id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
20,600
fastai/fastai
fastai/vision/gan.py
FixedGANSwitcher.on_batch_end
def on_batch_end(self, iteration, **kwargs): "Switch the model if necessary." if self.learn.gan_trainer.gen_mode: self.n_g += 1 n_iter,n_in,n_out = self.n_gen,self.n_c,self.n_g else: self.n_c += 1 n_iter,n_in,n_out = self.n_crit,self.n_g,self.n_c target = n_iter if isinstance(n_iter, int) else n_iter(n_in) if target == n_out: self.learn.gan_trainer.switch() self.n_c,self.n_g = 0,0
python
def on_batch_end(self, iteration, **kwargs): "Switch the model if necessary." if self.learn.gan_trainer.gen_mode: self.n_g += 1 n_iter,n_in,n_out = self.n_gen,self.n_c,self.n_g else: self.n_c += 1 n_iter,n_in,n_out = self.n_crit,self.n_g,self.n_c target = n_iter if isinstance(n_iter, int) else n_iter(n_in) if target == n_out: self.learn.gan_trainer.switch() self.n_c,self.n_g = 0,0
[ "def", "on_batch_end", "(", "self", ",", "iteration", ",", "*", "*", "kwargs", ")", ":", "if", "self", ".", "learn", ".", "gan_trainer", ".", "gen_mode", ":", "self", ".", "n_g", "+=", "1", "n_iter", ",", "n_in", ",", "n_out", "=", "self", ".", "n_gen", ",", "self", ".", "n_c", ",", "self", ".", "n_g", "else", ":", "self", ".", "n_c", "+=", "1", "n_iter", ",", "n_in", ",", "n_out", "=", "self", ".", "n_crit", ",", "self", ".", "n_g", ",", "self", ".", "n_c", "target", "=", "n_iter", "if", "isinstance", "(", "n_iter", ",", "int", ")", "else", "n_iter", "(", "n_in", ")", "if", "target", "==", "n_out", ":", "self", ".", "learn", ".", "gan_trainer", ".", "switch", "(", ")", "self", ".", "n_c", ",", "self", ".", "n_g", "=", "0", ",", "0" ]
Switch the model if necessary.
[ "Switch", "the", "model", "if", "necessary", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/vision/gan.py#L162-L173
20,601
fastai/fastai
fastai/vision/gan.py
GANLearner.from_learners
def from_learners(cls, learn_gen:Learner, learn_crit:Learner, switcher:Callback=None, weights_gen:Tuple[float,float]=None, **learn_kwargs): "Create a GAN from `learn_gen` and `learn_crit`." losses = gan_loss_from_func(learn_gen.loss_func, learn_crit.loss_func, weights_gen=weights_gen) return cls(learn_gen.data, learn_gen.model, learn_crit.model, *losses, switcher=switcher, **learn_kwargs)
python
def from_learners(cls, learn_gen:Learner, learn_crit:Learner, switcher:Callback=None, weights_gen:Tuple[float,float]=None, **learn_kwargs): "Create a GAN from `learn_gen` and `learn_crit`." losses = gan_loss_from_func(learn_gen.loss_func, learn_crit.loss_func, weights_gen=weights_gen) return cls(learn_gen.data, learn_gen.model, learn_crit.model, *losses, switcher=switcher, **learn_kwargs)
[ "def", "from_learners", "(", "cls", ",", "learn_gen", ":", "Learner", ",", "learn_crit", ":", "Learner", ",", "switcher", ":", "Callback", "=", "None", ",", "weights_gen", ":", "Tuple", "[", "float", ",", "float", "]", "=", "None", ",", "*", "*", "learn_kwargs", ")", ":", "losses", "=", "gan_loss_from_func", "(", "learn_gen", ".", "loss_func", ",", "learn_crit", ".", "loss_func", ",", "weights_gen", "=", "weights_gen", ")", "return", "cls", "(", "learn_gen", ".", "data", ",", "learn_gen", ".", "model", ",", "learn_crit", ".", "model", ",", "*", "losses", ",", "switcher", "=", "switcher", ",", "*", "*", "learn_kwargs", ")" ]
Create a GAN from `learn_gen` and `learn_crit`.
[ "Create", "a", "GAN", "from", "learn_gen", "and", "learn_crit", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/vision/gan.py#L219-L223
20,602
fastai/fastai
fastai/vision/gan.py
GANLearner.wgan
def wgan(cls, data:DataBunch, generator:nn.Module, critic:nn.Module, switcher:Callback=None, clip:float=0.01, **learn_kwargs): "Create a WGAN from `data`, `generator` and `critic`." return cls(data, generator, critic, NoopLoss(), WassersteinLoss(), switcher=switcher, clip=clip, **learn_kwargs)
python
def wgan(cls, data:DataBunch, generator:nn.Module, critic:nn.Module, switcher:Callback=None, clip:float=0.01, **learn_kwargs): "Create a WGAN from `data`, `generator` and `critic`." return cls(data, generator, critic, NoopLoss(), WassersteinLoss(), switcher=switcher, clip=clip, **learn_kwargs)
[ "def", "wgan", "(", "cls", ",", "data", ":", "DataBunch", ",", "generator", ":", "nn", ".", "Module", ",", "critic", ":", "nn", ".", "Module", ",", "switcher", ":", "Callback", "=", "None", ",", "clip", ":", "float", "=", "0.01", ",", "*", "*", "learn_kwargs", ")", ":", "return", "cls", "(", "data", ",", "generator", ",", "critic", ",", "NoopLoss", "(", ")", ",", "WassersteinLoss", "(", ")", ",", "switcher", "=", "switcher", ",", "clip", "=", "clip", ",", "*", "*", "learn_kwargs", ")" ]
Create a WGAN from `data`, `generator` and `critic`.
[ "Create", "a", "WGAN", "from", "data", "generator", "and", "critic", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/vision/gan.py#L226-L228
20,603
fastai/fastai
fastai/vision/gan.py
GANDiscriminativeLR.on_batch_begin
def on_batch_begin(self, train, **kwargs): "Multiply the current lr if necessary." if not self.learn.gan_trainer.gen_mode and train: self.learn.opt.lr *= self.mult_lr
python
def on_batch_begin(self, train, **kwargs): "Multiply the current lr if necessary." if not self.learn.gan_trainer.gen_mode and train: self.learn.opt.lr *= self.mult_lr
[ "def", "on_batch_begin", "(", "self", ",", "train", ",", "*", "*", "kwargs", ")", ":", "if", "not", "self", ".", "learn", ".", "gan_trainer", ".", "gen_mode", "and", "train", ":", "self", ".", "learn", ".", "opt", ".", "lr", "*=", "self", ".", "mult_lr" ]
Multiply the current lr if necessary.
[ "Multiply", "the", "current", "lr", "if", "necessary", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/vision/gan.py#L284-L286
20,604
fastai/fastai
fastai/vision/gan.py
GANDiscriminativeLR.on_step_end
def on_step_end(self, **kwargs): "Put the LR back to its value if necessary." if not self.learn.gan_trainer.gen_mode: self.learn.opt.lr /= self.mult_lr
python
def on_step_end(self, **kwargs): "Put the LR back to its value if necessary." if not self.learn.gan_trainer.gen_mode: self.learn.opt.lr /= self.mult_lr
[ "def", "on_step_end", "(", "self", ",", "*", "*", "kwargs", ")", ":", "if", "not", "self", ".", "learn", ".", "gan_trainer", ".", "gen_mode", ":", "self", ".", "learn", ".", "opt", ".", "lr", "/=", "self", ".", "mult_lr" ]
Put the LR back to its value if necessary.
[ "Put", "the", "LR", "back", "to", "its", "value", "if", "necessary", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/vision/gan.py#L288-L290
20,605
fastai/fastai
fastai/vision/models/unet.py
_get_sfs_idxs
def _get_sfs_idxs(sizes:Sizes) -> List[int]: "Get the indexes of the layers where the size of the activation changes." feature_szs = [size[-1] for size in sizes] sfs_idxs = list(np.where(np.array(feature_szs[:-1]) != np.array(feature_szs[1:]))[0]) if feature_szs[0] != feature_szs[1]: sfs_idxs = [0] + sfs_idxs return sfs_idxs
python
def _get_sfs_idxs(sizes:Sizes) -> List[int]: "Get the indexes of the layers where the size of the activation changes." feature_szs = [size[-1] for size in sizes] sfs_idxs = list(np.where(np.array(feature_szs[:-1]) != np.array(feature_szs[1:]))[0]) if feature_szs[0] != feature_szs[1]: sfs_idxs = [0] + sfs_idxs return sfs_idxs
[ "def", "_get_sfs_idxs", "(", "sizes", ":", "Sizes", ")", "->", "List", "[", "int", "]", ":", "feature_szs", "=", "[", "size", "[", "-", "1", "]", "for", "size", "in", "sizes", "]", "sfs_idxs", "=", "list", "(", "np", ".", "where", "(", "np", ".", "array", "(", "feature_szs", "[", ":", "-", "1", "]", ")", "!=", "np", ".", "array", "(", "feature_szs", "[", "1", ":", "]", ")", ")", "[", "0", "]", ")", "if", "feature_szs", "[", "0", "]", "!=", "feature_szs", "[", "1", "]", ":", "sfs_idxs", "=", "[", "0", "]", "+", "sfs_idxs", "return", "sfs_idxs" ]
Get the indexes of the layers where the size of the activation changes.
[ "Get", "the", "indexes", "of", "the", "layers", "where", "the", "size", "of", "the", "activation", "changes", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/vision/models/unet.py#L7-L12
20,606
fastai/fastai
fastai/widgets/image_downloader.py
_url_params
def _url_params(size:str='>400*300', format:str='jpg') -> str: "Build Google Images Search Url params and return them as a string." _fmts = {'jpg':'ift:jpg','gif':'ift:gif','png':'ift:png','bmp':'ift:bmp', 'svg':'ift:svg','webp':'webp','ico':'ift:ico'} if size not in _img_sizes: raise RuntimeError(f"""Unexpected size argument value: {size}. See `widgets.image_downloader._img_sizes` for supported sizes.""") if format not in _fmts: raise RuntimeError(f"Unexpected image file format: {format}. Use jpg, gif, png, bmp, svg, webp, or ico.") return "&tbs=" + _img_sizes[size] + "," + _fmts[format]
python
def _url_params(size:str='>400*300', format:str='jpg') -> str: "Build Google Images Search Url params and return them as a string." _fmts = {'jpg':'ift:jpg','gif':'ift:gif','png':'ift:png','bmp':'ift:bmp', 'svg':'ift:svg','webp':'webp','ico':'ift:ico'} if size not in _img_sizes: raise RuntimeError(f"""Unexpected size argument value: {size}. See `widgets.image_downloader._img_sizes` for supported sizes.""") if format not in _fmts: raise RuntimeError(f"Unexpected image file format: {format}. Use jpg, gif, png, bmp, svg, webp, or ico.") return "&tbs=" + _img_sizes[size] + "," + _fmts[format]
[ "def", "_url_params", "(", "size", ":", "str", "=", "'>400*300'", ",", "format", ":", "str", "=", "'jpg'", ")", "->", "str", ":", "_fmts", "=", "{", "'jpg'", ":", "'ift:jpg'", ",", "'gif'", ":", "'ift:gif'", ",", "'png'", ":", "'ift:png'", ",", "'bmp'", ":", "'ift:bmp'", ",", "'svg'", ":", "'ift:svg'", ",", "'webp'", ":", "'webp'", ",", "'ico'", ":", "'ift:ico'", "}", "if", "size", "not", "in", "_img_sizes", ":", "raise", "RuntimeError", "(", "f\"\"\"Unexpected size argument value: {size}.\n See `widgets.image_downloader._img_sizes` for supported sizes.\"\"\"", ")", "if", "format", "not", "in", "_fmts", ":", "raise", "RuntimeError", "(", "f\"Unexpected image file format: {format}. Use jpg, gif, png, bmp, svg, webp, or ico.\"", ")", "return", "\"&tbs=\"", "+", "_img_sizes", "[", "size", "]", "+", "\",\"", "+", "_fmts", "[", "format", "]" ]
Build Google Images Search Url params and return them as a string.
[ "Build", "Google", "Images", "Search", "Url", "params", "and", "return", "them", "as", "a", "string", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_downloader.py#L93-L101
20,607
fastai/fastai
fastai/widgets/image_downloader.py
_search_url
def _search_url(search_term:str, size:str='>400*300', format:str='jpg') -> str: "Return a Google Images Search URL for a given search term." return ('https://www.google.com/search?q=' + quote(search_term) + '&espv=2&biw=1366&bih=667&site=webhp&source=lnms&tbm=isch' + _url_params(size, format) + '&sa=X&ei=XosDVaCXD8TasATItgE&ved=0CAcQ_AUoAg')
python
def _search_url(search_term:str, size:str='>400*300', format:str='jpg') -> str: "Return a Google Images Search URL for a given search term." return ('https://www.google.com/search?q=' + quote(search_term) + '&espv=2&biw=1366&bih=667&site=webhp&source=lnms&tbm=isch' + _url_params(size, format) + '&sa=X&ei=XosDVaCXD8TasATItgE&ved=0CAcQ_AUoAg')
[ "def", "_search_url", "(", "search_term", ":", "str", ",", "size", ":", "str", "=", "'>400*300'", ",", "format", ":", "str", "=", "'jpg'", ")", "->", "str", ":", "return", "(", "'https://www.google.com/search?q='", "+", "quote", "(", "search_term", ")", "+", "'&espv=2&biw=1366&bih=667&site=webhp&source=lnms&tbm=isch'", "+", "_url_params", "(", "size", ",", "format", ")", "+", "'&sa=X&ei=XosDVaCXD8TasATItgE&ved=0CAcQ_AUoAg'", ")" ]
Return a Google Images Search URL for a given search term.
[ "Return", "a", "Google", "Images", "Search", "URL", "for", "a", "given", "search", "term", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_downloader.py#L103-L107
20,608
fastai/fastai
fastai/widgets/image_downloader.py
_download_images
def _download_images(label_path:PathOrStr, img_tuples:list, max_workers:int=defaults.cpus, timeout:int=4) -> FilePathList: """ Downloads images in `img_tuples` to `label_path`. If the directory doesn't exist, it'll be created automatically. Uses `parallel` to speed things up in `max_workers` when the system has enough CPU cores. If something doesn't work, try setting up `max_workers=0` to debug. """ os.makedirs(Path(label_path), exist_ok=True) parallel( partial(_download_single_image, label_path, timeout=timeout), img_tuples, max_workers=max_workers) return get_image_files(label_path)
python
def _download_images(label_path:PathOrStr, img_tuples:list, max_workers:int=defaults.cpus, timeout:int=4) -> FilePathList: """ Downloads images in `img_tuples` to `label_path`. If the directory doesn't exist, it'll be created automatically. Uses `parallel` to speed things up in `max_workers` when the system has enough CPU cores. If something doesn't work, try setting up `max_workers=0` to debug. """ os.makedirs(Path(label_path), exist_ok=True) parallel( partial(_download_single_image, label_path, timeout=timeout), img_tuples, max_workers=max_workers) return get_image_files(label_path)
[ "def", "_download_images", "(", "label_path", ":", "PathOrStr", ",", "img_tuples", ":", "list", ",", "max_workers", ":", "int", "=", "defaults", ".", "cpus", ",", "timeout", ":", "int", "=", "4", ")", "->", "FilePathList", ":", "os", ".", "makedirs", "(", "Path", "(", "label_path", ")", ",", "exist_ok", "=", "True", ")", "parallel", "(", "partial", "(", "_download_single_image", ",", "label_path", ",", "timeout", "=", "timeout", ")", ",", "img_tuples", ",", "max_workers", "=", "max_workers", ")", "return", "get_image_files", "(", "label_path", ")" ]
Downloads images in `img_tuples` to `label_path`. If the directory doesn't exist, it'll be created automatically. Uses `parallel` to speed things up in `max_workers` when the system has enough CPU cores. If something doesn't work, try setting up `max_workers=0` to debug.
[ "Downloads", "images", "in", "img_tuples", "to", "label_path", ".", "If", "the", "directory", "doesn", "t", "exist", "it", "ll", "be", "created", "automatically", ".", "Uses", "parallel", "to", "speed", "things", "up", "in", "max_workers", "when", "the", "system", "has", "enough", "CPU", "cores", ".", "If", "something", "doesn", "t", "work", "try", "setting", "up", "max_workers", "=", "0", "to", "debug", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_downloader.py#L159-L168
20,609
fastai/fastai
fastai/widgets/image_downloader.py
ImageDownloader._init_ui
def _init_ui(self) -> VBox: "Initialize the widget UI and return the UI." self._search_input = Text(placeholder="What images to search for?") self._count_input = BoundedIntText(placeholder="How many pics?", value=10, min=1, max=5000, step=1, layout=Layout(width='60px')) self._size_input = Dropdown(options= _img_sizes.keys(), value='>400*300', layout=Layout(width='120px')) self._download_button = Button(description="Search & Download", icon="download", layout=Layout(width='200px')) self._download_button.on_click(self.on_download_button_click) self._output = Output() self._controls_pane = HBox([self._search_input, self._count_input, self._size_input, self._download_button], layout=Layout(width='auto', height='40px')) self._heading = "" self._download_complete_heading = "<h3>Download complete. Here are a few images</h3>" self._preview_header = widgets.HTML(self._heading, layout=Layout(height='60px')) self._img_pane = Box(layout=Layout(display='inline')) return VBox([self._controls_pane, self._preview_header, self._img_pane])
python
def _init_ui(self) -> VBox: "Initialize the widget UI and return the UI." self._search_input = Text(placeholder="What images to search for?") self._count_input = BoundedIntText(placeholder="How many pics?", value=10, min=1, max=5000, step=1, layout=Layout(width='60px')) self._size_input = Dropdown(options= _img_sizes.keys(), value='>400*300', layout=Layout(width='120px')) self._download_button = Button(description="Search & Download", icon="download", layout=Layout(width='200px')) self._download_button.on_click(self.on_download_button_click) self._output = Output() self._controls_pane = HBox([self._search_input, self._count_input, self._size_input, self._download_button], layout=Layout(width='auto', height='40px')) self._heading = "" self._download_complete_heading = "<h3>Download complete. Here are a few images</h3>" self._preview_header = widgets.HTML(self._heading, layout=Layout(height='60px')) self._img_pane = Box(layout=Layout(display='inline')) return VBox([self._controls_pane, self._preview_header, self._img_pane])
[ "def", "_init_ui", "(", "self", ")", "->", "VBox", ":", "self", ".", "_search_input", "=", "Text", "(", "placeholder", "=", "\"What images to search for?\"", ")", "self", ".", "_count_input", "=", "BoundedIntText", "(", "placeholder", "=", "\"How many pics?\"", ",", "value", "=", "10", ",", "min", "=", "1", ",", "max", "=", "5000", ",", "step", "=", "1", ",", "layout", "=", "Layout", "(", "width", "=", "'60px'", ")", ")", "self", ".", "_size_input", "=", "Dropdown", "(", "options", "=", "_img_sizes", ".", "keys", "(", ")", ",", "value", "=", "'>400*300'", ",", "layout", "=", "Layout", "(", "width", "=", "'120px'", ")", ")", "self", ".", "_download_button", "=", "Button", "(", "description", "=", "\"Search & Download\"", ",", "icon", "=", "\"download\"", ",", "layout", "=", "Layout", "(", "width", "=", "'200px'", ")", ")", "self", ".", "_download_button", ".", "on_click", "(", "self", ".", "on_download_button_click", ")", "self", ".", "_output", "=", "Output", "(", ")", "self", ".", "_controls_pane", "=", "HBox", "(", "[", "self", ".", "_search_input", ",", "self", ".", "_count_input", ",", "self", ".", "_size_input", ",", "self", ".", "_download_button", "]", ",", "layout", "=", "Layout", "(", "width", "=", "'auto'", ",", "height", "=", "'40px'", ")", ")", "self", ".", "_heading", "=", "\"\"", "self", ".", "_download_complete_heading", "=", "\"<h3>Download complete. Here are a few images</h3>\"", "self", ".", "_preview_header", "=", "widgets", ".", "HTML", "(", "self", ".", "_heading", ",", "layout", "=", "Layout", "(", "height", "=", "'60px'", ")", ")", "self", ".", "_img_pane", "=", "Box", "(", "layout", "=", "Layout", "(", "display", "=", "'inline'", ")", ")", "return", "VBox", "(", "[", "self", ".", "_controls_pane", ",", "self", ".", "_preview_header", ",", "self", ".", "_img_pane", "]", ")" ]
Initialize the widget UI and return the UI.
[ "Initialize", "the", "widget", "UI", "and", "return", "the", "UI", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_downloader.py#L27-L42
20,610
fastai/fastai
fastai/widgets/image_downloader.py
ImageDownloader.clear_imgs
def clear_imgs(self) -> None: "Clear the widget's images preview pane." self._preview_header.value = self._heading self._img_pane.children = tuple()
python
def clear_imgs(self) -> None: "Clear the widget's images preview pane." self._preview_header.value = self._heading self._img_pane.children = tuple()
[ "def", "clear_imgs", "(", "self", ")", "->", "None", ":", "self", ".", "_preview_header", ".", "value", "=", "self", ".", "_heading", "self", ".", "_img_pane", ".", "children", "=", "tuple", "(", ")" ]
Clear the widget's images preview pane.
[ "Clear", "the", "widget", "s", "images", "preview", "pane", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_downloader.py#L48-L51
20,611
fastai/fastai
fastai/widgets/image_downloader.py
ImageDownloader.validate_search_input
def validate_search_input(self) -> bool: "Check if input value is empty." input = self._search_input if input.value == str(): input.layout = Layout(border="solid 2px red", height='auto') else: self._search_input.layout = Layout() return input.value != str()
python
def validate_search_input(self) -> bool: "Check if input value is empty." input = self._search_input if input.value == str(): input.layout = Layout(border="solid 2px red", height='auto') else: self._search_input.layout = Layout() return input.value != str()
[ "def", "validate_search_input", "(", "self", ")", "->", "bool", ":", "input", "=", "self", ".", "_search_input", "if", "input", ".", "value", "==", "str", "(", ")", ":", "input", ".", "layout", "=", "Layout", "(", "border", "=", "\"solid 2px red\"", ",", "height", "=", "'auto'", ")", "else", ":", "self", ".", "_search_input", ".", "layout", "=", "Layout", "(", ")", "return", "input", ".", "value", "!=", "str", "(", ")" ]
Check if input value is empty.
[ "Check", "if", "input", "value", "is", "empty", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_downloader.py#L53-L58
20,612
fastai/fastai
fastai/widgets/image_downloader.py
ImageDownloader.display_images_widgets
def display_images_widgets(self, fnames:list) -> None: "Display a few preview images in the notebook" imgs = [widgets.Image(value=open(f, 'rb').read(), width='200px') for f in fnames] self._img_pane.children = tuple(imgs)
python
def display_images_widgets(self, fnames:list) -> None: "Display a few preview images in the notebook" imgs = [widgets.Image(value=open(f, 'rb').read(), width='200px') for f in fnames] self._img_pane.children = tuple(imgs)
[ "def", "display_images_widgets", "(", "self", ",", "fnames", ":", "list", ")", "->", "None", ":", "imgs", "=", "[", "widgets", ".", "Image", "(", "value", "=", "open", "(", "f", ",", "'rb'", ")", ".", "read", "(", ")", ",", "width", "=", "'200px'", ")", "for", "f", "in", "fnames", "]", "self", ".", "_img_pane", ".", "children", "=", "tuple", "(", "imgs", ")" ]
Display a few preview images in the notebook
[ "Display", "a", "few", "preview", "images", "in", "the", "notebook" ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_downloader.py#L72-L75
20,613
fastai/fastai
fastai/callbacks/lr_finder.py
LRFinder.on_train_begin
def on_train_begin(self, pbar, **kwargs:Any)->None: "Initialize optimizer and learner hyperparameters." setattr(pbar, 'clean_on_interrupt', True) self.learn.save('tmp') self.opt = self.learn.opt self.opt.lr = self.sched.start self.stop,self.best_loss = False,0. return {'skip_validate': True}
python
def on_train_begin(self, pbar, **kwargs:Any)->None: "Initialize optimizer and learner hyperparameters." setattr(pbar, 'clean_on_interrupt', True) self.learn.save('tmp') self.opt = self.learn.opt self.opt.lr = self.sched.start self.stop,self.best_loss = False,0. return {'skip_validate': True}
[ "def", "on_train_begin", "(", "self", ",", "pbar", ",", "*", "*", "kwargs", ":", "Any", ")", "->", "None", ":", "setattr", "(", "pbar", ",", "'clean_on_interrupt'", ",", "True", ")", "self", ".", "learn", ".", "save", "(", "'tmp'", ")", "self", ".", "opt", "=", "self", ".", "learn", ".", "opt", "self", ".", "opt", ".", "lr", "=", "self", ".", "sched", ".", "start", "self", ".", "stop", ",", "self", ".", "best_loss", "=", "False", ",", "0.", "return", "{", "'skip_validate'", ":", "True", "}" ]
Initialize optimizer and learner hyperparameters.
[ "Initialize", "optimizer", "and", "learner", "hyperparameters", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/callbacks/lr_finder.py#L16-L23
20,614
fastai/fastai
fastai/callbacks/lr_finder.py
LRFinder.on_batch_end
def on_batch_end(self, iteration:int, smooth_loss:TensorOrNumber, **kwargs:Any)->None: "Determine if loss has runaway and we should stop." if iteration==0 or smooth_loss < self.best_loss: self.best_loss = smooth_loss self.opt.lr = self.sched.step() if self.sched.is_done or (self.stop_div and (smooth_loss > 4*self.best_loss or torch.isnan(smooth_loss))): #We use the smoothed loss to decide on the stopping since it's less shaky. return {'stop_epoch': True, 'stop_training': True}
python
def on_batch_end(self, iteration:int, smooth_loss:TensorOrNumber, **kwargs:Any)->None: "Determine if loss has runaway and we should stop." if iteration==0 or smooth_loss < self.best_loss: self.best_loss = smooth_loss self.opt.lr = self.sched.step() if self.sched.is_done or (self.stop_div and (smooth_loss > 4*self.best_loss or torch.isnan(smooth_loss))): #We use the smoothed loss to decide on the stopping since it's less shaky. return {'stop_epoch': True, 'stop_training': True}
[ "def", "on_batch_end", "(", "self", ",", "iteration", ":", "int", ",", "smooth_loss", ":", "TensorOrNumber", ",", "*", "*", "kwargs", ":", "Any", ")", "->", "None", ":", "if", "iteration", "==", "0", "or", "smooth_loss", "<", "self", ".", "best_loss", ":", "self", ".", "best_loss", "=", "smooth_loss", "self", ".", "opt", ".", "lr", "=", "self", ".", "sched", ".", "step", "(", ")", "if", "self", ".", "sched", ".", "is_done", "or", "(", "self", ".", "stop_div", "and", "(", "smooth_loss", ">", "4", "*", "self", ".", "best_loss", "or", "torch", ".", "isnan", "(", "smooth_loss", ")", ")", ")", ":", "#We use the smoothed loss to decide on the stopping since it's less shaky.", "return", "{", "'stop_epoch'", ":", "True", ",", "'stop_training'", ":", "True", "}" ]
Determine if loss has runaway and we should stop.
[ "Determine", "if", "loss", "has", "runaway", "and", "we", "should", "stop", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/callbacks/lr_finder.py#L25-L31
20,615
fastai/fastai
fastai/callbacks/lr_finder.py
LRFinder.on_train_end
def on_train_end(self, **kwargs:Any)->None: "Cleanup learn model weights disturbed during LRFinder exploration." self.learn.load('tmp', purge=False) if hasattr(self.learn.model, 'reset'): self.learn.model.reset() for cb in self.callbacks: if hasattr(cb, 'reset'): cb.reset() print('LR Finder is complete, type {learner_name}.recorder.plot() to see the graph.')
python
def on_train_end(self, **kwargs:Any)->None: "Cleanup learn model weights disturbed during LRFinder exploration." self.learn.load('tmp', purge=False) if hasattr(self.learn.model, 'reset'): self.learn.model.reset() for cb in self.callbacks: if hasattr(cb, 'reset'): cb.reset() print('LR Finder is complete, type {learner_name}.recorder.plot() to see the graph.')
[ "def", "on_train_end", "(", "self", ",", "*", "*", "kwargs", ":", "Any", ")", "->", "None", ":", "self", ".", "learn", ".", "load", "(", "'tmp'", ",", "purge", "=", "False", ")", "if", "hasattr", "(", "self", ".", "learn", ".", "model", ",", "'reset'", ")", ":", "self", ".", "learn", ".", "model", ".", "reset", "(", ")", "for", "cb", "in", "self", ".", "callbacks", ":", "if", "hasattr", "(", "cb", ",", "'reset'", ")", ":", "cb", ".", "reset", "(", ")", "print", "(", "'LR Finder is complete, type {learner_name}.recorder.plot() to see the graph.'", ")" ]
Cleanup learn model weights disturbed during LRFinder exploration.
[ "Cleanup", "learn", "model", "weights", "disturbed", "during", "LRFinder", "exploration", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/callbacks/lr_finder.py#L33-L39
20,616
fastai/fastai
old/fastai/rnn_reg.py
WeightDrop._setup
def _setup(self): """ for each string defined in self.weights, the corresponding attribute in the wrapped module is referenced, then deleted, and subsequently registered as a new parameter with a slightly modified name. Args: None Returns: None """ if isinstance(self.module, torch.nn.RNNBase): self.module.flatten_parameters = noop for name_w in self.weights: w = getattr(self.module, name_w) del self.module._parameters[name_w] self.module.register_parameter(name_w + '_raw', nn.Parameter(w.data))
python
def _setup(self): """ for each string defined in self.weights, the corresponding attribute in the wrapped module is referenced, then deleted, and subsequently registered as a new parameter with a slightly modified name. Args: None Returns: None """ if isinstance(self.module, torch.nn.RNNBase): self.module.flatten_parameters = noop for name_w in self.weights: w = getattr(self.module, name_w) del self.module._parameters[name_w] self.module.register_parameter(name_w + '_raw', nn.Parameter(w.data))
[ "def", "_setup", "(", "self", ")", ":", "if", "isinstance", "(", "self", ".", "module", ",", "torch", ".", "nn", ".", "RNNBase", ")", ":", "self", ".", "module", ".", "flatten_parameters", "=", "noop", "for", "name_w", "in", "self", ".", "weights", ":", "w", "=", "getattr", "(", "self", ".", "module", ",", "name_w", ")", "del", "self", ".", "module", ".", "_parameters", "[", "name_w", "]", "self", ".", "module", ".", "register_parameter", "(", "name_w", "+", "'_raw'", ",", "nn", ".", "Parameter", "(", "w", ".", "data", ")", ")" ]
for each string defined in self.weights, the corresponding attribute in the wrapped module is referenced, then deleted, and subsequently registered as a new parameter with a slightly modified name. Args: None Returns: None
[ "for", "each", "string", "defined", "in", "self", ".", "weights", "the", "corresponding", "attribute", "in", "the", "wrapped", "module", "is", "referenced", "then", "deleted", "and", "subsequently", "registered", "as", "a", "new", "parameter", "with", "a", "slightly", "modified", "name", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/old/fastai/rnn_reg.py#L79-L94
20,617
fastai/fastai
old/fastai/rnn_reg.py
WeightDrop._setweights
def _setweights(self): """ Uses pytorch's built-in dropout function to apply dropout to the parameters of the wrapped module. Args: None Returns: None """ for name_w in self.weights: raw_w = getattr(self.module, name_w + '_raw') w = torch.nn.functional.dropout(raw_w, p=self.dropout, training=self.training) if hasattr(self.module, name_w): delattr(self.module, name_w) setattr(self.module, name_w, w)
python
def _setweights(self): """ Uses pytorch's built-in dropout function to apply dropout to the parameters of the wrapped module. Args: None Returns: None """ for name_w in self.weights: raw_w = getattr(self.module, name_w + '_raw') w = torch.nn.functional.dropout(raw_w, p=self.dropout, training=self.training) if hasattr(self.module, name_w): delattr(self.module, name_w) setattr(self.module, name_w, w)
[ "def", "_setweights", "(", "self", ")", ":", "for", "name_w", "in", "self", ".", "weights", ":", "raw_w", "=", "getattr", "(", "self", ".", "module", ",", "name_w", "+", "'_raw'", ")", "w", "=", "torch", ".", "nn", ".", "functional", ".", "dropout", "(", "raw_w", ",", "p", "=", "self", ".", "dropout", ",", "training", "=", "self", ".", "training", ")", "if", "hasattr", "(", "self", ".", "module", ",", "name_w", ")", ":", "delattr", "(", "self", ".", "module", ",", "name_w", ")", "setattr", "(", "self", ".", "module", ",", "name_w", ",", "w", ")" ]
Uses pytorch's built-in dropout function to apply dropout to the parameters of the wrapped module. Args: None Returns: None
[ "Uses", "pytorch", "s", "built", "-", "in", "dropout", "function", "to", "apply", "dropout", "to", "the", "parameters", "of", "the", "wrapped", "module", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/old/fastai/rnn_reg.py#L97-L111
20,618
fastai/fastai
fastai/basic_data.py
DataBunch.one_batch
def one_batch(self, ds_type:DatasetType=DatasetType.Train, detach:bool=True, denorm:bool=True, cpu:bool=True)->Collection[Tensor]: "Get one batch from the data loader of `ds_type`. Optionally `detach` and `denorm`." dl = self.dl(ds_type) w = self.num_workers self.num_workers = 0 try: x,y = next(iter(dl)) finally: self.num_workers = w if detach: x,y = to_detach(x,cpu=cpu),to_detach(y,cpu=cpu) norm = getattr(self,'norm',False) if denorm and norm: x = self.denorm(x) if norm.keywords.get('do_y',False): y = self.denorm(y, do_x=True) return x,y
python
def one_batch(self, ds_type:DatasetType=DatasetType.Train, detach:bool=True, denorm:bool=True, cpu:bool=True)->Collection[Tensor]: "Get one batch from the data loader of `ds_type`. Optionally `detach` and `denorm`." dl = self.dl(ds_type) w = self.num_workers self.num_workers = 0 try: x,y = next(iter(dl)) finally: self.num_workers = w if detach: x,y = to_detach(x,cpu=cpu),to_detach(y,cpu=cpu) norm = getattr(self,'norm',False) if denorm and norm: x = self.denorm(x) if norm.keywords.get('do_y',False): y = self.denorm(y, do_x=True) return x,y
[ "def", "one_batch", "(", "self", ",", "ds_type", ":", "DatasetType", "=", "DatasetType", ".", "Train", ",", "detach", ":", "bool", "=", "True", ",", "denorm", ":", "bool", "=", "True", ",", "cpu", ":", "bool", "=", "True", ")", "->", "Collection", "[", "Tensor", "]", ":", "dl", "=", "self", ".", "dl", "(", "ds_type", ")", "w", "=", "self", ".", "num_workers", "self", ".", "num_workers", "=", "0", "try", ":", "x", ",", "y", "=", "next", "(", "iter", "(", "dl", ")", ")", "finally", ":", "self", ".", "num_workers", "=", "w", "if", "detach", ":", "x", ",", "y", "=", "to_detach", "(", "x", ",", "cpu", "=", "cpu", ")", ",", "to_detach", "(", "y", ",", "cpu", "=", "cpu", ")", "norm", "=", "getattr", "(", "self", ",", "'norm'", ",", "False", ")", "if", "denorm", "and", "norm", ":", "x", "=", "self", ".", "denorm", "(", "x", ")", "if", "norm", ".", "keywords", ".", "get", "(", "'do_y'", ",", "False", ")", ":", "y", "=", "self", ".", "denorm", "(", "y", ",", "do_x", "=", "True", ")", "return", "x", ",", "y" ]
Get one batch from the data loader of `ds_type`. Optionally `detach` and `denorm`.
[ "Get", "one", "batch", "from", "the", "data", "loader", "of", "ds_type", ".", "Optionally", "detach", "and", "denorm", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/basic_data.py#L163-L175
20,619
fastai/fastai
fastai/basic_data.py
DataBunch.one_item
def one_item(self, item, detach:bool=False, denorm:bool=False, cpu:bool=False): "Get `item` into a batch. Optionally `detach` and `denorm`." ds = self.single_ds with ds.set_item(item): return self.one_batch(ds_type=DatasetType.Single, detach=detach, denorm=denorm, cpu=cpu)
python
def one_item(self, item, detach:bool=False, denorm:bool=False, cpu:bool=False): "Get `item` into a batch. Optionally `detach` and `denorm`." ds = self.single_ds with ds.set_item(item): return self.one_batch(ds_type=DatasetType.Single, detach=detach, denorm=denorm, cpu=cpu)
[ "def", "one_item", "(", "self", ",", "item", ",", "detach", ":", "bool", "=", "False", ",", "denorm", ":", "bool", "=", "False", ",", "cpu", ":", "bool", "=", "False", ")", ":", "ds", "=", "self", ".", "single_ds", "with", "ds", ".", "set_item", "(", "item", ")", ":", "return", "self", ".", "one_batch", "(", "ds_type", "=", "DatasetType", ".", "Single", ",", "detach", "=", "detach", ",", "denorm", "=", "denorm", ",", "cpu", "=", "cpu", ")" ]
Get `item` into a batch. Optionally `detach` and `denorm`.
[ "Get", "item", "into", "a", "batch", ".", "Optionally", "detach", "and", "denorm", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/basic_data.py#L177-L181
20,620
fastai/fastai
fastai/basic_data.py
DataBunch.show_batch
def show_batch(self, rows:int=5, ds_type:DatasetType=DatasetType.Train, reverse:bool=False, **kwargs)->None: "Show a batch of data in `ds_type` on a few `rows`." x,y = self.one_batch(ds_type, True, True) if reverse: x,y = x.flip(0),y.flip(0) n_items = rows **2 if self.train_ds.x._square_show else rows if self.dl(ds_type).batch_size < n_items: n_items = self.dl(ds_type).batch_size xs = [self.train_ds.x.reconstruct(grab_idx(x, i)) for i in range(n_items)] #TODO: get rid of has_arg if possible if has_arg(self.train_ds.y.reconstruct, 'x'): ys = [self.train_ds.y.reconstruct(grab_idx(y, i), x=x) for i,x in enumerate(xs)] else : ys = [self.train_ds.y.reconstruct(grab_idx(y, i)) for i in range(n_items)] self.train_ds.x.show_xys(xs, ys, **kwargs)
python
def show_batch(self, rows:int=5, ds_type:DatasetType=DatasetType.Train, reverse:bool=False, **kwargs)->None: "Show a batch of data in `ds_type` on a few `rows`." x,y = self.one_batch(ds_type, True, True) if reverse: x,y = x.flip(0),y.flip(0) n_items = rows **2 if self.train_ds.x._square_show else rows if self.dl(ds_type).batch_size < n_items: n_items = self.dl(ds_type).batch_size xs = [self.train_ds.x.reconstruct(grab_idx(x, i)) for i in range(n_items)] #TODO: get rid of has_arg if possible if has_arg(self.train_ds.y.reconstruct, 'x'): ys = [self.train_ds.y.reconstruct(grab_idx(y, i), x=x) for i,x in enumerate(xs)] else : ys = [self.train_ds.y.reconstruct(grab_idx(y, i)) for i in range(n_items)] self.train_ds.x.show_xys(xs, ys, **kwargs)
[ "def", "show_batch", "(", "self", ",", "rows", ":", "int", "=", "5", ",", "ds_type", ":", "DatasetType", "=", "DatasetType", ".", "Train", ",", "reverse", ":", "bool", "=", "False", ",", "*", "*", "kwargs", ")", "->", "None", ":", "x", ",", "y", "=", "self", ".", "one_batch", "(", "ds_type", ",", "True", ",", "True", ")", "if", "reverse", ":", "x", ",", "y", "=", "x", ".", "flip", "(", "0", ")", ",", "y", ".", "flip", "(", "0", ")", "n_items", "=", "rows", "**", "2", "if", "self", ".", "train_ds", ".", "x", ".", "_square_show", "else", "rows", "if", "self", ".", "dl", "(", "ds_type", ")", ".", "batch_size", "<", "n_items", ":", "n_items", "=", "self", ".", "dl", "(", "ds_type", ")", ".", "batch_size", "xs", "=", "[", "self", ".", "train_ds", ".", "x", ".", "reconstruct", "(", "grab_idx", "(", "x", ",", "i", ")", ")", "for", "i", "in", "range", "(", "n_items", ")", "]", "#TODO: get rid of has_arg if possible", "if", "has_arg", "(", "self", ".", "train_ds", ".", "y", ".", "reconstruct", ",", "'x'", ")", ":", "ys", "=", "[", "self", ".", "train_ds", ".", "y", ".", "reconstruct", "(", "grab_idx", "(", "y", ",", "i", ")", ",", "x", "=", "x", ")", "for", "i", ",", "x", "in", "enumerate", "(", "xs", ")", "]", "else", ":", "ys", "=", "[", "self", ".", "train_ds", ".", "y", ".", "reconstruct", "(", "grab_idx", "(", "y", ",", "i", ")", ")", "for", "i", "in", "range", "(", "n_items", ")", "]", "self", ".", "train_ds", ".", "x", ".", "show_xys", "(", "xs", ",", "ys", ",", "*", "*", "kwargs", ")" ]
Show a batch of data in `ds_type` on a few `rows`.
[ "Show", "a", "batch", "of", "data", "in", "ds_type", "on", "a", "few", "rows", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/basic_data.py#L183-L194
20,621
fastai/fastai
fastai/basic_data.py
DataBunch.sanity_check
def sanity_check(self): "Check the underlying data in the training set can be properly loaded." final_message = "You can deactivate this warning by passing `no_check=True`." if not hasattr(self.train_ds, 'items') or len(self.train_ds.items) == 0 or not hasattr(self.train_dl, 'batch_sampler'): return if len(self.train_dl) == 0: warn(f"""Your training dataloader is empty, you have only {len(self.train_dl.dataset)} items in your training set. Your batch size is {self.train_dl.batch_size}, you should lower it.""") print(final_message) return idx = next(iter(self.train_dl.batch_sampler)) samples,fails = [],[] for i in idx: try: samples.append(self.train_dl.dataset[i]) except: fails.append(i) if len(fails) > 0: warn_msg = "There seems to be something wrong with your dataset, for example, in the first batch can't access" if len(fails) == len(idx): warn_msg += f" any element of self.train_ds.\nTried: {show_some(idx)}" else: warn_msg += f" these elements in self.train_ds: {show_some(fails)}" warn(warn_msg) print(final_message) return try: batch = self.collate_fn(samples) except: message = "It's not possible to collate samples of your dataset together in a batch." try: shapes = [[o[i].data.shape for o in samples] for i in range(2)] message += f'\nShapes of the inputs/targets:\n{shapes}' except: pass warn(message) print(final_message)
python
def sanity_check(self): "Check the underlying data in the training set can be properly loaded." final_message = "You can deactivate this warning by passing `no_check=True`." if not hasattr(self.train_ds, 'items') or len(self.train_ds.items) == 0 or not hasattr(self.train_dl, 'batch_sampler'): return if len(self.train_dl) == 0: warn(f"""Your training dataloader is empty, you have only {len(self.train_dl.dataset)} items in your training set. Your batch size is {self.train_dl.batch_size}, you should lower it.""") print(final_message) return idx = next(iter(self.train_dl.batch_sampler)) samples,fails = [],[] for i in idx: try: samples.append(self.train_dl.dataset[i]) except: fails.append(i) if len(fails) > 0: warn_msg = "There seems to be something wrong with your dataset, for example, in the first batch can't access" if len(fails) == len(idx): warn_msg += f" any element of self.train_ds.\nTried: {show_some(idx)}" else: warn_msg += f" these elements in self.train_ds: {show_some(fails)}" warn(warn_msg) print(final_message) return try: batch = self.collate_fn(samples) except: message = "It's not possible to collate samples of your dataset together in a batch." try: shapes = [[o[i].data.shape for o in samples] for i in range(2)] message += f'\nShapes of the inputs/targets:\n{shapes}' except: pass warn(message) print(final_message)
[ "def", "sanity_check", "(", "self", ")", ":", "final_message", "=", "\"You can deactivate this warning by passing `no_check=True`.\"", "if", "not", "hasattr", "(", "self", ".", "train_ds", ",", "'items'", ")", "or", "len", "(", "self", ".", "train_ds", ".", "items", ")", "==", "0", "or", "not", "hasattr", "(", "self", ".", "train_dl", ",", "'batch_sampler'", ")", ":", "return", "if", "len", "(", "self", ".", "train_dl", ")", "==", "0", ":", "warn", "(", "f\"\"\"Your training dataloader is empty, you have only {len(self.train_dl.dataset)} items in your training set.\n Your batch size is {self.train_dl.batch_size}, you should lower it.\"\"\"", ")", "print", "(", "final_message", ")", "return", "idx", "=", "next", "(", "iter", "(", "self", ".", "train_dl", ".", "batch_sampler", ")", ")", "samples", ",", "fails", "=", "[", "]", ",", "[", "]", "for", "i", "in", "idx", ":", "try", ":", "samples", ".", "append", "(", "self", ".", "train_dl", ".", "dataset", "[", "i", "]", ")", "except", ":", "fails", ".", "append", "(", "i", ")", "if", "len", "(", "fails", ")", ">", "0", ":", "warn_msg", "=", "\"There seems to be something wrong with your dataset, for example, in the first batch can't access\"", "if", "len", "(", "fails", ")", "==", "len", "(", "idx", ")", ":", "warn_msg", "+=", "f\" any element of self.train_ds.\\nTried: {show_some(idx)}\"", "else", ":", "warn_msg", "+=", "f\" these elements in self.train_ds: {show_some(fails)}\"", "warn", "(", "warn_msg", ")", "print", "(", "final_message", ")", "return", "try", ":", "batch", "=", "self", ".", "collate_fn", "(", "samples", ")", "except", ":", "message", "=", "\"It's not possible to collate samples of your dataset together in a batch.\"", "try", ":", "shapes", "=", "[", "[", "o", "[", "i", "]", ".", "data", ".", "shape", "for", "o", "in", "samples", "]", "for", "i", "in", "range", "(", "2", ")", "]", "message", "+=", "f'\\nShapes of the inputs/targets:\\n{shapes}'", "except", ":", "pass", "warn", "(", "message", ")", "print", "(", "final_message", ")" ]
Check the underlying data in the training set can be properly loaded.
[ "Check", "the", "underlying", "data", "in", "the", "training", "set", "can", "be", "properly", "loaded", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/basic_data.py#L239-L270
20,622
fastai/fastai
fastai/train.py
one_cycle_scheduler
def one_cycle_scheduler(lr_max:float, **kwargs:Any)->OneCycleScheduler: "Instantiate a `OneCycleScheduler` with `lr_max`." return partial(OneCycleScheduler, lr_max=lr_max, **kwargs)
python
def one_cycle_scheduler(lr_max:float, **kwargs:Any)->OneCycleScheduler: "Instantiate a `OneCycleScheduler` with `lr_max`." return partial(OneCycleScheduler, lr_max=lr_max, **kwargs)
[ "def", "one_cycle_scheduler", "(", "lr_max", ":", "float", ",", "*", "*", "kwargs", ":", "Any", ")", "->", "OneCycleScheduler", ":", "return", "partial", "(", "OneCycleScheduler", ",", "lr_max", "=", "lr_max", ",", "*", "*", "kwargs", ")" ]
Instantiate a `OneCycleScheduler` with `lr_max`.
[ "Instantiate", "a", "OneCycleScheduler", "with", "lr_max", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/train.py#L10-L12
20,623
fastai/fastai
fastai/train.py
fit_one_cycle
def fit_one_cycle(learn:Learner, cyc_len:int, max_lr:Union[Floats,slice]=defaults.lr, moms:Tuple[float,float]=(0.95,0.85), div_factor:float=25., pct_start:float=0.3, final_div:float=None, wd:float=None, callbacks:Optional[CallbackList]=None, tot_epochs:int=None, start_epoch:int=None)->None: "Fit a model following the 1cycle policy." max_lr = learn.lr_range(max_lr) callbacks = listify(callbacks) callbacks.append(OneCycleScheduler(learn, max_lr, moms=moms, div_factor=div_factor, pct_start=pct_start, final_div=final_div, tot_epochs=tot_epochs, start_epoch=start_epoch)) learn.fit(cyc_len, max_lr, wd=wd, callbacks=callbacks)
python
def fit_one_cycle(learn:Learner, cyc_len:int, max_lr:Union[Floats,slice]=defaults.lr, moms:Tuple[float,float]=(0.95,0.85), div_factor:float=25., pct_start:float=0.3, final_div:float=None, wd:float=None, callbacks:Optional[CallbackList]=None, tot_epochs:int=None, start_epoch:int=None)->None: "Fit a model following the 1cycle policy." max_lr = learn.lr_range(max_lr) callbacks = listify(callbacks) callbacks.append(OneCycleScheduler(learn, max_lr, moms=moms, div_factor=div_factor, pct_start=pct_start, final_div=final_div, tot_epochs=tot_epochs, start_epoch=start_epoch)) learn.fit(cyc_len, max_lr, wd=wd, callbacks=callbacks)
[ "def", "fit_one_cycle", "(", "learn", ":", "Learner", ",", "cyc_len", ":", "int", ",", "max_lr", ":", "Union", "[", "Floats", ",", "slice", "]", "=", "defaults", ".", "lr", ",", "moms", ":", "Tuple", "[", "float", ",", "float", "]", "=", "(", "0.95", ",", "0.85", ")", ",", "div_factor", ":", "float", "=", "25.", ",", "pct_start", ":", "float", "=", "0.3", ",", "final_div", ":", "float", "=", "None", ",", "wd", ":", "float", "=", "None", ",", "callbacks", ":", "Optional", "[", "CallbackList", "]", "=", "None", ",", "tot_epochs", ":", "int", "=", "None", ",", "start_epoch", ":", "int", "=", "None", ")", "->", "None", ":", "max_lr", "=", "learn", ".", "lr_range", "(", "max_lr", ")", "callbacks", "=", "listify", "(", "callbacks", ")", "callbacks", ".", "append", "(", "OneCycleScheduler", "(", "learn", ",", "max_lr", ",", "moms", "=", "moms", ",", "div_factor", "=", "div_factor", ",", "pct_start", "=", "pct_start", ",", "final_div", "=", "final_div", ",", "tot_epochs", "=", "tot_epochs", ",", "start_epoch", "=", "start_epoch", ")", ")", "learn", ".", "fit", "(", "cyc_len", ",", "max_lr", ",", "wd", "=", "wd", ",", "callbacks", "=", "callbacks", ")" ]
Fit a model following the 1cycle policy.
[ "Fit", "a", "model", "following", "the", "1cycle", "policy", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/train.py#L14-L22
20,624
fastai/fastai
fastai/train.py
lr_find
def lr_find(learn:Learner, start_lr:Floats=1e-7, end_lr:Floats=10, num_it:int=100, stop_div:bool=True, wd:float=None): "Explore lr from `start_lr` to `end_lr` over `num_it` iterations in `learn`. If `stop_div`, stops when loss diverges." start_lr = learn.lr_range(start_lr) start_lr = np.array(start_lr) if is_listy(start_lr) else start_lr end_lr = learn.lr_range(end_lr) end_lr = np.array(end_lr) if is_listy(end_lr) else end_lr cb = LRFinder(learn, start_lr, end_lr, num_it, stop_div) epochs = int(np.ceil(num_it/len(learn.data.train_dl))) learn.fit(epochs, start_lr, callbacks=[cb], wd=wd)
python
def lr_find(learn:Learner, start_lr:Floats=1e-7, end_lr:Floats=10, num_it:int=100, stop_div:bool=True, wd:float=None): "Explore lr from `start_lr` to `end_lr` over `num_it` iterations in `learn`. If `stop_div`, stops when loss diverges." start_lr = learn.lr_range(start_lr) start_lr = np.array(start_lr) if is_listy(start_lr) else start_lr end_lr = learn.lr_range(end_lr) end_lr = np.array(end_lr) if is_listy(end_lr) else end_lr cb = LRFinder(learn, start_lr, end_lr, num_it, stop_div) epochs = int(np.ceil(num_it/len(learn.data.train_dl))) learn.fit(epochs, start_lr, callbacks=[cb], wd=wd)
[ "def", "lr_find", "(", "learn", ":", "Learner", ",", "start_lr", ":", "Floats", "=", "1e-7", ",", "end_lr", ":", "Floats", "=", "10", ",", "num_it", ":", "int", "=", "100", ",", "stop_div", ":", "bool", "=", "True", ",", "wd", ":", "float", "=", "None", ")", ":", "start_lr", "=", "learn", ".", "lr_range", "(", "start_lr", ")", "start_lr", "=", "np", ".", "array", "(", "start_lr", ")", "if", "is_listy", "(", "start_lr", ")", "else", "start_lr", "end_lr", "=", "learn", ".", "lr_range", "(", "end_lr", ")", "end_lr", "=", "np", ".", "array", "(", "end_lr", ")", "if", "is_listy", "(", "end_lr", ")", "else", "end_lr", "cb", "=", "LRFinder", "(", "learn", ",", "start_lr", ",", "end_lr", ",", "num_it", ",", "stop_div", ")", "epochs", "=", "int", "(", "np", ".", "ceil", "(", "num_it", "/", "len", "(", "learn", ".", "data", ".", "train_dl", ")", ")", ")", "learn", ".", "fit", "(", "epochs", ",", "start_lr", ",", "callbacks", "=", "[", "cb", "]", ",", "wd", "=", "wd", ")" ]
Explore lr from `start_lr` to `end_lr` over `num_it` iterations in `learn`. If `stop_div`, stops when loss diverges.
[ "Explore", "lr", "from", "start_lr", "to", "end_lr", "over", "num_it", "iterations", "in", "learn", ".", "If", "stop_div", "stops", "when", "loss", "diverges", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/train.py#L24-L32
20,625
fastai/fastai
fastai/train.py
to_fp16
def to_fp16(learn:Learner, loss_scale:float=None, max_noskip:int=1000, dynamic:bool=True, clip:float=None, flat_master:bool=False, max_scale:float=2**24)->Learner: "Put `learn` in FP16 precision mode." learn.to_fp32() learn.model = model2half(learn.model) learn.data.add_tfm(batch_to_half) learn.mp_cb = MixedPrecision(learn, loss_scale=loss_scale, max_noskip=max_noskip, dynamic=dynamic, clip=clip, flat_master=flat_master, max_scale=max_scale) learn.callbacks.append(learn.mp_cb) return learn
python
def to_fp16(learn:Learner, loss_scale:float=None, max_noskip:int=1000, dynamic:bool=True, clip:float=None, flat_master:bool=False, max_scale:float=2**24)->Learner: "Put `learn` in FP16 precision mode." learn.to_fp32() learn.model = model2half(learn.model) learn.data.add_tfm(batch_to_half) learn.mp_cb = MixedPrecision(learn, loss_scale=loss_scale, max_noskip=max_noskip, dynamic=dynamic, clip=clip, flat_master=flat_master, max_scale=max_scale) learn.callbacks.append(learn.mp_cb) return learn
[ "def", "to_fp16", "(", "learn", ":", "Learner", ",", "loss_scale", ":", "float", "=", "None", ",", "max_noskip", ":", "int", "=", "1000", ",", "dynamic", ":", "bool", "=", "True", ",", "clip", ":", "float", "=", "None", ",", "flat_master", ":", "bool", "=", "False", ",", "max_scale", ":", "float", "=", "2", "**", "24", ")", "->", "Learner", ":", "learn", ".", "to_fp32", "(", ")", "learn", ".", "model", "=", "model2half", "(", "learn", ".", "model", ")", "learn", ".", "data", ".", "add_tfm", "(", "batch_to_half", ")", "learn", ".", "mp_cb", "=", "MixedPrecision", "(", "learn", ",", "loss_scale", "=", "loss_scale", ",", "max_noskip", "=", "max_noskip", ",", "dynamic", "=", "dynamic", ",", "clip", "=", "clip", ",", "flat_master", "=", "flat_master", ",", "max_scale", "=", "max_scale", ")", "learn", ".", "callbacks", ".", "append", "(", "learn", ".", "mp_cb", ")", "return", "learn" ]
Put `learn` in FP16 precision mode.
[ "Put", "learn", "in", "FP16", "precision", "mode", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/train.py#L34-L43
20,626
fastai/fastai
fastai/train.py
to_fp32
def to_fp32(learn:Learner): "Put `learn` back to FP32 precision mode." learn.data.remove_tfm(batch_to_half) for cb in learn.callbacks: if isinstance(cb, MixedPrecision): learn.callbacks.remove(cb) learn.model = learn.model.float() return learn
python
def to_fp32(learn:Learner): "Put `learn` back to FP32 precision mode." learn.data.remove_tfm(batch_to_half) for cb in learn.callbacks: if isinstance(cb, MixedPrecision): learn.callbacks.remove(cb) learn.model = learn.model.float() return learn
[ "def", "to_fp32", "(", "learn", ":", "Learner", ")", ":", "learn", ".", "data", ".", "remove_tfm", "(", "batch_to_half", ")", "for", "cb", "in", "learn", ".", "callbacks", ":", "if", "isinstance", "(", "cb", ",", "MixedPrecision", ")", ":", "learn", ".", "callbacks", ".", "remove", "(", "cb", ")", "learn", ".", "model", "=", "learn", ".", "model", ".", "float", "(", ")", "return", "learn" ]
Put `learn` back to FP32 precision mode.
[ "Put", "learn", "back", "to", "FP32", "precision", "mode", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/train.py#L45-L51
20,627
fastai/fastai
fastai/train.py
clip_grad
def clip_grad(learn:Learner, clip:float=0.1)->Learner: "Add gradient clipping of `clip` during training." learn.callback_fns.append(partial(GradientClipping, clip=clip)) return learn
python
def clip_grad(learn:Learner, clip:float=0.1)->Learner: "Add gradient clipping of `clip` during training." learn.callback_fns.append(partial(GradientClipping, clip=clip)) return learn
[ "def", "clip_grad", "(", "learn", ":", "Learner", ",", "clip", ":", "float", "=", "0.1", ")", "->", "Learner", ":", "learn", ".", "callback_fns", ".", "append", "(", "partial", "(", "GradientClipping", ",", "clip", "=", "clip", ")", ")", "return", "learn" ]
Add gradient clipping of `clip` during training.
[ "Add", "gradient", "clipping", "of", "clip", "during", "training", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/train.py#L93-L96
20,628
fastai/fastai
fastai/train.py
_learner_interpret
def _learner_interpret(learn:Learner, ds_type:DatasetType=DatasetType.Valid): "Create a `ClassificationInterpretation` object from `learner` on `ds_type` with `tta`." return ClassificationInterpretation.from_learner(learn, ds_type=ds_type)
python
def _learner_interpret(learn:Learner, ds_type:DatasetType=DatasetType.Valid): "Create a `ClassificationInterpretation` object from `learner` on `ds_type` with `tta`." return ClassificationInterpretation.from_learner(learn, ds_type=ds_type)
[ "def", "_learner_interpret", "(", "learn", ":", "Learner", ",", "ds_type", ":", "DatasetType", "=", "DatasetType", ".", "Valid", ")", ":", "return", "ClassificationInterpretation", ".", "from_learner", "(", "learn", ",", "ds_type", "=", "ds_type", ")" ]
Create a `ClassificationInterpretation` object from `learner` on `ds_type` with `tta`.
[ "Create", "a", "ClassificationInterpretation", "object", "from", "learner", "on", "ds_type", "with", "tta", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/train.py#L198-L200
20,629
fastai/fastai
fastai/train.py
ShowGraph.on_epoch_end
def on_epoch_end(self, n_epochs:int, last_metrics:MetricsList, **kwargs)->bool: "If we have `last_metrics` plot them in our pbar graph" if last_metrics is not None and np.any(last_metrics): rec = self.learn.recorder iters = range_of(rec.losses) val_iter = np.array(rec.nb_batches).cumsum() x_bounds = (0, (n_epochs - len(rec.nb_batches)) * rec.nb_batches[-1] + len(rec.losses)) y_bounds = (0, max((max(Tensor(rec.losses)), max(Tensor(rec.val_losses))))) rec.pbar.update_graph([(iters, rec.losses), (val_iter, rec.val_losses)], x_bounds, y_bounds) return {}
python
def on_epoch_end(self, n_epochs:int, last_metrics:MetricsList, **kwargs)->bool: "If we have `last_metrics` plot them in our pbar graph" if last_metrics is not None and np.any(last_metrics): rec = self.learn.recorder iters = range_of(rec.losses) val_iter = np.array(rec.nb_batches).cumsum() x_bounds = (0, (n_epochs - len(rec.nb_batches)) * rec.nb_batches[-1] + len(rec.losses)) y_bounds = (0, max((max(Tensor(rec.losses)), max(Tensor(rec.val_losses))))) rec.pbar.update_graph([(iters, rec.losses), (val_iter, rec.val_losses)], x_bounds, y_bounds) return {}
[ "def", "on_epoch_end", "(", "self", ",", "n_epochs", ":", "int", ",", "last_metrics", ":", "MetricsList", ",", "*", "*", "kwargs", ")", "->", "bool", ":", "if", "last_metrics", "is", "not", "None", "and", "np", ".", "any", "(", "last_metrics", ")", ":", "rec", "=", "self", ".", "learn", ".", "recorder", "iters", "=", "range_of", "(", "rec", ".", "losses", ")", "val_iter", "=", "np", ".", "array", "(", "rec", ".", "nb_batches", ")", ".", "cumsum", "(", ")", "x_bounds", "=", "(", "0", ",", "(", "n_epochs", "-", "len", "(", "rec", ".", "nb_batches", ")", ")", "*", "rec", ".", "nb_batches", "[", "-", "1", "]", "+", "len", "(", "rec", ".", "losses", ")", ")", "y_bounds", "=", "(", "0", ",", "max", "(", "(", "max", "(", "Tensor", "(", "rec", ".", "losses", ")", ")", ",", "max", "(", "Tensor", "(", "rec", ".", "val_losses", ")", ")", ")", ")", ")", "rec", ".", "pbar", ".", "update_graph", "(", "[", "(", "iters", ",", "rec", ".", "losses", ")", ",", "(", "val_iter", ",", "rec", ".", "val_losses", ")", "]", ",", "x_bounds", ",", "y_bounds", ")", "return", "{", "}" ]
If we have `last_metrics` plot them in our pbar graph
[ "If", "we", "have", "last_metrics", "plot", "them", "in", "our", "pbar", "graph" ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/train.py#L66-L75
20,630
fastai/fastai
fastai/train.py
GradientClipping.on_backward_end
def on_backward_end(self, **kwargs): "Clip the gradient before the optimizer step." if self.clip: nn.utils.clip_grad_norm_(self.learn.model.parameters(), self.clip)
python
def on_backward_end(self, **kwargs): "Clip the gradient before the optimizer step." if self.clip: nn.utils.clip_grad_norm_(self.learn.model.parameters(), self.clip)
[ "def", "on_backward_end", "(", "self", ",", "*", "*", "kwargs", ")", ":", "if", "self", ".", "clip", ":", "nn", ".", "utils", ".", "clip_grad_norm_", "(", "self", ".", "learn", ".", "model", ".", "parameters", "(", ")", ",", "self", ".", "clip", ")" ]
Clip the gradient before the optimizer step.
[ "Clip", "the", "gradient", "before", "the", "optimizer", "step", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/train.py#L89-L91
20,631
fastai/fastai
fastai/train.py
AccumulateScheduler.on_train_begin
def on_train_begin(self, **kwargs): "check if loss is reduction" if hasattr(self.loss_func, "reduction") and (self.loss_func.reduction != "sum"): warn("For better gradients consider 'reduction=sum'")
python
def on_train_begin(self, **kwargs): "check if loss is reduction" if hasattr(self.loss_func, "reduction") and (self.loss_func.reduction != "sum"): warn("For better gradients consider 'reduction=sum'")
[ "def", "on_train_begin", "(", "self", ",", "*", "*", "kwargs", ")", ":", "if", "hasattr", "(", "self", ".", "loss_func", ",", "\"reduction\"", ")", "and", "(", "self", ".", "loss_func", ".", "reduction", "!=", "\"sum\"", ")", ":", "warn", "(", "\"For better gradients consider 'reduction=sum'\"", ")" ]
check if loss is reduction
[ "check", "if", "loss", "is", "reduction" ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/train.py#L106-L109
20,632
fastai/fastai
fastai/train.py
AccumulateScheduler.on_batch_begin
def on_batch_begin(self, last_input, last_target, **kwargs): "accumulate samples and batches" self.acc_samples += last_input.shape[0] self.acc_batches += 1
python
def on_batch_begin(self, last_input, last_target, **kwargs): "accumulate samples and batches" self.acc_samples += last_input.shape[0] self.acc_batches += 1
[ "def", "on_batch_begin", "(", "self", ",", "last_input", ",", "last_target", ",", "*", "*", "kwargs", ")", ":", "self", ".", "acc_samples", "+=", "last_input", ".", "shape", "[", "0", "]", "self", ".", "acc_batches", "+=", "1" ]
accumulate samples and batches
[ "accumulate", "samples", "and", "batches" ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/train.py#L115-L118
20,633
fastai/fastai
fastai/train.py
AccumulateScheduler.on_backward_end
def on_backward_end(self, **kwargs): "accumulated step and reset samples, True will result in no stepping" if (self.acc_batches % self.n_step) == 0: for p in (self.learn.model.parameters()): if p.requires_grad: p.grad.div_(self.acc_samples) self.acc_samples = 0 else: return {'skip_step':True, 'skip_zero':True}
python
def on_backward_end(self, **kwargs): "accumulated step and reset samples, True will result in no stepping" if (self.acc_batches % self.n_step) == 0: for p in (self.learn.model.parameters()): if p.requires_grad: p.grad.div_(self.acc_samples) self.acc_samples = 0 else: return {'skip_step':True, 'skip_zero':True}
[ "def", "on_backward_end", "(", "self", ",", "*", "*", "kwargs", ")", ":", "if", "(", "self", ".", "acc_batches", "%", "self", ".", "n_step", ")", "==", "0", ":", "for", "p", "in", "(", "self", ".", "learn", ".", "model", ".", "parameters", "(", ")", ")", ":", "if", "p", ".", "requires_grad", ":", "p", ".", "grad", ".", "div_", "(", "self", ".", "acc_samples", ")", "self", ".", "acc_samples", "=", "0", "else", ":", "return", "{", "'skip_step'", ":", "True", ",", "'skip_zero'", ":", "True", "}" ]
accumulated step and reset samples, True will result in no stepping
[ "accumulated", "step", "and", "reset", "samples", "True", "will", "result", "in", "no", "stepping" ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/train.py#L120-L126
20,634
fastai/fastai
fastai/train.py
AccumulateScheduler.on_epoch_end
def on_epoch_end(self, **kwargs): "step the rest of the accumulated grads if not perfectly divisible" for p in (self.learn.model.parameters()): if p.requires_grad: p.grad.div_(self.acc_samples) if not self.drop_last: self.learn.opt.step() self.learn.opt.zero_grad()
python
def on_epoch_end(self, **kwargs): "step the rest of the accumulated grads if not perfectly divisible" for p in (self.learn.model.parameters()): if p.requires_grad: p.grad.div_(self.acc_samples) if not self.drop_last: self.learn.opt.step() self.learn.opt.zero_grad()
[ "def", "on_epoch_end", "(", "self", ",", "*", "*", "kwargs", ")", ":", "for", "p", "in", "(", "self", ".", "learn", ".", "model", ".", "parameters", "(", ")", ")", ":", "if", "p", ".", "requires_grad", ":", "p", ".", "grad", ".", "div_", "(", "self", ".", "acc_samples", ")", "if", "not", "self", ".", "drop_last", ":", "self", ".", "learn", ".", "opt", ".", "step", "(", ")", "self", ".", "learn", ".", "opt", ".", "zero_grad", "(", ")" ]
step the rest of the accumulated grads if not perfectly divisible
[ "step", "the", "rest", "of", "the", "accumulated", "grads", "if", "not", "perfectly", "divisible" ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/train.py#L128-L133
20,635
fastai/fastai
fastai/train.py
ClassificationInterpretation.from_learner
def from_learner(cls, learn: Learner, ds_type:DatasetType=DatasetType.Valid): "Create an instance of `ClassificationInterpretation`" preds = learn.get_preds(ds_type=ds_type, with_loss=True) return cls(learn, *preds)
python
def from_learner(cls, learn: Learner, ds_type:DatasetType=DatasetType.Valid): "Create an instance of `ClassificationInterpretation`" preds = learn.get_preds(ds_type=ds_type, with_loss=True) return cls(learn, *preds)
[ "def", "from_learner", "(", "cls", ",", "learn", ":", "Learner", ",", "ds_type", ":", "DatasetType", "=", "DatasetType", ".", "Valid", ")", ":", "preds", "=", "learn", ".", "get_preds", "(", "ds_type", "=", "ds_type", ",", "with_loss", "=", "True", ")", "return", "cls", "(", "learn", ",", "*", "preds", ")" ]
Create an instance of `ClassificationInterpretation`
[ "Create", "an", "instance", "of", "ClassificationInterpretation" ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/train.py#L144-L147
20,636
fastai/fastai
fastai/train.py
ClassificationInterpretation.confusion_matrix
def confusion_matrix(self, slice_size:int=1): "Confusion matrix as an `np.ndarray`." x=torch.arange(0,self.data.c) if slice_size is None: cm = ((self.pred_class==x[:,None]) & (self.y_true==x[:,None,None])).sum(2) else: cm = torch.zeros(self.data.c, self.data.c, dtype=x.dtype) for i in range(0, self.y_true.shape[0], slice_size): cm_slice = ((self.pred_class[i:i+slice_size]==x[:,None]) & (self.y_true[i:i+slice_size]==x[:,None,None])).sum(2) torch.add(cm, cm_slice, out=cm) return to_np(cm)
python
def confusion_matrix(self, slice_size:int=1): "Confusion matrix as an `np.ndarray`." x=torch.arange(0,self.data.c) if slice_size is None: cm = ((self.pred_class==x[:,None]) & (self.y_true==x[:,None,None])).sum(2) else: cm = torch.zeros(self.data.c, self.data.c, dtype=x.dtype) for i in range(0, self.y_true.shape[0], slice_size): cm_slice = ((self.pred_class[i:i+slice_size]==x[:,None]) & (self.y_true[i:i+slice_size]==x[:,None,None])).sum(2) torch.add(cm, cm_slice, out=cm) return to_np(cm)
[ "def", "confusion_matrix", "(", "self", ",", "slice_size", ":", "int", "=", "1", ")", ":", "x", "=", "torch", ".", "arange", "(", "0", ",", "self", ".", "data", ".", "c", ")", "if", "slice_size", "is", "None", ":", "cm", "=", "(", "(", "self", ".", "pred_class", "==", "x", "[", ":", ",", "None", "]", ")", "&", "(", "self", ".", "y_true", "==", "x", "[", ":", ",", "None", ",", "None", "]", ")", ")", ".", "sum", "(", "2", ")", "else", ":", "cm", "=", "torch", ".", "zeros", "(", "self", ".", "data", ".", "c", ",", "self", ".", "data", ".", "c", ",", "dtype", "=", "x", ".", "dtype", ")", "for", "i", "in", "range", "(", "0", ",", "self", ".", "y_true", ".", "shape", "[", "0", "]", ",", "slice_size", ")", ":", "cm_slice", "=", "(", "(", "self", ".", "pred_class", "[", "i", ":", "i", "+", "slice_size", "]", "==", "x", "[", ":", ",", "None", "]", ")", "&", "(", "self", ".", "y_true", "[", "i", ":", "i", "+", "slice_size", "]", "==", "x", "[", ":", ",", "None", ",", "None", "]", ")", ")", ".", "sum", "(", "2", ")", "torch", ".", "add", "(", "cm", ",", "cm_slice", ",", "out", "=", "cm", ")", "return", "to_np", "(", "cm", ")" ]
Confusion matrix as an `np.ndarray`.
[ "Confusion", "matrix", "as", "an", "np", ".", "ndarray", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/train.py#L149-L159
20,637
fastai/fastai
fastai/train.py
ClassificationInterpretation.plot_confusion_matrix
def plot_confusion_matrix(self, normalize:bool=False, title:str='Confusion matrix', cmap:Any="Blues", slice_size:int=1, norm_dec:int=2, plot_txt:bool=True, return_fig:bool=None, **kwargs)->Optional[plt.Figure]: "Plot the confusion matrix, with `title` and using `cmap`." # This function is mainly copied from the sklearn docs cm = self.confusion_matrix(slice_size=slice_size) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] fig = plt.figure(**kwargs) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) tick_marks = np.arange(self.data.c) plt.xticks(tick_marks, self.data.y.classes, rotation=90) plt.yticks(tick_marks, self.data.y.classes, rotation=0) if plot_txt: thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): coeff = f'{cm[i, j]:.{norm_dec}f}' if normalize else f'{cm[i, j]}' plt.text(j, i, coeff, horizontalalignment="center", verticalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('Actual') plt.xlabel('Predicted') plt.grid(False) if ifnone(return_fig, defaults.return_fig): return fig
python
def plot_confusion_matrix(self, normalize:bool=False, title:str='Confusion matrix', cmap:Any="Blues", slice_size:int=1, norm_dec:int=2, plot_txt:bool=True, return_fig:bool=None, **kwargs)->Optional[plt.Figure]: "Plot the confusion matrix, with `title` and using `cmap`." # This function is mainly copied from the sklearn docs cm = self.confusion_matrix(slice_size=slice_size) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] fig = plt.figure(**kwargs) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) tick_marks = np.arange(self.data.c) plt.xticks(tick_marks, self.data.y.classes, rotation=90) plt.yticks(tick_marks, self.data.y.classes, rotation=0) if plot_txt: thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): coeff = f'{cm[i, j]:.{norm_dec}f}' if normalize else f'{cm[i, j]}' plt.text(j, i, coeff, horizontalalignment="center", verticalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('Actual') plt.xlabel('Predicted') plt.grid(False) if ifnone(return_fig, defaults.return_fig): return fig
[ "def", "plot_confusion_matrix", "(", "self", ",", "normalize", ":", "bool", "=", "False", ",", "title", ":", "str", "=", "'Confusion matrix'", ",", "cmap", ":", "Any", "=", "\"Blues\"", ",", "slice_size", ":", "int", "=", "1", ",", "norm_dec", ":", "int", "=", "2", ",", "plot_txt", ":", "bool", "=", "True", ",", "return_fig", ":", "bool", "=", "None", ",", "*", "*", "kwargs", ")", "->", "Optional", "[", "plt", ".", "Figure", "]", ":", "# This function is mainly copied from the sklearn docs", "cm", "=", "self", ".", "confusion_matrix", "(", "slice_size", "=", "slice_size", ")", "if", "normalize", ":", "cm", "=", "cm", ".", "astype", "(", "'float'", ")", "/", "cm", ".", "sum", "(", "axis", "=", "1", ")", "[", ":", ",", "np", ".", "newaxis", "]", "fig", "=", "plt", ".", "figure", "(", "*", "*", "kwargs", ")", "plt", ".", "imshow", "(", "cm", ",", "interpolation", "=", "'nearest'", ",", "cmap", "=", "cmap", ")", "plt", ".", "title", "(", "title", ")", "tick_marks", "=", "np", ".", "arange", "(", "self", ".", "data", ".", "c", ")", "plt", ".", "xticks", "(", "tick_marks", ",", "self", ".", "data", ".", "y", ".", "classes", ",", "rotation", "=", "90", ")", "plt", ".", "yticks", "(", "tick_marks", ",", "self", ".", "data", ".", "y", ".", "classes", ",", "rotation", "=", "0", ")", "if", "plot_txt", ":", "thresh", "=", "cm", ".", "max", "(", ")", "/", "2.", "for", "i", ",", "j", "in", "itertools", ".", "product", "(", "range", "(", "cm", ".", "shape", "[", "0", "]", ")", ",", "range", "(", "cm", ".", "shape", "[", "1", "]", ")", ")", ":", "coeff", "=", "f'{cm[i, j]:.{norm_dec}f}'", "if", "normalize", "else", "f'{cm[i, j]}'", "plt", ".", "text", "(", "j", ",", "i", ",", "coeff", ",", "horizontalalignment", "=", "\"center\"", ",", "verticalalignment", "=", "\"center\"", ",", "color", "=", "\"white\"", "if", "cm", "[", "i", ",", "j", "]", ">", "thresh", "else", "\"black\"", ")", "plt", ".", "tight_layout", "(", ")", "plt", ".", "ylabel", "(", "'Actual'", ")", "plt", ".", "xlabel", "(", "'Predicted'", ")", "plt", ".", "grid", "(", "False", ")", "if", "ifnone", "(", "return_fig", ",", "defaults", ".", "return_fig", ")", ":", "return", "fig" ]
Plot the confusion matrix, with `title` and using `cmap`.
[ "Plot", "the", "confusion", "matrix", "with", "title", "and", "using", "cmap", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/train.py#L161-L184
20,638
fastai/fastai
fastai/train.py
ClassificationInterpretation.most_confused
def most_confused(self, min_val:int=1, slice_size:int=1)->Collection[Tuple[str,str,int]]: "Sorted descending list of largest non-diagonal entries of confusion matrix, presented as actual, predicted, number of occurrences." cm = self.confusion_matrix(slice_size=slice_size) np.fill_diagonal(cm, 0) res = [(self.data.classes[i],self.data.classes[j],cm[i,j]) for i,j in zip(*np.where(cm>=min_val))] return sorted(res, key=itemgetter(2), reverse=True)
python
def most_confused(self, min_val:int=1, slice_size:int=1)->Collection[Tuple[str,str,int]]: "Sorted descending list of largest non-diagonal entries of confusion matrix, presented as actual, predicted, number of occurrences." cm = self.confusion_matrix(slice_size=slice_size) np.fill_diagonal(cm, 0) res = [(self.data.classes[i],self.data.classes[j],cm[i,j]) for i,j in zip(*np.where(cm>=min_val))] return sorted(res, key=itemgetter(2), reverse=True)
[ "def", "most_confused", "(", "self", ",", "min_val", ":", "int", "=", "1", ",", "slice_size", ":", "int", "=", "1", ")", "->", "Collection", "[", "Tuple", "[", "str", ",", "str", ",", "int", "]", "]", ":", "cm", "=", "self", ".", "confusion_matrix", "(", "slice_size", "=", "slice_size", ")", "np", ".", "fill_diagonal", "(", "cm", ",", "0", ")", "res", "=", "[", "(", "self", ".", "data", ".", "classes", "[", "i", "]", ",", "self", ".", "data", ".", "classes", "[", "j", "]", ",", "cm", "[", "i", ",", "j", "]", ")", "for", "i", ",", "j", "in", "zip", "(", "*", "np", ".", "where", "(", "cm", ">=", "min_val", ")", ")", "]", "return", "sorted", "(", "res", ",", "key", "=", "itemgetter", "(", "2", ")", ",", "reverse", "=", "True", ")" ]
Sorted descending list of largest non-diagonal entries of confusion matrix, presented as actual, predicted, number of occurrences.
[ "Sorted", "descending", "list", "of", "largest", "non", "-", "diagonal", "entries", "of", "confusion", "matrix", "presented", "as", "actual", "predicted", "number", "of", "occurrences", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/train.py#L186-L192
20,639
fastai/fastai
fastai/vision/learner.py
cnn_config
def cnn_config(arch): "Get the metadata associated with `arch`." torch.backends.cudnn.benchmark = True return model_meta.get(arch, _default_meta)
python
def cnn_config(arch): "Get the metadata associated with `arch`." torch.backends.cudnn.benchmark = True return model_meta.get(arch, _default_meta)
[ "def", "cnn_config", "(", "arch", ")", ":", "torch", ".", "backends", ".", "cudnn", ".", "benchmark", "=", "True", "return", "model_meta", ".", "get", "(", "arch", ",", "_default_meta", ")" ]
Get the metadata associated with `arch`.
[ "Get", "the", "metadata", "associated", "with", "arch", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/vision/learner.py#L43-L46
20,640
fastai/fastai
fastai/vision/learner.py
create_head
def create_head(nf:int, nc:int, lin_ftrs:Optional[Collection[int]]=None, ps:Floats=0.5, concat_pool:bool=True, bn_final:bool=False): "Model head that takes `nf` features, runs through `lin_ftrs`, and about `nc` classes." lin_ftrs = [nf, 512, nc] if lin_ftrs is None else [nf] + lin_ftrs + [nc] ps = listify(ps) if len(ps) == 1: ps = [ps[0]/2] * (len(lin_ftrs)-2) + ps actns = [nn.ReLU(inplace=True)] * (len(lin_ftrs)-2) + [None] pool = AdaptiveConcatPool2d() if concat_pool else nn.AdaptiveAvgPool2d(1) layers = [pool, Flatten()] for ni,no,p,actn in zip(lin_ftrs[:-1], lin_ftrs[1:], ps, actns): layers += bn_drop_lin(ni, no, True, p, actn) if bn_final: layers.append(nn.BatchNorm1d(lin_ftrs[-1], momentum=0.01)) return nn.Sequential(*layers)
python
def create_head(nf:int, nc:int, lin_ftrs:Optional[Collection[int]]=None, ps:Floats=0.5, concat_pool:bool=True, bn_final:bool=False): "Model head that takes `nf` features, runs through `lin_ftrs`, and about `nc` classes." lin_ftrs = [nf, 512, nc] if lin_ftrs is None else [nf] + lin_ftrs + [nc] ps = listify(ps) if len(ps) == 1: ps = [ps[0]/2] * (len(lin_ftrs)-2) + ps actns = [nn.ReLU(inplace=True)] * (len(lin_ftrs)-2) + [None] pool = AdaptiveConcatPool2d() if concat_pool else nn.AdaptiveAvgPool2d(1) layers = [pool, Flatten()] for ni,no,p,actn in zip(lin_ftrs[:-1], lin_ftrs[1:], ps, actns): layers += bn_drop_lin(ni, no, True, p, actn) if bn_final: layers.append(nn.BatchNorm1d(lin_ftrs[-1], momentum=0.01)) return nn.Sequential(*layers)
[ "def", "create_head", "(", "nf", ":", "int", ",", "nc", ":", "int", ",", "lin_ftrs", ":", "Optional", "[", "Collection", "[", "int", "]", "]", "=", "None", ",", "ps", ":", "Floats", "=", "0.5", ",", "concat_pool", ":", "bool", "=", "True", ",", "bn_final", ":", "bool", "=", "False", ")", ":", "lin_ftrs", "=", "[", "nf", ",", "512", ",", "nc", "]", "if", "lin_ftrs", "is", "None", "else", "[", "nf", "]", "+", "lin_ftrs", "+", "[", "nc", "]", "ps", "=", "listify", "(", "ps", ")", "if", "len", "(", "ps", ")", "==", "1", ":", "ps", "=", "[", "ps", "[", "0", "]", "/", "2", "]", "*", "(", "len", "(", "lin_ftrs", ")", "-", "2", ")", "+", "ps", "actns", "=", "[", "nn", ".", "ReLU", "(", "inplace", "=", "True", ")", "]", "*", "(", "len", "(", "lin_ftrs", ")", "-", "2", ")", "+", "[", "None", "]", "pool", "=", "AdaptiveConcatPool2d", "(", ")", "if", "concat_pool", "else", "nn", ".", "AdaptiveAvgPool2d", "(", "1", ")", "layers", "=", "[", "pool", ",", "Flatten", "(", ")", "]", "for", "ni", ",", "no", ",", "p", ",", "actn", "in", "zip", "(", "lin_ftrs", "[", ":", "-", "1", "]", ",", "lin_ftrs", "[", "1", ":", "]", ",", "ps", ",", "actns", ")", ":", "layers", "+=", "bn_drop_lin", "(", "ni", ",", "no", ",", "True", ",", "p", ",", "actn", ")", "if", "bn_final", ":", "layers", ".", "append", "(", "nn", ".", "BatchNorm1d", "(", "lin_ftrs", "[", "-", "1", "]", ",", "momentum", "=", "0.01", ")", ")", "return", "nn", ".", "Sequential", "(", "*", "layers", ")" ]
Model head that takes `nf` features, runs through `lin_ftrs`, and about `nc` classes.
[ "Model", "head", "that", "takes", "nf", "features", "runs", "through", "lin_ftrs", "and", "about", "nc", "classes", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/vision/learner.py#L65-L77
20,641
fastai/fastai
fastai/vision/learner.py
create_cnn_model
def create_cnn_model(base_arch:Callable, nc:int, cut:Union[int,Callable]=None, pretrained:bool=True, lin_ftrs:Optional[Collection[int]]=None, ps:Floats=0.5, custom_head:Optional[nn.Module]=None, split_on:Optional[SplitFuncOrIdxList]=None, bn_final:bool=False, concat_pool:bool=True): "Create custom convnet architecture" body = create_body(base_arch, pretrained, cut) if custom_head is None: nf = num_features_model(nn.Sequential(*body.children())) * (2 if concat_pool else 1) head = create_head(nf, nc, lin_ftrs, ps=ps, concat_pool=concat_pool, bn_final=bn_final) else: head = custom_head return nn.Sequential(body, head)
python
def create_cnn_model(base_arch:Callable, nc:int, cut:Union[int,Callable]=None, pretrained:bool=True, lin_ftrs:Optional[Collection[int]]=None, ps:Floats=0.5, custom_head:Optional[nn.Module]=None, split_on:Optional[SplitFuncOrIdxList]=None, bn_final:bool=False, concat_pool:bool=True): "Create custom convnet architecture" body = create_body(base_arch, pretrained, cut) if custom_head is None: nf = num_features_model(nn.Sequential(*body.children())) * (2 if concat_pool else 1) head = create_head(nf, nc, lin_ftrs, ps=ps, concat_pool=concat_pool, bn_final=bn_final) else: head = custom_head return nn.Sequential(body, head)
[ "def", "create_cnn_model", "(", "base_arch", ":", "Callable", ",", "nc", ":", "int", ",", "cut", ":", "Union", "[", "int", ",", "Callable", "]", "=", "None", ",", "pretrained", ":", "bool", "=", "True", ",", "lin_ftrs", ":", "Optional", "[", "Collection", "[", "int", "]", "]", "=", "None", ",", "ps", ":", "Floats", "=", "0.5", ",", "custom_head", ":", "Optional", "[", "nn", ".", "Module", "]", "=", "None", ",", "split_on", ":", "Optional", "[", "SplitFuncOrIdxList", "]", "=", "None", ",", "bn_final", ":", "bool", "=", "False", ",", "concat_pool", ":", "bool", "=", "True", ")", ":", "body", "=", "create_body", "(", "base_arch", ",", "pretrained", ",", "cut", ")", "if", "custom_head", "is", "None", ":", "nf", "=", "num_features_model", "(", "nn", ".", "Sequential", "(", "*", "body", ".", "children", "(", ")", ")", ")", "*", "(", "2", "if", "concat_pool", "else", "1", ")", "head", "=", "create_head", "(", "nf", ",", "nc", ",", "lin_ftrs", ",", "ps", "=", "ps", ",", "concat_pool", "=", "concat_pool", ",", "bn_final", "=", "bn_final", ")", "else", ":", "head", "=", "custom_head", "return", "nn", ".", "Sequential", "(", "body", ",", "head", ")" ]
Create custom convnet architecture
[ "Create", "custom", "convnet", "architecture" ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/vision/learner.py#L79-L88
20,642
fastai/fastai
fastai/vision/learner.py
cnn_learner
def cnn_learner(data:DataBunch, base_arch:Callable, cut:Union[int,Callable]=None, pretrained:bool=True, lin_ftrs:Optional[Collection[int]]=None, ps:Floats=0.5, custom_head:Optional[nn.Module]=None, split_on:Optional[SplitFuncOrIdxList]=None, bn_final:bool=False, init=nn.init.kaiming_normal_, concat_pool:bool=True, **kwargs:Any)->Learner: "Build convnet style learner." meta = cnn_config(base_arch) model = create_cnn_model(base_arch, data.c, cut, pretrained, lin_ftrs, ps=ps, custom_head=custom_head, split_on=split_on, bn_final=bn_final, concat_pool=concat_pool) learn = Learner(data, model, **kwargs) learn.split(split_on or meta['split']) if pretrained: learn.freeze() if init: apply_init(model[1], init) return learn
python
def cnn_learner(data:DataBunch, base_arch:Callable, cut:Union[int,Callable]=None, pretrained:bool=True, lin_ftrs:Optional[Collection[int]]=None, ps:Floats=0.5, custom_head:Optional[nn.Module]=None, split_on:Optional[SplitFuncOrIdxList]=None, bn_final:bool=False, init=nn.init.kaiming_normal_, concat_pool:bool=True, **kwargs:Any)->Learner: "Build convnet style learner." meta = cnn_config(base_arch) model = create_cnn_model(base_arch, data.c, cut, pretrained, lin_ftrs, ps=ps, custom_head=custom_head, split_on=split_on, bn_final=bn_final, concat_pool=concat_pool) learn = Learner(data, model, **kwargs) learn.split(split_on or meta['split']) if pretrained: learn.freeze() if init: apply_init(model[1], init) return learn
[ "def", "cnn_learner", "(", "data", ":", "DataBunch", ",", "base_arch", ":", "Callable", ",", "cut", ":", "Union", "[", "int", ",", "Callable", "]", "=", "None", ",", "pretrained", ":", "bool", "=", "True", ",", "lin_ftrs", ":", "Optional", "[", "Collection", "[", "int", "]", "]", "=", "None", ",", "ps", ":", "Floats", "=", "0.5", ",", "custom_head", ":", "Optional", "[", "nn", ".", "Module", "]", "=", "None", ",", "split_on", ":", "Optional", "[", "SplitFuncOrIdxList", "]", "=", "None", ",", "bn_final", ":", "bool", "=", "False", ",", "init", "=", "nn", ".", "init", ".", "kaiming_normal_", ",", "concat_pool", ":", "bool", "=", "True", ",", "*", "*", "kwargs", ":", "Any", ")", "->", "Learner", ":", "meta", "=", "cnn_config", "(", "base_arch", ")", "model", "=", "create_cnn_model", "(", "base_arch", ",", "data", ".", "c", ",", "cut", ",", "pretrained", ",", "lin_ftrs", ",", "ps", "=", "ps", ",", "custom_head", "=", "custom_head", ",", "split_on", "=", "split_on", ",", "bn_final", "=", "bn_final", ",", "concat_pool", "=", "concat_pool", ")", "learn", "=", "Learner", "(", "data", ",", "model", ",", "*", "*", "kwargs", ")", "learn", ".", "split", "(", "split_on", "or", "meta", "[", "'split'", "]", ")", "if", "pretrained", ":", "learn", ".", "freeze", "(", ")", "if", "init", ":", "apply_init", "(", "model", "[", "1", "]", ",", "init", ")", "return", "learn" ]
Build convnet style learner.
[ "Build", "convnet", "style", "learner", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/vision/learner.py#L90-L102
20,643
fastai/fastai
fastai/vision/learner.py
unet_learner
def unet_learner(data:DataBunch, arch:Callable, pretrained:bool=True, blur_final:bool=True, norm_type:Optional[NormType]=NormType, split_on:Optional[SplitFuncOrIdxList]=None, blur:bool=False, self_attention:bool=False, y_range:Optional[Tuple[float,float]]=None, last_cross:bool=True, bottle:bool=False, cut:Union[int,Callable]=None, **learn_kwargs:Any)->Learner: "Build Unet learner from `data` and `arch`." meta = cnn_config(arch) body = create_body(arch, pretrained, cut) model = to_device(models.unet.DynamicUnet(body, n_classes=data.c, blur=blur, blur_final=blur_final, self_attention=self_attention, y_range=y_range, norm_type=norm_type, last_cross=last_cross, bottle=bottle), data.device) learn = Learner(data, model, **learn_kwargs) learn.split(ifnone(split_on, meta['split'])) if pretrained: learn.freeze() apply_init(model[2], nn.init.kaiming_normal_) return learn
python
def unet_learner(data:DataBunch, arch:Callable, pretrained:bool=True, blur_final:bool=True, norm_type:Optional[NormType]=NormType, split_on:Optional[SplitFuncOrIdxList]=None, blur:bool=False, self_attention:bool=False, y_range:Optional[Tuple[float,float]]=None, last_cross:bool=True, bottle:bool=False, cut:Union[int,Callable]=None, **learn_kwargs:Any)->Learner: "Build Unet learner from `data` and `arch`." meta = cnn_config(arch) body = create_body(arch, pretrained, cut) model = to_device(models.unet.DynamicUnet(body, n_classes=data.c, blur=blur, blur_final=blur_final, self_attention=self_attention, y_range=y_range, norm_type=norm_type, last_cross=last_cross, bottle=bottle), data.device) learn = Learner(data, model, **learn_kwargs) learn.split(ifnone(split_on, meta['split'])) if pretrained: learn.freeze() apply_init(model[2], nn.init.kaiming_normal_) return learn
[ "def", "unet_learner", "(", "data", ":", "DataBunch", ",", "arch", ":", "Callable", ",", "pretrained", ":", "bool", "=", "True", ",", "blur_final", ":", "bool", "=", "True", ",", "norm_type", ":", "Optional", "[", "NormType", "]", "=", "NormType", ",", "split_on", ":", "Optional", "[", "SplitFuncOrIdxList", "]", "=", "None", ",", "blur", ":", "bool", "=", "False", ",", "self_attention", ":", "bool", "=", "False", ",", "y_range", ":", "Optional", "[", "Tuple", "[", "float", ",", "float", "]", "]", "=", "None", ",", "last_cross", ":", "bool", "=", "True", ",", "bottle", ":", "bool", "=", "False", ",", "cut", ":", "Union", "[", "int", ",", "Callable", "]", "=", "None", ",", "*", "*", "learn_kwargs", ":", "Any", ")", "->", "Learner", ":", "meta", "=", "cnn_config", "(", "arch", ")", "body", "=", "create_body", "(", "arch", ",", "pretrained", ",", "cut", ")", "model", "=", "to_device", "(", "models", ".", "unet", ".", "DynamicUnet", "(", "body", ",", "n_classes", "=", "data", ".", "c", ",", "blur", "=", "blur", ",", "blur_final", "=", "blur_final", ",", "self_attention", "=", "self_attention", ",", "y_range", "=", "y_range", ",", "norm_type", "=", "norm_type", ",", "last_cross", "=", "last_cross", ",", "bottle", "=", "bottle", ")", ",", "data", ".", "device", ")", "learn", "=", "Learner", "(", "data", ",", "model", ",", "*", "*", "learn_kwargs", ")", "learn", ".", "split", "(", "ifnone", "(", "split_on", ",", "meta", "[", "'split'", "]", ")", ")", "if", "pretrained", ":", "learn", ".", "freeze", "(", ")", "apply_init", "(", "model", "[", "2", "]", ",", "nn", ".", "init", ".", "kaiming_normal_", ")", "return", "learn" ]
Build Unet learner from `data` and `arch`.
[ "Build", "Unet", "learner", "from", "data", "and", "arch", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/vision/learner.py#L108-L122
20,644
fastai/fastai
fastai/vision/learner.py
_cl_int_from_learner
def _cl_int_from_learner(cls, learn:Learner, ds_type:DatasetType=DatasetType.Valid, tta=False): "Create an instance of `ClassificationInterpretation`. `tta` indicates if we want to use Test Time Augmentation." preds = learn.TTA(ds_type=ds_type, with_loss=True) if tta else learn.get_preds(ds_type=ds_type, with_loss=True) return cls(learn, *preds, ds_type=ds_type)
python
def _cl_int_from_learner(cls, learn:Learner, ds_type:DatasetType=DatasetType.Valid, tta=False): "Create an instance of `ClassificationInterpretation`. `tta` indicates if we want to use Test Time Augmentation." preds = learn.TTA(ds_type=ds_type, with_loss=True) if tta else learn.get_preds(ds_type=ds_type, with_loss=True) return cls(learn, *preds, ds_type=ds_type)
[ "def", "_cl_int_from_learner", "(", "cls", ",", "learn", ":", "Learner", ",", "ds_type", ":", "DatasetType", "=", "DatasetType", ".", "Valid", ",", "tta", "=", "False", ")", ":", "preds", "=", "learn", ".", "TTA", "(", "ds_type", "=", "ds_type", ",", "with_loss", "=", "True", ")", "if", "tta", "else", "learn", ".", "get_preds", "(", "ds_type", "=", "ds_type", ",", "with_loss", "=", "True", ")", "return", "cls", "(", "learn", ",", "*", "preds", ",", "ds_type", "=", "ds_type", ")" ]
Create an instance of `ClassificationInterpretation`. `tta` indicates if we want to use Test Time Augmentation.
[ "Create", "an", "instance", "of", "ClassificationInterpretation", ".", "tta", "indicates", "if", "we", "want", "to", "use", "Test", "Time", "Augmentation", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/vision/learner.py#L125-L128
20,645
fastai/fastai
fastai/widgets/image_cleaner.py
DatasetFormatter.from_toplosses
def from_toplosses(cls, learn, n_imgs=None, **kwargs): "Gets indices with top losses." train_ds, train_idxs = cls.get_toplosses_idxs(learn, n_imgs, **kwargs) return train_ds, train_idxs
python
def from_toplosses(cls, learn, n_imgs=None, **kwargs): "Gets indices with top losses." train_ds, train_idxs = cls.get_toplosses_idxs(learn, n_imgs, **kwargs) return train_ds, train_idxs
[ "def", "from_toplosses", "(", "cls", ",", "learn", ",", "n_imgs", "=", "None", ",", "*", "*", "kwargs", ")", ":", "train_ds", ",", "train_idxs", "=", "cls", ".", "get_toplosses_idxs", "(", "learn", ",", "n_imgs", ",", "*", "*", "kwargs", ")", "return", "train_ds", ",", "train_idxs" ]
Gets indices with top losses.
[ "Gets", "indices", "with", "top", "losses", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_cleaner.py#L17-L20
20,646
fastai/fastai
fastai/widgets/image_cleaner.py
DatasetFormatter.get_toplosses_idxs
def get_toplosses_idxs(cls, learn, n_imgs, **kwargs): "Sorts `ds_type` dataset by top losses and returns dataset and sorted indices." dl = learn.data.fix_dl if not n_imgs: n_imgs = len(dl.dataset) _,_,top_losses = learn.get_preds(ds_type=DatasetType.Fix, with_loss=True) idxs = torch.topk(top_losses, n_imgs)[1] return cls.padded_ds(dl.dataset, **kwargs), idxs
python
def get_toplosses_idxs(cls, learn, n_imgs, **kwargs): "Sorts `ds_type` dataset by top losses and returns dataset and sorted indices." dl = learn.data.fix_dl if not n_imgs: n_imgs = len(dl.dataset) _,_,top_losses = learn.get_preds(ds_type=DatasetType.Fix, with_loss=True) idxs = torch.topk(top_losses, n_imgs)[1] return cls.padded_ds(dl.dataset, **kwargs), idxs
[ "def", "get_toplosses_idxs", "(", "cls", ",", "learn", ",", "n_imgs", ",", "*", "*", "kwargs", ")", ":", "dl", "=", "learn", ".", "data", ".", "fix_dl", "if", "not", "n_imgs", ":", "n_imgs", "=", "len", "(", "dl", ".", "dataset", ")", "_", ",", "_", ",", "top_losses", "=", "learn", ".", "get_preds", "(", "ds_type", "=", "DatasetType", ".", "Fix", ",", "with_loss", "=", "True", ")", "idxs", "=", "torch", ".", "topk", "(", "top_losses", ",", "n_imgs", ")", "[", "1", "]", "return", "cls", ".", "padded_ds", "(", "dl", ".", "dataset", ",", "*", "*", "kwargs", ")", ",", "idxs" ]
Sorts `ds_type` dataset by top losses and returns dataset and sorted indices.
[ "Sorts", "ds_type", "dataset", "by", "top", "losses", "and", "returns", "dataset", "and", "sorted", "indices", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_cleaner.py#L23-L29
20,647
fastai/fastai
fastai/widgets/image_cleaner.py
DatasetFormatter.padded_ds
def padded_ds(ll_input, size=(250, 300), resize_method=ResizeMethod.CROP, padding_mode='zeros', **kwargs): "For a LabelList `ll_input`, resize each image to `size` using `resize_method` and `padding_mode`." return ll_input.transform(tfms=crop_pad(), size=size, resize_method=resize_method, padding_mode=padding_mode)
python
def padded_ds(ll_input, size=(250, 300), resize_method=ResizeMethod.CROP, padding_mode='zeros', **kwargs): "For a LabelList `ll_input`, resize each image to `size` using `resize_method` and `padding_mode`." return ll_input.transform(tfms=crop_pad(), size=size, resize_method=resize_method, padding_mode=padding_mode)
[ "def", "padded_ds", "(", "ll_input", ",", "size", "=", "(", "250", ",", "300", ")", ",", "resize_method", "=", "ResizeMethod", ".", "CROP", ",", "padding_mode", "=", "'zeros'", ",", "*", "*", "kwargs", ")", ":", "return", "ll_input", ".", "transform", "(", "tfms", "=", "crop_pad", "(", ")", ",", "size", "=", "size", ",", "resize_method", "=", "resize_method", ",", "padding_mode", "=", "padding_mode", ")" ]
For a LabelList `ll_input`, resize each image to `size` using `resize_method` and `padding_mode`.
[ "For", "a", "LabelList", "ll_input", "resize", "each", "image", "to", "size", "using", "resize_method", "and", "padding_mode", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_cleaner.py#L31-L33
20,648
fastai/fastai
fastai/widgets/image_cleaner.py
DatasetFormatter.from_similars
def from_similars(cls, learn, layer_ls:list=[0, 7, 2], **kwargs): "Gets the indices for the most similar images." train_ds, train_idxs = cls.get_similars_idxs(learn, layer_ls, **kwargs) return train_ds, train_idxs
python
def from_similars(cls, learn, layer_ls:list=[0, 7, 2], **kwargs): "Gets the indices for the most similar images." train_ds, train_idxs = cls.get_similars_idxs(learn, layer_ls, **kwargs) return train_ds, train_idxs
[ "def", "from_similars", "(", "cls", ",", "learn", ",", "layer_ls", ":", "list", "=", "[", "0", ",", "7", ",", "2", "]", ",", "*", "*", "kwargs", ")", ":", "train_ds", ",", "train_idxs", "=", "cls", ".", "get_similars_idxs", "(", "learn", ",", "layer_ls", ",", "*", "*", "kwargs", ")", "return", "train_ds", ",", "train_idxs" ]
Gets the indices for the most similar images.
[ "Gets", "the", "indices", "for", "the", "most", "similar", "images", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_cleaner.py#L36-L39
20,649
fastai/fastai
fastai/widgets/image_cleaner.py
DatasetFormatter.get_similars_idxs
def get_similars_idxs(cls, learn, layer_ls, **kwargs): "Gets the indices for the most similar images in `ds_type` dataset" hook = hook_output(learn.model[layer_ls[0]][layer_ls[1]][layer_ls[2]]) dl = learn.data.fix_dl ds_actns = cls.get_actns(learn, hook=hook, dl=dl, **kwargs) similarities = cls.comb_similarity(ds_actns, ds_actns, **kwargs) idxs = cls.sort_idxs(similarities) return cls.padded_ds(dl, **kwargs), idxs
python
def get_similars_idxs(cls, learn, layer_ls, **kwargs): "Gets the indices for the most similar images in `ds_type` dataset" hook = hook_output(learn.model[layer_ls[0]][layer_ls[1]][layer_ls[2]]) dl = learn.data.fix_dl ds_actns = cls.get_actns(learn, hook=hook, dl=dl, **kwargs) similarities = cls.comb_similarity(ds_actns, ds_actns, **kwargs) idxs = cls.sort_idxs(similarities) return cls.padded_ds(dl, **kwargs), idxs
[ "def", "get_similars_idxs", "(", "cls", ",", "learn", ",", "layer_ls", ",", "*", "*", "kwargs", ")", ":", "hook", "=", "hook_output", "(", "learn", ".", "model", "[", "layer_ls", "[", "0", "]", "]", "[", "layer_ls", "[", "1", "]", "]", "[", "layer_ls", "[", "2", "]", "]", ")", "dl", "=", "learn", ".", "data", ".", "fix_dl", "ds_actns", "=", "cls", ".", "get_actns", "(", "learn", ",", "hook", "=", "hook", ",", "dl", "=", "dl", ",", "*", "*", "kwargs", ")", "similarities", "=", "cls", ".", "comb_similarity", "(", "ds_actns", ",", "ds_actns", ",", "*", "*", "kwargs", ")", "idxs", "=", "cls", ".", "sort_idxs", "(", "similarities", ")", "return", "cls", ".", "padded_ds", "(", "dl", ",", "*", "*", "kwargs", ")", ",", "idxs" ]
Gets the indices for the most similar images in `ds_type` dataset
[ "Gets", "the", "indices", "for", "the", "most", "similar", "images", "in", "ds_type", "dataset" ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_cleaner.py#L42-L50
20,650
fastai/fastai
fastai/widgets/image_cleaner.py
DatasetFormatter.get_actns
def get_actns(learn, hook:Hook, dl:DataLoader, pool=AdaptiveConcatPool2d, pool_dim:int=4, **kwargs): "Gets activations at the layer specified by `hook`, applies `pool` of dim `pool_dim` and concatenates" print('Getting activations...') actns = [] learn.model.eval() with torch.no_grad(): for (xb,yb) in progress_bar(dl): learn.model(xb) actns.append((hook.stored).cpu()) if pool: pool = pool(pool_dim) return pool(torch.cat(actns)).view(len(dl.x),-1) else: return torch.cat(actns).view(len(dl.x),-1)
python
def get_actns(learn, hook:Hook, dl:DataLoader, pool=AdaptiveConcatPool2d, pool_dim:int=4, **kwargs): "Gets activations at the layer specified by `hook`, applies `pool` of dim `pool_dim` and concatenates" print('Getting activations...') actns = [] learn.model.eval() with torch.no_grad(): for (xb,yb) in progress_bar(dl): learn.model(xb) actns.append((hook.stored).cpu()) if pool: pool = pool(pool_dim) return pool(torch.cat(actns)).view(len(dl.x),-1) else: return torch.cat(actns).view(len(dl.x),-1)
[ "def", "get_actns", "(", "learn", ",", "hook", ":", "Hook", ",", "dl", ":", "DataLoader", ",", "pool", "=", "AdaptiveConcatPool2d", ",", "pool_dim", ":", "int", "=", "4", ",", "*", "*", "kwargs", ")", ":", "print", "(", "'Getting activations...'", ")", "actns", "=", "[", "]", "learn", ".", "model", ".", "eval", "(", ")", "with", "torch", ".", "no_grad", "(", ")", ":", "for", "(", "xb", ",", "yb", ")", "in", "progress_bar", "(", "dl", ")", ":", "learn", ".", "model", "(", "xb", ")", "actns", ".", "append", "(", "(", "hook", ".", "stored", ")", ".", "cpu", "(", ")", ")", "if", "pool", ":", "pool", "=", "pool", "(", "pool_dim", ")", "return", "pool", "(", "torch", ".", "cat", "(", "actns", ")", ")", ".", "view", "(", "len", "(", "dl", ".", "x", ")", ",", "-", "1", ")", "else", ":", "return", "torch", ".", "cat", "(", "actns", ")", ".", "view", "(", "len", "(", "dl", ".", "x", ")", ",", "-", "1", ")" ]
Gets activations at the layer specified by `hook`, applies `pool` of dim `pool_dim` and concatenates
[ "Gets", "activations", "at", "the", "layer", "specified", "by", "hook", "applies", "pool", "of", "dim", "pool_dim", "and", "concatenates" ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_cleaner.py#L53-L67
20,651
fastai/fastai
fastai/widgets/image_cleaner.py
DatasetFormatter.comb_similarity
def comb_similarity(t1: torch.Tensor, t2: torch.Tensor, **kwargs): # https://github.com/pytorch/pytorch/issues/11202 "Computes the similarity function between each embedding of `t1` and `t2` matrices." print('Computing similarities...') w1 = t1.norm(p=2, dim=1, keepdim=True) w2 = w1 if t2 is t1 else t2.norm(p=2, dim=1, keepdim=True) t = torch.mm(t1, t2.t()) / (w1 * w2.t()).clamp(min=1e-8) return torch.tril(t, diagonal=-1)
python
def comb_similarity(t1: torch.Tensor, t2: torch.Tensor, **kwargs): # https://github.com/pytorch/pytorch/issues/11202 "Computes the similarity function between each embedding of `t1` and `t2` matrices." print('Computing similarities...') w1 = t1.norm(p=2, dim=1, keepdim=True) w2 = w1 if t2 is t1 else t2.norm(p=2, dim=1, keepdim=True) t = torch.mm(t1, t2.t()) / (w1 * w2.t()).clamp(min=1e-8) return torch.tril(t, diagonal=-1)
[ "def", "comb_similarity", "(", "t1", ":", "torch", ".", "Tensor", ",", "t2", ":", "torch", ".", "Tensor", ",", "*", "*", "kwargs", ")", ":", "# https://github.com/pytorch/pytorch/issues/11202", "print", "(", "'Computing similarities...'", ")", "w1", "=", "t1", ".", "norm", "(", "p", "=", "2", ",", "dim", "=", "1", ",", "keepdim", "=", "True", ")", "w2", "=", "w1", "if", "t2", "is", "t1", "else", "t2", ".", "norm", "(", "p", "=", "2", ",", "dim", "=", "1", ",", "keepdim", "=", "True", ")", "t", "=", "torch", ".", "mm", "(", "t1", ",", "t2", ".", "t", "(", ")", ")", "/", "(", "w1", "*", "w2", ".", "t", "(", ")", ")", ".", "clamp", "(", "min", "=", "1e-8", ")", "return", "torch", ".", "tril", "(", "t", ",", "diagonal", "=", "-", "1", ")" ]
Computes the similarity function between each embedding of `t1` and `t2` matrices.
[ "Computes", "the", "similarity", "function", "between", "each", "embedding", "of", "t1", "and", "t2", "matrices", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_cleaner.py#L71-L80
20,652
fastai/fastai
fastai/widgets/image_cleaner.py
DatasetFormatter.largest_indices
def largest_indices(arr, n): "Returns the `n` largest indices from a numpy array `arr`." #https://stackoverflow.com/questions/6910641/how-do-i-get-indices-of-n-maximum-values-in-a-numpy-array flat = arr.flatten() indices = np.argpartition(flat, -n)[-n:] indices = indices[np.argsort(-flat[indices])] return np.unravel_index(indices, arr.shape)
python
def largest_indices(arr, n): "Returns the `n` largest indices from a numpy array `arr`." #https://stackoverflow.com/questions/6910641/how-do-i-get-indices-of-n-maximum-values-in-a-numpy-array flat = arr.flatten() indices = np.argpartition(flat, -n)[-n:] indices = indices[np.argsort(-flat[indices])] return np.unravel_index(indices, arr.shape)
[ "def", "largest_indices", "(", "arr", ",", "n", ")", ":", "#https://stackoverflow.com/questions/6910641/how-do-i-get-indices-of-n-maximum-values-in-a-numpy-array", "flat", "=", "arr", ".", "flatten", "(", ")", "indices", "=", "np", ".", "argpartition", "(", "flat", ",", "-", "n", ")", "[", "-", "n", ":", "]", "indices", "=", "indices", "[", "np", ".", "argsort", "(", "-", "flat", "[", "indices", "]", ")", "]", "return", "np", ".", "unravel_index", "(", "indices", ",", "arr", ".", "shape", ")" ]
Returns the `n` largest indices from a numpy array `arr`.
[ "Returns", "the", "n", "largest", "indices", "from", "a", "numpy", "array", "arr", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_cleaner.py#L82-L88
20,653
fastai/fastai
fastai/widgets/image_cleaner.py
DatasetFormatter.sort_idxs
def sort_idxs(cls, similarities): "Sorts `similarities` and return the indexes in pairs ordered by highest similarity." idxs = cls.largest_indices(similarities, len(similarities)) idxs = [(idxs[0][i], idxs[1][i]) for i in range(len(idxs[0]))] return [e for l in idxs for e in l]
python
def sort_idxs(cls, similarities): "Sorts `similarities` and return the indexes in pairs ordered by highest similarity." idxs = cls.largest_indices(similarities, len(similarities)) idxs = [(idxs[0][i], idxs[1][i]) for i in range(len(idxs[0]))] return [e for l in idxs for e in l]
[ "def", "sort_idxs", "(", "cls", ",", "similarities", ")", ":", "idxs", "=", "cls", ".", "largest_indices", "(", "similarities", ",", "len", "(", "similarities", ")", ")", "idxs", "=", "[", "(", "idxs", "[", "0", "]", "[", "i", "]", ",", "idxs", "[", "1", "]", "[", "i", "]", ")", "for", "i", "in", "range", "(", "len", "(", "idxs", "[", "0", "]", ")", ")", "]", "return", "[", "e", "for", "l", "in", "idxs", "for", "e", "in", "l", "]" ]
Sorts `similarities` and return the indexes in pairs ordered by highest similarity.
[ "Sorts", "similarities", "and", "return", "the", "indexes", "in", "pairs", "ordered", "by", "highest", "similarity", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_cleaner.py#L91-L95
20,654
fastai/fastai
fastai/widgets/image_cleaner.py
ImageCleaner.make_img_widget
def make_img_widget(cls, img, layout=Layout(), format='jpg'): "Returns an image widget for specified file name `img`." return widgets.Image(value=img, format=format, layout=layout)
python
def make_img_widget(cls, img, layout=Layout(), format='jpg'): "Returns an image widget for specified file name `img`." return widgets.Image(value=img, format=format, layout=layout)
[ "def", "make_img_widget", "(", "cls", ",", "img", ",", "layout", "=", "Layout", "(", ")", ",", "format", "=", "'jpg'", ")", ":", "return", "widgets", ".", "Image", "(", "value", "=", "img", ",", "format", "=", "format", ",", "layout", "=", "layout", ")" ]
Returns an image widget for specified file name `img`.
[ "Returns", "an", "image", "widget", "for", "specified", "file", "name", "img", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_cleaner.py#L113-L115
20,655
fastai/fastai
fastai/widgets/image_cleaner.py
ImageCleaner.make_button_widget
def make_button_widget(cls, label, file_path=None, handler=None, style=None, layout=Layout(width='auto')): "Return a Button widget with specified `handler`." btn = widgets.Button(description=label, layout=layout) if handler is not None: btn.on_click(handler) if style is not None: btn.button_style = style btn.file_path = file_path btn.flagged_for_delete = False return btn
python
def make_button_widget(cls, label, file_path=None, handler=None, style=None, layout=Layout(width='auto')): "Return a Button widget with specified `handler`." btn = widgets.Button(description=label, layout=layout) if handler is not None: btn.on_click(handler) if style is not None: btn.button_style = style btn.file_path = file_path btn.flagged_for_delete = False return btn
[ "def", "make_button_widget", "(", "cls", ",", "label", ",", "file_path", "=", "None", ",", "handler", "=", "None", ",", "style", "=", "None", ",", "layout", "=", "Layout", "(", "width", "=", "'auto'", ")", ")", ":", "btn", "=", "widgets", ".", "Button", "(", "description", "=", "label", ",", "layout", "=", "layout", ")", "if", "handler", "is", "not", "None", ":", "btn", ".", "on_click", "(", "handler", ")", "if", "style", "is", "not", "None", ":", "btn", ".", "button_style", "=", "style", "btn", ".", "file_path", "=", "file_path", "btn", ".", "flagged_for_delete", "=", "False", "return", "btn" ]
Return a Button widget with specified `handler`.
[ "Return", "a", "Button", "widget", "with", "specified", "handler", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_cleaner.py#L118-L125
20,656
fastai/fastai
fastai/widgets/image_cleaner.py
ImageCleaner.make_dropdown_widget
def make_dropdown_widget(cls, description='Description', options=['Label 1', 'Label 2'], value='Label 1', file_path=None, layout=Layout(), handler=None): "Return a Dropdown widget with specified `handler`." dd = widgets.Dropdown(description=description, options=options, value=value, layout=layout) if file_path is not None: dd.file_path = file_path if handler is not None: dd.observe(handler, names=['value']) return dd
python
def make_dropdown_widget(cls, description='Description', options=['Label 1', 'Label 2'], value='Label 1', file_path=None, layout=Layout(), handler=None): "Return a Dropdown widget with specified `handler`." dd = widgets.Dropdown(description=description, options=options, value=value, layout=layout) if file_path is not None: dd.file_path = file_path if handler is not None: dd.observe(handler, names=['value']) return dd
[ "def", "make_dropdown_widget", "(", "cls", ",", "description", "=", "'Description'", ",", "options", "=", "[", "'Label 1'", ",", "'Label 2'", "]", ",", "value", "=", "'Label 1'", ",", "file_path", "=", "None", ",", "layout", "=", "Layout", "(", ")", ",", "handler", "=", "None", ")", ":", "dd", "=", "widgets", ".", "Dropdown", "(", "description", "=", "description", ",", "options", "=", "options", ",", "value", "=", "value", ",", "layout", "=", "layout", ")", "if", "file_path", "is", "not", "None", ":", "dd", ".", "file_path", "=", "file_path", "if", "handler", "is", "not", "None", ":", "dd", ".", "observe", "(", "handler", ",", "names", "=", "[", "'value'", "]", ")", "return", "dd" ]
Return a Dropdown widget with specified `handler`.
[ "Return", "a", "Dropdown", "widget", "with", "specified", "handler", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_cleaner.py#L128-L134
20,657
fastai/fastai
fastai/widgets/image_cleaner.py
ImageCleaner.make_horizontal_box
def make_horizontal_box(cls, children, layout=Layout()): "Make a horizontal box with `children` and `layout`." return widgets.HBox(children, layout=layout)
python
def make_horizontal_box(cls, children, layout=Layout()): "Make a horizontal box with `children` and `layout`." return widgets.HBox(children, layout=layout)
[ "def", "make_horizontal_box", "(", "cls", ",", "children", ",", "layout", "=", "Layout", "(", ")", ")", ":", "return", "widgets", ".", "HBox", "(", "children", ",", "layout", "=", "layout", ")" ]
Make a horizontal box with `children` and `layout`.
[ "Make", "a", "horizontal", "box", "with", "children", "and", "layout", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_cleaner.py#L137-L139
20,658
fastai/fastai
fastai/widgets/image_cleaner.py
ImageCleaner.make_vertical_box
def make_vertical_box(cls, children, layout=Layout(), duplicates=False): "Make a vertical box with `children` and `layout`." if not duplicates: return widgets.VBox(children, layout=layout) else: return widgets.VBox([children[0], children[2]], layout=layout)
python
def make_vertical_box(cls, children, layout=Layout(), duplicates=False): "Make a vertical box with `children` and `layout`." if not duplicates: return widgets.VBox(children, layout=layout) else: return widgets.VBox([children[0], children[2]], layout=layout)
[ "def", "make_vertical_box", "(", "cls", ",", "children", ",", "layout", "=", "Layout", "(", ")", ",", "duplicates", "=", "False", ")", ":", "if", "not", "duplicates", ":", "return", "widgets", ".", "VBox", "(", "children", ",", "layout", "=", "layout", ")", "else", ":", "return", "widgets", ".", "VBox", "(", "[", "children", "[", "0", "]", ",", "children", "[", "2", "]", "]", ",", "layout", "=", "layout", ")" ]
Make a vertical box with `children` and `layout`.
[ "Make", "a", "vertical", "box", "with", "children", "and", "layout", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_cleaner.py#L142-L145
20,659
fastai/fastai
fastai/widgets/image_cleaner.py
ImageCleaner.create_image_list
def create_image_list(self, dataset, fns_idxs): "Create a list of images, filenames and labels but first removing files that are not supposed to be displayed." items = dataset.x.items if self._duplicates: chunked_idxs = chunks(fns_idxs, 2) chunked_idxs = [chunk for chunk in chunked_idxs if Path(items[chunk[0]]).is_file() and Path(items[chunk[1]]).is_file()] return [(dataset.x[i]._repr_jpeg_(), items[i], self._labels[dataset.y[i].data]) for chunk in chunked_idxs for i in chunk] else: return [(dataset.x[i]._repr_jpeg_(), items[i], self._labels[dataset.y[i].data]) for i in fns_idxs if Path(items[i]).is_file()]
python
def create_image_list(self, dataset, fns_idxs): "Create a list of images, filenames and labels but first removing files that are not supposed to be displayed." items = dataset.x.items if self._duplicates: chunked_idxs = chunks(fns_idxs, 2) chunked_idxs = [chunk for chunk in chunked_idxs if Path(items[chunk[0]]).is_file() and Path(items[chunk[1]]).is_file()] return [(dataset.x[i]._repr_jpeg_(), items[i], self._labels[dataset.y[i].data]) for chunk in chunked_idxs for i in chunk] else: return [(dataset.x[i]._repr_jpeg_(), items[i], self._labels[dataset.y[i].data]) for i in fns_idxs if Path(items[i]).is_file()]
[ "def", "create_image_list", "(", "self", ",", "dataset", ",", "fns_idxs", ")", ":", "items", "=", "dataset", ".", "x", ".", "items", "if", "self", ".", "_duplicates", ":", "chunked_idxs", "=", "chunks", "(", "fns_idxs", ",", "2", ")", "chunked_idxs", "=", "[", "chunk", "for", "chunk", "in", "chunked_idxs", "if", "Path", "(", "items", "[", "chunk", "[", "0", "]", "]", ")", ".", "is_file", "(", ")", "and", "Path", "(", "items", "[", "chunk", "[", "1", "]", "]", ")", ".", "is_file", "(", ")", "]", "return", "[", "(", "dataset", ".", "x", "[", "i", "]", ".", "_repr_jpeg_", "(", ")", ",", "items", "[", "i", "]", ",", "self", ".", "_labels", "[", "dataset", ".", "y", "[", "i", "]", ".", "data", "]", ")", "for", "chunk", "in", "chunked_idxs", "for", "i", "in", "chunk", "]", "else", ":", "return", "[", "(", "dataset", ".", "x", "[", "i", "]", ".", "_repr_jpeg_", "(", ")", ",", "items", "[", "i", "]", ",", "self", ".", "_labels", "[", "dataset", ".", "y", "[", "i", "]", ".", "data", "]", ")", "for", "i", "in", "fns_idxs", "if", "Path", "(", "items", "[", "i", "]", ")", ".", "is_file", "(", ")", "]" ]
Create a list of images, filenames and labels but first removing files that are not supposed to be displayed.
[ "Create", "a", "list", "of", "images", "filenames", "and", "labels", "but", "first", "removing", "files", "that", "are", "not", "supposed", "to", "be", "displayed", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_cleaner.py#L147-L156
20,660
fastai/fastai
fastai/widgets/image_cleaner.py
ImageCleaner.relabel
def relabel(self, change): "Relabel images by moving from parent dir with old label `class_old` to parent dir with new label `class_new`." class_new,class_old,file_path = change.new,change.old,change.owner.file_path fp = Path(file_path) parent = fp.parents[1] self._csv_dict[fp] = class_new
python
def relabel(self, change): "Relabel images by moving from parent dir with old label `class_old` to parent dir with new label `class_new`." class_new,class_old,file_path = change.new,change.old,change.owner.file_path fp = Path(file_path) parent = fp.parents[1] self._csv_dict[fp] = class_new
[ "def", "relabel", "(", "self", ",", "change", ")", ":", "class_new", ",", "class_old", ",", "file_path", "=", "change", ".", "new", ",", "change", ".", "old", ",", "change", ".", "owner", ".", "file_path", "fp", "=", "Path", "(", "file_path", ")", "parent", "=", "fp", ".", "parents", "[", "1", "]", "self", ".", "_csv_dict", "[", "fp", "]", "=", "class_new" ]
Relabel images by moving from parent dir with old label `class_old` to parent dir with new label `class_new`.
[ "Relabel", "images", "by", "moving", "from", "parent", "dir", "with", "old", "label", "class_old", "to", "parent", "dir", "with", "new", "label", "class_new", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_cleaner.py#L158-L163
20,661
fastai/fastai
fastai/widgets/image_cleaner.py
ImageCleaner.next_batch
def next_batch(self, _): "Handler for 'Next Batch' button click. Delete all flagged images and renders next batch." for img_widget, delete_btn, fp, in self._batch: fp = delete_btn.file_path if (delete_btn.flagged_for_delete == True): self.delete_image(fp) self._deleted_fns.append(fp) self._all_images = self._all_images[self._batch_size:] self.empty_batch() self.render()
python
def next_batch(self, _): "Handler for 'Next Batch' button click. Delete all flagged images and renders next batch." for img_widget, delete_btn, fp, in self._batch: fp = delete_btn.file_path if (delete_btn.flagged_for_delete == True): self.delete_image(fp) self._deleted_fns.append(fp) self._all_images = self._all_images[self._batch_size:] self.empty_batch() self.render()
[ "def", "next_batch", "(", "self", ",", "_", ")", ":", "for", "img_widget", ",", "delete_btn", ",", "fp", ",", "in", "self", ".", "_batch", ":", "fp", "=", "delete_btn", ".", "file_path", "if", "(", "delete_btn", ".", "flagged_for_delete", "==", "True", ")", ":", "self", ".", "delete_image", "(", "fp", ")", "self", ".", "_deleted_fns", ".", "append", "(", "fp", ")", "self", ".", "_all_images", "=", "self", ".", "_all_images", "[", "self", ".", "_batch_size", ":", "]", "self", ".", "empty_batch", "(", ")", "self", ".", "render", "(", ")" ]
Handler for 'Next Batch' button click. Delete all flagged images and renders next batch.
[ "Handler", "for", "Next", "Batch", "button", "click", ".", "Delete", "all", "flagged", "images", "and", "renders", "next", "batch", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_cleaner.py#L165-L174
20,662
fastai/fastai
fastai/widgets/image_cleaner.py
ImageCleaner.on_delete
def on_delete(self, btn): "Flag this image as delete or keep." btn.button_style = "" if btn.flagged_for_delete else "danger" btn.flagged_for_delete = not btn.flagged_for_delete
python
def on_delete(self, btn): "Flag this image as delete or keep." btn.button_style = "" if btn.flagged_for_delete else "danger" btn.flagged_for_delete = not btn.flagged_for_delete
[ "def", "on_delete", "(", "self", ",", "btn", ")", ":", "btn", ".", "button_style", "=", "\"\"", "if", "btn", ".", "flagged_for_delete", "else", "\"danger\"", "btn", ".", "flagged_for_delete", "=", "not", "btn", ".", "flagged_for_delete" ]
Flag this image as delete or keep.
[ "Flag", "this", "image", "as", "delete", "or", "keep", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_cleaner.py#L176-L179
20,663
fastai/fastai
fastai/widgets/image_cleaner.py
ImageCleaner.get_widgets
def get_widgets(self, duplicates): "Create and format widget set." widgets = [] for (img,fp,human_readable_label) in self._all_images[:self._batch_size]: img_widget = self.make_img_widget(img, layout=Layout(height='250px', width='300px')) dropdown = self.make_dropdown_widget(description='', options=self._labels, value=human_readable_label, file_path=fp, handler=self.relabel, layout=Layout(width='auto')) delete_btn = self.make_button_widget('Delete', file_path=fp, handler=self.on_delete) widgets.append(self.make_vertical_box([img_widget, dropdown, delete_btn], layout=Layout(width='auto', height='300px', overflow_x="hidden"), duplicates=duplicates)) self._batch.append((img_widget, delete_btn, fp)) return widgets
python
def get_widgets(self, duplicates): "Create and format widget set." widgets = [] for (img,fp,human_readable_label) in self._all_images[:self._batch_size]: img_widget = self.make_img_widget(img, layout=Layout(height='250px', width='300px')) dropdown = self.make_dropdown_widget(description='', options=self._labels, value=human_readable_label, file_path=fp, handler=self.relabel, layout=Layout(width='auto')) delete_btn = self.make_button_widget('Delete', file_path=fp, handler=self.on_delete) widgets.append(self.make_vertical_box([img_widget, dropdown, delete_btn], layout=Layout(width='auto', height='300px', overflow_x="hidden"), duplicates=duplicates)) self._batch.append((img_widget, delete_btn, fp)) return widgets
[ "def", "get_widgets", "(", "self", ",", "duplicates", ")", ":", "widgets", "=", "[", "]", "for", "(", "img", ",", "fp", ",", "human_readable_label", ")", "in", "self", ".", "_all_images", "[", ":", "self", ".", "_batch_size", "]", ":", "img_widget", "=", "self", ".", "make_img_widget", "(", "img", ",", "layout", "=", "Layout", "(", "height", "=", "'250px'", ",", "width", "=", "'300px'", ")", ")", "dropdown", "=", "self", ".", "make_dropdown_widget", "(", "description", "=", "''", ",", "options", "=", "self", ".", "_labels", ",", "value", "=", "human_readable_label", ",", "file_path", "=", "fp", ",", "handler", "=", "self", ".", "relabel", ",", "layout", "=", "Layout", "(", "width", "=", "'auto'", ")", ")", "delete_btn", "=", "self", ".", "make_button_widget", "(", "'Delete'", ",", "file_path", "=", "fp", ",", "handler", "=", "self", ".", "on_delete", ")", "widgets", ".", "append", "(", "self", ".", "make_vertical_box", "(", "[", "img_widget", ",", "dropdown", ",", "delete_btn", "]", ",", "layout", "=", "Layout", "(", "width", "=", "'auto'", ",", "height", "=", "'300px'", ",", "overflow_x", "=", "\"hidden\"", ")", ",", "duplicates", "=", "duplicates", ")", ")", "self", ".", "_batch", ".", "append", "(", "(", "img_widget", ",", "delete_btn", ",", "fp", ")", ")", "return", "widgets" ]
Create and format widget set.
[ "Create", "and", "format", "widget", "set", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_cleaner.py#L189-L201
20,664
fastai/fastai
fastai/widgets/image_cleaner.py
ImageCleaner.batch_contains_deleted
def batch_contains_deleted(self): "Check if current batch contains already deleted images." if not self._duplicates: return False imgs = [self._all_images[:self._batch_size][0][1], self._all_images[:self._batch_size][1][1]] return any(img in self._deleted_fns for img in imgs)
python
def batch_contains_deleted(self): "Check if current batch contains already deleted images." if not self._duplicates: return False imgs = [self._all_images[:self._batch_size][0][1], self._all_images[:self._batch_size][1][1]] return any(img in self._deleted_fns for img in imgs)
[ "def", "batch_contains_deleted", "(", "self", ")", ":", "if", "not", "self", ".", "_duplicates", ":", "return", "False", "imgs", "=", "[", "self", ".", "_all_images", "[", ":", "self", ".", "_batch_size", "]", "[", "0", "]", "[", "1", "]", ",", "self", ".", "_all_images", "[", ":", "self", ".", "_batch_size", "]", "[", "1", "]", "[", "1", "]", "]", "return", "any", "(", "img", "in", "self", ".", "_deleted_fns", "for", "img", "in", "imgs", ")" ]
Check if current batch contains already deleted images.
[ "Check", "if", "current", "batch", "contains", "already", "deleted", "images", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_cleaner.py#L203-L207
20,665
fastai/fastai
fastai/widgets/image_cleaner.py
ImageCleaner.render
def render(self): "Re-render Jupyter cell for batch of images." clear_output() self.write_csv() if self.empty() and self._skipped>0: return display(f'No images to show :). {self._skipped} pairs were ' f'skipped since at least one of the images was deleted by the user.') elif self.empty(): return display('No images to show :)') if self.batch_contains_deleted(): self.next_batch(None) self._skipped += 1 else: display(self.make_horizontal_box(self.get_widgets(self._duplicates))) display(self.make_button_widget('Next Batch', handler=self.next_batch, style="primary"))
python
def render(self): "Re-render Jupyter cell for batch of images." clear_output() self.write_csv() if self.empty() and self._skipped>0: return display(f'No images to show :). {self._skipped} pairs were ' f'skipped since at least one of the images was deleted by the user.') elif self.empty(): return display('No images to show :)') if self.batch_contains_deleted(): self.next_batch(None) self._skipped += 1 else: display(self.make_horizontal_box(self.get_widgets(self._duplicates))) display(self.make_button_widget('Next Batch', handler=self.next_batch, style="primary"))
[ "def", "render", "(", "self", ")", ":", "clear_output", "(", ")", "self", ".", "write_csv", "(", ")", "if", "self", ".", "empty", "(", ")", "and", "self", ".", "_skipped", ">", "0", ":", "return", "display", "(", "f'No images to show :). {self._skipped} pairs were '", "f'skipped since at least one of the images was deleted by the user.'", ")", "elif", "self", ".", "empty", "(", ")", ":", "return", "display", "(", "'No images to show :)'", ")", "if", "self", ".", "batch_contains_deleted", "(", ")", ":", "self", ".", "next_batch", "(", "None", ")", "self", ".", "_skipped", "+=", "1", "else", ":", "display", "(", "self", ".", "make_horizontal_box", "(", "self", ".", "get_widgets", "(", "self", ".", "_duplicates", ")", ")", ")", "display", "(", "self", ".", "make_button_widget", "(", "'Next Batch'", ",", "handler", "=", "self", ".", "next_batch", ",", "style", "=", "\"primary\"", ")", ")" ]
Re-render Jupyter cell for batch of images.
[ "Re", "-", "render", "Jupyter", "cell", "for", "batch", "of", "images", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/widgets/image_cleaner.py#L220-L234
20,666
fastai/fastai
fastai/text/models/transformer.py
_line_shift
def _line_shift(x:Tensor, mask:bool=False): "Shift the line i of `x` by p-i elements to the left, is `mask` puts 0s on the diagonal." bs,nh,n,p = x.size() x_pad = torch.cat([x.new_zeros(bs,nh,n,1), x], dim=3) x_shift = x_pad.view(bs,nh,p + 1,n)[:,:,1:].view_as(x) if mask: x_shift.mul_(torch.tril(x.new_ones(n,p), p-n)[None,None,]) return x_shift
python
def _line_shift(x:Tensor, mask:bool=False): "Shift the line i of `x` by p-i elements to the left, is `mask` puts 0s on the diagonal." bs,nh,n,p = x.size() x_pad = torch.cat([x.new_zeros(bs,nh,n,1), x], dim=3) x_shift = x_pad.view(bs,nh,p + 1,n)[:,:,1:].view_as(x) if mask: x_shift.mul_(torch.tril(x.new_ones(n,p), p-n)[None,None,]) return x_shift
[ "def", "_line_shift", "(", "x", ":", "Tensor", ",", "mask", ":", "bool", "=", "False", ")", ":", "bs", ",", "nh", ",", "n", ",", "p", "=", "x", ".", "size", "(", ")", "x_pad", "=", "torch", ".", "cat", "(", "[", "x", ".", "new_zeros", "(", "bs", ",", "nh", ",", "n", ",", "1", ")", ",", "x", "]", ",", "dim", "=", "3", ")", "x_shift", "=", "x_pad", ".", "view", "(", "bs", ",", "nh", ",", "p", "+", "1", ",", "n", ")", "[", ":", ",", ":", ",", "1", ":", "]", ".", "view_as", "(", "x", ")", "if", "mask", ":", "x_shift", ".", "mul_", "(", "torch", ".", "tril", "(", "x", ".", "new_ones", "(", "n", ",", "p", ")", ",", "p", "-", "n", ")", "[", "None", ",", "None", ",", "]", ")", "return", "x_shift" ]
Shift the line i of `x` by p-i elements to the left, is `mask` puts 0s on the diagonal.
[ "Shift", "the", "line", "i", "of", "x", "by", "p", "-", "i", "elements", "to", "the", "left", "is", "mask", "puts", "0s", "on", "the", "diagonal", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/text/models/transformer.py#L85-L91
20,667
fastai/fastai
fastai/text/models/transformer.py
TransformerXL.reset
def reset(self): "Reset the internal memory." self.hidden = [next(self.parameters()).data.new(0) for i in range(self.n_layers+1)]
python
def reset(self): "Reset the internal memory." self.hidden = [next(self.parameters()).data.new(0) for i in range(self.n_layers+1)]
[ "def", "reset", "(", "self", ")", ":", "self", ".", "hidden", "=", "[", "next", "(", "self", ".", "parameters", "(", ")", ")", ".", "data", ".", "new", "(", "0", ")", "for", "i", "in", "range", "(", "self", ".", "n_layers", "+", "1", ")", "]" ]
Reset the internal memory.
[ "Reset", "the", "internal", "memory", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/text/models/transformer.py#L198-L200
20,668
fastai/fastai
docs_src/nbval/nbdime_reporter.py
NbdimeReporter.make_report
def make_report(self, outcome): """Make report in form of two notebooks. Use nbdime diff-web to present the difference between reference cells and test cells. """ failures = self.getreports('failed') if not failures: return for rep in failures: # Check if this is a notebook node msg = self._getfailureheadline(rep) lines = rep.longrepr.splitlines() if len(lines) > 1: self.section(msg, lines[1]) self._outrep_summary(rep) tmpdir = tempfile.mkdtemp() try: ref_file = os.path.join(tmpdir, 'reference.ipynb') test_file = os.path.join(tmpdir, 'test_result.ipynb') with io.open(ref_file, "w", encoding="utf8") as f: nbformat.write(self.nb_ref, f) with io.open(test_file, "w", encoding="utf8") as f: nbformat.write(self.nb_test, f) run_server( port=0, # Run on random port cwd=tmpdir, closable=True, on_port=lambda port: browse( port, ref_file, test_file, None)) finally: shutil.rmtree(tmpdir)
python
def make_report(self, outcome): """Make report in form of two notebooks. Use nbdime diff-web to present the difference between reference cells and test cells. """ failures = self.getreports('failed') if not failures: return for rep in failures: # Check if this is a notebook node msg = self._getfailureheadline(rep) lines = rep.longrepr.splitlines() if len(lines) > 1: self.section(msg, lines[1]) self._outrep_summary(rep) tmpdir = tempfile.mkdtemp() try: ref_file = os.path.join(tmpdir, 'reference.ipynb') test_file = os.path.join(tmpdir, 'test_result.ipynb') with io.open(ref_file, "w", encoding="utf8") as f: nbformat.write(self.nb_ref, f) with io.open(test_file, "w", encoding="utf8") as f: nbformat.write(self.nb_test, f) run_server( port=0, # Run on random port cwd=tmpdir, closable=True, on_port=lambda port: browse( port, ref_file, test_file, None)) finally: shutil.rmtree(tmpdir)
[ "def", "make_report", "(", "self", ",", "outcome", ")", ":", "failures", "=", "self", ".", "getreports", "(", "'failed'", ")", "if", "not", "failures", ":", "return", "for", "rep", "in", "failures", ":", "# Check if this is a notebook node", "msg", "=", "self", ".", "_getfailureheadline", "(", "rep", ")", "lines", "=", "rep", ".", "longrepr", ".", "splitlines", "(", ")", "if", "len", "(", "lines", ")", ">", "1", ":", "self", ".", "section", "(", "msg", ",", "lines", "[", "1", "]", ")", "self", ".", "_outrep_summary", "(", "rep", ")", "tmpdir", "=", "tempfile", ".", "mkdtemp", "(", ")", "try", ":", "ref_file", "=", "os", ".", "path", ".", "join", "(", "tmpdir", ",", "'reference.ipynb'", ")", "test_file", "=", "os", ".", "path", ".", "join", "(", "tmpdir", ",", "'test_result.ipynb'", ")", "with", "io", ".", "open", "(", "ref_file", ",", "\"w\"", ",", "encoding", "=", "\"utf8\"", ")", "as", "f", ":", "nbformat", ".", "write", "(", "self", ".", "nb_ref", ",", "f", ")", "with", "io", ".", "open", "(", "test_file", ",", "\"w\"", ",", "encoding", "=", "\"utf8\"", ")", "as", "f", ":", "nbformat", ".", "write", "(", "self", ".", "nb_test", ",", "f", ")", "run_server", "(", "port", "=", "0", ",", "# Run on random port", "cwd", "=", "tmpdir", ",", "closable", "=", "True", ",", "on_port", "=", "lambda", "port", ":", "browse", "(", "port", ",", "ref_file", ",", "test_file", ",", "None", ")", ")", "finally", ":", "shutil", ".", "rmtree", "(", "tmpdir", ")" ]
Make report in form of two notebooks. Use nbdime diff-web to present the difference between reference cells and test cells.
[ "Make", "report", "in", "form", "of", "two", "notebooks", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/docs_src/nbval/nbdime_reporter.py#L76-L107
20,669
fastai/fastai
old/fastai/fp16.py
batchnorm_to_fp32
def batchnorm_to_fp32(module): ''' BatchNorm layers to have parameters in single precision. Find all layers and convert them back to float. This can't be done with built in .apply as that function will apply fn to all modules, parameters, and buffers. Thus we wouldn't be able to guard the float conversion based on the module type. ''' if isinstance(module, nn.modules.batchnorm._BatchNorm): module.float() for child in module.children(): batchnorm_to_fp32(child) return module
python
def batchnorm_to_fp32(module): ''' BatchNorm layers to have parameters in single precision. Find all layers and convert them back to float. This can't be done with built in .apply as that function will apply fn to all modules, parameters, and buffers. Thus we wouldn't be able to guard the float conversion based on the module type. ''' if isinstance(module, nn.modules.batchnorm._BatchNorm): module.float() for child in module.children(): batchnorm_to_fp32(child) return module
[ "def", "batchnorm_to_fp32", "(", "module", ")", ":", "if", "isinstance", "(", "module", ",", "nn", ".", "modules", ".", "batchnorm", ".", "_BatchNorm", ")", ":", "module", ".", "float", "(", ")", "for", "child", "in", "module", ".", "children", "(", ")", ":", "batchnorm_to_fp32", "(", "child", ")", "return", "module" ]
BatchNorm layers to have parameters in single precision. Find all layers and convert them back to float. This can't be done with built in .apply as that function will apply fn to all modules, parameters, and buffers. Thus we wouldn't be able to guard the float conversion based on the module type.
[ "BatchNorm", "layers", "to", "have", "parameters", "in", "single", "precision", ".", "Find", "all", "layers", "and", "convert", "them", "back", "to", "float", ".", "This", "can", "t", "be", "done", "with", "built", "in", ".", "apply", "as", "that", "function", "will", "apply", "fn", "to", "all", "modules", "parameters", "and", "buffers", ".", "Thus", "we", "wouldn", "t", "be", "able", "to", "guard", "the", "float", "conversion", "based", "on", "the", "module", "type", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/old/fastai/fp16.py#L31-L43
20,670
fastai/fastai
old/fastai/fp16.py
copy_model_to_fp32
def copy_model_to_fp32(m, optim): """ Creates a fp32 copy of model parameters and sets optimizer parameters """ fp32_params = [m_param.clone().type(torch.cuda.FloatTensor).detach() for m_param in trainable_params_(m)] optim_groups = [group['params'] for group in optim.param_groups] iter_fp32_params = iter(fp32_params) for group_params in optim_groups: for i in range(len(group_params)): if not group_params[i].requires_grad: continue # only update trainable_params_ fp32_param = next(iter_fp32_params) assert(fp32_param.shape == group_params[i].shape) fp32_param.requires_grad = group_params[i].requires_grad group_params[i] = fp32_param return fp32_params
python
def copy_model_to_fp32(m, optim): """ Creates a fp32 copy of model parameters and sets optimizer parameters """ fp32_params = [m_param.clone().type(torch.cuda.FloatTensor).detach() for m_param in trainable_params_(m)] optim_groups = [group['params'] for group in optim.param_groups] iter_fp32_params = iter(fp32_params) for group_params in optim_groups: for i in range(len(group_params)): if not group_params[i].requires_grad: continue # only update trainable_params_ fp32_param = next(iter_fp32_params) assert(fp32_param.shape == group_params[i].shape) fp32_param.requires_grad = group_params[i].requires_grad group_params[i] = fp32_param return fp32_params
[ "def", "copy_model_to_fp32", "(", "m", ",", "optim", ")", ":", "fp32_params", "=", "[", "m_param", ".", "clone", "(", ")", ".", "type", "(", "torch", ".", "cuda", ".", "FloatTensor", ")", ".", "detach", "(", ")", "for", "m_param", "in", "trainable_params_", "(", "m", ")", "]", "optim_groups", "=", "[", "group", "[", "'params'", "]", "for", "group", "in", "optim", ".", "param_groups", "]", "iter_fp32_params", "=", "iter", "(", "fp32_params", ")", "for", "group_params", "in", "optim_groups", ":", "for", "i", "in", "range", "(", "len", "(", "group_params", ")", ")", ":", "if", "not", "group_params", "[", "i", "]", ".", "requires_grad", ":", "continue", "# only update trainable_params_", "fp32_param", "=", "next", "(", "iter_fp32_params", ")", "assert", "(", "fp32_param", ".", "shape", "==", "group_params", "[", "i", "]", ".", "shape", ")", "fp32_param", ".", "requires_grad", "=", "group_params", "[", "i", "]", ".", "requires_grad", "group_params", "[", "i", "]", "=", "fp32_param", "return", "fp32_params" ]
Creates a fp32 copy of model parameters and sets optimizer parameters
[ "Creates", "a", "fp32", "copy", "of", "model", "parameters", "and", "sets", "optimizer", "parameters" ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/old/fastai/fp16.py#L45-L58
20,671
fastai/fastai
docs_src/nbval/cover.py
setup_coverage
def setup_coverage(config, kernel, floc, output_loc=None): """Start coverage reporting in kernel. Currently supported kernel languages are: - Python """ language = kernel.language if language.startswith('python'): # Get the pytest-cov coverage object cov = get_cov(config) if cov: # If present, copy the data file location used by pytest-cov data_file = os.path.abspath(cov.config.data_file) else: # Fall back on output_loc and current dir if not data_file = os.path.abspath(os.path.join(output_loc or os.getcwd(), '.coverage')) # Get options from pytest-cov's command line arguments: source = config.option.cov_source config_file = config.option.cov_config if isinstance(config_file, str) and os.path.isfile(config_file): config_file = os.path.abspath(config_file) # Copy the suffix of plugin if available suffix = _make_suffix(cov) if suffix is True: # Cannot merge data with autogen suffix, so turn off warning # for missing data in pytest-cov collector cov._warn_no_data = False # Build setup command and execute in kernel: cmd = _python_setup % (data_file, source, config_file, suffix) msg_id = kernel.kc.execute(cmd, stop_on_error=False) kernel.await_idle(msg_id, 60) # A minute should be plenty to enable coverage else: config.warn( 'C1', 'Coverage currently not supported for language "%s".' % language, floc) return
python
def setup_coverage(config, kernel, floc, output_loc=None): """Start coverage reporting in kernel. Currently supported kernel languages are: - Python """ language = kernel.language if language.startswith('python'): # Get the pytest-cov coverage object cov = get_cov(config) if cov: # If present, copy the data file location used by pytest-cov data_file = os.path.abspath(cov.config.data_file) else: # Fall back on output_loc and current dir if not data_file = os.path.abspath(os.path.join(output_loc or os.getcwd(), '.coverage')) # Get options from pytest-cov's command line arguments: source = config.option.cov_source config_file = config.option.cov_config if isinstance(config_file, str) and os.path.isfile(config_file): config_file = os.path.abspath(config_file) # Copy the suffix of plugin if available suffix = _make_suffix(cov) if suffix is True: # Cannot merge data with autogen suffix, so turn off warning # for missing data in pytest-cov collector cov._warn_no_data = False # Build setup command and execute in kernel: cmd = _python_setup % (data_file, source, config_file, suffix) msg_id = kernel.kc.execute(cmd, stop_on_error=False) kernel.await_idle(msg_id, 60) # A minute should be plenty to enable coverage else: config.warn( 'C1', 'Coverage currently not supported for language "%s".' % language, floc) return
[ "def", "setup_coverage", "(", "config", ",", "kernel", ",", "floc", ",", "output_loc", "=", "None", ")", ":", "language", "=", "kernel", ".", "language", "if", "language", ".", "startswith", "(", "'python'", ")", ":", "# Get the pytest-cov coverage object", "cov", "=", "get_cov", "(", "config", ")", "if", "cov", ":", "# If present, copy the data file location used by pytest-cov", "data_file", "=", "os", ".", "path", ".", "abspath", "(", "cov", ".", "config", ".", "data_file", ")", "else", ":", "# Fall back on output_loc and current dir if not", "data_file", "=", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "join", "(", "output_loc", "or", "os", ".", "getcwd", "(", ")", ",", "'.coverage'", ")", ")", "# Get options from pytest-cov's command line arguments:", "source", "=", "config", ".", "option", ".", "cov_source", "config_file", "=", "config", ".", "option", ".", "cov_config", "if", "isinstance", "(", "config_file", ",", "str", ")", "and", "os", ".", "path", ".", "isfile", "(", "config_file", ")", ":", "config_file", "=", "os", ".", "path", ".", "abspath", "(", "config_file", ")", "# Copy the suffix of plugin if available", "suffix", "=", "_make_suffix", "(", "cov", ")", "if", "suffix", "is", "True", ":", "# Cannot merge data with autogen suffix, so turn off warning", "# for missing data in pytest-cov collector", "cov", ".", "_warn_no_data", "=", "False", "# Build setup command and execute in kernel:", "cmd", "=", "_python_setup", "%", "(", "data_file", ",", "source", ",", "config_file", ",", "suffix", ")", "msg_id", "=", "kernel", ".", "kc", ".", "execute", "(", "cmd", ",", "stop_on_error", "=", "False", ")", "kernel", ".", "await_idle", "(", "msg_id", ",", "60", ")", "# A minute should be plenty to enable coverage", "else", ":", "config", ".", "warn", "(", "'C1'", ",", "'Coverage currently not supported for language \"%s\".'", "%", "language", ",", "floc", ")", "return" ]
Start coverage reporting in kernel. Currently supported kernel languages are: - Python
[ "Start", "coverage", "reporting", "in", "kernel", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/docs_src/nbval/cover.py#L33-L73
20,672
fastai/fastai
docs_src/nbval/cover.py
teardown_coverage
def teardown_coverage(config, kernel, output_loc=None): """Finish coverage reporting in kernel. The coverage should previously have been started with setup_coverage. """ language = kernel.language if language.startswith('python'): # Teardown code does not require any input, simply execute: msg_id = kernel.kc.execute(_python_teardown) kernel.await_idle(msg_id, 60) # A minute should be plenty to write out coverage # Ensure we merge our data into parent data of pytest-cov, if possible cov = get_cov(config) _merge_nbval_coverage_data(cov) else: # Warnings should be given on setup, or there might be no teardown # for a specific language, so do nothing here pass
python
def teardown_coverage(config, kernel, output_loc=None): """Finish coverage reporting in kernel. The coverage should previously have been started with setup_coverage. """ language = kernel.language if language.startswith('python'): # Teardown code does not require any input, simply execute: msg_id = kernel.kc.execute(_python_teardown) kernel.await_idle(msg_id, 60) # A minute should be plenty to write out coverage # Ensure we merge our data into parent data of pytest-cov, if possible cov = get_cov(config) _merge_nbval_coverage_data(cov) else: # Warnings should be given on setup, or there might be no teardown # for a specific language, so do nothing here pass
[ "def", "teardown_coverage", "(", "config", ",", "kernel", ",", "output_loc", "=", "None", ")", ":", "language", "=", "kernel", ".", "language", "if", "language", ".", "startswith", "(", "'python'", ")", ":", "# Teardown code does not require any input, simply execute:", "msg_id", "=", "kernel", ".", "kc", ".", "execute", "(", "_python_teardown", ")", "kernel", ".", "await_idle", "(", "msg_id", ",", "60", ")", "# A minute should be plenty to write out coverage", "# Ensure we merge our data into parent data of pytest-cov, if possible", "cov", "=", "get_cov", "(", "config", ")", "_merge_nbval_coverage_data", "(", "cov", ")", "else", ":", "# Warnings should be given on setup, or there might be no teardown", "# for a specific language, so do nothing here", "pass" ]
Finish coverage reporting in kernel. The coverage should previously have been started with setup_coverage.
[ "Finish", "coverage", "reporting", "in", "kernel", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/docs_src/nbval/cover.py#L76-L95
20,673
fastai/fastai
docs_src/nbval/cover.py
get_cov
def get_cov(config): """Returns the coverage object of pytest-cov.""" # Check with hasplugin to avoid getplugin exception in older pytest. if config.pluginmanager.hasplugin('_cov'): plugin = config.pluginmanager.getplugin('_cov') if plugin.cov_controller: return plugin.cov_controller.cov return None
python
def get_cov(config): """Returns the coverage object of pytest-cov.""" # Check with hasplugin to avoid getplugin exception in older pytest. if config.pluginmanager.hasplugin('_cov'): plugin = config.pluginmanager.getplugin('_cov') if plugin.cov_controller: return plugin.cov_controller.cov return None
[ "def", "get_cov", "(", "config", ")", ":", "# Check with hasplugin to avoid getplugin exception in older pytest.", "if", "config", ".", "pluginmanager", ".", "hasplugin", "(", "'_cov'", ")", ":", "plugin", "=", "config", ".", "pluginmanager", ".", "getplugin", "(", "'_cov'", ")", "if", "plugin", ".", "cov_controller", ":", "return", "plugin", ".", "cov_controller", ".", "cov", "return", "None" ]
Returns the coverage object of pytest-cov.
[ "Returns", "the", "coverage", "object", "of", "pytest", "-", "cov", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/docs_src/nbval/cover.py#L98-L106
20,674
fastai/fastai
docs_src/nbval/cover.py
_make_suffix
def _make_suffix(cov): """Create a suffix for nbval data file depending on pytest-cov config.""" # Check if coverage object has data_suffix: if cov and cov.data_suffix is not None: # If True, the suffix will be autogenerated by coverage.py. # The suffixed data files will be automatically combined later. if cov.data_suffix is True: return True # Has a suffix, but we add our own extension return cov.data_suffix + '.nbval' return 'nbval'
python
def _make_suffix(cov): """Create a suffix for nbval data file depending on pytest-cov config.""" # Check if coverage object has data_suffix: if cov and cov.data_suffix is not None: # If True, the suffix will be autogenerated by coverage.py. # The suffixed data files will be automatically combined later. if cov.data_suffix is True: return True # Has a suffix, but we add our own extension return cov.data_suffix + '.nbval' return 'nbval'
[ "def", "_make_suffix", "(", "cov", ")", ":", "# Check if coverage object has data_suffix:", "if", "cov", "and", "cov", ".", "data_suffix", "is", "not", "None", ":", "# If True, the suffix will be autogenerated by coverage.py.", "# The suffixed data files will be automatically combined later.", "if", "cov", ".", "data_suffix", "is", "True", ":", "return", "True", "# Has a suffix, but we add our own extension", "return", "cov", ".", "data_suffix", "+", "'.nbval'", "return", "'nbval'" ]
Create a suffix for nbval data file depending on pytest-cov config.
[ "Create", "a", "suffix", "for", "nbval", "data", "file", "depending", "on", "pytest", "-", "cov", "config", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/docs_src/nbval/cover.py#L109-L119
20,675
fastai/fastai
docs_src/nbval/cover.py
_merge_nbval_coverage_data
def _merge_nbval_coverage_data(cov): """Merge nbval coverage data into pytest-cov data.""" if not cov: return suffix = _make_suffix(cov) if suffix is True: # Note: If suffix is true, we are running in parallel, so several # files will be generated. This will cause some warnings about "no coverage" # but is otherwise OK. Do nothing. return # Get the filename of the nbval coverage: filename = cov.data_files.filename + '.' + suffix # Read coverage generated by nbval in this run: nbval_data = coverage.CoverageData(debug=cov.debug) try: nbval_data.read_file(os.path.abspath(filename)) except coverage.CoverageException: return # Set up aliases (following internal coverage.py code here) aliases = None if cov.config.paths: aliases = coverage.files.PathAliases() for paths in cov.config.paths.values(): result = paths[0] for pattern in paths[1:]: aliases.add(pattern, result) # Merge nbval data into pytest-cov data: cov.data.update(nbval_data, aliases=aliases) # Delete our nbval coverage data coverage.misc.file_be_gone(filename)
python
def _merge_nbval_coverage_data(cov): """Merge nbval coverage data into pytest-cov data.""" if not cov: return suffix = _make_suffix(cov) if suffix is True: # Note: If suffix is true, we are running in parallel, so several # files will be generated. This will cause some warnings about "no coverage" # but is otherwise OK. Do nothing. return # Get the filename of the nbval coverage: filename = cov.data_files.filename + '.' + suffix # Read coverage generated by nbval in this run: nbval_data = coverage.CoverageData(debug=cov.debug) try: nbval_data.read_file(os.path.abspath(filename)) except coverage.CoverageException: return # Set up aliases (following internal coverage.py code here) aliases = None if cov.config.paths: aliases = coverage.files.PathAliases() for paths in cov.config.paths.values(): result = paths[0] for pattern in paths[1:]: aliases.add(pattern, result) # Merge nbval data into pytest-cov data: cov.data.update(nbval_data, aliases=aliases) # Delete our nbval coverage data coverage.misc.file_be_gone(filename)
[ "def", "_merge_nbval_coverage_data", "(", "cov", ")", ":", "if", "not", "cov", ":", "return", "suffix", "=", "_make_suffix", "(", "cov", ")", "if", "suffix", "is", "True", ":", "# Note: If suffix is true, we are running in parallel, so several", "# files will be generated. This will cause some warnings about \"no coverage\"", "# but is otherwise OK. Do nothing.", "return", "# Get the filename of the nbval coverage:", "filename", "=", "cov", ".", "data_files", ".", "filename", "+", "'.'", "+", "suffix", "# Read coverage generated by nbval in this run:", "nbval_data", "=", "coverage", ".", "CoverageData", "(", "debug", "=", "cov", ".", "debug", ")", "try", ":", "nbval_data", ".", "read_file", "(", "os", ".", "path", ".", "abspath", "(", "filename", ")", ")", "except", "coverage", ".", "CoverageException", ":", "return", "# Set up aliases (following internal coverage.py code here)", "aliases", "=", "None", "if", "cov", ".", "config", ".", "paths", ":", "aliases", "=", "coverage", ".", "files", ".", "PathAliases", "(", ")", "for", "paths", "in", "cov", ".", "config", ".", "paths", ".", "values", "(", ")", ":", "result", "=", "paths", "[", "0", "]", "for", "pattern", "in", "paths", "[", "1", ":", "]", ":", "aliases", ".", "add", "(", "pattern", ",", "result", ")", "# Merge nbval data into pytest-cov data:", "cov", ".", "data", ".", "update", "(", "nbval_data", ",", "aliases", "=", "aliases", ")", "# Delete our nbval coverage data", "coverage", ".", "misc", ".", "file_be_gone", "(", "filename", ")" ]
Merge nbval coverage data into pytest-cov data.
[ "Merge", "nbval", "coverage", "data", "into", "pytest", "-", "cov", "data", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/docs_src/nbval/cover.py#L122-L156
20,676
fastai/fastai
fastai/core.py
is1d
def is1d(a:Collection)->bool: "Return `True` if `a` is one-dimensional" return len(a.shape) == 1 if hasattr(a, 'shape') else True
python
def is1d(a:Collection)->bool: "Return `True` if `a` is one-dimensional" return len(a.shape) == 1 if hasattr(a, 'shape') else True
[ "def", "is1d", "(", "a", ":", "Collection", ")", "->", "bool", ":", "return", "len", "(", "a", ".", "shape", ")", "==", "1", "if", "hasattr", "(", "a", ",", "'shape'", ")", "else", "True" ]
Return `True` if `a` is one-dimensional
[ "Return", "True", "if", "a", "is", "one", "-", "dimensional" ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/core.py#L70-L72
20,677
fastai/fastai
fastai/core.py
uniqueify
def uniqueify(x:Series, sort:bool=False)->List: "Return sorted unique values of `x`." res = list(OrderedDict.fromkeys(x).keys()) if sort: res.sort() return res
python
def uniqueify(x:Series, sort:bool=False)->List: "Return sorted unique values of `x`." res = list(OrderedDict.fromkeys(x).keys()) if sort: res.sort() return res
[ "def", "uniqueify", "(", "x", ":", "Series", ",", "sort", ":", "bool", "=", "False", ")", "->", "List", ":", "res", "=", "list", "(", "OrderedDict", ".", "fromkeys", "(", "x", ")", ".", "keys", "(", ")", ")", "if", "sort", ":", "res", ".", "sort", "(", ")", "return", "res" ]
Return sorted unique values of `x`.
[ "Return", "sorted", "unique", "values", "of", "x", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/core.py#L74-L78
20,678
fastai/fastai
fastai/core.py
find_classes
def find_classes(folder:Path)->FilePathList: "List of label subdirectories in imagenet-style `folder`." classes = [d for d in folder.iterdir() if d.is_dir() and not d.name.startswith('.')] assert(len(classes)>0) return sorted(classes, key=lambda d: d.name)
python
def find_classes(folder:Path)->FilePathList: "List of label subdirectories in imagenet-style `folder`." classes = [d for d in folder.iterdir() if d.is_dir() and not d.name.startswith('.')] assert(len(classes)>0) return sorted(classes, key=lambda d: d.name)
[ "def", "find_classes", "(", "folder", ":", "Path", ")", "->", "FilePathList", ":", "classes", "=", "[", "d", "for", "d", "in", "folder", ".", "iterdir", "(", ")", "if", "d", ".", "is_dir", "(", ")", "and", "not", "d", ".", "name", ".", "startswith", "(", "'.'", ")", "]", "assert", "(", "len", "(", "classes", ")", ">", "0", ")", "return", "sorted", "(", "classes", ",", "key", "=", "lambda", "d", ":", "d", ".", "name", ")" ]
List of label subdirectories in imagenet-style `folder`.
[ "List", "of", "label", "subdirectories", "in", "imagenet", "-", "style", "folder", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/core.py#L84-L89
20,679
fastai/fastai
fastai/core.py
random_split
def random_split(valid_pct:float, *arrs:NPArrayableList)->SplitArrayList: "Randomly split `arrs` with `valid_pct` ratio. good for creating validation set." assert (valid_pct>=0 and valid_pct<=1), 'Validation set percentage should be between 0 and 1' is_train = np.random.uniform(size=(len(arrs[0]),)) > valid_pct return arrays_split(is_train, *arrs)
python
def random_split(valid_pct:float, *arrs:NPArrayableList)->SplitArrayList: "Randomly split `arrs` with `valid_pct` ratio. good for creating validation set." assert (valid_pct>=0 and valid_pct<=1), 'Validation set percentage should be between 0 and 1' is_train = np.random.uniform(size=(len(arrs[0]),)) > valid_pct return arrays_split(is_train, *arrs)
[ "def", "random_split", "(", "valid_pct", ":", "float", ",", "*", "arrs", ":", "NPArrayableList", ")", "->", "SplitArrayList", ":", "assert", "(", "valid_pct", ">=", "0", "and", "valid_pct", "<=", "1", ")", ",", "'Validation set percentage should be between 0 and 1'", "is_train", "=", "np", ".", "random", ".", "uniform", "(", "size", "=", "(", "len", "(", "arrs", "[", "0", "]", ")", ",", ")", ")", ">", "valid_pct", "return", "arrays_split", "(", "is_train", ",", "*", "arrs", ")" ]
Randomly split `arrs` with `valid_pct` ratio. good for creating validation set.
[ "Randomly", "split", "arrs", "with", "valid_pct", "ratio", ".", "good", "for", "creating", "validation", "set", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/core.py#L97-L101
20,680
fastai/fastai
fastai/core.py
listify
def listify(p:OptListOrItem=None, q:OptListOrItem=None): "Make `p` listy and the same length as `q`." if p is None: p=[] elif isinstance(p, str): p = [p] elif not isinstance(p, Iterable): p = [p] #Rank 0 tensors in PyTorch are Iterable but don't have a length. else: try: a = len(p) except: p = [p] n = q if type(q)==int else len(p) if q is None else len(q) if len(p)==1: p = p * n assert len(p)==n, f'List len mismatch ({len(p)} vs {n})' return list(p)
python
def listify(p:OptListOrItem=None, q:OptListOrItem=None): "Make `p` listy and the same length as `q`." if p is None: p=[] elif isinstance(p, str): p = [p] elif not isinstance(p, Iterable): p = [p] #Rank 0 tensors in PyTorch are Iterable but don't have a length. else: try: a = len(p) except: p = [p] n = q if type(q)==int else len(p) if q is None else len(q) if len(p)==1: p = p * n assert len(p)==n, f'List len mismatch ({len(p)} vs {n})' return list(p)
[ "def", "listify", "(", "p", ":", "OptListOrItem", "=", "None", ",", "q", ":", "OptListOrItem", "=", "None", ")", ":", "if", "p", "is", "None", ":", "p", "=", "[", "]", "elif", "isinstance", "(", "p", ",", "str", ")", ":", "p", "=", "[", "p", "]", "elif", "not", "isinstance", "(", "p", ",", "Iterable", ")", ":", "p", "=", "[", "p", "]", "#Rank 0 tensors in PyTorch are Iterable but don't have a length.", "else", ":", "try", ":", "a", "=", "len", "(", "p", ")", "except", ":", "p", "=", "[", "p", "]", "n", "=", "q", "if", "type", "(", "q", ")", "==", "int", "else", "len", "(", "p", ")", "if", "q", "is", "None", "else", "len", "(", "q", ")", "if", "len", "(", "p", ")", "==", "1", ":", "p", "=", "p", "*", "n", "assert", "len", "(", "p", ")", "==", "n", ",", "f'List len mismatch ({len(p)} vs {n})'", "return", "list", "(", "p", ")" ]
Make `p` listy and the same length as `q`.
[ "Make", "p", "listy", "and", "the", "same", "length", "as", "q", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/core.py#L103-L115
20,681
fastai/fastai
fastai/core.py
camel2snake
def camel2snake(name:str)->str: "Change `name` from camel to snake style." s1 = re.sub(_camel_re1, r'\1_\2', name) return re.sub(_camel_re2, r'\1_\2', s1).lower()
python
def camel2snake(name:str)->str: "Change `name` from camel to snake style." s1 = re.sub(_camel_re1, r'\1_\2', name) return re.sub(_camel_re2, r'\1_\2', s1).lower()
[ "def", "camel2snake", "(", "name", ":", "str", ")", "->", "str", ":", "s1", "=", "re", ".", "sub", "(", "_camel_re1", ",", "r'\\1_\\2'", ",", "name", ")", "return", "re", ".", "sub", "(", "_camel_re2", ",", "r'\\1_\\2'", ",", "s1", ")", ".", "lower", "(", ")" ]
Change `name` from camel to snake style.
[ "Change", "name", "from", "camel", "to", "snake", "style", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/core.py#L119-L122
20,682
fastai/fastai
fastai/core.py
even_mults
def even_mults(start:float, stop:float, n:int)->np.ndarray: "Build log-stepped array from `start` to `stop` in `n` steps." mult = stop/start step = mult**(1/(n-1)) return np.array([start*(step**i) for i in range(n)])
python
def even_mults(start:float, stop:float, n:int)->np.ndarray: "Build log-stepped array from `start` to `stop` in `n` steps." mult = stop/start step = mult**(1/(n-1)) return np.array([start*(step**i) for i in range(n)])
[ "def", "even_mults", "(", "start", ":", "float", ",", "stop", ":", "float", ",", "n", ":", "int", ")", "->", "np", ".", "ndarray", ":", "mult", "=", "stop", "/", "start", "step", "=", "mult", "**", "(", "1", "/", "(", "n", "-", "1", ")", ")", "return", "np", ".", "array", "(", "[", "start", "*", "(", "step", "**", "i", ")", "for", "i", "in", "range", "(", "n", ")", "]", ")" ]
Build log-stepped array from `start` to `stop` in `n` steps.
[ "Build", "log", "-", "stepped", "array", "from", "start", "to", "stop", "in", "n", "steps", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/core.py#L124-L128
20,683
fastai/fastai
fastai/core.py
extract_kwargs
def extract_kwargs(names:Collection[str], kwargs:KWArgs): "Extract the keys in `names` from the `kwargs`." new_kwargs = {} for arg_name in names: if arg_name in kwargs: arg_val = kwargs.pop(arg_name) new_kwargs[arg_name] = arg_val return new_kwargs, kwargs
python
def extract_kwargs(names:Collection[str], kwargs:KWArgs): "Extract the keys in `names` from the `kwargs`." new_kwargs = {} for arg_name in names: if arg_name in kwargs: arg_val = kwargs.pop(arg_name) new_kwargs[arg_name] = arg_val return new_kwargs, kwargs
[ "def", "extract_kwargs", "(", "names", ":", "Collection", "[", "str", "]", ",", "kwargs", ":", "KWArgs", ")", ":", "new_kwargs", "=", "{", "}", "for", "arg_name", "in", "names", ":", "if", "arg_name", "in", "kwargs", ":", "arg_val", "=", "kwargs", ".", "pop", "(", "arg_name", ")", "new_kwargs", "[", "arg_name", "]", "=", "arg_val", "return", "new_kwargs", ",", "kwargs" ]
Extract the keys in `names` from the `kwargs`.
[ "Extract", "the", "keys", "in", "names", "from", "the", "kwargs", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/core.py#L130-L137
20,684
fastai/fastai
fastai/core.py
partition
def partition(a:Collection, sz:int)->List[Collection]: "Split iterables `a` in equal parts of size `sz`" return [a[i:i+sz] for i in range(0, len(a), sz)]
python
def partition(a:Collection, sz:int)->List[Collection]: "Split iterables `a` in equal parts of size `sz`" return [a[i:i+sz] for i in range(0, len(a), sz)]
[ "def", "partition", "(", "a", ":", "Collection", ",", "sz", ":", "int", ")", "->", "List", "[", "Collection", "]", ":", "return", "[", "a", "[", "i", ":", "i", "+", "sz", "]", "for", "i", "in", "range", "(", "0", ",", "len", "(", "a", ")", ",", "sz", ")", "]" ]
Split iterables `a` in equal parts of size `sz`
[ "Split", "iterables", "a", "in", "equal", "parts", "of", "size", "sz" ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/core.py#L139-L141
20,685
fastai/fastai
fastai/core.py
partition_by_cores
def partition_by_cores(a:Collection, n_cpus:int)->List[Collection]: "Split data in `a` equally among `n_cpus` cores" return partition(a, len(a)//n_cpus + 1)
python
def partition_by_cores(a:Collection, n_cpus:int)->List[Collection]: "Split data in `a` equally among `n_cpus` cores" return partition(a, len(a)//n_cpus + 1)
[ "def", "partition_by_cores", "(", "a", ":", "Collection", ",", "n_cpus", ":", "int", ")", "->", "List", "[", "Collection", "]", ":", "return", "partition", "(", "a", ",", "len", "(", "a", ")", "//", "n_cpus", "+", "1", ")" ]
Split data in `a` equally among `n_cpus` cores
[ "Split", "data", "in", "a", "equally", "among", "n_cpus", "cores" ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/core.py#L143-L145
20,686
fastai/fastai
fastai/core.py
series2cat
def series2cat(df:DataFrame, *col_names): "Categorifies the columns `col_names` in `df`." for c in listify(col_names): df[c] = df[c].astype('category').cat.as_ordered()
python
def series2cat(df:DataFrame, *col_names): "Categorifies the columns `col_names` in `df`." for c in listify(col_names): df[c] = df[c].astype('category').cat.as_ordered()
[ "def", "series2cat", "(", "df", ":", "DataFrame", ",", "*", "col_names", ")", ":", "for", "c", "in", "listify", "(", "col_names", ")", ":", "df", "[", "c", "]", "=", "df", "[", "c", "]", ".", "astype", "(", "'category'", ")", ".", "cat", ".", "as_ordered", "(", ")" ]
Categorifies the columns `col_names` in `df`.
[ "Categorifies", "the", "columns", "col_names", "in", "df", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/core.py#L147-L149
20,687
fastai/fastai
fastai/core.py
download_url
def download_url(url:str, dest:str, overwrite:bool=False, pbar:ProgressBar=None, show_progress=True, chunk_size=1024*1024, timeout=4, retries=5)->None: "Download `url` to `dest` unless it exists and not `overwrite`." if os.path.exists(dest) and not overwrite: return s = requests.Session() s.mount('http://',requests.adapters.HTTPAdapter(max_retries=retries)) u = s.get(url, stream=True, timeout=timeout) try: file_size = int(u.headers["Content-Length"]) except: show_progress = False with open(dest, 'wb') as f: nbytes = 0 if show_progress: pbar = progress_bar(range(file_size), auto_update=False, leave=False, parent=pbar) try: for chunk in u.iter_content(chunk_size=chunk_size): nbytes += len(chunk) if show_progress: pbar.update(nbytes) f.write(chunk) except requests.exceptions.ConnectionError as e: fname = url.split('/')[-1] from fastai.datasets import Config data_dir = Config().data_path() timeout_txt =(f'\n Download of {url} has failed after {retries} retries\n' f' Fix the download manually:\n' f'$ mkdir -p {data_dir}\n' f'$ cd {data_dir}\n' f'$ wget -c {url}\n' f'$ tar -zxvf {fname}\n\n' f'And re-run your code once the download is successful\n') print(timeout_txt) import sys;sys.exit(1)
python
def download_url(url:str, dest:str, overwrite:bool=False, pbar:ProgressBar=None, show_progress=True, chunk_size=1024*1024, timeout=4, retries=5)->None: "Download `url` to `dest` unless it exists and not `overwrite`." if os.path.exists(dest) and not overwrite: return s = requests.Session() s.mount('http://',requests.adapters.HTTPAdapter(max_retries=retries)) u = s.get(url, stream=True, timeout=timeout) try: file_size = int(u.headers["Content-Length"]) except: show_progress = False with open(dest, 'wb') as f: nbytes = 0 if show_progress: pbar = progress_bar(range(file_size), auto_update=False, leave=False, parent=pbar) try: for chunk in u.iter_content(chunk_size=chunk_size): nbytes += len(chunk) if show_progress: pbar.update(nbytes) f.write(chunk) except requests.exceptions.ConnectionError as e: fname = url.split('/')[-1] from fastai.datasets import Config data_dir = Config().data_path() timeout_txt =(f'\n Download of {url} has failed after {retries} retries\n' f' Fix the download manually:\n' f'$ mkdir -p {data_dir}\n' f'$ cd {data_dir}\n' f'$ wget -c {url}\n' f'$ tar -zxvf {fname}\n\n' f'And re-run your code once the download is successful\n') print(timeout_txt) import sys;sys.exit(1)
[ "def", "download_url", "(", "url", ":", "str", ",", "dest", ":", "str", ",", "overwrite", ":", "bool", "=", "False", ",", "pbar", ":", "ProgressBar", "=", "None", ",", "show_progress", "=", "True", ",", "chunk_size", "=", "1024", "*", "1024", ",", "timeout", "=", "4", ",", "retries", "=", "5", ")", "->", "None", ":", "if", "os", ".", "path", ".", "exists", "(", "dest", ")", "and", "not", "overwrite", ":", "return", "s", "=", "requests", ".", "Session", "(", ")", "s", ".", "mount", "(", "'http://'", ",", "requests", ".", "adapters", ".", "HTTPAdapter", "(", "max_retries", "=", "retries", ")", ")", "u", "=", "s", ".", "get", "(", "url", ",", "stream", "=", "True", ",", "timeout", "=", "timeout", ")", "try", ":", "file_size", "=", "int", "(", "u", ".", "headers", "[", "\"Content-Length\"", "]", ")", "except", ":", "show_progress", "=", "False", "with", "open", "(", "dest", ",", "'wb'", ")", "as", "f", ":", "nbytes", "=", "0", "if", "show_progress", ":", "pbar", "=", "progress_bar", "(", "range", "(", "file_size", ")", ",", "auto_update", "=", "False", ",", "leave", "=", "False", ",", "parent", "=", "pbar", ")", "try", ":", "for", "chunk", "in", "u", ".", "iter_content", "(", "chunk_size", "=", "chunk_size", ")", ":", "nbytes", "+=", "len", "(", "chunk", ")", "if", "show_progress", ":", "pbar", ".", "update", "(", "nbytes", ")", "f", ".", "write", "(", "chunk", ")", "except", "requests", ".", "exceptions", ".", "ConnectionError", "as", "e", ":", "fname", "=", "url", ".", "split", "(", "'/'", ")", "[", "-", "1", "]", "from", "fastai", ".", "datasets", "import", "Config", "data_dir", "=", "Config", "(", ")", ".", "data_path", "(", ")", "timeout_txt", "=", "(", "f'\\n Download of {url} has failed after {retries} retries\\n'", "f' Fix the download manually:\\n'", "f'$ mkdir -p {data_dir}\\n'", "f'$ cd {data_dir}\\n'", "f'$ wget -c {url}\\n'", "f'$ tar -zxvf {fname}\\n\\n'", "f'And re-run your code once the download is successful\\n'", ")", "print", "(", "timeout_txt", ")", "import", "sys", "sys", ".", "exit", "(", "1", ")" ]
Download `url` to `dest` unless it exists and not `overwrite`.
[ "Download", "url", "to", "dest", "unless", "it", "exists", "and", "not", "overwrite", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/core.py#L170-L201
20,688
fastai/fastai
fastai/core.py
join_paths
def join_paths(fnames:FilePathList, path:PathOrStr='.')->Collection[Path]: "Join `path` to every file name in `fnames`." path = Path(path) return [join_path(o,path) for o in fnames]
python
def join_paths(fnames:FilePathList, path:PathOrStr='.')->Collection[Path]: "Join `path` to every file name in `fnames`." path = Path(path) return [join_path(o,path) for o in fnames]
[ "def", "join_paths", "(", "fnames", ":", "FilePathList", ",", "path", ":", "PathOrStr", "=", "'.'", ")", "->", "Collection", "[", "Path", "]", ":", "path", "=", "Path", "(", "path", ")", "return", "[", "join_path", "(", "o", ",", "path", ")", "for", "o", "in", "fnames", "]" ]
Join `path` to every file name in `fnames`.
[ "Join", "path", "to", "every", "file", "name", "in", "fnames", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/core.py#L216-L219
20,689
fastai/fastai
fastai/core.py
loadtxt_str
def loadtxt_str(path:PathOrStr)->np.ndarray: "Return `ndarray` of `str` of lines of text from `path`." with open(path, 'r') as f: lines = f.readlines() return np.array([l.strip() for l in lines])
python
def loadtxt_str(path:PathOrStr)->np.ndarray: "Return `ndarray` of `str` of lines of text from `path`." with open(path, 'r') as f: lines = f.readlines() return np.array([l.strip() for l in lines])
[ "def", "loadtxt_str", "(", "path", ":", "PathOrStr", ")", "->", "np", ".", "ndarray", ":", "with", "open", "(", "path", ",", "'r'", ")", "as", "f", ":", "lines", "=", "f", ".", "readlines", "(", ")", "return", "np", ".", "array", "(", "[", "l", ".", "strip", "(", ")", "for", "l", "in", "lines", "]", ")" ]
Return `ndarray` of `str` of lines of text from `path`.
[ "Return", "ndarray", "of", "str", "of", "lines", "of", "text", "from", "path", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/core.py#L221-L224
20,690
fastai/fastai
fastai/core.py
save_texts
def save_texts(fname:PathOrStr, texts:Collection[str]): "Save in `fname` the content of `texts`." with open(fname, 'w') as f: for t in texts: f.write(f'{t}\n')
python
def save_texts(fname:PathOrStr, texts:Collection[str]): "Save in `fname` the content of `texts`." with open(fname, 'w') as f: for t in texts: f.write(f'{t}\n')
[ "def", "save_texts", "(", "fname", ":", "PathOrStr", ",", "texts", ":", "Collection", "[", "str", "]", ")", ":", "with", "open", "(", "fname", ",", "'w'", ")", "as", "f", ":", "for", "t", "in", "texts", ":", "f", ".", "write", "(", "f'{t}\\n'", ")" ]
Save in `fname` the content of `texts`.
[ "Save", "in", "fname", "the", "content", "of", "texts", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/core.py#L226-L229
20,691
fastai/fastai
fastai/core.py
df_names_to_idx
def df_names_to_idx(names:IntsOrStrs, df:DataFrame): "Return the column indexes of `names` in `df`." if not is_listy(names): names = [names] if isinstance(names[0], int): return names return [df.columns.get_loc(c) for c in names]
python
def df_names_to_idx(names:IntsOrStrs, df:DataFrame): "Return the column indexes of `names` in `df`." if not is_listy(names): names = [names] if isinstance(names[0], int): return names return [df.columns.get_loc(c) for c in names]
[ "def", "df_names_to_idx", "(", "names", ":", "IntsOrStrs", ",", "df", ":", "DataFrame", ")", ":", "if", "not", "is_listy", "(", "names", ")", ":", "names", "=", "[", "names", "]", "if", "isinstance", "(", "names", "[", "0", "]", ",", "int", ")", ":", "return", "names", "return", "[", "df", ".", "columns", ".", "get_loc", "(", "c", ")", "for", "c", "in", "names", "]" ]
Return the column indexes of `names` in `df`.
[ "Return", "the", "column", "indexes", "of", "names", "in", "df", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/core.py#L231-L235
20,692
fastai/fastai
fastai/core.py
one_hot
def one_hot(x:Collection[int], c:int): "One-hot encode `x` with `c` classes." res = np.zeros((c,), np.float32) res[listify(x)] = 1. return res
python
def one_hot(x:Collection[int], c:int): "One-hot encode `x` with `c` classes." res = np.zeros((c,), np.float32) res[listify(x)] = 1. return res
[ "def", "one_hot", "(", "x", ":", "Collection", "[", "int", "]", ",", "c", ":", "int", ")", ":", "res", "=", "np", ".", "zeros", "(", "(", "c", ",", ")", ",", "np", ".", "float32", ")", "res", "[", "listify", "(", "x", ")", "]", "=", "1.", "return", "res" ]
One-hot encode `x` with `c` classes.
[ "One", "-", "hot", "encode", "x", "with", "c", "classes", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/core.py#L237-L241
20,693
fastai/fastai
fastai/core.py
index_row
def index_row(a:Union[Collection,pd.DataFrame,pd.Series], idxs:Collection[int])->Any: "Return the slice of `a` corresponding to `idxs`." if a is None: return a if isinstance(a,(pd.DataFrame,pd.Series)): res = a.iloc[idxs] if isinstance(res,(pd.DataFrame,pd.Series)): return res.copy() return res return a[idxs]
python
def index_row(a:Union[Collection,pd.DataFrame,pd.Series], idxs:Collection[int])->Any: "Return the slice of `a` corresponding to `idxs`." if a is None: return a if isinstance(a,(pd.DataFrame,pd.Series)): res = a.iloc[idxs] if isinstance(res,(pd.DataFrame,pd.Series)): return res.copy() return res return a[idxs]
[ "def", "index_row", "(", "a", ":", "Union", "[", "Collection", ",", "pd", ".", "DataFrame", ",", "pd", ".", "Series", "]", ",", "idxs", ":", "Collection", "[", "int", "]", ")", "->", "Any", ":", "if", "a", "is", "None", ":", "return", "a", "if", "isinstance", "(", "a", ",", "(", "pd", ".", "DataFrame", ",", "pd", ".", "Series", ")", ")", ":", "res", "=", "a", ".", "iloc", "[", "idxs", "]", "if", "isinstance", "(", "res", ",", "(", "pd", ".", "DataFrame", ",", "pd", ".", "Series", ")", ")", ":", "return", "res", ".", "copy", "(", ")", "return", "res", "return", "a", "[", "idxs", "]" ]
Return the slice of `a` corresponding to `idxs`.
[ "Return", "the", "slice", "of", "a", "corresponding", "to", "idxs", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/core.py#L243-L250
20,694
fastai/fastai
fastai/core.py
func_args
def func_args(func)->bool: "Return the arguments of `func`." code = func.__code__ return code.co_varnames[:code.co_argcount]
python
def func_args(func)->bool: "Return the arguments of `func`." code = func.__code__ return code.co_varnames[:code.co_argcount]
[ "def", "func_args", "(", "func", ")", "->", "bool", ":", "code", "=", "func", ".", "__code__", "return", "code", ".", "co_varnames", "[", ":", "code", ".", "co_argcount", "]" ]
Return the arguments of `func`.
[ "Return", "the", "arguments", "of", "func", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/core.py#L252-L255
20,695
fastai/fastai
fastai/core.py
split_kwargs_by_func
def split_kwargs_by_func(kwargs, func): "Split `kwargs` between those expected by `func` and the others." args = func_args(func) func_kwargs = {a:kwargs.pop(a) for a in args if a in kwargs} return func_kwargs, kwargs
python
def split_kwargs_by_func(kwargs, func): "Split `kwargs` between those expected by `func` and the others." args = func_args(func) func_kwargs = {a:kwargs.pop(a) for a in args if a in kwargs} return func_kwargs, kwargs
[ "def", "split_kwargs_by_func", "(", "kwargs", ",", "func", ")", ":", "args", "=", "func_args", "(", "func", ")", "func_kwargs", "=", "{", "a", ":", "kwargs", ".", "pop", "(", "a", ")", "for", "a", "in", "args", "if", "a", "in", "kwargs", "}", "return", "func_kwargs", ",", "kwargs" ]
Split `kwargs` between those expected by `func` and the others.
[ "Split", "kwargs", "between", "those", "expected", "by", "func", "and", "the", "others", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/core.py#L261-L265
20,696
fastai/fastai
fastai/core.py
array
def array(a, dtype:type=None, **kwargs)->np.ndarray: "Same as `np.array` but also handles generators. `kwargs` are passed to `np.array` with `dtype`." if not isinstance(a, collections.Sized) and not getattr(a,'__array_interface__',False): a = list(a) if np.int_==np.int32 and dtype is None and is_listy(a) and len(a) and isinstance(a[0],int): dtype=np.int64 return np.array(a, dtype=dtype, **kwargs)
python
def array(a, dtype:type=None, **kwargs)->np.ndarray: "Same as `np.array` but also handles generators. `kwargs` are passed to `np.array` with `dtype`." if not isinstance(a, collections.Sized) and not getattr(a,'__array_interface__',False): a = list(a) if np.int_==np.int32 and dtype is None and is_listy(a) and len(a) and isinstance(a[0],int): dtype=np.int64 return np.array(a, dtype=dtype, **kwargs)
[ "def", "array", "(", "a", ",", "dtype", ":", "type", "=", "None", ",", "*", "*", "kwargs", ")", "->", "np", ".", "ndarray", ":", "if", "not", "isinstance", "(", "a", ",", "collections", ".", "Sized", ")", "and", "not", "getattr", "(", "a", ",", "'__array_interface__'", ",", "False", ")", ":", "a", "=", "list", "(", "a", ")", "if", "np", ".", "int_", "==", "np", ".", "int32", "and", "dtype", "is", "None", "and", "is_listy", "(", "a", ")", "and", "len", "(", "a", ")", "and", "isinstance", "(", "a", "[", "0", "]", ",", "int", ")", ":", "dtype", "=", "np", ".", "int64", "return", "np", ".", "array", "(", "a", ",", "dtype", "=", "dtype", ",", "*", "*", "kwargs", ")" ]
Same as `np.array` but also handles generators. `kwargs` are passed to `np.array` with `dtype`.
[ "Same", "as", "np", ".", "array", "but", "also", "handles", "generators", ".", "kwargs", "are", "passed", "to", "np", ".", "array", "with", "dtype", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/core.py#L267-L273
20,697
fastai/fastai
fastai/core.py
text2html_table
def text2html_table(items:Collection[Collection[str]])->str: "Put the texts in `items` in an HTML table, `widths` are the widths of the columns in %." html_code = f"""<table border="1" class="dataframe">""" html_code += f""" <thead>\n <tr style="text-align: right;">\n""" for i in items[0]: html_code += f" <th>{_treat_html(i)}</th>" html_code += f" </tr>\n </thead>\n <tbody>" html_code += " <tbody>" for line in items[1:]: html_code += " <tr>" for i in line: html_code += f" <td>{_treat_html(i)}</td>" html_code += " </tr>" html_code += " </tbody>\n</table>" return html_code
python
def text2html_table(items:Collection[Collection[str]])->str: "Put the texts in `items` in an HTML table, `widths` are the widths of the columns in %." html_code = f"""<table border="1" class="dataframe">""" html_code += f""" <thead>\n <tr style="text-align: right;">\n""" for i in items[0]: html_code += f" <th>{_treat_html(i)}</th>" html_code += f" </tr>\n </thead>\n <tbody>" html_code += " <tbody>" for line in items[1:]: html_code += " <tr>" for i in line: html_code += f" <td>{_treat_html(i)}</td>" html_code += " </tr>" html_code += " </tbody>\n</table>" return html_code
[ "def", "text2html_table", "(", "items", ":", "Collection", "[", "Collection", "[", "str", "]", "]", ")", "->", "str", ":", "html_code", "=", "f\"\"\"<table border=\"1\" class=\"dataframe\">\"\"\"", "html_code", "+=", "f\"\"\" <thead>\\n <tr style=\"text-align: right;\">\\n\"\"\"", "for", "i", "in", "items", "[", "0", "]", ":", "html_code", "+=", "f\" <th>{_treat_html(i)}</th>\"", "html_code", "+=", "f\" </tr>\\n </thead>\\n <tbody>\"", "html_code", "+=", "\" <tbody>\"", "for", "line", "in", "items", "[", "1", ":", "]", ":", "html_code", "+=", "\" <tr>\"", "for", "i", "in", "line", ":", "html_code", "+=", "f\" <td>{_treat_html(i)}</td>\"", "html_code", "+=", "\" </tr>\"", "html_code", "+=", "\" </tbody>\\n</table>\"", "return", "html_code" ]
Put the texts in `items` in an HTML table, `widths` are the widths of the columns in %.
[ "Put", "the", "texts", "in", "items", "in", "an", "HTML", "table", "widths", "are", "the", "widths", "of", "the", "columns", "in", "%", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/core.py#L306-L318
20,698
fastai/fastai
fastai/core.py
parallel
def parallel(func, arr:Collection, max_workers:int=None): "Call `func` on every element of `arr` in parallel using `max_workers`." max_workers = ifnone(max_workers, defaults.cpus) if max_workers<2: results = [func(o,i) for i,o in progress_bar(enumerate(arr), total=len(arr))] else: with ProcessPoolExecutor(max_workers=max_workers) as ex: futures = [ex.submit(func,o,i) for i,o in enumerate(arr)] results = [] for f in progress_bar(concurrent.futures.as_completed(futures), total=len(arr)): results.append(f.result()) if any([o is not None for o in results]): return results
python
def parallel(func, arr:Collection, max_workers:int=None): "Call `func` on every element of `arr` in parallel using `max_workers`." max_workers = ifnone(max_workers, defaults.cpus) if max_workers<2: results = [func(o,i) for i,o in progress_bar(enumerate(arr), total=len(arr))] else: with ProcessPoolExecutor(max_workers=max_workers) as ex: futures = [ex.submit(func,o,i) for i,o in enumerate(arr)] results = [] for f in progress_bar(concurrent.futures.as_completed(futures), total=len(arr)): results.append(f.result()) if any([o is not None for o in results]): return results
[ "def", "parallel", "(", "func", ",", "arr", ":", "Collection", ",", "max_workers", ":", "int", "=", "None", ")", ":", "max_workers", "=", "ifnone", "(", "max_workers", ",", "defaults", ".", "cpus", ")", "if", "max_workers", "<", "2", ":", "results", "=", "[", "func", "(", "o", ",", "i", ")", "for", "i", ",", "o", "in", "progress_bar", "(", "enumerate", "(", "arr", ")", ",", "total", "=", "len", "(", "arr", ")", ")", "]", "else", ":", "with", "ProcessPoolExecutor", "(", "max_workers", "=", "max_workers", ")", "as", "ex", ":", "futures", "=", "[", "ex", ".", "submit", "(", "func", ",", "o", ",", "i", ")", "for", "i", ",", "o", "in", "enumerate", "(", "arr", ")", "]", "results", "=", "[", "]", "for", "f", "in", "progress_bar", "(", "concurrent", ".", "futures", ".", "as_completed", "(", "futures", ")", ",", "total", "=", "len", "(", "arr", ")", ")", ":", "results", ".", "append", "(", "f", ".", "result", "(", ")", ")", "if", "any", "(", "[", "o", "is", "not", "None", "for", "o", "in", "results", "]", ")", ":", "return", "results" ]
Call `func` on every element of `arr` in parallel using `max_workers`.
[ "Call", "func", "on", "every", "element", "of", "arr", "in", "parallel", "using", "max_workers", "." ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/core.py#L320-L329
20,699
fastai/fastai
fastai/core.py
subplots
def subplots(rows:int, cols:int, imgsize:int=4, figsize:Optional[Tuple[int,int]]=None, title=None, **kwargs): "Like `plt.subplots` but with consistent axs shape, `kwargs` passed to `fig.suptitle` with `title`" figsize = ifnone(figsize, (imgsize*cols, imgsize*rows)) fig, axs = plt.subplots(rows,cols,figsize=figsize) if rows==cols==1: axs = [[axs]] # subplots(1,1) returns Axes, not [Axes] elif (rows==1 and cols!=1) or (cols==1 and rows!=1): axs = [axs] if title is not None: fig.suptitle(title, **kwargs) return array(axs)
python
def subplots(rows:int, cols:int, imgsize:int=4, figsize:Optional[Tuple[int,int]]=None, title=None, **kwargs): "Like `plt.subplots` but with consistent axs shape, `kwargs` passed to `fig.suptitle` with `title`" figsize = ifnone(figsize, (imgsize*cols, imgsize*rows)) fig, axs = plt.subplots(rows,cols,figsize=figsize) if rows==cols==1: axs = [[axs]] # subplots(1,1) returns Axes, not [Axes] elif (rows==1 and cols!=1) or (cols==1 and rows!=1): axs = [axs] if title is not None: fig.suptitle(title, **kwargs) return array(axs)
[ "def", "subplots", "(", "rows", ":", "int", ",", "cols", ":", "int", ",", "imgsize", ":", "int", "=", "4", ",", "figsize", ":", "Optional", "[", "Tuple", "[", "int", ",", "int", "]", "]", "=", "None", ",", "title", "=", "None", ",", "*", "*", "kwargs", ")", ":", "figsize", "=", "ifnone", "(", "figsize", ",", "(", "imgsize", "*", "cols", ",", "imgsize", "*", "rows", ")", ")", "fig", ",", "axs", "=", "plt", ".", "subplots", "(", "rows", ",", "cols", ",", "figsize", "=", "figsize", ")", "if", "rows", "==", "cols", "==", "1", ":", "axs", "=", "[", "[", "axs", "]", "]", "# subplots(1,1) returns Axes, not [Axes]", "elif", "(", "rows", "==", "1", "and", "cols", "!=", "1", ")", "or", "(", "cols", "==", "1", "and", "rows", "!=", "1", ")", ":", "axs", "=", "[", "axs", "]", "if", "title", "is", "not", "None", ":", "fig", ".", "suptitle", "(", "title", ",", "*", "*", "kwargs", ")", "return", "array", "(", "axs", ")" ]
Like `plt.subplots` but with consistent axs shape, `kwargs` passed to `fig.suptitle` with `title`
[ "Like", "plt", ".", "subplots", "but", "with", "consistent", "axs", "shape", "kwargs", "passed", "to", "fig", ".", "suptitle", "with", "title" ]
9fb84a5cdefe5a766cdb792b8f5d8971737b7e67
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/core.py#L331-L338