single_learner_meta_features.reshape(-1, 1) all_learner_meta_features.append(single_learner_meta_features) all_learner_meta_features = np.concatenate(all_learner_meta_features, axis=1) out = getattr(self.secondary_learner, meta_feature_generator)(all_learner_meta_features) return out
python
def _process_using_meta_feature_generator(self, X, meta_feature_generator): """Process using secondary learner meta-feature generator Since secondary learner meta-feature generator can be anything e.g. predict, predict_proba, this internal method gives the ability to use any string. Just make sure secondary learner has the method. Args: X (array-like): Features array meta_feature_generator (str, unicode): Method for use by secondary learner """ all_learner_meta_features = [] for idx, base_learner in enumerate(self.base_learners): single_learner_meta_features = getattr(base_learner, self.meta_feature_generators[idx])(X) if len(single_learner_meta_features.shape) == 1: single_learner_meta_features = single_learner_meta_features.reshape(-1, 1) all_learner_meta_features.append(single_learner_meta_features) all_learner_meta_features = np.concatenate(all_learner_meta_features, axis=1) out = getattr(self.secondary_learner, meta_feature_generator)(all_learner_meta_features) return out
[ "def", "_process_using_meta_feature_generator", "(", "self", ",", "X", ",", "meta_feature_generator", ")", ":", "all_learner_meta_features", "=", "[", "]", "for", "idx", ",", "base_learner", "in", "enumerate", "(", "self", ".", "base_learners", ")", ":", "single_learner_meta_features", "=", "getattr", "(", "base_learner", ",", "self", ".", "meta_feature_generators", "[", "idx", "]", ")", "(", "X", ")", "if", "len", "(", "single_learner_meta_features", ".", "shape", ")", "==", "1", ":", "single_learner_meta_features", "=", "single_learner_meta_features", ".", "reshape", "(", "-", "1", ",", "1", ")", "all_learner_meta_features", ".", "append", "(", "single_learner_meta_features", ")", "all_learner_meta_features", "=", "np", ".", "concatenate", "(", "all_learner_meta_features", ",", "axis", "=", "1", ")", "out", "=", "getattr", "(", "self", ".", "secondary_learner", ",", "meta_feature_generator", ")", "(", "all_learner_meta_features", ")", "return", "out" ]
Process using secondary learner meta-feature generator Since secondary learner meta-feature generator can be anything e.g. predict, predict_proba, this internal method gives the ability to use any string. Just make sure secondary learner has the method. Args: X (array-like): Features array meta_feature_generator (str, unicode): Method for use by secondary learner
[ "Process", "using", "secondary", "learner", "meta", "-", "feature", "generator" ]
a48dff7d370c84eb5c243bde87164c1f5fd096d5
https://github.com/reiinakano/xcessiv/blob/a48dff7d370c84eb5c243bde87164c1f5fd096d5/xcessiv/stacker.py#L77-L103
6,672
madedotcom/photon-pump
photonpump/messages.py
NewEvent
def NewEvent( type: str, id: UUID = None, data: JsonDict = None, metadata: JsonDict = None ) -> NewEventData: """Build the data structure for a new event. Args: type: An event type. id: The uuid identifier for the event. data: A dict containing data for the event. These data must be json serializable. metadata: A dict containing metadata about the event. These must be json serializable. """ return NewEventData(id or uuid4(), type, data, metadata)
python
def NewEvent( type: str, id: UUID = None, data: JsonDict = None, metadata: JsonDict = None ) -> NewEventData: """Build the data structure for a new event. Args: type: An event type. id: The uuid identifier for the event. data: A dict containing data for the event. These data must be json serializable. metadata: A dict containing metadata about the event. These must be json serializable. """ return NewEventData(id or uuid4(), type, data, metadata)
[ "def", "NewEvent", "(", "type", ":", "str", ",", "id", ":", "UUID", "=", "None", ",", "data", ":", "JsonDict", "=", "None", ",", "metadata", ":", "JsonDict", "=", "None", ")", "->", "NewEventData", ":", "return", "NewEventData", "(", "id", "or", "uuid4", "(", ")", ",", "type", ",", "data", ",", "metadata", ")" ]
Build the data structure for a new event. Args: type: An event type. id: The uuid identifier for the event. data: A dict containing data for the event. These data must be json serializable. metadata: A dict containing metadata about the event. These must be json serializable.
[ "Build", "the", "data", "structure", "for", "a", "new", "event", "." ]
ff0736c9cacd43c1f783c9668eefb53d03a3a93e
https://github.com/madedotcom/photon-pump/blob/ff0736c9cacd43c1f783c9668eefb53d03a3a93e/photonpump/messages.py#L439-L453
6,673
madedotcom/photon-pump
photonpump/messages.py
Credential.from_bytes
def from_bytes(cls, data): """ I am so sorry. """ len_username = int.from_bytes(data[0:2], byteorder="big") offset_username = 2 + len_username username = data[2:offset_username].decode("UTF-8") offset_password = 2 + offset_username len_password = int.from_bytes( data[offset_username:offset_password], byteorder="big" ) pass_begin = offset_password pass_end = offset_password + len_password password = data[pass_begin:pass_end].decode("UTF-8") return cls(username, password)
python
def from_bytes(cls, data): """ I am so sorry. """ len_username = int.from_bytes(data[0:2], byteorder="big") offset_username = 2 + len_username username = data[2:offset_username].decode("UTF-8") offset_password = 2 + offset_username len_password = int.from_bytes( data[offset_username:offset_password], byteorder="big" ) pass_begin = offset_password pass_end = offset_password + len_password password = data[pass_begin:pass_end].decode("UTF-8") return cls(username, password)
[ "def", "from_bytes", "(", "cls", ",", "data", ")", ":", "len_username", "=", "int", ".", "from_bytes", "(", "data", "[", "0", ":", "2", "]", ",", "byteorder", "=", "\"big\"", ")", "offset_username", "=", "2", "+", "len_username", "username", "=", "data", "[", "2", ":", "offset_username", "]", ".", "decode", "(", "\"UTF-8\"", ")", "offset_password", "=", "2", "+", "offset_username", "len_password", "=", "int", ".", "from_bytes", "(", "data", "[", "offset_username", ":", "offset_password", "]", ",", "byteorder", "=", "\"big\"", ")", "pass_begin", "=", "offset_password", "pass_end", "=", "offset_password", "+", "len_password", "password", "=", "data", "[", "pass_begin", ":", "pass_end", "]", ".", "decode", "(", "\"UTF-8\"", ")", "return", "cls", "(", "username", ",", "password", ")" ]
I am so sorry.
[ "I", "am", "so", "sorry", "." ]
ff0736c9cacd43c1f783c9668eefb53d03a3a93e
https://github.com/madedotcom/photon-pump/blob/ff0736c9cacd43c1f783c9668eefb53d03a3a93e/photonpump/messages.py#L155-L170
6,674
madedotcom/photon-pump
photonpump/connection.py
connect
def connect( host="localhost", port=1113, discovery_host=None, discovery_port=2113, username=None, password=None, loop=None, name=None, selector=select_random, ) -> Client: """ Create a new client. Examples: Since the Client is an async context manager, we can use it in a with block for automatic connect/disconnect semantics. >>> async with connect(host='127.0.0.1', port=1113) as c: >>> await c.ping() Or we can call connect at a more convenient moment >>> c = connect() >>> await c.connect() >>> await c.ping() >>> await c.close() For cluster discovery cases, we can provide a discovery host and port. The host may be an IP or DNS entry. If you provide a DNS entry, discovery will choose randomly from the registered IP addresses for the hostname. >>> async with connect(discovery_host="eventstore.test") as c: >>> await c.ping() The discovery host returns gossip data about the cluster. We use the gossip to select a node at random from the avaialble cluster members. If you're using :meth:`persistent subscriptions <photonpump.connection.Client.create_subscription>` you will always want to connect to the master node of the cluster. The selector parameter is a function that chooses an available node from the gossip result. To select the master node, use the :func:`photonpump.discovery.prefer_master` function. This function will return the master node if there is a live master, and a random replica otherwise. All requests to the server can be made with the require_master flag which will raise an error if the current node is not a master. >>> async with connect( >>> discovery_host="eventstore.test", >>> selector=discovery.prefer_master, >>> ) as c: >>> await c.ping(require_master=True) Conversely, you might want to avoid connecting to the master node for reasons of scalability. For this you can use the :func:`photonpump.discovery.prefer_replica` function. >>> async with connect( >>> discovery_host="eventstore.test", >>> selector=discovery.prefer_replica, >>> ) as c: >>> await c.ping() For some operations, you may need to authenticate your requests by providing a username and password to the client. >>> async with connect(username='admin', password='changeit') as c: >>> await c.ping() Ordinarily you will create a single Client per application, but for advanced scenarios you might want multiple connections. In this situation, you can name each connection in order to get better logging. >>> async with connect(name="event-reader"): >>> await c.ping() >>> async with connect(name="event-writer"): >>> await c.ping() Args: host: The IP or DNS entry to connect with, defaults to 'localhost'. port: The port to connect with, defaults to 1113. discovery_host: The IP or DNS entry to use for cluster discovery. discovery_port: The port to use for cluster discovery, defaults to 2113. username: The username to use when communicating with eventstore. password: The password to use when communicating with eventstore. loop:An Asyncio event loop. selector: An optional function that selects one element from a list of :class:`photonpump.disovery.DiscoveredNode` elements. """ discovery = get_discoverer(host, port, discovery_host, discovery_port, selector) dispatcher = MessageDispatcher(name=name, loop=loop) connector = Connector(discovery, dispatcher, name=name) credential = msg.Credential(username, password) if username and password else None return Client(connector, dispatcher, credential=credential)
python
def connect( host="localhost", port=1113, discovery_host=None, discovery_port=2113, username=None, password=None, loop=None, name=None, selector=select_random, ) -> Client: """ Create a new client. Examples: Since the Client is an async context manager, we can use it in a with block for automatic connect/disconnect semantics. >>> async with connect(host='127.0.0.1', port=1113) as c: >>> await c.ping() Or we can call connect at a more convenient moment >>> c = connect() >>> await c.connect() >>> await c.ping() >>> await c.close() For cluster discovery cases, we can provide a discovery host and port. The host may be an IP or DNS entry. If you provide a DNS entry, discovery will choose randomly from the registered IP addresses for the hostname. >>> async with connect(discovery_host="eventstore.test") as c: >>> await c.ping() The discovery host returns gossip data about the cluster. We use the gossip to select a node at random from the avaialble cluster members. If you're using :meth:`persistent subscriptions <photonpump.connection.Client.create_subscription>` you will always want to connect to the master node of the cluster. The selector parameter is a function that chooses an available node from the gossip result. To select the master node, use the :func:`photonpump.discovery.prefer_master` function. This function will return the master node if there is a live master, and a random replica otherwise. All requests to the server can be made with the require_master flag which will raise an error if the current node is not a master. >>> async with connect( >>> discovery_host="eventstore.test", >>> selector=discovery.prefer_master, >>> ) as c: >>> await c.ping(require_master=True) Conversely, you might want to avoid connecting to the master node for reasons of scalability. For this you can use the :func:`photonpump.discovery.prefer_replica` function. >>> async with connect( >>> discovery_host="eventstore.test", >>> selector=discovery.prefer_replica, >>> ) as c: >>> await c.ping() For some operations, you may need to authenticate your requests by providing a username and password to the client. >>> async with connect(username='admin', password='changeit') as c: >>> await c.ping() Ordinarily you will create a single Client per application, but for advanced scenarios you might want multiple connections. In this situation, you can name each connection in order to get better logging. >>> async with connect(name="event-reader"): >>> await c.ping() >>> async with connect(name="event-writer"): >>> await c.ping() Args: host: The IP or DNS entry to connect with, defaults to 'localhost'. port: The port to connect with, defaults to 1113. discovery_host: The IP or DNS entry to use for cluster discovery. discovery_port: The port to use for cluster discovery, defaults to 2113. username: The username to use when communicating with eventstore. password: The password to use when communicating with eventstore. loop:An Asyncio event loop. selector: An optional function that selects one element from a list of :class:`photonpump.disovery.DiscoveredNode` elements. """ discovery = get_discoverer(host, port, discovery_host, discovery_port, selector) dispatcher = MessageDispatcher(name=name, loop=loop) connector = Connector(discovery, dispatcher, name=name) credential = msg.Credential(username, password) if username and password else None return Client(connector, dispatcher, credential=credential)
[ "def", "connect", "(", "host", "=", "\"localhost\"", ",", "port", "=", "1113", ",", "discovery_host", "=", "None", ",", "discovery_port", "=", "2113", ",", "username", "=", "None", ",", "password", "=", "None", ",", "loop", "=", "None", ",", "name", "=", "None", ",", "selector", "=", "select_random", ",", ")", "->", "Client", ":", "discovery", "=", "get_discoverer", "(", "host", ",", "port", ",", "discovery_host", ",", "discovery_port", ",", "selector", ")", "dispatcher", "=", "MessageDispatcher", "(", "name", "=", "name", ",", "loop", "=", "loop", ")", "connector", "=", "Connector", "(", "discovery", ",", "dispatcher", ",", "name", "=", "name", ")", "credential", "=", "msg", ".", "Credential", "(", "username", ",", "password", ")", "if", "username", "and", "password", "else", "None", "return", "Client", "(", "connector", ",", "dispatcher", ",", "credential", "=", "credential", ")" ]
Create a new client. Examples: Since the Client is an async context manager, we can use it in a with block for automatic connect/disconnect semantics. >>> async with connect(host='127.0.0.1', port=1113) as c: >>> await c.ping() Or we can call connect at a more convenient moment >>> c = connect() >>> await c.connect() >>> await c.ping() >>> await c.close() For cluster discovery cases, we can provide a discovery host and port. The host may be an IP or DNS entry. If you provide a DNS entry, discovery will choose randomly from the registered IP addresses for the hostname. >>> async with connect(discovery_host="eventstore.test") as c: >>> await c.ping() The discovery host returns gossip data about the cluster. We use the gossip to select a node at random from the avaialble cluster members. If you're using :meth:`persistent subscriptions <photonpump.connection.Client.create_subscription>` you will always want to connect to the master node of the cluster. The selector parameter is a function that chooses an available node from the gossip result. To select the master node, use the :func:`photonpump.discovery.prefer_master` function. This function will return the master node if there is a live master, and a random replica otherwise. All requests to the server can be made with the require_master flag which will raise an error if the current node is not a master. >>> async with connect( >>> discovery_host="eventstore.test", >>> selector=discovery.prefer_master, >>> ) as c: >>> await c.ping(require_master=True) Conversely, you might want to avoid connecting to the master node for reasons of scalability. For this you can use the :func:`photonpump.discovery.prefer_replica` function. >>> async with connect( >>> discovery_host="eventstore.test", >>> selector=discovery.prefer_replica, >>> ) as c: >>> await c.ping() For some operations, you may need to authenticate your requests by providing a username and password to the client. >>> async with connect(username='admin', password='changeit') as c: >>> await c.ping() Ordinarily you will create a single Client per application, but for advanced scenarios you might want multiple connections. In this situation, you can name each connection in order to get better logging. >>> async with connect(name="event-reader"): >>> await c.ping() >>> async with connect(name="event-writer"): >>> await c.ping() Args: host: The IP or DNS entry to connect with, defaults to 'localhost'. port: The port to connect with, defaults to 1113. discovery_host: The IP or DNS entry to use for cluster discovery. discovery_port: The port to use for cluster discovery, defaults to 2113. username: The username to use when communicating with eventstore. password: The password to use when communicating with eventstore. loop:An Asyncio event loop. selector: An optional function that selects one element from a list of :class:`photonpump.disovery.DiscoveredNode` elements.
[ "Create", "a", "new", "client", "." ]
ff0736c9cacd43c1f783c9668eefb53d03a3a93e
https://github.com/madedotcom/photon-pump/blob/ff0736c9cacd43c1f783c9668eefb53d03a3a93e/photonpump/connection.py#L1190-L1290
6,675
madedotcom/photon-pump
photonpump/connection.py
MessageReader.start
async def start(self): """Loop forever reading messages and invoking the operation that caused them""" while True: try: data = await self.reader.read(8192) if self._trace_enabled: self._logger.trace( "Received %d bytes from remote server:\n%s", len(data), msg.dump(data), ) await self.process(data) except asyncio.CancelledError: return except: logging.exception("Unhandled error in Message Reader") raise
python
async def start(self): """Loop forever reading messages and invoking the operation that caused them""" while True: try: data = await self.reader.read(8192) if self._trace_enabled: self._logger.trace( "Received %d bytes from remote server:\n%s", len(data), msg.dump(data), ) await self.process(data) except asyncio.CancelledError: return except: logging.exception("Unhandled error in Message Reader") raise
[ "async", "def", "start", "(", "self", ")", ":", "while", "True", ":", "try", ":", "data", "=", "await", "self", ".", "reader", ".", "read", "(", "8192", ")", "if", "self", ".", "_trace_enabled", ":", "self", ".", "_logger", ".", "trace", "(", "\"Received %d bytes from remote server:\\n%s\"", ",", "len", "(", "data", ")", ",", "msg", ".", "dump", "(", "data", ")", ",", ")", "await", "self", ".", "process", "(", "data", ")", "except", "asyncio", ".", "CancelledError", ":", "return", "except", ":", "logging", ".", "exception", "(", "\"Unhandled error in Message Reader\"", ")", "raise" ]
Loop forever reading messages and invoking the operation that caused them
[ "Loop", "forever", "reading", "messages", "and", "invoking", "the", "operation", "that", "caused", "them" ]
ff0736c9cacd43c1f783c9668eefb53d03a3a93e
https://github.com/madedotcom/photon-pump/blob/ff0736c9cacd43c1f783c9668eefb53d03a3a93e/photonpump/connection.py#L397-L416
6,676
madedotcom/photon-pump
photonpump/connection.py
Client.ping
async def ping(self, conversation_id: uuid.UUID = None) -> float: """ Send a message to the remote server to check liveness. Returns: The round-trip time to receive a Pong message in fractional seconds Examples: >>> async with connect() as conn: >>> print("Sending a PING to the server") >>> time_secs = await conn.ping() >>> print("Received a PONG after {} secs".format(time_secs)) """ cmd = convo.Ping(conversation_id=conversation_id or uuid.uuid4()) result = await self.dispatcher.start_conversation(cmd) return await result
python
async def ping(self, conversation_id: uuid.UUID = None) -> float: """ Send a message to the remote server to check liveness. Returns: The round-trip time to receive a Pong message in fractional seconds Examples: >>> async with connect() as conn: >>> print("Sending a PING to the server") >>> time_secs = await conn.ping() >>> print("Received a PONG after {} secs".format(time_secs)) """ cmd = convo.Ping(conversation_id=conversation_id or uuid.uuid4()) result = await self.dispatcher.start_conversation(cmd) return await result
[ "async", "def", "ping", "(", "self", ",", "conversation_id", ":", "uuid", ".", "UUID", "=", "None", ")", "->", "float", ":", "cmd", "=", "convo", ".", "Ping", "(", "conversation_id", "=", "conversation_id", "or", "uuid", ".", "uuid4", "(", ")", ")", "result", "=", "await", "self", ".", "dispatcher", ".", "start_conversation", "(", "cmd", ")", "return", "await", "result" ]
Send a message to the remote server to check liveness. Returns: The round-trip time to receive a Pong message in fractional seconds Examples: >>> async with connect() as conn: >>> print("Sending a PING to the server") >>> time_secs = await conn.ping() >>> print("Received a PONG after {} secs".format(time_secs))
[ "Send", "a", "message", "to", "the", "remote", "server", "to", "check", "liveness", "." ]
ff0736c9cacd43c1f783c9668eefb53d03a3a93e
https://github.com/madedotcom/photon-pump/blob/ff0736c9cacd43c1f783c9668eefb53d03a3a93e/photonpump/connection.py#L581-L599
6,677
madedotcom/photon-pump
photonpump/connection.py
Client.publish_event
async def publish_event( self, stream: str, type: str, body: Optional[Any] = None, id: Optional[uuid.UUID] = None, metadata: Optional[Any] = None, expected_version: int = -2, require_master: bool = False, ) -> None: """ Publish a single event to the EventStore. This method publishes a single event to the remote server and waits for acknowledgement. Args: stream: The stream to publish the event to. type: the event's type. body: a serializable body for the event. id: a unique id for the event. PhotonPump will automatically generate an id if none is provided. metadata: Optional serializable metadata block for the event. expected_version: Used for concurrency control. If a positive integer is provided, EventStore will check that the stream is at that version before accepting a write. There are three magic values: -4: StreamMustExist. Checks that the stream already exists. -2: Any. Disables concurrency checks -1: NoStream. Checks that the stream does not yet exist. 0: EmptyStream. Checks that the stream has been explicitly created but does not yet contain any events. require_master: If true, slave nodes will reject this message. Examples: >>> async with connect() as conn: >>> await conn.publish_event( >>> "inventory_item-1", >>> "item_created", >>> body={ "item-id": 1, "created-date": "2018-08-19" }, >>> expected_version=ExpectedVersion.StreamMustNotExist >>> ) >>> >>> await conn.publish_event( >>> "inventory_item-1", >>> "item_deleted", >>> expected_version=1, >>> metadata={'deleted-by': 'bob' } >>> ) """ event = msg.NewEvent(type, id or uuid.uuid4(), body, metadata) conversation = convo.WriteEvents( stream, [event], expected_version=expected_version, require_master=require_master, ) result = await self.dispatcher.start_conversation(conversation) return await result
python
async def publish_event( self, stream: str, type: str, body: Optional[Any] = None, id: Optional[uuid.UUID] = None, metadata: Optional[Any] = None, expected_version: int = -2, require_master: bool = False, ) -> None: """ Publish a single event to the EventStore. This method publishes a single event to the remote server and waits for acknowledgement. Args: stream: The stream to publish the event to. type: the event's type. body: a serializable body for the event. id: a unique id for the event. PhotonPump will automatically generate an id if none is provided. metadata: Optional serializable metadata block for the event. expected_version: Used for concurrency control. If a positive integer is provided, EventStore will check that the stream is at that version before accepting a write. There are three magic values: -4: StreamMustExist. Checks that the stream already exists. -2: Any. Disables concurrency checks -1: NoStream. Checks that the stream does not yet exist. 0: EmptyStream. Checks that the stream has been explicitly created but does not yet contain any events. require_master: If true, slave nodes will reject this message. Examples: >>> async with connect() as conn: >>> await conn.publish_event( >>> "inventory_item-1", >>> "item_created", >>> body={ "item-id": 1, "created-date": "2018-08-19" }, >>> expected_version=ExpectedVersion.StreamMustNotExist >>> ) >>> >>> await conn.publish_event( >>> "inventory_item-1", >>> "item_deleted", >>> expected_version=1, >>> metadata={'deleted-by': 'bob' } >>> ) """ event = msg.NewEvent(type, id or uuid.uuid4(), body, metadata) conversation = convo.WriteEvents( stream, [event], expected_version=expected_version, require_master=require_master, ) result = await self.dispatcher.start_conversation(conversation) return await result
[ "async", "def", "publish_event", "(", "self", ",", "stream", ":", "str", ",", "type", ":", "str", ",", "body", ":", "Optional", "[", "Any", "]", "=", "None", ",", "id", ":", "Optional", "[", "uuid", ".", "UUID", "]", "=", "None", ",", "metadata", ":", "Optional", "[", "Any", "]", "=", "None", ",", "expected_version", ":", "int", "=", "-", "2", ",", "require_master", ":", "bool", "=", "False", ",", ")", "->", "None", ":", "event", "=", "msg", ".", "NewEvent", "(", "type", ",", "id", "or", "uuid", ".", "uuid4", "(", ")", ",", "body", ",", "metadata", ")", "conversation", "=", "convo", ".", "WriteEvents", "(", "stream", ",", "[", "event", "]", ",", "expected_version", "=", "expected_version", ",", "require_master", "=", "require_master", ",", ")", "result", "=", "await", "self", ".", "dispatcher", ".", "start_conversation", "(", "conversation", ")", "return", "await", "result" ]
Publish a single event to the EventStore. This method publishes a single event to the remote server and waits for acknowledgement. Args: stream: The stream to publish the event to. type: the event's type. body: a serializable body for the event. id: a unique id for the event. PhotonPump will automatically generate an id if none is provided. metadata: Optional serializable metadata block for the event. expected_version: Used for concurrency control. If a positive integer is provided, EventStore will check that the stream is at that version before accepting a write. There are three magic values: -4: StreamMustExist. Checks that the stream already exists. -2: Any. Disables concurrency checks -1: NoStream. Checks that the stream does not yet exist. 0: EmptyStream. Checks that the stream has been explicitly created but does not yet contain any events. require_master: If true, slave nodes will reject this message. Examples: >>> async with connect() as conn: >>> await conn.publish_event( >>> "inventory_item-1", >>> "item_created", >>> body={ "item-id": 1, "created-date": "2018-08-19" }, >>> expected_version=ExpectedVersion.StreamMustNotExist >>> ) >>> >>> await conn.publish_event( >>> "inventory_item-1", >>> "item_deleted", >>> expected_version=1, >>> metadata={'deleted-by': 'bob' } >>> )
[ "Publish", "a", "single", "event", "to", "the", "EventStore", "." ]
ff0736c9cacd43c1f783c9668eefb53d03a3a93e
https://github.com/madedotcom/photon-pump/blob/ff0736c9cacd43c1f783c9668eefb53d03a3a93e/photonpump/connection.py#L601-L663
6,678
madedotcom/photon-pump
photonpump/connection.py
Client.get_event
async def get_event( self, stream: str, event_number: int, resolve_links=True, require_master=False, correlation_id: uuid.UUID = None, ) -> msg.Event: """ Get a single event by stream and event number. Args: stream: The name of the stream containing the event. event_number: The sequence number of the event to read. resolve_links (optional): True if eventstore should automatically resolve Link Events, otherwise False. required_master (optional): True if this command must be sent direct to the master node, otherwise False. correlation_id (optional): A unique identifer for this command. Returns: The resolved event if found, else None. Examples: >>> async with connection() as conn: >>> await conn.publish("inventory_item-1", "item_created") >>> event = await conn.get_event("inventory_item-1", 1) >>> print(event) """ correlation_id = correlation_id or uuid.uuid4() cmd = convo.ReadEvent( stream, event_number, resolve_links, require_master, conversation_id=correlation_id, ) result = await self.dispatcher.start_conversation(cmd) return await result
python
async def get_event( self, stream: str, event_number: int, resolve_links=True, require_master=False, correlation_id: uuid.UUID = None, ) -> msg.Event: """ Get a single event by stream and event number. Args: stream: The name of the stream containing the event. event_number: The sequence number of the event to read. resolve_links (optional): True if eventstore should automatically resolve Link Events, otherwise False. required_master (optional): True if this command must be sent direct to the master node, otherwise False. correlation_id (optional): A unique identifer for this command. Returns: The resolved event if found, else None. Examples: >>> async with connection() as conn: >>> await conn.publish("inventory_item-1", "item_created") >>> event = await conn.get_event("inventory_item-1", 1) >>> print(event) """ correlation_id = correlation_id or uuid.uuid4() cmd = convo.ReadEvent( stream, event_number, resolve_links, require_master, conversation_id=correlation_id, ) result = await self.dispatcher.start_conversation(cmd) return await result
[ "async", "def", "get_event", "(", "self", ",", "stream", ":", "str", ",", "event_number", ":", "int", ",", "resolve_links", "=", "True", ",", "require_master", "=", "False", ",", "correlation_id", ":", "uuid", ".", "UUID", "=", "None", ",", ")", "->", "msg", ".", "Event", ":", "correlation_id", "=", "correlation_id", "or", "uuid", ".", "uuid4", "(", ")", "cmd", "=", "convo", ".", "ReadEvent", "(", "stream", ",", "event_number", ",", "resolve_links", ",", "require_master", ",", "conversation_id", "=", "correlation_id", ",", ")", "result", "=", "await", "self", ".", "dispatcher", ".", "start_conversation", "(", "cmd", ")", "return", "await", "result" ]
Get a single event by stream and event number. Args: stream: The name of the stream containing the event. event_number: The sequence number of the event to read. resolve_links (optional): True if eventstore should automatically resolve Link Events, otherwise False. required_master (optional): True if this command must be sent direct to the master node, otherwise False. correlation_id (optional): A unique identifer for this command. Returns: The resolved event if found, else None. Examples: >>> async with connection() as conn: >>> await conn.publish("inventory_item-1", "item_created") >>> event = await conn.get_event("inventory_item-1", 1) >>> print(event)
[ "Get", "a", "single", "event", "by", "stream", "and", "event", "number", "." ]
ff0736c9cacd43c1f783c9668eefb53d03a3a93e
https://github.com/madedotcom/photon-pump/blob/ff0736c9cacd43c1f783c9668eefb53d03a3a93e/photonpump/connection.py#L682-L724
6,679
madedotcom/photon-pump
photonpump/connection.py
Client.get
async def get( self, stream: str, direction: msg.StreamDirection = msg.StreamDirection.Forward, from_event: int = 0, max_count: int = 100, resolve_links: bool = True, require_master: bool = False, correlation_id: uuid.UUID = None, ): """ Read a range of events from a stream. Args: stream: The name of the stream to read direction (optional): Controls whether to read events forward or backward. defaults to Forward. from_event (optional): The first event to read. defaults to the beginning of the stream when direction is forward and the end of the stream if direction is backward. max_count (optional): The maximum number of events to return. resolve_links (optional): True if eventstore should automatically resolve Link Events, otherwise False. required_master (optional): True if this command must be sent direct to the master node, otherwise False. correlation_id (optional): A unique identifer for this command. Examples: Read 5 events from a stream >>> async for event in conn.get("my-stream", max_count=5): >>> print(event) Read events 21 to 30 >>> async for event in conn.get("my-stream", max_count=10, from_event=21): >>> print(event) Read 10 most recent events in reverse order >>> async for event in conn.get( "my-stream", max_count=10, direction=StreamDirection.Backward ): >>> print(event) """ correlation_id = correlation_id cmd = convo.ReadStreamEvents( stream, from_event, max_count, resolve_links, require_master, direction=direction, ) result = await self.dispatcher.start_conversation(cmd) return await result
python
async def get( self, stream: str, direction: msg.StreamDirection = msg.StreamDirection.Forward, from_event: int = 0, max_count: int = 100, resolve_links: bool = True, require_master: bool = False, correlation_id: uuid.UUID = None, ): """ Read a range of events from a stream. Args: stream: The name of the stream to read direction (optional): Controls whether to read events forward or backward. defaults to Forward. from_event (optional): The first event to read. defaults to the beginning of the stream when direction is forward and the end of the stream if direction is backward. max_count (optional): The maximum number of events to return. resolve_links (optional): True if eventstore should automatically resolve Link Events, otherwise False. required_master (optional): True if this command must be sent direct to the master node, otherwise False. correlation_id (optional): A unique identifer for this command. Examples: Read 5 events from a stream >>> async for event in conn.get("my-stream", max_count=5): >>> print(event) Read events 21 to 30 >>> async for event in conn.get("my-stream", max_count=10, from_event=21): >>> print(event) Read 10 most recent events in reverse order >>> async for event in conn.get( "my-stream", max_count=10, direction=StreamDirection.Backward ): >>> print(event) """ correlation_id = correlation_id cmd = convo.ReadStreamEvents( stream, from_event, max_count, resolve_links, require_master, direction=direction, ) result = await self.dispatcher.start_conversation(cmd) return await result
[ "async", "def", "get", "(", "self", ",", "stream", ":", "str", ",", "direction", ":", "msg", ".", "StreamDirection", "=", "msg", ".", "StreamDirection", ".", "Forward", ",", "from_event", ":", "int", "=", "0", ",", "max_count", ":", "int", "=", "100", ",", "resolve_links", ":", "bool", "=", "True", ",", "require_master", ":", "bool", "=", "False", ",", "correlation_id", ":", "uuid", ".", "UUID", "=", "None", ",", ")", ":", "correlation_id", "=", "correlation_id", "cmd", "=", "convo", ".", "ReadStreamEvents", "(", "stream", ",", "from_event", ",", "max_count", ",", "resolve_links", ",", "require_master", ",", "direction", "=", "direction", ",", ")", "result", "=", "await", "self", ".", "dispatcher", ".", "start_conversation", "(", "cmd", ")", "return", "await", "result" ]
Read a range of events from a stream. Args: stream: The name of the stream to read direction (optional): Controls whether to read events forward or backward. defaults to Forward. from_event (optional): The first event to read. defaults to the beginning of the stream when direction is forward and the end of the stream if direction is backward. max_count (optional): The maximum number of events to return. resolve_links (optional): True if eventstore should automatically resolve Link Events, otherwise False. required_master (optional): True if this command must be sent direct to the master node, otherwise False. correlation_id (optional): A unique identifer for this command. Examples: Read 5 events from a stream >>> async for event in conn.get("my-stream", max_count=5): >>> print(event) Read events 21 to 30 >>> async for event in conn.get("my-stream", max_count=10, from_event=21): >>> print(event) Read 10 most recent events in reverse order >>> async for event in conn.get( "my-stream", max_count=10, direction=StreamDirection.Backward ): >>> print(event)
[ "Read", "a", "range", "of", "events", "from", "a", "stream", "." ]
ff0736c9cacd43c1f783c9668eefb53d03a3a93e
https://github.com/madedotcom/photon-pump/blob/ff0736c9cacd43c1f783c9668eefb53d03a3a93e/photonpump/connection.py#L726-L786
6,680
madedotcom/photon-pump
photonpump/connection.py
Client.get_all
async def get_all( self, direction: msg.StreamDirection = msg.StreamDirection.Forward, from_position: Optional[Union[msg.Position, msg._PositionSentinel]] = None, max_count: int = 100, resolve_links: bool = True, require_master: bool = False, correlation_id: uuid.UUID = None, ): """ Read a range of events from the whole database. Args: direction (optional): Controls whether to read events forward or backward. defaults to Forward. from_position (optional): The position to read from. defaults to the beginning of the stream when direction is forward and the end of the stream if direction is backward. max_count (optional): The maximum number of events to return. resolve_links (optional): True if eventstore should automatically resolve Link Events, otherwise False. required_master (optional): True if this command must be sent direct to the master node, otherwise False. correlation_id (optional): A unique identifer for this command. Examples: Read 5 events >>> async for event in conn.get_all(max_count=5): >>> print(event) Read 10 most recent events in reverse order >>> async for event in conn.get_all( max_count=10, direction=StreamDirection.Backward ): >>> print(event) """ correlation_id = correlation_id cmd = convo.ReadAllEvents( msg.Position.for_direction(direction, from_position), max_count, resolve_links, require_master, direction=direction, credentials=self.credential, ) result = await self.dispatcher.start_conversation(cmd) return await result
python
async def get_all( self, direction: msg.StreamDirection = msg.StreamDirection.Forward, from_position: Optional[Union[msg.Position, msg._PositionSentinel]] = None, max_count: int = 100, resolve_links: bool = True, require_master: bool = False, correlation_id: uuid.UUID = None, ): """ Read a range of events from the whole database. Args: direction (optional): Controls whether to read events forward or backward. defaults to Forward. from_position (optional): The position to read from. defaults to the beginning of the stream when direction is forward and the end of the stream if direction is backward. max_count (optional): The maximum number of events to return. resolve_links (optional): True if eventstore should automatically resolve Link Events, otherwise False. required_master (optional): True if this command must be sent direct to the master node, otherwise False. correlation_id (optional): A unique identifer for this command. Examples: Read 5 events >>> async for event in conn.get_all(max_count=5): >>> print(event) Read 10 most recent events in reverse order >>> async for event in conn.get_all( max_count=10, direction=StreamDirection.Backward ): >>> print(event) """ correlation_id = correlation_id cmd = convo.ReadAllEvents( msg.Position.for_direction(direction, from_position), max_count, resolve_links, require_master, direction=direction, credentials=self.credential, ) result = await self.dispatcher.start_conversation(cmd) return await result
[ "async", "def", "get_all", "(", "self", ",", "direction", ":", "msg", ".", "StreamDirection", "=", "msg", ".", "StreamDirection", ".", "Forward", ",", "from_position", ":", "Optional", "[", "Union", "[", "msg", ".", "Position", ",", "msg", ".", "_PositionSentinel", "]", "]", "=", "None", ",", "max_count", ":", "int", "=", "100", ",", "resolve_links", ":", "bool", "=", "True", ",", "require_master", ":", "bool", "=", "False", ",", "correlation_id", ":", "uuid", ".", "UUID", "=", "None", ",", ")", ":", "correlation_id", "=", "correlation_id", "cmd", "=", "convo", ".", "ReadAllEvents", "(", "msg", ".", "Position", ".", "for_direction", "(", "direction", ",", "from_position", ")", ",", "max_count", ",", "resolve_links", ",", "require_master", ",", "direction", "=", "direction", ",", "credentials", "=", "self", ".", "credential", ",", ")", "result", "=", "await", "self", ".", "dispatcher", ".", "start_conversation", "(", "cmd", ")", "return", "await", "result" ]
Read a range of events from the whole database. Args: direction (optional): Controls whether to read events forward or backward. defaults to Forward. from_position (optional): The position to read from. defaults to the beginning of the stream when direction is forward and the end of the stream if direction is backward. max_count (optional): The maximum number of events to return. resolve_links (optional): True if eventstore should automatically resolve Link Events, otherwise False. required_master (optional): True if this command must be sent direct to the master node, otherwise False. correlation_id (optional): A unique identifer for this command. Examples: Read 5 events >>> async for event in conn.get_all(max_count=5): >>> print(event) Read 10 most recent events in reverse order >>> async for event in conn.get_all( max_count=10, direction=StreamDirection.Backward ): >>> print(event)
[ "Read", "a", "range", "of", "events", "from", "the", "whole", "database", "." ]
ff0736c9cacd43c1f783c9668eefb53d03a3a93e
https://github.com/madedotcom/photon-pump/blob/ff0736c9cacd43c1f783c9668eefb53d03a3a93e/photonpump/connection.py#L788-L840
6,681
madedotcom/photon-pump
photonpump/connection.py
Client.iter
async def iter( self, stream: str, direction: msg.StreamDirection = msg.StreamDirection.Forward, from_event: int = None, batch_size: int = 100, resolve_links: bool = True, require_master: bool = False, correlation_id: uuid.UUID = None, ): """ Read through a stream of events until the end and then stop. Args: stream: The name of the stream to read. direction: Controls whether to read forward or backward through the stream. Defaults to StreamDirection.Forward from_event: The sequence number of the first event to read from the stream. Reads from the appropriate end of the stream if unset. batch_size: The maximum number of events to read at a time. resolve_links (optional): True if eventstore should automatically resolve Link Events, otherwise False. required_master (optional): True if this command must be sent direct to the master node, otherwise False. correlation_id (optional): A unique identifer for this command. Examples: Print every event from the stream "my-stream". >>> with async.connect() as conn: >>> async for event in conn.iter("my-stream"): >>> print(event) Print every event from the stream "my-stream" in reverse order >>> with async.connect() as conn: >>> async for event in conn.iter("my-stream", direction=StreamDirection.Backward): >>> print(event) Skip the first 10 events of the stream >>> with async.connect() as conn: >>> async for event in conn.iter("my-stream", from_event=11): >>> print(event) """ correlation_id = correlation_id or uuid.uuid4() cmd = convo.IterStreamEvents( stream, from_event, batch_size, resolve_links, direction=direction, credentials=self.credential, ) result = await self.dispatcher.start_conversation(cmd) iterator = await result async for event in iterator: yield event
python
async def iter( self, stream: str, direction: msg.StreamDirection = msg.StreamDirection.Forward, from_event: int = None, batch_size: int = 100, resolve_links: bool = True, require_master: bool = False, correlation_id: uuid.UUID = None, ): """ Read through a stream of events until the end and then stop. Args: stream: The name of the stream to read. direction: Controls whether to read forward or backward through the stream. Defaults to StreamDirection.Forward from_event: The sequence number of the first event to read from the stream. Reads from the appropriate end of the stream if unset. batch_size: The maximum number of events to read at a time. resolve_links (optional): True if eventstore should automatically resolve Link Events, otherwise False. required_master (optional): True if this command must be sent direct to the master node, otherwise False. correlation_id (optional): A unique identifer for this command. Examples: Print every event from the stream "my-stream". >>> with async.connect() as conn: >>> async for event in conn.iter("my-stream"): >>> print(event) Print every event from the stream "my-stream" in reverse order >>> with async.connect() as conn: >>> async for event in conn.iter("my-stream", direction=StreamDirection.Backward): >>> print(event) Skip the first 10 events of the stream >>> with async.connect() as conn: >>> async for event in conn.iter("my-stream", from_event=11): >>> print(event) """ correlation_id = correlation_id or uuid.uuid4() cmd = convo.IterStreamEvents( stream, from_event, batch_size, resolve_links, direction=direction, credentials=self.credential, ) result = await self.dispatcher.start_conversation(cmd) iterator = await result async for event in iterator: yield event
[ "async", "def", "iter", "(", "self", ",", "stream", ":", "str", ",", "direction", ":", "msg", ".", "StreamDirection", "=", "msg", ".", "StreamDirection", ".", "Forward", ",", "from_event", ":", "int", "=", "None", ",", "batch_size", ":", "int", "=", "100", ",", "resolve_links", ":", "bool", "=", "True", ",", "require_master", ":", "bool", "=", "False", ",", "correlation_id", ":", "uuid", ".", "UUID", "=", "None", ",", ")", ":", "correlation_id", "=", "correlation_id", "or", "uuid", ".", "uuid4", "(", ")", "cmd", "=", "convo", ".", "IterStreamEvents", "(", "stream", ",", "from_event", ",", "batch_size", ",", "resolve_links", ",", "direction", "=", "direction", ",", "credentials", "=", "self", ".", "credential", ",", ")", "result", "=", "await", "self", ".", "dispatcher", ".", "start_conversation", "(", "cmd", ")", "iterator", "=", "await", "result", "async", "for", "event", "in", "iterator", ":", "yield", "event" ]
Read through a stream of events until the end and then stop. Args: stream: The name of the stream to read. direction: Controls whether to read forward or backward through the stream. Defaults to StreamDirection.Forward from_event: The sequence number of the first event to read from the stream. Reads from the appropriate end of the stream if unset. batch_size: The maximum number of events to read at a time. resolve_links (optional): True if eventstore should automatically resolve Link Events, otherwise False. required_master (optional): True if this command must be sent direct to the master node, otherwise False. correlation_id (optional): A unique identifer for this command. Examples: Print every event from the stream "my-stream". >>> with async.connect() as conn: >>> async for event in conn.iter("my-stream"): >>> print(event) Print every event from the stream "my-stream" in reverse order >>> with async.connect() as conn: >>> async for event in conn.iter("my-stream", direction=StreamDirection.Backward): >>> print(event) Skip the first 10 events of the stream >>> with async.connect() as conn: >>> async for event in conn.iter("my-stream", from_event=11): >>> print(event)
[ "Read", "through", "a", "stream", "of", "events", "until", "the", "end", "and", "then", "stop", "." ]
ff0736c9cacd43c1f783c9668eefb53d03a3a93e
https://github.com/madedotcom/photon-pump/blob/ff0736c9cacd43c1f783c9668eefb53d03a3a93e/photonpump/connection.py#L842-L902
6,682
madedotcom/photon-pump
photonpump/connection.py
Client.iter_all
async def iter_all( self, direction: msg.StreamDirection = msg.StreamDirection.Forward, from_position: Optional[Union[msg.Position, msg._PositionSentinel]] = None, batch_size: int = 100, resolve_links: bool = True, require_master: bool = False, correlation_id: Optional[uuid.UUID] = None, ): """ Read through all the events in the database. Args: direction (optional): Controls whether to read forward or backward through the events. Defaults to StreamDirection.Forward from_position (optional): The position to start reading from. Defaults to photonpump.Beginning when direction is Forward, photonpump.End when direction is Backward. batch_size (optional): The maximum number of events to read at a time. resolve_links (optional): True if eventstore should automatically resolve Link Events, otherwise False. required_master (optional): True if this command must be sent direct to the master node, otherwise False. correlation_id (optional): A unique identifer for this command. Examples: Print every event from the database. >>> with async.connect() as conn: >>> async for event in conn.iter_all() >>> print(event) Print every event from the database in reverse order >>> with async.connect() as conn: >>> async for event in conn.iter_all(direction=StreamDirection.Backward): >>> print(event) Start reading from a known commit position >>> with async.connect() as conn: >>> async for event in conn.iter_all(from_position=Position(12345)) >>> print(event) """ correlation_id = correlation_id cmd = convo.IterAllEvents( msg.Position.for_direction(direction, from_position), batch_size, resolve_links, require_master, direction, self.credential, correlation_id, ) result = await self.dispatcher.start_conversation(cmd) iterator = await result async for event in iterator: yield event
python
async def iter_all( self, direction: msg.StreamDirection = msg.StreamDirection.Forward, from_position: Optional[Union[msg.Position, msg._PositionSentinel]] = None, batch_size: int = 100, resolve_links: bool = True, require_master: bool = False, correlation_id: Optional[uuid.UUID] = None, ): """ Read through all the events in the database. Args: direction (optional): Controls whether to read forward or backward through the events. Defaults to StreamDirection.Forward from_position (optional): The position to start reading from. Defaults to photonpump.Beginning when direction is Forward, photonpump.End when direction is Backward. batch_size (optional): The maximum number of events to read at a time. resolve_links (optional): True if eventstore should automatically resolve Link Events, otherwise False. required_master (optional): True if this command must be sent direct to the master node, otherwise False. correlation_id (optional): A unique identifer for this command. Examples: Print every event from the database. >>> with async.connect() as conn: >>> async for event in conn.iter_all() >>> print(event) Print every event from the database in reverse order >>> with async.connect() as conn: >>> async for event in conn.iter_all(direction=StreamDirection.Backward): >>> print(event) Start reading from a known commit position >>> with async.connect() as conn: >>> async for event in conn.iter_all(from_position=Position(12345)) >>> print(event) """ correlation_id = correlation_id cmd = convo.IterAllEvents( msg.Position.for_direction(direction, from_position), batch_size, resolve_links, require_master, direction, self.credential, correlation_id, ) result = await self.dispatcher.start_conversation(cmd) iterator = await result async for event in iterator: yield event
[ "async", "def", "iter_all", "(", "self", ",", "direction", ":", "msg", ".", "StreamDirection", "=", "msg", ".", "StreamDirection", ".", "Forward", ",", "from_position", ":", "Optional", "[", "Union", "[", "msg", ".", "Position", ",", "msg", ".", "_PositionSentinel", "]", "]", "=", "None", ",", "batch_size", ":", "int", "=", "100", ",", "resolve_links", ":", "bool", "=", "True", ",", "require_master", ":", "bool", "=", "False", ",", "correlation_id", ":", "Optional", "[", "uuid", ".", "UUID", "]", "=", "None", ",", ")", ":", "correlation_id", "=", "correlation_id", "cmd", "=", "convo", ".", "IterAllEvents", "(", "msg", ".", "Position", ".", "for_direction", "(", "direction", ",", "from_position", ")", ",", "batch_size", ",", "resolve_links", ",", "require_master", ",", "direction", ",", "self", ".", "credential", ",", "correlation_id", ",", ")", "result", "=", "await", "self", ".", "dispatcher", ".", "start_conversation", "(", "cmd", ")", "iterator", "=", "await", "result", "async", "for", "event", "in", "iterator", ":", "yield", "event" ]
Read through all the events in the database. Args: direction (optional): Controls whether to read forward or backward through the events. Defaults to StreamDirection.Forward from_position (optional): The position to start reading from. Defaults to photonpump.Beginning when direction is Forward, photonpump.End when direction is Backward. batch_size (optional): The maximum number of events to read at a time. resolve_links (optional): True if eventstore should automatically resolve Link Events, otherwise False. required_master (optional): True if this command must be sent direct to the master node, otherwise False. correlation_id (optional): A unique identifer for this command. Examples: Print every event from the database. >>> with async.connect() as conn: >>> async for event in conn.iter_all() >>> print(event) Print every event from the database in reverse order >>> with async.connect() as conn: >>> async for event in conn.iter_all(direction=StreamDirection.Backward): >>> print(event) Start reading from a known commit position >>> with async.connect() as conn: >>> async for event in conn.iter_all(from_position=Position(12345)) >>> print(event)
[ "Read", "through", "all", "the", "events", "in", "the", "database", "." ]
ff0736c9cacd43c1f783c9668eefb53d03a3a93e
https://github.com/madedotcom/photon-pump/blob/ff0736c9cacd43c1f783c9668eefb53d03a3a93e/photonpump/connection.py#L904-L965
6,683
madedotcom/photon-pump
photonpump/connection.py
Client.subscribe_to
async def subscribe_to( self, stream, start_from=-1, resolve_link_tos=True, batch_size: int = 100 ): """ Subscribe to receive notifications when a new event is published to a stream. Args: stream: The name of the stream. start_from (optional): The first event to read. This parameter defaults to the magic value -1 which is treated as meaning "from the end of the stream". IF this value is used, no historical events will be returned. For any other value, photonpump will read all events from start_from until the end of the stream in pages of max_size before subscribing to receive new events as they arrive. resolve_links (optional): True if eventstore should automatically resolve Link Events, otherwise False. required_master (optional): True if this command must be sent direct to the master node, otherwise False. correlation_id (optional): A unique identifer for this command. batch_size (optioal): The number of events to pull down from eventstore in one go. Returns: A VolatileSubscription. Examples: >>> async with connection() as conn: >>> # Subscribe only to NEW events on the cpu-metrics stream >>> subs = await conn.subscribe_to("price-changes") >>> async for event in subs.events: >>> print(event) >>> async with connection() as conn: >>> # Read all historical events and then receive updates as they >>> # arrive. >>> subs = await conn.subscribe_to("price-changes", start_from=0) >>> async for event in subs.events: >>> print(event) """ if start_from == -1: cmd: convo.Conversation = convo.SubscribeToStream( stream, resolve_link_tos, credentials=self.credential ) else: cmd = convo.CatchupSubscription( stream, start_from, batch_size, credential=self.credential ) future = await self.dispatcher.start_conversation(cmd) return await future
python
async def subscribe_to( self, stream, start_from=-1, resolve_link_tos=True, batch_size: int = 100 ): """ Subscribe to receive notifications when a new event is published to a stream. Args: stream: The name of the stream. start_from (optional): The first event to read. This parameter defaults to the magic value -1 which is treated as meaning "from the end of the stream". IF this value is used, no historical events will be returned. For any other value, photonpump will read all events from start_from until the end of the stream in pages of max_size before subscribing to receive new events as they arrive. resolve_links (optional): True if eventstore should automatically resolve Link Events, otherwise False. required_master (optional): True if this command must be sent direct to the master node, otherwise False. correlation_id (optional): A unique identifer for this command. batch_size (optioal): The number of events to pull down from eventstore in one go. Returns: A VolatileSubscription. Examples: >>> async with connection() as conn: >>> # Subscribe only to NEW events on the cpu-metrics stream >>> subs = await conn.subscribe_to("price-changes") >>> async for event in subs.events: >>> print(event) >>> async with connection() as conn: >>> # Read all historical events and then receive updates as they >>> # arrive. >>> subs = await conn.subscribe_to("price-changes", start_from=0) >>> async for event in subs.events: >>> print(event) """ if start_from == -1: cmd: convo.Conversation = convo.SubscribeToStream( stream, resolve_link_tos, credentials=self.credential ) else: cmd = convo.CatchupSubscription( stream, start_from, batch_size, credential=self.credential ) future = await self.dispatcher.start_conversation(cmd) return await future
[ "async", "def", "subscribe_to", "(", "self", ",", "stream", ",", "start_from", "=", "-", "1", ",", "resolve_link_tos", "=", "True", ",", "batch_size", ":", "int", "=", "100", ")", ":", "if", "start_from", "==", "-", "1", ":", "cmd", ":", "convo", ".", "Conversation", "=", "convo", ".", "SubscribeToStream", "(", "stream", ",", "resolve_link_tos", ",", "credentials", "=", "self", ".", "credential", ")", "else", ":", "cmd", "=", "convo", ".", "CatchupSubscription", "(", "stream", ",", "start_from", ",", "batch_size", ",", "credential", "=", "self", ".", "credential", ")", "future", "=", "await", "self", ".", "dispatcher", ".", "start_conversation", "(", "cmd", ")", "return", "await", "future" ]
Subscribe to receive notifications when a new event is published to a stream. Args: stream: The name of the stream. start_from (optional): The first event to read. This parameter defaults to the magic value -1 which is treated as meaning "from the end of the stream". IF this value is used, no historical events will be returned. For any other value, photonpump will read all events from start_from until the end of the stream in pages of max_size before subscribing to receive new events as they arrive. resolve_links (optional): True if eventstore should automatically resolve Link Events, otherwise False. required_master (optional): True if this command must be sent direct to the master node, otherwise False. correlation_id (optional): A unique identifer for this command. batch_size (optioal): The number of events to pull down from eventstore in one go. Returns: A VolatileSubscription. Examples: >>> async with connection() as conn: >>> # Subscribe only to NEW events on the cpu-metrics stream >>> subs = await conn.subscribe_to("price-changes") >>> async for event in subs.events: >>> print(event) >>> async with connection() as conn: >>> # Read all historical events and then receive updates as they >>> # arrive. >>> subs = await conn.subscribe_to("price-changes", start_from=0) >>> async for event in subs.events: >>> print(event)
[ "Subscribe", "to", "receive", "notifications", "when", "a", "new", "event", "is", "published", "to", "a", "stream", "." ]
ff0736c9cacd43c1f783c9668eefb53d03a3a93e
https://github.com/madedotcom/photon-pump/blob/ff0736c9cacd43c1f783c9668eefb53d03a3a93e/photonpump/connection.py#L1029-L1086
6,684
madedotcom/photon-pump
photonpump/discovery.py
prefer_master
def prefer_master(nodes: List[DiscoveredNode]) -> Optional[DiscoveredNode]: """ Select the master if available, otherwise fall back to a replica. """ return max(nodes, key=attrgetter("state"))
python
def prefer_master(nodes: List[DiscoveredNode]) -> Optional[DiscoveredNode]: """ Select the master if available, otherwise fall back to a replica. """ return max(nodes, key=attrgetter("state"))
[ "def", "prefer_master", "(", "nodes", ":", "List", "[", "DiscoveredNode", "]", ")", "->", "Optional", "[", "DiscoveredNode", "]", ":", "return", "max", "(", "nodes", ",", "key", "=", "attrgetter", "(", "\"state\"", ")", ")" ]
Select the master if available, otherwise fall back to a replica.
[ "Select", "the", "master", "if", "available", "otherwise", "fall", "back", "to", "a", "replica", "." ]
ff0736c9cacd43c1f783c9668eefb53d03a3a93e
https://github.com/madedotcom/photon-pump/blob/ff0736c9cacd43c1f783c9668eefb53d03a3a93e/photonpump/discovery.py#L60-L64
6,685
madedotcom/photon-pump
photonpump/discovery.py
prefer_replica
def prefer_replica(nodes: List[DiscoveredNode]) -> Optional[DiscoveredNode]: """ Select a random replica if any are available or fall back to the master. """ masters = [node for node in nodes if node.state == NodeState.Master] replicas = [node for node in nodes if node.state != NodeState.Master] if replicas: return random.choice(replicas) else: # if you have more than one master then you're on your own, bud. return masters[0]
python
def prefer_replica(nodes: List[DiscoveredNode]) -> Optional[DiscoveredNode]: """ Select a random replica if any are available or fall back to the master. """ masters = [node for node in nodes if node.state == NodeState.Master] replicas = [node for node in nodes if node.state != NodeState.Master] if replicas: return random.choice(replicas) else: # if you have more than one master then you're on your own, bud. return masters[0]
[ "def", "prefer_replica", "(", "nodes", ":", "List", "[", "DiscoveredNode", "]", ")", "->", "Optional", "[", "DiscoveredNode", "]", ":", "masters", "=", "[", "node", "for", "node", "in", "nodes", "if", "node", ".", "state", "==", "NodeState", ".", "Master", "]", "replicas", "=", "[", "node", "for", "node", "in", "nodes", "if", "node", ".", "state", "!=", "NodeState", ".", "Master", "]", "if", "replicas", ":", "return", "random", ".", "choice", "(", "replicas", ")", "else", ":", "# if you have more than one master then you're on your own, bud.", "return", "masters", "[", "0", "]" ]
Select a random replica if any are available or fall back to the master.
[ "Select", "a", "random", "replica", "if", "any", "are", "available", "or", "fall", "back", "to", "the", "master", "." ]
ff0736c9cacd43c1f783c9668eefb53d03a3a93e
https://github.com/madedotcom/photon-pump/blob/ff0736c9cacd43c1f783c9668eefb53d03a3a93e/photonpump/discovery.py#L67-L79
6,686
nteract/vdom
vdom/core.py
create_event_handler
def create_event_handler(event_type, handler): """Register a comm and return a serializable object with target name""" target_name = '{hash}_{event_type}'.format(hash=hash(handler), event_type=event_type) def handle_comm_opened(comm, msg): @comm.on_msg def _handle_msg(msg): data = msg['content']['data'] event = json.loads(data) return_value = handler(event) if return_value: comm.send(return_value) comm.send('Comm target "{target_name}" registered by vdom'.format(target_name=target_name)) # Register a new comm for this event handler if get_ipython(): get_ipython().kernel.comm_manager.register_target(target_name, handle_comm_opened) # Return a serialized object return target_name
python
def create_event_handler(event_type, handler): """Register a comm and return a serializable object with target name""" target_name = '{hash}_{event_type}'.format(hash=hash(handler), event_type=event_type) def handle_comm_opened(comm, msg): @comm.on_msg def _handle_msg(msg): data = msg['content']['data'] event = json.loads(data) return_value = handler(event) if return_value: comm.send(return_value) comm.send('Comm target "{target_name}" registered by vdom'.format(target_name=target_name)) # Register a new comm for this event handler if get_ipython(): get_ipython().kernel.comm_manager.register_target(target_name, handle_comm_opened) # Return a serialized object return target_name
[ "def", "create_event_handler", "(", "event_type", ",", "handler", ")", ":", "target_name", "=", "'{hash}_{event_type}'", ".", "format", "(", "hash", "=", "hash", "(", "handler", ")", ",", "event_type", "=", "event_type", ")", "def", "handle_comm_opened", "(", "comm", ",", "msg", ")", ":", "@", "comm", ".", "on_msg", "def", "_handle_msg", "(", "msg", ")", ":", "data", "=", "msg", "[", "'content'", "]", "[", "'data'", "]", "event", "=", "json", ".", "loads", "(", "data", ")", "return_value", "=", "handler", "(", "event", ")", "if", "return_value", ":", "comm", ".", "send", "(", "return_value", ")", "comm", ".", "send", "(", "'Comm target \"{target_name}\" registered by vdom'", ".", "format", "(", "target_name", "=", "target_name", ")", ")", "# Register a new comm for this event handler", "if", "get_ipython", "(", ")", ":", "get_ipython", "(", ")", ".", "kernel", ".", "comm_manager", ".", "register_target", "(", "target_name", ",", "handle_comm_opened", ")", "# Return a serialized object", "return", "target_name" ]
Register a comm and return a serializable object with target name
[ "Register", "a", "comm", "and", "return", "a", "serializable", "object", "with", "target", "name" ]
d1ef48dc20d50379b8137a104125c92f64b916e4
https://github.com/nteract/vdom/blob/d1ef48dc20d50379b8137a104125c92f64b916e4/vdom/core.py#L49-L70
6,687
nteract/vdom
vdom/core.py
to_json
def to_json(el, schema=None): """Convert an element to VDOM JSON If you wish to validate the JSON, pass in a schema via the schema keyword argument. If a schema is provided, this raises a ValidationError if JSON does not match the schema. """ if type(el) is str: json_el = el elif type(el) is list: json_el = list(map(to_json, el)) elif type(el) is dict: assert 'tagName' in el json_el = el.copy() if 'attributes' not in el: json_el['attributes'] = {} if 'children' not in el: json_el['children'] = [] elif isinstance(el, VDOM): json_el = el.to_dict() else: json_el = el if schema: try: validate(instance=json_el, schema=schema, cls=Draft4Validator) except ValidationError as e: raise ValidationError(_validate_err_template.format(schema, e)) return json_el
python
def to_json(el, schema=None): """Convert an element to VDOM JSON If you wish to validate the JSON, pass in a schema via the schema keyword argument. If a schema is provided, this raises a ValidationError if JSON does not match the schema. """ if type(el) is str: json_el = el elif type(el) is list: json_el = list(map(to_json, el)) elif type(el) is dict: assert 'tagName' in el json_el = el.copy() if 'attributes' not in el: json_el['attributes'] = {} if 'children' not in el: json_el['children'] = [] elif isinstance(el, VDOM): json_el = el.to_dict() else: json_el = el if schema: try: validate(instance=json_el, schema=schema, cls=Draft4Validator) except ValidationError as e: raise ValidationError(_validate_err_template.format(schema, e)) return json_el
[ "def", "to_json", "(", "el", ",", "schema", "=", "None", ")", ":", "if", "type", "(", "el", ")", "is", "str", ":", "json_el", "=", "el", "elif", "type", "(", "el", ")", "is", "list", ":", "json_el", "=", "list", "(", "map", "(", "to_json", ",", "el", ")", ")", "elif", "type", "(", "el", ")", "is", "dict", ":", "assert", "'tagName'", "in", "el", "json_el", "=", "el", ".", "copy", "(", ")", "if", "'attributes'", "not", "in", "el", ":", "json_el", "[", "'attributes'", "]", "=", "{", "}", "if", "'children'", "not", "in", "el", ":", "json_el", "[", "'children'", "]", "=", "[", "]", "elif", "isinstance", "(", "el", ",", "VDOM", ")", ":", "json_el", "=", "el", ".", "to_dict", "(", ")", "else", ":", "json_el", "=", "el", "if", "schema", ":", "try", ":", "validate", "(", "instance", "=", "json_el", ",", "schema", "=", "schema", ",", "cls", "=", "Draft4Validator", ")", "except", "ValidationError", "as", "e", ":", "raise", "ValidationError", "(", "_validate_err_template", ".", "format", "(", "schema", ",", "e", ")", ")", "return", "json_el" ]
Convert an element to VDOM JSON If you wish to validate the JSON, pass in a schema via the schema keyword argument. If a schema is provided, this raises a ValidationError if JSON does not match the schema.
[ "Convert", "an", "element", "to", "VDOM", "JSON" ]
d1ef48dc20d50379b8137a104125c92f64b916e4
https://github.com/nteract/vdom/blob/d1ef48dc20d50379b8137a104125c92f64b916e4/vdom/core.py#L73-L102
6,688
nteract/vdom
vdom/core.py
create_component
def create_component(tag_name, allow_children=True): """ Create a component for an HTML Tag Examples: >>> marquee = create_component('marquee') >>> marquee('woohoo') <marquee>woohoo</marquee> """ def _component(*children, **kwargs): if 'children' in kwargs: children = kwargs.pop('children') else: # Flatten children under specific circumstances # This supports the use case of div([a, b, c]) # And allows users to skip the * operator if len(children) == 1 and isinstance(children[0], list): # We want children to be tuples and not lists, so # they can be immutable children = tuple(children[0]) style = None event_handlers = None attributes = dict(**kwargs) if 'style' in kwargs: style = kwargs.pop('style') if 'attributes' in kwargs: attributes = kwargs['attributes'] for key, value in attributes.items(): if callable(value): attributes = attributes.copy() if event_handlers == None: event_handlers = {key: attributes.pop(key)} else: event_handlers[key] = attributes.pop(key) if not allow_children and children: # We don't allow children, but some were passed in raise ValueError('<{tag_name} /> cannot have children'.format(tag_name=tag_name)) v = VDOM(tag_name, attributes, style, children, None, event_handlers) return v return _component
python
def create_component(tag_name, allow_children=True): """ Create a component for an HTML Tag Examples: >>> marquee = create_component('marquee') >>> marquee('woohoo') <marquee>woohoo</marquee> """ def _component(*children, **kwargs): if 'children' in kwargs: children = kwargs.pop('children') else: # Flatten children under specific circumstances # This supports the use case of div([a, b, c]) # And allows users to skip the * operator if len(children) == 1 and isinstance(children[0], list): # We want children to be tuples and not lists, so # they can be immutable children = tuple(children[0]) style = None event_handlers = None attributes = dict(**kwargs) if 'style' in kwargs: style = kwargs.pop('style') if 'attributes' in kwargs: attributes = kwargs['attributes'] for key, value in attributes.items(): if callable(value): attributes = attributes.copy() if event_handlers == None: event_handlers = {key: attributes.pop(key)} else: event_handlers[key] = attributes.pop(key) if not allow_children and children: # We don't allow children, but some were passed in raise ValueError('<{tag_name} /> cannot have children'.format(tag_name=tag_name)) v = VDOM(tag_name, attributes, style, children, None, event_handlers) return v return _component
[ "def", "create_component", "(", "tag_name", ",", "allow_children", "=", "True", ")", ":", "def", "_component", "(", "*", "children", ",", "*", "*", "kwargs", ")", ":", "if", "'children'", "in", "kwargs", ":", "children", "=", "kwargs", ".", "pop", "(", "'children'", ")", "else", ":", "# Flatten children under specific circumstances", "# This supports the use case of div([a, b, c])", "# And allows users to skip the * operator", "if", "len", "(", "children", ")", "==", "1", "and", "isinstance", "(", "children", "[", "0", "]", ",", "list", ")", ":", "# We want children to be tuples and not lists, so", "# they can be immutable", "children", "=", "tuple", "(", "children", "[", "0", "]", ")", "style", "=", "None", "event_handlers", "=", "None", "attributes", "=", "dict", "(", "*", "*", "kwargs", ")", "if", "'style'", "in", "kwargs", ":", "style", "=", "kwargs", ".", "pop", "(", "'style'", ")", "if", "'attributes'", "in", "kwargs", ":", "attributes", "=", "kwargs", "[", "'attributes'", "]", "for", "key", ",", "value", "in", "attributes", ".", "items", "(", ")", ":", "if", "callable", "(", "value", ")", ":", "attributes", "=", "attributes", ".", "copy", "(", ")", "if", "event_handlers", "==", "None", ":", "event_handlers", "=", "{", "key", ":", "attributes", ".", "pop", "(", "key", ")", "}", "else", ":", "event_handlers", "[", "key", "]", "=", "attributes", ".", "pop", "(", "key", ")", "if", "not", "allow_children", "and", "children", ":", "# We don't allow children, but some were passed in", "raise", "ValueError", "(", "'<{tag_name} /> cannot have children'", ".", "format", "(", "tag_name", "=", "tag_name", ")", ")", "v", "=", "VDOM", "(", "tag_name", ",", "attributes", ",", "style", ",", "children", ",", "None", ",", "event_handlers", ")", "return", "v", "return", "_component" ]
Create a component for an HTML Tag Examples: >>> marquee = create_component('marquee') >>> marquee('woohoo') <marquee>woohoo</marquee>
[ "Create", "a", "component", "for", "an", "HTML", "Tag" ]
d1ef48dc20d50379b8137a104125c92f64b916e4
https://github.com/nteract/vdom/blob/d1ef48dc20d50379b8137a104125c92f64b916e4/vdom/core.py#L301-L343
6,689
nteract/vdom
vdom/core.py
VDOM.validate
def validate(self, schema): """ Validate VDOM against given JSON Schema Raises ValidationError if schema does not match """ try: validate(instance=self.to_dict(), schema=schema, cls=Draft4Validator) except ValidationError as e: raise ValidationError(_validate_err_template.format(VDOM_SCHEMA, e))
python
def validate(self, schema): """ Validate VDOM against given JSON Schema Raises ValidationError if schema does not match """ try: validate(instance=self.to_dict(), schema=schema, cls=Draft4Validator) except ValidationError as e: raise ValidationError(_validate_err_template.format(VDOM_SCHEMA, e))
[ "def", "validate", "(", "self", ",", "schema", ")", ":", "try", ":", "validate", "(", "instance", "=", "self", ".", "to_dict", "(", ")", ",", "schema", "=", "schema", ",", "cls", "=", "Draft4Validator", ")", "except", "ValidationError", "as", "e", ":", "raise", "ValidationError", "(", "_validate_err_template", ".", "format", "(", "VDOM_SCHEMA", ",", "e", ")", ")" ]
Validate VDOM against given JSON Schema Raises ValidationError if schema does not match
[ "Validate", "VDOM", "against", "given", "JSON", "Schema" ]
d1ef48dc20d50379b8137a104125c92f64b916e4
https://github.com/nteract/vdom/blob/d1ef48dc20d50379b8137a104125c92f64b916e4/vdom/core.py#L174-L183
6,690
nteract/vdom
vdom/core.py
VDOM.to_dict
def to_dict(self): """Converts VDOM object to a dictionary that passes our schema """ attributes = dict(self.attributes.items()) if self.style: attributes.update({"style": dict(self.style.items())}) vdom_dict = {'tagName': self.tag_name, 'attributes': attributes} if self.event_handlers: event_handlers = dict(self.event_handlers.items()) for key, value in event_handlers.items(): value = create_event_handler(key, value) event_handlers[key] = value vdom_dict['eventHandlers'] = event_handlers if self.key: vdom_dict['key'] = self.key vdom_dict['children'] = [c.to_dict() if isinstance(c, VDOM) else c for c in self.children] return vdom_dict
python
def to_dict(self): """Converts VDOM object to a dictionary that passes our schema """ attributes = dict(self.attributes.items()) if self.style: attributes.update({"style": dict(self.style.items())}) vdom_dict = {'tagName': self.tag_name, 'attributes': attributes} if self.event_handlers: event_handlers = dict(self.event_handlers.items()) for key, value in event_handlers.items(): value = create_event_handler(key, value) event_handlers[key] = value vdom_dict['eventHandlers'] = event_handlers if self.key: vdom_dict['key'] = self.key vdom_dict['children'] = [c.to_dict() if isinstance(c, VDOM) else c for c in self.children] return vdom_dict
[ "def", "to_dict", "(", "self", ")", ":", "attributes", "=", "dict", "(", "self", ".", "attributes", ".", "items", "(", ")", ")", "if", "self", ".", "style", ":", "attributes", ".", "update", "(", "{", "\"style\"", ":", "dict", "(", "self", ".", "style", ".", "items", "(", ")", ")", "}", ")", "vdom_dict", "=", "{", "'tagName'", ":", "self", ".", "tag_name", ",", "'attributes'", ":", "attributes", "}", "if", "self", ".", "event_handlers", ":", "event_handlers", "=", "dict", "(", "self", ".", "event_handlers", ".", "items", "(", ")", ")", "for", "key", ",", "value", "in", "event_handlers", ".", "items", "(", ")", ":", "value", "=", "create_event_handler", "(", "key", ",", "value", ")", "event_handlers", "[", "key", "]", "=", "value", "vdom_dict", "[", "'eventHandlers'", "]", "=", "event_handlers", "if", "self", ".", "key", ":", "vdom_dict", "[", "'key'", "]", "=", "self", ".", "key", "vdom_dict", "[", "'children'", "]", "=", "[", "c", ".", "to_dict", "(", ")", "if", "isinstance", "(", "c", ",", "VDOM", ")", "else", "c", "for", "c", "in", "self", ".", "children", "]", "return", "vdom_dict" ]
Converts VDOM object to a dictionary that passes our schema
[ "Converts", "VDOM", "object", "to", "a", "dictionary", "that", "passes", "our", "schema" ]
d1ef48dc20d50379b8137a104125c92f64b916e4
https://github.com/nteract/vdom/blob/d1ef48dc20d50379b8137a104125c92f64b916e4/vdom/core.py#L185-L201
6,691
konstantint/PassportEye
passporteye/mrz/text.py
MRZ._guess_type
def _guess_type(mrz_lines): """Guesses the type of the MRZ from given lines. Returns 'TD1', 'TD2', 'TD3', 'MRVA', 'MRVB' or None. The algorithm is basically just counting lines, looking at their length and checking whether the first character is a 'V' >>> MRZ._guess_type([]) is None True >>> MRZ._guess_type([1]) is None True >>> MRZ._guess_type([1,2]) is None # No len() for numbers True >>> MRZ._guess_type(['a','b']) # This way passes 'TD2' >>> MRZ._guess_type(['*'*40, '*'*40]) 'TD3' >>> MRZ._guess_type([1,2,3]) 'TD1' >>> MRZ._guess_type(['V'*40, '*'*40]) 'MRVA' >>> MRZ._guess_type(['V'*36, '*'*36]) 'MRVB' """ try: if len(mrz_lines) == 3: return 'TD1' elif len(mrz_lines) == 2 and len(mrz_lines[0]) < 40 and len(mrz_lines[1]) < 40: return 'MRVB' if mrz_lines[0][0].upper() == 'V' else 'TD2' elif len(mrz_lines) == 2: return 'MRVA' if mrz_lines[0][0].upper() == 'V' else 'TD3' else: return None except Exception: #pylint: disable=broad-except return None
python
def _guess_type(mrz_lines): """Guesses the type of the MRZ from given lines. Returns 'TD1', 'TD2', 'TD3', 'MRVA', 'MRVB' or None. The algorithm is basically just counting lines, looking at their length and checking whether the first character is a 'V' >>> MRZ._guess_type([]) is None True >>> MRZ._guess_type([1]) is None True >>> MRZ._guess_type([1,2]) is None # No len() for numbers True >>> MRZ._guess_type(['a','b']) # This way passes 'TD2' >>> MRZ._guess_type(['*'*40, '*'*40]) 'TD3' >>> MRZ._guess_type([1,2,3]) 'TD1' >>> MRZ._guess_type(['V'*40, '*'*40]) 'MRVA' >>> MRZ._guess_type(['V'*36, '*'*36]) 'MRVB' """ try: if len(mrz_lines) == 3: return 'TD1' elif len(mrz_lines) == 2 and len(mrz_lines[0]) < 40 and len(mrz_lines[1]) < 40: return 'MRVB' if mrz_lines[0][0].upper() == 'V' else 'TD2' elif len(mrz_lines) == 2: return 'MRVA' if mrz_lines[0][0].upper() == 'V' else 'TD3' else: return None except Exception: #pylint: disable=broad-except return None
[ "def", "_guess_type", "(", "mrz_lines", ")", ":", "try", ":", "if", "len", "(", "mrz_lines", ")", "==", "3", ":", "return", "'TD1'", "elif", "len", "(", "mrz_lines", ")", "==", "2", "and", "len", "(", "mrz_lines", "[", "0", "]", ")", "<", "40", "and", "len", "(", "mrz_lines", "[", "1", "]", ")", "<", "40", ":", "return", "'MRVB'", "if", "mrz_lines", "[", "0", "]", "[", "0", "]", ".", "upper", "(", ")", "==", "'V'", "else", "'TD2'", "elif", "len", "(", "mrz_lines", ")", "==", "2", ":", "return", "'MRVA'", "if", "mrz_lines", "[", "0", "]", "[", "0", "]", ".", "upper", "(", ")", "==", "'V'", "else", "'TD3'", "else", ":", "return", "None", "except", "Exception", ":", "#pylint: disable=broad-except", "return", "None" ]
Guesses the type of the MRZ from given lines. Returns 'TD1', 'TD2', 'TD3', 'MRVA', 'MRVB' or None. The algorithm is basically just counting lines, looking at their length and checking whether the first character is a 'V' >>> MRZ._guess_type([]) is None True >>> MRZ._guess_type([1]) is None True >>> MRZ._guess_type([1,2]) is None # No len() for numbers True >>> MRZ._guess_type(['a','b']) # This way passes 'TD2' >>> MRZ._guess_type(['*'*40, '*'*40]) 'TD3' >>> MRZ._guess_type([1,2,3]) 'TD1' >>> MRZ._guess_type(['V'*40, '*'*40]) 'MRVA' >>> MRZ._guess_type(['V'*36, '*'*36]) 'MRVB'
[ "Guesses", "the", "type", "of", "the", "MRZ", "from", "given", "lines", ".", "Returns", "TD1", "TD2", "TD3", "MRVA", "MRVB", "or", "None", ".", "The", "algorithm", "is", "basically", "just", "counting", "lines", "looking", "at", "their", "length", "and", "checking", "whether", "the", "first", "character", "is", "a", "V" ]
b32afba0f5dc4eb600c4edc4f49e5d49959c5415
https://github.com/konstantint/PassportEye/blob/b32afba0f5dc4eb600c4edc4f49e5d49959c5415/passporteye/mrz/text.py#L129-L160
6,692
konstantint/PassportEye
passporteye/util/pipeline.py
Pipeline.remove_component
def remove_component(self, name): """Removes an existing component with a given name, invalidating all the values computed by the previous component.""" if name not in self.components: raise Exception("No component named %s" % name) del self.components[name] del self.depends[name] for p in self.provides[name]: del self.whoprovides[p] self.invalidate(p) del self.provides[name]
python
def remove_component(self, name): """Removes an existing component with a given name, invalidating all the values computed by the previous component.""" if name not in self.components: raise Exception("No component named %s" % name) del self.components[name] del self.depends[name] for p in self.provides[name]: del self.whoprovides[p] self.invalidate(p) del self.provides[name]
[ "def", "remove_component", "(", "self", ",", "name", ")", ":", "if", "name", "not", "in", "self", ".", "components", ":", "raise", "Exception", "(", "\"No component named %s\"", "%", "name", ")", "del", "self", ".", "components", "[", "name", "]", "del", "self", ".", "depends", "[", "name", "]", "for", "p", "in", "self", ".", "provides", "[", "name", "]", ":", "del", "self", ".", "whoprovides", "[", "p", "]", "self", ".", "invalidate", "(", "p", ")", "del", "self", ".", "provides", "[", "name", "]" ]
Removes an existing component with a given name, invalidating all the values computed by the previous component.
[ "Removes", "an", "existing", "component", "with", "a", "given", "name", "invalidating", "all", "the", "values", "computed", "by", "the", "previous", "component", "." ]
b32afba0f5dc4eb600c4edc4f49e5d49959c5415
https://github.com/konstantint/PassportEye/blob/b32afba0f5dc4eb600c4edc4f49e5d49959c5415/passporteye/util/pipeline.py#L68-L78
6,693
konstantint/PassportEye
passporteye/util/pipeline.py
Pipeline.replace_component
def replace_component(self, name, callable, provides=None, depends=None): """Changes an existing component with a given name, invalidating all the values computed by the previous component and its successors.""" self.remove_component(name) self.add_component(name, callable, provides, depends)
python
def replace_component(self, name, callable, provides=None, depends=None): """Changes an existing component with a given name, invalidating all the values computed by the previous component and its successors.""" self.remove_component(name) self.add_component(name, callable, provides, depends)
[ "def", "replace_component", "(", "self", ",", "name", ",", "callable", ",", "provides", "=", "None", ",", "depends", "=", "None", ")", ":", "self", ".", "remove_component", "(", "name", ")", "self", ".", "add_component", "(", "name", ",", "callable", ",", "provides", ",", "depends", ")" ]
Changes an existing component with a given name, invalidating all the values computed by the previous component and its successors.
[ "Changes", "an", "existing", "component", "with", "a", "given", "name", "invalidating", "all", "the", "values", "computed", "by", "the", "previous", "component", "and", "its", "successors", "." ]
b32afba0f5dc4eb600c4edc4f49e5d49959c5415
https://github.com/konstantint/PassportEye/blob/b32afba0f5dc4eb600c4edc4f49e5d49959c5415/passporteye/util/pipeline.py#L80-L84
6,694
konstantint/PassportEye
passporteye/util/pipeline.py
Pipeline.invalidate
def invalidate(self, key): """Remove the given data item along with all items that depend on it in the graph.""" if key not in self.data: return del self.data[key] # Find all components that used it and invalidate their results for cname in self.components: if key in self.depends[cname]: for downstream_key in self.provides[cname]: self.invalidate(downstream_key)
python
def invalidate(self, key): """Remove the given data item along with all items that depend on it in the graph.""" if key not in self.data: return del self.data[key] # Find all components that used it and invalidate their results for cname in self.components: if key in self.depends[cname]: for downstream_key in self.provides[cname]: self.invalidate(downstream_key)
[ "def", "invalidate", "(", "self", ",", "key", ")", ":", "if", "key", "not", "in", "self", ".", "data", ":", "return", "del", "self", ".", "data", "[", "key", "]", "# Find all components that used it and invalidate their results", "for", "cname", "in", "self", ".", "components", ":", "if", "key", "in", "self", ".", "depends", "[", "cname", "]", ":", "for", "downstream_key", "in", "self", ".", "provides", "[", "cname", "]", ":", "self", ".", "invalidate", "(", "downstream_key", ")" ]
Remove the given data item along with all items that depend on it in the graph.
[ "Remove", "the", "given", "data", "item", "along", "with", "all", "items", "that", "depend", "on", "it", "in", "the", "graph", "." ]
b32afba0f5dc4eb600c4edc4f49e5d49959c5415
https://github.com/konstantint/PassportEye/blob/b32afba0f5dc4eb600c4edc4f49e5d49959c5415/passporteye/util/pipeline.py#L86-L96
6,695
konstantint/PassportEye
passporteye/util/ocr.py
ocr
def ocr(img, mrz_mode=True, extra_cmdline_params=''): """Runs Tesseract on a given image. Writes an intermediate tempfile and then runs the tesseract command on the image. This is a simplified modification of image_to_string from PyTesseract, which is adapted to SKImage rather than PIL. In principle we could have reimplemented it just as well - there are some apparent bugs in PyTesseract, but it works so far :) :param mrz_mode: when this is True (default) the tesseract is configured to recognize MRZs rather than arbitrary texts. When False, no specific configuration parameters are passed (and you are free to provide your own via `extra_cmdline_params`) :param extra_cmdline_params: extra parameters passed to tesseract. When mrz_mode=True, these are appended to whatever is the "best known" configuration at the moment. "--oem 0" is the parameter you might want to pass. This selects the Tesseract's "legacy" OCR engine, which often seems to work better than the new LSTM-based one. """ input_file_name = '%s.bmp' % _tempnam() output_file_name_base = '%s' % _tempnam() output_file_name = "%s.txt" % output_file_name_base try: # Prevent annoying warning about lossy conversion to uint8 if str(img.dtype).startswith('float') and np.nanmin(img) >= 0 and np.nanmax(img) <= 1: img = img.astype(np.float64) * (np.power(2.0, 8) - 1) + 0.499999999 img = img.astype(np.uint8) imwrite(input_file_name, img) if mrz_mode: # NB: Tesseract 4.0 does not seem to support tessedit_char_whitelist config = ("--psm 6 -c tessedit_char_whitelist=ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789><" " -c load_system_dawg=F -c load_freq_dawg=F {}").format(extra_cmdline_params) else: config = "{}".format(extra_cmdline_params) pytesseract.run_tesseract(input_file_name, output_file_name_base, 'txt', lang=None, config=config) if sys.version_info.major == 3: f = open(output_file_name, encoding='utf-8') else: f = open(output_file_name) try: return f.read().strip() finally: f.close() finally: pytesseract.cleanup(input_file_name) pytesseract.cleanup(output_file_name)
python
def ocr(img, mrz_mode=True, extra_cmdline_params=''): """Runs Tesseract on a given image. Writes an intermediate tempfile and then runs the tesseract command on the image. This is a simplified modification of image_to_string from PyTesseract, which is adapted to SKImage rather than PIL. In principle we could have reimplemented it just as well - there are some apparent bugs in PyTesseract, but it works so far :) :param mrz_mode: when this is True (default) the tesseract is configured to recognize MRZs rather than arbitrary texts. When False, no specific configuration parameters are passed (and you are free to provide your own via `extra_cmdline_params`) :param extra_cmdline_params: extra parameters passed to tesseract. When mrz_mode=True, these are appended to whatever is the "best known" configuration at the moment. "--oem 0" is the parameter you might want to pass. This selects the Tesseract's "legacy" OCR engine, which often seems to work better than the new LSTM-based one. """ input_file_name = '%s.bmp' % _tempnam() output_file_name_base = '%s' % _tempnam() output_file_name = "%s.txt" % output_file_name_base try: # Prevent annoying warning about lossy conversion to uint8 if str(img.dtype).startswith('float') and np.nanmin(img) >= 0 and np.nanmax(img) <= 1: img = img.astype(np.float64) * (np.power(2.0, 8) - 1) + 0.499999999 img = img.astype(np.uint8) imwrite(input_file_name, img) if mrz_mode: # NB: Tesseract 4.0 does not seem to support tessedit_char_whitelist config = ("--psm 6 -c tessedit_char_whitelist=ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789><" " -c load_system_dawg=F -c load_freq_dawg=F {}").format(extra_cmdline_params) else: config = "{}".format(extra_cmdline_params) pytesseract.run_tesseract(input_file_name, output_file_name_base, 'txt', lang=None, config=config) if sys.version_info.major == 3: f = open(output_file_name, encoding='utf-8') else: f = open(output_file_name) try: return f.read().strip() finally: f.close() finally: pytesseract.cleanup(input_file_name) pytesseract.cleanup(output_file_name)
[ "def", "ocr", "(", "img", ",", "mrz_mode", "=", "True", ",", "extra_cmdline_params", "=", "''", ")", ":", "input_file_name", "=", "'%s.bmp'", "%", "_tempnam", "(", ")", "output_file_name_base", "=", "'%s'", "%", "_tempnam", "(", ")", "output_file_name", "=", "\"%s.txt\"", "%", "output_file_name_base", "try", ":", "# Prevent annoying warning about lossy conversion to uint8", "if", "str", "(", "img", ".", "dtype", ")", ".", "startswith", "(", "'float'", ")", "and", "np", ".", "nanmin", "(", "img", ")", ">=", "0", "and", "np", ".", "nanmax", "(", "img", ")", "<=", "1", ":", "img", "=", "img", ".", "astype", "(", "np", ".", "float64", ")", "*", "(", "np", ".", "power", "(", "2.0", ",", "8", ")", "-", "1", ")", "+", "0.499999999", "img", "=", "img", ".", "astype", "(", "np", ".", "uint8", ")", "imwrite", "(", "input_file_name", ",", "img", ")", "if", "mrz_mode", ":", "# NB: Tesseract 4.0 does not seem to support tessedit_char_whitelist", "config", "=", "(", "\"--psm 6 -c tessedit_char_whitelist=ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789><\"", "\" -c load_system_dawg=F -c load_freq_dawg=F {}\"", ")", ".", "format", "(", "extra_cmdline_params", ")", "else", ":", "config", "=", "\"{}\"", ".", "format", "(", "extra_cmdline_params", ")", "pytesseract", ".", "run_tesseract", "(", "input_file_name", ",", "output_file_name_base", ",", "'txt'", ",", "lang", "=", "None", ",", "config", "=", "config", ")", "if", "sys", ".", "version_info", ".", "major", "==", "3", ":", "f", "=", "open", "(", "output_file_name", ",", "encoding", "=", "'utf-8'", ")", "else", ":", "f", "=", "open", "(", "output_file_name", ")", "try", ":", "return", "f", ".", "read", "(", ")", ".", "strip", "(", ")", "finally", ":", "f", ".", "close", "(", ")", "finally", ":", "pytesseract", ".", "cleanup", "(", "input_file_name", ")", "pytesseract", ".", "cleanup", "(", "output_file_name", ")" ]
Runs Tesseract on a given image. Writes an intermediate tempfile and then runs the tesseract command on the image. This is a simplified modification of image_to_string from PyTesseract, which is adapted to SKImage rather than PIL. In principle we could have reimplemented it just as well - there are some apparent bugs in PyTesseract, but it works so far :) :param mrz_mode: when this is True (default) the tesseract is configured to recognize MRZs rather than arbitrary texts. When False, no specific configuration parameters are passed (and you are free to provide your own via `extra_cmdline_params`) :param extra_cmdline_params: extra parameters passed to tesseract. When mrz_mode=True, these are appended to whatever is the "best known" configuration at the moment. "--oem 0" is the parameter you might want to pass. This selects the Tesseract's "legacy" OCR engine, which often seems to work better than the new LSTM-based one.
[ "Runs", "Tesseract", "on", "a", "given", "image", ".", "Writes", "an", "intermediate", "tempfile", "and", "then", "runs", "the", "tesseract", "command", "on", "the", "image", "." ]
b32afba0f5dc4eb600c4edc4f49e5d49959c5415
https://github.com/konstantint/PassportEye/blob/b32afba0f5dc4eb600c4edc4f49e5d49959c5415/passporteye/util/ocr.py#L16-L64
6,696
konstantint/PassportEye
passporteye/util/geometry.py
RotatedBox.approx_equal
def approx_equal(self, center, width, height, angle, tol=1e-6): "Method mainly useful for testing" return abs(self.cx - center[0]) < tol and abs(self.cy - center[1]) < tol and abs(self.width - width) < tol and \ abs(self.height - height) < tol and abs(self.angle - angle) < tol
python
def approx_equal(self, center, width, height, angle, tol=1e-6): "Method mainly useful for testing" return abs(self.cx - center[0]) < tol and abs(self.cy - center[1]) < tol and abs(self.width - width) < tol and \ abs(self.height - height) < tol and abs(self.angle - angle) < tol
[ "def", "approx_equal", "(", "self", ",", "center", ",", "width", ",", "height", ",", "angle", ",", "tol", "=", "1e-6", ")", ":", "return", "abs", "(", "self", ".", "cx", "-", "center", "[", "0", "]", ")", "<", "tol", "and", "abs", "(", "self", ".", "cy", "-", "center", "[", "1", "]", ")", "<", "tol", "and", "abs", "(", "self", ".", "width", "-", "width", ")", "<", "tol", "and", "abs", "(", "self", ".", "height", "-", "height", ")", "<", "tol", "and", "abs", "(", "self", ".", "angle", "-", "angle", ")", "<", "tol" ]
Method mainly useful for testing
[ "Method", "mainly", "useful", "for", "testing" ]
b32afba0f5dc4eb600c4edc4f49e5d49959c5415
https://github.com/konstantint/PassportEye/blob/b32afba0f5dc4eb600c4edc4f49e5d49959c5415/passporteye/util/geometry.py#L49-L52
6,697
konstantint/PassportEye
passporteye/util/geometry.py
RotatedBox.rotated
def rotated(self, rotation_center, angle): """Returns a RotatedBox that is obtained by rotating this box around a given center by a given angle. >>> assert RotatedBox([2, 2], 2, 1, 0.1).rotated([1, 1], np.pi/2).approx_equal([0, 2], 2, 1, np.pi/2+0.1) """ rot = np.array([[np.cos(angle), np.sin(angle)], [-np.sin(angle), np.cos(angle)]]) t = np.asfarray(rotation_center) new_c = np.dot(rot.T, (self.center - t)) + t return RotatedBox(new_c, self.width, self.height, (self.angle+angle) % (np.pi*2))
python
def rotated(self, rotation_center, angle): """Returns a RotatedBox that is obtained by rotating this box around a given center by a given angle. >>> assert RotatedBox([2, 2], 2, 1, 0.1).rotated([1, 1], np.pi/2).approx_equal([0, 2], 2, 1, np.pi/2+0.1) """ rot = np.array([[np.cos(angle), np.sin(angle)], [-np.sin(angle), np.cos(angle)]]) t = np.asfarray(rotation_center) new_c = np.dot(rot.T, (self.center - t)) + t return RotatedBox(new_c, self.width, self.height, (self.angle+angle) % (np.pi*2))
[ "def", "rotated", "(", "self", ",", "rotation_center", ",", "angle", ")", ":", "rot", "=", "np", ".", "array", "(", "[", "[", "np", ".", "cos", "(", "angle", ")", ",", "np", ".", "sin", "(", "angle", ")", "]", ",", "[", "-", "np", ".", "sin", "(", "angle", ")", ",", "np", ".", "cos", "(", "angle", ")", "]", "]", ")", "t", "=", "np", ".", "asfarray", "(", "rotation_center", ")", "new_c", "=", "np", ".", "dot", "(", "rot", ".", "T", ",", "(", "self", ".", "center", "-", "t", ")", ")", "+", "t", "return", "RotatedBox", "(", "new_c", ",", "self", ".", "width", ",", "self", ".", "height", ",", "(", "self", ".", "angle", "+", "angle", ")", "%", "(", "np", ".", "pi", "*", "2", ")", ")" ]
Returns a RotatedBox that is obtained by rotating this box around a given center by a given angle. >>> assert RotatedBox([2, 2], 2, 1, 0.1).rotated([1, 1], np.pi/2).approx_equal([0, 2], 2, 1, np.pi/2+0.1)
[ "Returns", "a", "RotatedBox", "that", "is", "obtained", "by", "rotating", "this", "box", "around", "a", "given", "center", "by", "a", "given", "angle", "." ]
b32afba0f5dc4eb600c4edc4f49e5d49959c5415
https://github.com/konstantint/PassportEye/blob/b32afba0f5dc4eb600c4edc4f49e5d49959c5415/passporteye/util/geometry.py#L54-L62
6,698
konstantint/PassportEye
passporteye/util/geometry.py
RotatedBox.as_poly
def as_poly(self, margin_width=0, margin_height=0): """Converts this box to a polygon, i.e. 4x2 array, representing the four corners starting from lower left to upper left counterclockwise. :param margin_width: The additional "margin" that will be added to the box along its width dimension (from both sides) before conversion. :param margin_height: The additional "margin" that will be added to the box along its height dimension (from both sides) before conversion. >>> RotatedBox([0, 0], 4, 2, 0).as_poly() array([[-2., -1.], [ 2., -1.], [ 2., 1.], [-2., 1.]]) >>> RotatedBox([0, 0], 4, 2, np.pi/4).as_poly() array([[-0.707..., -2.121...], [ 2.121..., 0.707...], [ 0.707..., 2.121...], [-2.121..., -0.707...]]) >>> RotatedBox([0, 0], 4, 2, np.pi/2).as_poly() array([[ 1., -2.], [ 1., 2.], [-1., 2.], [-1., -2.]]) >>> RotatedBox([0, 0], 0, 0, np.pi/2).as_poly(2, 1) array([[ 1., -2.], [ 1., 2.], [-1., 2.], [-1., -2.]]) """ v_hor = (self.width/2 + margin_width)*np.array([np.cos(self.angle), np.sin(self.angle)]) v_vert = (self.height/2 + margin_height)*np.array([-np.sin(self.angle), np.cos(self.angle)]) c = np.array([self.cx, self.cy]) return np.vstack([c - v_hor - v_vert, c + v_hor - v_vert, c + v_hor + v_vert, c - v_hor + v_vert])
python
def as_poly(self, margin_width=0, margin_height=0): """Converts this box to a polygon, i.e. 4x2 array, representing the four corners starting from lower left to upper left counterclockwise. :param margin_width: The additional "margin" that will be added to the box along its width dimension (from both sides) before conversion. :param margin_height: The additional "margin" that will be added to the box along its height dimension (from both sides) before conversion. >>> RotatedBox([0, 0], 4, 2, 0).as_poly() array([[-2., -1.], [ 2., -1.], [ 2., 1.], [-2., 1.]]) >>> RotatedBox([0, 0], 4, 2, np.pi/4).as_poly() array([[-0.707..., -2.121...], [ 2.121..., 0.707...], [ 0.707..., 2.121...], [-2.121..., -0.707...]]) >>> RotatedBox([0, 0], 4, 2, np.pi/2).as_poly() array([[ 1., -2.], [ 1., 2.], [-1., 2.], [-1., -2.]]) >>> RotatedBox([0, 0], 0, 0, np.pi/2).as_poly(2, 1) array([[ 1., -2.], [ 1., 2.], [-1., 2.], [-1., -2.]]) """ v_hor = (self.width/2 + margin_width)*np.array([np.cos(self.angle), np.sin(self.angle)]) v_vert = (self.height/2 + margin_height)*np.array([-np.sin(self.angle), np.cos(self.angle)]) c = np.array([self.cx, self.cy]) return np.vstack([c - v_hor - v_vert, c + v_hor - v_vert, c + v_hor + v_vert, c - v_hor + v_vert])
[ "def", "as_poly", "(", "self", ",", "margin_width", "=", "0", ",", "margin_height", "=", "0", ")", ":", "v_hor", "=", "(", "self", ".", "width", "/", "2", "+", "margin_width", ")", "*", "np", ".", "array", "(", "[", "np", ".", "cos", "(", "self", ".", "angle", ")", ",", "np", ".", "sin", "(", "self", ".", "angle", ")", "]", ")", "v_vert", "=", "(", "self", ".", "height", "/", "2", "+", "margin_height", ")", "*", "np", ".", "array", "(", "[", "-", "np", ".", "sin", "(", "self", ".", "angle", ")", ",", "np", ".", "cos", "(", "self", ".", "angle", ")", "]", ")", "c", "=", "np", ".", "array", "(", "[", "self", ".", "cx", ",", "self", ".", "cy", "]", ")", "return", "np", ".", "vstack", "(", "[", "c", "-", "v_hor", "-", "v_vert", ",", "c", "+", "v_hor", "-", "v_vert", ",", "c", "+", "v_hor", "+", "v_vert", ",", "c", "-", "v_hor", "+", "v_vert", "]", ")" ]
Converts this box to a polygon, i.e. 4x2 array, representing the four corners starting from lower left to upper left counterclockwise. :param margin_width: The additional "margin" that will be added to the box along its width dimension (from both sides) before conversion. :param margin_height: The additional "margin" that will be added to the box along its height dimension (from both sides) before conversion. >>> RotatedBox([0, 0], 4, 2, 0).as_poly() array([[-2., -1.], [ 2., -1.], [ 2., 1.], [-2., 1.]]) >>> RotatedBox([0, 0], 4, 2, np.pi/4).as_poly() array([[-0.707..., -2.121...], [ 2.121..., 0.707...], [ 0.707..., 2.121...], [-2.121..., -0.707...]]) >>> RotatedBox([0, 0], 4, 2, np.pi/2).as_poly() array([[ 1., -2.], [ 1., 2.], [-1., 2.], [-1., -2.]]) >>> RotatedBox([0, 0], 0, 0, np.pi/2).as_poly(2, 1) array([[ 1., -2.], [ 1., 2.], [-1., 2.], [-1., -2.]])
[ "Converts", "this", "box", "to", "a", "polygon", "i", ".", "e", ".", "4x2", "array", "representing", "the", "four", "corners", "starting", "from", "lower", "left", "to", "upper", "left", "counterclockwise", "." ]
b32afba0f5dc4eb600c4edc4f49e5d49959c5415
https://github.com/konstantint/PassportEye/blob/b32afba0f5dc4eb600c4edc4f49e5d49959c5415/passporteye/util/geometry.py#L64-L94
6,699
konstantint/PassportEye
passporteye/util/geometry.py
RotatedBox.extract_from_image
def extract_from_image(self, img, scale=1.0, margin_width=5, margin_height=5): """Extracts the contents of this box from a given image. For that the image is "unrotated" by the appropriate angle, and the corresponding part is extracted from it. Returns an image with dimensions height*scale x width*scale. Note that the box coordinates are interpreted as "image coordinates" (i.e. x is row and y is column), and box angle is considered to be relative to the vertical (i.e. np.pi/2 is "normal orientation") :param img: a numpy ndarray suitable for image processing via skimage. :param scale: the RotatedBox is scaled by this value before performing the extraction. This is necessary when, for example, the location of a particular feature is determined using a smaller image, yet then the corresponding area needs to be extracted from the original, larger image. The scale parameter in this case should be width_of_larger_image/width_of_smaller_image. :param margin_width: The margin that should be added to the width dimension of the box from each size. This value is given wrt actual box dimensions (i.e. not scaled). :param margin_height: The margin that should be added to the height dimension of the box from each side. :return: a numpy ndarray, corresponding to the extracted region (aligned straight). TODO: This could be made more efficient if we avoid rotating the full image and cut out the ROI from it beforehand. """ rotate_by = (np.pi/2 - self.angle)*180/np.pi img_rotated = transform.rotate(img, angle=rotate_by, center=[self.center[1]*scale, self.center[0]*scale], resize=True) # The resizeable transform will shift the resulting image somewhat wrt original coordinates. # When we cut out the box we will compensate for this shift. shift_c, shift_r = self._compensate_rotation_shift(img, scale) r1 = max(int((self.center[0] - self.height/2 - margin_height)*scale - shift_r), 0) r2 = int((self.center[0] + self.height/2 + margin_height)*scale - shift_r) c1 = max(int((self.center[1] - self.width/2 - margin_width)*scale - shift_c), 0) c2 = int((self.center[1] + self.width/2 + margin_width)*scale - shift_c) return img_rotated[r1:r2, c1:c2]
python
def extract_from_image(self, img, scale=1.0, margin_width=5, margin_height=5): """Extracts the contents of this box from a given image. For that the image is "unrotated" by the appropriate angle, and the corresponding part is extracted from it. Returns an image with dimensions height*scale x width*scale. Note that the box coordinates are interpreted as "image coordinates" (i.e. x is row and y is column), and box angle is considered to be relative to the vertical (i.e. np.pi/2 is "normal orientation") :param img: a numpy ndarray suitable for image processing via skimage. :param scale: the RotatedBox is scaled by this value before performing the extraction. This is necessary when, for example, the location of a particular feature is determined using a smaller image, yet then the corresponding area needs to be extracted from the original, larger image. The scale parameter in this case should be width_of_larger_image/width_of_smaller_image. :param margin_width: The margin that should be added to the width dimension of the box from each size. This value is given wrt actual box dimensions (i.e. not scaled). :param margin_height: The margin that should be added to the height dimension of the box from each side. :return: a numpy ndarray, corresponding to the extracted region (aligned straight). TODO: This could be made more efficient if we avoid rotating the full image and cut out the ROI from it beforehand. """ rotate_by = (np.pi/2 - self.angle)*180/np.pi img_rotated = transform.rotate(img, angle=rotate_by, center=[self.center[1]*scale, self.center[0]*scale], resize=True) # The resizeable transform will shift the resulting image somewhat wrt original coordinates. # When we cut out the box we will compensate for this shift. shift_c, shift_r = self._compensate_rotation_shift(img, scale) r1 = max(int((self.center[0] - self.height/2 - margin_height)*scale - shift_r), 0) r2 = int((self.center[0] + self.height/2 + margin_height)*scale - shift_r) c1 = max(int((self.center[1] - self.width/2 - margin_width)*scale - shift_c), 0) c2 = int((self.center[1] + self.width/2 + margin_width)*scale - shift_c) return img_rotated[r1:r2, c1:c2]
[ "def", "extract_from_image", "(", "self", ",", "img", ",", "scale", "=", "1.0", ",", "margin_width", "=", "5", ",", "margin_height", "=", "5", ")", ":", "rotate_by", "=", "(", "np", ".", "pi", "/", "2", "-", "self", ".", "angle", ")", "*", "180", "/", "np", ".", "pi", "img_rotated", "=", "transform", ".", "rotate", "(", "img", ",", "angle", "=", "rotate_by", ",", "center", "=", "[", "self", ".", "center", "[", "1", "]", "*", "scale", ",", "self", ".", "center", "[", "0", "]", "*", "scale", "]", ",", "resize", "=", "True", ")", "# The resizeable transform will shift the resulting image somewhat wrt original coordinates.", "# When we cut out the box we will compensate for this shift.", "shift_c", ",", "shift_r", "=", "self", ".", "_compensate_rotation_shift", "(", "img", ",", "scale", ")", "r1", "=", "max", "(", "int", "(", "(", "self", ".", "center", "[", "0", "]", "-", "self", ".", "height", "/", "2", "-", "margin_height", ")", "*", "scale", "-", "shift_r", ")", ",", "0", ")", "r2", "=", "int", "(", "(", "self", ".", "center", "[", "0", "]", "+", "self", ".", "height", "/", "2", "+", "margin_height", ")", "*", "scale", "-", "shift_r", ")", "c1", "=", "max", "(", "int", "(", "(", "self", ".", "center", "[", "1", "]", "-", "self", ".", "width", "/", "2", "-", "margin_width", ")", "*", "scale", "-", "shift_c", ")", ",", "0", ")", "c2", "=", "int", "(", "(", "self", ".", "center", "[", "1", "]", "+", "self", ".", "width", "/", "2", "+", "margin_width", ")", "*", "scale", "-", "shift_c", ")", "return", "img_rotated", "[", "r1", ":", "r2", ",", "c1", ":", "c2", "]" ]
Extracts the contents of this box from a given image. For that the image is "unrotated" by the appropriate angle, and the corresponding part is extracted from it. Returns an image with dimensions height*scale x width*scale. Note that the box coordinates are interpreted as "image coordinates" (i.e. x is row and y is column), and box angle is considered to be relative to the vertical (i.e. np.pi/2 is "normal orientation") :param img: a numpy ndarray suitable for image processing via skimage. :param scale: the RotatedBox is scaled by this value before performing the extraction. This is necessary when, for example, the location of a particular feature is determined using a smaller image, yet then the corresponding area needs to be extracted from the original, larger image. The scale parameter in this case should be width_of_larger_image/width_of_smaller_image. :param margin_width: The margin that should be added to the width dimension of the box from each size. This value is given wrt actual box dimensions (i.e. not scaled). :param margin_height: The margin that should be added to the height dimension of the box from each side. :return: a numpy ndarray, corresponding to the extracted region (aligned straight). TODO: This could be made more efficient if we avoid rotating the full image and cut out the ROI from it beforehand.
[ "Extracts", "the", "contents", "of", "this", "box", "from", "a", "given", "image", ".", "For", "that", "the", "image", "is", "unrotated", "by", "the", "appropriate", "angle", "and", "the", "corresponding", "part", "is", "extracted", "from", "it", "." ]
b32afba0f5dc4eb600c4edc4f49e5d49959c5415
https://github.com/konstantint/PassportEye/blob/b32afba0f5dc4eb600c4edc4f49e5d49959c5415/passporteye/util/geometry.py#L119-L149