id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
21,200
explosion/spaCy
examples/pipeline/custom_attr_methods.py
overlap_tokens
def overlap_tokens(doc, other_doc): """Get the tokens from the original Doc that are also in the comparison Doc. """ overlap = [] other_tokens = [token.text for token in other_doc] for token in doc: if token.text in other_tokens: overlap.append(token) return overlap
python
def overlap_tokens(doc, other_doc): """Get the tokens from the original Doc that are also in the comparison Doc. """ overlap = [] other_tokens = [token.text for token in other_doc] for token in doc: if token.text in other_tokens: overlap.append(token) return overlap
[ "def", "overlap_tokens", "(", "doc", ",", "other_doc", ")", ":", "overlap", "=", "[", "]", "other_tokens", "=", "[", "token", ".", "text", "for", "token", "in", "other_doc", "]", "for", "token", "in", "doc", ":", "if", "token", ".", "text", "in", "other_tokens", ":", "overlap", ".", "append", "(", "token", ")", "return", "overlap" ]
Get the tokens from the original Doc that are also in the comparison Doc.
[ "Get", "the", "tokens", "from", "the", "original", "Doc", "that", "are", "also", "in", "the", "comparison", "Doc", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/examples/pipeline/custom_attr_methods.py#L61-L69
21,201
explosion/spaCy
spacy/cli/converters/iob2json.py
iob2json
def iob2json(input_data, n_sents=10, *args, **kwargs): """ Convert IOB files into JSON format for use with train cli. """ docs = [] for group in minibatch(docs, n_sents): group = list(group) first = group.pop(0) to_extend = first["paragraphs"][0]["sentences"] for sent in group[1:]: to_extend.extend(sent["paragraphs"][0]["sentences"]) docs.append(first) return docs
python
def iob2json(input_data, n_sents=10, *args, **kwargs): """ Convert IOB files into JSON format for use with train cli. """ docs = [] for group in minibatch(docs, n_sents): group = list(group) first = group.pop(0) to_extend = first["paragraphs"][0]["sentences"] for sent in group[1:]: to_extend.extend(sent["paragraphs"][0]["sentences"]) docs.append(first) return docs
[ "def", "iob2json", "(", "input_data", ",", "n_sents", "=", "10", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "docs", "=", "[", "]", "for", "group", "in", "minibatch", "(", "docs", ",", "n_sents", ")", ":", "group", "=", "list", "(", "group", ")", "first", "=", "group", ".", "pop", "(", "0", ")", "to_extend", "=", "first", "[", "\"paragraphs\"", "]", "[", "0", "]", "[", "\"sentences\"", "]", "for", "sent", "in", "group", "[", "1", ":", "]", ":", "to_extend", ".", "extend", "(", "sent", "[", "\"paragraphs\"", "]", "[", "0", "]", "[", "\"sentences\"", "]", ")", "docs", ".", "append", "(", "first", ")", "return", "docs" ]
Convert IOB files into JSON format for use with train cli.
[ "Convert", "IOB", "files", "into", "JSON", "format", "for", "use", "with", "train", "cli", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/cli/converters/iob2json.py#L10-L22
21,202
explosion/spaCy
spacy/displacy/__init__.py
render
def render( docs, style="dep", page=False, minify=False, jupyter=None, options={}, manual=False ): """Render displaCy visualisation. docs (list or Doc): Document(s) to visualise. style (unicode): Visualisation style, 'dep' or 'ent'. page (bool): Render markup as full HTML page. minify (bool): Minify HTML markup. jupyter (bool): Override Jupyter auto-detection. options (dict): Visualiser-specific options, e.g. colors. manual (bool): Don't parse `Doc` and instead expect a dict/list of dicts. RETURNS (unicode): Rendered HTML markup. DOCS: https://spacy.io/api/top-level#displacy.render USAGE: https://spacy.io/usage/visualizers """ factories = { "dep": (DependencyRenderer, parse_deps), "ent": (EntityRenderer, parse_ents), } if style not in factories: raise ValueError(Errors.E087.format(style=style)) if isinstance(docs, (Doc, Span, dict)): docs = [docs] docs = [obj if not isinstance(obj, Span) else obj.as_doc() for obj in docs] if not all(isinstance(obj, (Doc, Span, dict)) for obj in docs): raise ValueError(Errors.E096) renderer, converter = factories[style] renderer = renderer(options=options) parsed = [converter(doc, options) for doc in docs] if not manual else docs _html["parsed"] = renderer.render(parsed, page=page, minify=minify).strip() html = _html["parsed"] if RENDER_WRAPPER is not None: html = RENDER_WRAPPER(html) if jupyter or (jupyter is None and is_in_jupyter()): # return HTML rendered by IPython display() from IPython.core.display import display, HTML return display(HTML(html)) return html
python
def render( docs, style="dep", page=False, minify=False, jupyter=None, options={}, manual=False ): """Render displaCy visualisation. docs (list or Doc): Document(s) to visualise. style (unicode): Visualisation style, 'dep' or 'ent'. page (bool): Render markup as full HTML page. minify (bool): Minify HTML markup. jupyter (bool): Override Jupyter auto-detection. options (dict): Visualiser-specific options, e.g. colors. manual (bool): Don't parse `Doc` and instead expect a dict/list of dicts. RETURNS (unicode): Rendered HTML markup. DOCS: https://spacy.io/api/top-level#displacy.render USAGE: https://spacy.io/usage/visualizers """ factories = { "dep": (DependencyRenderer, parse_deps), "ent": (EntityRenderer, parse_ents), } if style not in factories: raise ValueError(Errors.E087.format(style=style)) if isinstance(docs, (Doc, Span, dict)): docs = [docs] docs = [obj if not isinstance(obj, Span) else obj.as_doc() for obj in docs] if not all(isinstance(obj, (Doc, Span, dict)) for obj in docs): raise ValueError(Errors.E096) renderer, converter = factories[style] renderer = renderer(options=options) parsed = [converter(doc, options) for doc in docs] if not manual else docs _html["parsed"] = renderer.render(parsed, page=page, minify=minify).strip() html = _html["parsed"] if RENDER_WRAPPER is not None: html = RENDER_WRAPPER(html) if jupyter or (jupyter is None and is_in_jupyter()): # return HTML rendered by IPython display() from IPython.core.display import display, HTML return display(HTML(html)) return html
[ "def", "render", "(", "docs", ",", "style", "=", "\"dep\"", ",", "page", "=", "False", ",", "minify", "=", "False", ",", "jupyter", "=", "None", ",", "options", "=", "{", "}", ",", "manual", "=", "False", ")", ":", "factories", "=", "{", "\"dep\"", ":", "(", "DependencyRenderer", ",", "parse_deps", ")", ",", "\"ent\"", ":", "(", "EntityRenderer", ",", "parse_ents", ")", ",", "}", "if", "style", "not", "in", "factories", ":", "raise", "ValueError", "(", "Errors", ".", "E087", ".", "format", "(", "style", "=", "style", ")", ")", "if", "isinstance", "(", "docs", ",", "(", "Doc", ",", "Span", ",", "dict", ")", ")", ":", "docs", "=", "[", "docs", "]", "docs", "=", "[", "obj", "if", "not", "isinstance", "(", "obj", ",", "Span", ")", "else", "obj", ".", "as_doc", "(", ")", "for", "obj", "in", "docs", "]", "if", "not", "all", "(", "isinstance", "(", "obj", ",", "(", "Doc", ",", "Span", ",", "dict", ")", ")", "for", "obj", "in", "docs", ")", ":", "raise", "ValueError", "(", "Errors", ".", "E096", ")", "renderer", ",", "converter", "=", "factories", "[", "style", "]", "renderer", "=", "renderer", "(", "options", "=", "options", ")", "parsed", "=", "[", "converter", "(", "doc", ",", "options", ")", "for", "doc", "in", "docs", "]", "if", "not", "manual", "else", "docs", "_html", "[", "\"parsed\"", "]", "=", "renderer", ".", "render", "(", "parsed", ",", "page", "=", "page", ",", "minify", "=", "minify", ")", ".", "strip", "(", ")", "html", "=", "_html", "[", "\"parsed\"", "]", "if", "RENDER_WRAPPER", "is", "not", "None", ":", "html", "=", "RENDER_WRAPPER", "(", "html", ")", "if", "jupyter", "or", "(", "jupyter", "is", "None", "and", "is_in_jupyter", "(", ")", ")", ":", "# return HTML rendered by IPython display()", "from", "IPython", ".", "core", ".", "display", "import", "display", ",", "HTML", "return", "display", "(", "HTML", "(", "html", ")", ")", "return", "html" ]
Render displaCy visualisation. docs (list or Doc): Document(s) to visualise. style (unicode): Visualisation style, 'dep' or 'ent'. page (bool): Render markup as full HTML page. minify (bool): Minify HTML markup. jupyter (bool): Override Jupyter auto-detection. options (dict): Visualiser-specific options, e.g. colors. manual (bool): Don't parse `Doc` and instead expect a dict/list of dicts. RETURNS (unicode): Rendered HTML markup. DOCS: https://spacy.io/api/top-level#displacy.render USAGE: https://spacy.io/usage/visualizers
[ "Render", "displaCy", "visualisation", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/displacy/__init__.py#L21-L61
21,203
explosion/spaCy
spacy/displacy/__init__.py
serve
def serve( docs, style="dep", page=True, minify=False, options={}, manual=False, port=5000, host="0.0.0.0", ): """Serve displaCy visualisation. docs (list or Doc): Document(s) to visualise. style (unicode): Visualisation style, 'dep' or 'ent'. page (bool): Render markup as full HTML page. minify (bool): Minify HTML markup. options (dict): Visualiser-specific options, e.g. colors. manual (bool): Don't parse `Doc` and instead expect a dict/list of dicts. port (int): Port to serve visualisation. host (unicode): Host to serve visualisation. DOCS: https://spacy.io/api/top-level#displacy.serve USAGE: https://spacy.io/usage/visualizers """ from wsgiref import simple_server if is_in_jupyter(): user_warning(Warnings.W011) render(docs, style=style, page=page, minify=minify, options=options, manual=manual) httpd = simple_server.make_server(host, port, app) print("\nUsing the '{}' visualizer".format(style)) print("Serving on http://{}:{} ...\n".format(host, port)) try: httpd.serve_forever() except KeyboardInterrupt: print("Shutting down server on port {}.".format(port)) finally: httpd.server_close()
python
def serve( docs, style="dep", page=True, minify=False, options={}, manual=False, port=5000, host="0.0.0.0", ): """Serve displaCy visualisation. docs (list or Doc): Document(s) to visualise. style (unicode): Visualisation style, 'dep' or 'ent'. page (bool): Render markup as full HTML page. minify (bool): Minify HTML markup. options (dict): Visualiser-specific options, e.g. colors. manual (bool): Don't parse `Doc` and instead expect a dict/list of dicts. port (int): Port to serve visualisation. host (unicode): Host to serve visualisation. DOCS: https://spacy.io/api/top-level#displacy.serve USAGE: https://spacy.io/usage/visualizers """ from wsgiref import simple_server if is_in_jupyter(): user_warning(Warnings.W011) render(docs, style=style, page=page, minify=minify, options=options, manual=manual) httpd = simple_server.make_server(host, port, app) print("\nUsing the '{}' visualizer".format(style)) print("Serving on http://{}:{} ...\n".format(host, port)) try: httpd.serve_forever() except KeyboardInterrupt: print("Shutting down server on port {}.".format(port)) finally: httpd.server_close()
[ "def", "serve", "(", "docs", ",", "style", "=", "\"dep\"", ",", "page", "=", "True", ",", "minify", "=", "False", ",", "options", "=", "{", "}", ",", "manual", "=", "False", ",", "port", "=", "5000", ",", "host", "=", "\"0.0.0.0\"", ",", ")", ":", "from", "wsgiref", "import", "simple_server", "if", "is_in_jupyter", "(", ")", ":", "user_warning", "(", "Warnings", ".", "W011", ")", "render", "(", "docs", ",", "style", "=", "style", ",", "page", "=", "page", ",", "minify", "=", "minify", ",", "options", "=", "options", ",", "manual", "=", "manual", ")", "httpd", "=", "simple_server", ".", "make_server", "(", "host", ",", "port", ",", "app", ")", "print", "(", "\"\\nUsing the '{}' visualizer\"", ".", "format", "(", "style", ")", ")", "print", "(", "\"Serving on http://{}:{} ...\\n\"", ".", "format", "(", "host", ",", "port", ")", ")", "try", ":", "httpd", ".", "serve_forever", "(", ")", "except", "KeyboardInterrupt", ":", "print", "(", "\"Shutting down server on port {}.\"", ".", "format", "(", "port", ")", ")", "finally", ":", "httpd", ".", "server_close", "(", ")" ]
Serve displaCy visualisation. docs (list or Doc): Document(s) to visualise. style (unicode): Visualisation style, 'dep' or 'ent'. page (bool): Render markup as full HTML page. minify (bool): Minify HTML markup. options (dict): Visualiser-specific options, e.g. colors. manual (bool): Don't parse `Doc` and instead expect a dict/list of dicts. port (int): Port to serve visualisation. host (unicode): Host to serve visualisation. DOCS: https://spacy.io/api/top-level#displacy.serve USAGE: https://spacy.io/usage/visualizers
[ "Serve", "displaCy", "visualisation", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/displacy/__init__.py#L64-L102
21,204
explosion/spaCy
spacy/displacy/__init__.py
set_render_wrapper
def set_render_wrapper(func): """Set an optional wrapper function that is called around the generated HTML markup on displacy.render. This can be used to allow integration into other platforms, similar to Jupyter Notebooks that require functions to be called around the HTML. It can also be used to implement custom callbacks on render, or to embed the visualization in a custom page. func (callable): Function to call around markup before rendering it. Needs to take one argument, the HTML markup, and should return the desired output of displacy.render. """ global RENDER_WRAPPER if not hasattr(func, "__call__"): raise ValueError(Errors.E110.format(obj=type(func))) RENDER_WRAPPER = func
python
def set_render_wrapper(func): """Set an optional wrapper function that is called around the generated HTML markup on displacy.render. This can be used to allow integration into other platforms, similar to Jupyter Notebooks that require functions to be called around the HTML. It can also be used to implement custom callbacks on render, or to embed the visualization in a custom page. func (callable): Function to call around markup before rendering it. Needs to take one argument, the HTML markup, and should return the desired output of displacy.render. """ global RENDER_WRAPPER if not hasattr(func, "__call__"): raise ValueError(Errors.E110.format(obj=type(func))) RENDER_WRAPPER = func
[ "def", "set_render_wrapper", "(", "func", ")", ":", "global", "RENDER_WRAPPER", "if", "not", "hasattr", "(", "func", ",", "\"__call__\"", ")", ":", "raise", "ValueError", "(", "Errors", ".", "E110", ".", "format", "(", "obj", "=", "type", "(", "func", ")", ")", ")", "RENDER_WRAPPER", "=", "func" ]
Set an optional wrapper function that is called around the generated HTML markup on displacy.render. This can be used to allow integration into other platforms, similar to Jupyter Notebooks that require functions to be called around the HTML. It can also be used to implement custom callbacks on render, or to embed the visualization in a custom page. func (callable): Function to call around markup before rendering it. Needs to take one argument, the HTML markup, and should return the desired output of displacy.render.
[ "Set", "an", "optional", "wrapper", "function", "that", "is", "called", "around", "the", "generated", "HTML", "markup", "on", "displacy", ".", "render", ".", "This", "can", "be", "used", "to", "allow", "integration", "into", "other", "platforms", "similar", "to", "Jupyter", "Notebooks", "that", "require", "functions", "to", "be", "called", "around", "the", "HTML", ".", "It", "can", "also", "be", "used", "to", "implement", "custom", "callbacks", "on", "render", "or", "to", "embed", "the", "visualization", "in", "a", "custom", "page", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/displacy/__init__.py#L185-L199
21,205
explosion/spaCy
spacy/cli/evaluate.py
evaluate
def evaluate( model, data_path, gpu_id=-1, gold_preproc=False, displacy_path=None, displacy_limit=25, return_scores=False, ): """ Evaluate a model. To render a sample of parses in a HTML file, set an output directory as the displacy_path argument. """ msg = Printer() util.fix_random_seed() if gpu_id >= 0: util.use_gpu(gpu_id) util.set_env_log(False) data_path = util.ensure_path(data_path) displacy_path = util.ensure_path(displacy_path) if not data_path.exists(): msg.fail("Evaluation data not found", data_path, exits=1) if displacy_path and not displacy_path.exists(): msg.fail("Visualization output directory not found", displacy_path, exits=1) corpus = GoldCorpus(data_path, data_path) nlp = util.load_model(model) dev_docs = list(corpus.dev_docs(nlp, gold_preproc=gold_preproc)) begin = timer() scorer = nlp.evaluate(dev_docs, verbose=False) end = timer() nwords = sum(len(doc_gold[0]) for doc_gold in dev_docs) results = { "Time": "%.2f s" % (end - begin), "Words": nwords, "Words/s": "%.0f" % (nwords / (end - begin)), "TOK": "%.2f" % scorer.token_acc, "POS": "%.2f" % scorer.tags_acc, "UAS": "%.2f" % scorer.uas, "LAS": "%.2f" % scorer.las, "NER P": "%.2f" % scorer.ents_p, "NER R": "%.2f" % scorer.ents_r, "NER F": "%.2f" % scorer.ents_f, } msg.table(results, title="Results") if displacy_path: docs, golds = zip(*dev_docs) render_deps = "parser" in nlp.meta.get("pipeline", []) render_ents = "ner" in nlp.meta.get("pipeline", []) render_parses( docs, displacy_path, model_name=model, limit=displacy_limit, deps=render_deps, ents=render_ents, ) msg.good("Generated {} parses as HTML".format(displacy_limit), displacy_path) if return_scores: return scorer.scores
python
def evaluate( model, data_path, gpu_id=-1, gold_preproc=False, displacy_path=None, displacy_limit=25, return_scores=False, ): """ Evaluate a model. To render a sample of parses in a HTML file, set an output directory as the displacy_path argument. """ msg = Printer() util.fix_random_seed() if gpu_id >= 0: util.use_gpu(gpu_id) util.set_env_log(False) data_path = util.ensure_path(data_path) displacy_path = util.ensure_path(displacy_path) if not data_path.exists(): msg.fail("Evaluation data not found", data_path, exits=1) if displacy_path and not displacy_path.exists(): msg.fail("Visualization output directory not found", displacy_path, exits=1) corpus = GoldCorpus(data_path, data_path) nlp = util.load_model(model) dev_docs = list(corpus.dev_docs(nlp, gold_preproc=gold_preproc)) begin = timer() scorer = nlp.evaluate(dev_docs, verbose=False) end = timer() nwords = sum(len(doc_gold[0]) for doc_gold in dev_docs) results = { "Time": "%.2f s" % (end - begin), "Words": nwords, "Words/s": "%.0f" % (nwords / (end - begin)), "TOK": "%.2f" % scorer.token_acc, "POS": "%.2f" % scorer.tags_acc, "UAS": "%.2f" % scorer.uas, "LAS": "%.2f" % scorer.las, "NER P": "%.2f" % scorer.ents_p, "NER R": "%.2f" % scorer.ents_r, "NER F": "%.2f" % scorer.ents_f, } msg.table(results, title="Results") if displacy_path: docs, golds = zip(*dev_docs) render_deps = "parser" in nlp.meta.get("pipeline", []) render_ents = "ner" in nlp.meta.get("pipeline", []) render_parses( docs, displacy_path, model_name=model, limit=displacy_limit, deps=render_deps, ents=render_ents, ) msg.good("Generated {} parses as HTML".format(displacy_limit), displacy_path) if return_scores: return scorer.scores
[ "def", "evaluate", "(", "model", ",", "data_path", ",", "gpu_id", "=", "-", "1", ",", "gold_preproc", "=", "False", ",", "displacy_path", "=", "None", ",", "displacy_limit", "=", "25", ",", "return_scores", "=", "False", ",", ")", ":", "msg", "=", "Printer", "(", ")", "util", ".", "fix_random_seed", "(", ")", "if", "gpu_id", ">=", "0", ":", "util", ".", "use_gpu", "(", "gpu_id", ")", "util", ".", "set_env_log", "(", "False", ")", "data_path", "=", "util", ".", "ensure_path", "(", "data_path", ")", "displacy_path", "=", "util", ".", "ensure_path", "(", "displacy_path", ")", "if", "not", "data_path", ".", "exists", "(", ")", ":", "msg", ".", "fail", "(", "\"Evaluation data not found\"", ",", "data_path", ",", "exits", "=", "1", ")", "if", "displacy_path", "and", "not", "displacy_path", ".", "exists", "(", ")", ":", "msg", ".", "fail", "(", "\"Visualization output directory not found\"", ",", "displacy_path", ",", "exits", "=", "1", ")", "corpus", "=", "GoldCorpus", "(", "data_path", ",", "data_path", ")", "nlp", "=", "util", ".", "load_model", "(", "model", ")", "dev_docs", "=", "list", "(", "corpus", ".", "dev_docs", "(", "nlp", ",", "gold_preproc", "=", "gold_preproc", ")", ")", "begin", "=", "timer", "(", ")", "scorer", "=", "nlp", ".", "evaluate", "(", "dev_docs", ",", "verbose", "=", "False", ")", "end", "=", "timer", "(", ")", "nwords", "=", "sum", "(", "len", "(", "doc_gold", "[", "0", "]", ")", "for", "doc_gold", "in", "dev_docs", ")", "results", "=", "{", "\"Time\"", ":", "\"%.2f s\"", "%", "(", "end", "-", "begin", ")", ",", "\"Words\"", ":", "nwords", ",", "\"Words/s\"", ":", "\"%.0f\"", "%", "(", "nwords", "/", "(", "end", "-", "begin", ")", ")", ",", "\"TOK\"", ":", "\"%.2f\"", "%", "scorer", ".", "token_acc", ",", "\"POS\"", ":", "\"%.2f\"", "%", "scorer", ".", "tags_acc", ",", "\"UAS\"", ":", "\"%.2f\"", "%", "scorer", ".", "uas", ",", "\"LAS\"", ":", "\"%.2f\"", "%", "scorer", ".", "las", ",", "\"NER P\"", ":", "\"%.2f\"", "%", "scorer", ".", "ents_p", ",", "\"NER R\"", ":", "\"%.2f\"", "%", "scorer", ".", "ents_r", ",", "\"NER F\"", ":", "\"%.2f\"", "%", "scorer", ".", "ents_f", ",", "}", "msg", ".", "table", "(", "results", ",", "title", "=", "\"Results\"", ")", "if", "displacy_path", ":", "docs", ",", "golds", "=", "zip", "(", "*", "dev_docs", ")", "render_deps", "=", "\"parser\"", "in", "nlp", ".", "meta", ".", "get", "(", "\"pipeline\"", ",", "[", "]", ")", "render_ents", "=", "\"ner\"", "in", "nlp", ".", "meta", ".", "get", "(", "\"pipeline\"", ",", "[", "]", ")", "render_parses", "(", "docs", ",", "displacy_path", ",", "model_name", "=", "model", ",", "limit", "=", "displacy_limit", ",", "deps", "=", "render_deps", ",", "ents", "=", "render_ents", ",", ")", "msg", ".", "good", "(", "\"Generated {} parses as HTML\"", ".", "format", "(", "displacy_limit", ")", ",", "displacy_path", ")", "if", "return_scores", ":", "return", "scorer", ".", "scores" ]
Evaluate a model. To render a sample of parses in a HTML file, set an output directory as the displacy_path argument.
[ "Evaluate", "a", "model", ".", "To", "render", "a", "sample", "of", "parses", "in", "a", "HTML", "file", "set", "an", "output", "directory", "as", "the", "displacy_path", "argument", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/cli/evaluate.py#L22-L81
21,206
explosion/spaCy
spacy/cli/profile.py
profile
def profile(model, inputs=None, n_texts=10000): """ Profile a spaCy pipeline, to find out which functions take the most time. Input should be formatted as one JSON object per line with a key "text". It can either be provided as a JSONL file, or be read from sys.sytdin. If no input file is specified, the IMDB dataset is loaded via Thinc. """ msg = Printer() if inputs is not None: inputs = _read_inputs(inputs, msg) if inputs is None: n_inputs = 25000 with msg.loading("Loading IMDB dataset via Thinc..."): imdb_train, _ = thinc.extra.datasets.imdb() inputs, _ = zip(*imdb_train) msg.info("Loaded IMDB dataset and using {} examples".format(n_inputs)) inputs = inputs[:n_inputs] with msg.loading("Loading model '{}'...".format(model)): nlp = load_model(model) msg.good("Loaded model '{}'".format(model)) texts = list(itertools.islice(inputs, n_texts)) cProfile.runctx("parse_texts(nlp, texts)", globals(), locals(), "Profile.prof") s = pstats.Stats("Profile.prof") msg.divider("Profile stats") s.strip_dirs().sort_stats("time").print_stats()
python
def profile(model, inputs=None, n_texts=10000): """ Profile a spaCy pipeline, to find out which functions take the most time. Input should be formatted as one JSON object per line with a key "text". It can either be provided as a JSONL file, or be read from sys.sytdin. If no input file is specified, the IMDB dataset is loaded via Thinc. """ msg = Printer() if inputs is not None: inputs = _read_inputs(inputs, msg) if inputs is None: n_inputs = 25000 with msg.loading("Loading IMDB dataset via Thinc..."): imdb_train, _ = thinc.extra.datasets.imdb() inputs, _ = zip(*imdb_train) msg.info("Loaded IMDB dataset and using {} examples".format(n_inputs)) inputs = inputs[:n_inputs] with msg.loading("Loading model '{}'...".format(model)): nlp = load_model(model) msg.good("Loaded model '{}'".format(model)) texts = list(itertools.islice(inputs, n_texts)) cProfile.runctx("parse_texts(nlp, texts)", globals(), locals(), "Profile.prof") s = pstats.Stats("Profile.prof") msg.divider("Profile stats") s.strip_dirs().sort_stats("time").print_stats()
[ "def", "profile", "(", "model", ",", "inputs", "=", "None", ",", "n_texts", "=", "10000", ")", ":", "msg", "=", "Printer", "(", ")", "if", "inputs", "is", "not", "None", ":", "inputs", "=", "_read_inputs", "(", "inputs", ",", "msg", ")", "if", "inputs", "is", "None", ":", "n_inputs", "=", "25000", "with", "msg", ".", "loading", "(", "\"Loading IMDB dataset via Thinc...\"", ")", ":", "imdb_train", ",", "_", "=", "thinc", ".", "extra", ".", "datasets", ".", "imdb", "(", ")", "inputs", ",", "_", "=", "zip", "(", "*", "imdb_train", ")", "msg", ".", "info", "(", "\"Loaded IMDB dataset and using {} examples\"", ".", "format", "(", "n_inputs", ")", ")", "inputs", "=", "inputs", "[", ":", "n_inputs", "]", "with", "msg", ".", "loading", "(", "\"Loading model '{}'...\"", ".", "format", "(", "model", ")", ")", ":", "nlp", "=", "load_model", "(", "model", ")", "msg", ".", "good", "(", "\"Loaded model '{}'\"", ".", "format", "(", "model", ")", ")", "texts", "=", "list", "(", "itertools", ".", "islice", "(", "inputs", ",", "n_texts", ")", ")", "cProfile", ".", "runctx", "(", "\"parse_texts(nlp, texts)\"", ",", "globals", "(", ")", ",", "locals", "(", ")", ",", "\"Profile.prof\"", ")", "s", "=", "pstats", ".", "Stats", "(", "\"Profile.prof\"", ")", "msg", ".", "divider", "(", "\"Profile stats\"", ")", "s", ".", "strip_dirs", "(", ")", ".", "sort_stats", "(", "\"time\"", ")", ".", "print_stats", "(", ")" ]
Profile a spaCy pipeline, to find out which functions take the most time. Input should be formatted as one JSON object per line with a key "text". It can either be provided as a JSONL file, or be read from sys.sytdin. If no input file is specified, the IMDB dataset is loaded via Thinc.
[ "Profile", "a", "spaCy", "pipeline", "to", "find", "out", "which", "functions", "take", "the", "most", "time", ".", "Input", "should", "be", "formatted", "as", "one", "JSON", "object", "per", "line", "with", "a", "key", "text", ".", "It", "can", "either", "be", "provided", "as", "a", "JSONL", "file", "or", "be", "read", "from", "sys", ".", "sytdin", ".", "If", "no", "input", "file", "is", "specified", "the", "IMDB", "dataset", "is", "loaded", "via", "Thinc", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/cli/profile.py#L23-L47
21,207
explosion/spaCy
spacy/lang/ja/__init__.py
detailed_tokens
def detailed_tokens(tokenizer, text): """Format Mecab output into a nice data structure, based on Janome.""" node = tokenizer.parseToNode(text) node = node.next # first node is beginning of sentence and empty, skip it words = [] while node.posid != 0: surface = node.surface base = surface # a default value. Updated if available later. parts = node.feature.split(",") pos = ",".join(parts[0:4]) if len(parts) > 7: # this information is only available for words in the tokenizer # dictionary base = parts[7] words.append(ShortUnitWord(surface, base, pos)) node = node.next return words
python
def detailed_tokens(tokenizer, text): """Format Mecab output into a nice data structure, based on Janome.""" node = tokenizer.parseToNode(text) node = node.next # first node is beginning of sentence and empty, skip it words = [] while node.posid != 0: surface = node.surface base = surface # a default value. Updated if available later. parts = node.feature.split(",") pos = ",".join(parts[0:4]) if len(parts) > 7: # this information is only available for words in the tokenizer # dictionary base = parts[7] words.append(ShortUnitWord(surface, base, pos)) node = node.next return words
[ "def", "detailed_tokens", "(", "tokenizer", ",", "text", ")", ":", "node", "=", "tokenizer", ".", "parseToNode", "(", "text", ")", "node", "=", "node", ".", "next", "# first node is beginning of sentence and empty, skip it", "words", "=", "[", "]", "while", "node", ".", "posid", "!=", "0", ":", "surface", "=", "node", ".", "surface", "base", "=", "surface", "# a default value. Updated if available later.", "parts", "=", "node", ".", "feature", ".", "split", "(", "\",\"", ")", "pos", "=", "\",\"", ".", "join", "(", "parts", "[", "0", ":", "4", "]", ")", "if", "len", "(", "parts", ")", ">", "7", ":", "# this information is only available for words in the tokenizer", "# dictionary", "base", "=", "parts", "[", "7", "]", "words", ".", "append", "(", "ShortUnitWord", "(", "surface", ",", "base", ",", "pos", ")", ")", "node", "=", "node", ".", "next", "return", "words" ]
Format Mecab output into a nice data structure, based on Janome.
[ "Format", "Mecab", "output", "into", "a", "nice", "data", "structure", "based", "on", "Janome", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/lang/ja/__init__.py#L52-L68
21,208
explosion/spaCy
spacy/compat.py
symlink_to
def symlink_to(orig, dest): """Create a symlink. Used for model shortcut links. orig (unicode / Path): The origin path. dest (unicode / Path): The destination path of the symlink. """ if is_windows: import subprocess subprocess.check_call( ["mklink", "/d", path2str(orig), path2str(dest)], shell=True ) else: orig.symlink_to(dest)
python
def symlink_to(orig, dest): """Create a symlink. Used for model shortcut links. orig (unicode / Path): The origin path. dest (unicode / Path): The destination path of the symlink. """ if is_windows: import subprocess subprocess.check_call( ["mklink", "/d", path2str(orig), path2str(dest)], shell=True ) else: orig.symlink_to(dest)
[ "def", "symlink_to", "(", "orig", ",", "dest", ")", ":", "if", "is_windows", ":", "import", "subprocess", "subprocess", ".", "check_call", "(", "[", "\"mklink\"", ",", "\"/d\"", ",", "path2str", "(", "orig", ")", ",", "path2str", "(", "dest", ")", "]", ",", "shell", "=", "True", ")", "else", ":", "orig", ".", "symlink_to", "(", "dest", ")" ]
Create a symlink. Used for model shortcut links. orig (unicode / Path): The origin path. dest (unicode / Path): The destination path of the symlink.
[ "Create", "a", "symlink", ".", "Used", "for", "model", "shortcut", "links", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/compat.py#L86-L99
21,209
explosion/spaCy
spacy/compat.py
symlink_remove
def symlink_remove(link): """Remove a symlink. Used for model shortcut links. link (unicode / Path): The path to the symlink. """ # https://stackoverflow.com/q/26554135/6400719 if os.path.isdir(path2str(link)) and is_windows: # this should only be on Py2.7 and windows os.rmdir(path2str(link)) else: os.unlink(path2str(link))
python
def symlink_remove(link): """Remove a symlink. Used for model shortcut links. link (unicode / Path): The path to the symlink. """ # https://stackoverflow.com/q/26554135/6400719 if os.path.isdir(path2str(link)) and is_windows: # this should only be on Py2.7 and windows os.rmdir(path2str(link)) else: os.unlink(path2str(link))
[ "def", "symlink_remove", "(", "link", ")", ":", "# https://stackoverflow.com/q/26554135/6400719", "if", "os", ".", "path", ".", "isdir", "(", "path2str", "(", "link", ")", ")", "and", "is_windows", ":", "# this should only be on Py2.7 and windows", "os", ".", "rmdir", "(", "path2str", "(", "link", ")", ")", "else", ":", "os", ".", "unlink", "(", "path2str", "(", "link", ")", ")" ]
Remove a symlink. Used for model shortcut links. link (unicode / Path): The path to the symlink.
[ "Remove", "a", "symlink", ".", "Used", "for", "model", "shortcut", "links", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/compat.py#L102-L112
21,210
explosion/spaCy
spacy/compat.py
is_config
def is_config(python2=None, python3=None, windows=None, linux=None, osx=None): """Check if a specific configuration of Python version and operating system matches the user's setup. Mostly used to display targeted error messages. python2 (bool): spaCy is executed with Python 2.x. python3 (bool): spaCy is executed with Python 3.x. windows (bool): spaCy is executed on Windows. linux (bool): spaCy is executed on Linux. osx (bool): spaCy is executed on OS X or macOS. RETURNS (bool): Whether the configuration matches the user's platform. DOCS: https://spacy.io/api/top-level#compat.is_config """ return ( python2 in (None, is_python2) and python3 in (None, is_python3) and windows in (None, is_windows) and linux in (None, is_linux) and osx in (None, is_osx) )
python
def is_config(python2=None, python3=None, windows=None, linux=None, osx=None): """Check if a specific configuration of Python version and operating system matches the user's setup. Mostly used to display targeted error messages. python2 (bool): spaCy is executed with Python 2.x. python3 (bool): spaCy is executed with Python 3.x. windows (bool): spaCy is executed on Windows. linux (bool): spaCy is executed on Linux. osx (bool): spaCy is executed on OS X or macOS. RETURNS (bool): Whether the configuration matches the user's platform. DOCS: https://spacy.io/api/top-level#compat.is_config """ return ( python2 in (None, is_python2) and python3 in (None, is_python3) and windows in (None, is_windows) and linux in (None, is_linux) and osx in (None, is_osx) )
[ "def", "is_config", "(", "python2", "=", "None", ",", "python3", "=", "None", ",", "windows", "=", "None", ",", "linux", "=", "None", ",", "osx", "=", "None", ")", ":", "return", "(", "python2", "in", "(", "None", ",", "is_python2", ")", "and", "python3", "in", "(", "None", ",", "is_python3", ")", "and", "windows", "in", "(", "None", ",", "is_windows", ")", "and", "linux", "in", "(", "None", ",", "is_linux", ")", "and", "osx", "in", "(", "None", ",", "is_osx", ")", ")" ]
Check if a specific configuration of Python version and operating system matches the user's setup. Mostly used to display targeted error messages. python2 (bool): spaCy is executed with Python 2.x. python3 (bool): spaCy is executed with Python 3.x. windows (bool): spaCy is executed on Windows. linux (bool): spaCy is executed on Linux. osx (bool): spaCy is executed on OS X or macOS. RETURNS (bool): Whether the configuration matches the user's platform. DOCS: https://spacy.io/api/top-level#compat.is_config
[ "Check", "if", "a", "specific", "configuration", "of", "Python", "version", "and", "operating", "system", "matches", "the", "user", "s", "setup", ".", "Mostly", "used", "to", "display", "targeted", "error", "messages", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/compat.py#L115-L134
21,211
explosion/spaCy
spacy/compat.py
import_file
def import_file(name, loc): """Import module from a file. Used to load models from a directory. name (unicode): Name of module to load. loc (unicode / Path): Path to the file. RETURNS: The loaded module. """ loc = path2str(loc) if is_python_pre_3_5: import imp return imp.load_source(name, loc) else: import importlib.util spec = importlib.util.spec_from_file_location(name, str(loc)) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) return module
python
def import_file(name, loc): """Import module from a file. Used to load models from a directory. name (unicode): Name of module to load. loc (unicode / Path): Path to the file. RETURNS: The loaded module. """ loc = path2str(loc) if is_python_pre_3_5: import imp return imp.load_source(name, loc) else: import importlib.util spec = importlib.util.spec_from_file_location(name, str(loc)) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) return module
[ "def", "import_file", "(", "name", ",", "loc", ")", ":", "loc", "=", "path2str", "(", "loc", ")", "if", "is_python_pre_3_5", ":", "import", "imp", "return", "imp", ".", "load_source", "(", "name", ",", "loc", ")", "else", ":", "import", "importlib", ".", "util", "spec", "=", "importlib", ".", "util", ".", "spec_from_file_location", "(", "name", ",", "str", "(", "loc", ")", ")", "module", "=", "importlib", ".", "util", ".", "module_from_spec", "(", "spec", ")", "spec", ".", "loader", ".", "exec_module", "(", "module", ")", "return", "module" ]
Import module from a file. Used to load models from a directory. name (unicode): Name of module to load. loc (unicode / Path): Path to the file. RETURNS: The loaded module.
[ "Import", "module", "from", "a", "file", ".", "Used", "to", "load", "models", "from", "a", "directory", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/compat.py#L137-L155
21,212
explosion/spaCy
spacy/util.py
get_lang_class
def get_lang_class(lang): """Import and load a Language class. lang (unicode): Two-letter language code, e.g. 'en'. RETURNS (Language): Language class. """ global LANGUAGES # Check if an entry point is exposed for the language code entry_point = get_entry_point("spacy_languages", lang) if entry_point is not None: LANGUAGES[lang] = entry_point return entry_point if lang not in LANGUAGES: try: module = importlib.import_module(".lang.%s" % lang, "spacy") except ImportError as err: raise ImportError(Errors.E048.format(lang=lang, err=err)) LANGUAGES[lang] = getattr(module, module.__all__[0]) return LANGUAGES[lang]
python
def get_lang_class(lang): """Import and load a Language class. lang (unicode): Two-letter language code, e.g. 'en'. RETURNS (Language): Language class. """ global LANGUAGES # Check if an entry point is exposed for the language code entry_point = get_entry_point("spacy_languages", lang) if entry_point is not None: LANGUAGES[lang] = entry_point return entry_point if lang not in LANGUAGES: try: module = importlib.import_module(".lang.%s" % lang, "spacy") except ImportError as err: raise ImportError(Errors.E048.format(lang=lang, err=err)) LANGUAGES[lang] = getattr(module, module.__all__[0]) return LANGUAGES[lang]
[ "def", "get_lang_class", "(", "lang", ")", ":", "global", "LANGUAGES", "# Check if an entry point is exposed for the language code", "entry_point", "=", "get_entry_point", "(", "\"spacy_languages\"", ",", "lang", ")", "if", "entry_point", "is", "not", "None", ":", "LANGUAGES", "[", "lang", "]", "=", "entry_point", "return", "entry_point", "if", "lang", "not", "in", "LANGUAGES", ":", "try", ":", "module", "=", "importlib", ".", "import_module", "(", "\".lang.%s\"", "%", "lang", ",", "\"spacy\"", ")", "except", "ImportError", "as", "err", ":", "raise", "ImportError", "(", "Errors", ".", "E048", ".", "format", "(", "lang", "=", "lang", ",", "err", "=", "err", ")", ")", "LANGUAGES", "[", "lang", "]", "=", "getattr", "(", "module", ",", "module", ".", "__all__", "[", "0", "]", ")", "return", "LANGUAGES", "[", "lang", "]" ]
Import and load a Language class. lang (unicode): Two-letter language code, e.g. 'en'. RETURNS (Language): Language class.
[ "Import", "and", "load", "a", "Language", "class", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/util.py#L53-L71
21,213
explosion/spaCy
spacy/util.py
load_model
def load_model(name, **overrides): """Load a model from a shortcut link, package or data path. name (unicode): Package name, shortcut link or model path. **overrides: Specific overrides, like pipeline components to disable. RETURNS (Language): `Language` class with the loaded model. """ data_path = get_data_path() if not data_path or not data_path.exists(): raise IOError(Errors.E049.format(path=path2str(data_path))) if isinstance(name, basestring_): # in data dir / shortcut if name in set([d.name for d in data_path.iterdir()]): return load_model_from_link(name, **overrides) if is_package(name): # installed as package return load_model_from_package(name, **overrides) if Path(name).exists(): # path to model data directory return load_model_from_path(Path(name), **overrides) elif hasattr(name, "exists"): # Path or Path-like to model data return load_model_from_path(name, **overrides) raise IOError(Errors.E050.format(name=name))
python
def load_model(name, **overrides): """Load a model from a shortcut link, package or data path. name (unicode): Package name, shortcut link or model path. **overrides: Specific overrides, like pipeline components to disable. RETURNS (Language): `Language` class with the loaded model. """ data_path = get_data_path() if not data_path or not data_path.exists(): raise IOError(Errors.E049.format(path=path2str(data_path))) if isinstance(name, basestring_): # in data dir / shortcut if name in set([d.name for d in data_path.iterdir()]): return load_model_from_link(name, **overrides) if is_package(name): # installed as package return load_model_from_package(name, **overrides) if Path(name).exists(): # path to model data directory return load_model_from_path(Path(name), **overrides) elif hasattr(name, "exists"): # Path or Path-like to model data return load_model_from_path(name, **overrides) raise IOError(Errors.E050.format(name=name))
[ "def", "load_model", "(", "name", ",", "*", "*", "overrides", ")", ":", "data_path", "=", "get_data_path", "(", ")", "if", "not", "data_path", "or", "not", "data_path", ".", "exists", "(", ")", ":", "raise", "IOError", "(", "Errors", ".", "E049", ".", "format", "(", "path", "=", "path2str", "(", "data_path", ")", ")", ")", "if", "isinstance", "(", "name", ",", "basestring_", ")", ":", "# in data dir / shortcut", "if", "name", "in", "set", "(", "[", "d", ".", "name", "for", "d", "in", "data_path", ".", "iterdir", "(", ")", "]", ")", ":", "return", "load_model_from_link", "(", "name", ",", "*", "*", "overrides", ")", "if", "is_package", "(", "name", ")", ":", "# installed as package", "return", "load_model_from_package", "(", "name", ",", "*", "*", "overrides", ")", "if", "Path", "(", "name", ")", ".", "exists", "(", ")", ":", "# path to model data directory", "return", "load_model_from_path", "(", "Path", "(", "name", ")", ",", "*", "*", "overrides", ")", "elif", "hasattr", "(", "name", ",", "\"exists\"", ")", ":", "# Path or Path-like to model data", "return", "load_model_from_path", "(", "name", ",", "*", "*", "overrides", ")", "raise", "IOError", "(", "Errors", ".", "E050", ".", "format", "(", "name", "=", "name", ")", ")" ]
Load a model from a shortcut link, package or data path. name (unicode): Package name, shortcut link or model path. **overrides: Specific overrides, like pipeline components to disable. RETURNS (Language): `Language` class with the loaded model.
[ "Load", "a", "model", "from", "a", "shortcut", "link", "package", "or", "data", "path", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/util.py#L117-L136
21,214
explosion/spaCy
spacy/util.py
load_model_from_link
def load_model_from_link(name, **overrides): """Load a model from a shortcut link, or directory in spaCy data path.""" path = get_data_path() / name / "__init__.py" try: cls = import_file(name, path) except AttributeError: raise IOError(Errors.E051.format(name=name)) return cls.load(**overrides)
python
def load_model_from_link(name, **overrides): """Load a model from a shortcut link, or directory in spaCy data path.""" path = get_data_path() / name / "__init__.py" try: cls = import_file(name, path) except AttributeError: raise IOError(Errors.E051.format(name=name)) return cls.load(**overrides)
[ "def", "load_model_from_link", "(", "name", ",", "*", "*", "overrides", ")", ":", "path", "=", "get_data_path", "(", ")", "/", "name", "/", "\"__init__.py\"", "try", ":", "cls", "=", "import_file", "(", "name", ",", "path", ")", "except", "AttributeError", ":", "raise", "IOError", "(", "Errors", ".", "E051", ".", "format", "(", "name", "=", "name", ")", ")", "return", "cls", ".", "load", "(", "*", "*", "overrides", ")" ]
Load a model from a shortcut link, or directory in spaCy data path.
[ "Load", "a", "model", "from", "a", "shortcut", "link", "or", "directory", "in", "spaCy", "data", "path", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/util.py#L139-L146
21,215
explosion/spaCy
spacy/util.py
load_model_from_package
def load_model_from_package(name, **overrides): """Load a model from an installed package.""" cls = importlib.import_module(name) return cls.load(**overrides)
python
def load_model_from_package(name, **overrides): """Load a model from an installed package.""" cls = importlib.import_module(name) return cls.load(**overrides)
[ "def", "load_model_from_package", "(", "name", ",", "*", "*", "overrides", ")", ":", "cls", "=", "importlib", ".", "import_module", "(", "name", ")", "return", "cls", ".", "load", "(", "*", "*", "overrides", ")" ]
Load a model from an installed package.
[ "Load", "a", "model", "from", "an", "installed", "package", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/util.py#L149-L152
21,216
explosion/spaCy
spacy/util.py
get_model_meta
def get_model_meta(path): """Get model meta.json from a directory path and validate its contents. path (unicode or Path): Path to model directory. RETURNS (dict): The model's meta data. """ model_path = ensure_path(path) if not model_path.exists(): raise IOError(Errors.E052.format(path=path2str(model_path))) meta_path = model_path / "meta.json" if not meta_path.is_file(): raise IOError(Errors.E053.format(path=meta_path)) meta = srsly.read_json(meta_path) for setting in ["lang", "name", "version"]: if setting not in meta or not meta[setting]: raise ValueError(Errors.E054.format(setting=setting)) return meta
python
def get_model_meta(path): """Get model meta.json from a directory path and validate its contents. path (unicode or Path): Path to model directory. RETURNS (dict): The model's meta data. """ model_path = ensure_path(path) if not model_path.exists(): raise IOError(Errors.E052.format(path=path2str(model_path))) meta_path = model_path / "meta.json" if not meta_path.is_file(): raise IOError(Errors.E053.format(path=meta_path)) meta = srsly.read_json(meta_path) for setting in ["lang", "name", "version"]: if setting not in meta or not meta[setting]: raise ValueError(Errors.E054.format(setting=setting)) return meta
[ "def", "get_model_meta", "(", "path", ")", ":", "model_path", "=", "ensure_path", "(", "path", ")", "if", "not", "model_path", ".", "exists", "(", ")", ":", "raise", "IOError", "(", "Errors", ".", "E052", ".", "format", "(", "path", "=", "path2str", "(", "model_path", ")", ")", ")", "meta_path", "=", "model_path", "/", "\"meta.json\"", "if", "not", "meta_path", ".", "is_file", "(", ")", ":", "raise", "IOError", "(", "Errors", ".", "E053", ".", "format", "(", "path", "=", "meta_path", ")", ")", "meta", "=", "srsly", ".", "read_json", "(", "meta_path", ")", "for", "setting", "in", "[", "\"lang\"", ",", "\"name\"", ",", "\"version\"", "]", ":", "if", "setting", "not", "in", "meta", "or", "not", "meta", "[", "setting", "]", ":", "raise", "ValueError", "(", "Errors", ".", "E054", ".", "format", "(", "setting", "=", "setting", ")", ")", "return", "meta" ]
Get model meta.json from a directory path and validate its contents. path (unicode or Path): Path to model directory. RETURNS (dict): The model's meta data.
[ "Get", "model", "meta", ".", "json", "from", "a", "directory", "path", "and", "validate", "its", "contents", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/util.py#L193-L209
21,217
explosion/spaCy
spacy/util.py
get_package_path
def get_package_path(name): """Get the path to an installed package. name (unicode): Package name. RETURNS (Path): Path to installed package. """ name = name.lower() # use lowercase version to be safe # Here we're importing the module just to find it. This is worryingly # indirect, but it's otherwise very difficult to find the package. pkg = importlib.import_module(name) return Path(pkg.__file__).parent
python
def get_package_path(name): """Get the path to an installed package. name (unicode): Package name. RETURNS (Path): Path to installed package. """ name = name.lower() # use lowercase version to be safe # Here we're importing the module just to find it. This is worryingly # indirect, but it's otherwise very difficult to find the package. pkg = importlib.import_module(name) return Path(pkg.__file__).parent
[ "def", "get_package_path", "(", "name", ")", ":", "name", "=", "name", ".", "lower", "(", ")", "# use lowercase version to be safe", "# Here we're importing the module just to find it. This is worryingly", "# indirect, but it's otherwise very difficult to find the package.", "pkg", "=", "importlib", ".", "import_module", "(", "name", ")", "return", "Path", "(", "pkg", ".", "__file__", ")", ".", "parent" ]
Get the path to an installed package. name (unicode): Package name. RETURNS (Path): Path to installed package.
[ "Get", "the", "path", "to", "an", "installed", "package", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/util.py#L226-L236
21,218
explosion/spaCy
spacy/util.py
get_entry_point
def get_entry_point(key, value): """Check if registered entry point is available for a given name and load it. Otherwise, return None. key (unicode): Entry point name. value (unicode): Name of entry point to load. RETURNS: The loaded entry point or None. """ for entry_point in pkg_resources.iter_entry_points(key): if entry_point.name == value: return entry_point.load()
python
def get_entry_point(key, value): """Check if registered entry point is available for a given name and load it. Otherwise, return None. key (unicode): Entry point name. value (unicode): Name of entry point to load. RETURNS: The loaded entry point or None. """ for entry_point in pkg_resources.iter_entry_points(key): if entry_point.name == value: return entry_point.load()
[ "def", "get_entry_point", "(", "key", ",", "value", ")", ":", "for", "entry_point", "in", "pkg_resources", ".", "iter_entry_points", "(", "key", ")", ":", "if", "entry_point", ".", "name", "==", "value", ":", "return", "entry_point", ".", "load", "(", ")" ]
Check if registered entry point is available for a given name and load it. Otherwise, return None. key (unicode): Entry point name. value (unicode): Name of entry point to load. RETURNS: The loaded entry point or None.
[ "Check", "if", "registered", "entry", "point", "is", "available", "for", "a", "given", "name", "and", "load", "it", ".", "Otherwise", "return", "None", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/util.py#L252-L262
21,219
explosion/spaCy
spacy/util.py
compile_suffix_regex
def compile_suffix_regex(entries): """Compile a sequence of suffix rules into a regex object. entries (tuple): The suffix rules, e.g. spacy.lang.punctuation.TOKENIZER_SUFFIXES. RETURNS (regex object): The regex object. to be used for Tokenizer.suffix_search. """ expression = "|".join([piece + "$" for piece in entries if piece.strip()]) return re.compile(expression)
python
def compile_suffix_regex(entries): """Compile a sequence of suffix rules into a regex object. entries (tuple): The suffix rules, e.g. spacy.lang.punctuation.TOKENIZER_SUFFIXES. RETURNS (regex object): The regex object. to be used for Tokenizer.suffix_search. """ expression = "|".join([piece + "$" for piece in entries if piece.strip()]) return re.compile(expression)
[ "def", "compile_suffix_regex", "(", "entries", ")", ":", "expression", "=", "\"|\"", ".", "join", "(", "[", "piece", "+", "\"$\"", "for", "piece", "in", "entries", "if", "piece", ".", "strip", "(", ")", "]", ")", "return", "re", ".", "compile", "(", "expression", ")" ]
Compile a sequence of suffix rules into a regex object. entries (tuple): The suffix rules, e.g. spacy.lang.punctuation.TOKENIZER_SUFFIXES. RETURNS (regex object): The regex object. to be used for Tokenizer.suffix_search.
[ "Compile", "a", "sequence", "of", "suffix", "rules", "into", "a", "regex", "object", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/util.py#L346-L353
21,220
explosion/spaCy
spacy/util.py
compile_infix_regex
def compile_infix_regex(entries): """Compile a sequence of infix rules into a regex object. entries (tuple): The infix rules, e.g. spacy.lang.punctuation.TOKENIZER_INFIXES. RETURNS (regex object): The regex object. to be used for Tokenizer.infix_finditer. """ expression = "|".join([piece for piece in entries if piece.strip()]) return re.compile(expression)
python
def compile_infix_regex(entries): """Compile a sequence of infix rules into a regex object. entries (tuple): The infix rules, e.g. spacy.lang.punctuation.TOKENIZER_INFIXES. RETURNS (regex object): The regex object. to be used for Tokenizer.infix_finditer. """ expression = "|".join([piece for piece in entries if piece.strip()]) return re.compile(expression)
[ "def", "compile_infix_regex", "(", "entries", ")", ":", "expression", "=", "\"|\"", ".", "join", "(", "[", "piece", "for", "piece", "in", "entries", "if", "piece", ".", "strip", "(", ")", "]", ")", "return", "re", ".", "compile", "(", "expression", ")" ]
Compile a sequence of infix rules into a regex object. entries (tuple): The infix rules, e.g. spacy.lang.punctuation.TOKENIZER_INFIXES. RETURNS (regex object): The regex object. to be used for Tokenizer.infix_finditer.
[ "Compile", "a", "sequence", "of", "infix", "rules", "into", "a", "regex", "object", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/util.py#L356-L363
21,221
explosion/spaCy
spacy/util.py
expand_exc
def expand_exc(excs, search, replace): """Find string in tokenizer exceptions, duplicate entry and replace string. For example, to add additional versions with typographic apostrophes. excs (dict): Tokenizer exceptions. search (unicode): String to find and replace. replace (unicode): Replacement. RETURNS (dict): Combined tokenizer exceptions. """ def _fix_token(token, search, replace): fixed = dict(token) fixed[ORTH] = fixed[ORTH].replace(search, replace) return fixed new_excs = dict(excs) for token_string, tokens in excs.items(): if search in token_string: new_key = token_string.replace(search, replace) new_value = [_fix_token(t, search, replace) for t in tokens] new_excs[new_key] = new_value return new_excs
python
def expand_exc(excs, search, replace): """Find string in tokenizer exceptions, duplicate entry and replace string. For example, to add additional versions with typographic apostrophes. excs (dict): Tokenizer exceptions. search (unicode): String to find and replace. replace (unicode): Replacement. RETURNS (dict): Combined tokenizer exceptions. """ def _fix_token(token, search, replace): fixed = dict(token) fixed[ORTH] = fixed[ORTH].replace(search, replace) return fixed new_excs = dict(excs) for token_string, tokens in excs.items(): if search in token_string: new_key = token_string.replace(search, replace) new_value = [_fix_token(t, search, replace) for t in tokens] new_excs[new_key] = new_value return new_excs
[ "def", "expand_exc", "(", "excs", ",", "search", ",", "replace", ")", ":", "def", "_fix_token", "(", "token", ",", "search", ",", "replace", ")", ":", "fixed", "=", "dict", "(", "token", ")", "fixed", "[", "ORTH", "]", "=", "fixed", "[", "ORTH", "]", ".", "replace", "(", "search", ",", "replace", ")", "return", "fixed", "new_excs", "=", "dict", "(", "excs", ")", "for", "token_string", ",", "tokens", "in", "excs", ".", "items", "(", ")", ":", "if", "search", "in", "token_string", ":", "new_key", "=", "token_string", ".", "replace", "(", "search", ",", "replace", ")", "new_value", "=", "[", "_fix_token", "(", "t", ",", "search", ",", "replace", ")", "for", "t", "in", "tokens", "]", "new_excs", "[", "new_key", "]", "=", "new_value", "return", "new_excs" ]
Find string in tokenizer exceptions, duplicate entry and replace string. For example, to add additional versions with typographic apostrophes. excs (dict): Tokenizer exceptions. search (unicode): String to find and replace. replace (unicode): Replacement. RETURNS (dict): Combined tokenizer exceptions.
[ "Find", "string", "in", "tokenizer", "exceptions", "duplicate", "entry", "and", "replace", "string", ".", "For", "example", "to", "add", "additional", "versions", "with", "typographic", "apostrophes", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/util.py#L406-L427
21,222
explosion/spaCy
spacy/util.py
minibatch
def minibatch(items, size=8): """Iterate over batches of items. `size` may be an iterator, so that batch-size can vary on each step. """ if isinstance(size, int): size_ = itertools.repeat(size) else: size_ = size items = iter(items) while True: batch_size = next(size_) batch = list(itertools.islice(items, int(batch_size))) if len(batch) == 0: break yield list(batch)
python
def minibatch(items, size=8): """Iterate over batches of items. `size` may be an iterator, so that batch-size can vary on each step. """ if isinstance(size, int): size_ = itertools.repeat(size) else: size_ = size items = iter(items) while True: batch_size = next(size_) batch = list(itertools.islice(items, int(batch_size))) if len(batch) == 0: break yield list(batch)
[ "def", "minibatch", "(", "items", ",", "size", "=", "8", ")", ":", "if", "isinstance", "(", "size", ",", "int", ")", ":", "size_", "=", "itertools", ".", "repeat", "(", "size", ")", "else", ":", "size_", "=", "size", "items", "=", "iter", "(", "items", ")", "while", "True", ":", "batch_size", "=", "next", "(", "size_", ")", "batch", "=", "list", "(", "itertools", ".", "islice", "(", "items", ",", "int", "(", "batch_size", ")", ")", ")", "if", "len", "(", "batch", ")", "==", "0", ":", "break", "yield", "list", "(", "batch", ")" ]
Iterate over batches of items. `size` may be an iterator, so that batch-size can vary on each step.
[ "Iterate", "over", "batches", "of", "items", ".", "size", "may", "be", "an", "iterator", "so", "that", "batch", "-", "size", "can", "vary", "on", "each", "step", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/util.py#L446-L460
21,223
explosion/spaCy
spacy/util.py
minibatch_by_words
def minibatch_by_words(items, size, tuples=True, count_words=len): """Create minibatches of a given number of words.""" if isinstance(size, int): size_ = itertools.repeat(size) else: size_ = size items = iter(items) while True: batch_size = next(size_) batch = [] while batch_size >= 0: try: if tuples: doc, gold = next(items) else: doc = next(items) except StopIteration: if batch: yield batch return batch_size -= count_words(doc) if tuples: batch.append((doc, gold)) else: batch.append(doc) if batch: yield batch
python
def minibatch_by_words(items, size, tuples=True, count_words=len): """Create minibatches of a given number of words.""" if isinstance(size, int): size_ = itertools.repeat(size) else: size_ = size items = iter(items) while True: batch_size = next(size_) batch = [] while batch_size >= 0: try: if tuples: doc, gold = next(items) else: doc = next(items) except StopIteration: if batch: yield batch return batch_size -= count_words(doc) if tuples: batch.append((doc, gold)) else: batch.append(doc) if batch: yield batch
[ "def", "minibatch_by_words", "(", "items", ",", "size", ",", "tuples", "=", "True", ",", "count_words", "=", "len", ")", ":", "if", "isinstance", "(", "size", ",", "int", ")", ":", "size_", "=", "itertools", ".", "repeat", "(", "size", ")", "else", ":", "size_", "=", "size", "items", "=", "iter", "(", "items", ")", "while", "True", ":", "batch_size", "=", "next", "(", "size_", ")", "batch", "=", "[", "]", "while", "batch_size", ">=", "0", ":", "try", ":", "if", "tuples", ":", "doc", ",", "gold", "=", "next", "(", "items", ")", "else", ":", "doc", "=", "next", "(", "items", ")", "except", "StopIteration", ":", "if", "batch", ":", "yield", "batch", "return", "batch_size", "-=", "count_words", "(", "doc", ")", "if", "tuples", ":", "batch", ".", "append", "(", "(", "doc", ",", "gold", ")", ")", "else", ":", "batch", ".", "append", "(", "doc", ")", "if", "batch", ":", "yield", "batch" ]
Create minibatches of a given number of words.
[ "Create", "minibatches", "of", "a", "given", "number", "of", "words", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/util.py#L516-L542
21,224
explosion/spaCy
spacy/pipeline/entityruler.py
EntityRuler.labels
def labels(self): """All labels present in the match patterns. RETURNS (set): The string labels. DOCS: https://spacy.io/api/entityruler#labels """ all_labels = set(self.token_patterns.keys()) all_labels.update(self.phrase_patterns.keys()) return tuple(all_labels)
python
def labels(self): """All labels present in the match patterns. RETURNS (set): The string labels. DOCS: https://spacy.io/api/entityruler#labels """ all_labels = set(self.token_patterns.keys()) all_labels.update(self.phrase_patterns.keys()) return tuple(all_labels)
[ "def", "labels", "(", "self", ")", ":", "all_labels", "=", "set", "(", "self", ".", "token_patterns", ".", "keys", "(", ")", ")", "all_labels", ".", "update", "(", "self", ".", "phrase_patterns", ".", "keys", "(", ")", ")", "return", "tuple", "(", "all_labels", ")" ]
All labels present in the match patterns. RETURNS (set): The string labels. DOCS: https://spacy.io/api/entityruler#labels
[ "All", "labels", "present", "in", "the", "match", "patterns", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/pipeline/entityruler.py#L96-L105
21,225
explosion/spaCy
spacy/pipeline/entityruler.py
EntityRuler.patterns
def patterns(self): """Get all patterns that were added to the entity ruler. RETURNS (list): The original patterns, one dictionary per pattern. DOCS: https://spacy.io/api/entityruler#patterns """ all_patterns = [] for label, patterns in self.token_patterns.items(): for pattern in patterns: all_patterns.append({"label": label, "pattern": pattern}) for label, patterns in self.phrase_patterns.items(): for pattern in patterns: all_patterns.append({"label": label, "pattern": pattern.text}) return all_patterns
python
def patterns(self): """Get all patterns that were added to the entity ruler. RETURNS (list): The original patterns, one dictionary per pattern. DOCS: https://spacy.io/api/entityruler#patterns """ all_patterns = [] for label, patterns in self.token_patterns.items(): for pattern in patterns: all_patterns.append({"label": label, "pattern": pattern}) for label, patterns in self.phrase_patterns.items(): for pattern in patterns: all_patterns.append({"label": label, "pattern": pattern.text}) return all_patterns
[ "def", "patterns", "(", "self", ")", ":", "all_patterns", "=", "[", "]", "for", "label", ",", "patterns", "in", "self", ".", "token_patterns", ".", "items", "(", ")", ":", "for", "pattern", "in", "patterns", ":", "all_patterns", ".", "append", "(", "{", "\"label\"", ":", "label", ",", "\"pattern\"", ":", "pattern", "}", ")", "for", "label", ",", "patterns", "in", "self", ".", "phrase_patterns", ".", "items", "(", ")", ":", "for", "pattern", "in", "patterns", ":", "all_patterns", ".", "append", "(", "{", "\"label\"", ":", "label", ",", "\"pattern\"", ":", "pattern", ".", "text", "}", ")", "return", "all_patterns" ]
Get all patterns that were added to the entity ruler. RETURNS (list): The original patterns, one dictionary per pattern. DOCS: https://spacy.io/api/entityruler#patterns
[ "Get", "all", "patterns", "that", "were", "added", "to", "the", "entity", "ruler", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/pipeline/entityruler.py#L108-L122
21,226
explosion/spaCy
spacy/pipeline/entityruler.py
EntityRuler.from_bytes
def from_bytes(self, patterns_bytes, **kwargs): """Load the entity ruler from a bytestring. patterns_bytes (bytes): The bytestring to load. **kwargs: Other config paramters, mostly for consistency. RETURNS (EntityRuler): The loaded entity ruler. DOCS: https://spacy.io/api/entityruler#from_bytes """ patterns = srsly.msgpack_loads(patterns_bytes) self.add_patterns(patterns) return self
python
def from_bytes(self, patterns_bytes, **kwargs): """Load the entity ruler from a bytestring. patterns_bytes (bytes): The bytestring to load. **kwargs: Other config paramters, mostly for consistency. RETURNS (EntityRuler): The loaded entity ruler. DOCS: https://spacy.io/api/entityruler#from_bytes """ patterns = srsly.msgpack_loads(patterns_bytes) self.add_patterns(patterns) return self
[ "def", "from_bytes", "(", "self", ",", "patterns_bytes", ",", "*", "*", "kwargs", ")", ":", "patterns", "=", "srsly", ".", "msgpack_loads", "(", "patterns_bytes", ")", "self", ".", "add_patterns", "(", "patterns", ")", "return", "self" ]
Load the entity ruler from a bytestring. patterns_bytes (bytes): The bytestring to load. **kwargs: Other config paramters, mostly for consistency. RETURNS (EntityRuler): The loaded entity ruler. DOCS: https://spacy.io/api/entityruler#from_bytes
[ "Load", "the", "entity", "ruler", "from", "a", "bytestring", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/pipeline/entityruler.py#L148-L159
21,227
explosion/spaCy
bin/ud/ud_train.py
golds_to_gold_tuples
def golds_to_gold_tuples(docs, golds): """Get out the annoying 'tuples' format used by begin_training, given the GoldParse objects.""" tuples = [] for doc, gold in zip(docs, golds): text = doc.text ids, words, tags, heads, labels, iob = zip(*gold.orig_annot) sents = [((ids, words, tags, heads, labels, iob), [])] tuples.append((text, sents)) return tuples
python
def golds_to_gold_tuples(docs, golds): """Get out the annoying 'tuples' format used by begin_training, given the GoldParse objects.""" tuples = [] for doc, gold in zip(docs, golds): text = doc.text ids, words, tags, heads, labels, iob = zip(*gold.orig_annot) sents = [((ids, words, tags, heads, labels, iob), [])] tuples.append((text, sents)) return tuples
[ "def", "golds_to_gold_tuples", "(", "docs", ",", "golds", ")", ":", "tuples", "=", "[", "]", "for", "doc", ",", "gold", "in", "zip", "(", "docs", ",", "golds", ")", ":", "text", "=", "doc", ".", "text", "ids", ",", "words", ",", "tags", ",", "heads", ",", "labels", ",", "iob", "=", "zip", "(", "*", "gold", ".", "orig_annot", ")", "sents", "=", "[", "(", "(", "ids", ",", "words", ",", "tags", ",", "heads", ",", "labels", ",", "iob", ")", ",", "[", "]", ")", "]", "tuples", ".", "append", "(", "(", "text", ",", "sents", ")", ")", "return", "tuples" ]
Get out the annoying 'tuples' format used by begin_training, given the GoldParse objects.
[ "Get", "out", "the", "annoying", "tuples", "format", "used", "by", "begin_training", "given", "the", "GoldParse", "objects", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/bin/ud/ud_train.py#L173-L182
21,228
explosion/spaCy
spacy/tokens/_serialize.py
merge_bytes
def merge_bytes(binder_strings): """Concatenate multiple serialized binders into one byte string.""" output = None for byte_string in binder_strings: binder = Binder().from_bytes(byte_string) if output is None: output = binder else: output.merge(binder) return output.to_bytes()
python
def merge_bytes(binder_strings): """Concatenate multiple serialized binders into one byte string.""" output = None for byte_string in binder_strings: binder = Binder().from_bytes(byte_string) if output is None: output = binder else: output.merge(binder) return output.to_bytes()
[ "def", "merge_bytes", "(", "binder_strings", ")", ":", "output", "=", "None", "for", "byte_string", "in", "binder_strings", ":", "binder", "=", "Binder", "(", ")", ".", "from_bytes", "(", "byte_string", ")", "if", "output", "is", "None", ":", "output", "=", "binder", "else", ":", "output", ".", "merge", "(", "binder", ")", "return", "output", ".", "to_bytes", "(", ")" ]
Concatenate multiple serialized binders into one byte string.
[ "Concatenate", "multiple", "serialized", "binders", "into", "one", "byte", "string", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/tokens/_serialize.py#L97-L106
21,229
explosion/spaCy
spacy/tokens/_serialize.py
Binder.add
def add(self, doc): """Add a doc's annotations to the binder for serialization.""" array = doc.to_array(self.attrs) if len(array.shape) == 1: array = array.reshape((array.shape[0], 1)) self.tokens.append(array) spaces = doc.to_array(SPACY) assert array.shape[0] == spaces.shape[0] spaces = spaces.reshape((spaces.shape[0], 1)) self.spaces.append(numpy.asarray(spaces, dtype=bool)) self.strings.update(w.text for w in doc)
python
def add(self, doc): """Add a doc's annotations to the binder for serialization.""" array = doc.to_array(self.attrs) if len(array.shape) == 1: array = array.reshape((array.shape[0], 1)) self.tokens.append(array) spaces = doc.to_array(SPACY) assert array.shape[0] == spaces.shape[0] spaces = spaces.reshape((spaces.shape[0], 1)) self.spaces.append(numpy.asarray(spaces, dtype=bool)) self.strings.update(w.text for w in doc)
[ "def", "add", "(", "self", ",", "doc", ")", ":", "array", "=", "doc", ".", "to_array", "(", "self", ".", "attrs", ")", "if", "len", "(", "array", ".", "shape", ")", "==", "1", ":", "array", "=", "array", ".", "reshape", "(", "(", "array", ".", "shape", "[", "0", "]", ",", "1", ")", ")", "self", ".", "tokens", ".", "append", "(", "array", ")", "spaces", "=", "doc", ".", "to_array", "(", "SPACY", ")", "assert", "array", ".", "shape", "[", "0", "]", "==", "spaces", ".", "shape", "[", "0", "]", "spaces", "=", "spaces", ".", "reshape", "(", "(", "spaces", ".", "shape", "[", "0", "]", ",", "1", ")", ")", "self", ".", "spaces", ".", "append", "(", "numpy", ".", "asarray", "(", "spaces", ",", "dtype", "=", "bool", ")", ")", "self", ".", "strings", ".", "update", "(", "w", ".", "text", "for", "w", "in", "doc", ")" ]
Add a doc's annotations to the binder for serialization.
[ "Add", "a", "doc", "s", "annotations", "to", "the", "binder", "for", "serialization", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/tokens/_serialize.py#L35-L45
21,230
explosion/spaCy
spacy/tokens/_serialize.py
Binder.get_docs
def get_docs(self, vocab): """Recover Doc objects from the annotations, using the given vocab.""" for string in self.strings: vocab[string] orth_col = self.attrs.index(ORTH) for tokens, spaces in zip(self.tokens, self.spaces): words = [vocab.strings[orth] for orth in tokens[:, orth_col]] doc = Doc(vocab, words=words, spaces=spaces) doc = doc.from_array(self.attrs, tokens) yield doc
python
def get_docs(self, vocab): """Recover Doc objects from the annotations, using the given vocab.""" for string in self.strings: vocab[string] orth_col = self.attrs.index(ORTH) for tokens, spaces in zip(self.tokens, self.spaces): words = [vocab.strings[orth] for orth in tokens[:, orth_col]] doc = Doc(vocab, words=words, spaces=spaces) doc = doc.from_array(self.attrs, tokens) yield doc
[ "def", "get_docs", "(", "self", ",", "vocab", ")", ":", "for", "string", "in", "self", ".", "strings", ":", "vocab", "[", "string", "]", "orth_col", "=", "self", ".", "attrs", ".", "index", "(", "ORTH", ")", "for", "tokens", ",", "spaces", "in", "zip", "(", "self", ".", "tokens", ",", "self", ".", "spaces", ")", ":", "words", "=", "[", "vocab", ".", "strings", "[", "orth", "]", "for", "orth", "in", "tokens", "[", ":", ",", "orth_col", "]", "]", "doc", "=", "Doc", "(", "vocab", ",", "words", "=", "words", ",", "spaces", "=", "spaces", ")", "doc", "=", "doc", ".", "from_array", "(", "self", ".", "attrs", ",", "tokens", ")", "yield", "doc" ]
Recover Doc objects from the annotations, using the given vocab.
[ "Recover", "Doc", "objects", "from", "the", "annotations", "using", "the", "given", "vocab", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/tokens/_serialize.py#L47-L56
21,231
explosion/spaCy
spacy/tokens/_serialize.py
Binder.merge
def merge(self, other): """Extend the annotations of this binder with the annotations from another.""" assert self.attrs == other.attrs self.tokens.extend(other.tokens) self.spaces.extend(other.spaces) self.strings.update(other.strings)
python
def merge(self, other): """Extend the annotations of this binder with the annotations from another.""" assert self.attrs == other.attrs self.tokens.extend(other.tokens) self.spaces.extend(other.spaces) self.strings.update(other.strings)
[ "def", "merge", "(", "self", ",", "other", ")", ":", "assert", "self", ".", "attrs", "==", "other", ".", "attrs", "self", ".", "tokens", ".", "extend", "(", "other", ".", "tokens", ")", "self", ".", "spaces", ".", "extend", "(", "other", ".", "spaces", ")", "self", ".", "strings", ".", "update", "(", "other", ".", "strings", ")" ]
Extend the annotations of this binder with the annotations from another.
[ "Extend", "the", "annotations", "of", "this", "binder", "with", "the", "annotations", "from", "another", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/tokens/_serialize.py#L58-L63
21,232
explosion/spaCy
spacy/tokens/_serialize.py
Binder.to_bytes
def to_bytes(self): """Serialize the binder's annotations into a byte string.""" for tokens in self.tokens: assert len(tokens.shape) == 2, tokens.shape lengths = [len(tokens) for tokens in self.tokens] msg = { "attrs": self.attrs, "tokens": numpy.vstack(self.tokens).tobytes("C"), "spaces": numpy.vstack(self.spaces).tobytes("C"), "lengths": numpy.asarray(lengths, dtype="int32").tobytes("C"), "strings": list(self.strings), } return gzip.compress(srsly.msgpack_dumps(msg))
python
def to_bytes(self): """Serialize the binder's annotations into a byte string.""" for tokens in self.tokens: assert len(tokens.shape) == 2, tokens.shape lengths = [len(tokens) for tokens in self.tokens] msg = { "attrs": self.attrs, "tokens": numpy.vstack(self.tokens).tobytes("C"), "spaces": numpy.vstack(self.spaces).tobytes("C"), "lengths": numpy.asarray(lengths, dtype="int32").tobytes("C"), "strings": list(self.strings), } return gzip.compress(srsly.msgpack_dumps(msg))
[ "def", "to_bytes", "(", "self", ")", ":", "for", "tokens", "in", "self", ".", "tokens", ":", "assert", "len", "(", "tokens", ".", "shape", ")", "==", "2", ",", "tokens", ".", "shape", "lengths", "=", "[", "len", "(", "tokens", ")", "for", "tokens", "in", "self", ".", "tokens", "]", "msg", "=", "{", "\"attrs\"", ":", "self", ".", "attrs", ",", "\"tokens\"", ":", "numpy", ".", "vstack", "(", "self", ".", "tokens", ")", ".", "tobytes", "(", "\"C\"", ")", ",", "\"spaces\"", ":", "numpy", ".", "vstack", "(", "self", ".", "spaces", ")", ".", "tobytes", "(", "\"C\"", ")", ",", "\"lengths\"", ":", "numpy", ".", "asarray", "(", "lengths", ",", "dtype", "=", "\"int32\"", ")", ".", "tobytes", "(", "\"C\"", ")", ",", "\"strings\"", ":", "list", "(", "self", ".", "strings", ")", ",", "}", "return", "gzip", ".", "compress", "(", "srsly", ".", "msgpack_dumps", "(", "msg", ")", ")" ]
Serialize the binder's annotations into a byte string.
[ "Serialize", "the", "binder", "s", "annotations", "into", "a", "byte", "string", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/tokens/_serialize.py#L65-L77
21,233
explosion/spaCy
spacy/tokens/_serialize.py
Binder.from_bytes
def from_bytes(self, string): """Deserialize the binder's annotations from a byte string.""" msg = srsly.msgpack_loads(gzip.decompress(string)) self.attrs = msg["attrs"] self.strings = set(msg["strings"]) lengths = numpy.fromstring(msg["lengths"], dtype="int32") flat_spaces = numpy.fromstring(msg["spaces"], dtype=bool) flat_tokens = numpy.fromstring(msg["tokens"], dtype="uint64") shape = (flat_tokens.size // len(self.attrs), len(self.attrs)) flat_tokens = flat_tokens.reshape(shape) flat_spaces = flat_spaces.reshape((flat_spaces.size, 1)) self.tokens = NumpyOps().unflatten(flat_tokens, lengths) self.spaces = NumpyOps().unflatten(flat_spaces, lengths) for tokens in self.tokens: assert len(tokens.shape) == 2, tokens.shape return self
python
def from_bytes(self, string): """Deserialize the binder's annotations from a byte string.""" msg = srsly.msgpack_loads(gzip.decompress(string)) self.attrs = msg["attrs"] self.strings = set(msg["strings"]) lengths = numpy.fromstring(msg["lengths"], dtype="int32") flat_spaces = numpy.fromstring(msg["spaces"], dtype=bool) flat_tokens = numpy.fromstring(msg["tokens"], dtype="uint64") shape = (flat_tokens.size // len(self.attrs), len(self.attrs)) flat_tokens = flat_tokens.reshape(shape) flat_spaces = flat_spaces.reshape((flat_spaces.size, 1)) self.tokens = NumpyOps().unflatten(flat_tokens, lengths) self.spaces = NumpyOps().unflatten(flat_spaces, lengths) for tokens in self.tokens: assert len(tokens.shape) == 2, tokens.shape return self
[ "def", "from_bytes", "(", "self", ",", "string", ")", ":", "msg", "=", "srsly", ".", "msgpack_loads", "(", "gzip", ".", "decompress", "(", "string", ")", ")", "self", ".", "attrs", "=", "msg", "[", "\"attrs\"", "]", "self", ".", "strings", "=", "set", "(", "msg", "[", "\"strings\"", "]", ")", "lengths", "=", "numpy", ".", "fromstring", "(", "msg", "[", "\"lengths\"", "]", ",", "dtype", "=", "\"int32\"", ")", "flat_spaces", "=", "numpy", ".", "fromstring", "(", "msg", "[", "\"spaces\"", "]", ",", "dtype", "=", "bool", ")", "flat_tokens", "=", "numpy", ".", "fromstring", "(", "msg", "[", "\"tokens\"", "]", ",", "dtype", "=", "\"uint64\"", ")", "shape", "=", "(", "flat_tokens", ".", "size", "//", "len", "(", "self", ".", "attrs", ")", ",", "len", "(", "self", ".", "attrs", ")", ")", "flat_tokens", "=", "flat_tokens", ".", "reshape", "(", "shape", ")", "flat_spaces", "=", "flat_spaces", ".", "reshape", "(", "(", "flat_spaces", ".", "size", ",", "1", ")", ")", "self", ".", "tokens", "=", "NumpyOps", "(", ")", ".", "unflatten", "(", "flat_tokens", ",", "lengths", ")", "self", ".", "spaces", "=", "NumpyOps", "(", ")", ".", "unflatten", "(", "flat_spaces", ",", "lengths", ")", "for", "tokens", "in", "self", ".", "tokens", ":", "assert", "len", "(", "tokens", ".", "shape", ")", "==", "2", ",", "tokens", ".", "shape", "return", "self" ]
Deserialize the binder's annotations from a byte string.
[ "Deserialize", "the", "binder", "s", "annotations", "from", "a", "byte", "string", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/tokens/_serialize.py#L79-L94
21,234
explosion/spaCy
spacy/lang/fr/lemmatizer/lemmatizer.py
FrenchLemmatizer.is_base_form
def is_base_form(self, univ_pos, morphology=None): """ Check whether we're dealing with an uninflected paradigm, so we can avoid lemmatization entirely. """ morphology = {} if morphology is None else morphology others = [key for key in morphology if key not in (POS, 'Number', 'POS', 'VerbForm', 'Tense')] if univ_pos == 'noun' and morphology.get('Number') == 'sing': return True elif univ_pos == 'verb' and morphology.get('VerbForm') == 'inf': return True # This maps 'VBP' to base form -- probably just need 'IS_BASE' # morphology elif univ_pos == 'verb' and (morphology.get('VerbForm') == 'fin' and morphology.get('Tense') == 'pres' and morphology.get('Number') is None and not others): return True elif univ_pos == 'adj' and morphology.get('Degree') == 'pos': return True elif VerbForm_inf in morphology: return True elif VerbForm_none in morphology: return True elif Number_sing in morphology: return True elif Degree_pos in morphology: return True else: return False
python
def is_base_form(self, univ_pos, morphology=None): """ Check whether we're dealing with an uninflected paradigm, so we can avoid lemmatization entirely. """ morphology = {} if morphology is None else morphology others = [key for key in morphology if key not in (POS, 'Number', 'POS', 'VerbForm', 'Tense')] if univ_pos == 'noun' and morphology.get('Number') == 'sing': return True elif univ_pos == 'verb' and morphology.get('VerbForm') == 'inf': return True # This maps 'VBP' to base form -- probably just need 'IS_BASE' # morphology elif univ_pos == 'verb' and (morphology.get('VerbForm') == 'fin' and morphology.get('Tense') == 'pres' and morphology.get('Number') is None and not others): return True elif univ_pos == 'adj' and morphology.get('Degree') == 'pos': return True elif VerbForm_inf in morphology: return True elif VerbForm_none in morphology: return True elif Number_sing in morphology: return True elif Degree_pos in morphology: return True else: return False
[ "def", "is_base_form", "(", "self", ",", "univ_pos", ",", "morphology", "=", "None", ")", ":", "morphology", "=", "{", "}", "if", "morphology", "is", "None", "else", "morphology", "others", "=", "[", "key", "for", "key", "in", "morphology", "if", "key", "not", "in", "(", "POS", ",", "'Number'", ",", "'POS'", ",", "'VerbForm'", ",", "'Tense'", ")", "]", "if", "univ_pos", "==", "'noun'", "and", "morphology", ".", "get", "(", "'Number'", ")", "==", "'sing'", ":", "return", "True", "elif", "univ_pos", "==", "'verb'", "and", "morphology", ".", "get", "(", "'VerbForm'", ")", "==", "'inf'", ":", "return", "True", "# This maps 'VBP' to base form -- probably just need 'IS_BASE'", "# morphology", "elif", "univ_pos", "==", "'verb'", "and", "(", "morphology", ".", "get", "(", "'VerbForm'", ")", "==", "'fin'", "and", "morphology", ".", "get", "(", "'Tense'", ")", "==", "'pres'", "and", "morphology", ".", "get", "(", "'Number'", ")", "is", "None", "and", "not", "others", ")", ":", "return", "True", "elif", "univ_pos", "==", "'adj'", "and", "morphology", ".", "get", "(", "'Degree'", ")", "==", "'pos'", ":", "return", "True", "elif", "VerbForm_inf", "in", "morphology", ":", "return", "True", "elif", "VerbForm_none", "in", "morphology", ":", "return", "True", "elif", "Number_sing", "in", "morphology", ":", "return", "True", "elif", "Degree_pos", "in", "morphology", ":", "return", "True", "else", ":", "return", "False" ]
Check whether we're dealing with an uninflected paradigm, so we can avoid lemmatization entirely.
[ "Check", "whether", "we", "re", "dealing", "with", "an", "uninflected", "paradigm", "so", "we", "can", "avoid", "lemmatization", "entirely", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/lang/fr/lemmatizer/lemmatizer.py#L63-L93
21,235
explosion/spaCy
examples/training/train_new_entity_type.py
main
def main(model=None, new_model_name="animal", output_dir=None, n_iter=30): """Set up the pipeline and entity recognizer, and train the new entity.""" random.seed(0) if model is not None: nlp = spacy.load(model) # load existing spaCy model print("Loaded model '%s'" % model) else: nlp = spacy.blank("en") # create blank Language class print("Created blank 'en' model") # Add entity recognizer to model if it's not in the pipeline # nlp.create_pipe works for built-ins that are registered with spaCy if "ner" not in nlp.pipe_names: ner = nlp.create_pipe("ner") nlp.add_pipe(ner) # otherwise, get it, so we can add labels to it else: ner = nlp.get_pipe("ner") ner.add_label(LABEL) # add new entity label to entity recognizer # Adding extraneous labels shouldn't mess anything up ner.add_label("VEGETABLE") if model is None: optimizer = nlp.begin_training() else: optimizer = nlp.resume_training() move_names = list(ner.move_names) # get names of other pipes to disable them during training other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "ner"] with nlp.disable_pipes(*other_pipes): # only train NER sizes = compounding(1.0, 4.0, 1.001) # batch up the examples using spaCy's minibatch for itn in range(n_iter): random.shuffle(TRAIN_DATA) batches = minibatch(TRAIN_DATA, size=sizes) losses = {} for batch in batches: texts, annotations = zip(*batch) nlp.update(texts, annotations, sgd=optimizer, drop=0.35, losses=losses) print("Losses", losses) # test the trained model test_text = "Do you like horses?" doc = nlp(test_text) print("Entities in '%s'" % test_text) for ent in doc.ents: print(ent.label_, ent.text) # save model to output directory if output_dir is not None: output_dir = Path(output_dir) if not output_dir.exists(): output_dir.mkdir() nlp.meta["name"] = new_model_name # rename model nlp.to_disk(output_dir) print("Saved model to", output_dir) # test the saved model print("Loading from", output_dir) nlp2 = spacy.load(output_dir) # Check the classes have loaded back consistently assert nlp2.get_pipe("ner").move_names == move_names doc2 = nlp2(test_text) for ent in doc2.ents: print(ent.label_, ent.text)
python
def main(model=None, new_model_name="animal", output_dir=None, n_iter=30): """Set up the pipeline and entity recognizer, and train the new entity.""" random.seed(0) if model is not None: nlp = spacy.load(model) # load existing spaCy model print("Loaded model '%s'" % model) else: nlp = spacy.blank("en") # create blank Language class print("Created blank 'en' model") # Add entity recognizer to model if it's not in the pipeline # nlp.create_pipe works for built-ins that are registered with spaCy if "ner" not in nlp.pipe_names: ner = nlp.create_pipe("ner") nlp.add_pipe(ner) # otherwise, get it, so we can add labels to it else: ner = nlp.get_pipe("ner") ner.add_label(LABEL) # add new entity label to entity recognizer # Adding extraneous labels shouldn't mess anything up ner.add_label("VEGETABLE") if model is None: optimizer = nlp.begin_training() else: optimizer = nlp.resume_training() move_names = list(ner.move_names) # get names of other pipes to disable them during training other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "ner"] with nlp.disable_pipes(*other_pipes): # only train NER sizes = compounding(1.0, 4.0, 1.001) # batch up the examples using spaCy's minibatch for itn in range(n_iter): random.shuffle(TRAIN_DATA) batches = minibatch(TRAIN_DATA, size=sizes) losses = {} for batch in batches: texts, annotations = zip(*batch) nlp.update(texts, annotations, sgd=optimizer, drop=0.35, losses=losses) print("Losses", losses) # test the trained model test_text = "Do you like horses?" doc = nlp(test_text) print("Entities in '%s'" % test_text) for ent in doc.ents: print(ent.label_, ent.text) # save model to output directory if output_dir is not None: output_dir = Path(output_dir) if not output_dir.exists(): output_dir.mkdir() nlp.meta["name"] = new_model_name # rename model nlp.to_disk(output_dir) print("Saved model to", output_dir) # test the saved model print("Loading from", output_dir) nlp2 = spacy.load(output_dir) # Check the classes have loaded back consistently assert nlp2.get_pipe("ner").move_names == move_names doc2 = nlp2(test_text) for ent in doc2.ents: print(ent.label_, ent.text)
[ "def", "main", "(", "model", "=", "None", ",", "new_model_name", "=", "\"animal\"", ",", "output_dir", "=", "None", ",", "n_iter", "=", "30", ")", ":", "random", ".", "seed", "(", "0", ")", "if", "model", "is", "not", "None", ":", "nlp", "=", "spacy", ".", "load", "(", "model", ")", "# load existing spaCy model", "print", "(", "\"Loaded model '%s'\"", "%", "model", ")", "else", ":", "nlp", "=", "spacy", ".", "blank", "(", "\"en\"", ")", "# create blank Language class", "print", "(", "\"Created blank 'en' model\"", ")", "# Add entity recognizer to model if it's not in the pipeline", "# nlp.create_pipe works for built-ins that are registered with spaCy", "if", "\"ner\"", "not", "in", "nlp", ".", "pipe_names", ":", "ner", "=", "nlp", ".", "create_pipe", "(", "\"ner\"", ")", "nlp", ".", "add_pipe", "(", "ner", ")", "# otherwise, get it, so we can add labels to it", "else", ":", "ner", "=", "nlp", ".", "get_pipe", "(", "\"ner\"", ")", "ner", ".", "add_label", "(", "LABEL", ")", "# add new entity label to entity recognizer", "# Adding extraneous labels shouldn't mess anything up", "ner", ".", "add_label", "(", "\"VEGETABLE\"", ")", "if", "model", "is", "None", ":", "optimizer", "=", "nlp", ".", "begin_training", "(", ")", "else", ":", "optimizer", "=", "nlp", ".", "resume_training", "(", ")", "move_names", "=", "list", "(", "ner", ".", "move_names", ")", "# get names of other pipes to disable them during training", "other_pipes", "=", "[", "pipe", "for", "pipe", "in", "nlp", ".", "pipe_names", "if", "pipe", "!=", "\"ner\"", "]", "with", "nlp", ".", "disable_pipes", "(", "*", "other_pipes", ")", ":", "# only train NER", "sizes", "=", "compounding", "(", "1.0", ",", "4.0", ",", "1.001", ")", "# batch up the examples using spaCy's minibatch", "for", "itn", "in", "range", "(", "n_iter", ")", ":", "random", ".", "shuffle", "(", "TRAIN_DATA", ")", "batches", "=", "minibatch", "(", "TRAIN_DATA", ",", "size", "=", "sizes", ")", "losses", "=", "{", "}", "for", "batch", "in", "batches", ":", "texts", ",", "annotations", "=", "zip", "(", "*", "batch", ")", "nlp", ".", "update", "(", "texts", ",", "annotations", ",", "sgd", "=", "optimizer", ",", "drop", "=", "0.35", ",", "losses", "=", "losses", ")", "print", "(", "\"Losses\"", ",", "losses", ")", "# test the trained model", "test_text", "=", "\"Do you like horses?\"", "doc", "=", "nlp", "(", "test_text", ")", "print", "(", "\"Entities in '%s'\"", "%", "test_text", ")", "for", "ent", "in", "doc", ".", "ents", ":", "print", "(", "ent", ".", "label_", ",", "ent", ".", "text", ")", "# save model to output directory", "if", "output_dir", "is", "not", "None", ":", "output_dir", "=", "Path", "(", "output_dir", ")", "if", "not", "output_dir", ".", "exists", "(", ")", ":", "output_dir", ".", "mkdir", "(", ")", "nlp", ".", "meta", "[", "\"name\"", "]", "=", "new_model_name", "# rename model", "nlp", ".", "to_disk", "(", "output_dir", ")", "print", "(", "\"Saved model to\"", ",", "output_dir", ")", "# test the saved model", "print", "(", "\"Loading from\"", ",", "output_dir", ")", "nlp2", "=", "spacy", ".", "load", "(", "output_dir", ")", "# Check the classes have loaded back consistently", "assert", "nlp2", ".", "get_pipe", "(", "\"ner\"", ")", ".", "move_names", "==", "move_names", "doc2", "=", "nlp2", "(", "test_text", ")", "for", "ent", "in", "doc2", ".", "ents", ":", "print", "(", "ent", ".", "label_", ",", "ent", ".", "text", ")" ]
Set up the pipeline and entity recognizer, and train the new entity.
[ "Set", "up", "the", "pipeline", "and", "entity", "recognizer", "and", "train", "the", "new", "entity", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/examples/training/train_new_entity_type.py#L71-L134
21,236
explosion/spaCy
spacy/cli/converters/conll_ner2json.py
conll_ner2json
def conll_ner2json(input_data, **kwargs): """ Convert files in the CoNLL-2003 NER format into JSON format for use with train cli. """ delimit_docs = "-DOCSTART- -X- O O" output_docs = [] for doc in input_data.strip().split(delimit_docs): doc = doc.strip() if not doc: continue output_doc = [] for sent in doc.split("\n\n"): sent = sent.strip() if not sent: continue lines = [line.strip() for line in sent.split("\n") if line.strip()] words, tags, chunks, iob_ents = zip(*[line.split() for line in lines]) biluo_ents = iob_to_biluo(iob_ents) output_doc.append( { "tokens": [ {"orth": w, "tag": tag, "ner": ent} for (w, tag, ent) in zip(words, tags, biluo_ents) ] } ) output_docs.append( {"id": len(output_docs), "paragraphs": [{"sentences": output_doc}]} ) output_doc = [] return output_docs
python
def conll_ner2json(input_data, **kwargs): """ Convert files in the CoNLL-2003 NER format into JSON format for use with train cli. """ delimit_docs = "-DOCSTART- -X- O O" output_docs = [] for doc in input_data.strip().split(delimit_docs): doc = doc.strip() if not doc: continue output_doc = [] for sent in doc.split("\n\n"): sent = sent.strip() if not sent: continue lines = [line.strip() for line in sent.split("\n") if line.strip()] words, tags, chunks, iob_ents = zip(*[line.split() for line in lines]) biluo_ents = iob_to_biluo(iob_ents) output_doc.append( { "tokens": [ {"orth": w, "tag": tag, "ner": ent} for (w, tag, ent) in zip(words, tags, biluo_ents) ] } ) output_docs.append( {"id": len(output_docs), "paragraphs": [{"sentences": output_doc}]} ) output_doc = [] return output_docs
[ "def", "conll_ner2json", "(", "input_data", ",", "*", "*", "kwargs", ")", ":", "delimit_docs", "=", "\"-DOCSTART- -X- O O\"", "output_docs", "=", "[", "]", "for", "doc", "in", "input_data", ".", "strip", "(", ")", ".", "split", "(", "delimit_docs", ")", ":", "doc", "=", "doc", ".", "strip", "(", ")", "if", "not", "doc", ":", "continue", "output_doc", "=", "[", "]", "for", "sent", "in", "doc", ".", "split", "(", "\"\\n\\n\"", ")", ":", "sent", "=", "sent", ".", "strip", "(", ")", "if", "not", "sent", ":", "continue", "lines", "=", "[", "line", ".", "strip", "(", ")", "for", "line", "in", "sent", ".", "split", "(", "\"\\n\"", ")", "if", "line", ".", "strip", "(", ")", "]", "words", ",", "tags", ",", "chunks", ",", "iob_ents", "=", "zip", "(", "*", "[", "line", ".", "split", "(", ")", "for", "line", "in", "lines", "]", ")", "biluo_ents", "=", "iob_to_biluo", "(", "iob_ents", ")", "output_doc", ".", "append", "(", "{", "\"tokens\"", ":", "[", "{", "\"orth\"", ":", "w", ",", "\"tag\"", ":", "tag", ",", "\"ner\"", ":", "ent", "}", "for", "(", "w", ",", "tag", ",", "ent", ")", "in", "zip", "(", "words", ",", "tags", ",", "biluo_ents", ")", "]", "}", ")", "output_docs", ".", "append", "(", "{", "\"id\"", ":", "len", "(", "output_docs", ")", ",", "\"paragraphs\"", ":", "[", "{", "\"sentences\"", ":", "output_doc", "}", "]", "}", ")", "output_doc", "=", "[", "]", "return", "output_docs" ]
Convert files in the CoNLL-2003 NER format into JSON format for use with train cli.
[ "Convert", "files", "in", "the", "CoNLL", "-", "2003", "NER", "format", "into", "JSON", "format", "for", "use", "with", "train", "cli", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/cli/converters/conll_ner2json.py#L7-L38
21,237
explosion/spaCy
examples/training/train_tagger.py
main
def main(lang="en", output_dir=None, n_iter=25): """Create a new model, set up the pipeline and train the tagger. In order to train the tagger with a custom tag map, we're creating a new Language instance with a custom vocab. """ nlp = spacy.blank(lang) # add the tagger to the pipeline # nlp.create_pipe works for built-ins that are registered with spaCy tagger = nlp.create_pipe("tagger") # Add the tags. This needs to be done before you start training. for tag, values in TAG_MAP.items(): tagger.add_label(tag, values) nlp.add_pipe(tagger) optimizer = nlp.begin_training() for i in range(n_iter): random.shuffle(TRAIN_DATA) losses = {} # batch up the examples using spaCy's minibatch batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001)) for batch in batches: texts, annotations = zip(*batch) nlp.update(texts, annotations, sgd=optimizer, losses=losses) print("Losses", losses) # test the trained model test_text = "I like blue eggs" doc = nlp(test_text) print("Tags", [(t.text, t.tag_, t.pos_) for t in doc]) # save model to output directory if output_dir is not None: output_dir = Path(output_dir) if not output_dir.exists(): output_dir.mkdir() nlp.to_disk(output_dir) print("Saved model to", output_dir) # test the save model print("Loading from", output_dir) nlp2 = spacy.load(output_dir) doc = nlp2(test_text) print("Tags", [(t.text, t.tag_, t.pos_) for t in doc])
python
def main(lang="en", output_dir=None, n_iter=25): """Create a new model, set up the pipeline and train the tagger. In order to train the tagger with a custom tag map, we're creating a new Language instance with a custom vocab. """ nlp = spacy.blank(lang) # add the tagger to the pipeline # nlp.create_pipe works for built-ins that are registered with spaCy tagger = nlp.create_pipe("tagger") # Add the tags. This needs to be done before you start training. for tag, values in TAG_MAP.items(): tagger.add_label(tag, values) nlp.add_pipe(tagger) optimizer = nlp.begin_training() for i in range(n_iter): random.shuffle(TRAIN_DATA) losses = {} # batch up the examples using spaCy's minibatch batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001)) for batch in batches: texts, annotations = zip(*batch) nlp.update(texts, annotations, sgd=optimizer, losses=losses) print("Losses", losses) # test the trained model test_text = "I like blue eggs" doc = nlp(test_text) print("Tags", [(t.text, t.tag_, t.pos_) for t in doc]) # save model to output directory if output_dir is not None: output_dir = Path(output_dir) if not output_dir.exists(): output_dir.mkdir() nlp.to_disk(output_dir) print("Saved model to", output_dir) # test the save model print("Loading from", output_dir) nlp2 = spacy.load(output_dir) doc = nlp2(test_text) print("Tags", [(t.text, t.tag_, t.pos_) for t in doc])
[ "def", "main", "(", "lang", "=", "\"en\"", ",", "output_dir", "=", "None", ",", "n_iter", "=", "25", ")", ":", "nlp", "=", "spacy", ".", "blank", "(", "lang", ")", "# add the tagger to the pipeline", "# nlp.create_pipe works for built-ins that are registered with spaCy", "tagger", "=", "nlp", ".", "create_pipe", "(", "\"tagger\"", ")", "# Add the tags. This needs to be done before you start training.", "for", "tag", ",", "values", "in", "TAG_MAP", ".", "items", "(", ")", ":", "tagger", ".", "add_label", "(", "tag", ",", "values", ")", "nlp", ".", "add_pipe", "(", "tagger", ")", "optimizer", "=", "nlp", ".", "begin_training", "(", ")", "for", "i", "in", "range", "(", "n_iter", ")", ":", "random", ".", "shuffle", "(", "TRAIN_DATA", ")", "losses", "=", "{", "}", "# batch up the examples using spaCy's minibatch", "batches", "=", "minibatch", "(", "TRAIN_DATA", ",", "size", "=", "compounding", "(", "4.0", ",", "32.0", ",", "1.001", ")", ")", "for", "batch", "in", "batches", ":", "texts", ",", "annotations", "=", "zip", "(", "*", "batch", ")", "nlp", ".", "update", "(", "texts", ",", "annotations", ",", "sgd", "=", "optimizer", ",", "losses", "=", "losses", ")", "print", "(", "\"Losses\"", ",", "losses", ")", "# test the trained model", "test_text", "=", "\"I like blue eggs\"", "doc", "=", "nlp", "(", "test_text", ")", "print", "(", "\"Tags\"", ",", "[", "(", "t", ".", "text", ",", "t", ".", "tag_", ",", "t", ".", "pos_", ")", "for", "t", "in", "doc", "]", ")", "# save model to output directory", "if", "output_dir", "is", "not", "None", ":", "output_dir", "=", "Path", "(", "output_dir", ")", "if", "not", "output_dir", ".", "exists", "(", ")", ":", "output_dir", ".", "mkdir", "(", ")", "nlp", ".", "to_disk", "(", "output_dir", ")", "print", "(", "\"Saved model to\"", ",", "output_dir", ")", "# test the save model", "print", "(", "\"Loading from\"", ",", "output_dir", ")", "nlp2", "=", "spacy", ".", "load", "(", "output_dir", ")", "doc", "=", "nlp2", "(", "test_text", ")", "print", "(", "\"Tags\"", ",", "[", "(", "t", ".", "text", ",", "t", ".", "tag_", ",", "t", ".", "pos_", ")", "for", "t", "in", "doc", "]", ")" ]
Create a new model, set up the pipeline and train the tagger. In order to train the tagger with a custom tag map, we're creating a new Language instance with a custom vocab.
[ "Create", "a", "new", "model", "set", "up", "the", "pipeline", "and", "train", "the", "tagger", ".", "In", "order", "to", "train", "the", "tagger", "with", "a", "custom", "tag", "map", "we", "re", "creating", "a", "new", "Language", "instance", "with", "a", "custom", "vocab", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/examples/training/train_tagger.py#L47-L89
21,238
explosion/spaCy
spacy/cli/init_model.py
init_model
def init_model( lang, output_dir, freqs_loc=None, clusters_loc=None, jsonl_loc=None, vectors_loc=None, prune_vectors=-1, ): """ Create a new model from raw data, like word frequencies, Brown clusters and word vectors. If vectors are provided in Word2Vec format, they can be either a .txt or zipped as a .zip or .tar.gz. """ if jsonl_loc is not None: if freqs_loc is not None or clusters_loc is not None: settings = ["-j"] if freqs_loc: settings.append("-f") if clusters_loc: settings.append("-c") msg.warn( "Incompatible arguments", "The -f and -c arguments are deprecated, and not compatible " "with the -j argument, which should specify the same " "information. Either merge the frequencies and clusters data " "into the JSONL-formatted file (recommended), or use only the " "-f and -c files, without the other lexical attributes.", ) jsonl_loc = ensure_path(jsonl_loc) lex_attrs = srsly.read_jsonl(jsonl_loc) else: clusters_loc = ensure_path(clusters_loc) freqs_loc = ensure_path(freqs_loc) if freqs_loc is not None and not freqs_loc.exists(): msg.fail("Can't find words frequencies file", freqs_loc, exits=1) lex_attrs = read_attrs_from_deprecated(freqs_loc, clusters_loc) with msg.loading("Creating model..."): nlp = create_model(lang, lex_attrs) msg.good("Successfully created model") if vectors_loc is not None: add_vectors(nlp, vectors_loc, prune_vectors) vec_added = len(nlp.vocab.vectors) lex_added = len(nlp.vocab) msg.good( "Sucessfully compiled vocab", "{} entries, {} vectors".format(lex_added, vec_added), ) if not output_dir.exists(): output_dir.mkdir() nlp.to_disk(output_dir) return nlp
python
def init_model( lang, output_dir, freqs_loc=None, clusters_loc=None, jsonl_loc=None, vectors_loc=None, prune_vectors=-1, ): """ Create a new model from raw data, like word frequencies, Brown clusters and word vectors. If vectors are provided in Word2Vec format, they can be either a .txt or zipped as a .zip or .tar.gz. """ if jsonl_loc is not None: if freqs_loc is not None or clusters_loc is not None: settings = ["-j"] if freqs_loc: settings.append("-f") if clusters_loc: settings.append("-c") msg.warn( "Incompatible arguments", "The -f and -c arguments are deprecated, and not compatible " "with the -j argument, which should specify the same " "information. Either merge the frequencies and clusters data " "into the JSONL-formatted file (recommended), or use only the " "-f and -c files, without the other lexical attributes.", ) jsonl_loc = ensure_path(jsonl_loc) lex_attrs = srsly.read_jsonl(jsonl_loc) else: clusters_loc = ensure_path(clusters_loc) freqs_loc = ensure_path(freqs_loc) if freqs_loc is not None and not freqs_loc.exists(): msg.fail("Can't find words frequencies file", freqs_loc, exits=1) lex_attrs = read_attrs_from_deprecated(freqs_loc, clusters_loc) with msg.loading("Creating model..."): nlp = create_model(lang, lex_attrs) msg.good("Successfully created model") if vectors_loc is not None: add_vectors(nlp, vectors_loc, prune_vectors) vec_added = len(nlp.vocab.vectors) lex_added = len(nlp.vocab) msg.good( "Sucessfully compiled vocab", "{} entries, {} vectors".format(lex_added, vec_added), ) if not output_dir.exists(): output_dir.mkdir() nlp.to_disk(output_dir) return nlp
[ "def", "init_model", "(", "lang", ",", "output_dir", ",", "freqs_loc", "=", "None", ",", "clusters_loc", "=", "None", ",", "jsonl_loc", "=", "None", ",", "vectors_loc", "=", "None", ",", "prune_vectors", "=", "-", "1", ",", ")", ":", "if", "jsonl_loc", "is", "not", "None", ":", "if", "freqs_loc", "is", "not", "None", "or", "clusters_loc", "is", "not", "None", ":", "settings", "=", "[", "\"-j\"", "]", "if", "freqs_loc", ":", "settings", ".", "append", "(", "\"-f\"", ")", "if", "clusters_loc", ":", "settings", ".", "append", "(", "\"-c\"", ")", "msg", ".", "warn", "(", "\"Incompatible arguments\"", ",", "\"The -f and -c arguments are deprecated, and not compatible \"", "\"with the -j argument, which should specify the same \"", "\"information. Either merge the frequencies and clusters data \"", "\"into the JSONL-formatted file (recommended), or use only the \"", "\"-f and -c files, without the other lexical attributes.\"", ",", ")", "jsonl_loc", "=", "ensure_path", "(", "jsonl_loc", ")", "lex_attrs", "=", "srsly", ".", "read_jsonl", "(", "jsonl_loc", ")", "else", ":", "clusters_loc", "=", "ensure_path", "(", "clusters_loc", ")", "freqs_loc", "=", "ensure_path", "(", "freqs_loc", ")", "if", "freqs_loc", "is", "not", "None", "and", "not", "freqs_loc", ".", "exists", "(", ")", ":", "msg", ".", "fail", "(", "\"Can't find words frequencies file\"", ",", "freqs_loc", ",", "exits", "=", "1", ")", "lex_attrs", "=", "read_attrs_from_deprecated", "(", "freqs_loc", ",", "clusters_loc", ")", "with", "msg", ".", "loading", "(", "\"Creating model...\"", ")", ":", "nlp", "=", "create_model", "(", "lang", ",", "lex_attrs", ")", "msg", ".", "good", "(", "\"Successfully created model\"", ")", "if", "vectors_loc", "is", "not", "None", ":", "add_vectors", "(", "nlp", ",", "vectors_loc", ",", "prune_vectors", ")", "vec_added", "=", "len", "(", "nlp", ".", "vocab", ".", "vectors", ")", "lex_added", "=", "len", "(", "nlp", ".", "vocab", ")", "msg", ".", "good", "(", "\"Sucessfully compiled vocab\"", ",", "\"{} entries, {} vectors\"", ".", "format", "(", "lex_added", ",", "vec_added", ")", ",", ")", "if", "not", "output_dir", ".", "exists", "(", ")", ":", "output_dir", ".", "mkdir", "(", ")", "nlp", ".", "to_disk", "(", "output_dir", ")", "return", "nlp" ]
Create a new model from raw data, like word frequencies, Brown clusters and word vectors. If vectors are provided in Word2Vec format, they can be either a .txt or zipped as a .zip or .tar.gz.
[ "Create", "a", "new", "model", "from", "raw", "data", "like", "word", "frequencies", "Brown", "clusters", "and", "word", "vectors", ".", "If", "vectors", "are", "provided", "in", "Word2Vec", "format", "they", "can", "be", "either", "a", ".", "txt", "or", "zipped", "as", "a", ".", "zip", "or", ".", "tar", ".", "gz", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/cli/init_model.py#L39-L91
21,239
explosion/spaCy
examples/training/train_ner.py
main
def main(model=None, output_dir=None, n_iter=100): """Load the model, set up the pipeline and train the entity recognizer.""" if model is not None: nlp = spacy.load(model) # load existing spaCy model print("Loaded model '%s'" % model) else: nlp = spacy.blank("en") # create blank Language class print("Created blank 'en' model") # create the built-in pipeline components and add them to the pipeline # nlp.create_pipe works for built-ins that are registered with spaCy if "ner" not in nlp.pipe_names: ner = nlp.create_pipe("ner") nlp.add_pipe(ner, last=True) # otherwise, get it so we can add labels else: ner = nlp.get_pipe("ner") # add labels for _, annotations in TRAIN_DATA: for ent in annotations.get("entities"): ner.add_label(ent[2]) # get names of other pipes to disable them during training other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "ner"] with nlp.disable_pipes(*other_pipes): # only train NER # reset and initialize the weights randomly – but only if we're # training a new model if model is None: nlp.begin_training() for itn in range(n_iter): random.shuffle(TRAIN_DATA) losses = {} # batch up the examples using spaCy's minibatch batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001)) for batch in batches: texts, annotations = zip(*batch) nlp.update( texts, # batch of texts annotations, # batch of annotations drop=0.5, # dropout - make it harder to memorise data losses=losses, ) print("Losses", losses) # test the trained model for text, _ in TRAIN_DATA: doc = nlp(text) print("Entities", [(ent.text, ent.label_) for ent in doc.ents]) print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc]) # save model to output directory if output_dir is not None: output_dir = Path(output_dir) if not output_dir.exists(): output_dir.mkdir() nlp.to_disk(output_dir) print("Saved model to", output_dir) # test the saved model print("Loading from", output_dir) nlp2 = spacy.load(output_dir) for text, _ in TRAIN_DATA: doc = nlp2(text) print("Entities", [(ent.text, ent.label_) for ent in doc.ents]) print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc])
python
def main(model=None, output_dir=None, n_iter=100): """Load the model, set up the pipeline and train the entity recognizer.""" if model is not None: nlp = spacy.load(model) # load existing spaCy model print("Loaded model '%s'" % model) else: nlp = spacy.blank("en") # create blank Language class print("Created blank 'en' model") # create the built-in pipeline components and add them to the pipeline # nlp.create_pipe works for built-ins that are registered with spaCy if "ner" not in nlp.pipe_names: ner = nlp.create_pipe("ner") nlp.add_pipe(ner, last=True) # otherwise, get it so we can add labels else: ner = nlp.get_pipe("ner") # add labels for _, annotations in TRAIN_DATA: for ent in annotations.get("entities"): ner.add_label(ent[2]) # get names of other pipes to disable them during training other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "ner"] with nlp.disable_pipes(*other_pipes): # only train NER # reset and initialize the weights randomly – but only if we're # training a new model if model is None: nlp.begin_training() for itn in range(n_iter): random.shuffle(TRAIN_DATA) losses = {} # batch up the examples using spaCy's minibatch batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001)) for batch in batches: texts, annotations = zip(*batch) nlp.update( texts, # batch of texts annotations, # batch of annotations drop=0.5, # dropout - make it harder to memorise data losses=losses, ) print("Losses", losses) # test the trained model for text, _ in TRAIN_DATA: doc = nlp(text) print("Entities", [(ent.text, ent.label_) for ent in doc.ents]) print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc]) # save model to output directory if output_dir is not None: output_dir = Path(output_dir) if not output_dir.exists(): output_dir.mkdir() nlp.to_disk(output_dir) print("Saved model to", output_dir) # test the saved model print("Loading from", output_dir) nlp2 = spacy.load(output_dir) for text, _ in TRAIN_DATA: doc = nlp2(text) print("Entities", [(ent.text, ent.label_) for ent in doc.ents]) print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc])
[ "def", "main", "(", "model", "=", "None", ",", "output_dir", "=", "None", ",", "n_iter", "=", "100", ")", ":", "if", "model", "is", "not", "None", ":", "nlp", "=", "spacy", ".", "load", "(", "model", ")", "# load existing spaCy model", "print", "(", "\"Loaded model '%s'\"", "%", "model", ")", "else", ":", "nlp", "=", "spacy", ".", "blank", "(", "\"en\"", ")", "# create blank Language class", "print", "(", "\"Created blank 'en' model\"", ")", "# create the built-in pipeline components and add them to the pipeline", "# nlp.create_pipe works for built-ins that are registered with spaCy", "if", "\"ner\"", "not", "in", "nlp", ".", "pipe_names", ":", "ner", "=", "nlp", ".", "create_pipe", "(", "\"ner\"", ")", "nlp", ".", "add_pipe", "(", "ner", ",", "last", "=", "True", ")", "# otherwise, get it so we can add labels", "else", ":", "ner", "=", "nlp", ".", "get_pipe", "(", "\"ner\"", ")", "# add labels", "for", "_", ",", "annotations", "in", "TRAIN_DATA", ":", "for", "ent", "in", "annotations", ".", "get", "(", "\"entities\"", ")", ":", "ner", ".", "add_label", "(", "ent", "[", "2", "]", ")", "# get names of other pipes to disable them during training", "other_pipes", "=", "[", "pipe", "for", "pipe", "in", "nlp", ".", "pipe_names", "if", "pipe", "!=", "\"ner\"", "]", "with", "nlp", ".", "disable_pipes", "(", "*", "other_pipes", ")", ":", "# only train NER", "# reset and initialize the weights randomly – but only if we're", "# training a new model", "if", "model", "is", "None", ":", "nlp", ".", "begin_training", "(", ")", "for", "itn", "in", "range", "(", "n_iter", ")", ":", "random", ".", "shuffle", "(", "TRAIN_DATA", ")", "losses", "=", "{", "}", "# batch up the examples using spaCy's minibatch", "batches", "=", "minibatch", "(", "TRAIN_DATA", ",", "size", "=", "compounding", "(", "4.0", ",", "32.0", ",", "1.001", ")", ")", "for", "batch", "in", "batches", ":", "texts", ",", "annotations", "=", "zip", "(", "*", "batch", ")", "nlp", ".", "update", "(", "texts", ",", "# batch of texts", "annotations", ",", "# batch of annotations", "drop", "=", "0.5", ",", "# dropout - make it harder to memorise data", "losses", "=", "losses", ",", ")", "print", "(", "\"Losses\"", ",", "losses", ")", "# test the trained model", "for", "text", ",", "_", "in", "TRAIN_DATA", ":", "doc", "=", "nlp", "(", "text", ")", "print", "(", "\"Entities\"", ",", "[", "(", "ent", ".", "text", ",", "ent", ".", "label_", ")", "for", "ent", "in", "doc", ".", "ents", "]", ")", "print", "(", "\"Tokens\"", ",", "[", "(", "t", ".", "text", ",", "t", ".", "ent_type_", ",", "t", ".", "ent_iob", ")", "for", "t", "in", "doc", "]", ")", "# save model to output directory", "if", "output_dir", "is", "not", "None", ":", "output_dir", "=", "Path", "(", "output_dir", ")", "if", "not", "output_dir", ".", "exists", "(", ")", ":", "output_dir", ".", "mkdir", "(", ")", "nlp", ".", "to_disk", "(", "output_dir", ")", "print", "(", "\"Saved model to\"", ",", "output_dir", ")", "# test the saved model", "print", "(", "\"Loading from\"", ",", "output_dir", ")", "nlp2", "=", "spacy", ".", "load", "(", "output_dir", ")", "for", "text", ",", "_", "in", "TRAIN_DATA", ":", "doc", "=", "nlp2", "(", "text", ")", "print", "(", "\"Entities\"", ",", "[", "(", "ent", ".", "text", ",", "ent", ".", "label_", ")", "for", "ent", "in", "doc", ".", "ents", "]", ")", "print", "(", "\"Tokens\"", ",", "[", "(", "t", ".", "text", ",", "t", ".", "ent_type_", ",", "t", ".", "ent_iob", ")", "for", "t", "in", "doc", "]", ")" ]
Load the model, set up the pipeline and train the entity recognizer.
[ "Load", "the", "model", "set", "up", "the", "pipeline", "and", "train", "the", "entity", "recognizer", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/examples/training/train_ner.py#L34-L99
21,240
explosion/spaCy
spacy/cli/pretrain.py
make_update
def make_update(model, docs, optimizer, drop=0.0, objective="L2"): """Perform an update over a single batch of documents. docs (iterable): A batch of `Doc` objects. drop (float): The droput rate. optimizer (callable): An optimizer. RETURNS loss: A float for the loss. """ predictions, backprop = model.begin_update(docs, drop=drop) loss, gradients = get_vectors_loss(model.ops, docs, predictions, objective) backprop(gradients, sgd=optimizer) # Don't want to return a cupy object here # The gradients are modified in-place by the BERT MLM, # so we get an accurate loss return float(loss)
python
def make_update(model, docs, optimizer, drop=0.0, objective="L2"): """Perform an update over a single batch of documents. docs (iterable): A batch of `Doc` objects. drop (float): The droput rate. optimizer (callable): An optimizer. RETURNS loss: A float for the loss. """ predictions, backprop = model.begin_update(docs, drop=drop) loss, gradients = get_vectors_loss(model.ops, docs, predictions, objective) backprop(gradients, sgd=optimizer) # Don't want to return a cupy object here # The gradients are modified in-place by the BERT MLM, # so we get an accurate loss return float(loss)
[ "def", "make_update", "(", "model", ",", "docs", ",", "optimizer", ",", "drop", "=", "0.0", ",", "objective", "=", "\"L2\"", ")", ":", "predictions", ",", "backprop", "=", "model", ".", "begin_update", "(", "docs", ",", "drop", "=", "drop", ")", "loss", ",", "gradients", "=", "get_vectors_loss", "(", "model", ".", "ops", ",", "docs", ",", "predictions", ",", "objective", ")", "backprop", "(", "gradients", ",", "sgd", "=", "optimizer", ")", "# Don't want to return a cupy object here", "# The gradients are modified in-place by the BERT MLM,", "# so we get an accurate loss", "return", "float", "(", "loss", ")" ]
Perform an update over a single batch of documents. docs (iterable): A batch of `Doc` objects. drop (float): The droput rate. optimizer (callable): An optimizer. RETURNS loss: A float for the loss.
[ "Perform", "an", "update", "over", "a", "single", "batch", "of", "documents", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/cli/pretrain.py#L164-L178
21,241
explosion/spaCy
spacy/cli/pretrain.py
get_vectors_loss
def get_vectors_loss(ops, docs, prediction, objective="L2"): """Compute a mean-squared error loss between the documents' vectors and the prediction. Note that this is ripe for customization! We could compute the vectors in some other word, e.g. with an LSTM language model, or use some other type of objective. """ # The simplest way to implement this would be to vstack the # token.vector values, but that's a bit inefficient, especially on GPU. # Instead we fetch the index into the vectors table for each of our tokens, # and look them up all at once. This prevents data copying. ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs]) target = docs[0].vocab.vectors.data[ids] if objective == "L2": d_target = prediction - target loss = (d_target ** 2).sum() elif objective == "cosine": loss, d_target = get_cossim_loss(prediction, target) return loss, d_target
python
def get_vectors_loss(ops, docs, prediction, objective="L2"): """Compute a mean-squared error loss between the documents' vectors and the prediction. Note that this is ripe for customization! We could compute the vectors in some other word, e.g. with an LSTM language model, or use some other type of objective. """ # The simplest way to implement this would be to vstack the # token.vector values, but that's a bit inefficient, especially on GPU. # Instead we fetch the index into the vectors table for each of our tokens, # and look them up all at once. This prevents data copying. ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs]) target = docs[0].vocab.vectors.data[ids] if objective == "L2": d_target = prediction - target loss = (d_target ** 2).sum() elif objective == "cosine": loss, d_target = get_cossim_loss(prediction, target) return loss, d_target
[ "def", "get_vectors_loss", "(", "ops", ",", "docs", ",", "prediction", ",", "objective", "=", "\"L2\"", ")", ":", "# The simplest way to implement this would be to vstack the", "# token.vector values, but that's a bit inefficient, especially on GPU.", "# Instead we fetch the index into the vectors table for each of our tokens,", "# and look them up all at once. This prevents data copying.", "ids", "=", "ops", ".", "flatten", "(", "[", "doc", ".", "to_array", "(", "ID", ")", ".", "ravel", "(", ")", "for", "doc", "in", "docs", "]", ")", "target", "=", "docs", "[", "0", "]", ".", "vocab", ".", "vectors", ".", "data", "[", "ids", "]", "if", "objective", "==", "\"L2\"", ":", "d_target", "=", "prediction", "-", "target", "loss", "=", "(", "d_target", "**", "2", ")", ".", "sum", "(", ")", "elif", "objective", "==", "\"cosine\"", ":", "loss", ",", "d_target", "=", "get_cossim_loss", "(", "prediction", ",", "target", ")", "return", "loss", ",", "d_target" ]
Compute a mean-squared error loss between the documents' vectors and the prediction. Note that this is ripe for customization! We could compute the vectors in some other word, e.g. with an LSTM language model, or use some other type of objective.
[ "Compute", "a", "mean", "-", "squared", "error", "loss", "between", "the", "documents", "vectors", "and", "the", "prediction", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/cli/pretrain.py#L199-L218
21,242
explosion/spaCy
spacy/cli/pretrain.py
_smart_round
def _smart_round(figure, width=10, max_decimal=4): """Round large numbers as integers, smaller numbers as decimals.""" n_digits = len(str(int(figure))) n_decimal = width - (n_digits + 1) if n_decimal <= 1: return str(int(figure)) else: n_decimal = min(n_decimal, max_decimal) format_str = "%." + str(n_decimal) + "f" return format_str % figure
python
def _smart_round(figure, width=10, max_decimal=4): """Round large numbers as integers, smaller numbers as decimals.""" n_digits = len(str(int(figure))) n_decimal = width - (n_digits + 1) if n_decimal <= 1: return str(int(figure)) else: n_decimal = min(n_decimal, max_decimal) format_str = "%." + str(n_decimal) + "f" return format_str % figure
[ "def", "_smart_round", "(", "figure", ",", "width", "=", "10", ",", "max_decimal", "=", "4", ")", ":", "n_digits", "=", "len", "(", "str", "(", "int", "(", "figure", ")", ")", ")", "n_decimal", "=", "width", "-", "(", "n_digits", "+", "1", ")", "if", "n_decimal", "<=", "1", ":", "return", "str", "(", "int", "(", "figure", ")", ")", "else", ":", "n_decimal", "=", "min", "(", "n_decimal", ",", "max_decimal", ")", "format_str", "=", "\"%.\"", "+", "str", "(", "n_decimal", ")", "+", "\"f\"", "return", "format_str", "%", "figure" ]
Round large numbers as integers, smaller numbers as decimals.
[ "Round", "large", "numbers", "as", "integers", "smaller", "numbers", "as", "decimals", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/cli/pretrain.py#L295-L304
21,243
explosion/spaCy
spacy/lang/el/syntax_iterators.py
noun_chunks
def noun_chunks(obj): """ Detect base noun phrases. Works on both Doc and Span. """ # It follows the logic of the noun chunks finder of English language, # adjusted to some Greek language special characteristics. # obj tag corrects some DEP tagger mistakes. # Further improvement of the models will eliminate the need for this tag. labels = ["nsubj", "obj", "iobj", "appos", "ROOT", "obl"] doc = obj.doc # Ensure works on both Doc and Span. np_deps = [doc.vocab.strings.add(label) for label in labels] conj = doc.vocab.strings.add("conj") nmod = doc.vocab.strings.add("nmod") np_label = doc.vocab.strings.add("NP") seen = set() for i, word in enumerate(obj): if word.pos not in (NOUN, PROPN, PRON): continue # Prevent nested chunks from being produced if word.i in seen: continue if word.dep in np_deps: if any(w.i in seen for w in word.subtree): continue flag = False if word.pos == NOUN: # check for patterns such as γραμμή παραγωγής for potential_nmod in word.rights: if potential_nmod.dep == nmod: seen.update( j for j in range(word.left_edge.i, potential_nmod.i + 1) ) yield word.left_edge.i, potential_nmod.i + 1, np_label flag = True break if flag is False: seen.update(j for j in range(word.left_edge.i, word.i + 1)) yield word.left_edge.i, word.i + 1, np_label elif word.dep == conj: # covers the case: έχει όμορφα και έξυπνα παιδιά head = word.head while head.dep == conj and head.head.i < head.i: head = head.head # If the head is an NP, and we're coordinated to it, we're an NP if head.dep in np_deps: if any(w.i in seen for w in word.subtree): continue seen.update(j for j in range(word.left_edge.i, word.i + 1)) yield word.left_edge.i, word.i + 1, np_label
python
def noun_chunks(obj): """ Detect base noun phrases. Works on both Doc and Span. """ # It follows the logic of the noun chunks finder of English language, # adjusted to some Greek language special characteristics. # obj tag corrects some DEP tagger mistakes. # Further improvement of the models will eliminate the need for this tag. labels = ["nsubj", "obj", "iobj", "appos", "ROOT", "obl"] doc = obj.doc # Ensure works on both Doc and Span. np_deps = [doc.vocab.strings.add(label) for label in labels] conj = doc.vocab.strings.add("conj") nmod = doc.vocab.strings.add("nmod") np_label = doc.vocab.strings.add("NP") seen = set() for i, word in enumerate(obj): if word.pos not in (NOUN, PROPN, PRON): continue # Prevent nested chunks from being produced if word.i in seen: continue if word.dep in np_deps: if any(w.i in seen for w in word.subtree): continue flag = False if word.pos == NOUN: # check for patterns such as γραμμή παραγωγής for potential_nmod in word.rights: if potential_nmod.dep == nmod: seen.update( j for j in range(word.left_edge.i, potential_nmod.i + 1) ) yield word.left_edge.i, potential_nmod.i + 1, np_label flag = True break if flag is False: seen.update(j for j in range(word.left_edge.i, word.i + 1)) yield word.left_edge.i, word.i + 1, np_label elif word.dep == conj: # covers the case: έχει όμορφα και έξυπνα παιδιά head = word.head while head.dep == conj and head.head.i < head.i: head = head.head # If the head is an NP, and we're coordinated to it, we're an NP if head.dep in np_deps: if any(w.i in seen for w in word.subtree): continue seen.update(j for j in range(word.left_edge.i, word.i + 1)) yield word.left_edge.i, word.i + 1, np_label
[ "def", "noun_chunks", "(", "obj", ")", ":", "# It follows the logic of the noun chunks finder of English language,", "# adjusted to some Greek language special characteristics.", "# obj tag corrects some DEP tagger mistakes.", "# Further improvement of the models will eliminate the need for this tag.", "labels", "=", "[", "\"nsubj\"", ",", "\"obj\"", ",", "\"iobj\"", ",", "\"appos\"", ",", "\"ROOT\"", ",", "\"obl\"", "]", "doc", "=", "obj", ".", "doc", "# Ensure works on both Doc and Span.", "np_deps", "=", "[", "doc", ".", "vocab", ".", "strings", ".", "add", "(", "label", ")", "for", "label", "in", "labels", "]", "conj", "=", "doc", ".", "vocab", ".", "strings", ".", "add", "(", "\"conj\"", ")", "nmod", "=", "doc", ".", "vocab", ".", "strings", ".", "add", "(", "\"nmod\"", ")", "np_label", "=", "doc", ".", "vocab", ".", "strings", ".", "add", "(", "\"NP\"", ")", "seen", "=", "set", "(", ")", "for", "i", ",", "word", "in", "enumerate", "(", "obj", ")", ":", "if", "word", ".", "pos", "not", "in", "(", "NOUN", ",", "PROPN", ",", "PRON", ")", ":", "continue", "# Prevent nested chunks from being produced", "if", "word", ".", "i", "in", "seen", ":", "continue", "if", "word", ".", "dep", "in", "np_deps", ":", "if", "any", "(", "w", ".", "i", "in", "seen", "for", "w", "in", "word", ".", "subtree", ")", ":", "continue", "flag", "=", "False", "if", "word", ".", "pos", "==", "NOUN", ":", "# check for patterns such as γραμμή παραγωγής", "for", "potential_nmod", "in", "word", ".", "rights", ":", "if", "potential_nmod", ".", "dep", "==", "nmod", ":", "seen", ".", "update", "(", "j", "for", "j", "in", "range", "(", "word", ".", "left_edge", ".", "i", ",", "potential_nmod", ".", "i", "+", "1", ")", ")", "yield", "word", ".", "left_edge", ".", "i", ",", "potential_nmod", ".", "i", "+", "1", ",", "np_label", "flag", "=", "True", "break", "if", "flag", "is", "False", ":", "seen", ".", "update", "(", "j", "for", "j", "in", "range", "(", "word", ".", "left_edge", ".", "i", ",", "word", ".", "i", "+", "1", ")", ")", "yield", "word", ".", "left_edge", ".", "i", ",", "word", ".", "i", "+", "1", ",", "np_label", "elif", "word", ".", "dep", "==", "conj", ":", "# covers the case: έχει όμορφα και έξυπνα παιδιά", "head", "=", "word", ".", "head", "while", "head", ".", "dep", "==", "conj", "and", "head", ".", "head", ".", "i", "<", "head", ".", "i", ":", "head", "=", "head", ".", "head", "# If the head is an NP, and we're coordinated to it, we're an NP", "if", "head", ".", "dep", "in", "np_deps", ":", "if", "any", "(", "w", ".", "i", "in", "seen", "for", "w", "in", "word", ".", "subtree", ")", ":", "continue", "seen", ".", "update", "(", "j", "for", "j", "in", "range", "(", "word", ".", "left_edge", ".", "i", ",", "word", ".", "i", "+", "1", ")", ")", "yield", "word", ".", "left_edge", ".", "i", ",", "word", ".", "i", "+", "1", ",", "np_label" ]
Detect base noun phrases. Works on both Doc and Span.
[ "Detect", "base", "noun", "phrases", ".", "Works", "on", "both", "Doc", "and", "Span", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/lang/el/syntax_iterators.py#L7-L55
21,244
explosion/spaCy
spacy/tokens/underscore.py
get_ext_args
def get_ext_args(**kwargs): """Validate and convert arguments. Reused in Doc, Token and Span.""" default = kwargs.get("default") getter = kwargs.get("getter") setter = kwargs.get("setter") method = kwargs.get("method") if getter is None and setter is not None: raise ValueError(Errors.E089) valid_opts = ("default" in kwargs, method is not None, getter is not None) nr_defined = sum(t is True for t in valid_opts) if nr_defined != 1: raise ValueError(Errors.E083.format(nr_defined=nr_defined)) if setter is not None and not hasattr(setter, "__call__"): raise ValueError(Errors.E091.format(name="setter", value=repr(setter))) if getter is not None and not hasattr(getter, "__call__"): raise ValueError(Errors.E091.format(name="getter", value=repr(getter))) if method is not None and not hasattr(method, "__call__"): raise ValueError(Errors.E091.format(name="method", value=repr(method))) return (default, method, getter, setter)
python
def get_ext_args(**kwargs): """Validate and convert arguments. Reused in Doc, Token and Span.""" default = kwargs.get("default") getter = kwargs.get("getter") setter = kwargs.get("setter") method = kwargs.get("method") if getter is None and setter is not None: raise ValueError(Errors.E089) valid_opts = ("default" in kwargs, method is not None, getter is not None) nr_defined = sum(t is True for t in valid_opts) if nr_defined != 1: raise ValueError(Errors.E083.format(nr_defined=nr_defined)) if setter is not None and not hasattr(setter, "__call__"): raise ValueError(Errors.E091.format(name="setter", value=repr(setter))) if getter is not None and not hasattr(getter, "__call__"): raise ValueError(Errors.E091.format(name="getter", value=repr(getter))) if method is not None and not hasattr(method, "__call__"): raise ValueError(Errors.E091.format(name="method", value=repr(method))) return (default, method, getter, setter)
[ "def", "get_ext_args", "(", "*", "*", "kwargs", ")", ":", "default", "=", "kwargs", ".", "get", "(", "\"default\"", ")", "getter", "=", "kwargs", ".", "get", "(", "\"getter\"", ")", "setter", "=", "kwargs", ".", "get", "(", "\"setter\"", ")", "method", "=", "kwargs", ".", "get", "(", "\"method\"", ")", "if", "getter", "is", "None", "and", "setter", "is", "not", "None", ":", "raise", "ValueError", "(", "Errors", ".", "E089", ")", "valid_opts", "=", "(", "\"default\"", "in", "kwargs", ",", "method", "is", "not", "None", ",", "getter", "is", "not", "None", ")", "nr_defined", "=", "sum", "(", "t", "is", "True", "for", "t", "in", "valid_opts", ")", "if", "nr_defined", "!=", "1", ":", "raise", "ValueError", "(", "Errors", ".", "E083", ".", "format", "(", "nr_defined", "=", "nr_defined", ")", ")", "if", "setter", "is", "not", "None", "and", "not", "hasattr", "(", "setter", ",", "\"__call__\"", ")", ":", "raise", "ValueError", "(", "Errors", ".", "E091", ".", "format", "(", "name", "=", "\"setter\"", ",", "value", "=", "repr", "(", "setter", ")", ")", ")", "if", "getter", "is", "not", "None", "and", "not", "hasattr", "(", "getter", ",", "\"__call__\"", ")", ":", "raise", "ValueError", "(", "Errors", ".", "E091", ".", "format", "(", "name", "=", "\"getter\"", ",", "value", "=", "repr", "(", "getter", ")", ")", ")", "if", "method", "is", "not", "None", "and", "not", "hasattr", "(", "method", ",", "\"__call__\"", ")", ":", "raise", "ValueError", "(", "Errors", ".", "E091", ".", "format", "(", "name", "=", "\"method\"", ",", "value", "=", "repr", "(", "method", ")", ")", ")", "return", "(", "default", ",", "method", ",", "getter", ",", "setter", ")" ]
Validate and convert arguments. Reused in Doc, Token and Span.
[ "Validate", "and", "convert", "arguments", ".", "Reused", "in", "Doc", "Token", "and", "Span", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/tokens/underscore.py#L69-L87
21,245
explosion/spaCy
setup.py
is_new_osx
def is_new_osx(): """Check whether we're on OSX >= 10.10""" name = distutils.util.get_platform() if sys.platform != "darwin": return False elif name.startswith("macosx-10"): minor_version = int(name.split("-")[1].split(".")[1]) if minor_version >= 7: return True else: return False else: return False
python
def is_new_osx(): """Check whether we're on OSX >= 10.10""" name = distutils.util.get_platform() if sys.platform != "darwin": return False elif name.startswith("macosx-10"): minor_version = int(name.split("-")[1].split(".")[1]) if minor_version >= 7: return True else: return False else: return False
[ "def", "is_new_osx", "(", ")", ":", "name", "=", "distutils", ".", "util", ".", "get_platform", "(", ")", "if", "sys", ".", "platform", "!=", "\"darwin\"", ":", "return", "False", "elif", "name", ".", "startswith", "(", "\"macosx-10\"", ")", ":", "minor_version", "=", "int", "(", "name", ".", "split", "(", "\"-\"", ")", "[", "1", "]", ".", "split", "(", "\".\"", ")", "[", "1", "]", ")", "if", "minor_version", ">=", "7", ":", "return", "True", "else", ":", "return", "False", "else", ":", "return", "False" ]
Check whether we're on OSX >= 10.10
[ "Check", "whether", "we", "re", "on", "OSX", ">", "=", "10", ".", "10" ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/setup.py#L15-L27
21,246
explosion/spaCy
examples/training/ner_multitask_objective.py
get_position_label
def get_position_label(i, words, tags, heads, labels, ents): """Return labels indicating the position of the word in the document. """ if len(words) < 20: return "short-doc" elif i == 0: return "first-word" elif i < 10: return "early-word" elif i < 20: return "mid-word" elif i == len(words) - 1: return "last-word" else: return "late-word"
python
def get_position_label(i, words, tags, heads, labels, ents): """Return labels indicating the position of the word in the document. """ if len(words) < 20: return "short-doc" elif i == 0: return "first-word" elif i < 10: return "early-word" elif i < 20: return "mid-word" elif i == len(words) - 1: return "last-word" else: return "late-word"
[ "def", "get_position_label", "(", "i", ",", "words", ",", "tags", ",", "heads", ",", "labels", ",", "ents", ")", ":", "if", "len", "(", "words", ")", "<", "20", ":", "return", "\"short-doc\"", "elif", "i", "==", "0", ":", "return", "\"first-word\"", "elif", "i", "<", "10", ":", "return", "\"early-word\"", "elif", "i", "<", "20", ":", "return", "\"mid-word\"", "elif", "i", "==", "len", "(", "words", ")", "-", "1", ":", "return", "\"last-word\"", "else", ":", "return", "\"late-word\"" ]
Return labels indicating the position of the word in the document.
[ "Return", "labels", "indicating", "the", "position", "of", "the", "word", "in", "the", "document", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/examples/training/ner_multitask_objective.py#L36-L50
21,247
explosion/spaCy
bin/ud/run_eval.py
load_model
def load_model(modelname, add_sentencizer=False): """ Load a specific spaCy model """ loading_start = time.time() nlp = spacy.load(modelname) if add_sentencizer: nlp.add_pipe(nlp.create_pipe('sentencizer')) loading_end = time.time() loading_time = loading_end - loading_start if add_sentencizer: return nlp, loading_time, modelname + '_sentencizer' return nlp, loading_time, modelname
python
def load_model(modelname, add_sentencizer=False): """ Load a specific spaCy model """ loading_start = time.time() nlp = spacy.load(modelname) if add_sentencizer: nlp.add_pipe(nlp.create_pipe('sentencizer')) loading_end = time.time() loading_time = loading_end - loading_start if add_sentencizer: return nlp, loading_time, modelname + '_sentencizer' return nlp, loading_time, modelname
[ "def", "load_model", "(", "modelname", ",", "add_sentencizer", "=", "False", ")", ":", "loading_start", "=", "time", ".", "time", "(", ")", "nlp", "=", "spacy", ".", "load", "(", "modelname", ")", "if", "add_sentencizer", ":", "nlp", ".", "add_pipe", "(", "nlp", ".", "create_pipe", "(", "'sentencizer'", ")", ")", "loading_end", "=", "time", ".", "time", "(", ")", "loading_time", "=", "loading_end", "-", "loading_start", "if", "add_sentencizer", ":", "return", "nlp", ",", "loading_time", ",", "modelname", "+", "'_sentencizer'", "return", "nlp", ",", "loading_time", ",", "modelname" ]
Load a specific spaCy model
[ "Load", "a", "specific", "spaCy", "model" ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/bin/ud/run_eval.py#L34-L44
21,248
explosion/spaCy
bin/ud/run_eval.py
load_default_model_sentencizer
def load_default_model_sentencizer(lang): """ Load a generic spaCy model and add the sentencizer for sentence tokenization""" loading_start = time.time() lang_class = get_lang_class(lang) nlp = lang_class() nlp.add_pipe(nlp.create_pipe('sentencizer')) loading_end = time.time() loading_time = loading_end - loading_start return nlp, loading_time, lang + "_default_" + 'sentencizer'
python
def load_default_model_sentencizer(lang): """ Load a generic spaCy model and add the sentencizer for sentence tokenization""" loading_start = time.time() lang_class = get_lang_class(lang) nlp = lang_class() nlp.add_pipe(nlp.create_pipe('sentencizer')) loading_end = time.time() loading_time = loading_end - loading_start return nlp, loading_time, lang + "_default_" + 'sentencizer'
[ "def", "load_default_model_sentencizer", "(", "lang", ")", ":", "loading_start", "=", "time", ".", "time", "(", ")", "lang_class", "=", "get_lang_class", "(", "lang", ")", "nlp", "=", "lang_class", "(", ")", "nlp", ".", "add_pipe", "(", "nlp", ".", "create_pipe", "(", "'sentencizer'", ")", ")", "loading_end", "=", "time", ".", "time", "(", ")", "loading_time", "=", "loading_end", "-", "loading_start", "return", "nlp", ",", "loading_time", ",", "lang", "+", "\"_default_\"", "+", "'sentencizer'" ]
Load a generic spaCy model and add the sentencizer for sentence tokenization
[ "Load", "a", "generic", "spaCy", "model", "and", "add", "the", "sentencizer", "for", "sentence", "tokenization" ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/bin/ud/run_eval.py#L47-L55
21,249
explosion/spaCy
bin/ud/run_eval.py
get_freq_tuples
def get_freq_tuples(my_list, print_total_threshold): """ Turn a list of errors into frequency-sorted tuples thresholded by a certain total number """ d = {} for token in my_list: d.setdefault(token, 0) d[token] += 1 return sorted(d.items(), key=operator.itemgetter(1), reverse=True)[:print_total_threshold]
python
def get_freq_tuples(my_list, print_total_threshold): """ Turn a list of errors into frequency-sorted tuples thresholded by a certain total number """ d = {} for token in my_list: d.setdefault(token, 0) d[token] += 1 return sorted(d.items(), key=operator.itemgetter(1), reverse=True)[:print_total_threshold]
[ "def", "get_freq_tuples", "(", "my_list", ",", "print_total_threshold", ")", ":", "d", "=", "{", "}", "for", "token", "in", "my_list", ":", "d", ".", "setdefault", "(", "token", ",", "0", ")", "d", "[", "token", "]", "+=", "1", "return", "sorted", "(", "d", ".", "items", "(", ")", ",", "key", "=", "operator", ".", "itemgetter", "(", "1", ")", ",", "reverse", "=", "True", ")", "[", ":", "print_total_threshold", "]" ]
Turn a list of errors into frequency-sorted tuples thresholded by a certain total number
[ "Turn", "a", "list", "of", "errors", "into", "frequency", "-", "sorted", "tuples", "thresholded", "by", "a", "certain", "total", "number" ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/bin/ud/run_eval.py#L62-L68
21,250
explosion/spaCy
bin/ud/run_eval.py
_contains_blinded_text
def _contains_blinded_text(stats_xml): """ Heuristic to determine whether the treebank has blinded texts or not """ tree = ET.parse(stats_xml) root = tree.getroot() total_tokens = int(root.find('size/total/tokens').text) unique_lemmas = int(root.find('lemmas').get('unique')) # assume the corpus is largely blinded when there are less than 1% unique tokens return (unique_lemmas / total_tokens) < 0.01
python
def _contains_blinded_text(stats_xml): """ Heuristic to determine whether the treebank has blinded texts or not """ tree = ET.parse(stats_xml) root = tree.getroot() total_tokens = int(root.find('size/total/tokens').text) unique_lemmas = int(root.find('lemmas').get('unique')) # assume the corpus is largely blinded when there are less than 1% unique tokens return (unique_lemmas / total_tokens) < 0.01
[ "def", "_contains_blinded_text", "(", "stats_xml", ")", ":", "tree", "=", "ET", ".", "parse", "(", "stats_xml", ")", "root", "=", "tree", ".", "getroot", "(", ")", "total_tokens", "=", "int", "(", "root", ".", "find", "(", "'size/total/tokens'", ")", ".", "text", ")", "unique_lemmas", "=", "int", "(", "root", ".", "find", "(", "'lemmas'", ")", ".", "get", "(", "'unique'", ")", ")", "# assume the corpus is largely blinded when there are less than 1% unique tokens", "return", "(", "unique_lemmas", "/", "total_tokens", ")", "<", "0.01" ]
Heuristic to determine whether the treebank has blinded texts or not
[ "Heuristic", "to", "determine", "whether", "the", "treebank", "has", "blinded", "texts", "or", "not" ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/bin/ud/run_eval.py#L71-L79
21,251
explosion/spaCy
bin/ud/run_eval.py
fetch_all_treebanks
def fetch_all_treebanks(ud_dir, languages, corpus, best_per_language): """" Fetch the txt files for all treebanks for a given set of languages """ all_treebanks = dict() treebank_size = dict() for l in languages: all_treebanks[l] = [] treebank_size[l] = 0 for treebank_dir in ud_dir.iterdir(): if treebank_dir.is_dir(): for txt_path in treebank_dir.iterdir(): if txt_path.name.endswith('-ud-' + corpus + '.txt'): file_lang = txt_path.name.split('_')[0] if file_lang in languages: gold_path = treebank_dir / txt_path.name.replace('.txt', '.conllu') stats_xml = treebank_dir / "stats.xml" # ignore treebanks where the texts are not publicly available if not _contains_blinded_text(stats_xml): if not best_per_language: all_treebanks[file_lang].append(txt_path) # check the tokens in the gold annotation to keep only the biggest treebank per language else: with gold_path.open(mode='r', encoding='utf-8') as gold_file: gold_ud = conll17_ud_eval.load_conllu(gold_file) gold_tokens = len(gold_ud.tokens) if treebank_size[file_lang] < gold_tokens: all_treebanks[file_lang] = [txt_path] treebank_size[file_lang] = gold_tokens return all_treebanks
python
def fetch_all_treebanks(ud_dir, languages, corpus, best_per_language): """" Fetch the txt files for all treebanks for a given set of languages """ all_treebanks = dict() treebank_size = dict() for l in languages: all_treebanks[l] = [] treebank_size[l] = 0 for treebank_dir in ud_dir.iterdir(): if treebank_dir.is_dir(): for txt_path in treebank_dir.iterdir(): if txt_path.name.endswith('-ud-' + corpus + '.txt'): file_lang = txt_path.name.split('_')[0] if file_lang in languages: gold_path = treebank_dir / txt_path.name.replace('.txt', '.conllu') stats_xml = treebank_dir / "stats.xml" # ignore treebanks where the texts are not publicly available if not _contains_blinded_text(stats_xml): if not best_per_language: all_treebanks[file_lang].append(txt_path) # check the tokens in the gold annotation to keep only the biggest treebank per language else: with gold_path.open(mode='r', encoding='utf-8') as gold_file: gold_ud = conll17_ud_eval.load_conllu(gold_file) gold_tokens = len(gold_ud.tokens) if treebank_size[file_lang] < gold_tokens: all_treebanks[file_lang] = [txt_path] treebank_size[file_lang] = gold_tokens return all_treebanks
[ "def", "fetch_all_treebanks", "(", "ud_dir", ",", "languages", ",", "corpus", ",", "best_per_language", ")", ":", "all_treebanks", "=", "dict", "(", ")", "treebank_size", "=", "dict", "(", ")", "for", "l", "in", "languages", ":", "all_treebanks", "[", "l", "]", "=", "[", "]", "treebank_size", "[", "l", "]", "=", "0", "for", "treebank_dir", "in", "ud_dir", ".", "iterdir", "(", ")", ":", "if", "treebank_dir", ".", "is_dir", "(", ")", ":", "for", "txt_path", "in", "treebank_dir", ".", "iterdir", "(", ")", ":", "if", "txt_path", ".", "name", ".", "endswith", "(", "'-ud-'", "+", "corpus", "+", "'.txt'", ")", ":", "file_lang", "=", "txt_path", ".", "name", ".", "split", "(", "'_'", ")", "[", "0", "]", "if", "file_lang", "in", "languages", ":", "gold_path", "=", "treebank_dir", "/", "txt_path", ".", "name", ".", "replace", "(", "'.txt'", ",", "'.conllu'", ")", "stats_xml", "=", "treebank_dir", "/", "\"stats.xml\"", "# ignore treebanks where the texts are not publicly available", "if", "not", "_contains_blinded_text", "(", "stats_xml", ")", ":", "if", "not", "best_per_language", ":", "all_treebanks", "[", "file_lang", "]", ".", "append", "(", "txt_path", ")", "# check the tokens in the gold annotation to keep only the biggest treebank per language", "else", ":", "with", "gold_path", ".", "open", "(", "mode", "=", "'r'", ",", "encoding", "=", "'utf-8'", ")", "as", "gold_file", ":", "gold_ud", "=", "conll17_ud_eval", ".", "load_conllu", "(", "gold_file", ")", "gold_tokens", "=", "len", "(", "gold_ud", ".", "tokens", ")", "if", "treebank_size", "[", "file_lang", "]", "<", "gold_tokens", ":", "all_treebanks", "[", "file_lang", "]", "=", "[", "txt_path", "]", "treebank_size", "[", "file_lang", "]", "=", "gold_tokens", "return", "all_treebanks" ]
Fetch the txt files for all treebanks for a given set of languages
[ "Fetch", "the", "txt", "files", "for", "all", "treebanks", "for", "a", "given", "set", "of", "languages" ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/bin/ud/run_eval.py#L82-L111
21,252
explosion/spaCy
bin/ud/run_eval.py
run_all_evals
def run_all_evals(models, treebanks, out_file, check_parse, print_freq_tasks): """" Run an evaluation for each language with its specified models and treebanks """ print_header = True for tb_lang, treebank_list in treebanks.items(): print() print("Language", tb_lang) for text_path in treebank_list: print(" Evaluating on", text_path) gold_path = text_path.parent / (text_path.stem + '.conllu') print(" Gold data from ", gold_path) # nested try blocks to ensure the code can continue with the next iteration after a failure try: with gold_path.open(mode='r', encoding='utf-8') as gold_file: gold_ud = conll17_ud_eval.load_conllu(gold_file) for nlp, nlp_loading_time, nlp_name in models[tb_lang]: try: print(" Benchmarking", nlp_name) tmp_output_path = text_path.parent / str('tmp_' + nlp_name + '.conllu') run_single_eval(nlp, nlp_loading_time, nlp_name, text_path, gold_ud, tmp_output_path, out_file, print_header, check_parse, print_freq_tasks) print_header = False except Exception as e: print(" Ran into trouble: ", str(e)) except Exception as e: print(" Ran into trouble: ", str(e))
python
def run_all_evals(models, treebanks, out_file, check_parse, print_freq_tasks): """" Run an evaluation for each language with its specified models and treebanks """ print_header = True for tb_lang, treebank_list in treebanks.items(): print() print("Language", tb_lang) for text_path in treebank_list: print(" Evaluating on", text_path) gold_path = text_path.parent / (text_path.stem + '.conllu') print(" Gold data from ", gold_path) # nested try blocks to ensure the code can continue with the next iteration after a failure try: with gold_path.open(mode='r', encoding='utf-8') as gold_file: gold_ud = conll17_ud_eval.load_conllu(gold_file) for nlp, nlp_loading_time, nlp_name in models[tb_lang]: try: print(" Benchmarking", nlp_name) tmp_output_path = text_path.parent / str('tmp_' + nlp_name + '.conllu') run_single_eval(nlp, nlp_loading_time, nlp_name, text_path, gold_ud, tmp_output_path, out_file, print_header, check_parse, print_freq_tasks) print_header = False except Exception as e: print(" Ran into trouble: ", str(e)) except Exception as e: print(" Ran into trouble: ", str(e))
[ "def", "run_all_evals", "(", "models", ",", "treebanks", ",", "out_file", ",", "check_parse", ",", "print_freq_tasks", ")", ":", "print_header", "=", "True", "for", "tb_lang", ",", "treebank_list", "in", "treebanks", ".", "items", "(", ")", ":", "print", "(", ")", "print", "(", "\"Language\"", ",", "tb_lang", ")", "for", "text_path", "in", "treebank_list", ":", "print", "(", "\" Evaluating on\"", ",", "text_path", ")", "gold_path", "=", "text_path", ".", "parent", "/", "(", "text_path", ".", "stem", "+", "'.conllu'", ")", "print", "(", "\" Gold data from \"", ",", "gold_path", ")", "# nested try blocks to ensure the code can continue with the next iteration after a failure", "try", ":", "with", "gold_path", ".", "open", "(", "mode", "=", "'r'", ",", "encoding", "=", "'utf-8'", ")", "as", "gold_file", ":", "gold_ud", "=", "conll17_ud_eval", ".", "load_conllu", "(", "gold_file", ")", "for", "nlp", ",", "nlp_loading_time", ",", "nlp_name", "in", "models", "[", "tb_lang", "]", ":", "try", ":", "print", "(", "\" Benchmarking\"", ",", "nlp_name", ")", "tmp_output_path", "=", "text_path", ".", "parent", "/", "str", "(", "'tmp_'", "+", "nlp_name", "+", "'.conllu'", ")", "run_single_eval", "(", "nlp", ",", "nlp_loading_time", ",", "nlp_name", ",", "text_path", ",", "gold_ud", ",", "tmp_output_path", ",", "out_file", ",", "print_header", ",", "check_parse", ",", "print_freq_tasks", ")", "print_header", "=", "False", "except", "Exception", "as", "e", ":", "print", "(", "\" Ran into trouble: \"", ",", "str", "(", "e", ")", ")", "except", "Exception", "as", "e", ":", "print", "(", "\" Ran into trouble: \"", ",", "str", "(", "e", ")", ")" ]
Run an evaluation for each language with its specified models and treebanks
[ "Run", "an", "evaluation", "for", "each", "language", "with", "its", "specified", "models", "and", "treebanks" ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/bin/ud/run_eval.py#L184-L212
21,253
explosion/spaCy
bin/ud/run_eval.py
main
def main(out_path, ud_dir, check_parse=False, langs=ALL_LANGUAGES, exclude_trained_models=False, exclude_multi=False, hide_freq=False, corpus='train', best_per_language=False): """" Assemble all treebanks and models to run evaluations with. When setting check_parse to True, the default models will not be evaluated as they don't have parsing functionality """ languages = [lang.strip() for lang in langs.split(",")] print_freq_tasks = [] if not hide_freq: print_freq_tasks = ['Tokens'] # fetching all relevant treebank from the directory treebanks = fetch_all_treebanks(ud_dir, languages, corpus, best_per_language) print() print("Loading all relevant models for", languages) models = dict() # multi-lang model multi = None if not exclude_multi and not check_parse: multi = load_model('xx_ent_wiki_sm', add_sentencizer=True) # initialize all models with the multi-lang model for lang in languages: models[lang] = [multi] if multi else [] # add default models if we don't want to evaluate parsing info if not check_parse: # Norwegian is 'nb' in spaCy but 'no' in the UD corpora if lang == 'no': models['no'].append(load_default_model_sentencizer('nb')) else: models[lang].append(load_default_model_sentencizer(lang)) # language-specific trained models if not exclude_trained_models: if 'de' in models: models['de'].append(load_model('de_core_news_sm')) if 'es' in models: models['es'].append(load_model('es_core_news_sm')) models['es'].append(load_model('es_core_news_md')) if 'pt' in models: models['pt'].append(load_model('pt_core_news_sm')) if 'it' in models: models['it'].append(load_model('it_core_news_sm')) if 'nl' in models: models['nl'].append(load_model('nl_core_news_sm')) if 'en' in models: models['en'].append(load_model('en_core_web_sm')) models['en'].append(load_model('en_core_web_md')) models['en'].append(load_model('en_core_web_lg')) if 'fr' in models: models['fr'].append(load_model('fr_core_news_sm')) models['fr'].append(load_model('fr_core_news_md')) with out_path.open(mode='w', encoding='utf-8') as out_file: run_all_evals(models, treebanks, out_file, check_parse, print_freq_tasks)
python
def main(out_path, ud_dir, check_parse=False, langs=ALL_LANGUAGES, exclude_trained_models=False, exclude_multi=False, hide_freq=False, corpus='train', best_per_language=False): """" Assemble all treebanks and models to run evaluations with. When setting check_parse to True, the default models will not be evaluated as they don't have parsing functionality """ languages = [lang.strip() for lang in langs.split(",")] print_freq_tasks = [] if not hide_freq: print_freq_tasks = ['Tokens'] # fetching all relevant treebank from the directory treebanks = fetch_all_treebanks(ud_dir, languages, corpus, best_per_language) print() print("Loading all relevant models for", languages) models = dict() # multi-lang model multi = None if not exclude_multi and not check_parse: multi = load_model('xx_ent_wiki_sm', add_sentencizer=True) # initialize all models with the multi-lang model for lang in languages: models[lang] = [multi] if multi else [] # add default models if we don't want to evaluate parsing info if not check_parse: # Norwegian is 'nb' in spaCy but 'no' in the UD corpora if lang == 'no': models['no'].append(load_default_model_sentencizer('nb')) else: models[lang].append(load_default_model_sentencizer(lang)) # language-specific trained models if not exclude_trained_models: if 'de' in models: models['de'].append(load_model('de_core_news_sm')) if 'es' in models: models['es'].append(load_model('es_core_news_sm')) models['es'].append(load_model('es_core_news_md')) if 'pt' in models: models['pt'].append(load_model('pt_core_news_sm')) if 'it' in models: models['it'].append(load_model('it_core_news_sm')) if 'nl' in models: models['nl'].append(load_model('nl_core_news_sm')) if 'en' in models: models['en'].append(load_model('en_core_web_sm')) models['en'].append(load_model('en_core_web_md')) models['en'].append(load_model('en_core_web_lg')) if 'fr' in models: models['fr'].append(load_model('fr_core_news_sm')) models['fr'].append(load_model('fr_core_news_md')) with out_path.open(mode='w', encoding='utf-8') as out_file: run_all_evals(models, treebanks, out_file, check_parse, print_freq_tasks)
[ "def", "main", "(", "out_path", ",", "ud_dir", ",", "check_parse", "=", "False", ",", "langs", "=", "ALL_LANGUAGES", ",", "exclude_trained_models", "=", "False", ",", "exclude_multi", "=", "False", ",", "hide_freq", "=", "False", ",", "corpus", "=", "'train'", ",", "best_per_language", "=", "False", ")", ":", "languages", "=", "[", "lang", ".", "strip", "(", ")", "for", "lang", "in", "langs", ".", "split", "(", "\",\"", ")", "]", "print_freq_tasks", "=", "[", "]", "if", "not", "hide_freq", ":", "print_freq_tasks", "=", "[", "'Tokens'", "]", "# fetching all relevant treebank from the directory", "treebanks", "=", "fetch_all_treebanks", "(", "ud_dir", ",", "languages", ",", "corpus", ",", "best_per_language", ")", "print", "(", ")", "print", "(", "\"Loading all relevant models for\"", ",", "languages", ")", "models", "=", "dict", "(", ")", "# multi-lang model", "multi", "=", "None", "if", "not", "exclude_multi", "and", "not", "check_parse", ":", "multi", "=", "load_model", "(", "'xx_ent_wiki_sm'", ",", "add_sentencizer", "=", "True", ")", "# initialize all models with the multi-lang model", "for", "lang", "in", "languages", ":", "models", "[", "lang", "]", "=", "[", "multi", "]", "if", "multi", "else", "[", "]", "# add default models if we don't want to evaluate parsing info", "if", "not", "check_parse", ":", "# Norwegian is 'nb' in spaCy but 'no' in the UD corpora", "if", "lang", "==", "'no'", ":", "models", "[", "'no'", "]", ".", "append", "(", "load_default_model_sentencizer", "(", "'nb'", ")", ")", "else", ":", "models", "[", "lang", "]", ".", "append", "(", "load_default_model_sentencizer", "(", "lang", ")", ")", "# language-specific trained models", "if", "not", "exclude_trained_models", ":", "if", "'de'", "in", "models", ":", "models", "[", "'de'", "]", ".", "append", "(", "load_model", "(", "'de_core_news_sm'", ")", ")", "if", "'es'", "in", "models", ":", "models", "[", "'es'", "]", ".", "append", "(", "load_model", "(", "'es_core_news_sm'", ")", ")", "models", "[", "'es'", "]", ".", "append", "(", "load_model", "(", "'es_core_news_md'", ")", ")", "if", "'pt'", "in", "models", ":", "models", "[", "'pt'", "]", ".", "append", "(", "load_model", "(", "'pt_core_news_sm'", ")", ")", "if", "'it'", "in", "models", ":", "models", "[", "'it'", "]", ".", "append", "(", "load_model", "(", "'it_core_news_sm'", ")", ")", "if", "'nl'", "in", "models", ":", "models", "[", "'nl'", "]", ".", "append", "(", "load_model", "(", "'nl_core_news_sm'", ")", ")", "if", "'en'", "in", "models", ":", "models", "[", "'en'", "]", ".", "append", "(", "load_model", "(", "'en_core_web_sm'", ")", ")", "models", "[", "'en'", "]", ".", "append", "(", "load_model", "(", "'en_core_web_md'", ")", ")", "models", "[", "'en'", "]", ".", "append", "(", "load_model", "(", "'en_core_web_lg'", ")", ")", "if", "'fr'", "in", "models", ":", "models", "[", "'fr'", "]", ".", "append", "(", "load_model", "(", "'fr_core_news_sm'", ")", ")", "models", "[", "'fr'", "]", ".", "append", "(", "load_model", "(", "'fr_core_news_md'", ")", ")", "with", "out_path", ".", "open", "(", "mode", "=", "'w'", ",", "encoding", "=", "'utf-8'", ")", "as", "out_file", ":", "run_all_evals", "(", "models", ",", "treebanks", ",", "out_file", ",", "check_parse", ",", "print_freq_tasks", ")" ]
Assemble all treebanks and models to run evaluations with. When setting check_parse to True, the default models will not be evaluated as they don't have parsing functionality
[ "Assemble", "all", "treebanks", "and", "models", "to", "run", "evaluations", "with", ".", "When", "setting", "check_parse", "to", "True", "the", "default", "models", "will", "not", "be", "evaluated", "as", "they", "don", "t", "have", "parsing", "functionality" ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/bin/ud/run_eval.py#L226-L283
21,254
explosion/spaCy
spacy/lang/de/syntax_iterators.py
noun_chunks
def noun_chunks(obj): """ Detect base noun phrases from a dependency parse. Works on both Doc and Span. """ # this iterator extracts spans headed by NOUNs starting from the left-most # syntactic dependent until the NOUN itself for close apposition and # measurement construction, the span is sometimes extended to the right of # the NOUN. Example: "eine Tasse Tee" (a cup (of) tea) returns "eine Tasse Tee" # and not just "eine Tasse", same for "das Thema Familie". labels = [ "sb", "oa", "da", "nk", "mo", "ag", "ROOT", "root", "cj", "pd", "og", "app", ] doc = obj.doc # Ensure works on both Doc and Span. np_label = doc.vocab.strings.add("NP") np_deps = set(doc.vocab.strings.add(label) for label in labels) close_app = doc.vocab.strings.add("nk") rbracket = 0 for i, word in enumerate(obj): if i < rbracket: continue if word.pos in (NOUN, PROPN, PRON) and word.dep in np_deps: rbracket = word.i + 1 # try to extend the span to the right # to capture close apposition/measurement constructions for rdep in doc[word.i].rights: if rdep.pos in (NOUN, PROPN) and rdep.dep == close_app: rbracket = rdep.i + 1 yield word.left_edge.i, rbracket, np_label
python
def noun_chunks(obj): """ Detect base noun phrases from a dependency parse. Works on both Doc and Span. """ # this iterator extracts spans headed by NOUNs starting from the left-most # syntactic dependent until the NOUN itself for close apposition and # measurement construction, the span is sometimes extended to the right of # the NOUN. Example: "eine Tasse Tee" (a cup (of) tea) returns "eine Tasse Tee" # and not just "eine Tasse", same for "das Thema Familie". labels = [ "sb", "oa", "da", "nk", "mo", "ag", "ROOT", "root", "cj", "pd", "og", "app", ] doc = obj.doc # Ensure works on both Doc and Span. np_label = doc.vocab.strings.add("NP") np_deps = set(doc.vocab.strings.add(label) for label in labels) close_app = doc.vocab.strings.add("nk") rbracket = 0 for i, word in enumerate(obj): if i < rbracket: continue if word.pos in (NOUN, PROPN, PRON) and word.dep in np_deps: rbracket = word.i + 1 # try to extend the span to the right # to capture close apposition/measurement constructions for rdep in doc[word.i].rights: if rdep.pos in (NOUN, PROPN) and rdep.dep == close_app: rbracket = rdep.i + 1 yield word.left_edge.i, rbracket, np_label
[ "def", "noun_chunks", "(", "obj", ")", ":", "# this iterator extracts spans headed by NOUNs starting from the left-most", "# syntactic dependent until the NOUN itself for close apposition and", "# measurement construction, the span is sometimes extended to the right of", "# the NOUN. Example: \"eine Tasse Tee\" (a cup (of) tea) returns \"eine Tasse Tee\"", "# and not just \"eine Tasse\", same for \"das Thema Familie\".", "labels", "=", "[", "\"sb\"", ",", "\"oa\"", ",", "\"da\"", ",", "\"nk\"", ",", "\"mo\"", ",", "\"ag\"", ",", "\"ROOT\"", ",", "\"root\"", ",", "\"cj\"", ",", "\"pd\"", ",", "\"og\"", ",", "\"app\"", ",", "]", "doc", "=", "obj", ".", "doc", "# Ensure works on both Doc and Span.", "np_label", "=", "doc", ".", "vocab", ".", "strings", ".", "add", "(", "\"NP\"", ")", "np_deps", "=", "set", "(", "doc", ".", "vocab", ".", "strings", ".", "add", "(", "label", ")", "for", "label", "in", "labels", ")", "close_app", "=", "doc", ".", "vocab", ".", "strings", ".", "add", "(", "\"nk\"", ")", "rbracket", "=", "0", "for", "i", ",", "word", "in", "enumerate", "(", "obj", ")", ":", "if", "i", "<", "rbracket", ":", "continue", "if", "word", ".", "pos", "in", "(", "NOUN", ",", "PROPN", ",", "PRON", ")", "and", "word", ".", "dep", "in", "np_deps", ":", "rbracket", "=", "word", ".", "i", "+", "1", "# try to extend the span to the right", "# to capture close apposition/measurement constructions", "for", "rdep", "in", "doc", "[", "word", ".", "i", "]", ".", "rights", ":", "if", "rdep", ".", "pos", "in", "(", "NOUN", ",", "PROPN", ")", "and", "rdep", ".", "dep", "==", "close_app", ":", "rbracket", "=", "rdep", ".", "i", "+", "1", "yield", "word", ".", "left_edge", ".", "i", ",", "rbracket", ",", "np_label" ]
Detect base noun phrases from a dependency parse. Works on both Doc and Span.
[ "Detect", "base", "noun", "phrases", "from", "a", "dependency", "parse", ".", "Works", "on", "both", "Doc", "and", "Span", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/lang/de/syntax_iterators.py#L7-L46
21,255
explosion/spaCy
spacy/_ml.py
with_cpu
def with_cpu(ops, model): """Wrap a model that should run on CPU, transferring inputs and outputs as necessary.""" model.to_cpu() def with_cpu_forward(inputs, drop=0.0): cpu_outputs, backprop = model.begin_update(_to_cpu(inputs), drop=drop) gpu_outputs = _to_device(ops, cpu_outputs) def with_cpu_backprop(d_outputs, sgd=None): cpu_d_outputs = _to_cpu(d_outputs) return backprop(cpu_d_outputs, sgd=sgd) return gpu_outputs, with_cpu_backprop return wrap(with_cpu_forward, model)
python
def with_cpu(ops, model): """Wrap a model that should run on CPU, transferring inputs and outputs as necessary.""" model.to_cpu() def with_cpu_forward(inputs, drop=0.0): cpu_outputs, backprop = model.begin_update(_to_cpu(inputs), drop=drop) gpu_outputs = _to_device(ops, cpu_outputs) def with_cpu_backprop(d_outputs, sgd=None): cpu_d_outputs = _to_cpu(d_outputs) return backprop(cpu_d_outputs, sgd=sgd) return gpu_outputs, with_cpu_backprop return wrap(with_cpu_forward, model)
[ "def", "with_cpu", "(", "ops", ",", "model", ")", ":", "model", ".", "to_cpu", "(", ")", "def", "with_cpu_forward", "(", "inputs", ",", "drop", "=", "0.0", ")", ":", "cpu_outputs", ",", "backprop", "=", "model", ".", "begin_update", "(", "_to_cpu", "(", "inputs", ")", ",", "drop", "=", "drop", ")", "gpu_outputs", "=", "_to_device", "(", "ops", ",", "cpu_outputs", ")", "def", "with_cpu_backprop", "(", "d_outputs", ",", "sgd", "=", "None", ")", ":", "cpu_d_outputs", "=", "_to_cpu", "(", "d_outputs", ")", "return", "backprop", "(", "cpu_d_outputs", ",", "sgd", "=", "sgd", ")", "return", "gpu_outputs", ",", "with_cpu_backprop", "return", "wrap", "(", "with_cpu_forward", ",", "model", ")" ]
Wrap a model that should run on CPU, transferring inputs and outputs as necessary.
[ "Wrap", "a", "model", "that", "should", "run", "on", "CPU", "transferring", "inputs", "and", "outputs", "as", "necessary", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/_ml.py#L84-L99
21,256
explosion/spaCy
spacy/_ml.py
masked_language_model
def masked_language_model(vocab, model, mask_prob=0.15): """Convert a model into a BERT-style masked language model""" random_words = _RandomWords(vocab) def mlm_forward(docs, drop=0.0): mask, docs = _apply_mask(docs, random_words, mask_prob=mask_prob) mask = model.ops.asarray(mask).reshape((mask.shape[0], 1)) output, backprop = model.begin_update(docs, drop=drop) def mlm_backward(d_output, sgd=None): d_output *= 1 - mask return backprop(d_output, sgd=sgd) return output, mlm_backward return wrap(mlm_forward, model)
python
def masked_language_model(vocab, model, mask_prob=0.15): """Convert a model into a BERT-style masked language model""" random_words = _RandomWords(vocab) def mlm_forward(docs, drop=0.0): mask, docs = _apply_mask(docs, random_words, mask_prob=mask_prob) mask = model.ops.asarray(mask).reshape((mask.shape[0], 1)) output, backprop = model.begin_update(docs, drop=drop) def mlm_backward(d_output, sgd=None): d_output *= 1 - mask return backprop(d_output, sgd=sgd) return output, mlm_backward return wrap(mlm_forward, model)
[ "def", "masked_language_model", "(", "vocab", ",", "model", ",", "mask_prob", "=", "0.15", ")", ":", "random_words", "=", "_RandomWords", "(", "vocab", ")", "def", "mlm_forward", "(", "docs", ",", "drop", "=", "0.0", ")", ":", "mask", ",", "docs", "=", "_apply_mask", "(", "docs", ",", "random_words", ",", "mask_prob", "=", "mask_prob", ")", "mask", "=", "model", ".", "ops", ".", "asarray", "(", "mask", ")", ".", "reshape", "(", "(", "mask", ".", "shape", "[", "0", "]", ",", "1", ")", ")", "output", ",", "backprop", "=", "model", ".", "begin_update", "(", "docs", ",", "drop", "=", "drop", ")", "def", "mlm_backward", "(", "d_output", ",", "sgd", "=", "None", ")", ":", "d_output", "*=", "1", "-", "mask", "return", "backprop", "(", "d_output", ",", "sgd", "=", "sgd", ")", "return", "output", ",", "mlm_backward", "return", "wrap", "(", "mlm_forward", ",", "model", ")" ]
Convert a model into a BERT-style masked language model
[ "Convert", "a", "model", "into", "a", "BERT", "-", "style", "masked", "language", "model" ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/_ml.py#L693-L709
21,257
explosion/spaCy
spacy/pipeline/hooks.py
SimilarityHook.begin_training
def begin_training(self, _=tuple(), pipeline=None, sgd=None, **kwargs): """Allocate model, using width from tensorizer in pipeline. gold_tuples (iterable): Gold-standard training data. pipeline (list): The pipeline the model is part of. """ if self.model is True: self.model = self.Model(pipeline[0].model.nO) link_vectors_to_models(self.vocab) if sgd is None: sgd = self.create_optimizer() return sgd
python
def begin_training(self, _=tuple(), pipeline=None, sgd=None, **kwargs): """Allocate model, using width from tensorizer in pipeline. gold_tuples (iterable): Gold-standard training data. pipeline (list): The pipeline the model is part of. """ if self.model is True: self.model = self.Model(pipeline[0].model.nO) link_vectors_to_models(self.vocab) if sgd is None: sgd = self.create_optimizer() return sgd
[ "def", "begin_training", "(", "self", ",", "_", "=", "tuple", "(", ")", ",", "pipeline", "=", "None", ",", "sgd", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "self", ".", "model", "is", "True", ":", "self", ".", "model", "=", "self", ".", "Model", "(", "pipeline", "[", "0", "]", ".", "model", ".", "nO", ")", "link_vectors_to_models", "(", "self", ".", "vocab", ")", "if", "sgd", "is", "None", ":", "sgd", "=", "self", ".", "create_optimizer", "(", ")", "return", "sgd" ]
Allocate model, using width from tensorizer in pipeline. gold_tuples (iterable): Gold-standard training data. pipeline (list): The pipeline the model is part of.
[ "Allocate", "model", "using", "width", "from", "tensorizer", "in", "pipeline", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/pipeline/hooks.py#L89-L100
21,258
explosion/spaCy
spacy/displacy/render.py
DependencyRenderer.render_svg
def render_svg(self, render_id, words, arcs): """Render SVG. render_id (int): Unique ID, typically index of document. words (list): Individual words and their tags. arcs (list): Individual arcs and their start, end, direction and label. RETURNS (unicode): Rendered SVG markup. """ self.levels = self.get_levels(arcs) self.highest_level = len(self.levels) self.offset_y = self.distance / 2 * self.highest_level + self.arrow_stroke self.width = self.offset_x + len(words) * self.distance self.height = self.offset_y + 3 * self.word_spacing self.id = render_id words = [self.render_word(w["text"], w["tag"], i) for i, w in enumerate(words)] arcs = [ self.render_arrow(a["label"], a["start"], a["end"], a["dir"], i) for i, a in enumerate(arcs) ] content = "".join(words) + "".join(arcs) return TPL_DEP_SVG.format( id=self.id, width=self.width, height=self.height, color=self.color, bg=self.bg, font=self.font, content=content, dir=self.direction, lang=self.lang, )
python
def render_svg(self, render_id, words, arcs): """Render SVG. render_id (int): Unique ID, typically index of document. words (list): Individual words and their tags. arcs (list): Individual arcs and their start, end, direction and label. RETURNS (unicode): Rendered SVG markup. """ self.levels = self.get_levels(arcs) self.highest_level = len(self.levels) self.offset_y = self.distance / 2 * self.highest_level + self.arrow_stroke self.width = self.offset_x + len(words) * self.distance self.height = self.offset_y + 3 * self.word_spacing self.id = render_id words = [self.render_word(w["text"], w["tag"], i) for i, w in enumerate(words)] arcs = [ self.render_arrow(a["label"], a["start"], a["end"], a["dir"], i) for i, a in enumerate(arcs) ] content = "".join(words) + "".join(arcs) return TPL_DEP_SVG.format( id=self.id, width=self.width, height=self.height, color=self.color, bg=self.bg, font=self.font, content=content, dir=self.direction, lang=self.lang, )
[ "def", "render_svg", "(", "self", ",", "render_id", ",", "words", ",", "arcs", ")", ":", "self", ".", "levels", "=", "self", ".", "get_levels", "(", "arcs", ")", "self", ".", "highest_level", "=", "len", "(", "self", ".", "levels", ")", "self", ".", "offset_y", "=", "self", ".", "distance", "/", "2", "*", "self", ".", "highest_level", "+", "self", ".", "arrow_stroke", "self", ".", "width", "=", "self", ".", "offset_x", "+", "len", "(", "words", ")", "*", "self", ".", "distance", "self", ".", "height", "=", "self", ".", "offset_y", "+", "3", "*", "self", ".", "word_spacing", "self", ".", "id", "=", "render_id", "words", "=", "[", "self", ".", "render_word", "(", "w", "[", "\"text\"", "]", ",", "w", "[", "\"tag\"", "]", ",", "i", ")", "for", "i", ",", "w", "in", "enumerate", "(", "words", ")", "]", "arcs", "=", "[", "self", ".", "render_arrow", "(", "a", "[", "\"label\"", "]", ",", "a", "[", "\"start\"", "]", ",", "a", "[", "\"end\"", "]", ",", "a", "[", "\"dir\"", "]", ",", "i", ")", "for", "i", ",", "a", "in", "enumerate", "(", "arcs", ")", "]", "content", "=", "\"\"", ".", "join", "(", "words", ")", "+", "\"\"", ".", "join", "(", "arcs", ")", "return", "TPL_DEP_SVG", ".", "format", "(", "id", "=", "self", ".", "id", ",", "width", "=", "self", ".", "width", ",", "height", "=", "self", ".", "height", ",", "color", "=", "self", ".", "color", ",", "bg", "=", "self", ".", "bg", ",", "font", "=", "self", ".", "font", ",", "content", "=", "content", ",", "dir", "=", "self", ".", "direction", ",", "lang", "=", "self", ".", "lang", ",", ")" ]
Render SVG. render_id (int): Unique ID, typically index of document. words (list): Individual words and their tags. arcs (list): Individual arcs and their start, end, direction and label. RETURNS (unicode): Rendered SVG markup.
[ "Render", "SVG", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/displacy/render.py#L70-L100
21,259
explosion/spaCy
spacy/displacy/render.py
DependencyRenderer.render_word
def render_word(self, text, tag, i): """Render individual word. text (unicode): Word text. tag (unicode): Part-of-speech tag. i (int): Unique ID, typically word index. RETURNS (unicode): Rendered SVG markup. """ y = self.offset_y + self.word_spacing x = self.offset_x + i * self.distance if self.direction == "rtl": x = self.width - x html_text = escape_html(text) return TPL_DEP_WORDS.format(text=html_text, tag=tag, x=x, y=y)
python
def render_word(self, text, tag, i): """Render individual word. text (unicode): Word text. tag (unicode): Part-of-speech tag. i (int): Unique ID, typically word index. RETURNS (unicode): Rendered SVG markup. """ y = self.offset_y + self.word_spacing x = self.offset_x + i * self.distance if self.direction == "rtl": x = self.width - x html_text = escape_html(text) return TPL_DEP_WORDS.format(text=html_text, tag=tag, x=x, y=y)
[ "def", "render_word", "(", "self", ",", "text", ",", "tag", ",", "i", ")", ":", "y", "=", "self", ".", "offset_y", "+", "self", ".", "word_spacing", "x", "=", "self", ".", "offset_x", "+", "i", "*", "self", ".", "distance", "if", "self", ".", "direction", "==", "\"rtl\"", ":", "x", "=", "self", ".", "width", "-", "x", "html_text", "=", "escape_html", "(", "text", ")", "return", "TPL_DEP_WORDS", ".", "format", "(", "text", "=", "html_text", ",", "tag", "=", "tag", ",", "x", "=", "x", ",", "y", "=", "y", ")" ]
Render individual word. text (unicode): Word text. tag (unicode): Part-of-speech tag. i (int): Unique ID, typically word index. RETURNS (unicode): Rendered SVG markup.
[ "Render", "individual", "word", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/displacy/render.py#L102-L115
21,260
explosion/spaCy
spacy/displacy/render.py
DependencyRenderer.render_arrow
def render_arrow(self, label, start, end, direction, i): """Render individual arrow. label (unicode): Dependency label. start (int): Index of start word. end (int): Index of end word. direction (unicode): Arrow direction, 'left' or 'right'. i (int): Unique ID, typically arrow index. RETURNS (unicode): Rendered SVG markup. """ level = self.levels.index(end - start) + 1 x_start = self.offset_x + start * self.distance + self.arrow_spacing if self.direction == "rtl": x_start = self.width - x_start y = self.offset_y x_end = ( self.offset_x + (end - start) * self.distance + start * self.distance - self.arrow_spacing * (self.highest_level - level) / 4 ) if self.direction == "rtl": x_end = self.width - x_end y_curve = self.offset_y - level * self.distance / 2 if self.compact: y_curve = self.offset_y - level * self.distance / 6 if y_curve == 0 and len(self.levels) > 5: y_curve = -self.distance arrowhead = self.get_arrowhead(direction, x_start, y, x_end) arc = self.get_arc(x_start, y, y_curve, x_end) label_side = "right" if self.direction == "rtl" else "left" return TPL_DEP_ARCS.format( id=self.id, i=i, stroke=self.arrow_stroke, head=arrowhead, label=label, label_side=label_side, arc=arc, )
python
def render_arrow(self, label, start, end, direction, i): """Render individual arrow. label (unicode): Dependency label. start (int): Index of start word. end (int): Index of end word. direction (unicode): Arrow direction, 'left' or 'right'. i (int): Unique ID, typically arrow index. RETURNS (unicode): Rendered SVG markup. """ level = self.levels.index(end - start) + 1 x_start = self.offset_x + start * self.distance + self.arrow_spacing if self.direction == "rtl": x_start = self.width - x_start y = self.offset_y x_end = ( self.offset_x + (end - start) * self.distance + start * self.distance - self.arrow_spacing * (self.highest_level - level) / 4 ) if self.direction == "rtl": x_end = self.width - x_end y_curve = self.offset_y - level * self.distance / 2 if self.compact: y_curve = self.offset_y - level * self.distance / 6 if y_curve == 0 and len(self.levels) > 5: y_curve = -self.distance arrowhead = self.get_arrowhead(direction, x_start, y, x_end) arc = self.get_arc(x_start, y, y_curve, x_end) label_side = "right" if self.direction == "rtl" else "left" return TPL_DEP_ARCS.format( id=self.id, i=i, stroke=self.arrow_stroke, head=arrowhead, label=label, label_side=label_side, arc=arc, )
[ "def", "render_arrow", "(", "self", ",", "label", ",", "start", ",", "end", ",", "direction", ",", "i", ")", ":", "level", "=", "self", ".", "levels", ".", "index", "(", "end", "-", "start", ")", "+", "1", "x_start", "=", "self", ".", "offset_x", "+", "start", "*", "self", ".", "distance", "+", "self", ".", "arrow_spacing", "if", "self", ".", "direction", "==", "\"rtl\"", ":", "x_start", "=", "self", ".", "width", "-", "x_start", "y", "=", "self", ".", "offset_y", "x_end", "=", "(", "self", ".", "offset_x", "+", "(", "end", "-", "start", ")", "*", "self", ".", "distance", "+", "start", "*", "self", ".", "distance", "-", "self", ".", "arrow_spacing", "*", "(", "self", ".", "highest_level", "-", "level", ")", "/", "4", ")", "if", "self", ".", "direction", "==", "\"rtl\"", ":", "x_end", "=", "self", ".", "width", "-", "x_end", "y_curve", "=", "self", ".", "offset_y", "-", "level", "*", "self", ".", "distance", "/", "2", "if", "self", ".", "compact", ":", "y_curve", "=", "self", ".", "offset_y", "-", "level", "*", "self", ".", "distance", "/", "6", "if", "y_curve", "==", "0", "and", "len", "(", "self", ".", "levels", ")", ">", "5", ":", "y_curve", "=", "-", "self", ".", "distance", "arrowhead", "=", "self", ".", "get_arrowhead", "(", "direction", ",", "x_start", ",", "y", ",", "x_end", ")", "arc", "=", "self", ".", "get_arc", "(", "x_start", ",", "y", ",", "y_curve", ",", "x_end", ")", "label_side", "=", "\"right\"", "if", "self", ".", "direction", "==", "\"rtl\"", "else", "\"left\"", "return", "TPL_DEP_ARCS", ".", "format", "(", "id", "=", "self", ".", "id", ",", "i", "=", "i", ",", "stroke", "=", "self", ".", "arrow_stroke", ",", "head", "=", "arrowhead", ",", "label", "=", "label", ",", "label_side", "=", "label_side", ",", "arc", "=", "arc", ",", ")" ]
Render individual arrow. label (unicode): Dependency label. start (int): Index of start word. end (int): Index of end word. direction (unicode): Arrow direction, 'left' or 'right'. i (int): Unique ID, typically arrow index. RETURNS (unicode): Rendered SVG markup.
[ "Render", "individual", "arrow", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/displacy/render.py#L117-L156
21,261
explosion/spaCy
spacy/displacy/render.py
DependencyRenderer.get_arc
def get_arc(self, x_start, y, y_curve, x_end): """Render individual arc. x_start (int): X-coordinate of arrow start point. y (int): Y-coordinate of arrow start and end point. y_curve (int): Y-corrdinate of Cubic Bézier y_curve point. x_end (int): X-coordinate of arrow end point. RETURNS (unicode): Definition of the arc path ('d' attribute). """ template = "M{x},{y} C{x},{c} {e},{c} {e},{y}" if self.compact: template = "M{x},{y} {x},{c} {e},{c} {e},{y}" return template.format(x=x_start, y=y, c=y_curve, e=x_end)
python
def get_arc(self, x_start, y, y_curve, x_end): """Render individual arc. x_start (int): X-coordinate of arrow start point. y (int): Y-coordinate of arrow start and end point. y_curve (int): Y-corrdinate of Cubic Bézier y_curve point. x_end (int): X-coordinate of arrow end point. RETURNS (unicode): Definition of the arc path ('d' attribute). """ template = "M{x},{y} C{x},{c} {e},{c} {e},{y}" if self.compact: template = "M{x},{y} {x},{c} {e},{c} {e},{y}" return template.format(x=x_start, y=y, c=y_curve, e=x_end)
[ "def", "get_arc", "(", "self", ",", "x_start", ",", "y", ",", "y_curve", ",", "x_end", ")", ":", "template", "=", "\"M{x},{y} C{x},{c} {e},{c} {e},{y}\"", "if", "self", ".", "compact", ":", "template", "=", "\"M{x},{y} {x},{c} {e},{c} {e},{y}\"", "return", "template", ".", "format", "(", "x", "=", "x_start", ",", "y", "=", "y", ",", "c", "=", "y_curve", ",", "e", "=", "x_end", ")" ]
Render individual arc. x_start (int): X-coordinate of arrow start point. y (int): Y-coordinate of arrow start and end point. y_curve (int): Y-corrdinate of Cubic Bézier y_curve point. x_end (int): X-coordinate of arrow end point. RETURNS (unicode): Definition of the arc path ('d' attribute).
[ "Render", "individual", "arc", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/displacy/render.py#L158-L170
21,262
explosion/spaCy
spacy/displacy/render.py
DependencyRenderer.get_arrowhead
def get_arrowhead(self, direction, x, y, end): """Render individual arrow head. direction (unicode): Arrow direction, 'left' or 'right'. x (int): X-coordinate of arrow start point. y (int): Y-coordinate of arrow start and end point. end (int): X-coordinate of arrow end point. RETURNS (unicode): Definition of the arrow head path ('d' attribute). """ if direction == "left": pos1, pos2, pos3 = (x, x - self.arrow_width + 2, x + self.arrow_width - 2) else: pos1, pos2, pos3 = ( end, end + self.arrow_width - 2, end - self.arrow_width + 2, ) arrowhead = ( pos1, y + 2, pos2, y - self.arrow_width, pos3, y - self.arrow_width, ) return "M{},{} L{},{} {},{}".format(*arrowhead)
python
def get_arrowhead(self, direction, x, y, end): """Render individual arrow head. direction (unicode): Arrow direction, 'left' or 'right'. x (int): X-coordinate of arrow start point. y (int): Y-coordinate of arrow start and end point. end (int): X-coordinate of arrow end point. RETURNS (unicode): Definition of the arrow head path ('d' attribute). """ if direction == "left": pos1, pos2, pos3 = (x, x - self.arrow_width + 2, x + self.arrow_width - 2) else: pos1, pos2, pos3 = ( end, end + self.arrow_width - 2, end - self.arrow_width + 2, ) arrowhead = ( pos1, y + 2, pos2, y - self.arrow_width, pos3, y - self.arrow_width, ) return "M{},{} L{},{} {},{}".format(*arrowhead)
[ "def", "get_arrowhead", "(", "self", ",", "direction", ",", "x", ",", "y", ",", "end", ")", ":", "if", "direction", "==", "\"left\"", ":", "pos1", ",", "pos2", ",", "pos3", "=", "(", "x", ",", "x", "-", "self", ".", "arrow_width", "+", "2", ",", "x", "+", "self", ".", "arrow_width", "-", "2", ")", "else", ":", "pos1", ",", "pos2", ",", "pos3", "=", "(", "end", ",", "end", "+", "self", ".", "arrow_width", "-", "2", ",", "end", "-", "self", ".", "arrow_width", "+", "2", ",", ")", "arrowhead", "=", "(", "pos1", ",", "y", "+", "2", ",", "pos2", ",", "y", "-", "self", ".", "arrow_width", ",", "pos3", ",", "y", "-", "self", ".", "arrow_width", ",", ")", "return", "\"M{},{} L{},{} {},{}\"", ".", "format", "(", "*", "arrowhead", ")" ]
Render individual arrow head. direction (unicode): Arrow direction, 'left' or 'right'. x (int): X-coordinate of arrow start point. y (int): Y-coordinate of arrow start and end point. end (int): X-coordinate of arrow end point. RETURNS (unicode): Definition of the arrow head path ('d' attribute).
[ "Render", "individual", "arrow", "head", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/displacy/render.py#L172-L197
21,263
explosion/spaCy
spacy/displacy/render.py
DependencyRenderer.get_levels
def get_levels(self, arcs): """Calculate available arc height "levels". Used to calculate arrow heights dynamically and without wasting space. args (list): Individual arcs and their start, end, direction and label. RETURNS (list): Arc levels sorted from lowest to highest. """ levels = set(map(lambda arc: arc["end"] - arc["start"], arcs)) return sorted(list(levels))
python
def get_levels(self, arcs): """Calculate available arc height "levels". Used to calculate arrow heights dynamically and without wasting space. args (list): Individual arcs and their start, end, direction and label. RETURNS (list): Arc levels sorted from lowest to highest. """ levels = set(map(lambda arc: arc["end"] - arc["start"], arcs)) return sorted(list(levels))
[ "def", "get_levels", "(", "self", ",", "arcs", ")", ":", "levels", "=", "set", "(", "map", "(", "lambda", "arc", ":", "arc", "[", "\"end\"", "]", "-", "arc", "[", "\"start\"", "]", ",", "arcs", ")", ")", "return", "sorted", "(", "list", "(", "levels", ")", ")" ]
Calculate available arc height "levels". Used to calculate arrow heights dynamically and without wasting space. args (list): Individual arcs and their start, end, direction and label. RETURNS (list): Arc levels sorted from lowest to highest.
[ "Calculate", "available", "arc", "height", "levels", ".", "Used", "to", "calculate", "arrow", "heights", "dynamically", "and", "without", "wasting", "space", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/displacy/render.py#L199-L207
21,264
explosion/spaCy
spacy/displacy/render.py
EntityRenderer.render_ents
def render_ents(self, text, spans, title): """Render entities in text. text (unicode): Original text. spans (list): Individual entity spans and their start, end and label. title (unicode or None): Document title set in Doc.user_data['title']. """ markup = "" offset = 0 for span in spans: label = span["label"] start = span["start"] end = span["end"] entity = escape_html(text[start:end]) fragments = text[offset:start].split("\n") for i, fragment in enumerate(fragments): markup += escape_html(fragment) if len(fragments) > 1 and i != len(fragments) - 1: markup += "</br>" if self.ents is None or label.upper() in self.ents: color = self.colors.get(label.upper(), self.default_color) ent_settings = {"label": label, "text": entity, "bg": color} if self.direction == "rtl": markup += TPL_ENT_RTL.format(**ent_settings) else: markup += TPL_ENT.format(**ent_settings) else: markup += entity offset = end markup += escape_html(text[offset:]) markup = TPL_ENTS.format(content=markup, dir=self.direction) if title: markup = TPL_TITLE.format(title=title) + markup return markup
python
def render_ents(self, text, spans, title): """Render entities in text. text (unicode): Original text. spans (list): Individual entity spans and their start, end and label. title (unicode or None): Document title set in Doc.user_data['title']. """ markup = "" offset = 0 for span in spans: label = span["label"] start = span["start"] end = span["end"] entity = escape_html(text[start:end]) fragments = text[offset:start].split("\n") for i, fragment in enumerate(fragments): markup += escape_html(fragment) if len(fragments) > 1 and i != len(fragments) - 1: markup += "</br>" if self.ents is None or label.upper() in self.ents: color = self.colors.get(label.upper(), self.default_color) ent_settings = {"label": label, "text": entity, "bg": color} if self.direction == "rtl": markup += TPL_ENT_RTL.format(**ent_settings) else: markup += TPL_ENT.format(**ent_settings) else: markup += entity offset = end markup += escape_html(text[offset:]) markup = TPL_ENTS.format(content=markup, dir=self.direction) if title: markup = TPL_TITLE.format(title=title) + markup return markup
[ "def", "render_ents", "(", "self", ",", "text", ",", "spans", ",", "title", ")", ":", "markup", "=", "\"\"", "offset", "=", "0", "for", "span", "in", "spans", ":", "label", "=", "span", "[", "\"label\"", "]", "start", "=", "span", "[", "\"start\"", "]", "end", "=", "span", "[", "\"end\"", "]", "entity", "=", "escape_html", "(", "text", "[", "start", ":", "end", "]", ")", "fragments", "=", "text", "[", "offset", ":", "start", "]", ".", "split", "(", "\"\\n\"", ")", "for", "i", ",", "fragment", "in", "enumerate", "(", "fragments", ")", ":", "markup", "+=", "escape_html", "(", "fragment", ")", "if", "len", "(", "fragments", ")", ">", "1", "and", "i", "!=", "len", "(", "fragments", ")", "-", "1", ":", "markup", "+=", "\"</br>\"", "if", "self", ".", "ents", "is", "None", "or", "label", ".", "upper", "(", ")", "in", "self", ".", "ents", ":", "color", "=", "self", ".", "colors", ".", "get", "(", "label", ".", "upper", "(", ")", ",", "self", ".", "default_color", ")", "ent_settings", "=", "{", "\"label\"", ":", "label", ",", "\"text\"", ":", "entity", ",", "\"bg\"", ":", "color", "}", "if", "self", ".", "direction", "==", "\"rtl\"", ":", "markup", "+=", "TPL_ENT_RTL", ".", "format", "(", "*", "*", "ent_settings", ")", "else", ":", "markup", "+=", "TPL_ENT", ".", "format", "(", "*", "*", "ent_settings", ")", "else", ":", "markup", "+=", "entity", "offset", "=", "end", "markup", "+=", "escape_html", "(", "text", "[", "offset", ":", "]", ")", "markup", "=", "TPL_ENTS", ".", "format", "(", "content", "=", "markup", ",", "dir", "=", "self", ".", "direction", ")", "if", "title", ":", "markup", "=", "TPL_TITLE", ".", "format", "(", "title", "=", "title", ")", "+", "markup", "return", "markup" ]
Render entities in text. text (unicode): Original text. spans (list): Individual entity spans and their start, end and label. title (unicode or None): Document title set in Doc.user_data['title'].
[ "Render", "entities", "in", "text", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/displacy/render.py#L271-L304
21,265
explosion/spaCy
spacy/pipeline/functions.py
merge_noun_chunks
def merge_noun_chunks(doc): """Merge noun chunks into a single token. doc (Doc): The Doc object. RETURNS (Doc): The Doc object with merged noun chunks. DOCS: https://spacy.io/api/pipeline-functions#merge_noun_chunks """ if not doc.is_parsed: return doc with doc.retokenize() as retokenizer: for np in doc.noun_chunks: attrs = {"tag": np.root.tag, "dep": np.root.dep} retokenizer.merge(np, attrs=attrs) return doc
python
def merge_noun_chunks(doc): """Merge noun chunks into a single token. doc (Doc): The Doc object. RETURNS (Doc): The Doc object with merged noun chunks. DOCS: https://spacy.io/api/pipeline-functions#merge_noun_chunks """ if not doc.is_parsed: return doc with doc.retokenize() as retokenizer: for np in doc.noun_chunks: attrs = {"tag": np.root.tag, "dep": np.root.dep} retokenizer.merge(np, attrs=attrs) return doc
[ "def", "merge_noun_chunks", "(", "doc", ")", ":", "if", "not", "doc", ".", "is_parsed", ":", "return", "doc", "with", "doc", ".", "retokenize", "(", ")", "as", "retokenizer", ":", "for", "np", "in", "doc", ".", "noun_chunks", ":", "attrs", "=", "{", "\"tag\"", ":", "np", ".", "root", ".", "tag", ",", "\"dep\"", ":", "np", ".", "root", ".", "dep", "}", "retokenizer", ".", "merge", "(", "np", ",", "attrs", "=", "attrs", ")", "return", "doc" ]
Merge noun chunks into a single token. doc (Doc): The Doc object. RETURNS (Doc): The Doc object with merged noun chunks. DOCS: https://spacy.io/api/pipeline-functions#merge_noun_chunks
[ "Merge", "noun", "chunks", "into", "a", "single", "token", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/pipeline/functions.py#L7-L21
21,266
explosion/spaCy
spacy/pipeline/functions.py
merge_entities
def merge_entities(doc): """Merge entities into a single token. doc (Doc): The Doc object. RETURNS (Doc): The Doc object with merged entities. DOCS: https://spacy.io/api/pipeline-functions#merge_entities """ with doc.retokenize() as retokenizer: for ent in doc.ents: attrs = {"tag": ent.root.tag, "dep": ent.root.dep, "ent_type": ent.label} retokenizer.merge(ent, attrs=attrs) return doc
python
def merge_entities(doc): """Merge entities into a single token. doc (Doc): The Doc object. RETURNS (Doc): The Doc object with merged entities. DOCS: https://spacy.io/api/pipeline-functions#merge_entities """ with doc.retokenize() as retokenizer: for ent in doc.ents: attrs = {"tag": ent.root.tag, "dep": ent.root.dep, "ent_type": ent.label} retokenizer.merge(ent, attrs=attrs) return doc
[ "def", "merge_entities", "(", "doc", ")", ":", "with", "doc", ".", "retokenize", "(", ")", "as", "retokenizer", ":", "for", "ent", "in", "doc", ".", "ents", ":", "attrs", "=", "{", "\"tag\"", ":", "ent", ".", "root", ".", "tag", ",", "\"dep\"", ":", "ent", ".", "root", ".", "dep", ",", "\"ent_type\"", ":", "ent", ".", "label", "}", "retokenizer", ".", "merge", "(", "ent", ",", "attrs", "=", "attrs", ")", "return", "doc" ]
Merge entities into a single token. doc (Doc): The Doc object. RETURNS (Doc): The Doc object with merged entities. DOCS: https://spacy.io/api/pipeline-functions#merge_entities
[ "Merge", "entities", "into", "a", "single", "token", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/pipeline/functions.py#L24-L36
21,267
explosion/spaCy
spacy/pipeline/functions.py
merge_subtokens
def merge_subtokens(doc, label="subtok"): """Merge subtokens into a single token. doc (Doc): The Doc object. label (unicode): The subtoken dependency label. RETURNS (Doc): The Doc object with merged subtokens. DOCS: https://spacy.io/api/pipeline-functions#merge_subtokens """ merger = Matcher(doc.vocab) merger.add("SUBTOK", None, [{"DEP": label, "op": "+"}]) matches = merger(doc) spans = [doc[start : end + 1] for _, start, end in matches] with doc.retokenize() as retokenizer: for span in spans: retokenizer.merge(span) return doc
python
def merge_subtokens(doc, label="subtok"): """Merge subtokens into a single token. doc (Doc): The Doc object. label (unicode): The subtoken dependency label. RETURNS (Doc): The Doc object with merged subtokens. DOCS: https://spacy.io/api/pipeline-functions#merge_subtokens """ merger = Matcher(doc.vocab) merger.add("SUBTOK", None, [{"DEP": label, "op": "+"}]) matches = merger(doc) spans = [doc[start : end + 1] for _, start, end in matches] with doc.retokenize() as retokenizer: for span in spans: retokenizer.merge(span) return doc
[ "def", "merge_subtokens", "(", "doc", ",", "label", "=", "\"subtok\"", ")", ":", "merger", "=", "Matcher", "(", "doc", ".", "vocab", ")", "merger", ".", "add", "(", "\"SUBTOK\"", ",", "None", ",", "[", "{", "\"DEP\"", ":", "label", ",", "\"op\"", ":", "\"+\"", "}", "]", ")", "matches", "=", "merger", "(", "doc", ")", "spans", "=", "[", "doc", "[", "start", ":", "end", "+", "1", "]", "for", "_", ",", "start", ",", "end", "in", "matches", "]", "with", "doc", ".", "retokenize", "(", ")", "as", "retokenizer", ":", "for", "span", "in", "spans", ":", "retokenizer", ".", "merge", "(", "span", ")", "return", "doc" ]
Merge subtokens into a single token. doc (Doc): The Doc object. label (unicode): The subtoken dependency label. RETURNS (Doc): The Doc object with merged subtokens. DOCS: https://spacy.io/api/pipeline-functions#merge_subtokens
[ "Merge", "subtokens", "into", "a", "single", "token", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/pipeline/functions.py#L39-L55
21,268
explosion/spaCy
spacy/cli/train.py
_score_for_model
def _score_for_model(meta): """ Returns mean score between tasks in pipeline that can be used for early stopping. """ mean_acc = list() pipes = meta["pipeline"] acc = meta["accuracy"] if "tagger" in pipes: mean_acc.append(acc["tags_acc"]) if "parser" in pipes: mean_acc.append((acc["uas"] + acc["las"]) / 2) if "ner" in pipes: mean_acc.append((acc["ents_p"] + acc["ents_r"] + acc["ents_f"]) / 3) return sum(mean_acc) / len(mean_acc)
python
def _score_for_model(meta): """ Returns mean score between tasks in pipeline that can be used for early stopping. """ mean_acc = list() pipes = meta["pipeline"] acc = meta["accuracy"] if "tagger" in pipes: mean_acc.append(acc["tags_acc"]) if "parser" in pipes: mean_acc.append((acc["uas"] + acc["las"]) / 2) if "ner" in pipes: mean_acc.append((acc["ents_p"] + acc["ents_r"] + acc["ents_f"]) / 3) return sum(mean_acc) / len(mean_acc)
[ "def", "_score_for_model", "(", "meta", ")", ":", "mean_acc", "=", "list", "(", ")", "pipes", "=", "meta", "[", "\"pipeline\"", "]", "acc", "=", "meta", "[", "\"accuracy\"", "]", "if", "\"tagger\"", "in", "pipes", ":", "mean_acc", ".", "append", "(", "acc", "[", "\"tags_acc\"", "]", ")", "if", "\"parser\"", "in", "pipes", ":", "mean_acc", ".", "append", "(", "(", "acc", "[", "\"uas\"", "]", "+", "acc", "[", "\"las\"", "]", ")", "/", "2", ")", "if", "\"ner\"", "in", "pipes", ":", "mean_acc", ".", "append", "(", "(", "acc", "[", "\"ents_p\"", "]", "+", "acc", "[", "\"ents_r\"", "]", "+", "acc", "[", "\"ents_f\"", "]", ")", "/", "3", ")", "return", "sum", "(", "mean_acc", ")", "/", "len", "(", "mean_acc", ")" ]
Returns mean score between tasks in pipeline that can be used for early stopping.
[ "Returns", "mean", "score", "between", "tasks", "in", "pipeline", "that", "can", "be", "used", "for", "early", "stopping", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/cli/train.py#L371-L382
21,269
explosion/spaCy
spacy/cli/train.py
_load_pretrained_tok2vec
def _load_pretrained_tok2vec(nlp, loc): """Load pre-trained weights for the 'token-to-vector' part of the component models, which is typically a CNN. See 'spacy pretrain'. Experimental. """ with loc.open("rb") as file_: weights_data = file_.read() loaded = [] for name, component in nlp.pipeline: if hasattr(component, "model") and hasattr(component.model, "tok2vec"): component.tok2vec.from_bytes(weights_data) loaded.append(name) return loaded
python
def _load_pretrained_tok2vec(nlp, loc): """Load pre-trained weights for the 'token-to-vector' part of the component models, which is typically a CNN. See 'spacy pretrain'. Experimental. """ with loc.open("rb") as file_: weights_data = file_.read() loaded = [] for name, component in nlp.pipeline: if hasattr(component, "model") and hasattr(component.model, "tok2vec"): component.tok2vec.from_bytes(weights_data) loaded.append(name) return loaded
[ "def", "_load_pretrained_tok2vec", "(", "nlp", ",", "loc", ")", ":", "with", "loc", ".", "open", "(", "\"rb\"", ")", "as", "file_", ":", "weights_data", "=", "file_", ".", "read", "(", ")", "loaded", "=", "[", "]", "for", "name", ",", "component", "in", "nlp", ".", "pipeline", ":", "if", "hasattr", "(", "component", ",", "\"model\"", ")", "and", "hasattr", "(", "component", ".", "model", ",", "\"tok2vec\"", ")", ":", "component", ".", "tok2vec", ".", "from_bytes", "(", "weights_data", ")", "loaded", ".", "append", "(", "name", ")", "return", "loaded" ]
Load pre-trained weights for the 'token-to-vector' part of the component models, which is typically a CNN. See 'spacy pretrain'. Experimental.
[ "Load", "pre", "-", "trained", "weights", "for", "the", "token", "-", "to", "-", "vector", "part", "of", "the", "component", "models", "which", "is", "typically", "a", "CNN", ".", "See", "spacy", "pretrain", ".", "Experimental", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/cli/train.py#L407-L418
21,270
explosion/spaCy
spacy/cli/converters/conllu2json.py
conllu2json
def conllu2json(input_data, n_sents=10, use_morphology=False, lang=None): """ Convert conllu files into JSON format for use with train cli. use_morphology parameter enables appending morphology to tags, which is useful for languages such as Spanish, where UD tags are not so rich. Extract NER tags if available and convert them so that they follow BILUO and the Wikipedia scheme """ # by @dvsrepo, via #11 explosion/spacy-dev-resources # by @katarkor docs = [] sentences = [] conll_tuples = read_conllx(input_data, use_morphology=use_morphology) checked_for_ner = False has_ner_tags = False for i, (raw_text, tokens) in enumerate(conll_tuples): sentence, brackets = tokens[0] if not checked_for_ner: has_ner_tags = is_ner(sentence[5][0]) checked_for_ner = True sentences.append(generate_sentence(sentence, has_ner_tags)) # Real-sized documents could be extracted using the comments on the # conluu document if len(sentences) % n_sents == 0: doc = create_doc(sentences, i) docs.append(doc) sentences = [] return docs
python
def conllu2json(input_data, n_sents=10, use_morphology=False, lang=None): """ Convert conllu files into JSON format for use with train cli. use_morphology parameter enables appending morphology to tags, which is useful for languages such as Spanish, where UD tags are not so rich. Extract NER tags if available and convert them so that they follow BILUO and the Wikipedia scheme """ # by @dvsrepo, via #11 explosion/spacy-dev-resources # by @katarkor docs = [] sentences = [] conll_tuples = read_conllx(input_data, use_morphology=use_morphology) checked_for_ner = False has_ner_tags = False for i, (raw_text, tokens) in enumerate(conll_tuples): sentence, brackets = tokens[0] if not checked_for_ner: has_ner_tags = is_ner(sentence[5][0]) checked_for_ner = True sentences.append(generate_sentence(sentence, has_ner_tags)) # Real-sized documents could be extracted using the comments on the # conluu document if len(sentences) % n_sents == 0: doc = create_doc(sentences, i) docs.append(doc) sentences = [] return docs
[ "def", "conllu2json", "(", "input_data", ",", "n_sents", "=", "10", ",", "use_morphology", "=", "False", ",", "lang", "=", "None", ")", ":", "# by @dvsrepo, via #11 explosion/spacy-dev-resources", "# by @katarkor", "docs", "=", "[", "]", "sentences", "=", "[", "]", "conll_tuples", "=", "read_conllx", "(", "input_data", ",", "use_morphology", "=", "use_morphology", ")", "checked_for_ner", "=", "False", "has_ner_tags", "=", "False", "for", "i", ",", "(", "raw_text", ",", "tokens", ")", "in", "enumerate", "(", "conll_tuples", ")", ":", "sentence", ",", "brackets", "=", "tokens", "[", "0", "]", "if", "not", "checked_for_ner", ":", "has_ner_tags", "=", "is_ner", "(", "sentence", "[", "5", "]", "[", "0", "]", ")", "checked_for_ner", "=", "True", "sentences", ".", "append", "(", "generate_sentence", "(", "sentence", ",", "has_ner_tags", ")", ")", "# Real-sized documents could be extracted using the comments on the", "# conluu document", "if", "len", "(", "sentences", ")", "%", "n_sents", "==", "0", ":", "doc", "=", "create_doc", "(", "sentences", ",", "i", ")", "docs", ".", "append", "(", "doc", ")", "sentences", "=", "[", "]", "return", "docs" ]
Convert conllu files into JSON format for use with train cli. use_morphology parameter enables appending morphology to tags, which is useful for languages such as Spanish, where UD tags are not so rich. Extract NER tags if available and convert them so that they follow BILUO and the Wikipedia scheme
[ "Convert", "conllu", "files", "into", "JSON", "format", "for", "use", "with", "train", "cli", ".", "use_morphology", "parameter", "enables", "appending", "morphology", "to", "tags", "which", "is", "useful", "for", "languages", "such", "as", "Spanish", "where", "UD", "tags", "are", "not", "so", "rich", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/cli/converters/conllu2json.py#L9-L37
21,271
explosion/spaCy
spacy/cli/converters/conllu2json.py
is_ner
def is_ner(tag): """ Check the 10th column of the first token to determine if the file contains NER tags """ tag_match = re.match("([A-Z_]+)-([A-Z_]+)", tag) if tag_match: return True elif tag == "O": return True else: return False
python
def is_ner(tag): """ Check the 10th column of the first token to determine if the file contains NER tags """ tag_match = re.match("([A-Z_]+)-([A-Z_]+)", tag) if tag_match: return True elif tag == "O": return True else: return False
[ "def", "is_ner", "(", "tag", ")", ":", "tag_match", "=", "re", ".", "match", "(", "\"([A-Z_]+)-([A-Z_]+)\"", ",", "tag", ")", "if", "tag_match", ":", "return", "True", "elif", "tag", "==", "\"O\"", ":", "return", "True", "else", ":", "return", "False" ]
Check the 10th column of the first token to determine if the file contains NER tags
[ "Check", "the", "10th", "column", "of", "the", "first", "token", "to", "determine", "if", "the", "file", "contains", "NER", "tags" ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/cli/converters/conllu2json.py#L40-L51
21,272
explosion/spaCy
examples/training/train_intent_parser.py
main
def main(model=None, output_dir=None, n_iter=15): """Load the model, set up the pipeline and train the parser.""" if model is not None: nlp = spacy.load(model) # load existing spaCy model print("Loaded model '%s'" % model) else: nlp = spacy.blank("en") # create blank Language class print("Created blank 'en' model") # We'll use the built-in dependency parser class, but we want to create a # fresh instance – just in case. if "parser" in nlp.pipe_names: nlp.remove_pipe("parser") parser = nlp.create_pipe("parser") nlp.add_pipe(parser, first=True) for text, annotations in TRAIN_DATA: for dep in annotations.get("deps", []): parser.add_label(dep) other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "parser"] with nlp.disable_pipes(*other_pipes): # only train parser optimizer = nlp.begin_training() for itn in range(n_iter): random.shuffle(TRAIN_DATA) losses = {} # batch up the examples using spaCy's minibatch batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001)) for batch in batches: texts, annotations = zip(*batch) nlp.update(texts, annotations, sgd=optimizer, losses=losses) print("Losses", losses) # test the trained model test_model(nlp) # save model to output directory if output_dir is not None: output_dir = Path(output_dir) if not output_dir.exists(): output_dir.mkdir() nlp.to_disk(output_dir) print("Saved model to", output_dir) # test the saved model print("Loading from", output_dir) nlp2 = spacy.load(output_dir) test_model(nlp2)
python
def main(model=None, output_dir=None, n_iter=15): """Load the model, set up the pipeline and train the parser.""" if model is not None: nlp = spacy.load(model) # load existing spaCy model print("Loaded model '%s'" % model) else: nlp = spacy.blank("en") # create blank Language class print("Created blank 'en' model") # We'll use the built-in dependency parser class, but we want to create a # fresh instance – just in case. if "parser" in nlp.pipe_names: nlp.remove_pipe("parser") parser = nlp.create_pipe("parser") nlp.add_pipe(parser, first=True) for text, annotations in TRAIN_DATA: for dep in annotations.get("deps", []): parser.add_label(dep) other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "parser"] with nlp.disable_pipes(*other_pipes): # only train parser optimizer = nlp.begin_training() for itn in range(n_iter): random.shuffle(TRAIN_DATA) losses = {} # batch up the examples using spaCy's minibatch batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001)) for batch in batches: texts, annotations = zip(*batch) nlp.update(texts, annotations, sgd=optimizer, losses=losses) print("Losses", losses) # test the trained model test_model(nlp) # save model to output directory if output_dir is not None: output_dir = Path(output_dir) if not output_dir.exists(): output_dir.mkdir() nlp.to_disk(output_dir) print("Saved model to", output_dir) # test the saved model print("Loading from", output_dir) nlp2 = spacy.load(output_dir) test_model(nlp2)
[ "def", "main", "(", "model", "=", "None", ",", "output_dir", "=", "None", ",", "n_iter", "=", "15", ")", ":", "if", "model", "is", "not", "None", ":", "nlp", "=", "spacy", ".", "load", "(", "model", ")", "# load existing spaCy model", "print", "(", "\"Loaded model '%s'\"", "%", "model", ")", "else", ":", "nlp", "=", "spacy", ".", "blank", "(", "\"en\"", ")", "# create blank Language class", "print", "(", "\"Created blank 'en' model\"", ")", "# We'll use the built-in dependency parser class, but we want to create a", "# fresh instance – just in case.", "if", "\"parser\"", "in", "nlp", ".", "pipe_names", ":", "nlp", ".", "remove_pipe", "(", "\"parser\"", ")", "parser", "=", "nlp", ".", "create_pipe", "(", "\"parser\"", ")", "nlp", ".", "add_pipe", "(", "parser", ",", "first", "=", "True", ")", "for", "text", ",", "annotations", "in", "TRAIN_DATA", ":", "for", "dep", "in", "annotations", ".", "get", "(", "\"deps\"", ",", "[", "]", ")", ":", "parser", ".", "add_label", "(", "dep", ")", "other_pipes", "=", "[", "pipe", "for", "pipe", "in", "nlp", ".", "pipe_names", "if", "pipe", "!=", "\"parser\"", "]", "with", "nlp", ".", "disable_pipes", "(", "*", "other_pipes", ")", ":", "# only train parser", "optimizer", "=", "nlp", ".", "begin_training", "(", ")", "for", "itn", "in", "range", "(", "n_iter", ")", ":", "random", ".", "shuffle", "(", "TRAIN_DATA", ")", "losses", "=", "{", "}", "# batch up the examples using spaCy's minibatch", "batches", "=", "minibatch", "(", "TRAIN_DATA", ",", "size", "=", "compounding", "(", "4.0", ",", "32.0", ",", "1.001", ")", ")", "for", "batch", "in", "batches", ":", "texts", ",", "annotations", "=", "zip", "(", "*", "batch", ")", "nlp", ".", "update", "(", "texts", ",", "annotations", ",", "sgd", "=", "optimizer", ",", "losses", "=", "losses", ")", "print", "(", "\"Losses\"", ",", "losses", ")", "# test the trained model", "test_model", "(", "nlp", ")", "# save model to output directory", "if", "output_dir", "is", "not", "None", ":", "output_dir", "=", "Path", "(", "output_dir", ")", "if", "not", "output_dir", ".", "exists", "(", ")", ":", "output_dir", ".", "mkdir", "(", ")", "nlp", ".", "to_disk", "(", "output_dir", ")", "print", "(", "\"Saved model to\"", ",", "output_dir", ")", "# test the saved model", "print", "(", "\"Loading from\"", ",", "output_dir", ")", "nlp2", "=", "spacy", ".", "load", "(", "output_dir", ")", "test_model", "(", "nlp2", ")" ]
Load the model, set up the pipeline and train the parser.
[ "Load", "the", "model", "set", "up", "the", "pipeline", "and", "train", "the", "parser", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/examples/training/train_intent_parser.py#L107-L154
21,273
explosion/spaCy
spacy/language.py
Language.get_pipe
def get_pipe(self, name): """Get a pipeline component for a given component name. name (unicode): Name of pipeline component to get. RETURNS (callable): The pipeline component. DOCS: https://spacy.io/api/language#get_pipe """ for pipe_name, component in self.pipeline: if pipe_name == name: return component raise KeyError(Errors.E001.format(name=name, opts=self.pipe_names))
python
def get_pipe(self, name): """Get a pipeline component for a given component name. name (unicode): Name of pipeline component to get. RETURNS (callable): The pipeline component. DOCS: https://spacy.io/api/language#get_pipe """ for pipe_name, component in self.pipeline: if pipe_name == name: return component raise KeyError(Errors.E001.format(name=name, opts=self.pipe_names))
[ "def", "get_pipe", "(", "self", ",", "name", ")", ":", "for", "pipe_name", ",", "component", "in", "self", ".", "pipeline", ":", "if", "pipe_name", "==", "name", ":", "return", "component", "raise", "KeyError", "(", "Errors", ".", "E001", ".", "format", "(", "name", "=", "name", ",", "opts", "=", "self", ".", "pipe_names", ")", ")" ]
Get a pipeline component for a given component name. name (unicode): Name of pipeline component to get. RETURNS (callable): The pipeline component. DOCS: https://spacy.io/api/language#get_pipe
[ "Get", "a", "pipeline", "component", "for", "a", "given", "component", "name", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/language.py#L232-L243
21,274
explosion/spaCy
spacy/language.py
Language.replace_pipe
def replace_pipe(self, name, component): """Replace a component in the pipeline. name (unicode): Name of the component to replace. component (callable): Pipeline component. DOCS: https://spacy.io/api/language#replace_pipe """ if name not in self.pipe_names: raise ValueError(Errors.E001.format(name=name, opts=self.pipe_names)) self.pipeline[self.pipe_names.index(name)] = (name, component)
python
def replace_pipe(self, name, component): """Replace a component in the pipeline. name (unicode): Name of the component to replace. component (callable): Pipeline component. DOCS: https://spacy.io/api/language#replace_pipe """ if name not in self.pipe_names: raise ValueError(Errors.E001.format(name=name, opts=self.pipe_names)) self.pipeline[self.pipe_names.index(name)] = (name, component)
[ "def", "replace_pipe", "(", "self", ",", "name", ",", "component", ")", ":", "if", "name", "not", "in", "self", ".", "pipe_names", ":", "raise", "ValueError", "(", "Errors", ".", "E001", ".", "format", "(", "name", "=", "name", ",", "opts", "=", "self", ".", "pipe_names", ")", ")", "self", ".", "pipeline", "[", "self", ".", "pipe_names", ".", "index", "(", "name", ")", "]", "=", "(", "name", ",", "component", ")" ]
Replace a component in the pipeline. name (unicode): Name of the component to replace. component (callable): Pipeline component. DOCS: https://spacy.io/api/language#replace_pipe
[ "Replace", "a", "component", "in", "the", "pipeline", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/language.py#L326-L336
21,275
explosion/spaCy
spacy/language.py
Language.rename_pipe
def rename_pipe(self, old_name, new_name): """Rename a pipeline component. old_name (unicode): Name of the component to rename. new_name (unicode): New name of the component. DOCS: https://spacy.io/api/language#rename_pipe """ if old_name not in self.pipe_names: raise ValueError(Errors.E001.format(name=old_name, opts=self.pipe_names)) if new_name in self.pipe_names: raise ValueError(Errors.E007.format(name=new_name, opts=self.pipe_names)) i = self.pipe_names.index(old_name) self.pipeline[i] = (new_name, self.pipeline[i][1])
python
def rename_pipe(self, old_name, new_name): """Rename a pipeline component. old_name (unicode): Name of the component to rename. new_name (unicode): New name of the component. DOCS: https://spacy.io/api/language#rename_pipe """ if old_name not in self.pipe_names: raise ValueError(Errors.E001.format(name=old_name, opts=self.pipe_names)) if new_name in self.pipe_names: raise ValueError(Errors.E007.format(name=new_name, opts=self.pipe_names)) i = self.pipe_names.index(old_name) self.pipeline[i] = (new_name, self.pipeline[i][1])
[ "def", "rename_pipe", "(", "self", ",", "old_name", ",", "new_name", ")", ":", "if", "old_name", "not", "in", "self", ".", "pipe_names", ":", "raise", "ValueError", "(", "Errors", ".", "E001", ".", "format", "(", "name", "=", "old_name", ",", "opts", "=", "self", ".", "pipe_names", ")", ")", "if", "new_name", "in", "self", ".", "pipe_names", ":", "raise", "ValueError", "(", "Errors", ".", "E007", ".", "format", "(", "name", "=", "new_name", ",", "opts", "=", "self", ".", "pipe_names", ")", ")", "i", "=", "self", ".", "pipe_names", ".", "index", "(", "old_name", ")", "self", ".", "pipeline", "[", "i", "]", "=", "(", "new_name", ",", "self", ".", "pipeline", "[", "i", "]", "[", "1", "]", ")" ]
Rename a pipeline component. old_name (unicode): Name of the component to rename. new_name (unicode): New name of the component. DOCS: https://spacy.io/api/language#rename_pipe
[ "Rename", "a", "pipeline", "component", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/language.py#L338-L351
21,276
explosion/spaCy
spacy/language.py
Language.remove_pipe
def remove_pipe(self, name): """Remove a component from the pipeline. name (unicode): Name of the component to remove. RETURNS (tuple): A `(name, component)` tuple of the removed component. DOCS: https://spacy.io/api/language#remove_pipe """ if name not in self.pipe_names: raise ValueError(Errors.E001.format(name=name, opts=self.pipe_names)) return self.pipeline.pop(self.pipe_names.index(name))
python
def remove_pipe(self, name): """Remove a component from the pipeline. name (unicode): Name of the component to remove. RETURNS (tuple): A `(name, component)` tuple of the removed component. DOCS: https://spacy.io/api/language#remove_pipe """ if name not in self.pipe_names: raise ValueError(Errors.E001.format(name=name, opts=self.pipe_names)) return self.pipeline.pop(self.pipe_names.index(name))
[ "def", "remove_pipe", "(", "self", ",", "name", ")", ":", "if", "name", "not", "in", "self", ".", "pipe_names", ":", "raise", "ValueError", "(", "Errors", ".", "E001", ".", "format", "(", "name", "=", "name", ",", "opts", "=", "self", ".", "pipe_names", ")", ")", "return", "self", ".", "pipeline", ".", "pop", "(", "self", ".", "pipe_names", ".", "index", "(", "name", ")", ")" ]
Remove a component from the pipeline. name (unicode): Name of the component to remove. RETURNS (tuple): A `(name, component)` tuple of the removed component. DOCS: https://spacy.io/api/language#remove_pipe
[ "Remove", "a", "component", "from", "the", "pipeline", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/language.py#L353-L363
21,277
explosion/spaCy
spacy/language.py
Language.update
def update(self, docs, golds, drop=0.0, sgd=None, losses=None, component_cfg=None): """Update the models in the pipeline. docs (iterable): A batch of `Doc` objects. golds (iterable): A batch of `GoldParse` objects. drop (float): The droput rate. sgd (callable): An optimizer. RETURNS (dict): Results from the update. DOCS: https://spacy.io/api/language#update """ if len(docs) != len(golds): raise IndexError(Errors.E009.format(n_docs=len(docs), n_golds=len(golds))) if len(docs) == 0: return if sgd is None: if self._optimizer is None: self._optimizer = create_default_optimizer(Model.ops) sgd = self._optimizer # Allow dict of args to GoldParse, instead of GoldParse objects. gold_objs = [] doc_objs = [] for doc, gold in zip(docs, golds): if isinstance(doc, basestring_): doc = self.make_doc(doc) if not isinstance(gold, GoldParse): gold = GoldParse(doc, **gold) doc_objs.append(doc) gold_objs.append(gold) golds = gold_objs docs = doc_objs grads = {} def get_grads(W, dW, key=None): grads[key] = (W, dW) get_grads.alpha = sgd.alpha get_grads.b1 = sgd.b1 get_grads.b2 = sgd.b2 pipes = list(self.pipeline) random.shuffle(pipes) if component_cfg is None: component_cfg = {} for name, proc in pipes: if not hasattr(proc, "update"): continue grads = {} kwargs = component_cfg.get(name, {}) kwargs.setdefault("drop", drop) proc.update(docs, golds, sgd=get_grads, losses=losses, **kwargs) for key, (W, dW) in grads.items(): sgd(W, dW, key=key)
python
def update(self, docs, golds, drop=0.0, sgd=None, losses=None, component_cfg=None): """Update the models in the pipeline. docs (iterable): A batch of `Doc` objects. golds (iterable): A batch of `GoldParse` objects. drop (float): The droput rate. sgd (callable): An optimizer. RETURNS (dict): Results from the update. DOCS: https://spacy.io/api/language#update """ if len(docs) != len(golds): raise IndexError(Errors.E009.format(n_docs=len(docs), n_golds=len(golds))) if len(docs) == 0: return if sgd is None: if self._optimizer is None: self._optimizer = create_default_optimizer(Model.ops) sgd = self._optimizer # Allow dict of args to GoldParse, instead of GoldParse objects. gold_objs = [] doc_objs = [] for doc, gold in zip(docs, golds): if isinstance(doc, basestring_): doc = self.make_doc(doc) if not isinstance(gold, GoldParse): gold = GoldParse(doc, **gold) doc_objs.append(doc) gold_objs.append(gold) golds = gold_objs docs = doc_objs grads = {} def get_grads(W, dW, key=None): grads[key] = (W, dW) get_grads.alpha = sgd.alpha get_grads.b1 = sgd.b1 get_grads.b2 = sgd.b2 pipes = list(self.pipeline) random.shuffle(pipes) if component_cfg is None: component_cfg = {} for name, proc in pipes: if not hasattr(proc, "update"): continue grads = {} kwargs = component_cfg.get(name, {}) kwargs.setdefault("drop", drop) proc.update(docs, golds, sgd=get_grads, losses=losses, **kwargs) for key, (W, dW) in grads.items(): sgd(W, dW, key=key)
[ "def", "update", "(", "self", ",", "docs", ",", "golds", ",", "drop", "=", "0.0", ",", "sgd", "=", "None", ",", "losses", "=", "None", ",", "component_cfg", "=", "None", ")", ":", "if", "len", "(", "docs", ")", "!=", "len", "(", "golds", ")", ":", "raise", "IndexError", "(", "Errors", ".", "E009", ".", "format", "(", "n_docs", "=", "len", "(", "docs", ")", ",", "n_golds", "=", "len", "(", "golds", ")", ")", ")", "if", "len", "(", "docs", ")", "==", "0", ":", "return", "if", "sgd", "is", "None", ":", "if", "self", ".", "_optimizer", "is", "None", ":", "self", ".", "_optimizer", "=", "create_default_optimizer", "(", "Model", ".", "ops", ")", "sgd", "=", "self", ".", "_optimizer", "# Allow dict of args to GoldParse, instead of GoldParse objects.", "gold_objs", "=", "[", "]", "doc_objs", "=", "[", "]", "for", "doc", ",", "gold", "in", "zip", "(", "docs", ",", "golds", ")", ":", "if", "isinstance", "(", "doc", ",", "basestring_", ")", ":", "doc", "=", "self", ".", "make_doc", "(", "doc", ")", "if", "not", "isinstance", "(", "gold", ",", "GoldParse", ")", ":", "gold", "=", "GoldParse", "(", "doc", ",", "*", "*", "gold", ")", "doc_objs", ".", "append", "(", "doc", ")", "gold_objs", ".", "append", "(", "gold", ")", "golds", "=", "gold_objs", "docs", "=", "doc_objs", "grads", "=", "{", "}", "def", "get_grads", "(", "W", ",", "dW", ",", "key", "=", "None", ")", ":", "grads", "[", "key", "]", "=", "(", "W", ",", "dW", ")", "get_grads", ".", "alpha", "=", "sgd", ".", "alpha", "get_grads", ".", "b1", "=", "sgd", ".", "b1", "get_grads", ".", "b2", "=", "sgd", ".", "b2", "pipes", "=", "list", "(", "self", ".", "pipeline", ")", "random", ".", "shuffle", "(", "pipes", ")", "if", "component_cfg", "is", "None", ":", "component_cfg", "=", "{", "}", "for", "name", ",", "proc", "in", "pipes", ":", "if", "not", "hasattr", "(", "proc", ",", "\"update\"", ")", ":", "continue", "grads", "=", "{", "}", "kwargs", "=", "component_cfg", ".", "get", "(", "name", ",", "{", "}", ")", "kwargs", ".", "setdefault", "(", "\"drop\"", ",", "drop", ")", "proc", ".", "update", "(", "docs", ",", "golds", ",", "sgd", "=", "get_grads", ",", "losses", "=", "losses", ",", "*", "*", "kwargs", ")", "for", "key", ",", "(", "W", ",", "dW", ")", "in", "grads", ".", "items", "(", ")", ":", "sgd", "(", "W", ",", "dW", ",", "key", "=", "key", ")" ]
Update the models in the pipeline. docs (iterable): A batch of `Doc` objects. golds (iterable): A batch of `GoldParse` objects. drop (float): The droput rate. sgd (callable): An optimizer. RETURNS (dict): Results from the update. DOCS: https://spacy.io/api/language#update
[ "Update", "the", "models", "in", "the", "pipeline", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/language.py#L408-L459
21,278
explosion/spaCy
spacy/language.py
Language.rehearse
def rehearse(self, docs, sgd=None, losses=None, config=None): """Make a "rehearsal" update to the models in the pipeline, to prevent forgetting. Rehearsal updates run an initial copy of the model over some data, and update the model so its current predictions are more like the initial ones. This is useful for keeping a pre-trained model on-track, even if you're updating it with a smaller set of examples. docs (iterable): A batch of `Doc` objects. drop (float): The droput rate. sgd (callable): An optimizer. RETURNS (dict): Results from the update. EXAMPLE: >>> raw_text_batches = minibatch(raw_texts) >>> for labelled_batch in minibatch(zip(train_docs, train_golds)): >>> docs, golds = zip(*train_docs) >>> nlp.update(docs, golds) >>> raw_batch = [nlp.make_doc(text) for text in next(raw_text_batches)] >>> nlp.rehearse(raw_batch) """ # TODO: document if len(docs) == 0: return if sgd is None: if self._optimizer is None: self._optimizer = create_default_optimizer(Model.ops) sgd = self._optimizer docs = list(docs) for i, doc in enumerate(docs): if isinstance(doc, basestring_): docs[i] = self.make_doc(doc) pipes = list(self.pipeline) random.shuffle(pipes) if config is None: config = {} grads = {} def get_grads(W, dW, key=None): grads[key] = (W, dW) get_grads.alpha = sgd.alpha get_grads.b1 = sgd.b1 get_grads.b2 = sgd.b2 for name, proc in pipes: if not hasattr(proc, "rehearse"): continue grads = {} proc.rehearse(docs, sgd=get_grads, losses=losses, **config.get(name, {})) for key, (W, dW) in grads.items(): sgd(W, dW, key=key) return losses
python
def rehearse(self, docs, sgd=None, losses=None, config=None): """Make a "rehearsal" update to the models in the pipeline, to prevent forgetting. Rehearsal updates run an initial copy of the model over some data, and update the model so its current predictions are more like the initial ones. This is useful for keeping a pre-trained model on-track, even if you're updating it with a smaller set of examples. docs (iterable): A batch of `Doc` objects. drop (float): The droput rate. sgd (callable): An optimizer. RETURNS (dict): Results from the update. EXAMPLE: >>> raw_text_batches = minibatch(raw_texts) >>> for labelled_batch in minibatch(zip(train_docs, train_golds)): >>> docs, golds = zip(*train_docs) >>> nlp.update(docs, golds) >>> raw_batch = [nlp.make_doc(text) for text in next(raw_text_batches)] >>> nlp.rehearse(raw_batch) """ # TODO: document if len(docs) == 0: return if sgd is None: if self._optimizer is None: self._optimizer = create_default_optimizer(Model.ops) sgd = self._optimizer docs = list(docs) for i, doc in enumerate(docs): if isinstance(doc, basestring_): docs[i] = self.make_doc(doc) pipes = list(self.pipeline) random.shuffle(pipes) if config is None: config = {} grads = {} def get_grads(W, dW, key=None): grads[key] = (W, dW) get_grads.alpha = sgd.alpha get_grads.b1 = sgd.b1 get_grads.b2 = sgd.b2 for name, proc in pipes: if not hasattr(proc, "rehearse"): continue grads = {} proc.rehearse(docs, sgd=get_grads, losses=losses, **config.get(name, {})) for key, (W, dW) in grads.items(): sgd(W, dW, key=key) return losses
[ "def", "rehearse", "(", "self", ",", "docs", ",", "sgd", "=", "None", ",", "losses", "=", "None", ",", "config", "=", "None", ")", ":", "# TODO: document", "if", "len", "(", "docs", ")", "==", "0", ":", "return", "if", "sgd", "is", "None", ":", "if", "self", ".", "_optimizer", "is", "None", ":", "self", ".", "_optimizer", "=", "create_default_optimizer", "(", "Model", ".", "ops", ")", "sgd", "=", "self", ".", "_optimizer", "docs", "=", "list", "(", "docs", ")", "for", "i", ",", "doc", "in", "enumerate", "(", "docs", ")", ":", "if", "isinstance", "(", "doc", ",", "basestring_", ")", ":", "docs", "[", "i", "]", "=", "self", ".", "make_doc", "(", "doc", ")", "pipes", "=", "list", "(", "self", ".", "pipeline", ")", "random", ".", "shuffle", "(", "pipes", ")", "if", "config", "is", "None", ":", "config", "=", "{", "}", "grads", "=", "{", "}", "def", "get_grads", "(", "W", ",", "dW", ",", "key", "=", "None", ")", ":", "grads", "[", "key", "]", "=", "(", "W", ",", "dW", ")", "get_grads", ".", "alpha", "=", "sgd", ".", "alpha", "get_grads", ".", "b1", "=", "sgd", ".", "b1", "get_grads", ".", "b2", "=", "sgd", ".", "b2", "for", "name", ",", "proc", "in", "pipes", ":", "if", "not", "hasattr", "(", "proc", ",", "\"rehearse\"", ")", ":", "continue", "grads", "=", "{", "}", "proc", ".", "rehearse", "(", "docs", ",", "sgd", "=", "get_grads", ",", "losses", "=", "losses", ",", "*", "*", "config", ".", "get", "(", "name", ",", "{", "}", ")", ")", "for", "key", ",", "(", "W", ",", "dW", ")", "in", "grads", ".", "items", "(", ")", ":", "sgd", "(", "W", ",", "dW", ",", "key", "=", "key", ")", "return", "losses" ]
Make a "rehearsal" update to the models in the pipeline, to prevent forgetting. Rehearsal updates run an initial copy of the model over some data, and update the model so its current predictions are more like the initial ones. This is useful for keeping a pre-trained model on-track, even if you're updating it with a smaller set of examples. docs (iterable): A batch of `Doc` objects. drop (float): The droput rate. sgd (callable): An optimizer. RETURNS (dict): Results from the update. EXAMPLE: >>> raw_text_batches = minibatch(raw_texts) >>> for labelled_batch in minibatch(zip(train_docs, train_golds)): >>> docs, golds = zip(*train_docs) >>> nlp.update(docs, golds) >>> raw_batch = [nlp.make_doc(text) for text in next(raw_text_batches)] >>> nlp.rehearse(raw_batch)
[ "Make", "a", "rehearsal", "update", "to", "the", "models", "in", "the", "pipeline", "to", "prevent", "forgetting", ".", "Rehearsal", "updates", "run", "an", "initial", "copy", "of", "the", "model", "over", "some", "data", "and", "update", "the", "model", "so", "its", "current", "predictions", "are", "more", "like", "the", "initial", "ones", ".", "This", "is", "useful", "for", "keeping", "a", "pre", "-", "trained", "model", "on", "-", "track", "even", "if", "you", "re", "updating", "it", "with", "a", "smaller", "set", "of", "examples", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/language.py#L461-L511
21,279
explosion/spaCy
spacy/language.py
Language.preprocess_gold
def preprocess_gold(self, docs_golds): """Can be called before training to pre-process gold data. By default, it handles nonprojectivity and adds missing tags to the tag map. docs_golds (iterable): Tuples of `Doc` and `GoldParse` objects. YIELDS (tuple): Tuples of preprocessed `Doc` and `GoldParse` objects. """ for name, proc in self.pipeline: if hasattr(proc, "preprocess_gold"): docs_golds = proc.preprocess_gold(docs_golds) for doc, gold in docs_golds: yield doc, gold
python
def preprocess_gold(self, docs_golds): """Can be called before training to pre-process gold data. By default, it handles nonprojectivity and adds missing tags to the tag map. docs_golds (iterable): Tuples of `Doc` and `GoldParse` objects. YIELDS (tuple): Tuples of preprocessed `Doc` and `GoldParse` objects. """ for name, proc in self.pipeline: if hasattr(proc, "preprocess_gold"): docs_golds = proc.preprocess_gold(docs_golds) for doc, gold in docs_golds: yield doc, gold
[ "def", "preprocess_gold", "(", "self", ",", "docs_golds", ")", ":", "for", "name", ",", "proc", "in", "self", ".", "pipeline", ":", "if", "hasattr", "(", "proc", ",", "\"preprocess_gold\"", ")", ":", "docs_golds", "=", "proc", ".", "preprocess_gold", "(", "docs_golds", ")", "for", "doc", ",", "gold", "in", "docs_golds", ":", "yield", "doc", ",", "gold" ]
Can be called before training to pre-process gold data. By default, it handles nonprojectivity and adds missing tags to the tag map. docs_golds (iterable): Tuples of `Doc` and `GoldParse` objects. YIELDS (tuple): Tuples of preprocessed `Doc` and `GoldParse` objects.
[ "Can", "be", "called", "before", "training", "to", "pre", "-", "process", "gold", "data", ".", "By", "default", "it", "handles", "nonprojectivity", "and", "adds", "missing", "tags", "to", "the", "tag", "map", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/language.py#L513-L524
21,280
explosion/spaCy
spacy/language.py
Language.begin_training
def begin_training(self, get_gold_tuples=None, sgd=None, component_cfg=None, **cfg): """Allocate models, pre-process training data and acquire a trainer and optimizer. Used as a contextmanager. get_gold_tuples (function): Function returning gold data component_cfg (dict): Config parameters for specific components. **cfg: Config parameters. RETURNS: An optimizer. DOCS: https://spacy.io/api/language#begin_training """ if get_gold_tuples is None: get_gold_tuples = lambda: [] # Populate vocab else: for _, annots_brackets in get_gold_tuples(): for annots, _ in annots_brackets: for word in annots[1]: _ = self.vocab[word] # noqa: F841 if cfg.get("device", -1) >= 0: util.use_gpu(cfg["device"]) if self.vocab.vectors.data.shape[1] >= 1: self.vocab.vectors.data = Model.ops.asarray(self.vocab.vectors.data) link_vectors_to_models(self.vocab) if self.vocab.vectors.data.shape[1]: cfg["pretrained_vectors"] = self.vocab.vectors.name if sgd is None: sgd = create_default_optimizer(Model.ops) self._optimizer = sgd if component_cfg is None: component_cfg = {} for name, proc in self.pipeline: if hasattr(proc, "begin_training"): kwargs = component_cfg.get(name, {}) kwargs.update(cfg) proc.begin_training( get_gold_tuples, pipeline=self.pipeline, sgd=self._optimizer, **kwargs ) return self._optimizer
python
def begin_training(self, get_gold_tuples=None, sgd=None, component_cfg=None, **cfg): """Allocate models, pre-process training data and acquire a trainer and optimizer. Used as a contextmanager. get_gold_tuples (function): Function returning gold data component_cfg (dict): Config parameters for specific components. **cfg: Config parameters. RETURNS: An optimizer. DOCS: https://spacy.io/api/language#begin_training """ if get_gold_tuples is None: get_gold_tuples = lambda: [] # Populate vocab else: for _, annots_brackets in get_gold_tuples(): for annots, _ in annots_brackets: for word in annots[1]: _ = self.vocab[word] # noqa: F841 if cfg.get("device", -1) >= 0: util.use_gpu(cfg["device"]) if self.vocab.vectors.data.shape[1] >= 1: self.vocab.vectors.data = Model.ops.asarray(self.vocab.vectors.data) link_vectors_to_models(self.vocab) if self.vocab.vectors.data.shape[1]: cfg["pretrained_vectors"] = self.vocab.vectors.name if sgd is None: sgd = create_default_optimizer(Model.ops) self._optimizer = sgd if component_cfg is None: component_cfg = {} for name, proc in self.pipeline: if hasattr(proc, "begin_training"): kwargs = component_cfg.get(name, {}) kwargs.update(cfg) proc.begin_training( get_gold_tuples, pipeline=self.pipeline, sgd=self._optimizer, **kwargs ) return self._optimizer
[ "def", "begin_training", "(", "self", ",", "get_gold_tuples", "=", "None", ",", "sgd", "=", "None", ",", "component_cfg", "=", "None", ",", "*", "*", "cfg", ")", ":", "if", "get_gold_tuples", "is", "None", ":", "get_gold_tuples", "=", "lambda", ":", "[", "]", "# Populate vocab", "else", ":", "for", "_", ",", "annots_brackets", "in", "get_gold_tuples", "(", ")", ":", "for", "annots", ",", "_", "in", "annots_brackets", ":", "for", "word", "in", "annots", "[", "1", "]", ":", "_", "=", "self", ".", "vocab", "[", "word", "]", "# noqa: F841", "if", "cfg", ".", "get", "(", "\"device\"", ",", "-", "1", ")", ">=", "0", ":", "util", ".", "use_gpu", "(", "cfg", "[", "\"device\"", "]", ")", "if", "self", ".", "vocab", ".", "vectors", ".", "data", ".", "shape", "[", "1", "]", ">=", "1", ":", "self", ".", "vocab", ".", "vectors", ".", "data", "=", "Model", ".", "ops", ".", "asarray", "(", "self", ".", "vocab", ".", "vectors", ".", "data", ")", "link_vectors_to_models", "(", "self", ".", "vocab", ")", "if", "self", ".", "vocab", ".", "vectors", ".", "data", ".", "shape", "[", "1", "]", ":", "cfg", "[", "\"pretrained_vectors\"", "]", "=", "self", ".", "vocab", ".", "vectors", ".", "name", "if", "sgd", "is", "None", ":", "sgd", "=", "create_default_optimizer", "(", "Model", ".", "ops", ")", "self", ".", "_optimizer", "=", "sgd", "if", "component_cfg", "is", "None", ":", "component_cfg", "=", "{", "}", "for", "name", ",", "proc", "in", "self", ".", "pipeline", ":", "if", "hasattr", "(", "proc", ",", "\"begin_training\"", ")", ":", "kwargs", "=", "component_cfg", ".", "get", "(", "name", ",", "{", "}", ")", "kwargs", ".", "update", "(", "cfg", ")", "proc", ".", "begin_training", "(", "get_gold_tuples", ",", "pipeline", "=", "self", ".", "pipeline", ",", "sgd", "=", "self", ".", "_optimizer", ",", "*", "*", "kwargs", ")", "return", "self", ".", "_optimizer" ]
Allocate models, pre-process training data and acquire a trainer and optimizer. Used as a contextmanager. get_gold_tuples (function): Function returning gold data component_cfg (dict): Config parameters for specific components. **cfg: Config parameters. RETURNS: An optimizer. DOCS: https://spacy.io/api/language#begin_training
[ "Allocate", "models", "pre", "-", "process", "training", "data", "and", "acquire", "a", "trainer", "and", "optimizer", ".", "Used", "as", "a", "contextmanager", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/language.py#L526-L567
21,281
explosion/spaCy
spacy/language.py
Language.resume_training
def resume_training(self, sgd=None, **cfg): """Continue training a pre-trained model. Create and return an optimizer, and initialize "rehearsal" for any pipeline component that has a .rehearse() method. Rehearsal is used to prevent models from "forgetting" their initialised "knowledge". To perform rehearsal, collect samples of text you want the models to retain performance on, and call nlp.rehearse() with a batch of Doc objects. """ if cfg.get("device", -1) >= 0: util.use_gpu(cfg["device"]) if self.vocab.vectors.data.shape[1] >= 1: self.vocab.vectors.data = Model.ops.asarray(self.vocab.vectors.data) link_vectors_to_models(self.vocab) if self.vocab.vectors.data.shape[1]: cfg["pretrained_vectors"] = self.vocab.vectors.name if sgd is None: sgd = create_default_optimizer(Model.ops) self._optimizer = sgd for name, proc in self.pipeline: if hasattr(proc, "_rehearsal_model"): proc._rehearsal_model = deepcopy(proc.model) return self._optimizer
python
def resume_training(self, sgd=None, **cfg): """Continue training a pre-trained model. Create and return an optimizer, and initialize "rehearsal" for any pipeline component that has a .rehearse() method. Rehearsal is used to prevent models from "forgetting" their initialised "knowledge". To perform rehearsal, collect samples of text you want the models to retain performance on, and call nlp.rehearse() with a batch of Doc objects. """ if cfg.get("device", -1) >= 0: util.use_gpu(cfg["device"]) if self.vocab.vectors.data.shape[1] >= 1: self.vocab.vectors.data = Model.ops.asarray(self.vocab.vectors.data) link_vectors_to_models(self.vocab) if self.vocab.vectors.data.shape[1]: cfg["pretrained_vectors"] = self.vocab.vectors.name if sgd is None: sgd = create_default_optimizer(Model.ops) self._optimizer = sgd for name, proc in self.pipeline: if hasattr(proc, "_rehearsal_model"): proc._rehearsal_model = deepcopy(proc.model) return self._optimizer
[ "def", "resume_training", "(", "self", ",", "sgd", "=", "None", ",", "*", "*", "cfg", ")", ":", "if", "cfg", ".", "get", "(", "\"device\"", ",", "-", "1", ")", ">=", "0", ":", "util", ".", "use_gpu", "(", "cfg", "[", "\"device\"", "]", ")", "if", "self", ".", "vocab", ".", "vectors", ".", "data", ".", "shape", "[", "1", "]", ">=", "1", ":", "self", ".", "vocab", ".", "vectors", ".", "data", "=", "Model", ".", "ops", ".", "asarray", "(", "self", ".", "vocab", ".", "vectors", ".", "data", ")", "link_vectors_to_models", "(", "self", ".", "vocab", ")", "if", "self", ".", "vocab", ".", "vectors", ".", "data", ".", "shape", "[", "1", "]", ":", "cfg", "[", "\"pretrained_vectors\"", "]", "=", "self", ".", "vocab", ".", "vectors", ".", "name", "if", "sgd", "is", "None", ":", "sgd", "=", "create_default_optimizer", "(", "Model", ".", "ops", ")", "self", ".", "_optimizer", "=", "sgd", "for", "name", ",", "proc", "in", "self", ".", "pipeline", ":", "if", "hasattr", "(", "proc", ",", "\"_rehearsal_model\"", ")", ":", "proc", ".", "_rehearsal_model", "=", "deepcopy", "(", "proc", ".", "model", ")", "return", "self", ".", "_optimizer" ]
Continue training a pre-trained model. Create and return an optimizer, and initialize "rehearsal" for any pipeline component that has a .rehearse() method. Rehearsal is used to prevent models from "forgetting" their initialised "knowledge". To perform rehearsal, collect samples of text you want the models to retain performance on, and call nlp.rehearse() with a batch of Doc objects.
[ "Continue", "training", "a", "pre", "-", "trained", "model", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/language.py#L569-L591
21,282
explosion/spaCy
spacy/language.py
Language.use_params
def use_params(self, params, **cfg): """Replace weights of models in the pipeline with those provided in the params dictionary. Can be used as a contextmanager, in which case, models go back to their original weights after the block. params (dict): A dictionary of parameters keyed by model ID. **cfg: Config parameters. EXAMPLE: >>> with nlp.use_params(optimizer.averages): >>> nlp.to_disk('/tmp/checkpoint') """ contexts = [ pipe.use_params(params) for name, pipe in self.pipeline if hasattr(pipe, "use_params") ] # TODO: Having trouble with contextlib # Workaround: these aren't actually context managers atm. for context in contexts: try: next(context) except StopIteration: pass yield for context in contexts: try: next(context) except StopIteration: pass
python
def use_params(self, params, **cfg): """Replace weights of models in the pipeline with those provided in the params dictionary. Can be used as a contextmanager, in which case, models go back to their original weights after the block. params (dict): A dictionary of parameters keyed by model ID. **cfg: Config parameters. EXAMPLE: >>> with nlp.use_params(optimizer.averages): >>> nlp.to_disk('/tmp/checkpoint') """ contexts = [ pipe.use_params(params) for name, pipe in self.pipeline if hasattr(pipe, "use_params") ] # TODO: Having trouble with contextlib # Workaround: these aren't actually context managers atm. for context in contexts: try: next(context) except StopIteration: pass yield for context in contexts: try: next(context) except StopIteration: pass
[ "def", "use_params", "(", "self", ",", "params", ",", "*", "*", "cfg", ")", ":", "contexts", "=", "[", "pipe", ".", "use_params", "(", "params", ")", "for", "name", ",", "pipe", "in", "self", ".", "pipeline", "if", "hasattr", "(", "pipe", ",", "\"use_params\"", ")", "]", "# TODO: Having trouble with contextlib", "# Workaround: these aren't actually context managers atm.", "for", "context", "in", "contexts", ":", "try", ":", "next", "(", "context", ")", "except", "StopIteration", ":", "pass", "yield", "for", "context", "in", "contexts", ":", "try", ":", "next", "(", "context", ")", "except", "StopIteration", ":", "pass" ]
Replace weights of models in the pipeline with those provided in the params dictionary. Can be used as a contextmanager, in which case, models go back to their original weights after the block. params (dict): A dictionary of parameters keyed by model ID. **cfg: Config parameters. EXAMPLE: >>> with nlp.use_params(optimizer.averages): >>> nlp.to_disk('/tmp/checkpoint')
[ "Replace", "weights", "of", "models", "in", "the", "pipeline", "with", "those", "provided", "in", "the", "params", "dictionary", ".", "Can", "be", "used", "as", "a", "contextmanager", "in", "which", "case", "models", "go", "back", "to", "their", "original", "weights", "after", "the", "block", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/language.py#L619-L648
21,283
explosion/spaCy
spacy/language.py
Language.pipe
def pipe( self, texts, as_tuples=False, n_threads=-1, batch_size=1000, disable=[], cleanup=False, component_cfg=None, ): """Process texts as a stream, and yield `Doc` objects in order. texts (iterator): A sequence of texts to process. as_tuples (bool): If set to True, inputs should be a sequence of (text, context) tuples. Output will then be a sequence of (doc, context) tuples. Defaults to False. batch_size (int): The number of texts to buffer. disable (list): Names of the pipeline components to disable. cleanup (bool): If True, unneeded strings are freed to control memory use. Experimental. component_cfg (dict): An optional dictionary with extra keyword arguments for specific components. YIELDS (Doc): Documents in the order of the original text. DOCS: https://spacy.io/api/language#pipe """ if n_threads != -1: deprecation_warning(Warnings.W016) if as_tuples: text_context1, text_context2 = itertools.tee(texts) texts = (tc[0] for tc in text_context1) contexts = (tc[1] for tc in text_context2) docs = self.pipe( texts, batch_size=batch_size, disable=disable, component_cfg=component_cfg, ) for doc, context in izip(docs, contexts): yield (doc, context) return docs = (self.make_doc(text) for text in texts) if component_cfg is None: component_cfg = {} for name, proc in self.pipeline: if name in disable: continue kwargs = component_cfg.get(name, {}) # Allow component_cfg to overwrite the top-level kwargs. kwargs.setdefault("batch_size", batch_size) if hasattr(proc, "pipe"): docs = proc.pipe(docs, **kwargs) else: # Apply the function, but yield the doc docs = _pipe(proc, docs, kwargs) # Track weakrefs of "recent" documents, so that we can see when they # expire from memory. When they do, we know we don't need old strings. # This way, we avoid maintaining an unbounded growth in string entries # in the string store. recent_refs = weakref.WeakSet() old_refs = weakref.WeakSet() # Keep track of the original string data, so that if we flush old strings, # we can recover the original ones. However, we only want to do this if we're # really adding strings, to save up-front costs. original_strings_data = None nr_seen = 0 for doc in docs: yield doc if cleanup: recent_refs.add(doc) if nr_seen < 10000: old_refs.add(doc) nr_seen += 1 elif len(old_refs) == 0: old_refs, recent_refs = recent_refs, old_refs if original_strings_data is None: original_strings_data = list(self.vocab.strings) else: keys, strings = self.vocab.strings._cleanup_stale_strings( original_strings_data ) self.vocab._reset_cache(keys, strings) self.tokenizer._reset_cache(keys) nr_seen = 0
python
def pipe( self, texts, as_tuples=False, n_threads=-1, batch_size=1000, disable=[], cleanup=False, component_cfg=None, ): """Process texts as a stream, and yield `Doc` objects in order. texts (iterator): A sequence of texts to process. as_tuples (bool): If set to True, inputs should be a sequence of (text, context) tuples. Output will then be a sequence of (doc, context) tuples. Defaults to False. batch_size (int): The number of texts to buffer. disable (list): Names of the pipeline components to disable. cleanup (bool): If True, unneeded strings are freed to control memory use. Experimental. component_cfg (dict): An optional dictionary with extra keyword arguments for specific components. YIELDS (Doc): Documents in the order of the original text. DOCS: https://spacy.io/api/language#pipe """ if n_threads != -1: deprecation_warning(Warnings.W016) if as_tuples: text_context1, text_context2 = itertools.tee(texts) texts = (tc[0] for tc in text_context1) contexts = (tc[1] for tc in text_context2) docs = self.pipe( texts, batch_size=batch_size, disable=disable, component_cfg=component_cfg, ) for doc, context in izip(docs, contexts): yield (doc, context) return docs = (self.make_doc(text) for text in texts) if component_cfg is None: component_cfg = {} for name, proc in self.pipeline: if name in disable: continue kwargs = component_cfg.get(name, {}) # Allow component_cfg to overwrite the top-level kwargs. kwargs.setdefault("batch_size", batch_size) if hasattr(proc, "pipe"): docs = proc.pipe(docs, **kwargs) else: # Apply the function, but yield the doc docs = _pipe(proc, docs, kwargs) # Track weakrefs of "recent" documents, so that we can see when they # expire from memory. When they do, we know we don't need old strings. # This way, we avoid maintaining an unbounded growth in string entries # in the string store. recent_refs = weakref.WeakSet() old_refs = weakref.WeakSet() # Keep track of the original string data, so that if we flush old strings, # we can recover the original ones. However, we only want to do this if we're # really adding strings, to save up-front costs. original_strings_data = None nr_seen = 0 for doc in docs: yield doc if cleanup: recent_refs.add(doc) if nr_seen < 10000: old_refs.add(doc) nr_seen += 1 elif len(old_refs) == 0: old_refs, recent_refs = recent_refs, old_refs if original_strings_data is None: original_strings_data = list(self.vocab.strings) else: keys, strings = self.vocab.strings._cleanup_stale_strings( original_strings_data ) self.vocab._reset_cache(keys, strings) self.tokenizer._reset_cache(keys) nr_seen = 0
[ "def", "pipe", "(", "self", ",", "texts", ",", "as_tuples", "=", "False", ",", "n_threads", "=", "-", "1", ",", "batch_size", "=", "1000", ",", "disable", "=", "[", "]", ",", "cleanup", "=", "False", ",", "component_cfg", "=", "None", ",", ")", ":", "if", "n_threads", "!=", "-", "1", ":", "deprecation_warning", "(", "Warnings", ".", "W016", ")", "if", "as_tuples", ":", "text_context1", ",", "text_context2", "=", "itertools", ".", "tee", "(", "texts", ")", "texts", "=", "(", "tc", "[", "0", "]", "for", "tc", "in", "text_context1", ")", "contexts", "=", "(", "tc", "[", "1", "]", "for", "tc", "in", "text_context2", ")", "docs", "=", "self", ".", "pipe", "(", "texts", ",", "batch_size", "=", "batch_size", ",", "disable", "=", "disable", ",", "component_cfg", "=", "component_cfg", ",", ")", "for", "doc", ",", "context", "in", "izip", "(", "docs", ",", "contexts", ")", ":", "yield", "(", "doc", ",", "context", ")", "return", "docs", "=", "(", "self", ".", "make_doc", "(", "text", ")", "for", "text", "in", "texts", ")", "if", "component_cfg", "is", "None", ":", "component_cfg", "=", "{", "}", "for", "name", ",", "proc", "in", "self", ".", "pipeline", ":", "if", "name", "in", "disable", ":", "continue", "kwargs", "=", "component_cfg", ".", "get", "(", "name", ",", "{", "}", ")", "# Allow component_cfg to overwrite the top-level kwargs.", "kwargs", ".", "setdefault", "(", "\"batch_size\"", ",", "batch_size", ")", "if", "hasattr", "(", "proc", ",", "\"pipe\"", ")", ":", "docs", "=", "proc", ".", "pipe", "(", "docs", ",", "*", "*", "kwargs", ")", "else", ":", "# Apply the function, but yield the doc", "docs", "=", "_pipe", "(", "proc", ",", "docs", ",", "kwargs", ")", "# Track weakrefs of \"recent\" documents, so that we can see when they", "# expire from memory. When they do, we know we don't need old strings.", "# This way, we avoid maintaining an unbounded growth in string entries", "# in the string store.", "recent_refs", "=", "weakref", ".", "WeakSet", "(", ")", "old_refs", "=", "weakref", ".", "WeakSet", "(", ")", "# Keep track of the original string data, so that if we flush old strings,", "# we can recover the original ones. However, we only want to do this if we're", "# really adding strings, to save up-front costs.", "original_strings_data", "=", "None", "nr_seen", "=", "0", "for", "doc", "in", "docs", ":", "yield", "doc", "if", "cleanup", ":", "recent_refs", ".", "add", "(", "doc", ")", "if", "nr_seen", "<", "10000", ":", "old_refs", ".", "add", "(", "doc", ")", "nr_seen", "+=", "1", "elif", "len", "(", "old_refs", ")", "==", "0", ":", "old_refs", ",", "recent_refs", "=", "recent_refs", ",", "old_refs", "if", "original_strings_data", "is", "None", ":", "original_strings_data", "=", "list", "(", "self", ".", "vocab", ".", "strings", ")", "else", ":", "keys", ",", "strings", "=", "self", ".", "vocab", ".", "strings", ".", "_cleanup_stale_strings", "(", "original_strings_data", ")", "self", ".", "vocab", ".", "_reset_cache", "(", "keys", ",", "strings", ")", "self", ".", "tokenizer", ".", "_reset_cache", "(", "keys", ")", "nr_seen", "=", "0" ]
Process texts as a stream, and yield `Doc` objects in order. texts (iterator): A sequence of texts to process. as_tuples (bool): If set to True, inputs should be a sequence of (text, context) tuples. Output will then be a sequence of (doc, context) tuples. Defaults to False. batch_size (int): The number of texts to buffer. disable (list): Names of the pipeline components to disable. cleanup (bool): If True, unneeded strings are freed to control memory use. Experimental. component_cfg (dict): An optional dictionary with extra keyword arguments for specific components. YIELDS (Doc): Documents in the order of the original text. DOCS: https://spacy.io/api/language#pipe
[ "Process", "texts", "as", "a", "stream", "and", "yield", "Doc", "objects", "in", "order", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/language.py#L650-L733
21,284
explosion/spaCy
spacy/language.py
Language.to_disk
def to_disk(self, path, exclude=tuple(), disable=None): """Save the current state to a directory. If a model is loaded, this will include the model. path (unicode or Path): Path to a directory, which will be created if it doesn't exist. exclude (list): Names of components or serialization fields to exclude. DOCS: https://spacy.io/api/language#to_disk """ if disable is not None: deprecation_warning(Warnings.W014) exclude = disable path = util.ensure_path(path) serializers = OrderedDict() serializers["tokenizer"] = lambda p: self.tokenizer.to_disk(p, exclude=["vocab"]) serializers["meta.json"] = lambda p: p.open("w").write(srsly.json_dumps(self.meta)) for name, proc in self.pipeline: if not hasattr(proc, "name"): continue if name in exclude: continue if not hasattr(proc, "to_disk"): continue serializers[name] = lambda p, proc=proc: proc.to_disk(p, exclude=["vocab"]) serializers["vocab"] = lambda p: self.vocab.to_disk(p) util.to_disk(path, serializers, exclude)
python
def to_disk(self, path, exclude=tuple(), disable=None): """Save the current state to a directory. If a model is loaded, this will include the model. path (unicode or Path): Path to a directory, which will be created if it doesn't exist. exclude (list): Names of components or serialization fields to exclude. DOCS: https://spacy.io/api/language#to_disk """ if disable is not None: deprecation_warning(Warnings.W014) exclude = disable path = util.ensure_path(path) serializers = OrderedDict() serializers["tokenizer"] = lambda p: self.tokenizer.to_disk(p, exclude=["vocab"]) serializers["meta.json"] = lambda p: p.open("w").write(srsly.json_dumps(self.meta)) for name, proc in self.pipeline: if not hasattr(proc, "name"): continue if name in exclude: continue if not hasattr(proc, "to_disk"): continue serializers[name] = lambda p, proc=proc: proc.to_disk(p, exclude=["vocab"]) serializers["vocab"] = lambda p: self.vocab.to_disk(p) util.to_disk(path, serializers, exclude)
[ "def", "to_disk", "(", "self", ",", "path", ",", "exclude", "=", "tuple", "(", ")", ",", "disable", "=", "None", ")", ":", "if", "disable", "is", "not", "None", ":", "deprecation_warning", "(", "Warnings", ".", "W014", ")", "exclude", "=", "disable", "path", "=", "util", ".", "ensure_path", "(", "path", ")", "serializers", "=", "OrderedDict", "(", ")", "serializers", "[", "\"tokenizer\"", "]", "=", "lambda", "p", ":", "self", ".", "tokenizer", ".", "to_disk", "(", "p", ",", "exclude", "=", "[", "\"vocab\"", "]", ")", "serializers", "[", "\"meta.json\"", "]", "=", "lambda", "p", ":", "p", ".", "open", "(", "\"w\"", ")", ".", "write", "(", "srsly", ".", "json_dumps", "(", "self", ".", "meta", ")", ")", "for", "name", ",", "proc", "in", "self", ".", "pipeline", ":", "if", "not", "hasattr", "(", "proc", ",", "\"name\"", ")", ":", "continue", "if", "name", "in", "exclude", ":", "continue", "if", "not", "hasattr", "(", "proc", ",", "\"to_disk\"", ")", ":", "continue", "serializers", "[", "name", "]", "=", "lambda", "p", ",", "proc", "=", "proc", ":", "proc", ".", "to_disk", "(", "p", ",", "exclude", "=", "[", "\"vocab\"", "]", ")", "serializers", "[", "\"vocab\"", "]", "=", "lambda", "p", ":", "self", ".", "vocab", ".", "to_disk", "(", "p", ")", "util", ".", "to_disk", "(", "path", ",", "serializers", ",", "exclude", ")" ]
Save the current state to a directory. If a model is loaded, this will include the model. path (unicode or Path): Path to a directory, which will be created if it doesn't exist. exclude (list): Names of components or serialization fields to exclude. DOCS: https://spacy.io/api/language#to_disk
[ "Save", "the", "current", "state", "to", "a", "directory", ".", "If", "a", "model", "is", "loaded", "this", "will", "include", "the", "model", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/language.py#L735-L761
21,285
explosion/spaCy
spacy/language.py
Language.from_disk
def from_disk(self, path, exclude=tuple(), disable=None): """Loads state from a directory. Modifies the object in place and returns it. If the saved `Language` object contains a model, the model will be loaded. path (unicode or Path): A path to a directory. exclude (list): Names of components or serialization fields to exclude. RETURNS (Language): The modified `Language` object. DOCS: https://spacy.io/api/language#from_disk """ if disable is not None: deprecation_warning(Warnings.W014) exclude = disable path = util.ensure_path(path) deserializers = OrderedDict() deserializers["meta.json"] = lambda p: self.meta.update(srsly.read_json(p)) deserializers["vocab"] = lambda p: self.vocab.from_disk(p) and _fix_pretrained_vectors_name(self) deserializers["tokenizer"] = lambda p: self.tokenizer.from_disk(p, exclude=["vocab"]) for name, proc in self.pipeline: if name in exclude: continue if not hasattr(proc, "from_disk"): continue deserializers[name] = lambda p, proc=proc: proc.from_disk(p, exclude=["vocab"]) if not (path / "vocab").exists() and "vocab" not in exclude: # Convert to list here in case exclude is (default) tuple exclude = list(exclude) + ["vocab"] util.from_disk(path, deserializers, exclude) self._path = path return self
python
def from_disk(self, path, exclude=tuple(), disable=None): """Loads state from a directory. Modifies the object in place and returns it. If the saved `Language` object contains a model, the model will be loaded. path (unicode or Path): A path to a directory. exclude (list): Names of components or serialization fields to exclude. RETURNS (Language): The modified `Language` object. DOCS: https://spacy.io/api/language#from_disk """ if disable is not None: deprecation_warning(Warnings.W014) exclude = disable path = util.ensure_path(path) deserializers = OrderedDict() deserializers["meta.json"] = lambda p: self.meta.update(srsly.read_json(p)) deserializers["vocab"] = lambda p: self.vocab.from_disk(p) and _fix_pretrained_vectors_name(self) deserializers["tokenizer"] = lambda p: self.tokenizer.from_disk(p, exclude=["vocab"]) for name, proc in self.pipeline: if name in exclude: continue if not hasattr(proc, "from_disk"): continue deserializers[name] = lambda p, proc=proc: proc.from_disk(p, exclude=["vocab"]) if not (path / "vocab").exists() and "vocab" not in exclude: # Convert to list here in case exclude is (default) tuple exclude = list(exclude) + ["vocab"] util.from_disk(path, deserializers, exclude) self._path = path return self
[ "def", "from_disk", "(", "self", ",", "path", ",", "exclude", "=", "tuple", "(", ")", ",", "disable", "=", "None", ")", ":", "if", "disable", "is", "not", "None", ":", "deprecation_warning", "(", "Warnings", ".", "W014", ")", "exclude", "=", "disable", "path", "=", "util", ".", "ensure_path", "(", "path", ")", "deserializers", "=", "OrderedDict", "(", ")", "deserializers", "[", "\"meta.json\"", "]", "=", "lambda", "p", ":", "self", ".", "meta", ".", "update", "(", "srsly", ".", "read_json", "(", "p", ")", ")", "deserializers", "[", "\"vocab\"", "]", "=", "lambda", "p", ":", "self", ".", "vocab", ".", "from_disk", "(", "p", ")", "and", "_fix_pretrained_vectors_name", "(", "self", ")", "deserializers", "[", "\"tokenizer\"", "]", "=", "lambda", "p", ":", "self", ".", "tokenizer", ".", "from_disk", "(", "p", ",", "exclude", "=", "[", "\"vocab\"", "]", ")", "for", "name", ",", "proc", "in", "self", ".", "pipeline", ":", "if", "name", "in", "exclude", ":", "continue", "if", "not", "hasattr", "(", "proc", ",", "\"from_disk\"", ")", ":", "continue", "deserializers", "[", "name", "]", "=", "lambda", "p", ",", "proc", "=", "proc", ":", "proc", ".", "from_disk", "(", "p", ",", "exclude", "=", "[", "\"vocab\"", "]", ")", "if", "not", "(", "path", "/", "\"vocab\"", ")", ".", "exists", "(", ")", "and", "\"vocab\"", "not", "in", "exclude", ":", "# Convert to list here in case exclude is (default) tuple", "exclude", "=", "list", "(", "exclude", ")", "+", "[", "\"vocab\"", "]", "util", ".", "from_disk", "(", "path", ",", "deserializers", ",", "exclude", ")", "self", ".", "_path", "=", "path", "return", "self" ]
Loads state from a directory. Modifies the object in place and returns it. If the saved `Language` object contains a model, the model will be loaded. path (unicode or Path): A path to a directory. exclude (list): Names of components or serialization fields to exclude. RETURNS (Language): The modified `Language` object. DOCS: https://spacy.io/api/language#from_disk
[ "Loads", "state", "from", "a", "directory", ".", "Modifies", "the", "object", "in", "place", "and", "returns", "it", ".", "If", "the", "saved", "Language", "object", "contains", "a", "model", "the", "model", "will", "be", "loaded", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/language.py#L763-L793
21,286
explosion/spaCy
spacy/language.py
Language.to_bytes
def to_bytes(self, exclude=tuple(), disable=None, **kwargs): """Serialize the current state to a binary string. exclude (list): Names of components or serialization fields to exclude. RETURNS (bytes): The serialized form of the `Language` object. DOCS: https://spacy.io/api/language#to_bytes """ if disable is not None: deprecation_warning(Warnings.W014) exclude = disable serializers = OrderedDict() serializers["vocab"] = lambda: self.vocab.to_bytes() serializers["tokenizer"] = lambda: self.tokenizer.to_bytes(exclude=["vocab"]) serializers["meta.json"] = lambda: srsly.json_dumps(self.meta) for name, proc in self.pipeline: if name in exclude: continue if not hasattr(proc, "to_bytes"): continue serializers[name] = lambda proc=proc: proc.to_bytes(exclude=["vocab"]) exclude = util.get_serialization_exclude(serializers, exclude, kwargs) return util.to_bytes(serializers, exclude)
python
def to_bytes(self, exclude=tuple(), disable=None, **kwargs): """Serialize the current state to a binary string. exclude (list): Names of components or serialization fields to exclude. RETURNS (bytes): The serialized form of the `Language` object. DOCS: https://spacy.io/api/language#to_bytes """ if disable is not None: deprecation_warning(Warnings.W014) exclude = disable serializers = OrderedDict() serializers["vocab"] = lambda: self.vocab.to_bytes() serializers["tokenizer"] = lambda: self.tokenizer.to_bytes(exclude=["vocab"]) serializers["meta.json"] = lambda: srsly.json_dumps(self.meta) for name, proc in self.pipeline: if name in exclude: continue if not hasattr(proc, "to_bytes"): continue serializers[name] = lambda proc=proc: proc.to_bytes(exclude=["vocab"]) exclude = util.get_serialization_exclude(serializers, exclude, kwargs) return util.to_bytes(serializers, exclude)
[ "def", "to_bytes", "(", "self", ",", "exclude", "=", "tuple", "(", ")", ",", "disable", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "disable", "is", "not", "None", ":", "deprecation_warning", "(", "Warnings", ".", "W014", ")", "exclude", "=", "disable", "serializers", "=", "OrderedDict", "(", ")", "serializers", "[", "\"vocab\"", "]", "=", "lambda", ":", "self", ".", "vocab", ".", "to_bytes", "(", ")", "serializers", "[", "\"tokenizer\"", "]", "=", "lambda", ":", "self", ".", "tokenizer", ".", "to_bytes", "(", "exclude", "=", "[", "\"vocab\"", "]", ")", "serializers", "[", "\"meta.json\"", "]", "=", "lambda", ":", "srsly", ".", "json_dumps", "(", "self", ".", "meta", ")", "for", "name", ",", "proc", "in", "self", ".", "pipeline", ":", "if", "name", "in", "exclude", ":", "continue", "if", "not", "hasattr", "(", "proc", ",", "\"to_bytes\"", ")", ":", "continue", "serializers", "[", "name", "]", "=", "lambda", "proc", "=", "proc", ":", "proc", ".", "to_bytes", "(", "exclude", "=", "[", "\"vocab\"", "]", ")", "exclude", "=", "util", ".", "get_serialization_exclude", "(", "serializers", ",", "exclude", ",", "kwargs", ")", "return", "util", ".", "to_bytes", "(", "serializers", ",", "exclude", ")" ]
Serialize the current state to a binary string. exclude (list): Names of components or serialization fields to exclude. RETURNS (bytes): The serialized form of the `Language` object. DOCS: https://spacy.io/api/language#to_bytes
[ "Serialize", "the", "current", "state", "to", "a", "binary", "string", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/language.py#L795-L817
21,287
explosion/spaCy
spacy/language.py
Language.from_bytes
def from_bytes(self, bytes_data, exclude=tuple(), disable=None, **kwargs): """Load state from a binary string. bytes_data (bytes): The data to load from. exclude (list): Names of components or serialization fields to exclude. RETURNS (Language): The `Language` object. DOCS: https://spacy.io/api/language#from_bytes """ if disable is not None: deprecation_warning(Warnings.W014) exclude = disable deserializers = OrderedDict() deserializers["meta.json"] = lambda b: self.meta.update(srsly.json_loads(b)) deserializers["vocab"] = lambda b: self.vocab.from_bytes(b) and _fix_pretrained_vectors_name(self) deserializers["tokenizer"] = lambda b: self.tokenizer.from_bytes(b, exclude=["vocab"]) for name, proc in self.pipeline: if name in exclude: continue if not hasattr(proc, "from_bytes"): continue deserializers[name] = lambda b, proc=proc: proc.from_bytes(b, exclude=["vocab"]) exclude = util.get_serialization_exclude(deserializers, exclude, kwargs) util.from_bytes(bytes_data, deserializers, exclude) return self
python
def from_bytes(self, bytes_data, exclude=tuple(), disable=None, **kwargs): """Load state from a binary string. bytes_data (bytes): The data to load from. exclude (list): Names of components or serialization fields to exclude. RETURNS (Language): The `Language` object. DOCS: https://spacy.io/api/language#from_bytes """ if disable is not None: deprecation_warning(Warnings.W014) exclude = disable deserializers = OrderedDict() deserializers["meta.json"] = lambda b: self.meta.update(srsly.json_loads(b)) deserializers["vocab"] = lambda b: self.vocab.from_bytes(b) and _fix_pretrained_vectors_name(self) deserializers["tokenizer"] = lambda b: self.tokenizer.from_bytes(b, exclude=["vocab"]) for name, proc in self.pipeline: if name in exclude: continue if not hasattr(proc, "from_bytes"): continue deserializers[name] = lambda b, proc=proc: proc.from_bytes(b, exclude=["vocab"]) exclude = util.get_serialization_exclude(deserializers, exclude, kwargs) util.from_bytes(bytes_data, deserializers, exclude) return self
[ "def", "from_bytes", "(", "self", ",", "bytes_data", ",", "exclude", "=", "tuple", "(", ")", ",", "disable", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "disable", "is", "not", "None", ":", "deprecation_warning", "(", "Warnings", ".", "W014", ")", "exclude", "=", "disable", "deserializers", "=", "OrderedDict", "(", ")", "deserializers", "[", "\"meta.json\"", "]", "=", "lambda", "b", ":", "self", ".", "meta", ".", "update", "(", "srsly", ".", "json_loads", "(", "b", ")", ")", "deserializers", "[", "\"vocab\"", "]", "=", "lambda", "b", ":", "self", ".", "vocab", ".", "from_bytes", "(", "b", ")", "and", "_fix_pretrained_vectors_name", "(", "self", ")", "deserializers", "[", "\"tokenizer\"", "]", "=", "lambda", "b", ":", "self", ".", "tokenizer", ".", "from_bytes", "(", "b", ",", "exclude", "=", "[", "\"vocab\"", "]", ")", "for", "name", ",", "proc", "in", "self", ".", "pipeline", ":", "if", "name", "in", "exclude", ":", "continue", "if", "not", "hasattr", "(", "proc", ",", "\"from_bytes\"", ")", ":", "continue", "deserializers", "[", "name", "]", "=", "lambda", "b", ",", "proc", "=", "proc", ":", "proc", ".", "from_bytes", "(", "b", ",", "exclude", "=", "[", "\"vocab\"", "]", ")", "exclude", "=", "util", ".", "get_serialization_exclude", "(", "deserializers", ",", "exclude", ",", "kwargs", ")", "util", ".", "from_bytes", "(", "bytes_data", ",", "deserializers", ",", "exclude", ")", "return", "self" ]
Load state from a binary string. bytes_data (bytes): The data to load from. exclude (list): Names of components or serialization fields to exclude. RETURNS (Language): The `Language` object. DOCS: https://spacy.io/api/language#from_bytes
[ "Load", "state", "from", "a", "binary", "string", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/language.py#L819-L843
21,288
explosion/spaCy
spacy/language.py
DisabledPipes.restore
def restore(self): """Restore the pipeline to its state when DisabledPipes was created.""" current, self.nlp.pipeline = self.nlp.pipeline, self.original_pipeline unexpected = [name for name, pipe in current if not self.nlp.has_pipe(name)] if unexpected: # Don't change the pipeline if we're raising an error. self.nlp.pipeline = current raise ValueError(Errors.E008.format(names=unexpected)) self[:] = []
python
def restore(self): """Restore the pipeline to its state when DisabledPipes was created.""" current, self.nlp.pipeline = self.nlp.pipeline, self.original_pipeline unexpected = [name for name, pipe in current if not self.nlp.has_pipe(name)] if unexpected: # Don't change the pipeline if we're raising an error. self.nlp.pipeline = current raise ValueError(Errors.E008.format(names=unexpected)) self[:] = []
[ "def", "restore", "(", "self", ")", ":", "current", ",", "self", ".", "nlp", ".", "pipeline", "=", "self", ".", "nlp", ".", "pipeline", ",", "self", ".", "original_pipeline", "unexpected", "=", "[", "name", "for", "name", ",", "pipe", "in", "current", "if", "not", "self", ".", "nlp", ".", "has_pipe", "(", "name", ")", "]", "if", "unexpected", ":", "# Don't change the pipeline if we're raising an error.", "self", ".", "nlp", ".", "pipeline", "=", "current", "raise", "ValueError", "(", "Errors", ".", "E008", ".", "format", "(", "names", "=", "unexpected", ")", ")", "self", "[", ":", "]", "=", "[", "]" ]
Restore the pipeline to its state when DisabledPipes was created.
[ "Restore", "the", "pipeline", "to", "its", "state", "when", "DisabledPipes", "was", "created", "." ]
8ee4100f8ffb336886208a1ea827bf4c745e2709
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/language.py#L886-L894
21,289
nvbn/thefuck
thefuck/corrector.py
get_loaded_rules
def get_loaded_rules(rules_paths): """Yields all available rules. :type rules_paths: [Path] :rtype: Iterable[Rule] """ for path in rules_paths: if path.name != '__init__.py': rule = Rule.from_path(path) if rule.is_enabled: yield rule
python
def get_loaded_rules(rules_paths): """Yields all available rules. :type rules_paths: [Path] :rtype: Iterable[Rule] """ for path in rules_paths: if path.name != '__init__.py': rule = Rule.from_path(path) if rule.is_enabled: yield rule
[ "def", "get_loaded_rules", "(", "rules_paths", ")", ":", "for", "path", "in", "rules_paths", ":", "if", "path", ".", "name", "!=", "'__init__.py'", ":", "rule", "=", "Rule", ".", "from_path", "(", "path", ")", "if", "rule", ".", "is_enabled", ":", "yield", "rule" ]
Yields all available rules. :type rules_paths: [Path] :rtype: Iterable[Rule]
[ "Yields", "all", "available", "rules", "." ]
40ab4eb62db57627bff10cf029d29c94704086a2
https://github.com/nvbn/thefuck/blob/40ab4eb62db57627bff10cf029d29c94704086a2/thefuck/corrector.py#L8-L19
21,290
nvbn/thefuck
thefuck/corrector.py
get_rules_import_paths
def get_rules_import_paths(): """Yields all rules import paths. :rtype: Iterable[Path] """ # Bundled rules: yield Path(__file__).parent.joinpath('rules') # Rules defined by user: yield settings.user_dir.joinpath('rules') # Packages with third-party rules: for path in sys.path: for contrib_module in Path(path).glob('thefuck_contrib_*'): contrib_rules = contrib_module.joinpath('rules') if contrib_rules.is_dir(): yield contrib_rules
python
def get_rules_import_paths(): """Yields all rules import paths. :rtype: Iterable[Path] """ # Bundled rules: yield Path(__file__).parent.joinpath('rules') # Rules defined by user: yield settings.user_dir.joinpath('rules') # Packages with third-party rules: for path in sys.path: for contrib_module in Path(path).glob('thefuck_contrib_*'): contrib_rules = contrib_module.joinpath('rules') if contrib_rules.is_dir(): yield contrib_rules
[ "def", "get_rules_import_paths", "(", ")", ":", "# Bundled rules:", "yield", "Path", "(", "__file__", ")", ".", "parent", ".", "joinpath", "(", "'rules'", ")", "# Rules defined by user:", "yield", "settings", ".", "user_dir", ".", "joinpath", "(", "'rules'", ")", "# Packages with third-party rules:", "for", "path", "in", "sys", ".", "path", ":", "for", "contrib_module", "in", "Path", "(", "path", ")", ".", "glob", "(", "'thefuck_contrib_*'", ")", ":", "contrib_rules", "=", "contrib_module", ".", "joinpath", "(", "'rules'", ")", "if", "contrib_rules", ".", "is_dir", "(", ")", ":", "yield", "contrib_rules" ]
Yields all rules import paths. :rtype: Iterable[Path]
[ "Yields", "all", "rules", "import", "paths", "." ]
40ab4eb62db57627bff10cf029d29c94704086a2
https://github.com/nvbn/thefuck/blob/40ab4eb62db57627bff10cf029d29c94704086a2/thefuck/corrector.py#L22-L37
21,291
nvbn/thefuck
thefuck/corrector.py
get_rules
def get_rules(): """Returns all enabled rules. :rtype: [Rule] """ paths = [rule_path for path in get_rules_import_paths() for rule_path in sorted(path.glob('*.py'))] return sorted(get_loaded_rules(paths), key=lambda rule: rule.priority)
python
def get_rules(): """Returns all enabled rules. :rtype: [Rule] """ paths = [rule_path for path in get_rules_import_paths() for rule_path in sorted(path.glob('*.py'))] return sorted(get_loaded_rules(paths), key=lambda rule: rule.priority)
[ "def", "get_rules", "(", ")", ":", "paths", "=", "[", "rule_path", "for", "path", "in", "get_rules_import_paths", "(", ")", "for", "rule_path", "in", "sorted", "(", "path", ".", "glob", "(", "'*.py'", ")", ")", "]", "return", "sorted", "(", "get_loaded_rules", "(", "paths", ")", ",", "key", "=", "lambda", "rule", ":", "rule", ".", "priority", ")" ]
Returns all enabled rules. :rtype: [Rule]
[ "Returns", "all", "enabled", "rules", "." ]
40ab4eb62db57627bff10cf029d29c94704086a2
https://github.com/nvbn/thefuck/blob/40ab4eb62db57627bff10cf029d29c94704086a2/thefuck/corrector.py#L40-L49
21,292
nvbn/thefuck
thefuck/corrector.py
organize_commands
def organize_commands(corrected_commands): """Yields sorted commands without duplicates. :type corrected_commands: Iterable[thefuck.types.CorrectedCommand] :rtype: Iterable[thefuck.types.CorrectedCommand] """ try: first_command = next(corrected_commands) yield first_command except StopIteration: return without_duplicates = { command for command in sorted( corrected_commands, key=lambda command: command.priority) if command != first_command} sorted_commands = sorted( without_duplicates, key=lambda corrected_command: corrected_command.priority) logs.debug('Corrected commands: '.format( ', '.join(u'{}'.format(cmd) for cmd in [first_command] + sorted_commands))) for command in sorted_commands: yield command
python
def organize_commands(corrected_commands): """Yields sorted commands without duplicates. :type corrected_commands: Iterable[thefuck.types.CorrectedCommand] :rtype: Iterable[thefuck.types.CorrectedCommand] """ try: first_command = next(corrected_commands) yield first_command except StopIteration: return without_duplicates = { command for command in sorted( corrected_commands, key=lambda command: command.priority) if command != first_command} sorted_commands = sorted( without_duplicates, key=lambda corrected_command: corrected_command.priority) logs.debug('Corrected commands: '.format( ', '.join(u'{}'.format(cmd) for cmd in [first_command] + sorted_commands))) for command in sorted_commands: yield command
[ "def", "organize_commands", "(", "corrected_commands", ")", ":", "try", ":", "first_command", "=", "next", "(", "corrected_commands", ")", "yield", "first_command", "except", "StopIteration", ":", "return", "without_duplicates", "=", "{", "command", "for", "command", "in", "sorted", "(", "corrected_commands", ",", "key", "=", "lambda", "command", ":", "command", ".", "priority", ")", "if", "command", "!=", "first_command", "}", "sorted_commands", "=", "sorted", "(", "without_duplicates", ",", "key", "=", "lambda", "corrected_command", ":", "corrected_command", ".", "priority", ")", "logs", ".", "debug", "(", "'Corrected commands: '", ".", "format", "(", "', '", ".", "join", "(", "u'{}'", ".", "format", "(", "cmd", ")", "for", "cmd", "in", "[", "first_command", "]", "+", "sorted_commands", ")", ")", ")", "for", "command", "in", "sorted_commands", ":", "yield", "command" ]
Yields sorted commands without duplicates. :type corrected_commands: Iterable[thefuck.types.CorrectedCommand] :rtype: Iterable[thefuck.types.CorrectedCommand]
[ "Yields", "sorted", "commands", "without", "duplicates", "." ]
40ab4eb62db57627bff10cf029d29c94704086a2
https://github.com/nvbn/thefuck/blob/40ab4eb62db57627bff10cf029d29c94704086a2/thefuck/corrector.py#L52-L78
21,293
nvbn/thefuck
thefuck/corrector.py
get_corrected_commands
def get_corrected_commands(command): """Returns generator with sorted and unique corrected commands. :type command: thefuck.types.Command :rtype: Iterable[thefuck.types.CorrectedCommand] """ corrected_commands = ( corrected for rule in get_rules() if rule.is_match(command) for corrected in rule.get_corrected_commands(command)) return organize_commands(corrected_commands)
python
def get_corrected_commands(command): """Returns generator with sorted and unique corrected commands. :type command: thefuck.types.Command :rtype: Iterable[thefuck.types.CorrectedCommand] """ corrected_commands = ( corrected for rule in get_rules() if rule.is_match(command) for corrected in rule.get_corrected_commands(command)) return organize_commands(corrected_commands)
[ "def", "get_corrected_commands", "(", "command", ")", ":", "corrected_commands", "=", "(", "corrected", "for", "rule", "in", "get_rules", "(", ")", "if", "rule", ".", "is_match", "(", "command", ")", "for", "corrected", "in", "rule", ".", "get_corrected_commands", "(", "command", ")", ")", "return", "organize_commands", "(", "corrected_commands", ")" ]
Returns generator with sorted and unique corrected commands. :type command: thefuck.types.Command :rtype: Iterable[thefuck.types.CorrectedCommand]
[ "Returns", "generator", "with", "sorted", "and", "unique", "corrected", "commands", "." ]
40ab4eb62db57627bff10cf029d29c94704086a2
https://github.com/nvbn/thefuck/blob/40ab4eb62db57627bff10cf029d29c94704086a2/thefuck/corrector.py#L81-L92
21,294
nvbn/thefuck
thefuck/entrypoints/fix_command.py
fix_command
def fix_command(known_args): """Fixes previous command. Used when `thefuck` called without arguments.""" settings.init(known_args) with logs.debug_time('Total'): logs.debug(u'Run with settings: {}'.format(pformat(settings))) raw_command = _get_raw_command(known_args) try: command = types.Command.from_raw_script(raw_command) except EmptyCommand: logs.debug('Empty command, nothing to do') return corrected_commands = get_corrected_commands(command) selected_command = select_command(corrected_commands) if selected_command: selected_command.run(command) else: sys.exit(1)
python
def fix_command(known_args): """Fixes previous command. Used when `thefuck` called without arguments.""" settings.init(known_args) with logs.debug_time('Total'): logs.debug(u'Run with settings: {}'.format(pformat(settings))) raw_command = _get_raw_command(known_args) try: command = types.Command.from_raw_script(raw_command) except EmptyCommand: logs.debug('Empty command, nothing to do') return corrected_commands = get_corrected_commands(command) selected_command = select_command(corrected_commands) if selected_command: selected_command.run(command) else: sys.exit(1)
[ "def", "fix_command", "(", "known_args", ")", ":", "settings", ".", "init", "(", "known_args", ")", "with", "logs", ".", "debug_time", "(", "'Total'", ")", ":", "logs", ".", "debug", "(", "u'Run with settings: {}'", ".", "format", "(", "pformat", "(", "settings", ")", ")", ")", "raw_command", "=", "_get_raw_command", "(", "known_args", ")", "try", ":", "command", "=", "types", ".", "Command", ".", "from_raw_script", "(", "raw_command", ")", "except", "EmptyCommand", ":", "logs", ".", "debug", "(", "'Empty command, nothing to do'", ")", "return", "corrected_commands", "=", "get_corrected_commands", "(", "command", ")", "selected_command", "=", "select_command", "(", "corrected_commands", ")", "if", "selected_command", ":", "selected_command", ".", "run", "(", "command", ")", "else", ":", "sys", ".", "exit", "(", "1", ")" ]
Fixes previous command. Used when `thefuck` called without arguments.
[ "Fixes", "previous", "command", ".", "Used", "when", "thefuck", "called", "without", "arguments", "." ]
40ab4eb62db57627bff10cf029d29c94704086a2
https://github.com/nvbn/thefuck/blob/40ab4eb62db57627bff10cf029d29c94704086a2/thefuck/entrypoints/fix_command.py#L28-L47
21,295
nvbn/thefuck
thefuck/output_readers/shell_logger.py
get_output
def get_output(script): """Gets command output from shell logger.""" with logs.debug_time(u'Read output from external shell logger'): commands = _get_last_n(const.SHELL_LOGGER_LIMIT) for command in commands: if command['command'] == script: lines = _get_output_lines(command['output']) output = '\n'.join(lines).strip() return output else: logs.warn("Output isn't available in shell logger") return None
python
def get_output(script): """Gets command output from shell logger.""" with logs.debug_time(u'Read output from external shell logger'): commands = _get_last_n(const.SHELL_LOGGER_LIMIT) for command in commands: if command['command'] == script: lines = _get_output_lines(command['output']) output = '\n'.join(lines).strip() return output else: logs.warn("Output isn't available in shell logger") return None
[ "def", "get_output", "(", "script", ")", ":", "with", "logs", ".", "debug_time", "(", "u'Read output from external shell logger'", ")", ":", "commands", "=", "_get_last_n", "(", "const", ".", "SHELL_LOGGER_LIMIT", ")", "for", "command", "in", "commands", ":", "if", "command", "[", "'command'", "]", "==", "script", ":", "lines", "=", "_get_output_lines", "(", "command", "[", "'output'", "]", ")", "output", "=", "'\\n'", ".", "join", "(", "lines", ")", ".", "strip", "(", ")", "return", "output", "else", ":", "logs", ".", "warn", "(", "\"Output isn't available in shell logger\"", ")", "return", "None" ]
Gets command output from shell logger.
[ "Gets", "command", "output", "from", "shell", "logger", "." ]
40ab4eb62db57627bff10cf029d29c94704086a2
https://github.com/nvbn/thefuck/blob/40ab4eb62db57627bff10cf029d29c94704086a2/thefuck/output_readers/shell_logger.py#L49-L60
21,296
nvbn/thefuck
thefuck/shells/generic.py
Generic._get_history_lines
def _get_history_lines(self): """Returns list of history entries.""" history_file_name = self._get_history_file_name() if os.path.isfile(history_file_name): with io.open(history_file_name, 'r', encoding='utf-8', errors='ignore') as history_file: lines = history_file.readlines() if settings.history_limit: lines = lines[-settings.history_limit:] for line in lines: prepared = self._script_from_history(line) \ .strip() if prepared: yield prepared
python
def _get_history_lines(self): """Returns list of history entries.""" history_file_name = self._get_history_file_name() if os.path.isfile(history_file_name): with io.open(history_file_name, 'r', encoding='utf-8', errors='ignore') as history_file: lines = history_file.readlines() if settings.history_limit: lines = lines[-settings.history_limit:] for line in lines: prepared = self._script_from_history(line) \ .strip() if prepared: yield prepared
[ "def", "_get_history_lines", "(", "self", ")", ":", "history_file_name", "=", "self", ".", "_get_history_file_name", "(", ")", "if", "os", ".", "path", ".", "isfile", "(", "history_file_name", ")", ":", "with", "io", ".", "open", "(", "history_file_name", ",", "'r'", ",", "encoding", "=", "'utf-8'", ",", "errors", "=", "'ignore'", ")", "as", "history_file", ":", "lines", "=", "history_file", ".", "readlines", "(", ")", "if", "settings", ".", "history_limit", ":", "lines", "=", "lines", "[", "-", "settings", ".", "history_limit", ":", "]", "for", "line", "in", "lines", ":", "prepared", "=", "self", ".", "_script_from_history", "(", "line", ")", ".", "strip", "(", ")", "if", "prepared", ":", "yield", "prepared" ]
Returns list of history entries.
[ "Returns", "list", "of", "history", "entries", "." ]
40ab4eb62db57627bff10cf029d29c94704086a2
https://github.com/nvbn/thefuck/blob/40ab4eb62db57627bff10cf029d29c94704086a2/thefuck/shells/generic.py#L54-L69
21,297
nvbn/thefuck
thefuck/shells/generic.py
Generic.split_command
def split_command(self, command): """Split the command using shell-like syntax.""" encoded = self.encode_utf8(command) try: splitted = [s.replace("??", "\\ ") for s in shlex.split(encoded.replace('\\ ', '??'))] except ValueError: splitted = encoded.split(' ') return self.decode_utf8(splitted)
python
def split_command(self, command): """Split the command using shell-like syntax.""" encoded = self.encode_utf8(command) try: splitted = [s.replace("??", "\\ ") for s in shlex.split(encoded.replace('\\ ', '??'))] except ValueError: splitted = encoded.split(' ') return self.decode_utf8(splitted)
[ "def", "split_command", "(", "self", ",", "command", ")", ":", "encoded", "=", "self", ".", "encode_utf8", "(", "command", ")", "try", ":", "splitted", "=", "[", "s", ".", "replace", "(", "\"??\"", ",", "\"\\\\ \"", ")", "for", "s", "in", "shlex", ".", "split", "(", "encoded", ".", "replace", "(", "'\\\\ '", ",", "'??'", ")", ")", "]", "except", "ValueError", ":", "splitted", "=", "encoded", ".", "split", "(", "' '", ")", "return", "self", ".", "decode_utf8", "(", "splitted", ")" ]
Split the command using shell-like syntax.
[ "Split", "the", "command", "using", "shell", "-", "like", "syntax", "." ]
40ab4eb62db57627bff10cf029d29c94704086a2
https://github.com/nvbn/thefuck/blob/40ab4eb62db57627bff10cf029d29c94704086a2/thefuck/shells/generic.py#L80-L89
21,298
nvbn/thefuck
thefuck/shells/generic.py
Generic.quote
def quote(self, s): """Return a shell-escaped version of the string s.""" if six.PY2: from pipes import quote else: from shlex import quote return quote(s)
python
def quote(self, s): """Return a shell-escaped version of the string s.""" if six.PY2: from pipes import quote else: from shlex import quote return quote(s)
[ "def", "quote", "(", "self", ",", "s", ")", ":", "if", "six", ".", "PY2", ":", "from", "pipes", "import", "quote", "else", ":", "from", "shlex", "import", "quote", "return", "quote", "(", "s", ")" ]
Return a shell-escaped version of the string s.
[ "Return", "a", "shell", "-", "escaped", "version", "of", "the", "string", "s", "." ]
40ab4eb62db57627bff10cf029d29c94704086a2
https://github.com/nvbn/thefuck/blob/40ab4eb62db57627bff10cf029d29c94704086a2/thefuck/shells/generic.py#L101-L109
21,299
nvbn/thefuck
thefuck/shells/fish.py
Fish._put_to_history
def _put_to_history(self, command_script): """Puts command script to shell history.""" history_file_name = self._get_history_file_name() if os.path.isfile(history_file_name): with open(history_file_name, 'a') as history: entry = self._get_history_line(command_script) if six.PY2: history.write(entry.encode('utf-8')) else: history.write(entry)
python
def _put_to_history(self, command_script): """Puts command script to shell history.""" history_file_name = self._get_history_file_name() if os.path.isfile(history_file_name): with open(history_file_name, 'a') as history: entry = self._get_history_line(command_script) if six.PY2: history.write(entry.encode('utf-8')) else: history.write(entry)
[ "def", "_put_to_history", "(", "self", ",", "command_script", ")", ":", "history_file_name", "=", "self", ".", "_get_history_file_name", "(", ")", "if", "os", ".", "path", ".", "isfile", "(", "history_file_name", ")", ":", "with", "open", "(", "history_file_name", ",", "'a'", ")", "as", "history", ":", "entry", "=", "self", ".", "_get_history_line", "(", "command_script", ")", "if", "six", ".", "PY2", ":", "history", ".", "write", "(", "entry", ".", "encode", "(", "'utf-8'", ")", ")", "else", ":", "history", ".", "write", "(", "entry", ")" ]
Puts command script to shell history.
[ "Puts", "command", "script", "to", "shell", "history", "." ]
40ab4eb62db57627bff10cf029d29c94704086a2
https://github.com/nvbn/thefuck/blob/40ab4eb62db57627bff10cf029d29c94704086a2/thefuck/shells/fish.py#L120-L129