id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
21,400
apache/incubator-superset
superset/tasks/schedules.py
destroy_webdriver
def destroy_webdriver(driver): """ Destroy a driver """ # This is some very flaky code in selenium. Hence the retries # and catch-all exceptions try: retry_call(driver.close, tries=2) except Exception: pass try: driver.quit() except Exception: pass
python
def destroy_webdriver(driver): """ Destroy a driver """ # This is some very flaky code in selenium. Hence the retries # and catch-all exceptions try: retry_call(driver.close, tries=2) except Exception: pass try: driver.quit() except Exception: pass
[ "def", "destroy_webdriver", "(", "driver", ")", ":", "# This is some very flaky code in selenium. Hence the retries", "# and catch-all exceptions", "try", ":", "retry_call", "(", "driver", ".", "close", ",", "tries", "=", "2", ")", "except", "Exception", ":", "pass", "try", ":", "driver", ".", "quit", "(", ")", "except", "Exception", ":", "pass" ]
Destroy a driver
[ "Destroy", "a", "driver" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/tasks/schedules.py#L190-L204
21,401
apache/incubator-superset
superset/tasks/schedules.py
deliver_dashboard
def deliver_dashboard(schedule): """ Given a schedule, delivery the dashboard as an email report """ dashboard = schedule.dashboard dashboard_url = _get_url_path( 'Superset.dashboard', dashboard_id=dashboard.id, ) # Create a driver, fetch the page, wait for the page to render driver = create_webdriver() window = config.get('WEBDRIVER_WINDOW')['dashboard'] driver.set_window_size(*window) driver.get(dashboard_url) time.sleep(PAGE_RENDER_WAIT) # Set up a function to retry once for the element. # This is buggy in certain selenium versions with firefox driver get_element = getattr(driver, 'find_element_by_class_name') element = retry_call( get_element, fargs=['grid-container'], tries=2, delay=PAGE_RENDER_WAIT, ) try: screenshot = element.screenshot_as_png except WebDriverException: # Some webdrivers do not support screenshots for elements. # In such cases, take a screenshot of the entire page. screenshot = driver.screenshot() # pylint: disable=no-member finally: destroy_webdriver(driver) # Generate the email body and attachments email = _generate_mail_content( schedule, screenshot, dashboard.dashboard_title, dashboard_url, ) subject = __( '%(prefix)s %(title)s', prefix=config.get('EMAIL_REPORTS_SUBJECT_PREFIX'), title=dashboard.dashboard_title, ) _deliver_email(schedule, subject, email)
python
def deliver_dashboard(schedule): """ Given a schedule, delivery the dashboard as an email report """ dashboard = schedule.dashboard dashboard_url = _get_url_path( 'Superset.dashboard', dashboard_id=dashboard.id, ) # Create a driver, fetch the page, wait for the page to render driver = create_webdriver() window = config.get('WEBDRIVER_WINDOW')['dashboard'] driver.set_window_size(*window) driver.get(dashboard_url) time.sleep(PAGE_RENDER_WAIT) # Set up a function to retry once for the element. # This is buggy in certain selenium versions with firefox driver get_element = getattr(driver, 'find_element_by_class_name') element = retry_call( get_element, fargs=['grid-container'], tries=2, delay=PAGE_RENDER_WAIT, ) try: screenshot = element.screenshot_as_png except WebDriverException: # Some webdrivers do not support screenshots for elements. # In such cases, take a screenshot of the entire page. screenshot = driver.screenshot() # pylint: disable=no-member finally: destroy_webdriver(driver) # Generate the email body and attachments email = _generate_mail_content( schedule, screenshot, dashboard.dashboard_title, dashboard_url, ) subject = __( '%(prefix)s %(title)s', prefix=config.get('EMAIL_REPORTS_SUBJECT_PREFIX'), title=dashboard.dashboard_title, ) _deliver_email(schedule, subject, email)
[ "def", "deliver_dashboard", "(", "schedule", ")", ":", "dashboard", "=", "schedule", ".", "dashboard", "dashboard_url", "=", "_get_url_path", "(", "'Superset.dashboard'", ",", "dashboard_id", "=", "dashboard", ".", "id", ",", ")", "# Create a driver, fetch the page, wait for the page to render", "driver", "=", "create_webdriver", "(", ")", "window", "=", "config", ".", "get", "(", "'WEBDRIVER_WINDOW'", ")", "[", "'dashboard'", "]", "driver", ".", "set_window_size", "(", "*", "window", ")", "driver", ".", "get", "(", "dashboard_url", ")", "time", ".", "sleep", "(", "PAGE_RENDER_WAIT", ")", "# Set up a function to retry once for the element.", "# This is buggy in certain selenium versions with firefox driver", "get_element", "=", "getattr", "(", "driver", ",", "'find_element_by_class_name'", ")", "element", "=", "retry_call", "(", "get_element", ",", "fargs", "=", "[", "'grid-container'", "]", ",", "tries", "=", "2", ",", "delay", "=", "PAGE_RENDER_WAIT", ",", ")", "try", ":", "screenshot", "=", "element", ".", "screenshot_as_png", "except", "WebDriverException", ":", "# Some webdrivers do not support screenshots for elements.", "# In such cases, take a screenshot of the entire page.", "screenshot", "=", "driver", ".", "screenshot", "(", ")", "# pylint: disable=no-member", "finally", ":", "destroy_webdriver", "(", "driver", ")", "# Generate the email body and attachments", "email", "=", "_generate_mail_content", "(", "schedule", ",", "screenshot", ",", "dashboard", ".", "dashboard_title", ",", "dashboard_url", ",", ")", "subject", "=", "__", "(", "'%(prefix)s %(title)s'", ",", "prefix", "=", "config", ".", "get", "(", "'EMAIL_REPORTS_SUBJECT_PREFIX'", ")", ",", "title", "=", "dashboard", ".", "dashboard_title", ",", ")", "_deliver_email", "(", "schedule", ",", "subject", ",", "email", ")" ]
Given a schedule, delivery the dashboard as an email report
[ "Given", "a", "schedule", "delivery", "the", "dashboard", "as", "an", "email", "report" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/tasks/schedules.py#L207-L258
21,402
apache/incubator-superset
superset/tasks/schedules.py
deliver_slice
def deliver_slice(schedule): """ Given a schedule, delivery the slice as an email report """ if schedule.email_format == SliceEmailReportFormat.data: email = _get_slice_data(schedule) elif schedule.email_format == SliceEmailReportFormat.visualization: email = _get_slice_visualization(schedule) else: raise RuntimeError('Unknown email report format') subject = __( '%(prefix)s %(title)s', prefix=config.get('EMAIL_REPORTS_SUBJECT_PREFIX'), title=schedule.slice.slice_name, ) _deliver_email(schedule, subject, email)
python
def deliver_slice(schedule): """ Given a schedule, delivery the slice as an email report """ if schedule.email_format == SliceEmailReportFormat.data: email = _get_slice_data(schedule) elif schedule.email_format == SliceEmailReportFormat.visualization: email = _get_slice_visualization(schedule) else: raise RuntimeError('Unknown email report format') subject = __( '%(prefix)s %(title)s', prefix=config.get('EMAIL_REPORTS_SUBJECT_PREFIX'), title=schedule.slice.slice_name, ) _deliver_email(schedule, subject, email)
[ "def", "deliver_slice", "(", "schedule", ")", ":", "if", "schedule", ".", "email_format", "==", "SliceEmailReportFormat", ".", "data", ":", "email", "=", "_get_slice_data", "(", "schedule", ")", "elif", "schedule", ".", "email_format", "==", "SliceEmailReportFormat", ".", "visualization", ":", "email", "=", "_get_slice_visualization", "(", "schedule", ")", "else", ":", "raise", "RuntimeError", "(", "'Unknown email report format'", ")", "subject", "=", "__", "(", "'%(prefix)s %(title)s'", ",", "prefix", "=", "config", ".", "get", "(", "'EMAIL_REPORTS_SUBJECT_PREFIX'", ")", ",", "title", "=", "schedule", ".", "slice", ".", "slice_name", ",", ")", "_deliver_email", "(", "schedule", ",", "subject", ",", "email", ")" ]
Given a schedule, delivery the slice as an email report
[ "Given", "a", "schedule", "delivery", "the", "slice", "as", "an", "email", "report" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/tasks/schedules.py#L356-L373
21,403
apache/incubator-superset
superset/tasks/schedules.py
schedule_hourly
def schedule_hourly(): """ Celery beat job meant to be invoked hourly """ if not config.get('ENABLE_SCHEDULED_EMAIL_REPORTS'): logging.info('Scheduled email reports not enabled in config') return resolution = config.get('EMAIL_REPORTS_CRON_RESOLUTION', 0) * 60 # Get the top of the hour start_at = datetime.now(tzlocal()).replace(microsecond=0, second=0, minute=0) stop_at = start_at + timedelta(seconds=3600) schedule_window(ScheduleType.dashboard.value, start_at, stop_at, resolution) schedule_window(ScheduleType.slice.value, start_at, stop_at, resolution)
python
def schedule_hourly(): """ Celery beat job meant to be invoked hourly """ if not config.get('ENABLE_SCHEDULED_EMAIL_REPORTS'): logging.info('Scheduled email reports not enabled in config') return resolution = config.get('EMAIL_REPORTS_CRON_RESOLUTION', 0) * 60 # Get the top of the hour start_at = datetime.now(tzlocal()).replace(microsecond=0, second=0, minute=0) stop_at = start_at + timedelta(seconds=3600) schedule_window(ScheduleType.dashboard.value, start_at, stop_at, resolution) schedule_window(ScheduleType.slice.value, start_at, stop_at, resolution)
[ "def", "schedule_hourly", "(", ")", ":", "if", "not", "config", ".", "get", "(", "'ENABLE_SCHEDULED_EMAIL_REPORTS'", ")", ":", "logging", ".", "info", "(", "'Scheduled email reports not enabled in config'", ")", "return", "resolution", "=", "config", ".", "get", "(", "'EMAIL_REPORTS_CRON_RESOLUTION'", ",", "0", ")", "*", "60", "# Get the top of the hour", "start_at", "=", "datetime", ".", "now", "(", "tzlocal", "(", ")", ")", ".", "replace", "(", "microsecond", "=", "0", ",", "second", "=", "0", ",", "minute", "=", "0", ")", "stop_at", "=", "start_at", "+", "timedelta", "(", "seconds", "=", "3600", ")", "schedule_window", "(", "ScheduleType", ".", "dashboard", ".", "value", ",", "start_at", ",", "stop_at", ",", "resolution", ")", "schedule_window", "(", "ScheduleType", ".", "slice", ".", "value", ",", "start_at", ",", "stop_at", ",", "resolution", ")" ]
Celery beat job meant to be invoked hourly
[ "Celery", "beat", "job", "meant", "to", "be", "invoked", "hourly" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/tasks/schedules.py#L444-L457
21,404
apache/incubator-superset
superset/dataframe.py
dedup
def dedup(l, suffix='__', case_sensitive=True): """De-duplicates a list of string by suffixing a counter Always returns the same number of entries as provided, and always returns unique values. Case sensitive comparison by default. >>> print(','.join(dedup(['foo', 'bar', 'bar', 'bar', 'Bar']))) foo,bar,bar__1,bar__2,Bar >>> print(','.join(dedup(['foo', 'bar', 'bar', 'bar', 'Bar'], case_sensitive=False))) foo,bar,bar__1,bar__2,Bar__3 """ new_l = [] seen = {} for s in l: s_fixed_case = s if case_sensitive else s.lower() if s_fixed_case in seen: seen[s_fixed_case] += 1 s += suffix + str(seen[s_fixed_case]) else: seen[s_fixed_case] = 0 new_l.append(s) return new_l
python
def dedup(l, suffix='__', case_sensitive=True): """De-duplicates a list of string by suffixing a counter Always returns the same number of entries as provided, and always returns unique values. Case sensitive comparison by default. >>> print(','.join(dedup(['foo', 'bar', 'bar', 'bar', 'Bar']))) foo,bar,bar__1,bar__2,Bar >>> print(','.join(dedup(['foo', 'bar', 'bar', 'bar', 'Bar'], case_sensitive=False))) foo,bar,bar__1,bar__2,Bar__3 """ new_l = [] seen = {} for s in l: s_fixed_case = s if case_sensitive else s.lower() if s_fixed_case in seen: seen[s_fixed_case] += 1 s += suffix + str(seen[s_fixed_case]) else: seen[s_fixed_case] = 0 new_l.append(s) return new_l
[ "def", "dedup", "(", "l", ",", "suffix", "=", "'__'", ",", "case_sensitive", "=", "True", ")", ":", "new_l", "=", "[", "]", "seen", "=", "{", "}", "for", "s", "in", "l", ":", "s_fixed_case", "=", "s", "if", "case_sensitive", "else", "s", ".", "lower", "(", ")", "if", "s_fixed_case", "in", "seen", ":", "seen", "[", "s_fixed_case", "]", "+=", "1", "s", "+=", "suffix", "+", "str", "(", "seen", "[", "s_fixed_case", "]", ")", "else", ":", "seen", "[", "s_fixed_case", "]", "=", "0", "new_l", ".", "append", "(", "s", ")", "return", "new_l" ]
De-duplicates a list of string by suffixing a counter Always returns the same number of entries as provided, and always returns unique values. Case sensitive comparison by default. >>> print(','.join(dedup(['foo', 'bar', 'bar', 'bar', 'Bar']))) foo,bar,bar__1,bar__2,Bar >>> print(','.join(dedup(['foo', 'bar', 'bar', 'bar', 'Bar'], case_sensitive=False))) foo,bar,bar__1,bar__2,Bar__3
[ "De", "-", "duplicates", "a", "list", "of", "string", "by", "suffixing", "a", "counter" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/dataframe.py#L39-L60
21,405
apache/incubator-superset
superset/dataframe.py
SupersetDataFrame.db_type
def db_type(cls, dtype): """Given a numpy dtype, Returns a generic database type""" if isinstance(dtype, ExtensionDtype): return cls.type_map.get(dtype.kind) elif hasattr(dtype, 'char'): return cls.type_map.get(dtype.char)
python
def db_type(cls, dtype): """Given a numpy dtype, Returns a generic database type""" if isinstance(dtype, ExtensionDtype): return cls.type_map.get(dtype.kind) elif hasattr(dtype, 'char'): return cls.type_map.get(dtype.char)
[ "def", "db_type", "(", "cls", ",", "dtype", ")", ":", "if", "isinstance", "(", "dtype", ",", "ExtensionDtype", ")", ":", "return", "cls", ".", "type_map", ".", "get", "(", "dtype", ".", "kind", ")", "elif", "hasattr", "(", "dtype", ",", "'char'", ")", ":", "return", "cls", ".", "type_map", ".", "get", "(", "dtype", ".", "char", ")" ]
Given a numpy dtype, Returns a generic database type
[ "Given", "a", "numpy", "dtype", "Returns", "a", "generic", "database", "type" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/dataframe.py#L122-L127
21,406
apache/incubator-superset
superset/dataframe.py
SupersetDataFrame.columns
def columns(self): """Provides metadata about columns for data visualization. :return: dict, with the fields name, type, is_date, is_dim and agg. """ if self.df.empty: return None columns = [] sample_size = min(INFER_COL_TYPES_SAMPLE_SIZE, len(self.df.index)) sample = self.df if sample_size: sample = self.df.sample(sample_size) for col in self.df.dtypes.keys(): db_type_str = ( self._type_dict.get(col) or self.db_type(self.df.dtypes[col]) ) column = { 'name': col, 'agg': self.agg_func(self.df.dtypes[col], col), 'type': db_type_str, 'is_date': self.is_date(self.df.dtypes[col], db_type_str), 'is_dim': self.is_dimension(self.df.dtypes[col], col), } if not db_type_str or db_type_str.upper() == 'OBJECT': v = sample[col].iloc[0] if not sample[col].empty else None if isinstance(v, str): column['type'] = 'STRING' elif isinstance(v, int): column['type'] = 'INT' elif isinstance(v, float): column['type'] = 'FLOAT' elif isinstance(v, (datetime, date)): column['type'] = 'DATETIME' column['is_date'] = True column['is_dim'] = False # check if encoded datetime if ( column['type'] == 'STRING' and self.datetime_conversion_rate(sample[col]) > INFER_COL_TYPES_THRESHOLD): column.update({ 'is_date': True, 'is_dim': False, 'agg': None, }) # 'agg' is optional attribute if not column['agg']: column.pop('agg', None) columns.append(column) return columns
python
def columns(self): """Provides metadata about columns for data visualization. :return: dict, with the fields name, type, is_date, is_dim and agg. """ if self.df.empty: return None columns = [] sample_size = min(INFER_COL_TYPES_SAMPLE_SIZE, len(self.df.index)) sample = self.df if sample_size: sample = self.df.sample(sample_size) for col in self.df.dtypes.keys(): db_type_str = ( self._type_dict.get(col) or self.db_type(self.df.dtypes[col]) ) column = { 'name': col, 'agg': self.agg_func(self.df.dtypes[col], col), 'type': db_type_str, 'is_date': self.is_date(self.df.dtypes[col], db_type_str), 'is_dim': self.is_dimension(self.df.dtypes[col], col), } if not db_type_str or db_type_str.upper() == 'OBJECT': v = sample[col].iloc[0] if not sample[col].empty else None if isinstance(v, str): column['type'] = 'STRING' elif isinstance(v, int): column['type'] = 'INT' elif isinstance(v, float): column['type'] = 'FLOAT' elif isinstance(v, (datetime, date)): column['type'] = 'DATETIME' column['is_date'] = True column['is_dim'] = False # check if encoded datetime if ( column['type'] == 'STRING' and self.datetime_conversion_rate(sample[col]) > INFER_COL_TYPES_THRESHOLD): column.update({ 'is_date': True, 'is_dim': False, 'agg': None, }) # 'agg' is optional attribute if not column['agg']: column.pop('agg', None) columns.append(column) return columns
[ "def", "columns", "(", "self", ")", ":", "if", "self", ".", "df", ".", "empty", ":", "return", "None", "columns", "=", "[", "]", "sample_size", "=", "min", "(", "INFER_COL_TYPES_SAMPLE_SIZE", ",", "len", "(", "self", ".", "df", ".", "index", ")", ")", "sample", "=", "self", ".", "df", "if", "sample_size", ":", "sample", "=", "self", ".", "df", ".", "sample", "(", "sample_size", ")", "for", "col", "in", "self", ".", "df", ".", "dtypes", ".", "keys", "(", ")", ":", "db_type_str", "=", "(", "self", ".", "_type_dict", ".", "get", "(", "col", ")", "or", "self", ".", "db_type", "(", "self", ".", "df", ".", "dtypes", "[", "col", "]", ")", ")", "column", "=", "{", "'name'", ":", "col", ",", "'agg'", ":", "self", ".", "agg_func", "(", "self", ".", "df", ".", "dtypes", "[", "col", "]", ",", "col", ")", ",", "'type'", ":", "db_type_str", ",", "'is_date'", ":", "self", ".", "is_date", "(", "self", ".", "df", ".", "dtypes", "[", "col", "]", ",", "db_type_str", ")", ",", "'is_dim'", ":", "self", ".", "is_dimension", "(", "self", ".", "df", ".", "dtypes", "[", "col", "]", ",", "col", ")", ",", "}", "if", "not", "db_type_str", "or", "db_type_str", ".", "upper", "(", ")", "==", "'OBJECT'", ":", "v", "=", "sample", "[", "col", "]", ".", "iloc", "[", "0", "]", "if", "not", "sample", "[", "col", "]", ".", "empty", "else", "None", "if", "isinstance", "(", "v", ",", "str", ")", ":", "column", "[", "'type'", "]", "=", "'STRING'", "elif", "isinstance", "(", "v", ",", "int", ")", ":", "column", "[", "'type'", "]", "=", "'INT'", "elif", "isinstance", "(", "v", ",", "float", ")", ":", "column", "[", "'type'", "]", "=", "'FLOAT'", "elif", "isinstance", "(", "v", ",", "(", "datetime", ",", "date", ")", ")", ":", "column", "[", "'type'", "]", "=", "'DATETIME'", "column", "[", "'is_date'", "]", "=", "True", "column", "[", "'is_dim'", "]", "=", "False", "# check if encoded datetime", "if", "(", "column", "[", "'type'", "]", "==", "'STRING'", "and", "self", ".", "datetime_conversion_rate", "(", "sample", "[", "col", "]", ")", ">", "INFER_COL_TYPES_THRESHOLD", ")", ":", "column", ".", "update", "(", "{", "'is_date'", ":", "True", ",", "'is_dim'", ":", "False", ",", "'agg'", ":", "None", ",", "}", ")", "# 'agg' is optional attribute", "if", "not", "column", "[", "'agg'", "]", ":", "column", ".", "pop", "(", "'agg'", ",", "None", ")", "columns", ".", "append", "(", "column", ")", "return", "columns" ]
Provides metadata about columns for data visualization. :return: dict, with the fields name, type, is_date, is_dim and agg.
[ "Provides", "metadata", "about", "columns", "for", "data", "visualization", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/dataframe.py#L177-L229
21,407
apache/incubator-superset
superset/connectors/sqla/models.py
TableColumn.get_timestamp_expression
def get_timestamp_expression(self, time_grain): """Getting the time component of the query""" label = utils.DTTM_ALIAS db = self.table.database pdf = self.python_date_format is_epoch = pdf in ('epoch_s', 'epoch_ms') if not self.expression and not time_grain and not is_epoch: sqla_col = column(self.column_name, type_=DateTime) return self.table.make_sqla_column_compatible(sqla_col, label) grain = None if time_grain: grain = db.grains_dict().get(time_grain) if not grain: raise NotImplementedError( f'No grain spec for {time_grain} for database {db.database_name}') col = db.db_engine_spec.get_timestamp_column(self.expression, self.column_name) expr = db.db_engine_spec.get_time_expr(col, pdf, time_grain, grain) sqla_col = literal_column(expr, type_=DateTime) return self.table.make_sqla_column_compatible(sqla_col, label)
python
def get_timestamp_expression(self, time_grain): """Getting the time component of the query""" label = utils.DTTM_ALIAS db = self.table.database pdf = self.python_date_format is_epoch = pdf in ('epoch_s', 'epoch_ms') if not self.expression and not time_grain and not is_epoch: sqla_col = column(self.column_name, type_=DateTime) return self.table.make_sqla_column_compatible(sqla_col, label) grain = None if time_grain: grain = db.grains_dict().get(time_grain) if not grain: raise NotImplementedError( f'No grain spec for {time_grain} for database {db.database_name}') col = db.db_engine_spec.get_timestamp_column(self.expression, self.column_name) expr = db.db_engine_spec.get_time_expr(col, pdf, time_grain, grain) sqla_col = literal_column(expr, type_=DateTime) return self.table.make_sqla_column_compatible(sqla_col, label)
[ "def", "get_timestamp_expression", "(", "self", ",", "time_grain", ")", ":", "label", "=", "utils", ".", "DTTM_ALIAS", "db", "=", "self", ".", "table", ".", "database", "pdf", "=", "self", ".", "python_date_format", "is_epoch", "=", "pdf", "in", "(", "'epoch_s'", ",", "'epoch_ms'", ")", "if", "not", "self", ".", "expression", "and", "not", "time_grain", "and", "not", "is_epoch", ":", "sqla_col", "=", "column", "(", "self", ".", "column_name", ",", "type_", "=", "DateTime", ")", "return", "self", ".", "table", ".", "make_sqla_column_compatible", "(", "sqla_col", ",", "label", ")", "grain", "=", "None", "if", "time_grain", ":", "grain", "=", "db", ".", "grains_dict", "(", ")", ".", "get", "(", "time_grain", ")", "if", "not", "grain", ":", "raise", "NotImplementedError", "(", "f'No grain spec for {time_grain} for database {db.database_name}'", ")", "col", "=", "db", ".", "db_engine_spec", ".", "get_timestamp_column", "(", "self", ".", "expression", ",", "self", ".", "column_name", ")", "expr", "=", "db", ".", "db_engine_spec", ".", "get_time_expr", "(", "col", ",", "pdf", ",", "time_grain", ",", "grain", ")", "sqla_col", "=", "literal_column", "(", "expr", ",", "type_", "=", "DateTime", ")", "return", "self", ".", "table", ".", "make_sqla_column_compatible", "(", "sqla_col", ",", "label", ")" ]
Getting the time component of the query
[ "Getting", "the", "time", "component", "of", "the", "query" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/connectors/sqla/models.py#L143-L162
21,408
apache/incubator-superset
superset/connectors/sqla/models.py
TableColumn.dttm_sql_literal
def dttm_sql_literal(self, dttm, is_epoch_in_utc): """Convert datetime object to a SQL expression string If database_expression is empty, the internal dttm will be parsed as the string with the pattern that the user inputted (python_date_format) If database_expression is not empty, the internal dttm will be parsed as the sql sentence for the database to convert """ tf = self.python_date_format if self.database_expression: return self.database_expression.format(dttm.strftime('%Y-%m-%d %H:%M:%S')) elif tf: if is_epoch_in_utc: seconds_since_epoch = dttm.timestamp() else: seconds_since_epoch = (dttm - datetime(1970, 1, 1)).total_seconds() seconds_since_epoch = int(seconds_since_epoch) if tf == 'epoch_s': return str(seconds_since_epoch) elif tf == 'epoch_ms': return str(seconds_since_epoch * 1000) return "'{}'".format(dttm.strftime(tf)) else: s = self.table.database.db_engine_spec.convert_dttm( self.type or '', dttm) return s or "'{}'".format(dttm.strftime('%Y-%m-%d %H:%M:%S.%f'))
python
def dttm_sql_literal(self, dttm, is_epoch_in_utc): """Convert datetime object to a SQL expression string If database_expression is empty, the internal dttm will be parsed as the string with the pattern that the user inputted (python_date_format) If database_expression is not empty, the internal dttm will be parsed as the sql sentence for the database to convert """ tf = self.python_date_format if self.database_expression: return self.database_expression.format(dttm.strftime('%Y-%m-%d %H:%M:%S')) elif tf: if is_epoch_in_utc: seconds_since_epoch = dttm.timestamp() else: seconds_since_epoch = (dttm - datetime(1970, 1, 1)).total_seconds() seconds_since_epoch = int(seconds_since_epoch) if tf == 'epoch_s': return str(seconds_since_epoch) elif tf == 'epoch_ms': return str(seconds_since_epoch * 1000) return "'{}'".format(dttm.strftime(tf)) else: s = self.table.database.db_engine_spec.convert_dttm( self.type or '', dttm) return s or "'{}'".format(dttm.strftime('%Y-%m-%d %H:%M:%S.%f'))
[ "def", "dttm_sql_literal", "(", "self", ",", "dttm", ",", "is_epoch_in_utc", ")", ":", "tf", "=", "self", ".", "python_date_format", "if", "self", ".", "database_expression", ":", "return", "self", ".", "database_expression", ".", "format", "(", "dttm", ".", "strftime", "(", "'%Y-%m-%d %H:%M:%S'", ")", ")", "elif", "tf", ":", "if", "is_epoch_in_utc", ":", "seconds_since_epoch", "=", "dttm", ".", "timestamp", "(", ")", "else", ":", "seconds_since_epoch", "=", "(", "dttm", "-", "datetime", "(", "1970", ",", "1", ",", "1", ")", ")", ".", "total_seconds", "(", ")", "seconds_since_epoch", "=", "int", "(", "seconds_since_epoch", ")", "if", "tf", "==", "'epoch_s'", ":", "return", "str", "(", "seconds_since_epoch", ")", "elif", "tf", "==", "'epoch_ms'", ":", "return", "str", "(", "seconds_since_epoch", "*", "1000", ")", "return", "\"'{}'\"", ".", "format", "(", "dttm", ".", "strftime", "(", "tf", ")", ")", "else", ":", "s", "=", "self", ".", "table", ".", "database", ".", "db_engine_spec", ".", "convert_dttm", "(", "self", ".", "type", "or", "''", ",", "dttm", ")", "return", "s", "or", "\"'{}'\"", ".", "format", "(", "dttm", ".", "strftime", "(", "'%Y-%m-%d %H:%M:%S.%f'", ")", ")" ]
Convert datetime object to a SQL expression string If database_expression is empty, the internal dttm will be parsed as the string with the pattern that the user inputted (python_date_format) If database_expression is not empty, the internal dttm will be parsed as the sql sentence for the database to convert
[ "Convert", "datetime", "object", "to", "a", "SQL", "expression", "string" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/connectors/sqla/models.py#L172-L198
21,409
apache/incubator-superset
superset/connectors/sqla/models.py
SqlaTable.values_for_column
def values_for_column(self, column_name, limit=10000): """Runs query against sqla to retrieve some sample values for the given column. """ cols = {col.column_name: col for col in self.columns} target_col = cols[column_name] tp = self.get_template_processor() qry = ( select([target_col.get_sqla_col()]) .select_from(self.get_from_clause(tp)) .distinct() ) if limit: qry = qry.limit(limit) if self.fetch_values_predicate: tp = self.get_template_processor() qry = qry.where(tp.process_template(self.fetch_values_predicate)) engine = self.database.get_sqla_engine() sql = '{}'.format( qry.compile(engine, compile_kwargs={'literal_binds': True}), ) sql = self.mutate_query_from_config(sql) df = pd.read_sql_query(sql=sql, con=engine) return [row[0] for row in df.to_records(index=False)]
python
def values_for_column(self, column_name, limit=10000): """Runs query against sqla to retrieve some sample values for the given column. """ cols = {col.column_name: col for col in self.columns} target_col = cols[column_name] tp = self.get_template_processor() qry = ( select([target_col.get_sqla_col()]) .select_from(self.get_from_clause(tp)) .distinct() ) if limit: qry = qry.limit(limit) if self.fetch_values_predicate: tp = self.get_template_processor() qry = qry.where(tp.process_template(self.fetch_values_predicate)) engine = self.database.get_sqla_engine() sql = '{}'.format( qry.compile(engine, compile_kwargs={'literal_binds': True}), ) sql = self.mutate_query_from_config(sql) df = pd.read_sql_query(sql=sql, con=engine) return [row[0] for row in df.to_records(index=False)]
[ "def", "values_for_column", "(", "self", ",", "column_name", ",", "limit", "=", "10000", ")", ":", "cols", "=", "{", "col", ".", "column_name", ":", "col", "for", "col", "in", "self", ".", "columns", "}", "target_col", "=", "cols", "[", "column_name", "]", "tp", "=", "self", ".", "get_template_processor", "(", ")", "qry", "=", "(", "select", "(", "[", "target_col", ".", "get_sqla_col", "(", ")", "]", ")", ".", "select_from", "(", "self", ".", "get_from_clause", "(", "tp", ")", ")", ".", "distinct", "(", ")", ")", "if", "limit", ":", "qry", "=", "qry", ".", "limit", "(", "limit", ")", "if", "self", ".", "fetch_values_predicate", ":", "tp", "=", "self", ".", "get_template_processor", "(", ")", "qry", "=", "qry", ".", "where", "(", "tp", ".", "process_template", "(", "self", ".", "fetch_values_predicate", ")", ")", "engine", "=", "self", ".", "database", ".", "get_sqla_engine", "(", ")", "sql", "=", "'{}'", ".", "format", "(", "qry", ".", "compile", "(", "engine", ",", "compile_kwargs", "=", "{", "'literal_binds'", ":", "True", "}", ")", ",", ")", "sql", "=", "self", ".", "mutate_query_from_config", "(", "sql", ")", "df", "=", "pd", ".", "read_sql_query", "(", "sql", "=", "sql", ",", "con", "=", "engine", ")", "return", "[", "row", "[", "0", "]", "for", "row", "in", "df", ".", "to_records", "(", "index", "=", "False", ")", "]" ]
Runs query against sqla to retrieve some sample values for the given column.
[ "Runs", "query", "against", "sqla", "to", "retrieve", "some", "sample", "values", "for", "the", "given", "column", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/connectors/sqla/models.py#L437-L464
21,410
apache/incubator-superset
superset/connectors/sqla/models.py
SqlaTable.mutate_query_from_config
def mutate_query_from_config(self, sql): """Apply config's SQL_QUERY_MUTATOR Typically adds comments to the query with context""" SQL_QUERY_MUTATOR = config.get('SQL_QUERY_MUTATOR') if SQL_QUERY_MUTATOR: username = utils.get_username() sql = SQL_QUERY_MUTATOR(sql, username, security_manager, self.database) return sql
python
def mutate_query_from_config(self, sql): """Apply config's SQL_QUERY_MUTATOR Typically adds comments to the query with context""" SQL_QUERY_MUTATOR = config.get('SQL_QUERY_MUTATOR') if SQL_QUERY_MUTATOR: username = utils.get_username() sql = SQL_QUERY_MUTATOR(sql, username, security_manager, self.database) return sql
[ "def", "mutate_query_from_config", "(", "self", ",", "sql", ")", ":", "SQL_QUERY_MUTATOR", "=", "config", ".", "get", "(", "'SQL_QUERY_MUTATOR'", ")", "if", "SQL_QUERY_MUTATOR", ":", "username", "=", "utils", ".", "get_username", "(", ")", "sql", "=", "SQL_QUERY_MUTATOR", "(", "sql", ",", "username", ",", "security_manager", ",", "self", ".", "database", ")", "return", "sql" ]
Apply config's SQL_QUERY_MUTATOR Typically adds comments to the query with context
[ "Apply", "config", "s", "SQL_QUERY_MUTATOR" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/connectors/sqla/models.py#L466-L474
21,411
apache/incubator-superset
superset/connectors/sqla/models.py
SqlaTable.adhoc_metric_to_sqla
def adhoc_metric_to_sqla(self, metric, cols): """ Turn an adhoc metric into a sqlalchemy column. :param dict metric: Adhoc metric definition :param dict cols: Columns for the current table :returns: The metric defined as a sqlalchemy column :rtype: sqlalchemy.sql.column """ expression_type = metric.get('expressionType') label = utils.get_metric_name(metric) if expression_type == utils.ADHOC_METRIC_EXPRESSION_TYPES['SIMPLE']: column_name = metric.get('column').get('column_name') table_column = cols.get(column_name) if table_column: sqla_column = table_column.get_sqla_col() else: sqla_column = column(column_name) sqla_metric = self.sqla_aggregations[metric.get('aggregate')](sqla_column) elif expression_type == utils.ADHOC_METRIC_EXPRESSION_TYPES['SQL']: sqla_metric = literal_column(metric.get('sqlExpression')) else: return None return self.make_sqla_column_compatible(sqla_metric, label)
python
def adhoc_metric_to_sqla(self, metric, cols): """ Turn an adhoc metric into a sqlalchemy column. :param dict metric: Adhoc metric definition :param dict cols: Columns for the current table :returns: The metric defined as a sqlalchemy column :rtype: sqlalchemy.sql.column """ expression_type = metric.get('expressionType') label = utils.get_metric_name(metric) if expression_type == utils.ADHOC_METRIC_EXPRESSION_TYPES['SIMPLE']: column_name = metric.get('column').get('column_name') table_column = cols.get(column_name) if table_column: sqla_column = table_column.get_sqla_col() else: sqla_column = column(column_name) sqla_metric = self.sqla_aggregations[metric.get('aggregate')](sqla_column) elif expression_type == utils.ADHOC_METRIC_EXPRESSION_TYPES['SQL']: sqla_metric = literal_column(metric.get('sqlExpression')) else: return None return self.make_sqla_column_compatible(sqla_metric, label)
[ "def", "adhoc_metric_to_sqla", "(", "self", ",", "metric", ",", "cols", ")", ":", "expression_type", "=", "metric", ".", "get", "(", "'expressionType'", ")", "label", "=", "utils", ".", "get_metric_name", "(", "metric", ")", "if", "expression_type", "==", "utils", ".", "ADHOC_METRIC_EXPRESSION_TYPES", "[", "'SIMPLE'", "]", ":", "column_name", "=", "metric", ".", "get", "(", "'column'", ")", ".", "get", "(", "'column_name'", ")", "table_column", "=", "cols", ".", "get", "(", "column_name", ")", "if", "table_column", ":", "sqla_column", "=", "table_column", ".", "get_sqla_col", "(", ")", "else", ":", "sqla_column", "=", "column", "(", "column_name", ")", "sqla_metric", "=", "self", ".", "sqla_aggregations", "[", "metric", ".", "get", "(", "'aggregate'", ")", "]", "(", "sqla_column", ")", "elif", "expression_type", "==", "utils", ".", "ADHOC_METRIC_EXPRESSION_TYPES", "[", "'SQL'", "]", ":", "sqla_metric", "=", "literal_column", "(", "metric", ".", "get", "(", "'sqlExpression'", ")", ")", "else", ":", "return", "None", "return", "self", ".", "make_sqla_column_compatible", "(", "sqla_metric", ",", "label", ")" ]
Turn an adhoc metric into a sqlalchemy column. :param dict metric: Adhoc metric definition :param dict cols: Columns for the current table :returns: The metric defined as a sqlalchemy column :rtype: sqlalchemy.sql.column
[ "Turn", "an", "adhoc", "metric", "into", "a", "sqlalchemy", "column", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/connectors/sqla/models.py#L509-L534
21,412
apache/incubator-superset
superset/connectors/sqla/models.py
SqlaTable.fetch_metadata
def fetch_metadata(self): """Fetches the metadata for the table and merges it in""" try: table = self.get_sqla_table_object() except Exception as e: logging.exception(e) raise Exception(_( "Table [{}] doesn't seem to exist in the specified database, " "couldn't fetch column information").format(self.table_name)) M = SqlMetric # noqa metrics = [] any_date_col = None db_engine_spec = self.database.db_engine_spec db_dialect = self.database.get_dialect() dbcols = ( db.session.query(TableColumn) .filter(TableColumn.table == self) .filter(or_(TableColumn.column_name == col.name for col in table.columns))) dbcols = {dbcol.column_name: dbcol for dbcol in dbcols} for col in table.columns: try: datatype = col.type.compile(dialect=db_dialect).upper() except Exception as e: datatype = 'UNKNOWN' logging.error( 'Unrecognized data type in {}.{}'.format(table, col.name)) logging.exception(e) dbcol = dbcols.get(col.name, None) if not dbcol: dbcol = TableColumn(column_name=col.name, type=datatype) dbcol.sum = dbcol.is_num dbcol.avg = dbcol.is_num dbcol.is_dttm = dbcol.is_time db_engine_spec.alter_new_orm_column(dbcol) else: dbcol.type = datatype dbcol.groupby = True dbcol.filterable = True self.columns.append(dbcol) if not any_date_col and dbcol.is_time: any_date_col = col.name metrics.append(M( metric_name='count', verbose_name='COUNT(*)', metric_type='count', expression='COUNT(*)', )) if not self.main_dttm_col: self.main_dttm_col = any_date_col self.add_missing_metrics(metrics) db.session.merge(self) db.session.commit()
python
def fetch_metadata(self): """Fetches the metadata for the table and merges it in""" try: table = self.get_sqla_table_object() except Exception as e: logging.exception(e) raise Exception(_( "Table [{}] doesn't seem to exist in the specified database, " "couldn't fetch column information").format(self.table_name)) M = SqlMetric # noqa metrics = [] any_date_col = None db_engine_spec = self.database.db_engine_spec db_dialect = self.database.get_dialect() dbcols = ( db.session.query(TableColumn) .filter(TableColumn.table == self) .filter(or_(TableColumn.column_name == col.name for col in table.columns))) dbcols = {dbcol.column_name: dbcol for dbcol in dbcols} for col in table.columns: try: datatype = col.type.compile(dialect=db_dialect).upper() except Exception as e: datatype = 'UNKNOWN' logging.error( 'Unrecognized data type in {}.{}'.format(table, col.name)) logging.exception(e) dbcol = dbcols.get(col.name, None) if not dbcol: dbcol = TableColumn(column_name=col.name, type=datatype) dbcol.sum = dbcol.is_num dbcol.avg = dbcol.is_num dbcol.is_dttm = dbcol.is_time db_engine_spec.alter_new_orm_column(dbcol) else: dbcol.type = datatype dbcol.groupby = True dbcol.filterable = True self.columns.append(dbcol) if not any_date_col and dbcol.is_time: any_date_col = col.name metrics.append(M( metric_name='count', verbose_name='COUNT(*)', metric_type='count', expression='COUNT(*)', )) if not self.main_dttm_col: self.main_dttm_col = any_date_col self.add_missing_metrics(metrics) db.session.merge(self) db.session.commit()
[ "def", "fetch_metadata", "(", "self", ")", ":", "try", ":", "table", "=", "self", ".", "get_sqla_table_object", "(", ")", "except", "Exception", "as", "e", ":", "logging", ".", "exception", "(", "e", ")", "raise", "Exception", "(", "_", "(", "\"Table [{}] doesn't seem to exist in the specified database, \"", "\"couldn't fetch column information\"", ")", ".", "format", "(", "self", ".", "table_name", ")", ")", "M", "=", "SqlMetric", "# noqa", "metrics", "=", "[", "]", "any_date_col", "=", "None", "db_engine_spec", "=", "self", ".", "database", ".", "db_engine_spec", "db_dialect", "=", "self", ".", "database", ".", "get_dialect", "(", ")", "dbcols", "=", "(", "db", ".", "session", ".", "query", "(", "TableColumn", ")", ".", "filter", "(", "TableColumn", ".", "table", "==", "self", ")", ".", "filter", "(", "or_", "(", "TableColumn", ".", "column_name", "==", "col", ".", "name", "for", "col", "in", "table", ".", "columns", ")", ")", ")", "dbcols", "=", "{", "dbcol", ".", "column_name", ":", "dbcol", "for", "dbcol", "in", "dbcols", "}", "for", "col", "in", "table", ".", "columns", ":", "try", ":", "datatype", "=", "col", ".", "type", ".", "compile", "(", "dialect", "=", "db_dialect", ")", ".", "upper", "(", ")", "except", "Exception", "as", "e", ":", "datatype", "=", "'UNKNOWN'", "logging", ".", "error", "(", "'Unrecognized data type in {}.{}'", ".", "format", "(", "table", ",", "col", ".", "name", ")", ")", "logging", ".", "exception", "(", "e", ")", "dbcol", "=", "dbcols", ".", "get", "(", "col", ".", "name", ",", "None", ")", "if", "not", "dbcol", ":", "dbcol", "=", "TableColumn", "(", "column_name", "=", "col", ".", "name", ",", "type", "=", "datatype", ")", "dbcol", ".", "sum", "=", "dbcol", ".", "is_num", "dbcol", ".", "avg", "=", "dbcol", ".", "is_num", "dbcol", ".", "is_dttm", "=", "dbcol", ".", "is_time", "db_engine_spec", ".", "alter_new_orm_column", "(", "dbcol", ")", "else", ":", "dbcol", ".", "type", "=", "datatype", "dbcol", ".", "groupby", "=", "True", "dbcol", ".", "filterable", "=", "True", "self", ".", "columns", ".", "append", "(", "dbcol", ")", "if", "not", "any_date_col", "and", "dbcol", ".", "is_time", ":", "any_date_col", "=", "col", ".", "name", "metrics", ".", "append", "(", "M", "(", "metric_name", "=", "'count'", ",", "verbose_name", "=", "'COUNT(*)'", ",", "metric_type", "=", "'count'", ",", "expression", "=", "'COUNT(*)'", ",", ")", ")", "if", "not", "self", ".", "main_dttm_col", ":", "self", ".", "main_dttm_col", "=", "any_date_col", "self", ".", "add_missing_metrics", "(", "metrics", ")", "db", ".", "session", ".", "merge", "(", "self", ")", "db", ".", "session", ".", "commit", "(", ")" ]
Fetches the metadata for the table and merges it in
[ "Fetches", "the", "metadata", "for", "the", "table", "and", "merges", "it", "in" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/connectors/sqla/models.py#L875-L930
21,413
apache/incubator-superset
superset/views/datasource.py
Datasource.external_metadata
def external_metadata(self, datasource_type=None, datasource_id=None): """Gets column info from the source system""" if datasource_type == 'druid': datasource = ConnectorRegistry.get_datasource( datasource_type, datasource_id, db.session) elif datasource_type == 'table': database = ( db.session .query(Database) .filter_by(id=request.args.get('db_id')) .one() ) Table = ConnectorRegistry.sources['table'] datasource = Table( database=database, table_name=request.args.get('table_name'), schema=request.args.get('schema') or None, ) external_metadata = datasource.external_metadata() return self.json_response(external_metadata)
python
def external_metadata(self, datasource_type=None, datasource_id=None): """Gets column info from the source system""" if datasource_type == 'druid': datasource = ConnectorRegistry.get_datasource( datasource_type, datasource_id, db.session) elif datasource_type == 'table': database = ( db.session .query(Database) .filter_by(id=request.args.get('db_id')) .one() ) Table = ConnectorRegistry.sources['table'] datasource = Table( database=database, table_name=request.args.get('table_name'), schema=request.args.get('schema') or None, ) external_metadata = datasource.external_metadata() return self.json_response(external_metadata)
[ "def", "external_metadata", "(", "self", ",", "datasource_type", "=", "None", ",", "datasource_id", "=", "None", ")", ":", "if", "datasource_type", "==", "'druid'", ":", "datasource", "=", "ConnectorRegistry", ".", "get_datasource", "(", "datasource_type", ",", "datasource_id", ",", "db", ".", "session", ")", "elif", "datasource_type", "==", "'table'", ":", "database", "=", "(", "db", ".", "session", ".", "query", "(", "Database", ")", ".", "filter_by", "(", "id", "=", "request", ".", "args", ".", "get", "(", "'db_id'", ")", ")", ".", "one", "(", ")", ")", "Table", "=", "ConnectorRegistry", ".", "sources", "[", "'table'", "]", "datasource", "=", "Table", "(", "database", "=", "database", ",", "table_name", "=", "request", ".", "args", ".", "get", "(", "'table_name'", ")", ",", "schema", "=", "request", ".", "args", ".", "get", "(", "'schema'", ")", "or", "None", ",", ")", "external_metadata", "=", "datasource", ".", "external_metadata", "(", ")", "return", "self", ".", "json_response", "(", "external_metadata", ")" ]
Gets column info from the source system
[ "Gets", "column", "info", "from", "the", "source", "system" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/datasource.py#L70-L89
21,414
apache/incubator-superset
superset/forms.py
filter_not_empty_values
def filter_not_empty_values(value): """Returns a list of non empty values or None""" if not value: return None data = [x for x in value if x] if not data: return None return data
python
def filter_not_empty_values(value): """Returns a list of non empty values or None""" if not value: return None data = [x for x in value if x] if not data: return None return data
[ "def", "filter_not_empty_values", "(", "value", ")", ":", "if", "not", "value", ":", "return", "None", "data", "=", "[", "x", "for", "x", "in", "value", "if", "x", "]", "if", "not", "data", ":", "return", "None", "return", "data" ]
Returns a list of non empty values or None
[ "Returns", "a", "list", "of", "non", "empty", "values", "or", "None" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/forms.py#L50-L57
21,415
apache/incubator-superset
superset/forms.py
CsvToDatabaseForm.at_least_one_schema_is_allowed
def at_least_one_schema_is_allowed(database): """ If the user has access to the database or all datasource 1. if schemas_allowed_for_csv_upload is empty a) if database does not support schema user is able to upload csv without specifying schema name b) if database supports schema user is able to upload csv to any schema 2. if schemas_allowed_for_csv_upload is not empty a) if database does not support schema This situation is impossible and upload will fail b) if database supports schema user is able to upload to schema in schemas_allowed_for_csv_upload elif the user does not access to the database or all datasource 1. if schemas_allowed_for_csv_upload is empty a) if database does not support schema user is unable to upload csv b) if database supports schema user is unable to upload csv 2. if schemas_allowed_for_csv_upload is not empty a) if database does not support schema This situation is impossible and user is unable to upload csv b) if database supports schema user is able to upload to schema in schemas_allowed_for_csv_upload """ if (security_manager.database_access(database) or security_manager.all_datasource_access()): return True schemas = database.get_schema_access_for_csv_upload() if (schemas and security_manager.schemas_accessible_by_user( database, schemas, False)): return True return False
python
def at_least_one_schema_is_allowed(database): """ If the user has access to the database or all datasource 1. if schemas_allowed_for_csv_upload is empty a) if database does not support schema user is able to upload csv without specifying schema name b) if database supports schema user is able to upload csv to any schema 2. if schemas_allowed_for_csv_upload is not empty a) if database does not support schema This situation is impossible and upload will fail b) if database supports schema user is able to upload to schema in schemas_allowed_for_csv_upload elif the user does not access to the database or all datasource 1. if schemas_allowed_for_csv_upload is empty a) if database does not support schema user is unable to upload csv b) if database supports schema user is unable to upload csv 2. if schemas_allowed_for_csv_upload is not empty a) if database does not support schema This situation is impossible and user is unable to upload csv b) if database supports schema user is able to upload to schema in schemas_allowed_for_csv_upload """ if (security_manager.database_access(database) or security_manager.all_datasource_access()): return True schemas = database.get_schema_access_for_csv_upload() if (schemas and security_manager.schemas_accessible_by_user( database, schemas, False)): return True return False
[ "def", "at_least_one_schema_is_allowed", "(", "database", ")", ":", "if", "(", "security_manager", ".", "database_access", "(", "database", ")", "or", "security_manager", ".", "all_datasource_access", "(", ")", ")", ":", "return", "True", "schemas", "=", "database", ".", "get_schema_access_for_csv_upload", "(", ")", "if", "(", "schemas", "and", "security_manager", ".", "schemas_accessible_by_user", "(", "database", ",", "schemas", ",", "False", ")", ")", ":", "return", "True", "return", "False" ]
If the user has access to the database or all datasource 1. if schemas_allowed_for_csv_upload is empty a) if database does not support schema user is able to upload csv without specifying schema name b) if database supports schema user is able to upload csv to any schema 2. if schemas_allowed_for_csv_upload is not empty a) if database does not support schema This situation is impossible and upload will fail b) if database supports schema user is able to upload to schema in schemas_allowed_for_csv_upload elif the user does not access to the database or all datasource 1. if schemas_allowed_for_csv_upload is empty a) if database does not support schema user is unable to upload csv b) if database supports schema user is unable to upload csv 2. if schemas_allowed_for_csv_upload is not empty a) if database does not support schema This situation is impossible and user is unable to upload csv b) if database supports schema user is able to upload to schema in schemas_allowed_for_csv_upload
[ "If", "the", "user", "has", "access", "to", "the", "database", "or", "all", "datasource", "1", ".", "if", "schemas_allowed_for_csv_upload", "is", "empty", "a", ")", "if", "database", "does", "not", "support", "schema", "user", "is", "able", "to", "upload", "csv", "without", "specifying", "schema", "name", "b", ")", "if", "database", "supports", "schema", "user", "is", "able", "to", "upload", "csv", "to", "any", "schema", "2", ".", "if", "schemas_allowed_for_csv_upload", "is", "not", "empty", "a", ")", "if", "database", "does", "not", "support", "schema", "This", "situation", "is", "impossible", "and", "upload", "will", "fail", "b", ")", "if", "database", "supports", "schema", "user", "is", "able", "to", "upload", "to", "schema", "in", "schemas_allowed_for_csv_upload", "elif", "the", "user", "does", "not", "access", "to", "the", "database", "or", "all", "datasource", "1", ".", "if", "schemas_allowed_for_csv_upload", "is", "empty", "a", ")", "if", "database", "does", "not", "support", "schema", "user", "is", "unable", "to", "upload", "csv", "b", ")", "if", "database", "supports", "schema", "user", "is", "unable", "to", "upload", "csv", "2", ".", "if", "schemas_allowed_for_csv_upload", "is", "not", "empty", "a", ")", "if", "database", "does", "not", "support", "schema", "This", "situation", "is", "impossible", "and", "user", "is", "unable", "to", "upload", "csv", "b", ")", "if", "database", "supports", "schema", "user", "is", "able", "to", "upload", "to", "schema", "in", "schemas_allowed_for_csv_upload" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/forms.py#L73-L106
21,416
apache/incubator-superset
superset/views/sql_lab.py
QueryFilter.apply
def apply( self, query: BaseQuery, func: Callable) -> BaseQuery: """ Filter queries to only those owned by current user if can_only_access_owned_queries permission is set. :returns: query """ if security_manager.can_only_access_owned_queries(): query = ( query .filter(Query.user_id == g.user.get_user_id()) ) return query
python
def apply( self, query: BaseQuery, func: Callable) -> BaseQuery: """ Filter queries to only those owned by current user if can_only_access_owned_queries permission is set. :returns: query """ if security_manager.can_only_access_owned_queries(): query = ( query .filter(Query.user_id == g.user.get_user_id()) ) return query
[ "def", "apply", "(", "self", ",", "query", ":", "BaseQuery", ",", "func", ":", "Callable", ")", "->", "BaseQuery", ":", "if", "security_manager", ".", "can_only_access_owned_queries", "(", ")", ":", "query", "=", "(", "query", ".", "filter", "(", "Query", ".", "user_id", "==", "g", ".", "user", ".", "get_user_id", "(", ")", ")", ")", "return", "query" ]
Filter queries to only those owned by current user if can_only_access_owned_queries permission is set. :returns: query
[ "Filter", "queries", "to", "only", "those", "owned", "by", "current", "user", "if", "can_only_access_owned_queries", "permission", "is", "set", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/sql_lab.py#L34-L49
21,417
apache/incubator-superset
superset/connectors/sqla/views.py
TableModelView.edit
def edit(self, pk): """Simple hack to redirect to explore view after saving""" resp = super(TableModelView, self).edit(pk) if isinstance(resp, str): return resp return redirect('/superset/explore/table/{}/'.format(pk))
python
def edit(self, pk): """Simple hack to redirect to explore view after saving""" resp = super(TableModelView, self).edit(pk) if isinstance(resp, str): return resp return redirect('/superset/explore/table/{}/'.format(pk))
[ "def", "edit", "(", "self", ",", "pk", ")", ":", "resp", "=", "super", "(", "TableModelView", ",", "self", ")", ".", "edit", "(", "pk", ")", "if", "isinstance", "(", "resp", ",", "str", ")", ":", "return", "resp", "return", "redirect", "(", "'/superset/explore/table/{}/'", ".", "format", "(", "pk", ")", ")" ]
Simple hack to redirect to explore view after saving
[ "Simple", "hack", "to", "redirect", "to", "explore", "view", "after", "saving" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/connectors/sqla/views.py#L305-L310
21,418
apache/incubator-superset
superset/tasks/cache.py
get_form_data
def get_form_data(chart_id, dashboard=None): """ Build `form_data` for chart GET request from dashboard's `default_filters`. When a dashboard has `default_filters` they need to be added as extra filters in the GET request for charts. """ form_data = {'slice_id': chart_id} if dashboard is None or not dashboard.json_metadata: return form_data json_metadata = json.loads(dashboard.json_metadata) # do not apply filters if chart is immune to them if chart_id in json_metadata.get('filter_immune_slices', []): return form_data default_filters = json.loads(json_metadata.get('default_filters', 'null')) if not default_filters: return form_data # are some of the fields in the chart immune to filters? filter_immune_slice_fields = json_metadata.get('filter_immune_slice_fields', {}) immune_fields = filter_immune_slice_fields.get(str(chart_id), []) extra_filters = [] for filters in default_filters.values(): for col, val in filters.items(): if col not in immune_fields: extra_filters.append({'col': col, 'op': 'in', 'val': val}) if extra_filters: form_data['extra_filters'] = extra_filters return form_data
python
def get_form_data(chart_id, dashboard=None): """ Build `form_data` for chart GET request from dashboard's `default_filters`. When a dashboard has `default_filters` they need to be added as extra filters in the GET request for charts. """ form_data = {'slice_id': chart_id} if dashboard is None or not dashboard.json_metadata: return form_data json_metadata = json.loads(dashboard.json_metadata) # do not apply filters if chart is immune to them if chart_id in json_metadata.get('filter_immune_slices', []): return form_data default_filters = json.loads(json_metadata.get('default_filters', 'null')) if not default_filters: return form_data # are some of the fields in the chart immune to filters? filter_immune_slice_fields = json_metadata.get('filter_immune_slice_fields', {}) immune_fields = filter_immune_slice_fields.get(str(chart_id), []) extra_filters = [] for filters in default_filters.values(): for col, val in filters.items(): if col not in immune_fields: extra_filters.append({'col': col, 'op': 'in', 'val': val}) if extra_filters: form_data['extra_filters'] = extra_filters return form_data
[ "def", "get_form_data", "(", "chart_id", ",", "dashboard", "=", "None", ")", ":", "form_data", "=", "{", "'slice_id'", ":", "chart_id", "}", "if", "dashboard", "is", "None", "or", "not", "dashboard", ".", "json_metadata", ":", "return", "form_data", "json_metadata", "=", "json", ".", "loads", "(", "dashboard", ".", "json_metadata", ")", "# do not apply filters if chart is immune to them", "if", "chart_id", "in", "json_metadata", ".", "get", "(", "'filter_immune_slices'", ",", "[", "]", ")", ":", "return", "form_data", "default_filters", "=", "json", ".", "loads", "(", "json_metadata", ".", "get", "(", "'default_filters'", ",", "'null'", ")", ")", "if", "not", "default_filters", ":", "return", "form_data", "# are some of the fields in the chart immune to filters?", "filter_immune_slice_fields", "=", "json_metadata", ".", "get", "(", "'filter_immune_slice_fields'", ",", "{", "}", ")", "immune_fields", "=", "filter_immune_slice_fields", ".", "get", "(", "str", "(", "chart_id", ")", ",", "[", "]", ")", "extra_filters", "=", "[", "]", "for", "filters", "in", "default_filters", ".", "values", "(", ")", ":", "for", "col", ",", "val", "in", "filters", ".", "items", "(", ")", ":", "if", "col", "not", "in", "immune_fields", ":", "extra_filters", ".", "append", "(", "{", "'col'", ":", "col", ",", "'op'", ":", "'in'", ",", "'val'", ":", "val", "}", ")", "if", "extra_filters", ":", "form_data", "[", "'extra_filters'", "]", "=", "extra_filters", "return", "form_data" ]
Build `form_data` for chart GET request from dashboard's `default_filters`. When a dashboard has `default_filters` they need to be added as extra filters in the GET request for charts.
[ "Build", "form_data", "for", "chart", "GET", "request", "from", "dashboard", "s", "default_filters", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/tasks/cache.py#L40-L75
21,419
apache/incubator-superset
superset/tasks/cache.py
cache_warmup
def cache_warmup(strategy_name, *args, **kwargs): """ Warm up cache. This task periodically hits charts to warm up the cache. """ logger.info('Loading strategy') class_ = None for class_ in strategies: if class_.name == strategy_name: break else: message = f'No strategy {strategy_name} found!' logger.error(message) return message logger.info(f'Loading {class_.__name__}') try: strategy = class_(*args, **kwargs) logger.info('Success!') except TypeError: message = 'Error loading strategy!' logger.exception(message) return message results = {'success': [], 'errors': []} for url in strategy.get_urls(): try: logger.info(f'Fetching {url}') requests.get(url) results['success'].append(url) except RequestException: logger.exception('Error warming up cache!') results['errors'].append(url) return results
python
def cache_warmup(strategy_name, *args, **kwargs): """ Warm up cache. This task periodically hits charts to warm up the cache. """ logger.info('Loading strategy') class_ = None for class_ in strategies: if class_.name == strategy_name: break else: message = f'No strategy {strategy_name} found!' logger.error(message) return message logger.info(f'Loading {class_.__name__}') try: strategy = class_(*args, **kwargs) logger.info('Success!') except TypeError: message = 'Error loading strategy!' logger.exception(message) return message results = {'success': [], 'errors': []} for url in strategy.get_urls(): try: logger.info(f'Fetching {url}') requests.get(url) results['success'].append(url) except RequestException: logger.exception('Error warming up cache!') results['errors'].append(url) return results
[ "def", "cache_warmup", "(", "strategy_name", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "logger", ".", "info", "(", "'Loading strategy'", ")", "class_", "=", "None", "for", "class_", "in", "strategies", ":", "if", "class_", ".", "name", "==", "strategy_name", ":", "break", "else", ":", "message", "=", "f'No strategy {strategy_name} found!'", "logger", ".", "error", "(", "message", ")", "return", "message", "logger", ".", "info", "(", "f'Loading {class_.__name__}'", ")", "try", ":", "strategy", "=", "class_", "(", "*", "args", ",", "*", "*", "kwargs", ")", "logger", ".", "info", "(", "'Success!'", ")", "except", "TypeError", ":", "message", "=", "'Error loading strategy!'", "logger", ".", "exception", "(", "message", ")", "return", "message", "results", "=", "{", "'success'", ":", "[", "]", ",", "'errors'", ":", "[", "]", "}", "for", "url", "in", "strategy", ".", "get_urls", "(", ")", ":", "try", ":", "logger", ".", "info", "(", "f'Fetching {url}'", ")", "requests", ".", "get", "(", "url", ")", "results", "[", "'success'", "]", ".", "append", "(", "url", ")", "except", "RequestException", ":", "logger", ".", "exception", "(", "'Error warming up cache!'", ")", "results", "[", "'errors'", "]", ".", "append", "(", "url", ")", "return", "results" ]
Warm up cache. This task periodically hits charts to warm up the cache.
[ "Warm", "up", "cache", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/tasks/cache.py#L280-L316
21,420
apache/incubator-superset
superset/connectors/druid/models.py
DruidCluster.refresh_datasources
def refresh_datasources( self, datasource_name=None, merge_flag=True, refreshAll=True): """Refresh metadata of all datasources in the cluster If ``datasource_name`` is specified, only that datasource is updated """ ds_list = self.get_datasources() blacklist = conf.get('DRUID_DATA_SOURCE_BLACKLIST', []) ds_refresh = [] if not datasource_name: ds_refresh = list(filter(lambda ds: ds not in blacklist, ds_list)) elif datasource_name not in blacklist and datasource_name in ds_list: ds_refresh.append(datasource_name) else: return self.refresh(ds_refresh, merge_flag, refreshAll)
python
def refresh_datasources( self, datasource_name=None, merge_flag=True, refreshAll=True): """Refresh metadata of all datasources in the cluster If ``datasource_name`` is specified, only that datasource is updated """ ds_list = self.get_datasources() blacklist = conf.get('DRUID_DATA_SOURCE_BLACKLIST', []) ds_refresh = [] if not datasource_name: ds_refresh = list(filter(lambda ds: ds not in blacklist, ds_list)) elif datasource_name not in blacklist and datasource_name in ds_list: ds_refresh.append(datasource_name) else: return self.refresh(ds_refresh, merge_flag, refreshAll)
[ "def", "refresh_datasources", "(", "self", ",", "datasource_name", "=", "None", ",", "merge_flag", "=", "True", ",", "refreshAll", "=", "True", ")", ":", "ds_list", "=", "self", ".", "get_datasources", "(", ")", "blacklist", "=", "conf", ".", "get", "(", "'DRUID_DATA_SOURCE_BLACKLIST'", ",", "[", "]", ")", "ds_refresh", "=", "[", "]", "if", "not", "datasource_name", ":", "ds_refresh", "=", "list", "(", "filter", "(", "lambda", "ds", ":", "ds", "not", "in", "blacklist", ",", "ds_list", ")", ")", "elif", "datasource_name", "not", "in", "blacklist", "and", "datasource_name", "in", "ds_list", ":", "ds_refresh", ".", "append", "(", "datasource_name", ")", "else", ":", "return", "self", ".", "refresh", "(", "ds_refresh", ",", "merge_flag", ",", "refreshAll", ")" ]
Refresh metadata of all datasources in the cluster If ``datasource_name`` is specified, only that datasource is updated
[ "Refresh", "metadata", "of", "all", "datasources", "in", "the", "cluster", "If", "datasource_name", "is", "specified", "only", "that", "datasource", "is", "updated" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/connectors/druid/models.py#L165-L182
21,421
apache/incubator-superset
superset/connectors/druid/models.py
DruidCluster.refresh
def refresh(self, datasource_names, merge_flag, refreshAll): """ Fetches metadata for the specified datasources and merges to the Superset database """ session = db.session ds_list = ( session.query(DruidDatasource) .filter(DruidDatasource.cluster_name == self.cluster_name) .filter(DruidDatasource.datasource_name.in_(datasource_names)) ) ds_map = {ds.name: ds for ds in ds_list} for ds_name in datasource_names: datasource = ds_map.get(ds_name, None) if not datasource: datasource = DruidDatasource(datasource_name=ds_name) with session.no_autoflush: session.add(datasource) flasher( _('Adding new datasource [{}]').format(ds_name), 'success') ds_map[ds_name] = datasource elif refreshAll: flasher( _('Refreshing datasource [{}]').format(ds_name), 'info') else: del ds_map[ds_name] continue datasource.cluster = self datasource.merge_flag = merge_flag session.flush() # Prepare multithreaded executation pool = ThreadPool() ds_refresh = list(ds_map.values()) metadata = pool.map(_fetch_metadata_for, ds_refresh) pool.close() pool.join() for i in range(0, len(ds_refresh)): datasource = ds_refresh[i] cols = metadata[i] if cols: col_objs_list = ( session.query(DruidColumn) .filter(DruidColumn.datasource_id == datasource.id) .filter(DruidColumn.column_name.in_(cols.keys())) ) col_objs = {col.column_name: col for col in col_objs_list} for col in cols: if col == '__time': # skip the time column continue col_obj = col_objs.get(col) if not col_obj: col_obj = DruidColumn( datasource_id=datasource.id, column_name=col) with session.no_autoflush: session.add(col_obj) col_obj.type = cols[col]['type'] col_obj.datasource = datasource if col_obj.type == 'STRING': col_obj.groupby = True col_obj.filterable = True datasource.refresh_metrics() session.commit()
python
def refresh(self, datasource_names, merge_flag, refreshAll): """ Fetches metadata for the specified datasources and merges to the Superset database """ session = db.session ds_list = ( session.query(DruidDatasource) .filter(DruidDatasource.cluster_name == self.cluster_name) .filter(DruidDatasource.datasource_name.in_(datasource_names)) ) ds_map = {ds.name: ds for ds in ds_list} for ds_name in datasource_names: datasource = ds_map.get(ds_name, None) if not datasource: datasource = DruidDatasource(datasource_name=ds_name) with session.no_autoflush: session.add(datasource) flasher( _('Adding new datasource [{}]').format(ds_name), 'success') ds_map[ds_name] = datasource elif refreshAll: flasher( _('Refreshing datasource [{}]').format(ds_name), 'info') else: del ds_map[ds_name] continue datasource.cluster = self datasource.merge_flag = merge_flag session.flush() # Prepare multithreaded executation pool = ThreadPool() ds_refresh = list(ds_map.values()) metadata = pool.map(_fetch_metadata_for, ds_refresh) pool.close() pool.join() for i in range(0, len(ds_refresh)): datasource = ds_refresh[i] cols = metadata[i] if cols: col_objs_list = ( session.query(DruidColumn) .filter(DruidColumn.datasource_id == datasource.id) .filter(DruidColumn.column_name.in_(cols.keys())) ) col_objs = {col.column_name: col for col in col_objs_list} for col in cols: if col == '__time': # skip the time column continue col_obj = col_objs.get(col) if not col_obj: col_obj = DruidColumn( datasource_id=datasource.id, column_name=col) with session.no_autoflush: session.add(col_obj) col_obj.type = cols[col]['type'] col_obj.datasource = datasource if col_obj.type == 'STRING': col_obj.groupby = True col_obj.filterable = True datasource.refresh_metrics() session.commit()
[ "def", "refresh", "(", "self", ",", "datasource_names", ",", "merge_flag", ",", "refreshAll", ")", ":", "session", "=", "db", ".", "session", "ds_list", "=", "(", "session", ".", "query", "(", "DruidDatasource", ")", ".", "filter", "(", "DruidDatasource", ".", "cluster_name", "==", "self", ".", "cluster_name", ")", ".", "filter", "(", "DruidDatasource", ".", "datasource_name", ".", "in_", "(", "datasource_names", ")", ")", ")", "ds_map", "=", "{", "ds", ".", "name", ":", "ds", "for", "ds", "in", "ds_list", "}", "for", "ds_name", "in", "datasource_names", ":", "datasource", "=", "ds_map", ".", "get", "(", "ds_name", ",", "None", ")", "if", "not", "datasource", ":", "datasource", "=", "DruidDatasource", "(", "datasource_name", "=", "ds_name", ")", "with", "session", ".", "no_autoflush", ":", "session", ".", "add", "(", "datasource", ")", "flasher", "(", "_", "(", "'Adding new datasource [{}]'", ")", ".", "format", "(", "ds_name", ")", ",", "'success'", ")", "ds_map", "[", "ds_name", "]", "=", "datasource", "elif", "refreshAll", ":", "flasher", "(", "_", "(", "'Refreshing datasource [{}]'", ")", ".", "format", "(", "ds_name", ")", ",", "'info'", ")", "else", ":", "del", "ds_map", "[", "ds_name", "]", "continue", "datasource", ".", "cluster", "=", "self", "datasource", ".", "merge_flag", "=", "merge_flag", "session", ".", "flush", "(", ")", "# Prepare multithreaded executation", "pool", "=", "ThreadPool", "(", ")", "ds_refresh", "=", "list", "(", "ds_map", ".", "values", "(", ")", ")", "metadata", "=", "pool", ".", "map", "(", "_fetch_metadata_for", ",", "ds_refresh", ")", "pool", ".", "close", "(", ")", "pool", ".", "join", "(", ")", "for", "i", "in", "range", "(", "0", ",", "len", "(", "ds_refresh", ")", ")", ":", "datasource", "=", "ds_refresh", "[", "i", "]", "cols", "=", "metadata", "[", "i", "]", "if", "cols", ":", "col_objs_list", "=", "(", "session", ".", "query", "(", "DruidColumn", ")", ".", "filter", "(", "DruidColumn", ".", "datasource_id", "==", "datasource", ".", "id", ")", ".", "filter", "(", "DruidColumn", ".", "column_name", ".", "in_", "(", "cols", ".", "keys", "(", ")", ")", ")", ")", "col_objs", "=", "{", "col", ".", "column_name", ":", "col", "for", "col", "in", "col_objs_list", "}", "for", "col", "in", "cols", ":", "if", "col", "==", "'__time'", ":", "# skip the time column", "continue", "col_obj", "=", "col_objs", ".", "get", "(", "col", ")", "if", "not", "col_obj", ":", "col_obj", "=", "DruidColumn", "(", "datasource_id", "=", "datasource", ".", "id", ",", "column_name", "=", "col", ")", "with", "session", ".", "no_autoflush", ":", "session", ".", "add", "(", "col_obj", ")", "col_obj", ".", "type", "=", "cols", "[", "col", "]", "[", "'type'", "]", "col_obj", ".", "datasource", "=", "datasource", "if", "col_obj", ".", "type", "==", "'STRING'", ":", "col_obj", ".", "groupby", "=", "True", "col_obj", ".", "filterable", "=", "True", "datasource", ".", "refresh_metrics", "(", ")", "session", ".", "commit", "(", ")" ]
Fetches metadata for the specified datasources and merges to the Superset database
[ "Fetches", "metadata", "for", "the", "specified", "datasources", "and", "merges", "to", "the", "Superset", "database" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/connectors/druid/models.py#L184-L248
21,422
apache/incubator-superset
superset/connectors/druid/models.py
DruidColumn.refresh_metrics
def refresh_metrics(self): """Refresh metrics based on the column metadata""" metrics = self.get_metrics() dbmetrics = ( db.session.query(DruidMetric) .filter(DruidMetric.datasource_id == self.datasource_id) .filter(DruidMetric.metric_name.in_(metrics.keys())) ) dbmetrics = {metric.metric_name: metric for metric in dbmetrics} for metric in metrics.values(): dbmetric = dbmetrics.get(metric.metric_name) if dbmetric: for attr in ['json', 'metric_type']: setattr(dbmetric, attr, getattr(metric, attr)) else: with db.session.no_autoflush: metric.datasource_id = self.datasource_id db.session.add(metric)
python
def refresh_metrics(self): """Refresh metrics based on the column metadata""" metrics = self.get_metrics() dbmetrics = ( db.session.query(DruidMetric) .filter(DruidMetric.datasource_id == self.datasource_id) .filter(DruidMetric.metric_name.in_(metrics.keys())) ) dbmetrics = {metric.metric_name: metric for metric in dbmetrics} for metric in metrics.values(): dbmetric = dbmetrics.get(metric.metric_name) if dbmetric: for attr in ['json', 'metric_type']: setattr(dbmetric, attr, getattr(metric, attr)) else: with db.session.no_autoflush: metric.datasource_id = self.datasource_id db.session.add(metric)
[ "def", "refresh_metrics", "(", "self", ")", ":", "metrics", "=", "self", ".", "get_metrics", "(", ")", "dbmetrics", "=", "(", "db", ".", "session", ".", "query", "(", "DruidMetric", ")", ".", "filter", "(", "DruidMetric", ".", "datasource_id", "==", "self", ".", "datasource_id", ")", ".", "filter", "(", "DruidMetric", ".", "metric_name", ".", "in_", "(", "metrics", ".", "keys", "(", ")", ")", ")", ")", "dbmetrics", "=", "{", "metric", ".", "metric_name", ":", "metric", "for", "metric", "in", "dbmetrics", "}", "for", "metric", "in", "metrics", ".", "values", "(", ")", ":", "dbmetric", "=", "dbmetrics", ".", "get", "(", "metric", ".", "metric_name", ")", "if", "dbmetric", ":", "for", "attr", "in", "[", "'json'", ",", "'metric_type'", "]", ":", "setattr", "(", "dbmetric", ",", "attr", ",", "getattr", "(", "metric", ",", "attr", ")", ")", "else", ":", "with", "db", ".", "session", ".", "no_autoflush", ":", "metric", ".", "datasource_id", "=", "self", ".", "datasource_id", "db", ".", "session", ".", "add", "(", "metric", ")" ]
Refresh metrics based on the column metadata
[ "Refresh", "metrics", "based", "on", "the", "column", "metadata" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/connectors/druid/models.py#L309-L326
21,423
apache/incubator-superset
superset/connectors/druid/models.py
DruidDatasource.sync_to_db_from_config
def sync_to_db_from_config( cls, druid_config, user, cluster, refresh=True): """Merges the ds config from druid_config into one stored in the db.""" session = db.session datasource = ( session.query(cls) .filter_by(datasource_name=druid_config['name']) .first() ) # Create a new datasource. if not datasource: datasource = cls( datasource_name=druid_config['name'], cluster=cluster, owners=[user], changed_by_fk=user.id, created_by_fk=user.id, ) session.add(datasource) elif not refresh: return dimensions = druid_config['dimensions'] col_objs = ( session.query(DruidColumn) .filter(DruidColumn.datasource_id == datasource.id) .filter(DruidColumn.column_name.in_(dimensions)) ) col_objs = {col.column_name: col for col in col_objs} for dim in dimensions: col_obj = col_objs.get(dim, None) if not col_obj: col_obj = DruidColumn( datasource_id=datasource.id, column_name=dim, groupby=True, filterable=True, # TODO: fetch type from Hive. type='STRING', datasource=datasource, ) session.add(col_obj) # Import Druid metrics metric_objs = ( session.query(DruidMetric) .filter(DruidMetric.datasource_id == datasource.id) .filter(DruidMetric.metric_name.in_( spec['name'] for spec in druid_config['metrics_spec'] )) ) metric_objs = {metric.metric_name: metric for metric in metric_objs} for metric_spec in druid_config['metrics_spec']: metric_name = metric_spec['name'] metric_type = metric_spec['type'] metric_json = json.dumps(metric_spec) if metric_type == 'count': metric_type = 'longSum' metric_json = json.dumps({ 'type': 'longSum', 'name': metric_name, 'fieldName': metric_name, }) metric_obj = metric_objs.get(metric_name, None) if not metric_obj: metric_obj = DruidMetric( metric_name=metric_name, metric_type=metric_type, verbose_name='%s(%s)' % (metric_type, metric_name), datasource=datasource, json=metric_json, description=( 'Imported from the airolap config dir for %s' % druid_config['name']), ) session.add(metric_obj) session.commit()
python
def sync_to_db_from_config( cls, druid_config, user, cluster, refresh=True): """Merges the ds config from druid_config into one stored in the db.""" session = db.session datasource = ( session.query(cls) .filter_by(datasource_name=druid_config['name']) .first() ) # Create a new datasource. if not datasource: datasource = cls( datasource_name=druid_config['name'], cluster=cluster, owners=[user], changed_by_fk=user.id, created_by_fk=user.id, ) session.add(datasource) elif not refresh: return dimensions = druid_config['dimensions'] col_objs = ( session.query(DruidColumn) .filter(DruidColumn.datasource_id == datasource.id) .filter(DruidColumn.column_name.in_(dimensions)) ) col_objs = {col.column_name: col for col in col_objs} for dim in dimensions: col_obj = col_objs.get(dim, None) if not col_obj: col_obj = DruidColumn( datasource_id=datasource.id, column_name=dim, groupby=True, filterable=True, # TODO: fetch type from Hive. type='STRING', datasource=datasource, ) session.add(col_obj) # Import Druid metrics metric_objs = ( session.query(DruidMetric) .filter(DruidMetric.datasource_id == datasource.id) .filter(DruidMetric.metric_name.in_( spec['name'] for spec in druid_config['metrics_spec'] )) ) metric_objs = {metric.metric_name: metric for metric in metric_objs} for metric_spec in druid_config['metrics_spec']: metric_name = metric_spec['name'] metric_type = metric_spec['type'] metric_json = json.dumps(metric_spec) if metric_type == 'count': metric_type = 'longSum' metric_json = json.dumps({ 'type': 'longSum', 'name': metric_name, 'fieldName': metric_name, }) metric_obj = metric_objs.get(metric_name, None) if not metric_obj: metric_obj = DruidMetric( metric_name=metric_name, metric_type=metric_type, verbose_name='%s(%s)' % (metric_type, metric_name), datasource=datasource, json=metric_json, description=( 'Imported from the airolap config dir for %s' % druid_config['name']), ) session.add(metric_obj) session.commit()
[ "def", "sync_to_db_from_config", "(", "cls", ",", "druid_config", ",", "user", ",", "cluster", ",", "refresh", "=", "True", ")", ":", "session", "=", "db", ".", "session", "datasource", "=", "(", "session", ".", "query", "(", "cls", ")", ".", "filter_by", "(", "datasource_name", "=", "druid_config", "[", "'name'", "]", ")", ".", "first", "(", ")", ")", "# Create a new datasource.", "if", "not", "datasource", ":", "datasource", "=", "cls", "(", "datasource_name", "=", "druid_config", "[", "'name'", "]", ",", "cluster", "=", "cluster", ",", "owners", "=", "[", "user", "]", ",", "changed_by_fk", "=", "user", ".", "id", ",", "created_by_fk", "=", "user", ".", "id", ",", ")", "session", ".", "add", "(", "datasource", ")", "elif", "not", "refresh", ":", "return", "dimensions", "=", "druid_config", "[", "'dimensions'", "]", "col_objs", "=", "(", "session", ".", "query", "(", "DruidColumn", ")", ".", "filter", "(", "DruidColumn", ".", "datasource_id", "==", "datasource", ".", "id", ")", ".", "filter", "(", "DruidColumn", ".", "column_name", ".", "in_", "(", "dimensions", ")", ")", ")", "col_objs", "=", "{", "col", ".", "column_name", ":", "col", "for", "col", "in", "col_objs", "}", "for", "dim", "in", "dimensions", ":", "col_obj", "=", "col_objs", ".", "get", "(", "dim", ",", "None", ")", "if", "not", "col_obj", ":", "col_obj", "=", "DruidColumn", "(", "datasource_id", "=", "datasource", ".", "id", ",", "column_name", "=", "dim", ",", "groupby", "=", "True", ",", "filterable", "=", "True", ",", "# TODO: fetch type from Hive.", "type", "=", "'STRING'", ",", "datasource", "=", "datasource", ",", ")", "session", ".", "add", "(", "col_obj", ")", "# Import Druid metrics", "metric_objs", "=", "(", "session", ".", "query", "(", "DruidMetric", ")", ".", "filter", "(", "DruidMetric", ".", "datasource_id", "==", "datasource", ".", "id", ")", ".", "filter", "(", "DruidMetric", ".", "metric_name", ".", "in_", "(", "spec", "[", "'name'", "]", "for", "spec", "in", "druid_config", "[", "'metrics_spec'", "]", ")", ")", ")", "metric_objs", "=", "{", "metric", ".", "metric_name", ":", "metric", "for", "metric", "in", "metric_objs", "}", "for", "metric_spec", "in", "druid_config", "[", "'metrics_spec'", "]", ":", "metric_name", "=", "metric_spec", "[", "'name'", "]", "metric_type", "=", "metric_spec", "[", "'type'", "]", "metric_json", "=", "json", ".", "dumps", "(", "metric_spec", ")", "if", "metric_type", "==", "'count'", ":", "metric_type", "=", "'longSum'", "metric_json", "=", "json", ".", "dumps", "(", "{", "'type'", ":", "'longSum'", ",", "'name'", ":", "metric_name", ",", "'fieldName'", ":", "metric_name", ",", "}", ")", "metric_obj", "=", "metric_objs", ".", "get", "(", "metric_name", ",", "None", ")", "if", "not", "metric_obj", ":", "metric_obj", "=", "DruidMetric", "(", "metric_name", "=", "metric_name", ",", "metric_type", "=", "metric_type", ",", "verbose_name", "=", "'%s(%s)'", "%", "(", "metric_type", ",", "metric_name", ")", ",", "datasource", "=", "datasource", ",", "json", "=", "metric_json", ",", "description", "=", "(", "'Imported from the airolap config dir for %s'", "%", "druid_config", "[", "'name'", "]", ")", ",", ")", "session", ".", "add", "(", "metric_obj", ")", "session", ".", "commit", "(", ")" ]
Merges the ds config from druid_config into one stored in the db.
[ "Merges", "the", "ds", "config", "from", "druid_config", "into", "one", "stored", "in", "the", "db", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/connectors/druid/models.py#L590-L671
21,424
apache/incubator-superset
superset/connectors/druid/models.py
DruidDatasource.get_post_agg
def get_post_agg(mconf): """ For a metric specified as `postagg` returns the kind of post aggregation for pydruid. """ if mconf.get('type') == 'javascript': return JavascriptPostAggregator( name=mconf.get('name', ''), field_names=mconf.get('fieldNames', []), function=mconf.get('function', '')) elif mconf.get('type') == 'quantile': return Quantile( mconf.get('name', ''), mconf.get('probability', ''), ) elif mconf.get('type') == 'quantiles': return Quantiles( mconf.get('name', ''), mconf.get('probabilities', ''), ) elif mconf.get('type') == 'fieldAccess': return Field(mconf.get('name')) elif mconf.get('type') == 'constant': return Const( mconf.get('value'), output_name=mconf.get('name', ''), ) elif mconf.get('type') == 'hyperUniqueCardinality': return HyperUniqueCardinality( mconf.get('name'), ) elif mconf.get('type') == 'arithmetic': return Postaggregator( mconf.get('fn', '/'), mconf.get('fields', []), mconf.get('name', '')) else: return CustomPostAggregator( mconf.get('name', ''), mconf)
python
def get_post_agg(mconf): """ For a metric specified as `postagg` returns the kind of post aggregation for pydruid. """ if mconf.get('type') == 'javascript': return JavascriptPostAggregator( name=mconf.get('name', ''), field_names=mconf.get('fieldNames', []), function=mconf.get('function', '')) elif mconf.get('type') == 'quantile': return Quantile( mconf.get('name', ''), mconf.get('probability', ''), ) elif mconf.get('type') == 'quantiles': return Quantiles( mconf.get('name', ''), mconf.get('probabilities', ''), ) elif mconf.get('type') == 'fieldAccess': return Field(mconf.get('name')) elif mconf.get('type') == 'constant': return Const( mconf.get('value'), output_name=mconf.get('name', ''), ) elif mconf.get('type') == 'hyperUniqueCardinality': return HyperUniqueCardinality( mconf.get('name'), ) elif mconf.get('type') == 'arithmetic': return Postaggregator( mconf.get('fn', '/'), mconf.get('fields', []), mconf.get('name', '')) else: return CustomPostAggregator( mconf.get('name', ''), mconf)
[ "def", "get_post_agg", "(", "mconf", ")", ":", "if", "mconf", ".", "get", "(", "'type'", ")", "==", "'javascript'", ":", "return", "JavascriptPostAggregator", "(", "name", "=", "mconf", ".", "get", "(", "'name'", ",", "''", ")", ",", "field_names", "=", "mconf", ".", "get", "(", "'fieldNames'", ",", "[", "]", ")", ",", "function", "=", "mconf", ".", "get", "(", "'function'", ",", "''", ")", ")", "elif", "mconf", ".", "get", "(", "'type'", ")", "==", "'quantile'", ":", "return", "Quantile", "(", "mconf", ".", "get", "(", "'name'", ",", "''", ")", ",", "mconf", ".", "get", "(", "'probability'", ",", "''", ")", ",", ")", "elif", "mconf", ".", "get", "(", "'type'", ")", "==", "'quantiles'", ":", "return", "Quantiles", "(", "mconf", ".", "get", "(", "'name'", ",", "''", ")", ",", "mconf", ".", "get", "(", "'probabilities'", ",", "''", ")", ",", ")", "elif", "mconf", ".", "get", "(", "'type'", ")", "==", "'fieldAccess'", ":", "return", "Field", "(", "mconf", ".", "get", "(", "'name'", ")", ")", "elif", "mconf", ".", "get", "(", "'type'", ")", "==", "'constant'", ":", "return", "Const", "(", "mconf", ".", "get", "(", "'value'", ")", ",", "output_name", "=", "mconf", ".", "get", "(", "'name'", ",", "''", ")", ",", ")", "elif", "mconf", ".", "get", "(", "'type'", ")", "==", "'hyperUniqueCardinality'", ":", "return", "HyperUniqueCardinality", "(", "mconf", ".", "get", "(", "'name'", ")", ",", ")", "elif", "mconf", ".", "get", "(", "'type'", ")", "==", "'arithmetic'", ":", "return", "Postaggregator", "(", "mconf", ".", "get", "(", "'fn'", ",", "'/'", ")", ",", "mconf", ".", "get", "(", "'fields'", ",", "[", "]", ")", ",", "mconf", ".", "get", "(", "'name'", ",", "''", ")", ")", "else", ":", "return", "CustomPostAggregator", "(", "mconf", ".", "get", "(", "'name'", ",", "''", ")", ",", "mconf", ")" ]
For a metric specified as `postagg` returns the kind of post aggregation for pydruid.
[ "For", "a", "metric", "specified", "as", "postagg", "returns", "the", "kind", "of", "post", "aggregation", "for", "pydruid", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/connectors/druid/models.py#L731-L770
21,425
apache/incubator-superset
superset/connectors/druid/models.py
DruidDatasource.find_postaggs_for
def find_postaggs_for(postagg_names, metrics_dict): """Return a list of metrics that are post aggregations""" postagg_metrics = [ metrics_dict[name] for name in postagg_names if metrics_dict[name].metric_type == POST_AGG_TYPE ] # Remove post aggregations that were found for postagg in postagg_metrics: postagg_names.remove(postagg.metric_name) return postagg_metrics
python
def find_postaggs_for(postagg_names, metrics_dict): """Return a list of metrics that are post aggregations""" postagg_metrics = [ metrics_dict[name] for name in postagg_names if metrics_dict[name].metric_type == POST_AGG_TYPE ] # Remove post aggregations that were found for postagg in postagg_metrics: postagg_names.remove(postagg.metric_name) return postagg_metrics
[ "def", "find_postaggs_for", "(", "postagg_names", ",", "metrics_dict", ")", ":", "postagg_metrics", "=", "[", "metrics_dict", "[", "name", "]", "for", "name", "in", "postagg_names", "if", "metrics_dict", "[", "name", "]", ".", "metric_type", "==", "POST_AGG_TYPE", "]", "# Remove post aggregations that were found", "for", "postagg", "in", "postagg_metrics", ":", "postagg_names", ".", "remove", "(", "postagg", ".", "metric_name", ")", "return", "postagg_metrics" ]
Return a list of metrics that are post aggregations
[ "Return", "a", "list", "of", "metrics", "that", "are", "post", "aggregations" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/connectors/druid/models.py#L773-L782
21,426
apache/incubator-superset
superset/connectors/druid/models.py
DruidDatasource.values_for_column
def values_for_column(self, column_name, limit=10000): """Retrieve some values for the given column""" logging.info( 'Getting values for columns [{}] limited to [{}]' .format(column_name, limit)) # TODO: Use Lexicographic TopNMetricSpec once supported by PyDruid if self.fetch_values_from: from_dttm = utils.parse_human_datetime(self.fetch_values_from) else: from_dttm = datetime(1970, 1, 1) qry = dict( datasource=self.datasource_name, granularity='all', intervals=from_dttm.isoformat() + '/' + datetime.now().isoformat(), aggregations=dict(count=count('count')), dimension=column_name, metric='count', threshold=limit, ) client = self.cluster.get_pydruid_client() client.topn(**qry) df = client.export_pandas() return [row[column_name] for row in df.to_records(index=False)]
python
def values_for_column(self, column_name, limit=10000): """Retrieve some values for the given column""" logging.info( 'Getting values for columns [{}] limited to [{}]' .format(column_name, limit)) # TODO: Use Lexicographic TopNMetricSpec once supported by PyDruid if self.fetch_values_from: from_dttm = utils.parse_human_datetime(self.fetch_values_from) else: from_dttm = datetime(1970, 1, 1) qry = dict( datasource=self.datasource_name, granularity='all', intervals=from_dttm.isoformat() + '/' + datetime.now().isoformat(), aggregations=dict(count=count('count')), dimension=column_name, metric='count', threshold=limit, ) client = self.cluster.get_pydruid_client() client.topn(**qry) df = client.export_pandas() return [row[column_name] for row in df.to_records(index=False)]
[ "def", "values_for_column", "(", "self", ",", "column_name", ",", "limit", "=", "10000", ")", ":", "logging", ".", "info", "(", "'Getting values for columns [{}] limited to [{}]'", ".", "format", "(", "column_name", ",", "limit", ")", ")", "# TODO: Use Lexicographic TopNMetricSpec once supported by PyDruid", "if", "self", ".", "fetch_values_from", ":", "from_dttm", "=", "utils", ".", "parse_human_datetime", "(", "self", ".", "fetch_values_from", ")", "else", ":", "from_dttm", "=", "datetime", "(", "1970", ",", "1", ",", "1", ")", "qry", "=", "dict", "(", "datasource", "=", "self", ".", "datasource_name", ",", "granularity", "=", "'all'", ",", "intervals", "=", "from_dttm", ".", "isoformat", "(", ")", "+", "'/'", "+", "datetime", ".", "now", "(", ")", ".", "isoformat", "(", ")", ",", "aggregations", "=", "dict", "(", "count", "=", "count", "(", "'count'", ")", ")", ",", "dimension", "=", "column_name", ",", "metric", "=", "'count'", ",", "threshold", "=", "limit", ",", ")", "client", "=", "self", ".", "cluster", ".", "get_pydruid_client", "(", ")", "client", ".", "topn", "(", "*", "*", "qry", ")", "df", "=", "client", ".", "export_pandas", "(", ")", "return", "[", "row", "[", "column_name", "]", "for", "row", "in", "df", ".", "to_records", "(", "index", "=", "False", ")", "]" ]
Retrieve some values for the given column
[ "Retrieve", "some", "values", "for", "the", "given", "column" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/connectors/druid/models.py#L857-L883
21,427
apache/incubator-superset
superset/connectors/druid/models.py
DruidDatasource.get_aggregations
def get_aggregations(metrics_dict, saved_metrics, adhoc_metrics=[]): """ Returns a dictionary of aggregation metric names to aggregation json objects :param metrics_dict: dictionary of all the metrics :param saved_metrics: list of saved metric names :param adhoc_metrics: list of adhoc metric names :raise SupersetException: if one or more metric names are not aggregations """ aggregations = OrderedDict() invalid_metric_names = [] for metric_name in saved_metrics: if metric_name in metrics_dict: metric = metrics_dict[metric_name] if metric.metric_type == POST_AGG_TYPE: invalid_metric_names.append(metric_name) else: aggregations[metric_name] = metric.json_obj else: invalid_metric_names.append(metric_name) if len(invalid_metric_names) > 0: raise SupersetException( _('Metric(s) {} must be aggregations.').format(invalid_metric_names)) for adhoc_metric in adhoc_metrics: aggregations[adhoc_metric['label']] = { 'fieldName': adhoc_metric['column']['column_name'], 'fieldNames': [adhoc_metric['column']['column_name']], 'type': DruidDatasource.druid_type_from_adhoc_metric(adhoc_metric), 'name': adhoc_metric['label'], } return aggregations
python
def get_aggregations(metrics_dict, saved_metrics, adhoc_metrics=[]): """ Returns a dictionary of aggregation metric names to aggregation json objects :param metrics_dict: dictionary of all the metrics :param saved_metrics: list of saved metric names :param adhoc_metrics: list of adhoc metric names :raise SupersetException: if one or more metric names are not aggregations """ aggregations = OrderedDict() invalid_metric_names = [] for metric_name in saved_metrics: if metric_name in metrics_dict: metric = metrics_dict[metric_name] if metric.metric_type == POST_AGG_TYPE: invalid_metric_names.append(metric_name) else: aggregations[metric_name] = metric.json_obj else: invalid_metric_names.append(metric_name) if len(invalid_metric_names) > 0: raise SupersetException( _('Metric(s) {} must be aggregations.').format(invalid_metric_names)) for adhoc_metric in adhoc_metrics: aggregations[adhoc_metric['label']] = { 'fieldName': adhoc_metric['column']['column_name'], 'fieldNames': [adhoc_metric['column']['column_name']], 'type': DruidDatasource.druid_type_from_adhoc_metric(adhoc_metric), 'name': adhoc_metric['label'], } return aggregations
[ "def", "get_aggregations", "(", "metrics_dict", ",", "saved_metrics", ",", "adhoc_metrics", "=", "[", "]", ")", ":", "aggregations", "=", "OrderedDict", "(", ")", "invalid_metric_names", "=", "[", "]", "for", "metric_name", "in", "saved_metrics", ":", "if", "metric_name", "in", "metrics_dict", ":", "metric", "=", "metrics_dict", "[", "metric_name", "]", "if", "metric", ".", "metric_type", "==", "POST_AGG_TYPE", ":", "invalid_metric_names", ".", "append", "(", "metric_name", ")", "else", ":", "aggregations", "[", "metric_name", "]", "=", "metric", ".", "json_obj", "else", ":", "invalid_metric_names", ".", "append", "(", "metric_name", ")", "if", "len", "(", "invalid_metric_names", ")", ">", "0", ":", "raise", "SupersetException", "(", "_", "(", "'Metric(s) {} must be aggregations.'", ")", ".", "format", "(", "invalid_metric_names", ")", ")", "for", "adhoc_metric", "in", "adhoc_metrics", ":", "aggregations", "[", "adhoc_metric", "[", "'label'", "]", "]", "=", "{", "'fieldName'", ":", "adhoc_metric", "[", "'column'", "]", "[", "'column_name'", "]", ",", "'fieldNames'", ":", "[", "adhoc_metric", "[", "'column'", "]", "[", "'column_name'", "]", "]", ",", "'type'", ":", "DruidDatasource", ".", "druid_type_from_adhoc_metric", "(", "adhoc_metric", ")", ",", "'name'", ":", "adhoc_metric", "[", "'label'", "]", ",", "}", "return", "aggregations" ]
Returns a dictionary of aggregation metric names to aggregation json objects :param metrics_dict: dictionary of all the metrics :param saved_metrics: list of saved metric names :param adhoc_metrics: list of adhoc metric names :raise SupersetException: if one or more metric names are not aggregations
[ "Returns", "a", "dictionary", "of", "aggregation", "metric", "names", "to", "aggregation", "json", "objects" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/connectors/druid/models.py#L940-L970
21,428
apache/incubator-superset
superset/connectors/druid/models.py
DruidDatasource._dimensions_to_values
def _dimensions_to_values(dimensions): """ Replace dimensions specs with their `dimension` values, and ignore those without """ values = [] for dimension in dimensions: if isinstance(dimension, dict): if 'extractionFn' in dimension: values.append(dimension) elif 'dimension' in dimension: values.append(dimension['dimension']) else: values.append(dimension) return values
python
def _dimensions_to_values(dimensions): """ Replace dimensions specs with their `dimension` values, and ignore those without """ values = [] for dimension in dimensions: if isinstance(dimension, dict): if 'extractionFn' in dimension: values.append(dimension) elif 'dimension' in dimension: values.append(dimension['dimension']) else: values.append(dimension) return values
[ "def", "_dimensions_to_values", "(", "dimensions", ")", ":", "values", "=", "[", "]", "for", "dimension", "in", "dimensions", ":", "if", "isinstance", "(", "dimension", ",", "dict", ")", ":", "if", "'extractionFn'", "in", "dimension", ":", "values", ".", "append", "(", "dimension", ")", "elif", "'dimension'", "in", "dimension", ":", "values", ".", "append", "(", "dimension", "[", "'dimension'", "]", ")", "else", ":", "values", ".", "append", "(", "dimension", ")", "return", "values" ]
Replace dimensions specs with their `dimension` values, and ignore those without
[ "Replace", "dimensions", "specs", "with", "their", "dimension", "values", "and", "ignore", "those", "without" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/connectors/druid/models.py#L1010-L1025
21,429
apache/incubator-superset
superset/connectors/druid/models.py
DruidDatasource.homogenize_types
def homogenize_types(df, groupby_cols): """Converting all GROUPBY columns to strings When grouping by a numeric (say FLOAT) column, pydruid returns strings in the dataframe. This creates issues downstream related to having mixed types in the dataframe Here we replace None with <NULL> and make the whole series a str instead of an object. """ for col in groupby_cols: df[col] = df[col].fillna('<NULL>').astype('unicode') return df
python
def homogenize_types(df, groupby_cols): """Converting all GROUPBY columns to strings When grouping by a numeric (say FLOAT) column, pydruid returns strings in the dataframe. This creates issues downstream related to having mixed types in the dataframe Here we replace None with <NULL> and make the whole series a str instead of an object. """ for col in groupby_cols: df[col] = df[col].fillna('<NULL>').astype('unicode') return df
[ "def", "homogenize_types", "(", "df", ",", "groupby_cols", ")", ":", "for", "col", "in", "groupby_cols", ":", "df", "[", "col", "]", "=", "df", "[", "col", "]", ".", "fillna", "(", "'<NULL>'", ")", ".", "astype", "(", "'unicode'", ")", "return", "df" ]
Converting all GROUPBY columns to strings When grouping by a numeric (say FLOAT) column, pydruid returns strings in the dataframe. This creates issues downstream related to having mixed types in the dataframe Here we replace None with <NULL> and make the whole series a str instead of an object.
[ "Converting", "all", "GROUPBY", "columns", "to", "strings" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/connectors/druid/models.py#L1271-L1283
21,430
apache/incubator-superset
contrib/docker/superset_config.py
get_env_variable
def get_env_variable(var_name, default=None): """Get the environment variable or raise exception.""" try: return os.environ[var_name] except KeyError: if default is not None: return default else: error_msg = 'The environment variable {} was missing, abort...'\ .format(var_name) raise EnvironmentError(error_msg)
python
def get_env_variable(var_name, default=None): """Get the environment variable or raise exception.""" try: return os.environ[var_name] except KeyError: if default is not None: return default else: error_msg = 'The environment variable {} was missing, abort...'\ .format(var_name) raise EnvironmentError(error_msg)
[ "def", "get_env_variable", "(", "var_name", ",", "default", "=", "None", ")", ":", "try", ":", "return", "os", ".", "environ", "[", "var_name", "]", "except", "KeyError", ":", "if", "default", "is", "not", "None", ":", "return", "default", "else", ":", "error_msg", "=", "'The environment variable {} was missing, abort...'", ".", "format", "(", "var_name", ")", "raise", "EnvironmentError", "(", "error_msg", ")" ]
Get the environment variable or raise exception.
[ "Get", "the", "environment", "variable", "or", "raise", "exception", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/contrib/docker/superset_config.py#L20-L30
21,431
apache/incubator-superset
superset/connectors/connector_registry.py
ConnectorRegistry.get_eager_datasource
def get_eager_datasource(cls, session, datasource_type, datasource_id): """Returns datasource with columns and metrics.""" datasource_class = ConnectorRegistry.sources[datasource_type] return ( session.query(datasource_class) .options( subqueryload(datasource_class.columns), subqueryload(datasource_class.metrics), ) .filter_by(id=datasource_id) .one() )
python
def get_eager_datasource(cls, session, datasource_type, datasource_id): """Returns datasource with columns and metrics.""" datasource_class = ConnectorRegistry.sources[datasource_type] return ( session.query(datasource_class) .options( subqueryload(datasource_class.columns), subqueryload(datasource_class.metrics), ) .filter_by(id=datasource_id) .one() )
[ "def", "get_eager_datasource", "(", "cls", ",", "session", ",", "datasource_type", ",", "datasource_id", ")", ":", "datasource_class", "=", "ConnectorRegistry", ".", "sources", "[", "datasource_type", "]", "return", "(", "session", ".", "query", "(", "datasource_class", ")", ".", "options", "(", "subqueryload", "(", "datasource_class", ".", "columns", ")", ",", "subqueryload", "(", "datasource_class", ".", "metrics", ")", ",", ")", ".", "filter_by", "(", "id", "=", "datasource_id", ")", ".", "one", "(", ")", ")" ]
Returns datasource with columns and metrics.
[ "Returns", "datasource", "with", "columns", "and", "metrics", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/connectors/connector_registry.py#L76-L87
21,432
apache/incubator-superset
superset/data/misc_dashboard.py
load_misc_dashboard
def load_misc_dashboard(): """Loading a dashboard featuring misc charts""" print('Creating the dashboard') db.session.expunge_all() dash = db.session.query(Dash).filter_by(slug=DASH_SLUG).first() if not dash: dash = Dash() js = textwrap.dedent("""\ { "CHART-BkeVbh8ANQ": { "children": [], "id": "CHART-BkeVbh8ANQ", "meta": { "chartId": 4004, "height": 34, "sliceName": "Multi Line", "width": 8 }, "type": "CHART" }, "CHART-H1HYNzEANX": { "children": [], "id": "CHART-H1HYNzEANX", "meta": { "chartId": 3940, "height": 50, "sliceName": "Energy Sankey", "width": 6 }, "type": "CHART" }, "CHART-HJOYVMV0E7": { "children": [], "id": "CHART-HJOYVMV0E7", "meta": { "chartId": 3969, "height": 63, "sliceName": "Mapbox Long/Lat", "width": 6 }, "type": "CHART" }, "CHART-S1WYNz4AVX": { "children": [], "id": "CHART-S1WYNz4AVX", "meta": { "chartId": 3989, "height": 25, "sliceName": "Parallel Coordinates", "width": 4 }, "type": "CHART" }, "CHART-r19KVMNCE7": { "children": [], "id": "CHART-r19KVMNCE7", "meta": { "chartId": 3971, "height": 34, "sliceName": "Calendar Heatmap multiformat 0", "width": 4 }, "type": "CHART" }, "CHART-rJ4K4GV04Q": { "children": [], "id": "CHART-rJ4K4GV04Q", "meta": { "chartId": 3941, "height": 63, "sliceName": "Energy Force Layout", "width": 6 }, "type": "CHART" }, "CHART-rkgF4G4A4X": { "children": [], "id": "CHART-rkgF4G4A4X", "meta": { "chartId": 3970, "height": 25, "sliceName": "Birth in France by department in 2016", "width": 8 }, "type": "CHART" }, "CHART-rywK4GVR4X": { "children": [], "id": "CHART-rywK4GVR4X", "meta": { "chartId": 3942, "height": 50, "sliceName": "Heatmap", "width": 6 }, "type": "CHART" }, "COLUMN-ByUFVf40EQ": { "children": [ "CHART-rywK4GVR4X", "CHART-HJOYVMV0E7" ], "id": "COLUMN-ByUFVf40EQ", "meta": { "background": "BACKGROUND_TRANSPARENT", "width": 6 }, "type": "COLUMN" }, "COLUMN-rkmYVGN04Q": { "children": [ "CHART-rJ4K4GV04Q", "CHART-H1HYNzEANX" ], "id": "COLUMN-rkmYVGN04Q", "meta": { "background": "BACKGROUND_TRANSPARENT", "width": 6 }, "type": "COLUMN" }, "GRID_ID": { "children": [ "ROW-SytNzNA4X", "ROW-S1MK4M4A4X", "ROW-HkFFEzVRVm" ], "id": "GRID_ID", "type": "GRID" }, "HEADER_ID": { "id": "HEADER_ID", "meta": { "text": "Misc Charts" }, "type": "HEADER" }, "ROOT_ID": { "children": [ "GRID_ID" ], "id": "ROOT_ID", "type": "ROOT" }, "ROW-HkFFEzVRVm": { "children": [ "CHART-r19KVMNCE7", "CHART-BkeVbh8ANQ" ], "id": "ROW-HkFFEzVRVm", "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW" }, "ROW-S1MK4M4A4X": { "children": [ "COLUMN-rkmYVGN04Q", "COLUMN-ByUFVf40EQ" ], "id": "ROW-S1MK4M4A4X", "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW" }, "ROW-SytNzNA4X": { "children": [ "CHART-rkgF4G4A4X", "CHART-S1WYNz4AVX" ], "id": "ROW-SytNzNA4X", "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW" }, "DASHBOARD_VERSION_KEY": "v2" } """) pos = json.loads(js) slices = ( db.session .query(Slice) .filter(Slice.slice_name.in_(misc_dash_slices)) .all() ) slices = sorted(slices, key=lambda x: x.id) update_slice_ids(pos, slices) dash.dashboard_title = 'Misc Charts' dash.position_json = json.dumps(pos, indent=4) dash.slug = DASH_SLUG dash.slices = slices db.session.merge(dash) db.session.commit()
python
def load_misc_dashboard(): """Loading a dashboard featuring misc charts""" print('Creating the dashboard') db.session.expunge_all() dash = db.session.query(Dash).filter_by(slug=DASH_SLUG).first() if not dash: dash = Dash() js = textwrap.dedent("""\ { "CHART-BkeVbh8ANQ": { "children": [], "id": "CHART-BkeVbh8ANQ", "meta": { "chartId": 4004, "height": 34, "sliceName": "Multi Line", "width": 8 }, "type": "CHART" }, "CHART-H1HYNzEANX": { "children": [], "id": "CHART-H1HYNzEANX", "meta": { "chartId": 3940, "height": 50, "sliceName": "Energy Sankey", "width": 6 }, "type": "CHART" }, "CHART-HJOYVMV0E7": { "children": [], "id": "CHART-HJOYVMV0E7", "meta": { "chartId": 3969, "height": 63, "sliceName": "Mapbox Long/Lat", "width": 6 }, "type": "CHART" }, "CHART-S1WYNz4AVX": { "children": [], "id": "CHART-S1WYNz4AVX", "meta": { "chartId": 3989, "height": 25, "sliceName": "Parallel Coordinates", "width": 4 }, "type": "CHART" }, "CHART-r19KVMNCE7": { "children": [], "id": "CHART-r19KVMNCE7", "meta": { "chartId": 3971, "height": 34, "sliceName": "Calendar Heatmap multiformat 0", "width": 4 }, "type": "CHART" }, "CHART-rJ4K4GV04Q": { "children": [], "id": "CHART-rJ4K4GV04Q", "meta": { "chartId": 3941, "height": 63, "sliceName": "Energy Force Layout", "width": 6 }, "type": "CHART" }, "CHART-rkgF4G4A4X": { "children": [], "id": "CHART-rkgF4G4A4X", "meta": { "chartId": 3970, "height": 25, "sliceName": "Birth in France by department in 2016", "width": 8 }, "type": "CHART" }, "CHART-rywK4GVR4X": { "children": [], "id": "CHART-rywK4GVR4X", "meta": { "chartId": 3942, "height": 50, "sliceName": "Heatmap", "width": 6 }, "type": "CHART" }, "COLUMN-ByUFVf40EQ": { "children": [ "CHART-rywK4GVR4X", "CHART-HJOYVMV0E7" ], "id": "COLUMN-ByUFVf40EQ", "meta": { "background": "BACKGROUND_TRANSPARENT", "width": 6 }, "type": "COLUMN" }, "COLUMN-rkmYVGN04Q": { "children": [ "CHART-rJ4K4GV04Q", "CHART-H1HYNzEANX" ], "id": "COLUMN-rkmYVGN04Q", "meta": { "background": "BACKGROUND_TRANSPARENT", "width": 6 }, "type": "COLUMN" }, "GRID_ID": { "children": [ "ROW-SytNzNA4X", "ROW-S1MK4M4A4X", "ROW-HkFFEzVRVm" ], "id": "GRID_ID", "type": "GRID" }, "HEADER_ID": { "id": "HEADER_ID", "meta": { "text": "Misc Charts" }, "type": "HEADER" }, "ROOT_ID": { "children": [ "GRID_ID" ], "id": "ROOT_ID", "type": "ROOT" }, "ROW-HkFFEzVRVm": { "children": [ "CHART-r19KVMNCE7", "CHART-BkeVbh8ANQ" ], "id": "ROW-HkFFEzVRVm", "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW" }, "ROW-S1MK4M4A4X": { "children": [ "COLUMN-rkmYVGN04Q", "COLUMN-ByUFVf40EQ" ], "id": "ROW-S1MK4M4A4X", "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW" }, "ROW-SytNzNA4X": { "children": [ "CHART-rkgF4G4A4X", "CHART-S1WYNz4AVX" ], "id": "ROW-SytNzNA4X", "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW" }, "DASHBOARD_VERSION_KEY": "v2" } """) pos = json.loads(js) slices = ( db.session .query(Slice) .filter(Slice.slice_name.in_(misc_dash_slices)) .all() ) slices = sorted(slices, key=lambda x: x.id) update_slice_ids(pos, slices) dash.dashboard_title = 'Misc Charts' dash.position_json = json.dumps(pos, indent=4) dash.slug = DASH_SLUG dash.slices = slices db.session.merge(dash) db.session.commit()
[ "def", "load_misc_dashboard", "(", ")", ":", "print", "(", "'Creating the dashboard'", ")", "db", ".", "session", ".", "expunge_all", "(", ")", "dash", "=", "db", ".", "session", ".", "query", "(", "Dash", ")", ".", "filter_by", "(", "slug", "=", "DASH_SLUG", ")", ".", "first", "(", ")", "if", "not", "dash", ":", "dash", "=", "Dash", "(", ")", "js", "=", "textwrap", ".", "dedent", "(", "\"\"\"\\\n{\n \"CHART-BkeVbh8ANQ\": {\n \"children\": [],\n \"id\": \"CHART-BkeVbh8ANQ\",\n \"meta\": {\n \"chartId\": 4004,\n \"height\": 34,\n \"sliceName\": \"Multi Line\",\n \"width\": 8\n },\n \"type\": \"CHART\"\n },\n \"CHART-H1HYNzEANX\": {\n \"children\": [],\n \"id\": \"CHART-H1HYNzEANX\",\n \"meta\": {\n \"chartId\": 3940,\n \"height\": 50,\n \"sliceName\": \"Energy Sankey\",\n \"width\": 6\n },\n \"type\": \"CHART\"\n },\n \"CHART-HJOYVMV0E7\": {\n \"children\": [],\n \"id\": \"CHART-HJOYVMV0E7\",\n \"meta\": {\n \"chartId\": 3969,\n \"height\": 63,\n \"sliceName\": \"Mapbox Long/Lat\",\n \"width\": 6\n },\n \"type\": \"CHART\"\n },\n \"CHART-S1WYNz4AVX\": {\n \"children\": [],\n \"id\": \"CHART-S1WYNz4AVX\",\n \"meta\": {\n \"chartId\": 3989,\n \"height\": 25,\n \"sliceName\": \"Parallel Coordinates\",\n \"width\": 4\n },\n \"type\": \"CHART\"\n },\n \"CHART-r19KVMNCE7\": {\n \"children\": [],\n \"id\": \"CHART-r19KVMNCE7\",\n \"meta\": {\n \"chartId\": 3971,\n \"height\": 34,\n \"sliceName\": \"Calendar Heatmap multiformat 0\",\n \"width\": 4\n },\n \"type\": \"CHART\"\n },\n \"CHART-rJ4K4GV04Q\": {\n \"children\": [],\n \"id\": \"CHART-rJ4K4GV04Q\",\n \"meta\": {\n \"chartId\": 3941,\n \"height\": 63,\n \"sliceName\": \"Energy Force Layout\",\n \"width\": 6\n },\n \"type\": \"CHART\"\n },\n \"CHART-rkgF4G4A4X\": {\n \"children\": [],\n \"id\": \"CHART-rkgF4G4A4X\",\n \"meta\": {\n \"chartId\": 3970,\n \"height\": 25,\n \"sliceName\": \"Birth in France by department in 2016\",\n \"width\": 8\n },\n \"type\": \"CHART\"\n },\n \"CHART-rywK4GVR4X\": {\n \"children\": [],\n \"id\": \"CHART-rywK4GVR4X\",\n \"meta\": {\n \"chartId\": 3942,\n \"height\": 50,\n \"sliceName\": \"Heatmap\",\n \"width\": 6\n },\n \"type\": \"CHART\"\n },\n \"COLUMN-ByUFVf40EQ\": {\n \"children\": [\n \"CHART-rywK4GVR4X\",\n \"CHART-HJOYVMV0E7\"\n ],\n \"id\": \"COLUMN-ByUFVf40EQ\",\n \"meta\": {\n \"background\": \"BACKGROUND_TRANSPARENT\",\n \"width\": 6\n },\n \"type\": \"COLUMN\"\n },\n \"COLUMN-rkmYVGN04Q\": {\n \"children\": [\n \"CHART-rJ4K4GV04Q\",\n \"CHART-H1HYNzEANX\"\n ],\n \"id\": \"COLUMN-rkmYVGN04Q\",\n \"meta\": {\n \"background\": \"BACKGROUND_TRANSPARENT\",\n \"width\": 6\n },\n \"type\": \"COLUMN\"\n },\n \"GRID_ID\": {\n \"children\": [\n \"ROW-SytNzNA4X\",\n \"ROW-S1MK4M4A4X\",\n \"ROW-HkFFEzVRVm\"\n ],\n \"id\": \"GRID_ID\",\n \"type\": \"GRID\"\n },\n \"HEADER_ID\": {\n \"id\": \"HEADER_ID\",\n \"meta\": {\n \"text\": \"Misc Charts\"\n },\n \"type\": \"HEADER\"\n },\n \"ROOT_ID\": {\n \"children\": [\n \"GRID_ID\"\n ],\n \"id\": \"ROOT_ID\",\n \"type\": \"ROOT\"\n },\n \"ROW-HkFFEzVRVm\": {\n \"children\": [\n \"CHART-r19KVMNCE7\",\n \"CHART-BkeVbh8ANQ\"\n ],\n \"id\": \"ROW-HkFFEzVRVm\",\n \"meta\": {\n \"background\": \"BACKGROUND_TRANSPARENT\"\n },\n \"type\": \"ROW\"\n },\n \"ROW-S1MK4M4A4X\": {\n \"children\": [\n \"COLUMN-rkmYVGN04Q\",\n \"COLUMN-ByUFVf40EQ\"\n ],\n \"id\": \"ROW-S1MK4M4A4X\",\n \"meta\": {\n \"background\": \"BACKGROUND_TRANSPARENT\"\n },\n \"type\": \"ROW\"\n },\n \"ROW-SytNzNA4X\": {\n \"children\": [\n \"CHART-rkgF4G4A4X\",\n \"CHART-S1WYNz4AVX\"\n ],\n \"id\": \"ROW-SytNzNA4X\",\n \"meta\": {\n \"background\": \"BACKGROUND_TRANSPARENT\"\n },\n \"type\": \"ROW\"\n },\n \"DASHBOARD_VERSION_KEY\": \"v2\"\n}\n \"\"\"", ")", "pos", "=", "json", ".", "loads", "(", "js", ")", "slices", "=", "(", "db", ".", "session", ".", "query", "(", "Slice", ")", ".", "filter", "(", "Slice", ".", "slice_name", ".", "in_", "(", "misc_dash_slices", ")", ")", ".", "all", "(", ")", ")", "slices", "=", "sorted", "(", "slices", ",", "key", "=", "lambda", "x", ":", "x", ".", "id", ")", "update_slice_ids", "(", "pos", ",", "slices", ")", "dash", ".", "dashboard_title", "=", "'Misc Charts'", "dash", ".", "position_json", "=", "json", ".", "dumps", "(", "pos", ",", "indent", "=", "4", ")", "dash", ".", "slug", "=", "DASH_SLUG", "dash", ".", "slices", "=", "slices", "db", ".", "session", ".", "merge", "(", "dash", ")", "db", ".", "session", ".", "commit", "(", ")" ]
Loading a dashboard featuring misc charts
[ "Loading", "a", "dashboard", "featuring", "misc", "charts" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/data/misc_dashboard.py#L32-L228
21,433
apache/incubator-superset
superset/data/country_map.py
load_country_map_data
def load_country_map_data(): """Loading data for map with country map""" csv_bytes = get_example_data( 'birth_france_data_for_country_map.csv', is_gzip=False, make_bytes=True) data = pd.read_csv(csv_bytes, encoding='utf-8') data['dttm'] = datetime.datetime.now().date() data.to_sql( # pylint: disable=no-member 'birth_france_by_region', db.engine, if_exists='replace', chunksize=500, dtype={ 'DEPT_ID': String(10), '2003': BigInteger, '2004': BigInteger, '2005': BigInteger, '2006': BigInteger, '2007': BigInteger, '2008': BigInteger, '2009': BigInteger, '2010': BigInteger, '2011': BigInteger, '2012': BigInteger, '2013': BigInteger, '2014': BigInteger, 'dttm': Date(), }, index=False) print('Done loading table!') print('-' * 80) print('Creating table reference') obj = db.session.query(TBL).filter_by(table_name='birth_france_by_region').first() if not obj: obj = TBL(table_name='birth_france_by_region') obj.main_dttm_col = 'dttm' obj.database = utils.get_or_create_main_db() if not any(col.metric_name == 'avg__2004' for col in obj.metrics): obj.metrics.append(SqlMetric( metric_name='avg__2004', expression='AVG(2004)', )) db.session.merge(obj) db.session.commit() obj.fetch_metadata() tbl = obj slice_data = { 'granularity_sqla': '', 'since': '', 'until': '', 'where': '', 'viz_type': 'country_map', 'entity': 'DEPT_ID', 'metric': { 'expressionType': 'SIMPLE', 'column': { 'type': 'INT', 'column_name': '2004', }, 'aggregate': 'AVG', 'label': 'Boys', 'optionName': 'metric_112342', }, 'row_limit': 500000, } print('Creating a slice') slc = Slice( slice_name='Birth in France by department in 2016', viz_type='country_map', datasource_type='table', datasource_id=tbl.id, params=get_slice_json(slice_data), ) misc_dash_slices.add(slc.slice_name) merge_slice(slc)
python
def load_country_map_data(): """Loading data for map with country map""" csv_bytes = get_example_data( 'birth_france_data_for_country_map.csv', is_gzip=False, make_bytes=True) data = pd.read_csv(csv_bytes, encoding='utf-8') data['dttm'] = datetime.datetime.now().date() data.to_sql( # pylint: disable=no-member 'birth_france_by_region', db.engine, if_exists='replace', chunksize=500, dtype={ 'DEPT_ID': String(10), '2003': BigInteger, '2004': BigInteger, '2005': BigInteger, '2006': BigInteger, '2007': BigInteger, '2008': BigInteger, '2009': BigInteger, '2010': BigInteger, '2011': BigInteger, '2012': BigInteger, '2013': BigInteger, '2014': BigInteger, 'dttm': Date(), }, index=False) print('Done loading table!') print('-' * 80) print('Creating table reference') obj = db.session.query(TBL).filter_by(table_name='birth_france_by_region').first() if not obj: obj = TBL(table_name='birth_france_by_region') obj.main_dttm_col = 'dttm' obj.database = utils.get_or_create_main_db() if not any(col.metric_name == 'avg__2004' for col in obj.metrics): obj.metrics.append(SqlMetric( metric_name='avg__2004', expression='AVG(2004)', )) db.session.merge(obj) db.session.commit() obj.fetch_metadata() tbl = obj slice_data = { 'granularity_sqla': '', 'since': '', 'until': '', 'where': '', 'viz_type': 'country_map', 'entity': 'DEPT_ID', 'metric': { 'expressionType': 'SIMPLE', 'column': { 'type': 'INT', 'column_name': '2004', }, 'aggregate': 'AVG', 'label': 'Boys', 'optionName': 'metric_112342', }, 'row_limit': 500000, } print('Creating a slice') slc = Slice( slice_name='Birth in France by department in 2016', viz_type='country_map', datasource_type='table', datasource_id=tbl.id, params=get_slice_json(slice_data), ) misc_dash_slices.add(slc.slice_name) merge_slice(slc)
[ "def", "load_country_map_data", "(", ")", ":", "csv_bytes", "=", "get_example_data", "(", "'birth_france_data_for_country_map.csv'", ",", "is_gzip", "=", "False", ",", "make_bytes", "=", "True", ")", "data", "=", "pd", ".", "read_csv", "(", "csv_bytes", ",", "encoding", "=", "'utf-8'", ")", "data", "[", "'dttm'", "]", "=", "datetime", ".", "datetime", ".", "now", "(", ")", ".", "date", "(", ")", "data", ".", "to_sql", "(", "# pylint: disable=no-member", "'birth_france_by_region'", ",", "db", ".", "engine", ",", "if_exists", "=", "'replace'", ",", "chunksize", "=", "500", ",", "dtype", "=", "{", "'DEPT_ID'", ":", "String", "(", "10", ")", ",", "'2003'", ":", "BigInteger", ",", "'2004'", ":", "BigInteger", ",", "'2005'", ":", "BigInteger", ",", "'2006'", ":", "BigInteger", ",", "'2007'", ":", "BigInteger", ",", "'2008'", ":", "BigInteger", ",", "'2009'", ":", "BigInteger", ",", "'2010'", ":", "BigInteger", ",", "'2011'", ":", "BigInteger", ",", "'2012'", ":", "BigInteger", ",", "'2013'", ":", "BigInteger", ",", "'2014'", ":", "BigInteger", ",", "'dttm'", ":", "Date", "(", ")", ",", "}", ",", "index", "=", "False", ")", "print", "(", "'Done loading table!'", ")", "print", "(", "'-'", "*", "80", ")", "print", "(", "'Creating table reference'", ")", "obj", "=", "db", ".", "session", ".", "query", "(", "TBL", ")", ".", "filter_by", "(", "table_name", "=", "'birth_france_by_region'", ")", ".", "first", "(", ")", "if", "not", "obj", ":", "obj", "=", "TBL", "(", "table_name", "=", "'birth_france_by_region'", ")", "obj", ".", "main_dttm_col", "=", "'dttm'", "obj", ".", "database", "=", "utils", ".", "get_or_create_main_db", "(", ")", "if", "not", "any", "(", "col", ".", "metric_name", "==", "'avg__2004'", "for", "col", "in", "obj", ".", "metrics", ")", ":", "obj", ".", "metrics", ".", "append", "(", "SqlMetric", "(", "metric_name", "=", "'avg__2004'", ",", "expression", "=", "'AVG(2004)'", ",", ")", ")", "db", ".", "session", ".", "merge", "(", "obj", ")", "db", ".", "session", ".", "commit", "(", ")", "obj", ".", "fetch_metadata", "(", ")", "tbl", "=", "obj", "slice_data", "=", "{", "'granularity_sqla'", ":", "''", ",", "'since'", ":", "''", ",", "'until'", ":", "''", ",", "'where'", ":", "''", ",", "'viz_type'", ":", "'country_map'", ",", "'entity'", ":", "'DEPT_ID'", ",", "'metric'", ":", "{", "'expressionType'", ":", "'SIMPLE'", ",", "'column'", ":", "{", "'type'", ":", "'INT'", ",", "'column_name'", ":", "'2004'", ",", "}", ",", "'aggregate'", ":", "'AVG'", ",", "'label'", ":", "'Boys'", ",", "'optionName'", ":", "'metric_112342'", ",", "}", ",", "'row_limit'", ":", "500000", ",", "}", "print", "(", "'Creating a slice'", ")", "slc", "=", "Slice", "(", "slice_name", "=", "'Birth in France by department in 2016'", ",", "viz_type", "=", "'country_map'", ",", "datasource_type", "=", "'table'", ",", "datasource_id", "=", "tbl", ".", "id", ",", "params", "=", "get_slice_json", "(", "slice_data", ")", ",", ")", "misc_dash_slices", ".", "add", "(", "slc", ".", "slice_name", ")", "merge_slice", "(", "slc", ")" ]
Loading data for map with country map
[ "Loading", "data", "for", "map", "with", "country", "map" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/data/country_map.py#L35-L110
21,434
apache/incubator-superset
superset/sql_parse.py
ParsedQuery.get_statements
def get_statements(self): """Returns a list of SQL statements as strings, stripped""" statements = [] for statement in self._parsed: if statement: sql = str(statement).strip(' \n;\t') if sql: statements.append(sql) return statements
python
def get_statements(self): """Returns a list of SQL statements as strings, stripped""" statements = [] for statement in self._parsed: if statement: sql = str(statement).strip(' \n;\t') if sql: statements.append(sql) return statements
[ "def", "get_statements", "(", "self", ")", ":", "statements", "=", "[", "]", "for", "statement", "in", "self", ".", "_parsed", ":", "if", "statement", ":", "sql", "=", "str", "(", "statement", ")", ".", "strip", "(", "' \\n;\\t'", ")", "if", "sql", ":", "statements", ".", "append", "(", "sql", ")", "return", "statements" ]
Returns a list of SQL statements as strings, stripped
[ "Returns", "a", "list", "of", "SQL", "statements", "as", "strings", "stripped" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/sql_parse.py#L67-L75
21,435
apache/incubator-superset
superset/sql_parse.py
ParsedQuery.as_create_table
def as_create_table(self, table_name, overwrite=False): """Reformats the query into the create table as query. Works only for the single select SQL statements, in all other cases the sql query is not modified. :param superset_query: string, sql query that will be executed :param table_name: string, will contain the results of the query execution :param overwrite, boolean, table table_name will be dropped if true :return: string, create table as query """ exec_sql = '' sql = self.stripped() if overwrite: exec_sql = f'DROP TABLE IF EXISTS {table_name};\n' exec_sql += f'CREATE TABLE {table_name} AS \n{sql}' return exec_sql
python
def as_create_table(self, table_name, overwrite=False): """Reformats the query into the create table as query. Works only for the single select SQL statements, in all other cases the sql query is not modified. :param superset_query: string, sql query that will be executed :param table_name: string, will contain the results of the query execution :param overwrite, boolean, table table_name will be dropped if true :return: string, create table as query """ exec_sql = '' sql = self.stripped() if overwrite: exec_sql = f'DROP TABLE IF EXISTS {table_name};\n' exec_sql += f'CREATE TABLE {table_name} AS \n{sql}' return exec_sql
[ "def", "as_create_table", "(", "self", ",", "table_name", ",", "overwrite", "=", "False", ")", ":", "exec_sql", "=", "''", "sql", "=", "self", ".", "stripped", "(", ")", "if", "overwrite", ":", "exec_sql", "=", "f'DROP TABLE IF EXISTS {table_name};\\n'", "exec_sql", "+=", "f'CREATE TABLE {table_name} AS \\n{sql}'", "return", "exec_sql" ]
Reformats the query into the create table as query. Works only for the single select SQL statements, in all other cases the sql query is not modified. :param superset_query: string, sql query that will be executed :param table_name: string, will contain the results of the query execution :param overwrite, boolean, table table_name will be dropped if true :return: string, create table as query
[ "Reformats", "the", "query", "into", "the", "create", "table", "as", "query", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/sql_parse.py#L105-L121
21,436
apache/incubator-superset
superset/sql_parse.py
ParsedQuery.get_query_with_new_limit
def get_query_with_new_limit(self, new_limit): """returns the query with the specified limit""" """does not change the underlying query""" if not self._limit: return self.sql + ' LIMIT ' + str(new_limit) limit_pos = None tokens = self._parsed[0].tokens # Add all items to before_str until there is a limit for pos, item in enumerate(tokens): if item.ttype in Keyword and item.value.lower() == 'limit': limit_pos = pos break limit = tokens[limit_pos + 2] if limit.ttype == sqlparse.tokens.Literal.Number.Integer: tokens[limit_pos + 2].value = new_limit elif limit.is_group: tokens[limit_pos + 2].value = ( '{}, {}'.format(next(limit.get_identifiers()), new_limit) ) str_res = '' for i in tokens: str_res += str(i.value) return str_res
python
def get_query_with_new_limit(self, new_limit): """returns the query with the specified limit""" """does not change the underlying query""" if not self._limit: return self.sql + ' LIMIT ' + str(new_limit) limit_pos = None tokens = self._parsed[0].tokens # Add all items to before_str until there is a limit for pos, item in enumerate(tokens): if item.ttype in Keyword and item.value.lower() == 'limit': limit_pos = pos break limit = tokens[limit_pos + 2] if limit.ttype == sqlparse.tokens.Literal.Number.Integer: tokens[limit_pos + 2].value = new_limit elif limit.is_group: tokens[limit_pos + 2].value = ( '{}, {}'.format(next(limit.get_identifiers()), new_limit) ) str_res = '' for i in tokens: str_res += str(i.value) return str_res
[ "def", "get_query_with_new_limit", "(", "self", ",", "new_limit", ")", ":", "\"\"\"does not change the underlying query\"\"\"", "if", "not", "self", ".", "_limit", ":", "return", "self", ".", "sql", "+", "' LIMIT '", "+", "str", "(", "new_limit", ")", "limit_pos", "=", "None", "tokens", "=", "self", ".", "_parsed", "[", "0", "]", ".", "tokens", "# Add all items to before_str until there is a limit", "for", "pos", ",", "item", "in", "enumerate", "(", "tokens", ")", ":", "if", "item", ".", "ttype", "in", "Keyword", "and", "item", ".", "value", ".", "lower", "(", ")", "==", "'limit'", ":", "limit_pos", "=", "pos", "break", "limit", "=", "tokens", "[", "limit_pos", "+", "2", "]", "if", "limit", ".", "ttype", "==", "sqlparse", ".", "tokens", ".", "Literal", ".", "Number", ".", "Integer", ":", "tokens", "[", "limit_pos", "+", "2", "]", ".", "value", "=", "new_limit", "elif", "limit", ".", "is_group", ":", "tokens", "[", "limit_pos", "+", "2", "]", ".", "value", "=", "(", "'{}, {}'", ".", "format", "(", "next", "(", "limit", ".", "get_identifiers", "(", ")", ")", ",", "new_limit", ")", ")", "str_res", "=", "''", "for", "i", "in", "tokens", ":", "str_res", "+=", "str", "(", "i", ".", "value", ")", "return", "str_res" ]
returns the query with the specified limit
[ "returns", "the", "query", "with", "the", "specified", "limit" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/sql_parse.py#L166-L189
21,437
apache/incubator-superset
superset/jinja_context.py
url_param
def url_param(param, default=None): """Read a url or post parameter and use it in your SQL Lab query When in SQL Lab, it's possible to add arbitrary URL "query string" parameters, and use those in your SQL code. For instance you can alter your url and add `?foo=bar`, as in `{domain}/superset/sqllab?foo=bar`. Then if your query is something like SELECT * FROM foo = '{{ url_param('foo') }}', it will be parsed at runtime and replaced by the value in the URL. As you create a visualization form this SQL Lab query, you can pass parameters in the explore view as well as from the dashboard, and it should carry through to your queries. :param param: the parameter to lookup :type param: str :param default: the value to return in the absence of the parameter :type default: str """ if request.args.get(param): return request.args.get(param, default) # Supporting POST as well as get if request.form.get('form_data'): form_data = json.loads(request.form.get('form_data')) url_params = form_data.get('url_params') or {} return url_params.get(param, default) return default
python
def url_param(param, default=None): """Read a url or post parameter and use it in your SQL Lab query When in SQL Lab, it's possible to add arbitrary URL "query string" parameters, and use those in your SQL code. For instance you can alter your url and add `?foo=bar`, as in `{domain}/superset/sqllab?foo=bar`. Then if your query is something like SELECT * FROM foo = '{{ url_param('foo') }}', it will be parsed at runtime and replaced by the value in the URL. As you create a visualization form this SQL Lab query, you can pass parameters in the explore view as well as from the dashboard, and it should carry through to your queries. :param param: the parameter to lookup :type param: str :param default: the value to return in the absence of the parameter :type default: str """ if request.args.get(param): return request.args.get(param, default) # Supporting POST as well as get if request.form.get('form_data'): form_data = json.loads(request.form.get('form_data')) url_params = form_data.get('url_params') or {} return url_params.get(param, default) return default
[ "def", "url_param", "(", "param", ",", "default", "=", "None", ")", ":", "if", "request", ".", "args", ".", "get", "(", "param", ")", ":", "return", "request", ".", "args", ".", "get", "(", "param", ",", "default", ")", "# Supporting POST as well as get", "if", "request", ".", "form", ".", "get", "(", "'form_data'", ")", ":", "form_data", "=", "json", ".", "loads", "(", "request", ".", "form", ".", "get", "(", "'form_data'", ")", ")", "url_params", "=", "form_data", ".", "get", "(", "'url_params'", ")", "or", "{", "}", "return", "url_params", ".", "get", "(", "param", ",", "default", ")", "return", "default" ]
Read a url or post parameter and use it in your SQL Lab query When in SQL Lab, it's possible to add arbitrary URL "query string" parameters, and use those in your SQL code. For instance you can alter your url and add `?foo=bar`, as in `{domain}/superset/sqllab?foo=bar`. Then if your query is something like SELECT * FROM foo = '{{ url_param('foo') }}', it will be parsed at runtime and replaced by the value in the URL. As you create a visualization form this SQL Lab query, you can pass parameters in the explore view as well as from the dashboard, and it should carry through to your queries. :param param: the parameter to lookup :type param: str :param default: the value to return in the absence of the parameter :type default: str
[ "Read", "a", "url", "or", "post", "parameter", "and", "use", "it", "in", "your", "SQL", "Lab", "query" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/jinja_context.py#L44-L70
21,438
apache/incubator-superset
superset/jinja_context.py
filter_values
def filter_values(column, default=None): """ Gets a values for a particular filter as a list This is useful if: - you want to use a filter box to filter a query where the name of filter box column doesn't match the one in the select statement - you want to have the ability for filter inside the main query for speed purposes This searches for "filters" and "extra_filters" in form_data for a match Usage example: SELECT action, count(*) as times FROM logs WHERE action in ( {{ "'" + "','".join(filter_values('action_type')) + "'" }} ) GROUP BY 1 :param column: column/filter name to lookup :type column: str :param default: default value to return if there's no matching columns :type default: str :return: returns a list of filter values :type: list """ form_data = json.loads(request.form.get('form_data', '{}')) return_val = [] for filter_type in ['filters', 'extra_filters']: if filter_type not in form_data: continue for f in form_data[filter_type]: if f['col'] == column: for v in f['val']: return_val.append(v) if return_val: return return_val if default: return [default] else: return []
python
def filter_values(column, default=None): """ Gets a values for a particular filter as a list This is useful if: - you want to use a filter box to filter a query where the name of filter box column doesn't match the one in the select statement - you want to have the ability for filter inside the main query for speed purposes This searches for "filters" and "extra_filters" in form_data for a match Usage example: SELECT action, count(*) as times FROM logs WHERE action in ( {{ "'" + "','".join(filter_values('action_type')) + "'" }} ) GROUP BY 1 :param column: column/filter name to lookup :type column: str :param default: default value to return if there's no matching columns :type default: str :return: returns a list of filter values :type: list """ form_data = json.loads(request.form.get('form_data', '{}')) return_val = [] for filter_type in ['filters', 'extra_filters']: if filter_type not in form_data: continue for f in form_data[filter_type]: if f['col'] == column: for v in f['val']: return_val.append(v) if return_val: return return_val if default: return [default] else: return []
[ "def", "filter_values", "(", "column", ",", "default", "=", "None", ")", ":", "form_data", "=", "json", ".", "loads", "(", "request", ".", "form", ".", "get", "(", "'form_data'", ",", "'{}'", ")", ")", "return_val", "=", "[", "]", "for", "filter_type", "in", "[", "'filters'", ",", "'extra_filters'", "]", ":", "if", "filter_type", "not", "in", "form_data", ":", "continue", "for", "f", "in", "form_data", "[", "filter_type", "]", ":", "if", "f", "[", "'col'", "]", "==", "column", ":", "for", "v", "in", "f", "[", "'val'", "]", ":", "return_val", ".", "append", "(", "v", ")", "if", "return_val", ":", "return", "return_val", "if", "default", ":", "return", "[", "default", "]", "else", ":", "return", "[", "]" ]
Gets a values for a particular filter as a list This is useful if: - you want to use a filter box to filter a query where the name of filter box column doesn't match the one in the select statement - you want to have the ability for filter inside the main query for speed purposes This searches for "filters" and "extra_filters" in form_data for a match Usage example: SELECT action, count(*) as times FROM logs WHERE action in ( {{ "'" + "','".join(filter_values('action_type')) + "'" }} ) GROUP BY 1 :param column: column/filter name to lookup :type column: str :param default: default value to return if there's no matching columns :type default: str :return: returns a list of filter values :type: list
[ "Gets", "a", "values", "for", "a", "particular", "filter", "as", "a", "list" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/jinja_context.py#L85-L125
21,439
apache/incubator-superset
superset/jinja_context.py
BaseTemplateProcessor.process_template
def process_template(self, sql, **kwargs): """Processes a sql template >>> sql = "SELECT '{{ datetime(2017, 1, 1).isoformat() }}'" >>> process_template(sql) "SELECT '2017-01-01T00:00:00'" """ template = self.env.from_string(sql) kwargs.update(self.context) return template.render(kwargs)
python
def process_template(self, sql, **kwargs): """Processes a sql template >>> sql = "SELECT '{{ datetime(2017, 1, 1).isoformat() }}'" >>> process_template(sql) "SELECT '2017-01-01T00:00:00'" """ template = self.env.from_string(sql) kwargs.update(self.context) return template.render(kwargs)
[ "def", "process_template", "(", "self", ",", "sql", ",", "*", "*", "kwargs", ")", ":", "template", "=", "self", ".", "env", ".", "from_string", "(", "sql", ")", "kwargs", ".", "update", "(", "self", ".", "context", ")", "return", "template", ".", "render", "(", "kwargs", ")" ]
Processes a sql template >>> sql = "SELECT '{{ datetime(2017, 1, 1).isoformat() }}'" >>> process_template(sql) "SELECT '2017-01-01T00:00:00'"
[ "Processes", "a", "sql", "template" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/jinja_context.py#L165-L174
21,440
apache/incubator-superset
superset/views/utils.py
get_datasource_info
def get_datasource_info(datasource_id, datasource_type, form_data): """Compatibility layer for handling of datasource info datasource_id & datasource_type used to be passed in the URL directory, now they should come as part of the form_data, This function allows supporting both without duplicating code""" datasource = form_data.get('datasource', '') if '__' in datasource: datasource_id, datasource_type = datasource.split('__') # The case where the datasource has been deleted datasource_id = None if datasource_id == 'None' else datasource_id if not datasource_id: raise Exception( 'The datasource associated with this chart no longer exists') datasource_id = int(datasource_id) return datasource_id, datasource_type
python
def get_datasource_info(datasource_id, datasource_type, form_data): """Compatibility layer for handling of datasource info datasource_id & datasource_type used to be passed in the URL directory, now they should come as part of the form_data, This function allows supporting both without duplicating code""" datasource = form_data.get('datasource', '') if '__' in datasource: datasource_id, datasource_type = datasource.split('__') # The case where the datasource has been deleted datasource_id = None if datasource_id == 'None' else datasource_id if not datasource_id: raise Exception( 'The datasource associated with this chart no longer exists') datasource_id = int(datasource_id) return datasource_id, datasource_type
[ "def", "get_datasource_info", "(", "datasource_id", ",", "datasource_type", ",", "form_data", ")", ":", "datasource", "=", "form_data", ".", "get", "(", "'datasource'", ",", "''", ")", "if", "'__'", "in", "datasource", ":", "datasource_id", ",", "datasource_type", "=", "datasource", ".", "split", "(", "'__'", ")", "# The case where the datasource has been deleted", "datasource_id", "=", "None", "if", "datasource_id", "==", "'None'", "else", "datasource_id", "if", "not", "datasource_id", ":", "raise", "Exception", "(", "'The datasource associated with this chart no longer exists'", ")", "datasource_id", "=", "int", "(", "datasource_id", ")", "return", "datasource_id", ",", "datasource_type" ]
Compatibility layer for handling of datasource info datasource_id & datasource_type used to be passed in the URL directory, now they should come as part of the form_data, This function allows supporting both without duplicating code
[ "Compatibility", "layer", "for", "handling", "of", "datasource", "info" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/utils.py#L170-L186
21,441
apache/incubator-superset
superset/security.py
SupersetSecurityManager.create_missing_perms
def create_missing_perms(self): """Creates missing perms for datasources, schemas and metrics""" from superset import db from superset.models import core as models logging.info( 'Fetching a set of all perms to lookup which ones are missing') all_pvs = set() for pv in self.get_session.query(self.permissionview_model).all(): if pv.permission and pv.view_menu: all_pvs.add((pv.permission.name, pv.view_menu.name)) def merge_pv(view_menu, perm): """Create permission view menu only if it doesn't exist""" if view_menu and perm and (view_menu, perm) not in all_pvs: self.merge_perm(view_menu, perm) logging.info('Creating missing datasource permissions.') datasources = ConnectorRegistry.get_all_datasources(db.session) for datasource in datasources: merge_pv('datasource_access', datasource.get_perm()) merge_pv('schema_access', datasource.schema_perm) logging.info('Creating missing database permissions.') databases = db.session.query(models.Database).all() for database in databases: merge_pv('database_access', database.perm) logging.info('Creating missing metrics permissions') metrics = [] for datasource_class in ConnectorRegistry.sources.values(): metrics += list(db.session.query(datasource_class.metric_class).all()) for metric in metrics: if metric.is_restricted: merge_pv('metric_access', metric.perm)
python
def create_missing_perms(self): """Creates missing perms for datasources, schemas and metrics""" from superset import db from superset.models import core as models logging.info( 'Fetching a set of all perms to lookup which ones are missing') all_pvs = set() for pv in self.get_session.query(self.permissionview_model).all(): if pv.permission and pv.view_menu: all_pvs.add((pv.permission.name, pv.view_menu.name)) def merge_pv(view_menu, perm): """Create permission view menu only if it doesn't exist""" if view_menu and perm and (view_menu, perm) not in all_pvs: self.merge_perm(view_menu, perm) logging.info('Creating missing datasource permissions.') datasources = ConnectorRegistry.get_all_datasources(db.session) for datasource in datasources: merge_pv('datasource_access', datasource.get_perm()) merge_pv('schema_access', datasource.schema_perm) logging.info('Creating missing database permissions.') databases = db.session.query(models.Database).all() for database in databases: merge_pv('database_access', database.perm) logging.info('Creating missing metrics permissions') metrics = [] for datasource_class in ConnectorRegistry.sources.values(): metrics += list(db.session.query(datasource_class.metric_class).all()) for metric in metrics: if metric.is_restricted: merge_pv('metric_access', metric.perm)
[ "def", "create_missing_perms", "(", "self", ")", ":", "from", "superset", "import", "db", "from", "superset", ".", "models", "import", "core", "as", "models", "logging", ".", "info", "(", "'Fetching a set of all perms to lookup which ones are missing'", ")", "all_pvs", "=", "set", "(", ")", "for", "pv", "in", "self", ".", "get_session", ".", "query", "(", "self", ".", "permissionview_model", ")", ".", "all", "(", ")", ":", "if", "pv", ".", "permission", "and", "pv", ".", "view_menu", ":", "all_pvs", ".", "add", "(", "(", "pv", ".", "permission", ".", "name", ",", "pv", ".", "view_menu", ".", "name", ")", ")", "def", "merge_pv", "(", "view_menu", ",", "perm", ")", ":", "\"\"\"Create permission view menu only if it doesn't exist\"\"\"", "if", "view_menu", "and", "perm", "and", "(", "view_menu", ",", "perm", ")", "not", "in", "all_pvs", ":", "self", ".", "merge_perm", "(", "view_menu", ",", "perm", ")", "logging", ".", "info", "(", "'Creating missing datasource permissions.'", ")", "datasources", "=", "ConnectorRegistry", ".", "get_all_datasources", "(", "db", ".", "session", ")", "for", "datasource", "in", "datasources", ":", "merge_pv", "(", "'datasource_access'", ",", "datasource", ".", "get_perm", "(", ")", ")", "merge_pv", "(", "'schema_access'", ",", "datasource", ".", "schema_perm", ")", "logging", ".", "info", "(", "'Creating missing database permissions.'", ")", "databases", "=", "db", ".", "session", ".", "query", "(", "models", ".", "Database", ")", ".", "all", "(", ")", "for", "database", "in", "databases", ":", "merge_pv", "(", "'database_access'", ",", "database", ".", "perm", ")", "logging", ".", "info", "(", "'Creating missing metrics permissions'", ")", "metrics", "=", "[", "]", "for", "datasource_class", "in", "ConnectorRegistry", ".", "sources", ".", "values", "(", ")", ":", "metrics", "+=", "list", "(", "db", ".", "session", ".", "query", "(", "datasource_class", ".", "metric_class", ")", ".", "all", "(", ")", ")", "for", "metric", "in", "metrics", ":", "if", "metric", ".", "is_restricted", ":", "merge_pv", "(", "'metric_access'", ",", "metric", ".", "perm", ")" ]
Creates missing perms for datasources, schemas and metrics
[ "Creates", "missing", "perms", "for", "datasources", "schemas", "and", "metrics" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/security.py#L287-L322
21,442
apache/incubator-superset
superset/security.py
SupersetSecurityManager.clean_perms
def clean_perms(self): """FAB leaves faulty permissions that need to be cleaned up""" logging.info('Cleaning faulty perms') sesh = self.get_session pvms = ( sesh.query(ab_models.PermissionView) .filter(or_( ab_models.PermissionView.permission == None, # NOQA ab_models.PermissionView.view_menu == None, # NOQA )) ) deleted_count = pvms.delete() sesh.commit() if deleted_count: logging.info('Deleted {} faulty permissions'.format(deleted_count))
python
def clean_perms(self): """FAB leaves faulty permissions that need to be cleaned up""" logging.info('Cleaning faulty perms') sesh = self.get_session pvms = ( sesh.query(ab_models.PermissionView) .filter(or_( ab_models.PermissionView.permission == None, # NOQA ab_models.PermissionView.view_menu == None, # NOQA )) ) deleted_count = pvms.delete() sesh.commit() if deleted_count: logging.info('Deleted {} faulty permissions'.format(deleted_count))
[ "def", "clean_perms", "(", "self", ")", ":", "logging", ".", "info", "(", "'Cleaning faulty perms'", ")", "sesh", "=", "self", ".", "get_session", "pvms", "=", "(", "sesh", ".", "query", "(", "ab_models", ".", "PermissionView", ")", ".", "filter", "(", "or_", "(", "ab_models", ".", "PermissionView", ".", "permission", "==", "None", ",", "# NOQA", "ab_models", ".", "PermissionView", ".", "view_menu", "==", "None", ",", "# NOQA", ")", ")", ")", "deleted_count", "=", "pvms", ".", "delete", "(", ")", "sesh", ".", "commit", "(", ")", "if", "deleted_count", ":", "logging", ".", "info", "(", "'Deleted {} faulty permissions'", ".", "format", "(", "deleted_count", ")", ")" ]
FAB leaves faulty permissions that need to be cleaned up
[ "FAB", "leaves", "faulty", "permissions", "that", "need", "to", "be", "cleaned", "up" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/security.py#L324-L338
21,443
apache/incubator-superset
superset/security.py
SupersetSecurityManager.sync_role_definitions
def sync_role_definitions(self): """Inits the Superset application with security roles and such""" from superset import conf logging.info('Syncing role definition') self.create_custom_permissions() # Creating default roles self.set_role('Admin', self.is_admin_pvm) self.set_role('Alpha', self.is_alpha_pvm) self.set_role('Gamma', self.is_gamma_pvm) self.set_role('granter', self.is_granter_pvm) self.set_role('sql_lab', self.is_sql_lab_pvm) if conf.get('PUBLIC_ROLE_LIKE_GAMMA', False): self.set_role('Public', self.is_gamma_pvm) self.create_missing_perms() # commit role and view menu updates self.get_session.commit() self.clean_perms()
python
def sync_role_definitions(self): """Inits the Superset application with security roles and such""" from superset import conf logging.info('Syncing role definition') self.create_custom_permissions() # Creating default roles self.set_role('Admin', self.is_admin_pvm) self.set_role('Alpha', self.is_alpha_pvm) self.set_role('Gamma', self.is_gamma_pvm) self.set_role('granter', self.is_granter_pvm) self.set_role('sql_lab', self.is_sql_lab_pvm) if conf.get('PUBLIC_ROLE_LIKE_GAMMA', False): self.set_role('Public', self.is_gamma_pvm) self.create_missing_perms() # commit role and view menu updates self.get_session.commit() self.clean_perms()
[ "def", "sync_role_definitions", "(", "self", ")", ":", "from", "superset", "import", "conf", "logging", ".", "info", "(", "'Syncing role definition'", ")", "self", ".", "create_custom_permissions", "(", ")", "# Creating default roles", "self", ".", "set_role", "(", "'Admin'", ",", "self", ".", "is_admin_pvm", ")", "self", ".", "set_role", "(", "'Alpha'", ",", "self", ".", "is_alpha_pvm", ")", "self", ".", "set_role", "(", "'Gamma'", ",", "self", ".", "is_gamma_pvm", ")", "self", ".", "set_role", "(", "'granter'", ",", "self", ".", "is_granter_pvm", ")", "self", ".", "set_role", "(", "'sql_lab'", ",", "self", ".", "is_sql_lab_pvm", ")", "if", "conf", ".", "get", "(", "'PUBLIC_ROLE_LIKE_GAMMA'", ",", "False", ")", ":", "self", ".", "set_role", "(", "'Public'", ",", "self", ".", "is_gamma_pvm", ")", "self", ".", "create_missing_perms", "(", ")", "# commit role and view menu updates", "self", ".", "get_session", ".", "commit", "(", ")", "self", ".", "clean_perms", "(", ")" ]
Inits the Superset application with security roles and such
[ "Inits", "the", "Superset", "application", "with", "security", "roles", "and", "such" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/security.py#L340-L361
21,444
apache/incubator-superset
superset/utils/dict_import_export.py
export_to_dict
def export_to_dict(session, recursive, back_references, include_defaults): """Exports databases and druid clusters to a dictionary""" logging.info('Starting export') dbs = session.query(Database) databases = [database.export_to_dict(recursive=recursive, include_parent_ref=back_references, include_defaults=include_defaults) for database in dbs] logging.info('Exported %d %s', len(databases), DATABASES_KEY) cls = session.query(DruidCluster) clusters = [cluster.export_to_dict(recursive=recursive, include_parent_ref=back_references, include_defaults=include_defaults) for cluster in cls] logging.info('Exported %d %s', len(clusters), DRUID_CLUSTERS_KEY) data = dict() if databases: data[DATABASES_KEY] = databases if clusters: data[DRUID_CLUSTERS_KEY] = clusters return data
python
def export_to_dict(session, recursive, back_references, include_defaults): """Exports databases and druid clusters to a dictionary""" logging.info('Starting export') dbs = session.query(Database) databases = [database.export_to_dict(recursive=recursive, include_parent_ref=back_references, include_defaults=include_defaults) for database in dbs] logging.info('Exported %d %s', len(databases), DATABASES_KEY) cls = session.query(DruidCluster) clusters = [cluster.export_to_dict(recursive=recursive, include_parent_ref=back_references, include_defaults=include_defaults) for cluster in cls] logging.info('Exported %d %s', len(clusters), DRUID_CLUSTERS_KEY) data = dict() if databases: data[DATABASES_KEY] = databases if clusters: data[DRUID_CLUSTERS_KEY] = clusters return data
[ "def", "export_to_dict", "(", "session", ",", "recursive", ",", "back_references", ",", "include_defaults", ")", ":", "logging", ".", "info", "(", "'Starting export'", ")", "dbs", "=", "session", ".", "query", "(", "Database", ")", "databases", "=", "[", "database", ".", "export_to_dict", "(", "recursive", "=", "recursive", ",", "include_parent_ref", "=", "back_references", ",", "include_defaults", "=", "include_defaults", ")", "for", "database", "in", "dbs", "]", "logging", ".", "info", "(", "'Exported %d %s'", ",", "len", "(", "databases", ")", ",", "DATABASES_KEY", ")", "cls", "=", "session", ".", "query", "(", "DruidCluster", ")", "clusters", "=", "[", "cluster", ".", "export_to_dict", "(", "recursive", "=", "recursive", ",", "include_parent_ref", "=", "back_references", ",", "include_defaults", "=", "include_defaults", ")", "for", "cluster", "in", "cls", "]", "logging", ".", "info", "(", "'Exported %d %s'", ",", "len", "(", "clusters", ")", ",", "DRUID_CLUSTERS_KEY", ")", "data", "=", "dict", "(", ")", "if", "databases", ":", "data", "[", "DATABASES_KEY", "]", "=", "databases", "if", "clusters", ":", "data", "[", "DRUID_CLUSTERS_KEY", "]", "=", "clusters", "return", "data" ]
Exports databases and druid clusters to a dictionary
[ "Exports", "databases", "and", "druid", "clusters", "to", "a", "dictionary" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/utils/dict_import_export.py#L42-L63
21,445
apache/incubator-superset
superset/utils/dict_import_export.py
import_from_dict
def import_from_dict(session, data, sync=[]): """Imports databases and druid clusters from dictionary""" if isinstance(data, dict): logging.info('Importing %d %s', len(data.get(DATABASES_KEY, [])), DATABASES_KEY) for database in data.get(DATABASES_KEY, []): Database.import_from_dict(session, database, sync=sync) logging.info('Importing %d %s', len(data.get(DRUID_CLUSTERS_KEY, [])), DRUID_CLUSTERS_KEY) for datasource in data.get(DRUID_CLUSTERS_KEY, []): DruidCluster.import_from_dict(session, datasource, sync=sync) session.commit() else: logging.info('Supplied object is not a dictionary.')
python
def import_from_dict(session, data, sync=[]): """Imports databases and druid clusters from dictionary""" if isinstance(data, dict): logging.info('Importing %d %s', len(data.get(DATABASES_KEY, [])), DATABASES_KEY) for database in data.get(DATABASES_KEY, []): Database.import_from_dict(session, database, sync=sync) logging.info('Importing %d %s', len(data.get(DRUID_CLUSTERS_KEY, [])), DRUID_CLUSTERS_KEY) for datasource in data.get(DRUID_CLUSTERS_KEY, []): DruidCluster.import_from_dict(session, datasource, sync=sync) session.commit() else: logging.info('Supplied object is not a dictionary.')
[ "def", "import_from_dict", "(", "session", ",", "data", ",", "sync", "=", "[", "]", ")", ":", "if", "isinstance", "(", "data", ",", "dict", ")", ":", "logging", ".", "info", "(", "'Importing %d %s'", ",", "len", "(", "data", ".", "get", "(", "DATABASES_KEY", ",", "[", "]", ")", ")", ",", "DATABASES_KEY", ")", "for", "database", "in", "data", ".", "get", "(", "DATABASES_KEY", ",", "[", "]", ")", ":", "Database", ".", "import_from_dict", "(", "session", ",", "database", ",", "sync", "=", "sync", ")", "logging", ".", "info", "(", "'Importing %d %s'", ",", "len", "(", "data", ".", "get", "(", "DRUID_CLUSTERS_KEY", ",", "[", "]", ")", ")", ",", "DRUID_CLUSTERS_KEY", ")", "for", "datasource", "in", "data", ".", "get", "(", "DRUID_CLUSTERS_KEY", ",", "[", "]", ")", ":", "DruidCluster", ".", "import_from_dict", "(", "session", ",", "datasource", ",", "sync", "=", "sync", ")", "session", ".", "commit", "(", ")", "else", ":", "logging", ".", "info", "(", "'Supplied object is not a dictionary.'", ")" ]
Imports databases and druid clusters from dictionary
[ "Imports", "databases", "and", "druid", "clusters", "from", "dictionary" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/utils/dict_import_export.py#L66-L82
21,446
apache/incubator-superset
superset/data/css_templates.py
load_css_templates
def load_css_templates(): """Loads 2 css templates to demonstrate the feature""" print('Creating default CSS templates') obj = db.session.query(CssTemplate).filter_by(template_name='Flat').first() if not obj: obj = CssTemplate(template_name='Flat') css = textwrap.dedent("""\ .gridster div.widget { transition: background-color 0.5s ease; background-color: #FAFAFA; border: 1px solid #CCC; box-shadow: none; border-radius: 0px; } .gridster div.widget:hover { border: 1px solid #000; background-color: #EAEAEA; } .navbar { transition: opacity 0.5s ease; opacity: 0.05; } .navbar:hover { opacity: 1; } .chart-header .header{ font-weight: normal; font-size: 12px; } /* var bnbColors = [ //rausch hackb kazan babu lima beach tirol '#ff5a5f', '#7b0051', '#007A87', '#00d1c1', '#8ce071', '#ffb400', '#b4a76c', '#ff8083', '#cc0086', '#00a1b3', '#00ffeb', '#bbedab', '#ffd266', '#cbc29a', '#ff3339', '#ff1ab1', '#005c66', '#00b3a5', '#55d12e', '#b37e00', '#988b4e', ]; */ """) obj.css = css db.session.merge(obj) db.session.commit() obj = ( db.session.query(CssTemplate).filter_by(template_name='Courier Black').first()) if not obj: obj = CssTemplate(template_name='Courier Black') css = textwrap.dedent("""\ .gridster div.widget { transition: background-color 0.5s ease; background-color: #EEE; border: 2px solid #444; border-radius: 15px; box-shadow: none; } h2 { color: white; font-size: 52px; } .navbar { box-shadow: none; } .gridster div.widget:hover { border: 2px solid #000; background-color: #EAEAEA; } .navbar { transition: opacity 0.5s ease; opacity: 0.05; } .navbar:hover { opacity: 1; } .chart-header .header{ font-weight: normal; font-size: 12px; } .nvd3 text { font-size: 12px; font-family: inherit; } body{ background: #000; font-family: Courier, Monaco, monospace;; } /* var bnbColors = [ //rausch hackb kazan babu lima beach tirol '#ff5a5f', '#7b0051', '#007A87', '#00d1c1', '#8ce071', '#ffb400', '#b4a76c', '#ff8083', '#cc0086', '#00a1b3', '#00ffeb', '#bbedab', '#ffd266', '#cbc29a', '#ff3339', '#ff1ab1', '#005c66', '#00b3a5', '#55d12e', '#b37e00', '#988b4e', ]; */ """) obj.css = css db.session.merge(obj) db.session.commit()
python
def load_css_templates(): """Loads 2 css templates to demonstrate the feature""" print('Creating default CSS templates') obj = db.session.query(CssTemplate).filter_by(template_name='Flat').first() if not obj: obj = CssTemplate(template_name='Flat') css = textwrap.dedent("""\ .gridster div.widget { transition: background-color 0.5s ease; background-color: #FAFAFA; border: 1px solid #CCC; box-shadow: none; border-radius: 0px; } .gridster div.widget:hover { border: 1px solid #000; background-color: #EAEAEA; } .navbar { transition: opacity 0.5s ease; opacity: 0.05; } .navbar:hover { opacity: 1; } .chart-header .header{ font-weight: normal; font-size: 12px; } /* var bnbColors = [ //rausch hackb kazan babu lima beach tirol '#ff5a5f', '#7b0051', '#007A87', '#00d1c1', '#8ce071', '#ffb400', '#b4a76c', '#ff8083', '#cc0086', '#00a1b3', '#00ffeb', '#bbedab', '#ffd266', '#cbc29a', '#ff3339', '#ff1ab1', '#005c66', '#00b3a5', '#55d12e', '#b37e00', '#988b4e', ]; */ """) obj.css = css db.session.merge(obj) db.session.commit() obj = ( db.session.query(CssTemplate).filter_by(template_name='Courier Black').first()) if not obj: obj = CssTemplate(template_name='Courier Black') css = textwrap.dedent("""\ .gridster div.widget { transition: background-color 0.5s ease; background-color: #EEE; border: 2px solid #444; border-radius: 15px; box-shadow: none; } h2 { color: white; font-size: 52px; } .navbar { box-shadow: none; } .gridster div.widget:hover { border: 2px solid #000; background-color: #EAEAEA; } .navbar { transition: opacity 0.5s ease; opacity: 0.05; } .navbar:hover { opacity: 1; } .chart-header .header{ font-weight: normal; font-size: 12px; } .nvd3 text { font-size: 12px; font-family: inherit; } body{ background: #000; font-family: Courier, Monaco, monospace;; } /* var bnbColors = [ //rausch hackb kazan babu lima beach tirol '#ff5a5f', '#7b0051', '#007A87', '#00d1c1', '#8ce071', '#ffb400', '#b4a76c', '#ff8083', '#cc0086', '#00a1b3', '#00ffeb', '#bbedab', '#ffd266', '#cbc29a', '#ff3339', '#ff1ab1', '#005c66', '#00b3a5', '#55d12e', '#b37e00', '#988b4e', ]; */ """) obj.css = css db.session.merge(obj) db.session.commit()
[ "def", "load_css_templates", "(", ")", ":", "print", "(", "'Creating default CSS templates'", ")", "obj", "=", "db", ".", "session", ".", "query", "(", "CssTemplate", ")", ".", "filter_by", "(", "template_name", "=", "'Flat'", ")", ".", "first", "(", ")", "if", "not", "obj", ":", "obj", "=", "CssTemplate", "(", "template_name", "=", "'Flat'", ")", "css", "=", "textwrap", ".", "dedent", "(", "\"\"\"\\\n .gridster div.widget {\n transition: background-color 0.5s ease;\n background-color: #FAFAFA;\n border: 1px solid #CCC;\n box-shadow: none;\n border-radius: 0px;\n }\n .gridster div.widget:hover {\n border: 1px solid #000;\n background-color: #EAEAEA;\n }\n .navbar {\n transition: opacity 0.5s ease;\n opacity: 0.05;\n }\n .navbar:hover {\n opacity: 1;\n }\n .chart-header .header{\n font-weight: normal;\n font-size: 12px;\n }\n /*\n var bnbColors = [\n //rausch hackb kazan babu lima beach tirol\n '#ff5a5f', '#7b0051', '#007A87', '#00d1c1', '#8ce071', '#ffb400', '#b4a76c',\n '#ff8083', '#cc0086', '#00a1b3', '#00ffeb', '#bbedab', '#ffd266', '#cbc29a',\n '#ff3339', '#ff1ab1', '#005c66', '#00b3a5', '#55d12e', '#b37e00', '#988b4e',\n ];\n */\n \"\"\"", ")", "obj", ".", "css", "=", "css", "db", ".", "session", ".", "merge", "(", "obj", ")", "db", ".", "session", ".", "commit", "(", ")", "obj", "=", "(", "db", ".", "session", ".", "query", "(", "CssTemplate", ")", ".", "filter_by", "(", "template_name", "=", "'Courier Black'", ")", ".", "first", "(", ")", ")", "if", "not", "obj", ":", "obj", "=", "CssTemplate", "(", "template_name", "=", "'Courier Black'", ")", "css", "=", "textwrap", ".", "dedent", "(", "\"\"\"\\\n .gridster div.widget {\n transition: background-color 0.5s ease;\n background-color: #EEE;\n border: 2px solid #444;\n border-radius: 15px;\n box-shadow: none;\n }\n h2 {\n color: white;\n font-size: 52px;\n }\n .navbar {\n box-shadow: none;\n }\n .gridster div.widget:hover {\n border: 2px solid #000;\n background-color: #EAEAEA;\n }\n .navbar {\n transition: opacity 0.5s ease;\n opacity: 0.05;\n }\n .navbar:hover {\n opacity: 1;\n }\n .chart-header .header{\n font-weight: normal;\n font-size: 12px;\n }\n .nvd3 text {\n font-size: 12px;\n font-family: inherit;\n }\n body{\n background: #000;\n font-family: Courier, Monaco, monospace;;\n }\n /*\n var bnbColors = [\n //rausch hackb kazan babu lima beach tirol\n '#ff5a5f', '#7b0051', '#007A87', '#00d1c1', '#8ce071', '#ffb400', '#b4a76c',\n '#ff8083', '#cc0086', '#00a1b3', '#00ffeb', '#bbedab', '#ffd266', '#cbc29a',\n '#ff3339', '#ff1ab1', '#005c66', '#00b3a5', '#55d12e', '#b37e00', '#988b4e',\n ];\n */\n \"\"\"", ")", "obj", ".", "css", "=", "css", "db", ".", "session", ".", "merge", "(", "obj", ")", "db", ".", "session", ".", "commit", "(", ")" ]
Loads 2 css templates to demonstrate the feature
[ "Loads", "2", "css", "templates", "to", "demonstrate", "the", "feature" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/data/css_templates.py#L23-L119
21,447
apache/incubator-superset
superset/models/helpers.py
ImportMixin._parent_foreign_key_mappings
def _parent_foreign_key_mappings(cls): """Get a mapping of foreign name to the local name of foreign keys""" parent_rel = cls.__mapper__.relationships.get(cls.export_parent) if parent_rel: return {l.name: r.name for (l, r) in parent_rel.local_remote_pairs} return {}
python
def _parent_foreign_key_mappings(cls): """Get a mapping of foreign name to the local name of foreign keys""" parent_rel = cls.__mapper__.relationships.get(cls.export_parent) if parent_rel: return {l.name: r.name for (l, r) in parent_rel.local_remote_pairs} return {}
[ "def", "_parent_foreign_key_mappings", "(", "cls", ")", ":", "parent_rel", "=", "cls", ".", "__mapper__", ".", "relationships", ".", "get", "(", "cls", ".", "export_parent", ")", "if", "parent_rel", ":", "return", "{", "l", ".", "name", ":", "r", ".", "name", "for", "(", "l", ",", "r", ")", "in", "parent_rel", ".", "local_remote_pairs", "}", "return", "{", "}" ]
Get a mapping of foreign name to the local name of foreign keys
[ "Get", "a", "mapping", "of", "foreign", "name", "to", "the", "local", "name", "of", "foreign", "keys" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/models/helpers.py#L60-L65
21,448
apache/incubator-superset
superset/models/helpers.py
ImportMixin.export_schema
def export_schema(cls, recursive=True, include_parent_ref=False): """Export schema as a dictionary""" parent_excludes = {} if not include_parent_ref: parent_ref = cls.__mapper__.relationships.get(cls.export_parent) if parent_ref: parent_excludes = {c.name for c in parent_ref.local_columns} def formatter(c): return ('{0} Default ({1})'.format( str(c.type), c.default.arg) if c.default else str(c.type)) schema = {c.name: formatter(c) for c in cls.__table__.columns if (c.name in cls.export_fields and c.name not in parent_excludes)} if recursive: for c in cls.export_children: child_class = cls.__mapper__.relationships[c].argument.class_ schema[c] = [child_class.export_schema(recursive=recursive, include_parent_ref=include_parent_ref)] return schema
python
def export_schema(cls, recursive=True, include_parent_ref=False): """Export schema as a dictionary""" parent_excludes = {} if not include_parent_ref: parent_ref = cls.__mapper__.relationships.get(cls.export_parent) if parent_ref: parent_excludes = {c.name for c in parent_ref.local_columns} def formatter(c): return ('{0} Default ({1})'.format( str(c.type), c.default.arg) if c.default else str(c.type)) schema = {c.name: formatter(c) for c in cls.__table__.columns if (c.name in cls.export_fields and c.name not in parent_excludes)} if recursive: for c in cls.export_children: child_class = cls.__mapper__.relationships[c].argument.class_ schema[c] = [child_class.export_schema(recursive=recursive, include_parent_ref=include_parent_ref)] return schema
[ "def", "export_schema", "(", "cls", ",", "recursive", "=", "True", ",", "include_parent_ref", "=", "False", ")", ":", "parent_excludes", "=", "{", "}", "if", "not", "include_parent_ref", ":", "parent_ref", "=", "cls", ".", "__mapper__", ".", "relationships", ".", "get", "(", "cls", ".", "export_parent", ")", "if", "parent_ref", ":", "parent_excludes", "=", "{", "c", ".", "name", "for", "c", "in", "parent_ref", ".", "local_columns", "}", "def", "formatter", "(", "c", ")", ":", "return", "(", "'{0} Default ({1})'", ".", "format", "(", "str", "(", "c", ".", "type", ")", ",", "c", ".", "default", ".", "arg", ")", "if", "c", ".", "default", "else", "str", "(", "c", ".", "type", ")", ")", "schema", "=", "{", "c", ".", "name", ":", "formatter", "(", "c", ")", "for", "c", "in", "cls", ".", "__table__", ".", "columns", "if", "(", "c", ".", "name", "in", "cls", ".", "export_fields", "and", "c", ".", "name", "not", "in", "parent_excludes", ")", "}", "if", "recursive", ":", "for", "c", "in", "cls", ".", "export_children", ":", "child_class", "=", "cls", ".", "__mapper__", ".", "relationships", "[", "c", "]", ".", "argument", ".", "class_", "schema", "[", "c", "]", "=", "[", "child_class", ".", "export_schema", "(", "recursive", "=", "recursive", ",", "include_parent_ref", "=", "include_parent_ref", ")", "]", "return", "schema" ]
Export schema as a dictionary
[ "Export", "schema", "as", "a", "dictionary" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/models/helpers.py#L76-L96
21,449
apache/incubator-superset
superset/models/helpers.py
ImportMixin.export_to_dict
def export_to_dict(self, recursive=True, include_parent_ref=False, include_defaults=False): """Export obj to dictionary""" cls = self.__class__ parent_excludes = {} if recursive and not include_parent_ref: parent_ref = cls.__mapper__.relationships.get(cls.export_parent) if parent_ref: parent_excludes = {c.name for c in parent_ref.local_columns} dict_rep = {c.name: getattr(self, c.name) for c in cls.__table__.columns if (c.name in self.export_fields and c.name not in parent_excludes and (include_defaults or ( getattr(self, c.name) is not None and (not c.default or getattr(self, c.name) != c.default.arg)))) } if recursive: for c in self.export_children: # sorting to make lists of children stable dict_rep[c] = sorted( [ child.export_to_dict( recursive=recursive, include_parent_ref=include_parent_ref, include_defaults=include_defaults, ) for child in getattr(self, c) ], key=lambda k: sorted(k.items())) return dict_rep
python
def export_to_dict(self, recursive=True, include_parent_ref=False, include_defaults=False): """Export obj to dictionary""" cls = self.__class__ parent_excludes = {} if recursive and not include_parent_ref: parent_ref = cls.__mapper__.relationships.get(cls.export_parent) if parent_ref: parent_excludes = {c.name for c in parent_ref.local_columns} dict_rep = {c.name: getattr(self, c.name) for c in cls.__table__.columns if (c.name in self.export_fields and c.name not in parent_excludes and (include_defaults or ( getattr(self, c.name) is not None and (not c.default or getattr(self, c.name) != c.default.arg)))) } if recursive: for c in self.export_children: # sorting to make lists of children stable dict_rep[c] = sorted( [ child.export_to_dict( recursive=recursive, include_parent_ref=include_parent_ref, include_defaults=include_defaults, ) for child in getattr(self, c) ], key=lambda k: sorted(k.items())) return dict_rep
[ "def", "export_to_dict", "(", "self", ",", "recursive", "=", "True", ",", "include_parent_ref", "=", "False", ",", "include_defaults", "=", "False", ")", ":", "cls", "=", "self", ".", "__class__", "parent_excludes", "=", "{", "}", "if", "recursive", "and", "not", "include_parent_ref", ":", "parent_ref", "=", "cls", ".", "__mapper__", ".", "relationships", ".", "get", "(", "cls", ".", "export_parent", ")", "if", "parent_ref", ":", "parent_excludes", "=", "{", "c", ".", "name", "for", "c", "in", "parent_ref", ".", "local_columns", "}", "dict_rep", "=", "{", "c", ".", "name", ":", "getattr", "(", "self", ",", "c", ".", "name", ")", "for", "c", "in", "cls", ".", "__table__", ".", "columns", "if", "(", "c", ".", "name", "in", "self", ".", "export_fields", "and", "c", ".", "name", "not", "in", "parent_excludes", "and", "(", "include_defaults", "or", "(", "getattr", "(", "self", ",", "c", ".", "name", ")", "is", "not", "None", "and", "(", "not", "c", ".", "default", "or", "getattr", "(", "self", ",", "c", ".", "name", ")", "!=", "c", ".", "default", ".", "arg", ")", ")", ")", ")", "}", "if", "recursive", ":", "for", "c", "in", "self", ".", "export_children", ":", "# sorting to make lists of children stable", "dict_rep", "[", "c", "]", "=", "sorted", "(", "[", "child", ".", "export_to_dict", "(", "recursive", "=", "recursive", ",", "include_parent_ref", "=", "include_parent_ref", ",", "include_defaults", "=", "include_defaults", ",", ")", "for", "child", "in", "getattr", "(", "self", ",", "c", ")", "]", ",", "key", "=", "lambda", "k", ":", "sorted", "(", "k", ".", "items", "(", ")", ")", ")", "return", "dict_rep" ]
Export obj to dictionary
[ "Export", "obj", "to", "dictionary" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/models/helpers.py#L186-L217
21,450
apache/incubator-superset
superset/models/helpers.py
ImportMixin.override
def override(self, obj): """Overrides the plain fields of the dashboard.""" for field in obj.__class__.export_fields: setattr(self, field, getattr(obj, field))
python
def override(self, obj): """Overrides the plain fields of the dashboard.""" for field in obj.__class__.export_fields: setattr(self, field, getattr(obj, field))
[ "def", "override", "(", "self", ",", "obj", ")", ":", "for", "field", "in", "obj", ".", "__class__", ".", "export_fields", ":", "setattr", "(", "self", ",", "field", ",", "getattr", "(", "obj", ",", "field", ")", ")" ]
Overrides the plain fields of the dashboard.
[ "Overrides", "the", "plain", "fields", "of", "the", "dashboard", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/models/helpers.py#L219-L222
21,451
apache/incubator-superset
superset/legacy.py
update_time_range
def update_time_range(form_data): """Move since and until to time_range.""" if 'since' in form_data or 'until' in form_data: form_data['time_range'] = '{} : {}'.format( form_data.pop('since', '') or '', form_data.pop('until', '') or '', )
python
def update_time_range(form_data): """Move since and until to time_range.""" if 'since' in form_data or 'until' in form_data: form_data['time_range'] = '{} : {}'.format( form_data.pop('since', '') or '', form_data.pop('until', '') or '', )
[ "def", "update_time_range", "(", "form_data", ")", ":", "if", "'since'", "in", "form_data", "or", "'until'", "in", "form_data", ":", "form_data", "[", "'time_range'", "]", "=", "'{} : {}'", ".", "format", "(", "form_data", ".", "pop", "(", "'since'", ",", "''", ")", "or", "''", ",", "form_data", ".", "pop", "(", "'until'", ",", "''", ")", "or", "''", ",", ")" ]
Move since and until to time_range.
[ "Move", "since", "and", "until", "to", "time_range", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/legacy.py#L21-L27
21,452
apache/incubator-superset
superset/utils/cache.py
memoized_func
def memoized_func(key=view_cache_key, attribute_in_key=None): """Use this decorator to cache functions that have predefined first arg. enable_cache is treated as True by default, except enable_cache = False is passed to the decorated function. force means whether to force refresh the cache and is treated as False by default, except force = True is passed to the decorated function. timeout of cache is set to 600 seconds by default, except cache_timeout = {timeout in seconds} is passed to the decorated function. memoized_func uses simple_cache and stored the data in memory. Key is a callable function that takes function arguments and returns the caching key. """ def wrap(f): if tables_cache: def wrapped_f(self, *args, **kwargs): if not kwargs.get('cache', True): return f(self, *args, **kwargs) if attribute_in_key: cache_key = key(*args, **kwargs).format( getattr(self, attribute_in_key)) else: cache_key = key(*args, **kwargs) o = tables_cache.get(cache_key) if not kwargs.get('force') and o is not None: return o o = f(self, *args, **kwargs) tables_cache.set(cache_key, o, timeout=kwargs.get('cache_timeout')) return o else: # noop def wrapped_f(self, *args, **kwargs): return f(self, *args, **kwargs) return wrapped_f return wrap
python
def memoized_func(key=view_cache_key, attribute_in_key=None): """Use this decorator to cache functions that have predefined first arg. enable_cache is treated as True by default, except enable_cache = False is passed to the decorated function. force means whether to force refresh the cache and is treated as False by default, except force = True is passed to the decorated function. timeout of cache is set to 600 seconds by default, except cache_timeout = {timeout in seconds} is passed to the decorated function. memoized_func uses simple_cache and stored the data in memory. Key is a callable function that takes function arguments and returns the caching key. """ def wrap(f): if tables_cache: def wrapped_f(self, *args, **kwargs): if not kwargs.get('cache', True): return f(self, *args, **kwargs) if attribute_in_key: cache_key = key(*args, **kwargs).format( getattr(self, attribute_in_key)) else: cache_key = key(*args, **kwargs) o = tables_cache.get(cache_key) if not kwargs.get('force') and o is not None: return o o = f(self, *args, **kwargs) tables_cache.set(cache_key, o, timeout=kwargs.get('cache_timeout')) return o else: # noop def wrapped_f(self, *args, **kwargs): return f(self, *args, **kwargs) return wrapped_f return wrap
[ "def", "memoized_func", "(", "key", "=", "view_cache_key", ",", "attribute_in_key", "=", "None", ")", ":", "def", "wrap", "(", "f", ")", ":", "if", "tables_cache", ":", "def", "wrapped_f", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "if", "not", "kwargs", ".", "get", "(", "'cache'", ",", "True", ")", ":", "return", "f", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", "if", "attribute_in_key", ":", "cache_key", "=", "key", "(", "*", "args", ",", "*", "*", "kwargs", ")", ".", "format", "(", "getattr", "(", "self", ",", "attribute_in_key", ")", ")", "else", ":", "cache_key", "=", "key", "(", "*", "args", ",", "*", "*", "kwargs", ")", "o", "=", "tables_cache", ".", "get", "(", "cache_key", ")", "if", "not", "kwargs", ".", "get", "(", "'force'", ")", "and", "o", "is", "not", "None", ":", "return", "o", "o", "=", "f", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", "tables_cache", ".", "set", "(", "cache_key", ",", "o", ",", "timeout", "=", "kwargs", ".", "get", "(", "'cache_timeout'", ")", ")", "return", "o", "else", ":", "# noop", "def", "wrapped_f", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "f", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", "return", "wrapped_f", "return", "wrap" ]
Use this decorator to cache functions that have predefined first arg. enable_cache is treated as True by default, except enable_cache = False is passed to the decorated function. force means whether to force refresh the cache and is treated as False by default, except force = True is passed to the decorated function. timeout of cache is set to 600 seconds by default, except cache_timeout = {timeout in seconds} is passed to the decorated function. memoized_func uses simple_cache and stored the data in memory. Key is a callable function that takes function arguments and returns the caching key.
[ "Use", "this", "decorator", "to", "cache", "functions", "that", "have", "predefined", "first", "arg", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/utils/cache.py#L28-L67
21,453
apache/incubator-superset
superset/views/core.py
check_datasource_perms
def check_datasource_perms(self, datasource_type=None, datasource_id=None): """ Check if user can access a cached response from explore_json. This function takes `self` since it must have the same signature as the the decorated method. """ form_data = get_form_data()[0] datasource_id, datasource_type = get_datasource_info( datasource_id, datasource_type, form_data) viz_obj = get_viz( datasource_type=datasource_type, datasource_id=datasource_id, form_data=form_data, force=False, ) security_manager.assert_datasource_permission(viz_obj.datasource)
python
def check_datasource_perms(self, datasource_type=None, datasource_id=None): """ Check if user can access a cached response from explore_json. This function takes `self` since it must have the same signature as the the decorated method. """ form_data = get_form_data()[0] datasource_id, datasource_type = get_datasource_info( datasource_id, datasource_type, form_data) viz_obj = get_viz( datasource_type=datasource_type, datasource_id=datasource_id, form_data=form_data, force=False, ) security_manager.assert_datasource_permission(viz_obj.datasource)
[ "def", "check_datasource_perms", "(", "self", ",", "datasource_type", "=", "None", ",", "datasource_id", "=", "None", ")", ":", "form_data", "=", "get_form_data", "(", ")", "[", "0", "]", "datasource_id", ",", "datasource_type", "=", "get_datasource_info", "(", "datasource_id", ",", "datasource_type", ",", "form_data", ")", "viz_obj", "=", "get_viz", "(", "datasource_type", "=", "datasource_type", ",", "datasource_id", "=", "datasource_id", ",", "form_data", "=", "form_data", ",", "force", "=", "False", ",", ")", "security_manager", ".", "assert_datasource_permission", "(", "viz_obj", ".", "datasource", ")" ]
Check if user can access a cached response from explore_json. This function takes `self` since it must have the same signature as the the decorated method.
[ "Check", "if", "user", "can", "access", "a", "cached", "response", "from", "explore_json", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L106-L123
21,454
apache/incubator-superset
superset/views/core.py
check_slice_perms
def check_slice_perms(self, slice_id): """ Check if user can access a cached response from slice_json. This function takes `self` since it must have the same signature as the the decorated method. """ form_data, slc = get_form_data(slice_id, use_slice_data=True) datasource_type = slc.datasource.type datasource_id = slc.datasource.id viz_obj = get_viz( datasource_type=datasource_type, datasource_id=datasource_id, form_data=form_data, force=False, ) security_manager.assert_datasource_permission(viz_obj.datasource)
python
def check_slice_perms(self, slice_id): """ Check if user can access a cached response from slice_json. This function takes `self` since it must have the same signature as the the decorated method. """ form_data, slc = get_form_data(slice_id, use_slice_data=True) datasource_type = slc.datasource.type datasource_id = slc.datasource.id viz_obj = get_viz( datasource_type=datasource_type, datasource_id=datasource_id, form_data=form_data, force=False, ) security_manager.assert_datasource_permission(viz_obj.datasource)
[ "def", "check_slice_perms", "(", "self", ",", "slice_id", ")", ":", "form_data", ",", "slc", "=", "get_form_data", "(", "slice_id", ",", "use_slice_data", "=", "True", ")", "datasource_type", "=", "slc", ".", "datasource", ".", "type", "datasource_id", "=", "slc", ".", "datasource", ".", "id", "viz_obj", "=", "get_viz", "(", "datasource_type", "=", "datasource_type", ",", "datasource_id", "=", "datasource_id", ",", "form_data", "=", "form_data", ",", "force", "=", "False", ",", ")", "security_manager", ".", "assert_datasource_permission", "(", "viz_obj", ".", "datasource", ")" ]
Check if user can access a cached response from slice_json. This function takes `self` since it must have the same signature as the the decorated method.
[ "Check", "if", "user", "can", "access", "a", "cached", "response", "from", "slice_json", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L126-L143
21,455
apache/incubator-superset
superset/views/core.py
apply_caching
def apply_caching(response): """Applies the configuration's http headers to all responses""" for k, v in config.get('HTTP_HEADERS').items(): response.headers[k] = v return response
python
def apply_caching(response): """Applies the configuration's http headers to all responses""" for k, v in config.get('HTTP_HEADERS').items(): response.headers[k] = v return response
[ "def", "apply_caching", "(", "response", ")", ":", "for", "k", ",", "v", "in", "config", ".", "get", "(", "'HTTP_HEADERS'", ")", ".", "items", "(", ")", ":", "response", ".", "headers", "[", "k", "]", "=", "v", "return", "response" ]
Applies the configuration's http headers to all responses
[ "Applies", "the", "configuration", "s", "http", "headers", "to", "all", "responses" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L3017-L3021
21,456
apache/incubator-superset
superset/views/core.py
Superset.override_role_permissions
def override_role_permissions(self): """Updates the role with the give datasource permissions. Permissions not in the request will be revoked. This endpoint should be available to admins only. Expects JSON in the format: { 'role_name': '{role_name}', 'database': [{ 'datasource_type': '{table|druid}', 'name': '{database_name}', 'schema': [{ 'name': '{schema_name}', 'datasources': ['{datasource name}, {datasource name}'] }] }] } """ data = request.get_json(force=True) role_name = data['role_name'] databases = data['database'] db_ds_names = set() for dbs in databases: for schema in dbs['schema']: for ds_name in schema['datasources']: fullname = utils.get_datasource_full_name( dbs['name'], ds_name, schema=schema['name']) db_ds_names.add(fullname) existing_datasources = ConnectorRegistry.get_all_datasources(db.session) datasources = [ d for d in existing_datasources if d.full_name in db_ds_names] role = security_manager.find_role(role_name) # remove all permissions role.permissions = [] # grant permissions to the list of datasources granted_perms = [] for datasource in datasources: view_menu_perm = security_manager.find_permission_view_menu( view_menu_name=datasource.perm, permission_name='datasource_access') # prevent creating empty permissions if view_menu_perm and view_menu_perm.view_menu: role.permissions.append(view_menu_perm) granted_perms.append(view_menu_perm.view_menu.name) db.session.commit() return self.json_response({ 'granted': granted_perms, 'requested': list(db_ds_names), }, status=201)
python
def override_role_permissions(self): """Updates the role with the give datasource permissions. Permissions not in the request will be revoked. This endpoint should be available to admins only. Expects JSON in the format: { 'role_name': '{role_name}', 'database': [{ 'datasource_type': '{table|druid}', 'name': '{database_name}', 'schema': [{ 'name': '{schema_name}', 'datasources': ['{datasource name}, {datasource name}'] }] }] } """ data = request.get_json(force=True) role_name = data['role_name'] databases = data['database'] db_ds_names = set() for dbs in databases: for schema in dbs['schema']: for ds_name in schema['datasources']: fullname = utils.get_datasource_full_name( dbs['name'], ds_name, schema=schema['name']) db_ds_names.add(fullname) existing_datasources = ConnectorRegistry.get_all_datasources(db.session) datasources = [ d for d in existing_datasources if d.full_name in db_ds_names] role = security_manager.find_role(role_name) # remove all permissions role.permissions = [] # grant permissions to the list of datasources granted_perms = [] for datasource in datasources: view_menu_perm = security_manager.find_permission_view_menu( view_menu_name=datasource.perm, permission_name='datasource_access') # prevent creating empty permissions if view_menu_perm and view_menu_perm.view_menu: role.permissions.append(view_menu_perm) granted_perms.append(view_menu_perm.view_menu.name) db.session.commit() return self.json_response({ 'granted': granted_perms, 'requested': list(db_ds_names), }, status=201)
[ "def", "override_role_permissions", "(", "self", ")", ":", "data", "=", "request", ".", "get_json", "(", "force", "=", "True", ")", "role_name", "=", "data", "[", "'role_name'", "]", "databases", "=", "data", "[", "'database'", "]", "db_ds_names", "=", "set", "(", ")", "for", "dbs", "in", "databases", ":", "for", "schema", "in", "dbs", "[", "'schema'", "]", ":", "for", "ds_name", "in", "schema", "[", "'datasources'", "]", ":", "fullname", "=", "utils", ".", "get_datasource_full_name", "(", "dbs", "[", "'name'", "]", ",", "ds_name", ",", "schema", "=", "schema", "[", "'name'", "]", ")", "db_ds_names", ".", "add", "(", "fullname", ")", "existing_datasources", "=", "ConnectorRegistry", ".", "get_all_datasources", "(", "db", ".", "session", ")", "datasources", "=", "[", "d", "for", "d", "in", "existing_datasources", "if", "d", ".", "full_name", "in", "db_ds_names", "]", "role", "=", "security_manager", ".", "find_role", "(", "role_name", ")", "# remove all permissions", "role", ".", "permissions", "=", "[", "]", "# grant permissions to the list of datasources", "granted_perms", "=", "[", "]", "for", "datasource", "in", "datasources", ":", "view_menu_perm", "=", "security_manager", ".", "find_permission_view_menu", "(", "view_menu_name", "=", "datasource", ".", "perm", ",", "permission_name", "=", "'datasource_access'", ")", "# prevent creating empty permissions", "if", "view_menu_perm", "and", "view_menu_perm", ".", "view_menu", ":", "role", ".", "permissions", ".", "append", "(", "view_menu_perm", ")", "granted_perms", ".", "append", "(", "view_menu_perm", ".", "view_menu", ".", "name", ")", "db", ".", "session", ".", "commit", "(", ")", "return", "self", ".", "json_response", "(", "{", "'granted'", ":", "granted_perms", ",", "'requested'", ":", "list", "(", "db_ds_names", ")", ",", "}", ",", "status", "=", "201", ")" ]
Updates the role with the give datasource permissions. Permissions not in the request will be revoked. This endpoint should be available to admins only. Expects JSON in the format: { 'role_name': '{role_name}', 'database': [{ 'datasource_type': '{table|druid}', 'name': '{database_name}', 'schema': [{ 'name': '{schema_name}', 'datasources': ['{datasource name}, {datasource name}'] }] }] }
[ "Updates", "the", "role", "with", "the", "give", "datasource", "permissions", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L862-L911
21,457
apache/incubator-superset
superset/views/core.py
Superset.explore_json
def explore_json(self, datasource_type=None, datasource_id=None): """Serves all request that GET or POST form_data This endpoint evolved to be the entry point of many different requests that GETs or POSTs a form_data. `self.generate_json` receives this input and returns different payloads based on the request args in the first block TODO: break into one endpoint for each return shape""" csv = request.args.get('csv') == 'true' query = request.args.get('query') == 'true' results = request.args.get('results') == 'true' samples = request.args.get('samples') == 'true' force = request.args.get('force') == 'true' form_data = get_form_data()[0] datasource_id, datasource_type = get_datasource_info( datasource_id, datasource_type, form_data) viz_obj = get_viz( datasource_type=datasource_type, datasource_id=datasource_id, form_data=form_data, force=force, ) return self.generate_json( viz_obj, csv=csv, query=query, results=results, samples=samples, )
python
def explore_json(self, datasource_type=None, datasource_id=None): """Serves all request that GET or POST form_data This endpoint evolved to be the entry point of many different requests that GETs or POSTs a form_data. `self.generate_json` receives this input and returns different payloads based on the request args in the first block TODO: break into one endpoint for each return shape""" csv = request.args.get('csv') == 'true' query = request.args.get('query') == 'true' results = request.args.get('results') == 'true' samples = request.args.get('samples') == 'true' force = request.args.get('force') == 'true' form_data = get_form_data()[0] datasource_id, datasource_type = get_datasource_info( datasource_id, datasource_type, form_data) viz_obj = get_viz( datasource_type=datasource_type, datasource_id=datasource_id, form_data=form_data, force=force, ) return self.generate_json( viz_obj, csv=csv, query=query, results=results, samples=samples, )
[ "def", "explore_json", "(", "self", ",", "datasource_type", "=", "None", ",", "datasource_id", "=", "None", ")", ":", "csv", "=", "request", ".", "args", ".", "get", "(", "'csv'", ")", "==", "'true'", "query", "=", "request", ".", "args", ".", "get", "(", "'query'", ")", "==", "'true'", "results", "=", "request", ".", "args", ".", "get", "(", "'results'", ")", "==", "'true'", "samples", "=", "request", ".", "args", ".", "get", "(", "'samples'", ")", "==", "'true'", "force", "=", "request", ".", "args", ".", "get", "(", "'force'", ")", "==", "'true'", "form_data", "=", "get_form_data", "(", ")", "[", "0", "]", "datasource_id", ",", "datasource_type", "=", "get_datasource_info", "(", "datasource_id", ",", "datasource_type", ",", "form_data", ")", "viz_obj", "=", "get_viz", "(", "datasource_type", "=", "datasource_type", ",", "datasource_id", "=", "datasource_id", ",", "form_data", "=", "form_data", ",", "force", "=", "force", ",", ")", "return", "self", ".", "generate_json", "(", "viz_obj", ",", "csv", "=", "csv", ",", "query", "=", "query", ",", "results", "=", "results", ",", "samples", "=", "samples", ",", ")" ]
Serves all request that GET or POST form_data This endpoint evolved to be the entry point of many different requests that GETs or POSTs a form_data. `self.generate_json` receives this input and returns different payloads based on the request args in the first block TODO: break into one endpoint for each return shape
[ "Serves", "all", "request", "that", "GET", "or", "POST", "form_data" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L1233-L1265
21,458
apache/incubator-superset
superset/views/core.py
Superset.import_dashboards
def import_dashboards(self): """Overrides the dashboards using json instances from the file.""" f = request.files.get('file') if request.method == 'POST' and f: dashboard_import_export.import_dashboards(db.session, f.stream) return redirect('/dashboard/list/') return self.render_template('superset/import_dashboards.html')
python
def import_dashboards(self): """Overrides the dashboards using json instances from the file.""" f = request.files.get('file') if request.method == 'POST' and f: dashboard_import_export.import_dashboards(db.session, f.stream) return redirect('/dashboard/list/') return self.render_template('superset/import_dashboards.html')
[ "def", "import_dashboards", "(", "self", ")", ":", "f", "=", "request", ".", "files", ".", "get", "(", "'file'", ")", "if", "request", ".", "method", "==", "'POST'", "and", "f", ":", "dashboard_import_export", ".", "import_dashboards", "(", "db", ".", "session", ",", "f", ".", "stream", ")", "return", "redirect", "(", "'/dashboard/list/'", ")", "return", "self", ".", "render_template", "(", "'superset/import_dashboards.html'", ")" ]
Overrides the dashboards using json instances from the file.
[ "Overrides", "the", "dashboards", "using", "json", "instances", "from", "the", "file", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L1270-L1276
21,459
apache/incubator-superset
superset/views/core.py
Superset.explorev2
def explorev2(self, datasource_type, datasource_id): """Deprecated endpoint, here for backward compatibility of urls""" return redirect(url_for( 'Superset.explore', datasource_type=datasource_type, datasource_id=datasource_id, **request.args))
python
def explorev2(self, datasource_type, datasource_id): """Deprecated endpoint, here for backward compatibility of urls""" return redirect(url_for( 'Superset.explore', datasource_type=datasource_type, datasource_id=datasource_id, **request.args))
[ "def", "explorev2", "(", "self", ",", "datasource_type", ",", "datasource_id", ")", ":", "return", "redirect", "(", "url_for", "(", "'Superset.explore'", ",", "datasource_type", "=", "datasource_type", ",", "datasource_id", "=", "datasource_id", ",", "*", "*", "request", ".", "args", ")", ")" ]
Deprecated endpoint, here for backward compatibility of urls
[ "Deprecated", "endpoint", "here", "for", "backward", "compatibility", "of", "urls" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L1281-L1287
21,460
apache/incubator-superset
superset/views/core.py
Superset.filter
def filter(self, datasource_type, datasource_id, column): """ Endpoint to retrieve values for specified column. :param datasource_type: Type of datasource e.g. table :param datasource_id: Datasource id :param column: Column name to retrieve values for :return: """ # TODO: Cache endpoint by user, datasource and column datasource = ConnectorRegistry.get_datasource( datasource_type, datasource_id, db.session) if not datasource: return json_error_response(DATASOURCE_MISSING_ERR) security_manager.assert_datasource_permission(datasource) payload = json.dumps( datasource.values_for_column( column, config.get('FILTER_SELECT_ROW_LIMIT', 10000), ), default=utils.json_int_dttm_ser) return json_success(payload)
python
def filter(self, datasource_type, datasource_id, column): """ Endpoint to retrieve values for specified column. :param datasource_type: Type of datasource e.g. table :param datasource_id: Datasource id :param column: Column name to retrieve values for :return: """ # TODO: Cache endpoint by user, datasource and column datasource = ConnectorRegistry.get_datasource( datasource_type, datasource_id, db.session) if not datasource: return json_error_response(DATASOURCE_MISSING_ERR) security_manager.assert_datasource_permission(datasource) payload = json.dumps( datasource.values_for_column( column, config.get('FILTER_SELECT_ROW_LIMIT', 10000), ), default=utils.json_int_dttm_ser) return json_success(payload)
[ "def", "filter", "(", "self", ",", "datasource_type", ",", "datasource_id", ",", "column", ")", ":", "# TODO: Cache endpoint by user, datasource and column", "datasource", "=", "ConnectorRegistry", ".", "get_datasource", "(", "datasource_type", ",", "datasource_id", ",", "db", ".", "session", ")", "if", "not", "datasource", ":", "return", "json_error_response", "(", "DATASOURCE_MISSING_ERR", ")", "security_manager", ".", "assert_datasource_permission", "(", "datasource", ")", "payload", "=", "json", ".", "dumps", "(", "datasource", ".", "values_for_column", "(", "column", ",", "config", ".", "get", "(", "'FILTER_SELECT_ROW_LIMIT'", ",", "10000", ")", ",", ")", ",", "default", "=", "utils", ".", "json_int_dttm_ser", ")", "return", "json_success", "(", "payload", ")" ]
Endpoint to retrieve values for specified column. :param datasource_type: Type of datasource e.g. table :param datasource_id: Datasource id :param column: Column name to retrieve values for :return:
[ "Endpoint", "to", "retrieve", "values", "for", "specified", "column", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L1394-L1415
21,461
apache/incubator-superset
superset/views/core.py
Superset.save_or_overwrite_slice
def save_or_overwrite_slice( self, args, slc, slice_add_perm, slice_overwrite_perm, slice_download_perm, datasource_id, datasource_type, datasource_name): """Save or overwrite a slice""" slice_name = args.get('slice_name') action = args.get('action') form_data = get_form_data()[0] if action in ('saveas'): if 'slice_id' in form_data: form_data.pop('slice_id') # don't save old slice_id slc = models.Slice(owners=[g.user] if g.user else []) slc.params = json.dumps(form_data, indent=2, sort_keys=True) slc.datasource_name = datasource_name slc.viz_type = form_data['viz_type'] slc.datasource_type = datasource_type slc.datasource_id = datasource_id slc.slice_name = slice_name if action in ('saveas') and slice_add_perm: self.save_slice(slc) elif action == 'overwrite' and slice_overwrite_perm: self.overwrite_slice(slc) # Adding slice to a dashboard if requested dash = None if request.args.get('add_to_dash') == 'existing': dash = ( db.session.query(models.Dashboard) .filter_by(id=int(request.args.get('save_to_dashboard_id'))) .one() ) # check edit dashboard permissions dash_overwrite_perm = check_ownership(dash, raise_if_false=False) if not dash_overwrite_perm: return json_error_response( _('You don\'t have the rights to ') + _('alter this ') + _('dashboard'), status=400) flash( _('Chart [{}] was added to dashboard [{}]').format( slc.slice_name, dash.dashboard_title), 'info') elif request.args.get('add_to_dash') == 'new': # check create dashboard permissions dash_add_perm = security_manager.can_access('can_add', 'DashboardModelView') if not dash_add_perm: return json_error_response( _('You don\'t have the rights to ') + _('create a ') + _('dashboard'), status=400) dash = models.Dashboard( dashboard_title=request.args.get('new_dashboard_name'), owners=[g.user] if g.user else []) flash( _('Dashboard [{}] just got created and chart [{}] was added ' 'to it').format( dash.dashboard_title, slc.slice_name), 'info') if dash and slc not in dash.slices: dash.slices.append(slc) db.session.commit() response = { 'can_add': slice_add_perm, 'can_download': slice_download_perm, 'can_overwrite': is_owner(slc, g.user), 'form_data': slc.form_data, 'slice': slc.data, 'dashboard_id': dash.id if dash else None, } if request.args.get('goto_dash') == 'true': response.update({'dashboard': dash.url}) return json_success(json.dumps(response))
python
def save_or_overwrite_slice( self, args, slc, slice_add_perm, slice_overwrite_perm, slice_download_perm, datasource_id, datasource_type, datasource_name): """Save or overwrite a slice""" slice_name = args.get('slice_name') action = args.get('action') form_data = get_form_data()[0] if action in ('saveas'): if 'slice_id' in form_data: form_data.pop('slice_id') # don't save old slice_id slc = models.Slice(owners=[g.user] if g.user else []) slc.params = json.dumps(form_data, indent=2, sort_keys=True) slc.datasource_name = datasource_name slc.viz_type = form_data['viz_type'] slc.datasource_type = datasource_type slc.datasource_id = datasource_id slc.slice_name = slice_name if action in ('saveas') and slice_add_perm: self.save_slice(slc) elif action == 'overwrite' and slice_overwrite_perm: self.overwrite_slice(slc) # Adding slice to a dashboard if requested dash = None if request.args.get('add_to_dash') == 'existing': dash = ( db.session.query(models.Dashboard) .filter_by(id=int(request.args.get('save_to_dashboard_id'))) .one() ) # check edit dashboard permissions dash_overwrite_perm = check_ownership(dash, raise_if_false=False) if not dash_overwrite_perm: return json_error_response( _('You don\'t have the rights to ') + _('alter this ') + _('dashboard'), status=400) flash( _('Chart [{}] was added to dashboard [{}]').format( slc.slice_name, dash.dashboard_title), 'info') elif request.args.get('add_to_dash') == 'new': # check create dashboard permissions dash_add_perm = security_manager.can_access('can_add', 'DashboardModelView') if not dash_add_perm: return json_error_response( _('You don\'t have the rights to ') + _('create a ') + _('dashboard'), status=400) dash = models.Dashboard( dashboard_title=request.args.get('new_dashboard_name'), owners=[g.user] if g.user else []) flash( _('Dashboard [{}] just got created and chart [{}] was added ' 'to it').format( dash.dashboard_title, slc.slice_name), 'info') if dash and slc not in dash.slices: dash.slices.append(slc) db.session.commit() response = { 'can_add': slice_add_perm, 'can_download': slice_download_perm, 'can_overwrite': is_owner(slc, g.user), 'form_data': slc.form_data, 'slice': slc.data, 'dashboard_id': dash.id if dash else None, } if request.args.get('goto_dash') == 'true': response.update({'dashboard': dash.url}) return json_success(json.dumps(response))
[ "def", "save_or_overwrite_slice", "(", "self", ",", "args", ",", "slc", ",", "slice_add_perm", ",", "slice_overwrite_perm", ",", "slice_download_perm", ",", "datasource_id", ",", "datasource_type", ",", "datasource_name", ")", ":", "slice_name", "=", "args", ".", "get", "(", "'slice_name'", ")", "action", "=", "args", ".", "get", "(", "'action'", ")", "form_data", "=", "get_form_data", "(", ")", "[", "0", "]", "if", "action", "in", "(", "'saveas'", ")", ":", "if", "'slice_id'", "in", "form_data", ":", "form_data", ".", "pop", "(", "'slice_id'", ")", "# don't save old slice_id", "slc", "=", "models", ".", "Slice", "(", "owners", "=", "[", "g", ".", "user", "]", "if", "g", ".", "user", "else", "[", "]", ")", "slc", ".", "params", "=", "json", ".", "dumps", "(", "form_data", ",", "indent", "=", "2", ",", "sort_keys", "=", "True", ")", "slc", ".", "datasource_name", "=", "datasource_name", "slc", ".", "viz_type", "=", "form_data", "[", "'viz_type'", "]", "slc", ".", "datasource_type", "=", "datasource_type", "slc", ".", "datasource_id", "=", "datasource_id", "slc", ".", "slice_name", "=", "slice_name", "if", "action", "in", "(", "'saveas'", ")", "and", "slice_add_perm", ":", "self", ".", "save_slice", "(", "slc", ")", "elif", "action", "==", "'overwrite'", "and", "slice_overwrite_perm", ":", "self", ".", "overwrite_slice", "(", "slc", ")", "# Adding slice to a dashboard if requested", "dash", "=", "None", "if", "request", ".", "args", ".", "get", "(", "'add_to_dash'", ")", "==", "'existing'", ":", "dash", "=", "(", "db", ".", "session", ".", "query", "(", "models", ".", "Dashboard", ")", ".", "filter_by", "(", "id", "=", "int", "(", "request", ".", "args", ".", "get", "(", "'save_to_dashboard_id'", ")", ")", ")", ".", "one", "(", ")", ")", "# check edit dashboard permissions", "dash_overwrite_perm", "=", "check_ownership", "(", "dash", ",", "raise_if_false", "=", "False", ")", "if", "not", "dash_overwrite_perm", ":", "return", "json_error_response", "(", "_", "(", "'You don\\'t have the rights to '", ")", "+", "_", "(", "'alter this '", ")", "+", "_", "(", "'dashboard'", ")", ",", "status", "=", "400", ")", "flash", "(", "_", "(", "'Chart [{}] was added to dashboard [{}]'", ")", ".", "format", "(", "slc", ".", "slice_name", ",", "dash", ".", "dashboard_title", ")", ",", "'info'", ")", "elif", "request", ".", "args", ".", "get", "(", "'add_to_dash'", ")", "==", "'new'", ":", "# check create dashboard permissions", "dash_add_perm", "=", "security_manager", ".", "can_access", "(", "'can_add'", ",", "'DashboardModelView'", ")", "if", "not", "dash_add_perm", ":", "return", "json_error_response", "(", "_", "(", "'You don\\'t have the rights to '", ")", "+", "_", "(", "'create a '", ")", "+", "_", "(", "'dashboard'", ")", ",", "status", "=", "400", ")", "dash", "=", "models", ".", "Dashboard", "(", "dashboard_title", "=", "request", ".", "args", ".", "get", "(", "'new_dashboard_name'", ")", ",", "owners", "=", "[", "g", ".", "user", "]", "if", "g", ".", "user", "else", "[", "]", ")", "flash", "(", "_", "(", "'Dashboard [{}] just got created and chart [{}] was added '", "'to it'", ")", ".", "format", "(", "dash", ".", "dashboard_title", ",", "slc", ".", "slice_name", ")", ",", "'info'", ")", "if", "dash", "and", "slc", "not", "in", "dash", ".", "slices", ":", "dash", ".", "slices", ".", "append", "(", "slc", ")", "db", ".", "session", ".", "commit", "(", ")", "response", "=", "{", "'can_add'", ":", "slice_add_perm", ",", "'can_download'", ":", "slice_download_perm", ",", "'can_overwrite'", ":", "is_owner", "(", "slc", ",", "g", ".", "user", ")", ",", "'form_data'", ":", "slc", ".", "form_data", ",", "'slice'", ":", "slc", ".", "data", ",", "'dashboard_id'", ":", "dash", ".", "id", "if", "dash", "else", "None", ",", "}", "if", "request", ".", "args", ".", "get", "(", "'goto_dash'", ")", "==", "'true'", ":", "response", ".", "update", "(", "{", "'dashboard'", ":", "dash", ".", "url", "}", ")", "return", "json_success", "(", "json", ".", "dumps", "(", "response", ")", ")" ]
Save or overwrite a slice
[ "Save", "or", "overwrite", "a", "slice" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L1417-L1498
21,462
apache/incubator-superset
superset/views/core.py
Superset.tables
def tables(self, db_id, schema, substr, force_refresh='false'): """Endpoint to fetch the list of tables for given database""" db_id = int(db_id) force_refresh = force_refresh.lower() == 'true' schema = utils.js_string_to_python(schema) substr = utils.js_string_to_python(substr) database = db.session.query(models.Database).filter_by(id=db_id).one() if schema: table_names = database.all_table_names_in_schema( schema=schema, force=force_refresh, cache=database.table_cache_enabled, cache_timeout=database.table_cache_timeout) view_names = database.all_view_names_in_schema( schema=schema, force=force_refresh, cache=database.table_cache_enabled, cache_timeout=database.table_cache_timeout) else: table_names = database.all_table_names_in_database( cache=True, force=False, cache_timeout=24 * 60 * 60) view_names = database.all_view_names_in_database( cache=True, force=False, cache_timeout=24 * 60 * 60) table_names = security_manager.accessible_by_user(database, table_names, schema) view_names = security_manager.accessible_by_user(database, view_names, schema) if substr: table_names = [tn for tn in table_names if substr in tn] view_names = [vn for vn in view_names if substr in vn] if not schema and database.default_schemas: def get_schema(tbl_or_view_name): return tbl_or_view_name.split('.')[0] if '.' in tbl_or_view_name else None user_schema = g.user.email.split('@')[0] valid_schemas = set(database.default_schemas + [user_schema]) table_names = [tn for tn in table_names if get_schema(tn) in valid_schemas] view_names = [vn for vn in view_names if get_schema(vn) in valid_schemas] max_items = config.get('MAX_TABLE_NAMES') or len(table_names) total_items = len(table_names) + len(view_names) max_tables = len(table_names) max_views = len(view_names) if total_items and substr: max_tables = max_items * len(table_names) // total_items max_views = max_items * len(view_names) // total_items table_options = [{'value': tn, 'label': tn} for tn in table_names[:max_tables]] table_options.extend([{'value': vn, 'label': '[view] {}'.format(vn)} for vn in view_names[:max_views]]) payload = { 'tableLength': len(table_names) + len(view_names), 'options': table_options, } return json_success(json.dumps(payload))
python
def tables(self, db_id, schema, substr, force_refresh='false'): """Endpoint to fetch the list of tables for given database""" db_id = int(db_id) force_refresh = force_refresh.lower() == 'true' schema = utils.js_string_to_python(schema) substr = utils.js_string_to_python(substr) database = db.session.query(models.Database).filter_by(id=db_id).one() if schema: table_names = database.all_table_names_in_schema( schema=schema, force=force_refresh, cache=database.table_cache_enabled, cache_timeout=database.table_cache_timeout) view_names = database.all_view_names_in_schema( schema=schema, force=force_refresh, cache=database.table_cache_enabled, cache_timeout=database.table_cache_timeout) else: table_names = database.all_table_names_in_database( cache=True, force=False, cache_timeout=24 * 60 * 60) view_names = database.all_view_names_in_database( cache=True, force=False, cache_timeout=24 * 60 * 60) table_names = security_manager.accessible_by_user(database, table_names, schema) view_names = security_manager.accessible_by_user(database, view_names, schema) if substr: table_names = [tn for tn in table_names if substr in tn] view_names = [vn for vn in view_names if substr in vn] if not schema and database.default_schemas: def get_schema(tbl_or_view_name): return tbl_or_view_name.split('.')[0] if '.' in tbl_or_view_name else None user_schema = g.user.email.split('@')[0] valid_schemas = set(database.default_schemas + [user_schema]) table_names = [tn for tn in table_names if get_schema(tn) in valid_schemas] view_names = [vn for vn in view_names if get_schema(vn) in valid_schemas] max_items = config.get('MAX_TABLE_NAMES') or len(table_names) total_items = len(table_names) + len(view_names) max_tables = len(table_names) max_views = len(view_names) if total_items and substr: max_tables = max_items * len(table_names) // total_items max_views = max_items * len(view_names) // total_items table_options = [{'value': tn, 'label': tn} for tn in table_names[:max_tables]] table_options.extend([{'value': vn, 'label': '[view] {}'.format(vn)} for vn in view_names[:max_views]]) payload = { 'tableLength': len(table_names) + len(view_names), 'options': table_options, } return json_success(json.dumps(payload))
[ "def", "tables", "(", "self", ",", "db_id", ",", "schema", ",", "substr", ",", "force_refresh", "=", "'false'", ")", ":", "db_id", "=", "int", "(", "db_id", ")", "force_refresh", "=", "force_refresh", ".", "lower", "(", ")", "==", "'true'", "schema", "=", "utils", ".", "js_string_to_python", "(", "schema", ")", "substr", "=", "utils", ".", "js_string_to_python", "(", "substr", ")", "database", "=", "db", ".", "session", ".", "query", "(", "models", ".", "Database", ")", ".", "filter_by", "(", "id", "=", "db_id", ")", ".", "one", "(", ")", "if", "schema", ":", "table_names", "=", "database", ".", "all_table_names_in_schema", "(", "schema", "=", "schema", ",", "force", "=", "force_refresh", ",", "cache", "=", "database", ".", "table_cache_enabled", ",", "cache_timeout", "=", "database", ".", "table_cache_timeout", ")", "view_names", "=", "database", ".", "all_view_names_in_schema", "(", "schema", "=", "schema", ",", "force", "=", "force_refresh", ",", "cache", "=", "database", ".", "table_cache_enabled", ",", "cache_timeout", "=", "database", ".", "table_cache_timeout", ")", "else", ":", "table_names", "=", "database", ".", "all_table_names_in_database", "(", "cache", "=", "True", ",", "force", "=", "False", ",", "cache_timeout", "=", "24", "*", "60", "*", "60", ")", "view_names", "=", "database", ".", "all_view_names_in_database", "(", "cache", "=", "True", ",", "force", "=", "False", ",", "cache_timeout", "=", "24", "*", "60", "*", "60", ")", "table_names", "=", "security_manager", ".", "accessible_by_user", "(", "database", ",", "table_names", ",", "schema", ")", "view_names", "=", "security_manager", ".", "accessible_by_user", "(", "database", ",", "view_names", ",", "schema", ")", "if", "substr", ":", "table_names", "=", "[", "tn", "for", "tn", "in", "table_names", "if", "substr", "in", "tn", "]", "view_names", "=", "[", "vn", "for", "vn", "in", "view_names", "if", "substr", "in", "vn", "]", "if", "not", "schema", "and", "database", ".", "default_schemas", ":", "def", "get_schema", "(", "tbl_or_view_name", ")", ":", "return", "tbl_or_view_name", ".", "split", "(", "'.'", ")", "[", "0", "]", "if", "'.'", "in", "tbl_or_view_name", "else", "None", "user_schema", "=", "g", ".", "user", ".", "email", ".", "split", "(", "'@'", ")", "[", "0", "]", "valid_schemas", "=", "set", "(", "database", ".", "default_schemas", "+", "[", "user_schema", "]", ")", "table_names", "=", "[", "tn", "for", "tn", "in", "table_names", "if", "get_schema", "(", "tn", ")", "in", "valid_schemas", "]", "view_names", "=", "[", "vn", "for", "vn", "in", "view_names", "if", "get_schema", "(", "vn", ")", "in", "valid_schemas", "]", "max_items", "=", "config", ".", "get", "(", "'MAX_TABLE_NAMES'", ")", "or", "len", "(", "table_names", ")", "total_items", "=", "len", "(", "table_names", ")", "+", "len", "(", "view_names", ")", "max_tables", "=", "len", "(", "table_names", ")", "max_views", "=", "len", "(", "view_names", ")", "if", "total_items", "and", "substr", ":", "max_tables", "=", "max_items", "*", "len", "(", "table_names", ")", "//", "total_items", "max_views", "=", "max_items", "*", "len", "(", "view_names", ")", "//", "total_items", "table_options", "=", "[", "{", "'value'", ":", "tn", ",", "'label'", ":", "tn", "}", "for", "tn", "in", "table_names", "[", ":", "max_tables", "]", "]", "table_options", ".", "extend", "(", "[", "{", "'value'", ":", "vn", ",", "'label'", ":", "'[view] {}'", ".", "format", "(", "vn", ")", "}", "for", "vn", "in", "view_names", "[", ":", "max_views", "]", "]", ")", "payload", "=", "{", "'tableLength'", ":", "len", "(", "table_names", ")", "+", "len", "(", "view_names", ")", ",", "'options'", ":", "table_options", ",", "}", "return", "json_success", "(", "json", ".", "dumps", "(", "payload", ")", ")" ]
Endpoint to fetch the list of tables for given database
[ "Endpoint", "to", "fetch", "the", "list", "of", "tables", "for", "given", "database" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L1564-L1619
21,463
apache/incubator-superset
superset/views/core.py
Superset.save_dash
def save_dash(self, dashboard_id): """Save a dashboard's metadata""" session = db.session() dash = (session .query(models.Dashboard) .filter_by(id=dashboard_id).first()) check_ownership(dash, raise_if_false=True) data = json.loads(request.form.get('data')) self._set_dash_metadata(dash, data) session.merge(dash) session.commit() session.close() return json_success(json.dumps({'status': 'SUCCESS'}))
python
def save_dash(self, dashboard_id): """Save a dashboard's metadata""" session = db.session() dash = (session .query(models.Dashboard) .filter_by(id=dashboard_id).first()) check_ownership(dash, raise_if_false=True) data = json.loads(request.form.get('data')) self._set_dash_metadata(dash, data) session.merge(dash) session.commit() session.close() return json_success(json.dumps({'status': 'SUCCESS'}))
[ "def", "save_dash", "(", "self", ",", "dashboard_id", ")", ":", "session", "=", "db", ".", "session", "(", ")", "dash", "=", "(", "session", ".", "query", "(", "models", ".", "Dashboard", ")", ".", "filter_by", "(", "id", "=", "dashboard_id", ")", ".", "first", "(", ")", ")", "check_ownership", "(", "dash", ",", "raise_if_false", "=", "True", ")", "data", "=", "json", ".", "loads", "(", "request", ".", "form", ".", "get", "(", "'data'", ")", ")", "self", ".", "_set_dash_metadata", "(", "dash", ",", "data", ")", "session", ".", "merge", "(", "dash", ")", "session", ".", "commit", "(", ")", "session", ".", "close", "(", ")", "return", "json_success", "(", "json", ".", "dumps", "(", "{", "'status'", ":", "'SUCCESS'", "}", ")", ")" ]
Save a dashboard's metadata
[ "Save", "a", "dashboard", "s", "metadata" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L1674-L1686
21,464
apache/incubator-superset
superset/views/core.py
Superset.add_slices
def add_slices(self, dashboard_id): """Add and save slices to a dashboard""" data = json.loads(request.form.get('data')) session = db.session() Slice = models.Slice # noqa dash = ( session.query(models.Dashboard).filter_by(id=dashboard_id).first()) check_ownership(dash, raise_if_false=True) new_slices = session.query(Slice).filter( Slice.id.in_(data['slice_ids'])) dash.slices += new_slices session.merge(dash) session.commit() session.close() return 'SLICES ADDED'
python
def add_slices(self, dashboard_id): """Add and save slices to a dashboard""" data = json.loads(request.form.get('data')) session = db.session() Slice = models.Slice # noqa dash = ( session.query(models.Dashboard).filter_by(id=dashboard_id).first()) check_ownership(dash, raise_if_false=True) new_slices = session.query(Slice).filter( Slice.id.in_(data['slice_ids'])) dash.slices += new_slices session.merge(dash) session.commit() session.close() return 'SLICES ADDED'
[ "def", "add_slices", "(", "self", ",", "dashboard_id", ")", ":", "data", "=", "json", ".", "loads", "(", "request", ".", "form", ".", "get", "(", "'data'", ")", ")", "session", "=", "db", ".", "session", "(", ")", "Slice", "=", "models", ".", "Slice", "# noqa", "dash", "=", "(", "session", ".", "query", "(", "models", ".", "Dashboard", ")", ".", "filter_by", "(", "id", "=", "dashboard_id", ")", ".", "first", "(", ")", ")", "check_ownership", "(", "dash", ",", "raise_if_false", "=", "True", ")", "new_slices", "=", "session", ".", "query", "(", "Slice", ")", ".", "filter", "(", "Slice", ".", "id", ".", "in_", "(", "data", "[", "'slice_ids'", "]", ")", ")", "dash", ".", "slices", "+=", "new_slices", "session", ".", "merge", "(", "dash", ")", "session", ".", "commit", "(", ")", "session", ".", "close", "(", ")", "return", "'SLICES ADDED'" ]
Add and save slices to a dashboard
[ "Add", "and", "save", "slices", "to", "a", "dashboard" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L1749-L1763
21,465
apache/incubator-superset
superset/views/core.py
Superset.fave_dashboards_by_username
def fave_dashboards_by_username(self, username): """This lets us use a user's username to pull favourite dashboards""" user = security_manager.find_user(username=username) return self.fave_dashboards(user.get_id())
python
def fave_dashboards_by_username(self, username): """This lets us use a user's username to pull favourite dashboards""" user = security_manager.find_user(username=username) return self.fave_dashboards(user.get_id())
[ "def", "fave_dashboards_by_username", "(", "self", ",", "username", ")", ":", "user", "=", "security_manager", ".", "find_user", "(", "username", "=", "username", ")", "return", "self", ".", "fave_dashboards", "(", "user", ".", "get_id", "(", ")", ")" ]
This lets us use a user's username to pull favourite dashboards
[ "This", "lets", "us", "use", "a", "user", "s", "username", "to", "pull", "favourite", "dashboards" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L1900-L1903
21,466
apache/incubator-superset
superset/views/core.py
Superset.user_slices
def user_slices(self, user_id=None): """List of slices a user created, or faved""" if not user_id: user_id = g.user.id Slice = models.Slice # noqa FavStar = models.FavStar # noqa qry = ( db.session.query(Slice, FavStar.dttm).join( models.FavStar, sqla.and_( models.FavStar.user_id == int(user_id), models.FavStar.class_name == 'slice', models.Slice.id == models.FavStar.obj_id, ), isouter=True).filter( sqla.or_( Slice.created_by_fk == user_id, Slice.changed_by_fk == user_id, FavStar.user_id == user_id, ), ) .order_by(Slice.slice_name.asc()) ) payload = [{ 'id': o.Slice.id, 'title': o.Slice.slice_name, 'url': o.Slice.slice_url, 'data': o.Slice.form_data, 'dttm': o.dttm if o.dttm else o.Slice.changed_on, 'viz_type': o.Slice.viz_type, } for o in qry.all()] return json_success( json.dumps(payload, default=utils.json_int_dttm_ser))
python
def user_slices(self, user_id=None): """List of slices a user created, or faved""" if not user_id: user_id = g.user.id Slice = models.Slice # noqa FavStar = models.FavStar # noqa qry = ( db.session.query(Slice, FavStar.dttm).join( models.FavStar, sqla.and_( models.FavStar.user_id == int(user_id), models.FavStar.class_name == 'slice', models.Slice.id == models.FavStar.obj_id, ), isouter=True).filter( sqla.or_( Slice.created_by_fk == user_id, Slice.changed_by_fk == user_id, FavStar.user_id == user_id, ), ) .order_by(Slice.slice_name.asc()) ) payload = [{ 'id': o.Slice.id, 'title': o.Slice.slice_name, 'url': o.Slice.slice_url, 'data': o.Slice.form_data, 'dttm': o.dttm if o.dttm else o.Slice.changed_on, 'viz_type': o.Slice.viz_type, } for o in qry.all()] return json_success( json.dumps(payload, default=utils.json_int_dttm_ser))
[ "def", "user_slices", "(", "self", ",", "user_id", "=", "None", ")", ":", "if", "not", "user_id", ":", "user_id", "=", "g", ".", "user", ".", "id", "Slice", "=", "models", ".", "Slice", "# noqa", "FavStar", "=", "models", ".", "FavStar", "# noqa", "qry", "=", "(", "db", ".", "session", ".", "query", "(", "Slice", ",", "FavStar", ".", "dttm", ")", ".", "join", "(", "models", ".", "FavStar", ",", "sqla", ".", "and_", "(", "models", ".", "FavStar", ".", "user_id", "==", "int", "(", "user_id", ")", ",", "models", ".", "FavStar", ".", "class_name", "==", "'slice'", ",", "models", ".", "Slice", ".", "id", "==", "models", ".", "FavStar", ".", "obj_id", ",", ")", ",", "isouter", "=", "True", ")", ".", "filter", "(", "sqla", ".", "or_", "(", "Slice", ".", "created_by_fk", "==", "user_id", ",", "Slice", ".", "changed_by_fk", "==", "user_id", ",", "FavStar", ".", "user_id", "==", "user_id", ",", ")", ",", ")", ".", "order_by", "(", "Slice", ".", "slice_name", ".", "asc", "(", ")", ")", ")", "payload", "=", "[", "{", "'id'", ":", "o", ".", "Slice", ".", "id", ",", "'title'", ":", "o", ".", "Slice", ".", "slice_name", ",", "'url'", ":", "o", ".", "Slice", ".", "slice_url", ",", "'data'", ":", "o", ".", "Slice", ".", "form_data", ",", "'dttm'", ":", "o", ".", "dttm", "if", "o", ".", "dttm", "else", "o", ".", "Slice", ".", "changed_on", ",", "'viz_type'", ":", "o", ".", "Slice", ".", "viz_type", ",", "}", "for", "o", "in", "qry", ".", "all", "(", ")", "]", "return", "json_success", "(", "json", ".", "dumps", "(", "payload", ",", "default", "=", "utils", ".", "json_int_dttm_ser", ")", ")" ]
List of slices a user created, or faved
[ "List", "of", "slices", "a", "user", "created", "or", "faved" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L1977-L2010
21,467
apache/incubator-superset
superset/views/core.py
Superset.created_slices
def created_slices(self, user_id=None): """List of slices created by this user""" if not user_id: user_id = g.user.id Slice = models.Slice # noqa qry = ( db.session.query(Slice) .filter( sqla.or_( Slice.created_by_fk == user_id, Slice.changed_by_fk == user_id, ), ) .order_by(Slice.changed_on.desc()) ) payload = [{ 'id': o.id, 'title': o.slice_name, 'url': o.slice_url, 'dttm': o.changed_on, 'viz_type': o.viz_type, } for o in qry.all()] return json_success( json.dumps(payload, default=utils.json_int_dttm_ser))
python
def created_slices(self, user_id=None): """List of slices created by this user""" if not user_id: user_id = g.user.id Slice = models.Slice # noqa qry = ( db.session.query(Slice) .filter( sqla.or_( Slice.created_by_fk == user_id, Slice.changed_by_fk == user_id, ), ) .order_by(Slice.changed_on.desc()) ) payload = [{ 'id': o.id, 'title': o.slice_name, 'url': o.slice_url, 'dttm': o.changed_on, 'viz_type': o.viz_type, } for o in qry.all()] return json_success( json.dumps(payload, default=utils.json_int_dttm_ser))
[ "def", "created_slices", "(", "self", ",", "user_id", "=", "None", ")", ":", "if", "not", "user_id", ":", "user_id", "=", "g", ".", "user", ".", "id", "Slice", "=", "models", ".", "Slice", "# noqa", "qry", "=", "(", "db", ".", "session", ".", "query", "(", "Slice", ")", ".", "filter", "(", "sqla", ".", "or_", "(", "Slice", ".", "created_by_fk", "==", "user_id", ",", "Slice", ".", "changed_by_fk", "==", "user_id", ",", ")", ",", ")", ".", "order_by", "(", "Slice", ".", "changed_on", ".", "desc", "(", ")", ")", ")", "payload", "=", "[", "{", "'id'", ":", "o", ".", "id", ",", "'title'", ":", "o", ".", "slice_name", ",", "'url'", ":", "o", ".", "slice_url", ",", "'dttm'", ":", "o", ".", "changed_on", ",", "'viz_type'", ":", "o", ".", "viz_type", ",", "}", "for", "o", "in", "qry", ".", "all", "(", ")", "]", "return", "json_success", "(", "json", ".", "dumps", "(", "payload", ",", "default", "=", "utils", ".", "json_int_dttm_ser", ")", ")" ]
List of slices created by this user
[ "List", "of", "slices", "created", "by", "this", "user" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L2016-L2039
21,468
apache/incubator-superset
superset/views/core.py
Superset.fave_slices
def fave_slices(self, user_id=None): """Favorite slices for a user""" if not user_id: user_id = g.user.id qry = ( db.session.query( models.Slice, models.FavStar.dttm, ) .join( models.FavStar, sqla.and_( models.FavStar.user_id == int(user_id), models.FavStar.class_name == 'slice', models.Slice.id == models.FavStar.obj_id, ), ) .order_by( models.FavStar.dttm.desc(), ) ) payload = [] for o in qry.all(): d = { 'id': o.Slice.id, 'title': o.Slice.slice_name, 'url': o.Slice.slice_url, 'dttm': o.dttm, 'viz_type': o.Slice.viz_type, } if o.Slice.created_by: user = o.Slice.created_by d['creator'] = str(user) d['creator_url'] = '/superset/profile/{}/'.format( user.username) payload.append(d) return json_success( json.dumps(payload, default=utils.json_int_dttm_ser))
python
def fave_slices(self, user_id=None): """Favorite slices for a user""" if not user_id: user_id = g.user.id qry = ( db.session.query( models.Slice, models.FavStar.dttm, ) .join( models.FavStar, sqla.and_( models.FavStar.user_id == int(user_id), models.FavStar.class_name == 'slice', models.Slice.id == models.FavStar.obj_id, ), ) .order_by( models.FavStar.dttm.desc(), ) ) payload = [] for o in qry.all(): d = { 'id': o.Slice.id, 'title': o.Slice.slice_name, 'url': o.Slice.slice_url, 'dttm': o.dttm, 'viz_type': o.Slice.viz_type, } if o.Slice.created_by: user = o.Slice.created_by d['creator'] = str(user) d['creator_url'] = '/superset/profile/{}/'.format( user.username) payload.append(d) return json_success( json.dumps(payload, default=utils.json_int_dttm_ser))
[ "def", "fave_slices", "(", "self", ",", "user_id", "=", "None", ")", ":", "if", "not", "user_id", ":", "user_id", "=", "g", ".", "user", ".", "id", "qry", "=", "(", "db", ".", "session", ".", "query", "(", "models", ".", "Slice", ",", "models", ".", "FavStar", ".", "dttm", ",", ")", ".", "join", "(", "models", ".", "FavStar", ",", "sqla", ".", "and_", "(", "models", ".", "FavStar", ".", "user_id", "==", "int", "(", "user_id", ")", ",", "models", ".", "FavStar", ".", "class_name", "==", "'slice'", ",", "models", ".", "Slice", ".", "id", "==", "models", ".", "FavStar", ".", "obj_id", ",", ")", ",", ")", ".", "order_by", "(", "models", ".", "FavStar", ".", "dttm", ".", "desc", "(", ")", ",", ")", ")", "payload", "=", "[", "]", "for", "o", "in", "qry", ".", "all", "(", ")", ":", "d", "=", "{", "'id'", ":", "o", ".", "Slice", ".", "id", ",", "'title'", ":", "o", ".", "Slice", ".", "slice_name", ",", "'url'", ":", "o", ".", "Slice", ".", "slice_url", ",", "'dttm'", ":", "o", ".", "dttm", ",", "'viz_type'", ":", "o", ".", "Slice", ".", "viz_type", ",", "}", "if", "o", ".", "Slice", ".", "created_by", ":", "user", "=", "o", ".", "Slice", ".", "created_by", "d", "[", "'creator'", "]", "=", "str", "(", "user", ")", "d", "[", "'creator_url'", "]", "=", "'/superset/profile/{}/'", ".", "format", "(", "user", ".", "username", ")", "payload", ".", "append", "(", "d", ")", "return", "json_success", "(", "json", ".", "dumps", "(", "payload", ",", "default", "=", "utils", ".", "json_int_dttm_ser", ")", ")" ]
Favorite slices for a user
[ "Favorite", "slices", "for", "a", "user" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L2045-L2082
21,469
apache/incubator-superset
superset/views/core.py
Superset.warm_up_cache
def warm_up_cache(self): """Warms up the cache for the slice or table. Note for slices a force refresh occurs. """ slices = None session = db.session() slice_id = request.args.get('slice_id') table_name = request.args.get('table_name') db_name = request.args.get('db_name') if not slice_id and not (table_name and db_name): return json_error_response(__( 'Malformed request. slice_id or table_name and db_name ' 'arguments are expected'), status=400) if slice_id: slices = session.query(models.Slice).filter_by(id=slice_id).all() if not slices: return json_error_response(__( 'Chart %(id)s not found', id=slice_id), status=404) elif table_name and db_name: SqlaTable = ConnectorRegistry.sources['table'] table = ( session.query(SqlaTable) .join(models.Database) .filter( models.Database.database_name == db_name or SqlaTable.table_name == table_name) ).first() if not table: return json_error_response(__( "Table %(t)s wasn't found in the database %(d)s", t=table_name, s=db_name), status=404) slices = session.query(models.Slice).filter_by( datasource_id=table.id, datasource_type=table.type).all() for slc in slices: try: form_data = get_form_data(slc.id, use_slice_data=True)[0] obj = get_viz( datasource_type=slc.datasource.type, datasource_id=slc.datasource.id, form_data=form_data, force=True, ) obj.get_json() except Exception as e: return json_error_response(utils.error_msg_from_exception(e)) return json_success(json.dumps( [{'slice_id': slc.id, 'slice_name': slc.slice_name} for slc in slices]))
python
def warm_up_cache(self): """Warms up the cache for the slice or table. Note for slices a force refresh occurs. """ slices = None session = db.session() slice_id = request.args.get('slice_id') table_name = request.args.get('table_name') db_name = request.args.get('db_name') if not slice_id and not (table_name and db_name): return json_error_response(__( 'Malformed request. slice_id or table_name and db_name ' 'arguments are expected'), status=400) if slice_id: slices = session.query(models.Slice).filter_by(id=slice_id).all() if not slices: return json_error_response(__( 'Chart %(id)s not found', id=slice_id), status=404) elif table_name and db_name: SqlaTable = ConnectorRegistry.sources['table'] table = ( session.query(SqlaTable) .join(models.Database) .filter( models.Database.database_name == db_name or SqlaTable.table_name == table_name) ).first() if not table: return json_error_response(__( "Table %(t)s wasn't found in the database %(d)s", t=table_name, s=db_name), status=404) slices = session.query(models.Slice).filter_by( datasource_id=table.id, datasource_type=table.type).all() for slc in slices: try: form_data = get_form_data(slc.id, use_slice_data=True)[0] obj = get_viz( datasource_type=slc.datasource.type, datasource_id=slc.datasource.id, form_data=form_data, force=True, ) obj.get_json() except Exception as e: return json_error_response(utils.error_msg_from_exception(e)) return json_success(json.dumps( [{'slice_id': slc.id, 'slice_name': slc.slice_name} for slc in slices]))
[ "def", "warm_up_cache", "(", "self", ")", ":", "slices", "=", "None", "session", "=", "db", ".", "session", "(", ")", "slice_id", "=", "request", ".", "args", ".", "get", "(", "'slice_id'", ")", "table_name", "=", "request", ".", "args", ".", "get", "(", "'table_name'", ")", "db_name", "=", "request", ".", "args", ".", "get", "(", "'db_name'", ")", "if", "not", "slice_id", "and", "not", "(", "table_name", "and", "db_name", ")", ":", "return", "json_error_response", "(", "__", "(", "'Malformed request. slice_id or table_name and db_name '", "'arguments are expected'", ")", ",", "status", "=", "400", ")", "if", "slice_id", ":", "slices", "=", "session", ".", "query", "(", "models", ".", "Slice", ")", ".", "filter_by", "(", "id", "=", "slice_id", ")", ".", "all", "(", ")", "if", "not", "slices", ":", "return", "json_error_response", "(", "__", "(", "'Chart %(id)s not found'", ",", "id", "=", "slice_id", ")", ",", "status", "=", "404", ")", "elif", "table_name", "and", "db_name", ":", "SqlaTable", "=", "ConnectorRegistry", ".", "sources", "[", "'table'", "]", "table", "=", "(", "session", ".", "query", "(", "SqlaTable", ")", ".", "join", "(", "models", ".", "Database", ")", ".", "filter", "(", "models", ".", "Database", ".", "database_name", "==", "db_name", "or", "SqlaTable", ".", "table_name", "==", "table_name", ")", ")", ".", "first", "(", ")", "if", "not", "table", ":", "return", "json_error_response", "(", "__", "(", "\"Table %(t)s wasn't found in the database %(d)s\"", ",", "t", "=", "table_name", ",", "s", "=", "db_name", ")", ",", "status", "=", "404", ")", "slices", "=", "session", ".", "query", "(", "models", ".", "Slice", ")", ".", "filter_by", "(", "datasource_id", "=", "table", ".", "id", ",", "datasource_type", "=", "table", ".", "type", ")", ".", "all", "(", ")", "for", "slc", "in", "slices", ":", "try", ":", "form_data", "=", "get_form_data", "(", "slc", ".", "id", ",", "use_slice_data", "=", "True", ")", "[", "0", "]", "obj", "=", "get_viz", "(", "datasource_type", "=", "slc", ".", "datasource", ".", "type", ",", "datasource_id", "=", "slc", ".", "datasource", ".", "id", ",", "form_data", "=", "form_data", ",", "force", "=", "True", ",", ")", "obj", ".", "get_json", "(", ")", "except", "Exception", "as", "e", ":", "return", "json_error_response", "(", "utils", ".", "error_msg_from_exception", "(", "e", ")", ")", "return", "json_success", "(", "json", ".", "dumps", "(", "[", "{", "'slice_id'", ":", "slc", ".", "id", ",", "'slice_name'", ":", "slc", ".", "slice_name", "}", "for", "slc", "in", "slices", "]", ")", ")" ]
Warms up the cache for the slice or table. Note for slices a force refresh occurs.
[ "Warms", "up", "the", "cache", "for", "the", "slice", "or", "table", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L2087-L2138
21,470
apache/incubator-superset
superset/views/core.py
Superset.favstar
def favstar(self, class_name, obj_id, action): """Toggle favorite stars on Slices and Dashboard""" session = db.session() FavStar = models.FavStar # noqa count = 0 favs = session.query(FavStar).filter_by( class_name=class_name, obj_id=obj_id, user_id=g.user.get_id()).all() if action == 'select': if not favs: session.add( FavStar( class_name=class_name, obj_id=obj_id, user_id=g.user.get_id(), dttm=datetime.now(), ), ) count = 1 elif action == 'unselect': for fav in favs: session.delete(fav) else: count = len(favs) session.commit() return json_success(json.dumps({'count': count}))
python
def favstar(self, class_name, obj_id, action): """Toggle favorite stars on Slices and Dashboard""" session = db.session() FavStar = models.FavStar # noqa count = 0 favs = session.query(FavStar).filter_by( class_name=class_name, obj_id=obj_id, user_id=g.user.get_id()).all() if action == 'select': if not favs: session.add( FavStar( class_name=class_name, obj_id=obj_id, user_id=g.user.get_id(), dttm=datetime.now(), ), ) count = 1 elif action == 'unselect': for fav in favs: session.delete(fav) else: count = len(favs) session.commit() return json_success(json.dumps({'count': count}))
[ "def", "favstar", "(", "self", ",", "class_name", ",", "obj_id", ",", "action", ")", ":", "session", "=", "db", ".", "session", "(", ")", "FavStar", "=", "models", ".", "FavStar", "# noqa", "count", "=", "0", "favs", "=", "session", ".", "query", "(", "FavStar", ")", ".", "filter_by", "(", "class_name", "=", "class_name", ",", "obj_id", "=", "obj_id", ",", "user_id", "=", "g", ".", "user", ".", "get_id", "(", ")", ")", ".", "all", "(", ")", "if", "action", "==", "'select'", ":", "if", "not", "favs", ":", "session", ".", "add", "(", "FavStar", "(", "class_name", "=", "class_name", ",", "obj_id", "=", "obj_id", ",", "user_id", "=", "g", ".", "user", ".", "get_id", "(", ")", ",", "dttm", "=", "datetime", ".", "now", "(", ")", ",", ")", ",", ")", "count", "=", "1", "elif", "action", "==", "'unselect'", ":", "for", "fav", "in", "favs", ":", "session", ".", "delete", "(", "fav", ")", "else", ":", "count", "=", "len", "(", "favs", ")", "session", ".", "commit", "(", ")", "return", "json_success", "(", "json", ".", "dumps", "(", "{", "'count'", ":", "count", "}", ")", ")" ]
Toggle favorite stars on Slices and Dashboard
[ "Toggle", "favorite", "stars", "on", "Slices", "and", "Dashboard" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L2142-L2167
21,471
apache/incubator-superset
superset/views/core.py
Superset.dashboard
def dashboard(self, dashboard_id): """Server side rendering for a dashboard""" session = db.session() qry = session.query(models.Dashboard) if dashboard_id.isdigit(): qry = qry.filter_by(id=int(dashboard_id)) else: qry = qry.filter_by(slug=dashboard_id) dash = qry.one_or_none() if not dash: abort(404) datasources = set() for slc in dash.slices: datasource = slc.datasource if datasource: datasources.add(datasource) if config.get('ENABLE_ACCESS_REQUEST'): for datasource in datasources: if datasource and not security_manager.datasource_access(datasource): flash( __(security_manager.get_datasource_access_error_msg(datasource)), 'danger') return redirect( 'superset/request_access/?' f'dashboard_id={dash.id}&') dash_edit_perm = check_ownership(dash, raise_if_false=False) and \ security_manager.can_access('can_save_dash', 'Superset') dash_save_perm = security_manager.can_access('can_save_dash', 'Superset') superset_can_explore = security_manager.can_access('can_explore', 'Superset') superset_can_csv = security_manager.can_access('can_csv', 'Superset') slice_can_edit = security_manager.can_access('can_edit', 'SliceModelView') standalone_mode = request.args.get('standalone') == 'true' edit_mode = request.args.get('edit') == 'true' # Hack to log the dashboard_id properly, even when getting a slug @log_this def dashboard(**kwargs): # noqa pass dashboard( dashboard_id=dash.id, dashboard_version='v2', dash_edit_perm=dash_edit_perm, edit_mode=edit_mode) dashboard_data = dash.data dashboard_data.update({ 'standalone_mode': standalone_mode, 'dash_save_perm': dash_save_perm, 'dash_edit_perm': dash_edit_perm, 'superset_can_explore': superset_can_explore, 'superset_can_csv': superset_can_csv, 'slice_can_edit': slice_can_edit, }) bootstrap_data = { 'user_id': g.user.get_id(), 'dashboard_data': dashboard_data, 'datasources': {ds.uid: ds.data for ds in datasources}, 'common': self.common_bootsrap_payload(), 'editMode': edit_mode, } if request.args.get('json') == 'true': return json_success(json.dumps(bootstrap_data)) return self.render_template( 'superset/dashboard.html', entry='dashboard', standalone_mode=standalone_mode, title=dash.dashboard_title, bootstrap_data=json.dumps(bootstrap_data), )
python
def dashboard(self, dashboard_id): """Server side rendering for a dashboard""" session = db.session() qry = session.query(models.Dashboard) if dashboard_id.isdigit(): qry = qry.filter_by(id=int(dashboard_id)) else: qry = qry.filter_by(slug=dashboard_id) dash = qry.one_or_none() if not dash: abort(404) datasources = set() for slc in dash.slices: datasource = slc.datasource if datasource: datasources.add(datasource) if config.get('ENABLE_ACCESS_REQUEST'): for datasource in datasources: if datasource and not security_manager.datasource_access(datasource): flash( __(security_manager.get_datasource_access_error_msg(datasource)), 'danger') return redirect( 'superset/request_access/?' f'dashboard_id={dash.id}&') dash_edit_perm = check_ownership(dash, raise_if_false=False) and \ security_manager.can_access('can_save_dash', 'Superset') dash_save_perm = security_manager.can_access('can_save_dash', 'Superset') superset_can_explore = security_manager.can_access('can_explore', 'Superset') superset_can_csv = security_manager.can_access('can_csv', 'Superset') slice_can_edit = security_manager.can_access('can_edit', 'SliceModelView') standalone_mode = request.args.get('standalone') == 'true' edit_mode = request.args.get('edit') == 'true' # Hack to log the dashboard_id properly, even when getting a slug @log_this def dashboard(**kwargs): # noqa pass dashboard( dashboard_id=dash.id, dashboard_version='v2', dash_edit_perm=dash_edit_perm, edit_mode=edit_mode) dashboard_data = dash.data dashboard_data.update({ 'standalone_mode': standalone_mode, 'dash_save_perm': dash_save_perm, 'dash_edit_perm': dash_edit_perm, 'superset_can_explore': superset_can_explore, 'superset_can_csv': superset_can_csv, 'slice_can_edit': slice_can_edit, }) bootstrap_data = { 'user_id': g.user.get_id(), 'dashboard_data': dashboard_data, 'datasources': {ds.uid: ds.data for ds in datasources}, 'common': self.common_bootsrap_payload(), 'editMode': edit_mode, } if request.args.get('json') == 'true': return json_success(json.dumps(bootstrap_data)) return self.render_template( 'superset/dashboard.html', entry='dashboard', standalone_mode=standalone_mode, title=dash.dashboard_title, bootstrap_data=json.dumps(bootstrap_data), )
[ "def", "dashboard", "(", "self", ",", "dashboard_id", ")", ":", "session", "=", "db", ".", "session", "(", ")", "qry", "=", "session", ".", "query", "(", "models", ".", "Dashboard", ")", "if", "dashboard_id", ".", "isdigit", "(", ")", ":", "qry", "=", "qry", ".", "filter_by", "(", "id", "=", "int", "(", "dashboard_id", ")", ")", "else", ":", "qry", "=", "qry", ".", "filter_by", "(", "slug", "=", "dashboard_id", ")", "dash", "=", "qry", ".", "one_or_none", "(", ")", "if", "not", "dash", ":", "abort", "(", "404", ")", "datasources", "=", "set", "(", ")", "for", "slc", "in", "dash", ".", "slices", ":", "datasource", "=", "slc", ".", "datasource", "if", "datasource", ":", "datasources", ".", "add", "(", "datasource", ")", "if", "config", ".", "get", "(", "'ENABLE_ACCESS_REQUEST'", ")", ":", "for", "datasource", "in", "datasources", ":", "if", "datasource", "and", "not", "security_manager", ".", "datasource_access", "(", "datasource", ")", ":", "flash", "(", "__", "(", "security_manager", ".", "get_datasource_access_error_msg", "(", "datasource", ")", ")", ",", "'danger'", ")", "return", "redirect", "(", "'superset/request_access/?'", "f'dashboard_id={dash.id}&'", ")", "dash_edit_perm", "=", "check_ownership", "(", "dash", ",", "raise_if_false", "=", "False", ")", "and", "security_manager", ".", "can_access", "(", "'can_save_dash'", ",", "'Superset'", ")", "dash_save_perm", "=", "security_manager", ".", "can_access", "(", "'can_save_dash'", ",", "'Superset'", ")", "superset_can_explore", "=", "security_manager", ".", "can_access", "(", "'can_explore'", ",", "'Superset'", ")", "superset_can_csv", "=", "security_manager", ".", "can_access", "(", "'can_csv'", ",", "'Superset'", ")", "slice_can_edit", "=", "security_manager", ".", "can_access", "(", "'can_edit'", ",", "'SliceModelView'", ")", "standalone_mode", "=", "request", ".", "args", ".", "get", "(", "'standalone'", ")", "==", "'true'", "edit_mode", "=", "request", ".", "args", ".", "get", "(", "'edit'", ")", "==", "'true'", "# Hack to log the dashboard_id properly, even when getting a slug", "@", "log_this", "def", "dashboard", "(", "*", "*", "kwargs", ")", ":", "# noqa", "pass", "dashboard", "(", "dashboard_id", "=", "dash", ".", "id", ",", "dashboard_version", "=", "'v2'", ",", "dash_edit_perm", "=", "dash_edit_perm", ",", "edit_mode", "=", "edit_mode", ")", "dashboard_data", "=", "dash", ".", "data", "dashboard_data", ".", "update", "(", "{", "'standalone_mode'", ":", "standalone_mode", ",", "'dash_save_perm'", ":", "dash_save_perm", ",", "'dash_edit_perm'", ":", "dash_edit_perm", ",", "'superset_can_explore'", ":", "superset_can_explore", ",", "'superset_can_csv'", ":", "superset_can_csv", ",", "'slice_can_edit'", ":", "slice_can_edit", ",", "}", ")", "bootstrap_data", "=", "{", "'user_id'", ":", "g", ".", "user", ".", "get_id", "(", ")", ",", "'dashboard_data'", ":", "dashboard_data", ",", "'datasources'", ":", "{", "ds", ".", "uid", ":", "ds", ".", "data", "for", "ds", "in", "datasources", "}", ",", "'common'", ":", "self", ".", "common_bootsrap_payload", "(", ")", ",", "'editMode'", ":", "edit_mode", ",", "}", "if", "request", ".", "args", ".", "get", "(", "'json'", ")", "==", "'true'", ":", "return", "json_success", "(", "json", ".", "dumps", "(", "bootstrap_data", ")", ")", "return", "self", ".", "render_template", "(", "'superset/dashboard.html'", ",", "entry", "=", "'dashboard'", ",", "standalone_mode", "=", "standalone_mode", ",", "title", "=", "dash", ".", "dashboard_title", ",", "bootstrap_data", "=", "json", ".", "dumps", "(", "bootstrap_data", ")", ",", ")" ]
Server side rendering for a dashboard
[ "Server", "side", "rendering", "for", "a", "dashboard" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L2171-L2246
21,472
apache/incubator-superset
superset/views/core.py
Superset.sync_druid_source
def sync_druid_source(self): """Syncs the druid datasource in main db with the provided config. The endpoint takes 3 arguments: user - user name to perform the operation as cluster - name of the druid cluster config - configuration stored in json that contains: name: druid datasource name dimensions: list of the dimensions, they become druid columns with the type STRING metrics_spec: list of metrics (dictionary). Metric consists of 2 attributes: type and name. Type can be count, etc. `count` type is stored internally as longSum other fields will be ignored. Example: { 'name': 'test_click', 'metrics_spec': [{'type': 'count', 'name': 'count'}], 'dimensions': ['affiliate_id', 'campaign', 'first_seen'] } """ payload = request.get_json(force=True) druid_config = payload['config'] user_name = payload['user'] cluster_name = payload['cluster'] user = security_manager.find_user(username=user_name) DruidDatasource = ConnectorRegistry.sources['druid'] DruidCluster = DruidDatasource.cluster_class if not user: err_msg = __("Can't find User '%(name)s', please ask your admin " 'to create one.', name=user_name) logging.error(err_msg) return json_error_response(err_msg) cluster = db.session.query(DruidCluster).filter_by( cluster_name=cluster_name).first() if not cluster: err_msg = __("Can't find DruidCluster with cluster_name = " "'%(name)s'", name=cluster_name) logging.error(err_msg) return json_error_response(err_msg) try: DruidDatasource.sync_to_db_from_config( druid_config, user, cluster) except Exception as e: logging.exception(utils.error_msg_from_exception(e)) return json_error_response(utils.error_msg_from_exception(e)) return Response(status=201)
python
def sync_druid_source(self): """Syncs the druid datasource in main db with the provided config. The endpoint takes 3 arguments: user - user name to perform the operation as cluster - name of the druid cluster config - configuration stored in json that contains: name: druid datasource name dimensions: list of the dimensions, they become druid columns with the type STRING metrics_spec: list of metrics (dictionary). Metric consists of 2 attributes: type and name. Type can be count, etc. `count` type is stored internally as longSum other fields will be ignored. Example: { 'name': 'test_click', 'metrics_spec': [{'type': 'count', 'name': 'count'}], 'dimensions': ['affiliate_id', 'campaign', 'first_seen'] } """ payload = request.get_json(force=True) druid_config = payload['config'] user_name = payload['user'] cluster_name = payload['cluster'] user = security_manager.find_user(username=user_name) DruidDatasource = ConnectorRegistry.sources['druid'] DruidCluster = DruidDatasource.cluster_class if not user: err_msg = __("Can't find User '%(name)s', please ask your admin " 'to create one.', name=user_name) logging.error(err_msg) return json_error_response(err_msg) cluster = db.session.query(DruidCluster).filter_by( cluster_name=cluster_name).first() if not cluster: err_msg = __("Can't find DruidCluster with cluster_name = " "'%(name)s'", name=cluster_name) logging.error(err_msg) return json_error_response(err_msg) try: DruidDatasource.sync_to_db_from_config( druid_config, user, cluster) except Exception as e: logging.exception(utils.error_msg_from_exception(e)) return json_error_response(utils.error_msg_from_exception(e)) return Response(status=201)
[ "def", "sync_druid_source", "(", "self", ")", ":", "payload", "=", "request", ".", "get_json", "(", "force", "=", "True", ")", "druid_config", "=", "payload", "[", "'config'", "]", "user_name", "=", "payload", "[", "'user'", "]", "cluster_name", "=", "payload", "[", "'cluster'", "]", "user", "=", "security_manager", ".", "find_user", "(", "username", "=", "user_name", ")", "DruidDatasource", "=", "ConnectorRegistry", ".", "sources", "[", "'druid'", "]", "DruidCluster", "=", "DruidDatasource", ".", "cluster_class", "if", "not", "user", ":", "err_msg", "=", "__", "(", "\"Can't find User '%(name)s', please ask your admin \"", "'to create one.'", ",", "name", "=", "user_name", ")", "logging", ".", "error", "(", "err_msg", ")", "return", "json_error_response", "(", "err_msg", ")", "cluster", "=", "db", ".", "session", ".", "query", "(", "DruidCluster", ")", ".", "filter_by", "(", "cluster_name", "=", "cluster_name", ")", ".", "first", "(", ")", "if", "not", "cluster", ":", "err_msg", "=", "__", "(", "\"Can't find DruidCluster with cluster_name = \"", "\"'%(name)s'\"", ",", "name", "=", "cluster_name", ")", "logging", ".", "error", "(", "err_msg", ")", "return", "json_error_response", "(", "err_msg", ")", "try", ":", "DruidDatasource", ".", "sync_to_db_from_config", "(", "druid_config", ",", "user", ",", "cluster", ")", "except", "Exception", "as", "e", ":", "logging", ".", "exception", "(", "utils", ".", "error_msg_from_exception", "(", "e", ")", ")", "return", "json_error_response", "(", "utils", ".", "error_msg_from_exception", "(", "e", ")", ")", "return", "Response", "(", "status", "=", "201", ")" ]
Syncs the druid datasource in main db with the provided config. The endpoint takes 3 arguments: user - user name to perform the operation as cluster - name of the druid cluster config - configuration stored in json that contains: name: druid datasource name dimensions: list of the dimensions, they become druid columns with the type STRING metrics_spec: list of metrics (dictionary). Metric consists of 2 attributes: type and name. Type can be count, etc. `count` type is stored internally as longSum other fields will be ignored. Example: { 'name': 'test_click', 'metrics_spec': [{'type': 'count', 'name': 'count'}], 'dimensions': ['affiliate_id', 'campaign', 'first_seen'] }
[ "Syncs", "the", "druid", "datasource", "in", "main", "db", "with", "the", "provided", "config", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L2257-L2304
21,473
apache/incubator-superset
superset/views/core.py
Superset.cache_key_exist
def cache_key_exist(self, key): """Returns if a key from cache exist""" key_exist = True if cache.get(key) else False status = 200 if key_exist else 404 return json_success(json.dumps({'key_exist': key_exist}), status=status)
python
def cache_key_exist(self, key): """Returns if a key from cache exist""" key_exist = True if cache.get(key) else False status = 200 if key_exist else 404 return json_success(json.dumps({'key_exist': key_exist}), status=status)
[ "def", "cache_key_exist", "(", "self", ",", "key", ")", ":", "key_exist", "=", "True", "if", "cache", ".", "get", "(", "key", ")", "else", "False", "status", "=", "200", "if", "key_exist", "else", "404", "return", "json_success", "(", "json", ".", "dumps", "(", "{", "'key_exist'", ":", "key_exist", "}", ")", ",", "status", "=", "status", ")" ]
Returns if a key from cache exist
[ "Returns", "if", "a", "key", "from", "cache", "exist" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L2455-L2460
21,474
apache/incubator-superset
superset/views/core.py
Superset.results
def results(self, key): """Serves a key off of the results backend""" if not results_backend: return json_error_response("Results backend isn't configured") read_from_results_backend_start = now_as_float() blob = results_backend.get(key) stats_logger.timing( 'sqllab.query.results_backend_read', now_as_float() - read_from_results_backend_start, ) if not blob: return json_error_response( 'Data could not be retrieved. ' 'You may want to re-run the query.', status=410, ) query = db.session.query(Query).filter_by(results_key=key).one() rejected_tables = security_manager.rejected_datasources( query.sql, query.database, query.schema) if rejected_tables: return json_error_response(security_manager.get_table_access_error_msg( '{}'.format(rejected_tables)), status=403) payload = utils.zlib_decompress_to_string(blob) display_limit = app.config.get('DEFAULT_SQLLAB_LIMIT', None) if display_limit: payload_json = json.loads(payload) payload_json['data'] = payload_json['data'][:display_limit] return json_success( json.dumps( payload_json, default=utils.json_iso_dttm_ser, ignore_nan=True, ), )
python
def results(self, key): """Serves a key off of the results backend""" if not results_backend: return json_error_response("Results backend isn't configured") read_from_results_backend_start = now_as_float() blob = results_backend.get(key) stats_logger.timing( 'sqllab.query.results_backend_read', now_as_float() - read_from_results_backend_start, ) if not blob: return json_error_response( 'Data could not be retrieved. ' 'You may want to re-run the query.', status=410, ) query = db.session.query(Query).filter_by(results_key=key).one() rejected_tables = security_manager.rejected_datasources( query.sql, query.database, query.schema) if rejected_tables: return json_error_response(security_manager.get_table_access_error_msg( '{}'.format(rejected_tables)), status=403) payload = utils.zlib_decompress_to_string(blob) display_limit = app.config.get('DEFAULT_SQLLAB_LIMIT', None) if display_limit: payload_json = json.loads(payload) payload_json['data'] = payload_json['data'][:display_limit] return json_success( json.dumps( payload_json, default=utils.json_iso_dttm_ser, ignore_nan=True, ), )
[ "def", "results", "(", "self", ",", "key", ")", ":", "if", "not", "results_backend", ":", "return", "json_error_response", "(", "\"Results backend isn't configured\"", ")", "read_from_results_backend_start", "=", "now_as_float", "(", ")", "blob", "=", "results_backend", ".", "get", "(", "key", ")", "stats_logger", ".", "timing", "(", "'sqllab.query.results_backend_read'", ",", "now_as_float", "(", ")", "-", "read_from_results_backend_start", ",", ")", "if", "not", "blob", ":", "return", "json_error_response", "(", "'Data could not be retrieved. '", "'You may want to re-run the query.'", ",", "status", "=", "410", ",", ")", "query", "=", "db", ".", "session", ".", "query", "(", "Query", ")", ".", "filter_by", "(", "results_key", "=", "key", ")", ".", "one", "(", ")", "rejected_tables", "=", "security_manager", ".", "rejected_datasources", "(", "query", ".", "sql", ",", "query", ".", "database", ",", "query", ".", "schema", ")", "if", "rejected_tables", ":", "return", "json_error_response", "(", "security_manager", ".", "get_table_access_error_msg", "(", "'{}'", ".", "format", "(", "rejected_tables", ")", ")", ",", "status", "=", "403", ")", "payload", "=", "utils", ".", "zlib_decompress_to_string", "(", "blob", ")", "display_limit", "=", "app", ".", "config", ".", "get", "(", "'DEFAULT_SQLLAB_LIMIT'", ",", "None", ")", "if", "display_limit", ":", "payload_json", "=", "json", ".", "loads", "(", "payload", ")", "payload_json", "[", "'data'", "]", "=", "payload_json", "[", "'data'", "]", "[", ":", "display_limit", "]", "return", "json_success", "(", "json", ".", "dumps", "(", "payload_json", ",", "default", "=", "utils", ".", "json_iso_dttm_ser", ",", "ignore_nan", "=", "True", ",", ")", ",", ")" ]
Serves a key off of the results backend
[ "Serves", "a", "key", "off", "of", "the", "results", "backend" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L2465-L2501
21,475
apache/incubator-superset
superset/views/core.py
Superset.csv
def csv(self, client_id): """Download the query results as csv.""" logging.info('Exporting CSV file [{}]'.format(client_id)) query = ( db.session.query(Query) .filter_by(client_id=client_id) .one() ) rejected_tables = security_manager.rejected_datasources( query.sql, query.database, query.schema) if rejected_tables: flash( security_manager.get_table_access_error_msg('{}'.format(rejected_tables))) return redirect('/') blob = None if results_backend and query.results_key: logging.info( 'Fetching CSV from results backend ' '[{}]'.format(query.results_key)) blob = results_backend.get(query.results_key) if blob: logging.info('Decompressing') json_payload = utils.zlib_decompress_to_string(blob) obj = json.loads(json_payload) columns = [c['name'] for c in obj['columns']] df = pd.DataFrame.from_records(obj['data'], columns=columns) logging.info('Using pandas to convert to CSV') csv = df.to_csv(index=False, **config.get('CSV_EXPORT')) else: logging.info('Running a query to turn into CSV') sql = query.select_sql or query.executed_sql df = query.database.get_df(sql, query.schema) # TODO(bkyryliuk): add compression=gzip for big files. csv = df.to_csv(index=False, **config.get('CSV_EXPORT')) response = Response(csv, mimetype='text/csv') response.headers['Content-Disposition'] = f'attachment; filename={query.name}.csv' logging.info('Ready to return response') return response
python
def csv(self, client_id): """Download the query results as csv.""" logging.info('Exporting CSV file [{}]'.format(client_id)) query = ( db.session.query(Query) .filter_by(client_id=client_id) .one() ) rejected_tables = security_manager.rejected_datasources( query.sql, query.database, query.schema) if rejected_tables: flash( security_manager.get_table_access_error_msg('{}'.format(rejected_tables))) return redirect('/') blob = None if results_backend and query.results_key: logging.info( 'Fetching CSV from results backend ' '[{}]'.format(query.results_key)) blob = results_backend.get(query.results_key) if blob: logging.info('Decompressing') json_payload = utils.zlib_decompress_to_string(blob) obj = json.loads(json_payload) columns = [c['name'] for c in obj['columns']] df = pd.DataFrame.from_records(obj['data'], columns=columns) logging.info('Using pandas to convert to CSV') csv = df.to_csv(index=False, **config.get('CSV_EXPORT')) else: logging.info('Running a query to turn into CSV') sql = query.select_sql or query.executed_sql df = query.database.get_df(sql, query.schema) # TODO(bkyryliuk): add compression=gzip for big files. csv = df.to_csv(index=False, **config.get('CSV_EXPORT')) response = Response(csv, mimetype='text/csv') response.headers['Content-Disposition'] = f'attachment; filename={query.name}.csv' logging.info('Ready to return response') return response
[ "def", "csv", "(", "self", ",", "client_id", ")", ":", "logging", ".", "info", "(", "'Exporting CSV file [{}]'", ".", "format", "(", "client_id", ")", ")", "query", "=", "(", "db", ".", "session", ".", "query", "(", "Query", ")", ".", "filter_by", "(", "client_id", "=", "client_id", ")", ".", "one", "(", ")", ")", "rejected_tables", "=", "security_manager", ".", "rejected_datasources", "(", "query", ".", "sql", ",", "query", ".", "database", ",", "query", ".", "schema", ")", "if", "rejected_tables", ":", "flash", "(", "security_manager", ".", "get_table_access_error_msg", "(", "'{}'", ".", "format", "(", "rejected_tables", ")", ")", ")", "return", "redirect", "(", "'/'", ")", "blob", "=", "None", "if", "results_backend", "and", "query", ".", "results_key", ":", "logging", ".", "info", "(", "'Fetching CSV from results backend '", "'[{}]'", ".", "format", "(", "query", ".", "results_key", ")", ")", "blob", "=", "results_backend", ".", "get", "(", "query", ".", "results_key", ")", "if", "blob", ":", "logging", ".", "info", "(", "'Decompressing'", ")", "json_payload", "=", "utils", ".", "zlib_decompress_to_string", "(", "blob", ")", "obj", "=", "json", ".", "loads", "(", "json_payload", ")", "columns", "=", "[", "c", "[", "'name'", "]", "for", "c", "in", "obj", "[", "'columns'", "]", "]", "df", "=", "pd", ".", "DataFrame", ".", "from_records", "(", "obj", "[", "'data'", "]", ",", "columns", "=", "columns", ")", "logging", ".", "info", "(", "'Using pandas to convert to CSV'", ")", "csv", "=", "df", ".", "to_csv", "(", "index", "=", "False", ",", "*", "*", "config", ".", "get", "(", "'CSV_EXPORT'", ")", ")", "else", ":", "logging", ".", "info", "(", "'Running a query to turn into CSV'", ")", "sql", "=", "query", ".", "select_sql", "or", "query", ".", "executed_sql", "df", "=", "query", ".", "database", ".", "get_df", "(", "sql", ",", "query", ".", "schema", ")", "# TODO(bkyryliuk): add compression=gzip for big files.", "csv", "=", "df", ".", "to_csv", "(", "index", "=", "False", ",", "*", "*", "config", ".", "get", "(", "'CSV_EXPORT'", ")", ")", "response", "=", "Response", "(", "csv", ",", "mimetype", "=", "'text/csv'", ")", "response", ".", "headers", "[", "'Content-Disposition'", "]", "=", "f'attachment; filename={query.name}.csv'", "logging", ".", "info", "(", "'Ready to return response'", ")", "return", "response" ]
Download the query results as csv.
[ "Download", "the", "query", "results", "as", "csv", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L2654-L2692
21,476
apache/incubator-superset
superset/views/core.py
Superset.queries
def queries(self, last_updated_ms): """Get the updated queries.""" stats_logger.incr('queries') if not g.user.get_id(): return json_error_response( 'Please login to access the queries.', status=403) # Unix time, milliseconds. last_updated_ms_int = int(float(last_updated_ms)) if last_updated_ms else 0 # UTC date time, same that is stored in the DB. last_updated_dt = utils.EPOCH + timedelta(seconds=last_updated_ms_int / 1000) sql_queries = ( db.session.query(Query) .filter( Query.user_id == g.user.get_id(), Query.changed_on >= last_updated_dt, ) .all() ) dict_queries = {q.client_id: q.to_dict() for q in sql_queries} now = int(round(time.time() * 1000)) unfinished_states = [ QueryStatus.PENDING, QueryStatus.RUNNING, ] queries_to_timeout = [ client_id for client_id, query_dict in dict_queries.items() if ( query_dict['state'] in unfinished_states and ( now - query_dict['startDttm'] > config.get('SQLLAB_ASYNC_TIME_LIMIT_SEC') * 1000 ) ) ] if queries_to_timeout: update(Query).where( and_( Query.user_id == g.user.get_id(), Query.client_id in queries_to_timeout, ), ).values(state=QueryStatus.TIMED_OUT) for client_id in queries_to_timeout: dict_queries[client_id]['status'] = QueryStatus.TIMED_OUT return json_success( json.dumps(dict_queries, default=utils.json_int_dttm_ser))
python
def queries(self, last_updated_ms): """Get the updated queries.""" stats_logger.incr('queries') if not g.user.get_id(): return json_error_response( 'Please login to access the queries.', status=403) # Unix time, milliseconds. last_updated_ms_int = int(float(last_updated_ms)) if last_updated_ms else 0 # UTC date time, same that is stored in the DB. last_updated_dt = utils.EPOCH + timedelta(seconds=last_updated_ms_int / 1000) sql_queries = ( db.session.query(Query) .filter( Query.user_id == g.user.get_id(), Query.changed_on >= last_updated_dt, ) .all() ) dict_queries = {q.client_id: q.to_dict() for q in sql_queries} now = int(round(time.time() * 1000)) unfinished_states = [ QueryStatus.PENDING, QueryStatus.RUNNING, ] queries_to_timeout = [ client_id for client_id, query_dict in dict_queries.items() if ( query_dict['state'] in unfinished_states and ( now - query_dict['startDttm'] > config.get('SQLLAB_ASYNC_TIME_LIMIT_SEC') * 1000 ) ) ] if queries_to_timeout: update(Query).where( and_( Query.user_id == g.user.get_id(), Query.client_id in queries_to_timeout, ), ).values(state=QueryStatus.TIMED_OUT) for client_id in queries_to_timeout: dict_queries[client_id]['status'] = QueryStatus.TIMED_OUT return json_success( json.dumps(dict_queries, default=utils.json_int_dttm_ser))
[ "def", "queries", "(", "self", ",", "last_updated_ms", ")", ":", "stats_logger", ".", "incr", "(", "'queries'", ")", "if", "not", "g", ".", "user", ".", "get_id", "(", ")", ":", "return", "json_error_response", "(", "'Please login to access the queries.'", ",", "status", "=", "403", ")", "# Unix time, milliseconds.", "last_updated_ms_int", "=", "int", "(", "float", "(", "last_updated_ms", ")", ")", "if", "last_updated_ms", "else", "0", "# UTC date time, same that is stored in the DB.", "last_updated_dt", "=", "utils", ".", "EPOCH", "+", "timedelta", "(", "seconds", "=", "last_updated_ms_int", "/", "1000", ")", "sql_queries", "=", "(", "db", ".", "session", ".", "query", "(", "Query", ")", ".", "filter", "(", "Query", ".", "user_id", "==", "g", ".", "user", ".", "get_id", "(", ")", ",", "Query", ".", "changed_on", ">=", "last_updated_dt", ",", ")", ".", "all", "(", ")", ")", "dict_queries", "=", "{", "q", ".", "client_id", ":", "q", ".", "to_dict", "(", ")", "for", "q", "in", "sql_queries", "}", "now", "=", "int", "(", "round", "(", "time", ".", "time", "(", ")", "*", "1000", ")", ")", "unfinished_states", "=", "[", "QueryStatus", ".", "PENDING", ",", "QueryStatus", ".", "RUNNING", ",", "]", "queries_to_timeout", "=", "[", "client_id", "for", "client_id", ",", "query_dict", "in", "dict_queries", ".", "items", "(", ")", "if", "(", "query_dict", "[", "'state'", "]", "in", "unfinished_states", "and", "(", "now", "-", "query_dict", "[", "'startDttm'", "]", ">", "config", ".", "get", "(", "'SQLLAB_ASYNC_TIME_LIMIT_SEC'", ")", "*", "1000", ")", ")", "]", "if", "queries_to_timeout", ":", "update", "(", "Query", ")", ".", "where", "(", "and_", "(", "Query", ".", "user_id", "==", "g", ".", "user", ".", "get_id", "(", ")", ",", "Query", ".", "client_id", "in", "queries_to_timeout", ",", ")", ",", ")", ".", "values", "(", "state", "=", "QueryStatus", ".", "TIMED_OUT", ")", "for", "client_id", "in", "queries_to_timeout", ":", "dict_queries", "[", "client_id", "]", "[", "'status'", "]", "=", "QueryStatus", ".", "TIMED_OUT", "return", "json_success", "(", "json", ".", "dumps", "(", "dict_queries", ",", "default", "=", "utils", ".", "json_int_dttm_ser", ")", ")" ]
Get the updated queries.
[ "Get", "the", "updated", "queries", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L2714-L2766
21,477
apache/incubator-superset
superset/views/core.py
Superset.welcome
def welcome(self): """Personalized welcome page""" if not g.user or not g.user.get_id(): return redirect(appbuilder.get_url_for_login) welcome_dashboard_id = ( db.session .query(UserAttribute.welcome_dashboard_id) .filter_by(user_id=g.user.get_id()) .scalar() ) if welcome_dashboard_id: return self.dashboard(str(welcome_dashboard_id)) payload = { 'user': bootstrap_user_data(), 'common': self.common_bootsrap_payload(), } return self.render_template( 'superset/basic.html', entry='welcome', title='Superset', bootstrap_data=json.dumps(payload, default=utils.json_iso_dttm_ser), )
python
def welcome(self): """Personalized welcome page""" if not g.user or not g.user.get_id(): return redirect(appbuilder.get_url_for_login) welcome_dashboard_id = ( db.session .query(UserAttribute.welcome_dashboard_id) .filter_by(user_id=g.user.get_id()) .scalar() ) if welcome_dashboard_id: return self.dashboard(str(welcome_dashboard_id)) payload = { 'user': bootstrap_user_data(), 'common': self.common_bootsrap_payload(), } return self.render_template( 'superset/basic.html', entry='welcome', title='Superset', bootstrap_data=json.dumps(payload, default=utils.json_iso_dttm_ser), )
[ "def", "welcome", "(", "self", ")", ":", "if", "not", "g", ".", "user", "or", "not", "g", ".", "user", ".", "get_id", "(", ")", ":", "return", "redirect", "(", "appbuilder", ".", "get_url_for_login", ")", "welcome_dashboard_id", "=", "(", "db", ".", "session", ".", "query", "(", "UserAttribute", ".", "welcome_dashboard_id", ")", ".", "filter_by", "(", "user_id", "=", "g", ".", "user", ".", "get_id", "(", ")", ")", ".", "scalar", "(", ")", ")", "if", "welcome_dashboard_id", ":", "return", "self", ".", "dashboard", "(", "str", "(", "welcome_dashboard_id", ")", ")", "payload", "=", "{", "'user'", ":", "bootstrap_user_data", "(", ")", ",", "'common'", ":", "self", ".", "common_bootsrap_payload", "(", ")", ",", "}", "return", "self", ".", "render_template", "(", "'superset/basic.html'", ",", "entry", "=", "'welcome'", ",", "title", "=", "'Superset'", ",", "bootstrap_data", "=", "json", ".", "dumps", "(", "payload", ",", "default", "=", "utils", ".", "json_iso_dttm_ser", ")", ",", ")" ]
Personalized welcome page
[ "Personalized", "welcome", "page" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L2838-L2862
21,478
apache/incubator-superset
superset/views/core.py
Superset.profile
def profile(self, username): """User profile page""" if not username and g.user: username = g.user.username payload = { 'user': bootstrap_user_data(username, include_perms=True), 'common': self.common_bootsrap_payload(), } return self.render_template( 'superset/basic.html', title=_("%(user)s's profile", user=username), entry='profile', bootstrap_data=json.dumps(payload, default=utils.json_iso_dttm_ser), )
python
def profile(self, username): """User profile page""" if not username and g.user: username = g.user.username payload = { 'user': bootstrap_user_data(username, include_perms=True), 'common': self.common_bootsrap_payload(), } return self.render_template( 'superset/basic.html', title=_("%(user)s's profile", user=username), entry='profile', bootstrap_data=json.dumps(payload, default=utils.json_iso_dttm_ser), )
[ "def", "profile", "(", "self", ",", "username", ")", ":", "if", "not", "username", "and", "g", ".", "user", ":", "username", "=", "g", ".", "user", ".", "username", "payload", "=", "{", "'user'", ":", "bootstrap_user_data", "(", "username", ",", "include_perms", "=", "True", ")", ",", "'common'", ":", "self", ".", "common_bootsrap_payload", "(", ")", ",", "}", "return", "self", ".", "render_template", "(", "'superset/basic.html'", ",", "title", "=", "_", "(", "\"%(user)s's profile\"", ",", "user", "=", "username", ")", ",", "entry", "=", "'profile'", ",", "bootstrap_data", "=", "json", ".", "dumps", "(", "payload", ",", "default", "=", "utils", ".", "json_iso_dttm_ser", ")", ",", ")" ]
User profile page
[ "User", "profile", "page" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L2866-L2881
21,479
apache/incubator-superset
superset/views/core.py
Superset.slice_query
def slice_query(self, slice_id): """ This method exposes an API endpoint to get the database query string for this slice """ viz_obj = get_viz(slice_id) security_manager.assert_datasource_permission(viz_obj.datasource) return self.get_query_string_response(viz_obj)
python
def slice_query(self, slice_id): """ This method exposes an API endpoint to get the database query string for this slice """ viz_obj = get_viz(slice_id) security_manager.assert_datasource_permission(viz_obj.datasource) return self.get_query_string_response(viz_obj)
[ "def", "slice_query", "(", "self", ",", "slice_id", ")", ":", "viz_obj", "=", "get_viz", "(", "slice_id", ")", "security_manager", ".", "assert_datasource_permission", "(", "viz_obj", ".", "datasource", ")", "return", "self", ".", "get_query_string_response", "(", "viz_obj", ")" ]
This method exposes an API endpoint to get the database query string for this slice
[ "This", "method", "exposes", "an", "API", "endpoint", "to", "get", "the", "database", "query", "string", "for", "this", "slice" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L2901-L2908
21,480
apache/incubator-superset
superset/views/core.py
Superset.schemas_access_for_csv_upload
def schemas_access_for_csv_upload(self): """ This method exposes an API endpoint to get the schema access control settings for csv upload in this database """ if not request.args.get('db_id'): return json_error_response( 'No database is allowed for your csv upload') db_id = int(request.args.get('db_id')) database = ( db.session .query(models.Database) .filter_by(id=db_id) .one() ) try: schemas_allowed = database.get_schema_access_for_csv_upload() if (security_manager.database_access(database) or security_manager.all_datasource_access()): return self.json_response(schemas_allowed) # the list schemas_allowed should not be empty here # and the list schemas_allowed_processed returned from security_manager # should not be empty either, # otherwise the database should have been filtered out # in CsvToDatabaseForm schemas_allowed_processed = security_manager.schemas_accessible_by_user( database, schemas_allowed, False) return self.json_response(schemas_allowed_processed) except Exception: return json_error_response(( 'Failed to fetch schemas allowed for csv upload in this database! ' 'Please contact Superset Admin!\n\n' 'The error message returned was:\n{}').format(traceback.format_exc()))
python
def schemas_access_for_csv_upload(self): """ This method exposes an API endpoint to get the schema access control settings for csv upload in this database """ if not request.args.get('db_id'): return json_error_response( 'No database is allowed for your csv upload') db_id = int(request.args.get('db_id')) database = ( db.session .query(models.Database) .filter_by(id=db_id) .one() ) try: schemas_allowed = database.get_schema_access_for_csv_upload() if (security_manager.database_access(database) or security_manager.all_datasource_access()): return self.json_response(schemas_allowed) # the list schemas_allowed should not be empty here # and the list schemas_allowed_processed returned from security_manager # should not be empty either, # otherwise the database should have been filtered out # in CsvToDatabaseForm schemas_allowed_processed = security_manager.schemas_accessible_by_user( database, schemas_allowed, False) return self.json_response(schemas_allowed_processed) except Exception: return json_error_response(( 'Failed to fetch schemas allowed for csv upload in this database! ' 'Please contact Superset Admin!\n\n' 'The error message returned was:\n{}').format(traceback.format_exc()))
[ "def", "schemas_access_for_csv_upload", "(", "self", ")", ":", "if", "not", "request", ".", "args", ".", "get", "(", "'db_id'", ")", ":", "return", "json_error_response", "(", "'No database is allowed for your csv upload'", ")", "db_id", "=", "int", "(", "request", ".", "args", ".", "get", "(", "'db_id'", ")", ")", "database", "=", "(", "db", ".", "session", ".", "query", "(", "models", ".", "Database", ")", ".", "filter_by", "(", "id", "=", "db_id", ")", ".", "one", "(", ")", ")", "try", ":", "schemas_allowed", "=", "database", ".", "get_schema_access_for_csv_upload", "(", ")", "if", "(", "security_manager", ".", "database_access", "(", "database", ")", "or", "security_manager", ".", "all_datasource_access", "(", ")", ")", ":", "return", "self", ".", "json_response", "(", "schemas_allowed", ")", "# the list schemas_allowed should not be empty here", "# and the list schemas_allowed_processed returned from security_manager", "# should not be empty either,", "# otherwise the database should have been filtered out", "# in CsvToDatabaseForm", "schemas_allowed_processed", "=", "security_manager", ".", "schemas_accessible_by_user", "(", "database", ",", "schemas_allowed", ",", "False", ")", "return", "self", ".", "json_response", "(", "schemas_allowed_processed", ")", "except", "Exception", ":", "return", "json_error_response", "(", "(", "'Failed to fetch schemas allowed for csv upload in this database! '", "'Please contact Superset Admin!\\n\\n'", "'The error message returned was:\\n{}'", ")", ".", "format", "(", "traceback", ".", "format_exc", "(", ")", ")", ")" ]
This method exposes an API endpoint to get the schema access control settings for csv upload in this database
[ "This", "method", "exposes", "an", "API", "endpoint", "to", "get", "the", "schema", "access", "control", "settings", "for", "csv", "upload", "in", "this", "database" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/views/core.py#L2913-L2946
21,481
apache/incubator-superset
superset/utils/decorators.py
etag_cache
def etag_cache(max_age, check_perms=bool): """ A decorator for caching views and handling etag conditional requests. The decorator adds headers to GET requests that help with caching: Last- Modified, Expires and ETag. It also handles conditional requests, when the client send an If-Matches header. If a cache is set, the decorator will cache GET responses, bypassing the dataframe serialization. POST requests will still benefit from the dataframe cache for requests that produce the same SQL. """ def decorator(f): @wraps(f) def wrapper(*args, **kwargs): # check if the user can access the resource check_perms(*args, **kwargs) # for POST requests we can't set cache headers, use the response # cache nor use conditional requests; this will still use the # dataframe cache in `superset/viz.py`, though. if request.method == 'POST': return f(*args, **kwargs) response = None if cache: try: # build the cache key from the function arguments and any # other additional GET arguments (like `form_data`, eg). key_args = list(args) key_kwargs = kwargs.copy() key_kwargs.update(request.args) cache_key = wrapper.make_cache_key(f, *key_args, **key_kwargs) response = cache.get(cache_key) except Exception: # pylint: disable=broad-except if app.debug: raise logging.exception('Exception possibly due to cache backend.') # if no response was cached, compute it using the wrapped function if response is None: response = f(*args, **kwargs) # add headers for caching: Last Modified, Expires and ETag response.cache_control.public = True response.last_modified = datetime.utcnow() expiration = max_age if max_age != 0 else FAR_FUTURE response.expires = \ response.last_modified + timedelta(seconds=expiration) response.add_etag() # if we have a cache, store the response from the request if cache: try: cache.set(cache_key, response, timeout=max_age) except Exception: # pylint: disable=broad-except if app.debug: raise logging.exception('Exception possibly due to cache backend.') return response.make_conditional(request) if cache: wrapper.uncached = f wrapper.cache_timeout = max_age wrapper.make_cache_key = \ cache._memoize_make_cache_key( # pylint: disable=protected-access make_name=None, timeout=max_age) return wrapper return decorator
python
def etag_cache(max_age, check_perms=bool): """ A decorator for caching views and handling etag conditional requests. The decorator adds headers to GET requests that help with caching: Last- Modified, Expires and ETag. It also handles conditional requests, when the client send an If-Matches header. If a cache is set, the decorator will cache GET responses, bypassing the dataframe serialization. POST requests will still benefit from the dataframe cache for requests that produce the same SQL. """ def decorator(f): @wraps(f) def wrapper(*args, **kwargs): # check if the user can access the resource check_perms(*args, **kwargs) # for POST requests we can't set cache headers, use the response # cache nor use conditional requests; this will still use the # dataframe cache in `superset/viz.py`, though. if request.method == 'POST': return f(*args, **kwargs) response = None if cache: try: # build the cache key from the function arguments and any # other additional GET arguments (like `form_data`, eg). key_args = list(args) key_kwargs = kwargs.copy() key_kwargs.update(request.args) cache_key = wrapper.make_cache_key(f, *key_args, **key_kwargs) response = cache.get(cache_key) except Exception: # pylint: disable=broad-except if app.debug: raise logging.exception('Exception possibly due to cache backend.') # if no response was cached, compute it using the wrapped function if response is None: response = f(*args, **kwargs) # add headers for caching: Last Modified, Expires and ETag response.cache_control.public = True response.last_modified = datetime.utcnow() expiration = max_age if max_age != 0 else FAR_FUTURE response.expires = \ response.last_modified + timedelta(seconds=expiration) response.add_etag() # if we have a cache, store the response from the request if cache: try: cache.set(cache_key, response, timeout=max_age) except Exception: # pylint: disable=broad-except if app.debug: raise logging.exception('Exception possibly due to cache backend.') return response.make_conditional(request) if cache: wrapper.uncached = f wrapper.cache_timeout = max_age wrapper.make_cache_key = \ cache._memoize_make_cache_key( # pylint: disable=protected-access make_name=None, timeout=max_age) return wrapper return decorator
[ "def", "etag_cache", "(", "max_age", ",", "check_perms", "=", "bool", ")", ":", "def", "decorator", "(", "f", ")", ":", "@", "wraps", "(", "f", ")", "def", "wrapper", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "# check if the user can access the resource", "check_perms", "(", "*", "args", ",", "*", "*", "kwargs", ")", "# for POST requests we can't set cache headers, use the response", "# cache nor use conditional requests; this will still use the", "# dataframe cache in `superset/viz.py`, though.", "if", "request", ".", "method", "==", "'POST'", ":", "return", "f", "(", "*", "args", ",", "*", "*", "kwargs", ")", "response", "=", "None", "if", "cache", ":", "try", ":", "# build the cache key from the function arguments and any", "# other additional GET arguments (like `form_data`, eg).", "key_args", "=", "list", "(", "args", ")", "key_kwargs", "=", "kwargs", ".", "copy", "(", ")", "key_kwargs", ".", "update", "(", "request", ".", "args", ")", "cache_key", "=", "wrapper", ".", "make_cache_key", "(", "f", ",", "*", "key_args", ",", "*", "*", "key_kwargs", ")", "response", "=", "cache", ".", "get", "(", "cache_key", ")", "except", "Exception", ":", "# pylint: disable=broad-except", "if", "app", ".", "debug", ":", "raise", "logging", ".", "exception", "(", "'Exception possibly due to cache backend.'", ")", "# if no response was cached, compute it using the wrapped function", "if", "response", "is", "None", ":", "response", "=", "f", "(", "*", "args", ",", "*", "*", "kwargs", ")", "# add headers for caching: Last Modified, Expires and ETag", "response", ".", "cache_control", ".", "public", "=", "True", "response", ".", "last_modified", "=", "datetime", ".", "utcnow", "(", ")", "expiration", "=", "max_age", "if", "max_age", "!=", "0", "else", "FAR_FUTURE", "response", ".", "expires", "=", "response", ".", "last_modified", "+", "timedelta", "(", "seconds", "=", "expiration", ")", "response", ".", "add_etag", "(", ")", "# if we have a cache, store the response from the request", "if", "cache", ":", "try", ":", "cache", ".", "set", "(", "cache_key", ",", "response", ",", "timeout", "=", "max_age", ")", "except", "Exception", ":", "# pylint: disable=broad-except", "if", "app", ".", "debug", ":", "raise", "logging", ".", "exception", "(", "'Exception possibly due to cache backend.'", ")", "return", "response", ".", "make_conditional", "(", "request", ")", "if", "cache", ":", "wrapper", ".", "uncached", "=", "f", "wrapper", ".", "cache_timeout", "=", "max_age", "wrapper", ".", "make_cache_key", "=", "cache", ".", "_memoize_make_cache_key", "(", "# pylint: disable=protected-access", "make_name", "=", "None", ",", "timeout", "=", "max_age", ")", "return", "wrapper", "return", "decorator" ]
A decorator for caching views and handling etag conditional requests. The decorator adds headers to GET requests that help with caching: Last- Modified, Expires and ETag. It also handles conditional requests, when the client send an If-Matches header. If a cache is set, the decorator will cache GET responses, bypassing the dataframe serialization. POST requests will still benefit from the dataframe cache for requests that produce the same SQL.
[ "A", "decorator", "for", "caching", "views", "and", "handling", "etag", "conditional", "requests", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/utils/decorators.py#L46-L118
21,482
apache/incubator-superset
superset/db_engine_specs.py
BaseEngineSpec.apply_limit_to_sql
def apply_limit_to_sql(cls, sql, limit, database): """Alters the SQL statement to apply a LIMIT clause""" if cls.limit_method == LimitMethod.WRAP_SQL: sql = sql.strip('\t\n ;') qry = ( select('*') .select_from( TextAsFrom(text(sql), ['*']).alias('inner_qry'), ) .limit(limit) ) return database.compile_sqla_query(qry) elif LimitMethod.FORCE_LIMIT: parsed_query = sql_parse.ParsedQuery(sql) sql = parsed_query.get_query_with_new_limit(limit) return sql
python
def apply_limit_to_sql(cls, sql, limit, database): """Alters the SQL statement to apply a LIMIT clause""" if cls.limit_method == LimitMethod.WRAP_SQL: sql = sql.strip('\t\n ;') qry = ( select('*') .select_from( TextAsFrom(text(sql), ['*']).alias('inner_qry'), ) .limit(limit) ) return database.compile_sqla_query(qry) elif LimitMethod.FORCE_LIMIT: parsed_query = sql_parse.ParsedQuery(sql) sql = parsed_query.get_query_with_new_limit(limit) return sql
[ "def", "apply_limit_to_sql", "(", "cls", ",", "sql", ",", "limit", ",", "database", ")", ":", "if", "cls", ".", "limit_method", "==", "LimitMethod", ".", "WRAP_SQL", ":", "sql", "=", "sql", ".", "strip", "(", "'\\t\\n ;'", ")", "qry", "=", "(", "select", "(", "'*'", ")", ".", "select_from", "(", "TextAsFrom", "(", "text", "(", "sql", ")", ",", "[", "'*'", "]", ")", ".", "alias", "(", "'inner_qry'", ")", ",", ")", ".", "limit", "(", "limit", ")", ")", "return", "database", ".", "compile_sqla_query", "(", "qry", ")", "elif", "LimitMethod", ".", "FORCE_LIMIT", ":", "parsed_query", "=", "sql_parse", ".", "ParsedQuery", "(", "sql", ")", "sql", "=", "parsed_query", ".", "get_query_with_new_limit", "(", "limit", ")", "return", "sql" ]
Alters the SQL statement to apply a LIMIT clause
[ "Alters", "the", "SQL", "statement", "to", "apply", "a", "LIMIT", "clause" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/db_engine_specs.py#L183-L198
21,483
apache/incubator-superset
superset/db_engine_specs.py
BaseEngineSpec.truncate_label
def truncate_label(cls, label): """ In the case that a label exceeds the max length supported by the engine, this method is used to construct a deterministic and unique label based on an md5 hash. """ label = hashlib.md5(label.encode('utf-8')).hexdigest() # truncate hash if it exceeds max length if cls.max_column_name_length and len(label) > cls.max_column_name_length: label = label[:cls.max_column_name_length] return label
python
def truncate_label(cls, label): """ In the case that a label exceeds the max length supported by the engine, this method is used to construct a deterministic and unique label based on an md5 hash. """ label = hashlib.md5(label.encode('utf-8')).hexdigest() # truncate hash if it exceeds max length if cls.max_column_name_length and len(label) > cls.max_column_name_length: label = label[:cls.max_column_name_length] return label
[ "def", "truncate_label", "(", "cls", ",", "label", ")", ":", "label", "=", "hashlib", ".", "md5", "(", "label", ".", "encode", "(", "'utf-8'", ")", ")", ".", "hexdigest", "(", ")", "# truncate hash if it exceeds max length", "if", "cls", ".", "max_column_name_length", "and", "len", "(", "label", ")", ">", "cls", ".", "max_column_name_length", ":", "label", "=", "label", "[", ":", "cls", ".", "max_column_name_length", "]", "return", "label" ]
In the case that a label exceeds the max length supported by the engine, this method is used to construct a deterministic and unique label based on an md5 hash.
[ "In", "the", "case", "that", "a", "label", "exceeds", "the", "max", "length", "supported", "by", "the", "engine", "this", "method", "is", "used", "to", "construct", "a", "deterministic", "and", "unique", "label", "based", "on", "an", "md5", "hash", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/db_engine_specs.py#L463-L473
21,484
apache/incubator-superset
superset/db_engine_specs.py
PostgresEngineSpec.get_table_names
def get_table_names(cls, inspector, schema): """Need to consider foreign tables for PostgreSQL""" tables = inspector.get_table_names(schema) tables.extend(inspector.get_foreign_table_names(schema)) return sorted(tables)
python
def get_table_names(cls, inspector, schema): """Need to consider foreign tables for PostgreSQL""" tables = inspector.get_table_names(schema) tables.extend(inspector.get_foreign_table_names(schema)) return sorted(tables)
[ "def", "get_table_names", "(", "cls", ",", "inspector", ",", "schema", ")", ":", "tables", "=", "inspector", ".", "get_table_names", "(", "schema", ")", "tables", ".", "extend", "(", "inspector", ".", "get_foreign_table_names", "(", "schema", ")", ")", "return", "sorted", "(", "tables", ")" ]
Need to consider foreign tables for PostgreSQL
[ "Need", "to", "consider", "foreign", "tables", "for", "PostgreSQL" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/db_engine_specs.py#L522-L526
21,485
apache/incubator-superset
superset/db_engine_specs.py
PostgresEngineSpec.get_timestamp_column
def get_timestamp_column(expression, column_name): """Postgres is unable to identify mixed case column names unless they are quoted.""" if expression: return expression elif column_name.lower() != column_name: return f'"{column_name}"' return column_name
python
def get_timestamp_column(expression, column_name): """Postgres is unable to identify mixed case column names unless they are quoted.""" if expression: return expression elif column_name.lower() != column_name: return f'"{column_name}"' return column_name
[ "def", "get_timestamp_column", "(", "expression", ",", "column_name", ")", ":", "if", "expression", ":", "return", "expression", "elif", "column_name", ".", "lower", "(", ")", "!=", "column_name", ":", "return", "f'\"{column_name}\"'", "return", "column_name" ]
Postgres is unable to identify mixed case column names unless they are quoted.
[ "Postgres", "is", "unable", "to", "identify", "mixed", "case", "column", "names", "unless", "they", "are", "quoted", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/db_engine_specs.py#L529-L536
21,486
apache/incubator-superset
superset/db_engine_specs.py
MySQLEngineSpec.extract_error_message
def extract_error_message(cls, e): """Extract error message for queries""" message = str(e) try: if isinstance(e.args, tuple) and len(e.args) > 1: message = e.args[1] except Exception: pass return message
python
def extract_error_message(cls, e): """Extract error message for queries""" message = str(e) try: if isinstance(e.args, tuple) and len(e.args) > 1: message = e.args[1] except Exception: pass return message
[ "def", "extract_error_message", "(", "cls", ",", "e", ")", ":", "message", "=", "str", "(", "e", ")", "try", ":", "if", "isinstance", "(", "e", ".", "args", ",", "tuple", ")", "and", "len", "(", "e", ".", "args", ")", ">", "1", ":", "message", "=", "e", ".", "args", "[", "1", "]", "except", "Exception", ":", "pass", "return", "message" ]
Extract error message for queries
[ "Extract", "error", "message", "for", "queries" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/db_engine_specs.py#L775-L783
21,487
apache/incubator-superset
superset/db_engine_specs.py
PrestoEngineSpec._partition_query
def _partition_query( cls, table_name, limit=0, order_by=None, filters=None): """Returns a partition query :param table_name: the name of the table to get partitions from :type table_name: str :param limit: the number of partitions to be returned :type limit: int :param order_by: a list of tuples of field name and a boolean that determines if that field should be sorted in descending order :type order_by: list of (str, bool) tuples :param filters: dict of field name and filter value combinations """ limit_clause = 'LIMIT {}'.format(limit) if limit else '' order_by_clause = '' if order_by: l = [] # noqa: E741 for field, desc in order_by: l.append(field + ' DESC' if desc else '') order_by_clause = 'ORDER BY ' + ', '.join(l) where_clause = '' if filters: l = [] # noqa: E741 for field, value in filters.items(): l.append(f"{field} = '{value}'") where_clause = 'WHERE ' + ' AND '.join(l) sql = textwrap.dedent(f"""\ SELECT * FROM "{table_name}$partitions" {where_clause} {order_by_clause} {limit_clause} """) return sql
python
def _partition_query( cls, table_name, limit=0, order_by=None, filters=None): """Returns a partition query :param table_name: the name of the table to get partitions from :type table_name: str :param limit: the number of partitions to be returned :type limit: int :param order_by: a list of tuples of field name and a boolean that determines if that field should be sorted in descending order :type order_by: list of (str, bool) tuples :param filters: dict of field name and filter value combinations """ limit_clause = 'LIMIT {}'.format(limit) if limit else '' order_by_clause = '' if order_by: l = [] # noqa: E741 for field, desc in order_by: l.append(field + ' DESC' if desc else '') order_by_clause = 'ORDER BY ' + ', '.join(l) where_clause = '' if filters: l = [] # noqa: E741 for field, value in filters.items(): l.append(f"{field} = '{value}'") where_clause = 'WHERE ' + ' AND '.join(l) sql = textwrap.dedent(f"""\ SELECT * FROM "{table_name}$partitions" {where_clause} {order_by_clause} {limit_clause} """) return sql
[ "def", "_partition_query", "(", "cls", ",", "table_name", ",", "limit", "=", "0", ",", "order_by", "=", "None", ",", "filters", "=", "None", ")", ":", "limit_clause", "=", "'LIMIT {}'", ".", "format", "(", "limit", ")", "if", "limit", "else", "''", "order_by_clause", "=", "''", "if", "order_by", ":", "l", "=", "[", "]", "# noqa: E741", "for", "field", ",", "desc", "in", "order_by", ":", "l", ".", "append", "(", "field", "+", "' DESC'", "if", "desc", "else", "''", ")", "order_by_clause", "=", "'ORDER BY '", "+", "', '", ".", "join", "(", "l", ")", "where_clause", "=", "''", "if", "filters", ":", "l", "=", "[", "]", "# noqa: E741", "for", "field", ",", "value", "in", "filters", ".", "items", "(", ")", ":", "l", ".", "append", "(", "f\"{field} = '{value}'\"", ")", "where_clause", "=", "'WHERE '", "+", "' AND '", ".", "join", "(", "l", ")", "sql", "=", "textwrap", ".", "dedent", "(", "f\"\"\"\\\n SELECT * FROM \"{table_name}$partitions\"\n\n {where_clause}\n {order_by_clause}\n {limit_clause}\n \"\"\"", ")", "return", "sql" ]
Returns a partition query :param table_name: the name of the table to get partitions from :type table_name: str :param limit: the number of partitions to be returned :type limit: int :param order_by: a list of tuples of field name and a boolean that determines if that field should be sorted in descending order :type order_by: list of (str, bool) tuples :param filters: dict of field name and filter value combinations
[ "Returns", "a", "partition", "query" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/db_engine_specs.py#L944-L980
21,488
apache/incubator-superset
superset/db_engine_specs.py
HiveEngineSpec.create_table_from_csv
def create_table_from_csv(form, table): """Uploads a csv file and creates a superset datasource in Hive.""" def convert_to_hive_type(col_type): """maps tableschema's types to hive types""" tableschema_to_hive_types = { 'boolean': 'BOOLEAN', 'integer': 'INT', 'number': 'DOUBLE', 'string': 'STRING', } return tableschema_to_hive_types.get(col_type, 'STRING') bucket_path = config['CSV_TO_HIVE_UPLOAD_S3_BUCKET'] if not bucket_path: logging.info('No upload bucket specified') raise Exception( 'No upload bucket specified. You can specify one in the config file.') table_name = form.name.data schema_name = form.schema.data if config.get('UPLOADED_CSV_HIVE_NAMESPACE'): if '.' in table_name or schema_name: raise Exception( "You can't specify a namespace. " 'All tables will be uploaded to the `{}` namespace'.format( config.get('HIVE_NAMESPACE'))) full_table_name = '{}.{}'.format( config.get('UPLOADED_CSV_HIVE_NAMESPACE'), table_name) else: if '.' in table_name and schema_name: raise Exception( "You can't specify a namespace both in the name of the table " 'and in the schema field. Please remove one') full_table_name = '{}.{}'.format( schema_name, table_name) if schema_name else table_name filename = form.csv_file.data.filename upload_prefix = config['CSV_TO_HIVE_UPLOAD_DIRECTORY'] upload_path = config['UPLOAD_FOLDER'] + \ secure_filename(filename) # Optional dependency from tableschema import Table # pylint: disable=import-error hive_table_schema = Table(upload_path).infer() column_name_and_type = [] for column_info in hive_table_schema['fields']: column_name_and_type.append( '`{}` {}'.format( column_info['name'], convert_to_hive_type(column_info['type']))) schema_definition = ', '.join(column_name_and_type) # Optional dependency import boto3 # pylint: disable=import-error s3 = boto3.client('s3') location = os.path.join('s3a://', bucket_path, upload_prefix, table_name) s3.upload_file( upload_path, bucket_path, os.path.join(upload_prefix, table_name, filename)) sql = f"""CREATE TABLE {full_table_name} ( {schema_definition} ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE LOCATION '{location}' tblproperties ('skip.header.line.count'='1')""" logging.info(form.con.data) engine = create_engine(form.con.data.sqlalchemy_uri_decrypted) engine.execute(sql)
python
def create_table_from_csv(form, table): """Uploads a csv file and creates a superset datasource in Hive.""" def convert_to_hive_type(col_type): """maps tableschema's types to hive types""" tableschema_to_hive_types = { 'boolean': 'BOOLEAN', 'integer': 'INT', 'number': 'DOUBLE', 'string': 'STRING', } return tableschema_to_hive_types.get(col_type, 'STRING') bucket_path = config['CSV_TO_HIVE_UPLOAD_S3_BUCKET'] if not bucket_path: logging.info('No upload bucket specified') raise Exception( 'No upload bucket specified. You can specify one in the config file.') table_name = form.name.data schema_name = form.schema.data if config.get('UPLOADED_CSV_HIVE_NAMESPACE'): if '.' in table_name or schema_name: raise Exception( "You can't specify a namespace. " 'All tables will be uploaded to the `{}` namespace'.format( config.get('HIVE_NAMESPACE'))) full_table_name = '{}.{}'.format( config.get('UPLOADED_CSV_HIVE_NAMESPACE'), table_name) else: if '.' in table_name and schema_name: raise Exception( "You can't specify a namespace both in the name of the table " 'and in the schema field. Please remove one') full_table_name = '{}.{}'.format( schema_name, table_name) if schema_name else table_name filename = form.csv_file.data.filename upload_prefix = config['CSV_TO_HIVE_UPLOAD_DIRECTORY'] upload_path = config['UPLOAD_FOLDER'] + \ secure_filename(filename) # Optional dependency from tableschema import Table # pylint: disable=import-error hive_table_schema = Table(upload_path).infer() column_name_and_type = [] for column_info in hive_table_schema['fields']: column_name_and_type.append( '`{}` {}'.format( column_info['name'], convert_to_hive_type(column_info['type']))) schema_definition = ', '.join(column_name_and_type) # Optional dependency import boto3 # pylint: disable=import-error s3 = boto3.client('s3') location = os.path.join('s3a://', bucket_path, upload_prefix, table_name) s3.upload_file( upload_path, bucket_path, os.path.join(upload_prefix, table_name, filename)) sql = f"""CREATE TABLE {full_table_name} ( {schema_definition} ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE LOCATION '{location}' tblproperties ('skip.header.line.count'='1')""" logging.info(form.con.data) engine = create_engine(form.con.data.sqlalchemy_uri_decrypted) engine.execute(sql)
[ "def", "create_table_from_csv", "(", "form", ",", "table", ")", ":", "def", "convert_to_hive_type", "(", "col_type", ")", ":", "\"\"\"maps tableschema's types to hive types\"\"\"", "tableschema_to_hive_types", "=", "{", "'boolean'", ":", "'BOOLEAN'", ",", "'integer'", ":", "'INT'", ",", "'number'", ":", "'DOUBLE'", ",", "'string'", ":", "'STRING'", ",", "}", "return", "tableschema_to_hive_types", ".", "get", "(", "col_type", ",", "'STRING'", ")", "bucket_path", "=", "config", "[", "'CSV_TO_HIVE_UPLOAD_S3_BUCKET'", "]", "if", "not", "bucket_path", ":", "logging", ".", "info", "(", "'No upload bucket specified'", ")", "raise", "Exception", "(", "'No upload bucket specified. You can specify one in the config file.'", ")", "table_name", "=", "form", ".", "name", ".", "data", "schema_name", "=", "form", ".", "schema", ".", "data", "if", "config", ".", "get", "(", "'UPLOADED_CSV_HIVE_NAMESPACE'", ")", ":", "if", "'.'", "in", "table_name", "or", "schema_name", ":", "raise", "Exception", "(", "\"You can't specify a namespace. \"", "'All tables will be uploaded to the `{}` namespace'", ".", "format", "(", "config", ".", "get", "(", "'HIVE_NAMESPACE'", ")", ")", ")", "full_table_name", "=", "'{}.{}'", ".", "format", "(", "config", ".", "get", "(", "'UPLOADED_CSV_HIVE_NAMESPACE'", ")", ",", "table_name", ")", "else", ":", "if", "'.'", "in", "table_name", "and", "schema_name", ":", "raise", "Exception", "(", "\"You can't specify a namespace both in the name of the table \"", "'and in the schema field. Please remove one'", ")", "full_table_name", "=", "'{}.{}'", ".", "format", "(", "schema_name", ",", "table_name", ")", "if", "schema_name", "else", "table_name", "filename", "=", "form", ".", "csv_file", ".", "data", ".", "filename", "upload_prefix", "=", "config", "[", "'CSV_TO_HIVE_UPLOAD_DIRECTORY'", "]", "upload_path", "=", "config", "[", "'UPLOAD_FOLDER'", "]", "+", "secure_filename", "(", "filename", ")", "# Optional dependency", "from", "tableschema", "import", "Table", "# pylint: disable=import-error", "hive_table_schema", "=", "Table", "(", "upload_path", ")", ".", "infer", "(", ")", "column_name_and_type", "=", "[", "]", "for", "column_info", "in", "hive_table_schema", "[", "'fields'", "]", ":", "column_name_and_type", ".", "append", "(", "'`{}` {}'", ".", "format", "(", "column_info", "[", "'name'", "]", ",", "convert_to_hive_type", "(", "column_info", "[", "'type'", "]", ")", ")", ")", "schema_definition", "=", "', '", ".", "join", "(", "column_name_and_type", ")", "# Optional dependency", "import", "boto3", "# pylint: disable=import-error", "s3", "=", "boto3", ".", "client", "(", "'s3'", ")", "location", "=", "os", ".", "path", ".", "join", "(", "'s3a://'", ",", "bucket_path", ",", "upload_prefix", ",", "table_name", ")", "s3", ".", "upload_file", "(", "upload_path", ",", "bucket_path", ",", "os", ".", "path", ".", "join", "(", "upload_prefix", ",", "table_name", ",", "filename", ")", ")", "sql", "=", "f\"\"\"CREATE TABLE {full_table_name} ( {schema_definition} )\n ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS\n TEXTFILE LOCATION '{location}'\n tblproperties ('skip.header.line.count'='1')\"\"\"", "logging", ".", "info", "(", "form", ".", "con", ".", "data", ")", "engine", "=", "create_engine", "(", "form", ".", "con", ".", "data", ".", "sqlalchemy_uri_decrypted", ")", "engine", ".", "execute", "(", "sql", ")" ]
Uploads a csv file and creates a superset datasource in Hive.
[ "Uploads", "a", "csv", "file", "and", "creates", "a", "superset", "datasource", "in", "Hive", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/db_engine_specs.py#L1139-L1209
21,489
apache/incubator-superset
superset/data/multiformat_time_series.py
load_multiformat_time_series
def load_multiformat_time_series(): """Loading time series data from a zip file in the repo""" data = get_example_data('multiformat_time_series.json.gz') pdf = pd.read_json(data) pdf.ds = pd.to_datetime(pdf.ds, unit='s') pdf.ds2 = pd.to_datetime(pdf.ds2, unit='s') pdf.to_sql( 'multiformat_time_series', db.engine, if_exists='replace', chunksize=500, dtype={ 'ds': Date, 'ds2': DateTime, 'epoch_s': BigInteger, 'epoch_ms': BigInteger, 'string0': String(100), 'string1': String(100), 'string2': String(100), 'string3': String(100), }, index=False) print('Done loading table!') print('-' * 80) print('Creating table [multiformat_time_series] reference') obj = db.session.query(TBL).filter_by(table_name='multiformat_time_series').first() if not obj: obj = TBL(table_name='multiformat_time_series') obj.main_dttm_col = 'ds' obj.database = utils.get_or_create_main_db() dttm_and_expr_dict = { 'ds': [None, None], 'ds2': [None, None], 'epoch_s': ['epoch_s', None], 'epoch_ms': ['epoch_ms', None], 'string2': ['%Y%m%d-%H%M%S', None], 'string1': ['%Y-%m-%d^%H:%M:%S', None], 'string0': ['%Y-%m-%d %H:%M:%S.%f', None], 'string3': ['%Y/%m/%d%H:%M:%S.%f', None], } for col in obj.columns: dttm_and_expr = dttm_and_expr_dict[col.column_name] col.python_date_format = dttm_and_expr[0] col.dbatabase_expr = dttm_and_expr[1] col.is_dttm = True db.session.merge(obj) db.session.commit() obj.fetch_metadata() tbl = obj print('Creating Heatmap charts') for i, col in enumerate(tbl.columns): slice_data = { 'metrics': ['count'], 'granularity_sqla': col.column_name, 'row_limit': config.get('ROW_LIMIT'), 'since': '2015', 'until': '2016', 'where': '', 'viz_type': 'cal_heatmap', 'domain_granularity': 'month', 'subdomain_granularity': 'day', } slc = Slice( slice_name=f'Calendar Heatmap multiformat {i}', viz_type='cal_heatmap', datasource_type='table', datasource_id=tbl.id, params=get_slice_json(slice_data), ) merge_slice(slc) misc_dash_slices.add('Calendar Heatmap multiformat 0')
python
def load_multiformat_time_series(): """Loading time series data from a zip file in the repo""" data = get_example_data('multiformat_time_series.json.gz') pdf = pd.read_json(data) pdf.ds = pd.to_datetime(pdf.ds, unit='s') pdf.ds2 = pd.to_datetime(pdf.ds2, unit='s') pdf.to_sql( 'multiformat_time_series', db.engine, if_exists='replace', chunksize=500, dtype={ 'ds': Date, 'ds2': DateTime, 'epoch_s': BigInteger, 'epoch_ms': BigInteger, 'string0': String(100), 'string1': String(100), 'string2': String(100), 'string3': String(100), }, index=False) print('Done loading table!') print('-' * 80) print('Creating table [multiformat_time_series] reference') obj = db.session.query(TBL).filter_by(table_name='multiformat_time_series').first() if not obj: obj = TBL(table_name='multiformat_time_series') obj.main_dttm_col = 'ds' obj.database = utils.get_or_create_main_db() dttm_and_expr_dict = { 'ds': [None, None], 'ds2': [None, None], 'epoch_s': ['epoch_s', None], 'epoch_ms': ['epoch_ms', None], 'string2': ['%Y%m%d-%H%M%S', None], 'string1': ['%Y-%m-%d^%H:%M:%S', None], 'string0': ['%Y-%m-%d %H:%M:%S.%f', None], 'string3': ['%Y/%m/%d%H:%M:%S.%f', None], } for col in obj.columns: dttm_and_expr = dttm_and_expr_dict[col.column_name] col.python_date_format = dttm_and_expr[0] col.dbatabase_expr = dttm_and_expr[1] col.is_dttm = True db.session.merge(obj) db.session.commit() obj.fetch_metadata() tbl = obj print('Creating Heatmap charts') for i, col in enumerate(tbl.columns): slice_data = { 'metrics': ['count'], 'granularity_sqla': col.column_name, 'row_limit': config.get('ROW_LIMIT'), 'since': '2015', 'until': '2016', 'where': '', 'viz_type': 'cal_heatmap', 'domain_granularity': 'month', 'subdomain_granularity': 'day', } slc = Slice( slice_name=f'Calendar Heatmap multiformat {i}', viz_type='cal_heatmap', datasource_type='table', datasource_id=tbl.id, params=get_slice_json(slice_data), ) merge_slice(slc) misc_dash_slices.add('Calendar Heatmap multiformat 0')
[ "def", "load_multiformat_time_series", "(", ")", ":", "data", "=", "get_example_data", "(", "'multiformat_time_series.json.gz'", ")", "pdf", "=", "pd", ".", "read_json", "(", "data", ")", "pdf", ".", "ds", "=", "pd", ".", "to_datetime", "(", "pdf", ".", "ds", ",", "unit", "=", "'s'", ")", "pdf", ".", "ds2", "=", "pd", ".", "to_datetime", "(", "pdf", ".", "ds2", ",", "unit", "=", "'s'", ")", "pdf", ".", "to_sql", "(", "'multiformat_time_series'", ",", "db", ".", "engine", ",", "if_exists", "=", "'replace'", ",", "chunksize", "=", "500", ",", "dtype", "=", "{", "'ds'", ":", "Date", ",", "'ds2'", ":", "DateTime", ",", "'epoch_s'", ":", "BigInteger", ",", "'epoch_ms'", ":", "BigInteger", ",", "'string0'", ":", "String", "(", "100", ")", ",", "'string1'", ":", "String", "(", "100", ")", ",", "'string2'", ":", "String", "(", "100", ")", ",", "'string3'", ":", "String", "(", "100", ")", ",", "}", ",", "index", "=", "False", ")", "print", "(", "'Done loading table!'", ")", "print", "(", "'-'", "*", "80", ")", "print", "(", "'Creating table [multiformat_time_series] reference'", ")", "obj", "=", "db", ".", "session", ".", "query", "(", "TBL", ")", ".", "filter_by", "(", "table_name", "=", "'multiformat_time_series'", ")", ".", "first", "(", ")", "if", "not", "obj", ":", "obj", "=", "TBL", "(", "table_name", "=", "'multiformat_time_series'", ")", "obj", ".", "main_dttm_col", "=", "'ds'", "obj", ".", "database", "=", "utils", ".", "get_or_create_main_db", "(", ")", "dttm_and_expr_dict", "=", "{", "'ds'", ":", "[", "None", ",", "None", "]", ",", "'ds2'", ":", "[", "None", ",", "None", "]", ",", "'epoch_s'", ":", "[", "'epoch_s'", ",", "None", "]", ",", "'epoch_ms'", ":", "[", "'epoch_ms'", ",", "None", "]", ",", "'string2'", ":", "[", "'%Y%m%d-%H%M%S'", ",", "None", "]", ",", "'string1'", ":", "[", "'%Y-%m-%d^%H:%M:%S'", ",", "None", "]", ",", "'string0'", ":", "[", "'%Y-%m-%d %H:%M:%S.%f'", ",", "None", "]", ",", "'string3'", ":", "[", "'%Y/%m/%d%H:%M:%S.%f'", ",", "None", "]", ",", "}", "for", "col", "in", "obj", ".", "columns", ":", "dttm_and_expr", "=", "dttm_and_expr_dict", "[", "col", ".", "column_name", "]", "col", ".", "python_date_format", "=", "dttm_and_expr", "[", "0", "]", "col", ".", "dbatabase_expr", "=", "dttm_and_expr", "[", "1", "]", "col", ".", "is_dttm", "=", "True", "db", ".", "session", ".", "merge", "(", "obj", ")", "db", ".", "session", ".", "commit", "(", ")", "obj", ".", "fetch_metadata", "(", ")", "tbl", "=", "obj", "print", "(", "'Creating Heatmap charts'", ")", "for", "i", ",", "col", "in", "enumerate", "(", "tbl", ".", "columns", ")", ":", "slice_data", "=", "{", "'metrics'", ":", "[", "'count'", "]", ",", "'granularity_sqla'", ":", "col", ".", "column_name", ",", "'row_limit'", ":", "config", ".", "get", "(", "'ROW_LIMIT'", ")", ",", "'since'", ":", "'2015'", ",", "'until'", ":", "'2016'", ",", "'where'", ":", "''", ",", "'viz_type'", ":", "'cal_heatmap'", ",", "'domain_granularity'", ":", "'month'", ",", "'subdomain_granularity'", ":", "'day'", ",", "}", "slc", "=", "Slice", "(", "slice_name", "=", "f'Calendar Heatmap multiformat {i}'", ",", "viz_type", "=", "'cal_heatmap'", ",", "datasource_type", "=", "'table'", ",", "datasource_id", "=", "tbl", ".", "id", ",", "params", "=", "get_slice_json", "(", "slice_data", ")", ",", ")", "merge_slice", "(", "slc", ")", "misc_dash_slices", ".", "add", "(", "'Calendar Heatmap multiformat 0'", ")" ]
Loading time series data from a zip file in the repo
[ "Loading", "time", "series", "data", "from", "a", "zip", "file", "in", "the", "repo" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/data/multiformat_time_series.py#L34-L107
21,490
apache/incubator-superset
superset/utils/dashboard_import_export.py
import_dashboards
def import_dashboards(session, data_stream, import_time=None): """Imports dashboards from a stream to databases""" current_tt = int(time.time()) import_time = current_tt if import_time is None else import_time data = json.loads(data_stream.read(), object_hook=decode_dashboards) # TODO: import DRUID datasources for table in data['datasources']: type(table).import_obj(table, import_time=import_time) session.commit() for dashboard in data['dashboards']: Dashboard.import_obj( dashboard, import_time=import_time) session.commit()
python
def import_dashboards(session, data_stream, import_time=None): """Imports dashboards from a stream to databases""" current_tt = int(time.time()) import_time = current_tt if import_time is None else import_time data = json.loads(data_stream.read(), object_hook=decode_dashboards) # TODO: import DRUID datasources for table in data['datasources']: type(table).import_obj(table, import_time=import_time) session.commit() for dashboard in data['dashboards']: Dashboard.import_obj( dashboard, import_time=import_time) session.commit()
[ "def", "import_dashboards", "(", "session", ",", "data_stream", ",", "import_time", "=", "None", ")", ":", "current_tt", "=", "int", "(", "time", ".", "time", "(", ")", ")", "import_time", "=", "current_tt", "if", "import_time", "is", "None", "else", "import_time", "data", "=", "json", ".", "loads", "(", "data_stream", ".", "read", "(", ")", ",", "object_hook", "=", "decode_dashboards", ")", "# TODO: import DRUID datasources", "for", "table", "in", "data", "[", "'datasources'", "]", ":", "type", "(", "table", ")", ".", "import_obj", "(", "table", ",", "import_time", "=", "import_time", ")", "session", ".", "commit", "(", ")", "for", "dashboard", "in", "data", "[", "'dashboards'", "]", ":", "Dashboard", ".", "import_obj", "(", "dashboard", ",", "import_time", "=", "import_time", ")", "session", ".", "commit", "(", ")" ]
Imports dashboards from a stream to databases
[ "Imports", "dashboards", "from", "a", "stream", "to", "databases" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/utils/dashboard_import_export.py#L26-L38
21,491
apache/incubator-superset
superset/utils/dashboard_import_export.py
export_dashboards
def export_dashboards(session): """Returns all dashboards metadata as a json dump""" logging.info('Starting export') dashboards = session.query(Dashboard) dashboard_ids = [] for dashboard in dashboards: dashboard_ids.append(dashboard.id) data = Dashboard.export_dashboards(dashboard_ids) return data
python
def export_dashboards(session): """Returns all dashboards metadata as a json dump""" logging.info('Starting export') dashboards = session.query(Dashboard) dashboard_ids = [] for dashboard in dashboards: dashboard_ids.append(dashboard.id) data = Dashboard.export_dashboards(dashboard_ids) return data
[ "def", "export_dashboards", "(", "session", ")", ":", "logging", ".", "info", "(", "'Starting export'", ")", "dashboards", "=", "session", ".", "query", "(", "Dashboard", ")", "dashboard_ids", "=", "[", "]", "for", "dashboard", "in", "dashboards", ":", "dashboard_ids", ".", "append", "(", "dashboard", ".", "id", ")", "data", "=", "Dashboard", ".", "export_dashboards", "(", "dashboard_ids", ")", "return", "data" ]
Returns all dashboards metadata as a json dump
[ "Returns", "all", "dashboards", "metadata", "as", "a", "json", "dump" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/utils/dashboard_import_export.py#L41-L49
21,492
apache/incubator-superset
superset/sql_lab.py
handle_query_error
def handle_query_error(msg, query, session, payload=None): """Local method handling error while processing the SQL""" payload = payload or {} troubleshooting_link = config['TROUBLESHOOTING_LINK'] query.error_message = msg query.status = QueryStatus.FAILED query.tmp_table_name = None session.commit() payload.update({ 'status': query.status, 'error': msg, }) if troubleshooting_link: payload['link'] = troubleshooting_link return payload
python
def handle_query_error(msg, query, session, payload=None): """Local method handling error while processing the SQL""" payload = payload or {} troubleshooting_link = config['TROUBLESHOOTING_LINK'] query.error_message = msg query.status = QueryStatus.FAILED query.tmp_table_name = None session.commit() payload.update({ 'status': query.status, 'error': msg, }) if troubleshooting_link: payload['link'] = troubleshooting_link return payload
[ "def", "handle_query_error", "(", "msg", ",", "query", ",", "session", ",", "payload", "=", "None", ")", ":", "payload", "=", "payload", "or", "{", "}", "troubleshooting_link", "=", "config", "[", "'TROUBLESHOOTING_LINK'", "]", "query", ".", "error_message", "=", "msg", "query", ".", "status", "=", "QueryStatus", ".", "FAILED", "query", ".", "tmp_table_name", "=", "None", "session", ".", "commit", "(", ")", "payload", ".", "update", "(", "{", "'status'", ":", "query", ".", "status", ",", "'error'", ":", "msg", ",", "}", ")", "if", "troubleshooting_link", ":", "payload", "[", "'link'", "]", "=", "troubleshooting_link", "return", "payload" ]
Local method handling error while processing the SQL
[ "Local", "method", "handling", "error", "while", "processing", "the", "SQL" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/sql_lab.py#L63-L77
21,493
apache/incubator-superset
superset/sql_lab.py
get_query
def get_query(query_id, session, retry_count=5): """attemps to get the query and retry if it cannot""" query = None attempt = 0 while not query and attempt < retry_count: try: query = session.query(Query).filter_by(id=query_id).one() except Exception: attempt += 1 logging.error( 'Query with id `{}` could not be retrieved'.format(query_id)) stats_logger.incr('error_attempting_orm_query_' + str(attempt)) logging.error('Sleeping for a sec before retrying...') sleep(1) if not query: stats_logger.incr('error_failed_at_getting_orm_query') raise SqlLabException('Failed at getting query') return query
python
def get_query(query_id, session, retry_count=5): """attemps to get the query and retry if it cannot""" query = None attempt = 0 while not query and attempt < retry_count: try: query = session.query(Query).filter_by(id=query_id).one() except Exception: attempt += 1 logging.error( 'Query with id `{}` could not be retrieved'.format(query_id)) stats_logger.incr('error_attempting_orm_query_' + str(attempt)) logging.error('Sleeping for a sec before retrying...') sleep(1) if not query: stats_logger.incr('error_failed_at_getting_orm_query') raise SqlLabException('Failed at getting query') return query
[ "def", "get_query", "(", "query_id", ",", "session", ",", "retry_count", "=", "5", ")", ":", "query", "=", "None", "attempt", "=", "0", "while", "not", "query", "and", "attempt", "<", "retry_count", ":", "try", ":", "query", "=", "session", ".", "query", "(", "Query", ")", ".", "filter_by", "(", "id", "=", "query_id", ")", ".", "one", "(", ")", "except", "Exception", ":", "attempt", "+=", "1", "logging", ".", "error", "(", "'Query with id `{}` could not be retrieved'", ".", "format", "(", "query_id", ")", ")", "stats_logger", ".", "incr", "(", "'error_attempting_orm_query_'", "+", "str", "(", "attempt", ")", ")", "logging", ".", "error", "(", "'Sleeping for a sec before retrying...'", ")", "sleep", "(", "1", ")", "if", "not", "query", ":", "stats_logger", ".", "incr", "(", "'error_failed_at_getting_orm_query'", ")", "raise", "SqlLabException", "(", "'Failed at getting query'", ")", "return", "query" ]
attemps to get the query and retry if it cannot
[ "attemps", "to", "get", "the", "query", "and", "retry", "if", "it", "cannot" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/sql_lab.py#L80-L97
21,494
apache/incubator-superset
superset/sql_lab.py
execute_sql_statement
def execute_sql_statement(sql_statement, query, user_name, session, cursor): """Executes a single SQL statement""" database = query.database db_engine_spec = database.db_engine_spec parsed_query = ParsedQuery(sql_statement) sql = parsed_query.stripped() SQL_MAX_ROWS = app.config.get('SQL_MAX_ROW') if not parsed_query.is_readonly() and not database.allow_dml: raise SqlLabSecurityException( _('Only `SELECT` statements are allowed against this database')) if query.select_as_cta: if not parsed_query.is_select(): raise SqlLabException(_( 'Only `SELECT` statements can be used with the CREATE TABLE ' 'feature.')) if not query.tmp_table_name: start_dttm = datetime.fromtimestamp(query.start_time) query.tmp_table_name = 'tmp_{}_table_{}'.format( query.user_id, start_dttm.strftime('%Y_%m_%d_%H_%M_%S')) sql = parsed_query.as_create_table(query.tmp_table_name) query.select_as_cta_used = True if parsed_query.is_select(): if SQL_MAX_ROWS and (not query.limit or query.limit > SQL_MAX_ROWS): query.limit = SQL_MAX_ROWS if query.limit: sql = database.apply_limit_to_sql(sql, query.limit) # Hook to allow environment-specific mutation (usually comments) to the SQL SQL_QUERY_MUTATOR = config.get('SQL_QUERY_MUTATOR') if SQL_QUERY_MUTATOR: sql = SQL_QUERY_MUTATOR(sql, user_name, security_manager, database) try: if log_query: log_query( query.database.sqlalchemy_uri, query.executed_sql, query.schema, user_name, __name__, security_manager, ) query.executed_sql = sql with stats_timing('sqllab.query.time_executing_query', stats_logger): logging.info('Running query: \n{}'.format(sql)) db_engine_spec.execute(cursor, sql, async_=True) logging.info('Handling cursor') db_engine_spec.handle_cursor(cursor, query, session) with stats_timing('sqllab.query.time_fetching_results', stats_logger): logging.debug('Fetching data for query object: {}'.format(query.to_dict())) data = db_engine_spec.fetch_data(cursor, query.limit) except SoftTimeLimitExceeded as e: logging.exception(e) raise SqlLabTimeoutException( "SQL Lab timeout. This environment's policy is to kill queries " 'after {} seconds.'.format(SQLLAB_TIMEOUT)) except Exception as e: logging.exception(e) raise SqlLabException(db_engine_spec.extract_error_message(e)) logging.debug('Fetching cursor description') cursor_description = cursor.description return dataframe.SupersetDataFrame(data, cursor_description, db_engine_spec)
python
def execute_sql_statement(sql_statement, query, user_name, session, cursor): """Executes a single SQL statement""" database = query.database db_engine_spec = database.db_engine_spec parsed_query = ParsedQuery(sql_statement) sql = parsed_query.stripped() SQL_MAX_ROWS = app.config.get('SQL_MAX_ROW') if not parsed_query.is_readonly() and not database.allow_dml: raise SqlLabSecurityException( _('Only `SELECT` statements are allowed against this database')) if query.select_as_cta: if not parsed_query.is_select(): raise SqlLabException(_( 'Only `SELECT` statements can be used with the CREATE TABLE ' 'feature.')) if not query.tmp_table_name: start_dttm = datetime.fromtimestamp(query.start_time) query.tmp_table_name = 'tmp_{}_table_{}'.format( query.user_id, start_dttm.strftime('%Y_%m_%d_%H_%M_%S')) sql = parsed_query.as_create_table(query.tmp_table_name) query.select_as_cta_used = True if parsed_query.is_select(): if SQL_MAX_ROWS and (not query.limit or query.limit > SQL_MAX_ROWS): query.limit = SQL_MAX_ROWS if query.limit: sql = database.apply_limit_to_sql(sql, query.limit) # Hook to allow environment-specific mutation (usually comments) to the SQL SQL_QUERY_MUTATOR = config.get('SQL_QUERY_MUTATOR') if SQL_QUERY_MUTATOR: sql = SQL_QUERY_MUTATOR(sql, user_name, security_manager, database) try: if log_query: log_query( query.database.sqlalchemy_uri, query.executed_sql, query.schema, user_name, __name__, security_manager, ) query.executed_sql = sql with stats_timing('sqllab.query.time_executing_query', stats_logger): logging.info('Running query: \n{}'.format(sql)) db_engine_spec.execute(cursor, sql, async_=True) logging.info('Handling cursor') db_engine_spec.handle_cursor(cursor, query, session) with stats_timing('sqllab.query.time_fetching_results', stats_logger): logging.debug('Fetching data for query object: {}'.format(query.to_dict())) data = db_engine_spec.fetch_data(cursor, query.limit) except SoftTimeLimitExceeded as e: logging.exception(e) raise SqlLabTimeoutException( "SQL Lab timeout. This environment's policy is to kill queries " 'after {} seconds.'.format(SQLLAB_TIMEOUT)) except Exception as e: logging.exception(e) raise SqlLabException(db_engine_spec.extract_error_message(e)) logging.debug('Fetching cursor description') cursor_description = cursor.description return dataframe.SupersetDataFrame(data, cursor_description, db_engine_spec)
[ "def", "execute_sql_statement", "(", "sql_statement", ",", "query", ",", "user_name", ",", "session", ",", "cursor", ")", ":", "database", "=", "query", ".", "database", "db_engine_spec", "=", "database", ".", "db_engine_spec", "parsed_query", "=", "ParsedQuery", "(", "sql_statement", ")", "sql", "=", "parsed_query", ".", "stripped", "(", ")", "SQL_MAX_ROWS", "=", "app", ".", "config", ".", "get", "(", "'SQL_MAX_ROW'", ")", "if", "not", "parsed_query", ".", "is_readonly", "(", ")", "and", "not", "database", ".", "allow_dml", ":", "raise", "SqlLabSecurityException", "(", "_", "(", "'Only `SELECT` statements are allowed against this database'", ")", ")", "if", "query", ".", "select_as_cta", ":", "if", "not", "parsed_query", ".", "is_select", "(", ")", ":", "raise", "SqlLabException", "(", "_", "(", "'Only `SELECT` statements can be used with the CREATE TABLE '", "'feature.'", ")", ")", "if", "not", "query", ".", "tmp_table_name", ":", "start_dttm", "=", "datetime", ".", "fromtimestamp", "(", "query", ".", "start_time", ")", "query", ".", "tmp_table_name", "=", "'tmp_{}_table_{}'", ".", "format", "(", "query", ".", "user_id", ",", "start_dttm", ".", "strftime", "(", "'%Y_%m_%d_%H_%M_%S'", ")", ")", "sql", "=", "parsed_query", ".", "as_create_table", "(", "query", ".", "tmp_table_name", ")", "query", ".", "select_as_cta_used", "=", "True", "if", "parsed_query", ".", "is_select", "(", ")", ":", "if", "SQL_MAX_ROWS", "and", "(", "not", "query", ".", "limit", "or", "query", ".", "limit", ">", "SQL_MAX_ROWS", ")", ":", "query", ".", "limit", "=", "SQL_MAX_ROWS", "if", "query", ".", "limit", ":", "sql", "=", "database", ".", "apply_limit_to_sql", "(", "sql", ",", "query", ".", "limit", ")", "# Hook to allow environment-specific mutation (usually comments) to the SQL", "SQL_QUERY_MUTATOR", "=", "config", ".", "get", "(", "'SQL_QUERY_MUTATOR'", ")", "if", "SQL_QUERY_MUTATOR", ":", "sql", "=", "SQL_QUERY_MUTATOR", "(", "sql", ",", "user_name", ",", "security_manager", ",", "database", ")", "try", ":", "if", "log_query", ":", "log_query", "(", "query", ".", "database", ".", "sqlalchemy_uri", ",", "query", ".", "executed_sql", ",", "query", ".", "schema", ",", "user_name", ",", "__name__", ",", "security_manager", ",", ")", "query", ".", "executed_sql", "=", "sql", "with", "stats_timing", "(", "'sqllab.query.time_executing_query'", ",", "stats_logger", ")", ":", "logging", ".", "info", "(", "'Running query: \\n{}'", ".", "format", "(", "sql", ")", ")", "db_engine_spec", ".", "execute", "(", "cursor", ",", "sql", ",", "async_", "=", "True", ")", "logging", ".", "info", "(", "'Handling cursor'", ")", "db_engine_spec", ".", "handle_cursor", "(", "cursor", ",", "query", ",", "session", ")", "with", "stats_timing", "(", "'sqllab.query.time_fetching_results'", ",", "stats_logger", ")", ":", "logging", ".", "debug", "(", "'Fetching data for query object: {}'", ".", "format", "(", "query", ".", "to_dict", "(", ")", ")", ")", "data", "=", "db_engine_spec", ".", "fetch_data", "(", "cursor", ",", "query", ".", "limit", ")", "except", "SoftTimeLimitExceeded", "as", "e", ":", "logging", ".", "exception", "(", "e", ")", "raise", "SqlLabTimeoutException", "(", "\"SQL Lab timeout. This environment's policy is to kill queries \"", "'after {} seconds.'", ".", "format", "(", "SQLLAB_TIMEOUT", ")", ")", "except", "Exception", "as", "e", ":", "logging", ".", "exception", "(", "e", ")", "raise", "SqlLabException", "(", "db_engine_spec", ".", "extract_error_message", "(", "e", ")", ")", "logging", ".", "debug", "(", "'Fetching cursor description'", ")", "cursor_description", "=", "cursor", ".", "description", "return", "dataframe", ".", "SupersetDataFrame", "(", "data", ",", "cursor_description", ",", "db_engine_spec", ")" ]
Executes a single SQL statement
[ "Executes", "a", "single", "SQL", "statement" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/sql_lab.py#L144-L209
21,495
apache/incubator-superset
superset/utils/core.py
flasher
def flasher(msg, severity=None): """Flask's flash if available, logging call if not""" try: flash(msg, severity) except RuntimeError: if severity == 'danger': logging.error(msg) else: logging.info(msg)
python
def flasher(msg, severity=None): """Flask's flash if available, logging call if not""" try: flash(msg, severity) except RuntimeError: if severity == 'danger': logging.error(msg) else: logging.info(msg)
[ "def", "flasher", "(", "msg", ",", "severity", "=", "None", ")", ":", "try", ":", "flash", "(", "msg", ",", "severity", ")", "except", "RuntimeError", ":", "if", "severity", "==", "'danger'", ":", "logging", ".", "error", "(", "msg", ")", "else", ":", "logging", ".", "info", "(", "msg", ")" ]
Flask's flash if available, logging call if not
[ "Flask", "s", "flash", "if", "available", "logging", "call", "if", "not" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/utils/core.py#L81-L89
21,496
apache/incubator-superset
superset/utils/core.py
list_minus
def list_minus(l: List, minus: List) -> List: """Returns l without what is in minus >>> list_minus([1, 2, 3], [2]) [1, 3] """ return [o for o in l if o not in minus]
python
def list_minus(l: List, minus: List) -> List: """Returns l without what is in minus >>> list_minus([1, 2, 3], [2]) [1, 3] """ return [o for o in l if o not in minus]
[ "def", "list_minus", "(", "l", ":", "List", ",", "minus", ":", "List", ")", "->", "List", ":", "return", "[", "o", "for", "o", "in", "l", "if", "o", "not", "in", "minus", "]" ]
Returns l without what is in minus >>> list_minus([1, 2, 3], [2]) [1, 3]
[ "Returns", "l", "without", "what", "is", "in", "minus" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/utils/core.py#L188-L194
21,497
apache/incubator-superset
superset/utils/core.py
parse_human_datetime
def parse_human_datetime(s): """ Returns ``datetime.datetime`` from human readable strings >>> from datetime import date, timedelta >>> from dateutil.relativedelta import relativedelta >>> parse_human_datetime('2015-04-03') datetime.datetime(2015, 4, 3, 0, 0) >>> parse_human_datetime('2/3/1969') datetime.datetime(1969, 2, 3, 0, 0) >>> parse_human_datetime('now') <= datetime.now() True >>> parse_human_datetime('yesterday') <= datetime.now() True >>> date.today() - timedelta(1) == parse_human_datetime('yesterday').date() True >>> year_ago_1 = parse_human_datetime('one year ago').date() >>> year_ago_2 = (datetime.now() - relativedelta(years=1) ).date() >>> year_ago_1 == year_ago_2 True """ if not s: return None try: dttm = parse(s) except Exception: try: cal = parsedatetime.Calendar() parsed_dttm, parsed_flags = cal.parseDT(s) # when time is not extracted, we 'reset to midnight' if parsed_flags & 2 == 0: parsed_dttm = parsed_dttm.replace(hour=0, minute=0, second=0) dttm = dttm_from_timtuple(parsed_dttm.utctimetuple()) except Exception as e: logging.exception(e) raise ValueError("Couldn't parse date string [{}]".format(s)) return dttm
python
def parse_human_datetime(s): """ Returns ``datetime.datetime`` from human readable strings >>> from datetime import date, timedelta >>> from dateutil.relativedelta import relativedelta >>> parse_human_datetime('2015-04-03') datetime.datetime(2015, 4, 3, 0, 0) >>> parse_human_datetime('2/3/1969') datetime.datetime(1969, 2, 3, 0, 0) >>> parse_human_datetime('now') <= datetime.now() True >>> parse_human_datetime('yesterday') <= datetime.now() True >>> date.today() - timedelta(1) == parse_human_datetime('yesterday').date() True >>> year_ago_1 = parse_human_datetime('one year ago').date() >>> year_ago_2 = (datetime.now() - relativedelta(years=1) ).date() >>> year_ago_1 == year_ago_2 True """ if not s: return None try: dttm = parse(s) except Exception: try: cal = parsedatetime.Calendar() parsed_dttm, parsed_flags = cal.parseDT(s) # when time is not extracted, we 'reset to midnight' if parsed_flags & 2 == 0: parsed_dttm = parsed_dttm.replace(hour=0, minute=0, second=0) dttm = dttm_from_timtuple(parsed_dttm.utctimetuple()) except Exception as e: logging.exception(e) raise ValueError("Couldn't parse date string [{}]".format(s)) return dttm
[ "def", "parse_human_datetime", "(", "s", ")", ":", "if", "not", "s", ":", "return", "None", "try", ":", "dttm", "=", "parse", "(", "s", ")", "except", "Exception", ":", "try", ":", "cal", "=", "parsedatetime", ".", "Calendar", "(", ")", "parsed_dttm", ",", "parsed_flags", "=", "cal", ".", "parseDT", "(", "s", ")", "# when time is not extracted, we 'reset to midnight'", "if", "parsed_flags", "&", "2", "==", "0", ":", "parsed_dttm", "=", "parsed_dttm", ".", "replace", "(", "hour", "=", "0", ",", "minute", "=", "0", ",", "second", "=", "0", ")", "dttm", "=", "dttm_from_timtuple", "(", "parsed_dttm", ".", "utctimetuple", "(", ")", ")", "except", "Exception", "as", "e", ":", "logging", ".", "exception", "(", "e", ")", "raise", "ValueError", "(", "\"Couldn't parse date string [{}]\"", ".", "format", "(", "s", ")", ")", "return", "dttm" ]
Returns ``datetime.datetime`` from human readable strings >>> from datetime import date, timedelta >>> from dateutil.relativedelta import relativedelta >>> parse_human_datetime('2015-04-03') datetime.datetime(2015, 4, 3, 0, 0) >>> parse_human_datetime('2/3/1969') datetime.datetime(1969, 2, 3, 0, 0) >>> parse_human_datetime('now') <= datetime.now() True >>> parse_human_datetime('yesterday') <= datetime.now() True >>> date.today() - timedelta(1) == parse_human_datetime('yesterday').date() True >>> year_ago_1 = parse_human_datetime('one year ago').date() >>> year_ago_2 = (datetime.now() - relativedelta(years=1) ).date() >>> year_ago_1 == year_ago_2 True
[ "Returns", "datetime", ".", "datetime", "from", "human", "readable", "strings" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/utils/core.py#L197-L233
21,498
apache/incubator-superset
superset/utils/core.py
decode_dashboards
def decode_dashboards(o): """ Function to be passed into json.loads obj_hook parameter Recreates the dashboard object from a json representation. """ import superset.models.core as models from superset.connectors.sqla.models import ( SqlaTable, SqlMetric, TableColumn, ) if '__Dashboard__' in o: d = models.Dashboard() d.__dict__.update(o['__Dashboard__']) return d elif '__Slice__' in o: d = models.Slice() d.__dict__.update(o['__Slice__']) return d elif '__TableColumn__' in o: d = TableColumn() d.__dict__.update(o['__TableColumn__']) return d elif '__SqlaTable__' in o: d = SqlaTable() d.__dict__.update(o['__SqlaTable__']) return d elif '__SqlMetric__' in o: d = SqlMetric() d.__dict__.update(o['__SqlMetric__']) return d elif '__datetime__' in o: return datetime.strptime(o['__datetime__'], '%Y-%m-%dT%H:%M:%S') else: return o
python
def decode_dashboards(o): """ Function to be passed into json.loads obj_hook parameter Recreates the dashboard object from a json representation. """ import superset.models.core as models from superset.connectors.sqla.models import ( SqlaTable, SqlMetric, TableColumn, ) if '__Dashboard__' in o: d = models.Dashboard() d.__dict__.update(o['__Dashboard__']) return d elif '__Slice__' in o: d = models.Slice() d.__dict__.update(o['__Slice__']) return d elif '__TableColumn__' in o: d = TableColumn() d.__dict__.update(o['__TableColumn__']) return d elif '__SqlaTable__' in o: d = SqlaTable() d.__dict__.update(o['__SqlaTable__']) return d elif '__SqlMetric__' in o: d = SqlMetric() d.__dict__.update(o['__SqlMetric__']) return d elif '__datetime__' in o: return datetime.strptime(o['__datetime__'], '%Y-%m-%dT%H:%M:%S') else: return o
[ "def", "decode_dashboards", "(", "o", ")", ":", "import", "superset", ".", "models", ".", "core", "as", "models", "from", "superset", ".", "connectors", ".", "sqla", ".", "models", "import", "(", "SqlaTable", ",", "SqlMetric", ",", "TableColumn", ",", ")", "if", "'__Dashboard__'", "in", "o", ":", "d", "=", "models", ".", "Dashboard", "(", ")", "d", ".", "__dict__", ".", "update", "(", "o", "[", "'__Dashboard__'", "]", ")", "return", "d", "elif", "'__Slice__'", "in", "o", ":", "d", "=", "models", ".", "Slice", "(", ")", "d", ".", "__dict__", ".", "update", "(", "o", "[", "'__Slice__'", "]", ")", "return", "d", "elif", "'__TableColumn__'", "in", "o", ":", "d", "=", "TableColumn", "(", ")", "d", ".", "__dict__", ".", "update", "(", "o", "[", "'__TableColumn__'", "]", ")", "return", "d", "elif", "'__SqlaTable__'", "in", "o", ":", "d", "=", "SqlaTable", "(", ")", "d", ".", "__dict__", ".", "update", "(", "o", "[", "'__SqlaTable__'", "]", ")", "return", "d", "elif", "'__SqlMetric__'", "in", "o", ":", "d", "=", "SqlMetric", "(", ")", "d", ".", "__dict__", ".", "update", "(", "o", "[", "'__SqlMetric__'", "]", ")", "return", "d", "elif", "'__datetime__'", "in", "o", ":", "return", "datetime", ".", "strptime", "(", "o", "[", "'__datetime__'", "]", ",", "'%Y-%m-%dT%H:%M:%S'", ")", "else", ":", "return", "o" ]
Function to be passed into json.loads obj_hook parameter Recreates the dashboard object from a json representation.
[ "Function", "to", "be", "passed", "into", "json", ".", "loads", "obj_hook", "parameter", "Recreates", "the", "dashboard", "object", "from", "a", "json", "representation", "." ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/utils/core.py#L241-L274
21,499
apache/incubator-superset
superset/utils/core.py
parse_human_timedelta
def parse_human_timedelta(s: str): """ Returns ``datetime.datetime`` from natural language time deltas >>> parse_human_datetime('now') <= datetime.now() True """ cal = parsedatetime.Calendar() dttm = dttm_from_timtuple(datetime.now().timetuple()) d = cal.parse(s or '', dttm)[0] d = datetime(d.tm_year, d.tm_mon, d.tm_mday, d.tm_hour, d.tm_min, d.tm_sec) return d - dttm
python
def parse_human_timedelta(s: str): """ Returns ``datetime.datetime`` from natural language time deltas >>> parse_human_datetime('now') <= datetime.now() True """ cal = parsedatetime.Calendar() dttm = dttm_from_timtuple(datetime.now().timetuple()) d = cal.parse(s or '', dttm)[0] d = datetime(d.tm_year, d.tm_mon, d.tm_mday, d.tm_hour, d.tm_min, d.tm_sec) return d - dttm
[ "def", "parse_human_timedelta", "(", "s", ":", "str", ")", ":", "cal", "=", "parsedatetime", ".", "Calendar", "(", ")", "dttm", "=", "dttm_from_timtuple", "(", "datetime", ".", "now", "(", ")", ".", "timetuple", "(", ")", ")", "d", "=", "cal", ".", "parse", "(", "s", "or", "''", ",", "dttm", ")", "[", "0", "]", "d", "=", "datetime", "(", "d", ".", "tm_year", ",", "d", ".", "tm_mon", ",", "d", ".", "tm_mday", ",", "d", ".", "tm_hour", ",", "d", ".", "tm_min", ",", "d", ".", "tm_sec", ")", "return", "d", "-", "dttm" ]
Returns ``datetime.datetime`` from natural language time deltas >>> parse_human_datetime('now') <= datetime.now() True
[ "Returns", "datetime", ".", "datetime", "from", "natural", "language", "time", "deltas" ]
ca2996c78f679260eb79c6008e276733df5fb653
https://github.com/apache/incubator-superset/blob/ca2996c78f679260eb79c6008e276733df5fb653/superset/utils/core.py#L290-L301