id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
20,400
pandas-dev/pandas
pandas/core/arrays/datetimes.py
DatetimeArray._add_delta
def _add_delta(self, delta): """ Add a timedelta-like, Tick, or TimedeltaIndex-like object to self, yielding a new DatetimeArray Parameters ---------- other : {timedelta, np.timedelta64, Tick, TimedeltaIndex, ndarray[timedelta64]} Returns ------- result : DatetimeArray """ new_values = super()._add_delta(delta) return type(self)._from_sequence(new_values, tz=self.tz, freq='infer')
python
def _add_delta(self, delta): """ Add a timedelta-like, Tick, or TimedeltaIndex-like object to self, yielding a new DatetimeArray Parameters ---------- other : {timedelta, np.timedelta64, Tick, TimedeltaIndex, ndarray[timedelta64]} Returns ------- result : DatetimeArray """ new_values = super()._add_delta(delta) return type(self)._from_sequence(new_values, tz=self.tz, freq='infer')
[ "def", "_add_delta", "(", "self", ",", "delta", ")", ":", "new_values", "=", "super", "(", ")", ".", "_add_delta", "(", "delta", ")", "return", "type", "(", "self", ")", ".", "_from_sequence", "(", "new_values", ",", "tz", "=", "self", ".", "tz", ",", "freq", "=", "'infer'", ")" ]
Add a timedelta-like, Tick, or TimedeltaIndex-like object to self, yielding a new DatetimeArray Parameters ---------- other : {timedelta, np.timedelta64, Tick, TimedeltaIndex, ndarray[timedelta64]} Returns ------- result : DatetimeArray
[ "Add", "a", "timedelta", "-", "like", "Tick", "or", "TimedeltaIndex", "-", "like", "object", "to", "self", "yielding", "a", "new", "DatetimeArray" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/datetimes.py#L759-L774
20,401
pandas-dev/pandas
pandas/core/arrays/datetimes.py
DatetimeArray.normalize
def normalize(self): """ Convert times to midnight. The time component of the date-time is converted to midnight i.e. 00:00:00. This is useful in cases, when the time does not matter. Length is unaltered. The timezones are unaffected. This method is available on Series with datetime values under the ``.dt`` accessor, and directly on Datetime Array/Index. Returns ------- DatetimeArray, DatetimeIndex or Series The same type as the original data. Series will have the same name and index. DatetimeIndex will have the same name. See Also -------- floor : Floor the datetimes to the specified freq. ceil : Ceil the datetimes to the specified freq. round : Round the datetimes to the specified freq. Examples -------- >>> idx = pd.date_range(start='2014-08-01 10:00', freq='H', ... periods=3, tz='Asia/Calcutta') >>> idx DatetimeIndex(['2014-08-01 10:00:00+05:30', '2014-08-01 11:00:00+05:30', '2014-08-01 12:00:00+05:30'], dtype='datetime64[ns, Asia/Calcutta]', freq='H') >>> idx.normalize() DatetimeIndex(['2014-08-01 00:00:00+05:30', '2014-08-01 00:00:00+05:30', '2014-08-01 00:00:00+05:30'], dtype='datetime64[ns, Asia/Calcutta]', freq=None) """ if self.tz is None or timezones.is_utc(self.tz): not_null = ~self.isna() DAY_NS = ccalendar.DAY_SECONDS * 1000000000 new_values = self.asi8.copy() adjustment = (new_values[not_null] % DAY_NS) new_values[not_null] = new_values[not_null] - adjustment else: new_values = conversion.normalize_i8_timestamps(self.asi8, self.tz) return type(self)._from_sequence(new_values, freq='infer').tz_localize(self.tz)
python
def normalize(self): """ Convert times to midnight. The time component of the date-time is converted to midnight i.e. 00:00:00. This is useful in cases, when the time does not matter. Length is unaltered. The timezones are unaffected. This method is available on Series with datetime values under the ``.dt`` accessor, and directly on Datetime Array/Index. Returns ------- DatetimeArray, DatetimeIndex or Series The same type as the original data. Series will have the same name and index. DatetimeIndex will have the same name. See Also -------- floor : Floor the datetimes to the specified freq. ceil : Ceil the datetimes to the specified freq. round : Round the datetimes to the specified freq. Examples -------- >>> idx = pd.date_range(start='2014-08-01 10:00', freq='H', ... periods=3, tz='Asia/Calcutta') >>> idx DatetimeIndex(['2014-08-01 10:00:00+05:30', '2014-08-01 11:00:00+05:30', '2014-08-01 12:00:00+05:30'], dtype='datetime64[ns, Asia/Calcutta]', freq='H') >>> idx.normalize() DatetimeIndex(['2014-08-01 00:00:00+05:30', '2014-08-01 00:00:00+05:30', '2014-08-01 00:00:00+05:30'], dtype='datetime64[ns, Asia/Calcutta]', freq=None) """ if self.tz is None or timezones.is_utc(self.tz): not_null = ~self.isna() DAY_NS = ccalendar.DAY_SECONDS * 1000000000 new_values = self.asi8.copy() adjustment = (new_values[not_null] % DAY_NS) new_values[not_null] = new_values[not_null] - adjustment else: new_values = conversion.normalize_i8_timestamps(self.asi8, self.tz) return type(self)._from_sequence(new_values, freq='infer').tz_localize(self.tz)
[ "def", "normalize", "(", "self", ")", ":", "if", "self", ".", "tz", "is", "None", "or", "timezones", ".", "is_utc", "(", "self", ".", "tz", ")", ":", "not_null", "=", "~", "self", ".", "isna", "(", ")", "DAY_NS", "=", "ccalendar", ".", "DAY_SECONDS", "*", "1000000000", "new_values", "=", "self", ".", "asi8", ".", "copy", "(", ")", "adjustment", "=", "(", "new_values", "[", "not_null", "]", "%", "DAY_NS", ")", "new_values", "[", "not_null", "]", "=", "new_values", "[", "not_null", "]", "-", "adjustment", "else", ":", "new_values", "=", "conversion", ".", "normalize_i8_timestamps", "(", "self", ".", "asi8", ",", "self", ".", "tz", ")", "return", "type", "(", "self", ")", ".", "_from_sequence", "(", "new_values", ",", "freq", "=", "'infer'", ")", ".", "tz_localize", "(", "self", ".", "tz", ")" ]
Convert times to midnight. The time component of the date-time is converted to midnight i.e. 00:00:00. This is useful in cases, when the time does not matter. Length is unaltered. The timezones are unaffected. This method is available on Series with datetime values under the ``.dt`` accessor, and directly on Datetime Array/Index. Returns ------- DatetimeArray, DatetimeIndex or Series The same type as the original data. Series will have the same name and index. DatetimeIndex will have the same name. See Also -------- floor : Floor the datetimes to the specified freq. ceil : Ceil the datetimes to the specified freq. round : Round the datetimes to the specified freq. Examples -------- >>> idx = pd.date_range(start='2014-08-01 10:00', freq='H', ... periods=3, tz='Asia/Calcutta') >>> idx DatetimeIndex(['2014-08-01 10:00:00+05:30', '2014-08-01 11:00:00+05:30', '2014-08-01 12:00:00+05:30'], dtype='datetime64[ns, Asia/Calcutta]', freq='H') >>> idx.normalize() DatetimeIndex(['2014-08-01 00:00:00+05:30', '2014-08-01 00:00:00+05:30', '2014-08-01 00:00:00+05:30'], dtype='datetime64[ns, Asia/Calcutta]', freq=None)
[ "Convert", "times", "to", "midnight", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/datetimes.py#L1063-L1110
20,402
pandas-dev/pandas
pandas/core/arrays/datetimes.py
DatetimeArray.to_perioddelta
def to_perioddelta(self, freq): """ Calculate TimedeltaArray of difference between index values and index converted to PeriodArray at specified freq. Used for vectorized offsets Parameters ---------- freq : Period frequency Returns ------- TimedeltaArray/Index """ # TODO: consider privatizing (discussion in GH#23113) from pandas.core.arrays.timedeltas import TimedeltaArray i8delta = self.asi8 - self.to_period(freq).to_timestamp().asi8 m8delta = i8delta.view('m8[ns]') return TimedeltaArray(m8delta)
python
def to_perioddelta(self, freq): """ Calculate TimedeltaArray of difference between index values and index converted to PeriodArray at specified freq. Used for vectorized offsets Parameters ---------- freq : Period frequency Returns ------- TimedeltaArray/Index """ # TODO: consider privatizing (discussion in GH#23113) from pandas.core.arrays.timedeltas import TimedeltaArray i8delta = self.asi8 - self.to_period(freq).to_timestamp().asi8 m8delta = i8delta.view('m8[ns]') return TimedeltaArray(m8delta)
[ "def", "to_perioddelta", "(", "self", ",", "freq", ")", ":", "# TODO: consider privatizing (discussion in GH#23113)", "from", "pandas", ".", "core", ".", "arrays", ".", "timedeltas", "import", "TimedeltaArray", "i8delta", "=", "self", ".", "asi8", "-", "self", ".", "to_period", "(", "freq", ")", ".", "to_timestamp", "(", ")", ".", "asi8", "m8delta", "=", "i8delta", ".", "view", "(", "'m8[ns]'", ")", "return", "TimedeltaArray", "(", "m8delta", ")" ]
Calculate TimedeltaArray of difference between index values and index converted to PeriodArray at specified freq. Used for vectorized offsets Parameters ---------- freq : Period frequency Returns ------- TimedeltaArray/Index
[ "Calculate", "TimedeltaArray", "of", "difference", "between", "index", "values", "and", "index", "converted", "to", "PeriodArray", "at", "specified", "freq", ".", "Used", "for", "vectorized", "offsets" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/datetimes.py#L1173-L1191
20,403
pandas-dev/pandas
pandas/core/arrays/datetimes.py
DatetimeArray.month_name
def month_name(self, locale=None): """ Return the month names of the DateTimeIndex with specified locale. .. versionadded:: 0.23.0 Parameters ---------- locale : str, optional Locale determining the language in which to return the month name. Default is English locale. Returns ------- Index Index of month names. Examples -------- >>> idx = pd.date_range(start='2018-01', freq='M', periods=3) >>> idx DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31'], dtype='datetime64[ns]', freq='M') >>> idx.month_name() Index(['January', 'February', 'March'], dtype='object') """ if self.tz is not None and not timezones.is_utc(self.tz): values = self._local_timestamps() else: values = self.asi8 result = fields.get_date_name_field(values, 'month_name', locale=locale) result = self._maybe_mask_results(result, fill_value=None) return result
python
def month_name(self, locale=None): """ Return the month names of the DateTimeIndex with specified locale. .. versionadded:: 0.23.0 Parameters ---------- locale : str, optional Locale determining the language in which to return the month name. Default is English locale. Returns ------- Index Index of month names. Examples -------- >>> idx = pd.date_range(start='2018-01', freq='M', periods=3) >>> idx DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31'], dtype='datetime64[ns]', freq='M') >>> idx.month_name() Index(['January', 'February', 'March'], dtype='object') """ if self.tz is not None and not timezones.is_utc(self.tz): values = self._local_timestamps() else: values = self.asi8 result = fields.get_date_name_field(values, 'month_name', locale=locale) result = self._maybe_mask_results(result, fill_value=None) return result
[ "def", "month_name", "(", "self", ",", "locale", "=", "None", ")", ":", "if", "self", ".", "tz", "is", "not", "None", "and", "not", "timezones", ".", "is_utc", "(", "self", ".", "tz", ")", ":", "values", "=", "self", ".", "_local_timestamps", "(", ")", "else", ":", "values", "=", "self", ".", "asi8", "result", "=", "fields", ".", "get_date_name_field", "(", "values", ",", "'month_name'", ",", "locale", "=", "locale", ")", "result", "=", "self", ".", "_maybe_mask_results", "(", "result", ",", "fill_value", "=", "None", ")", "return", "result" ]
Return the month names of the DateTimeIndex with specified locale. .. versionadded:: 0.23.0 Parameters ---------- locale : str, optional Locale determining the language in which to return the month name. Default is English locale. Returns ------- Index Index of month names. Examples -------- >>> idx = pd.date_range(start='2018-01', freq='M', periods=3) >>> idx DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31'], dtype='datetime64[ns]', freq='M') >>> idx.month_name() Index(['January', 'February', 'March'], dtype='object')
[ "Return", "the", "month", "names", "of", "the", "DateTimeIndex", "with", "specified", "locale", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/datetimes.py#L1196-L1230
20,404
pandas-dev/pandas
pandas/core/arrays/datetimes.py
DatetimeArray.time
def time(self): """ Returns numpy array of datetime.time. The time part of the Timestamps. """ # If the Timestamps have a timezone that is not UTC, # convert them into their i8 representation while # keeping their timezone and not using UTC if self.tz is not None and not timezones.is_utc(self.tz): timestamps = self._local_timestamps() else: timestamps = self.asi8 return tslib.ints_to_pydatetime(timestamps, box="time")
python
def time(self): """ Returns numpy array of datetime.time. The time part of the Timestamps. """ # If the Timestamps have a timezone that is not UTC, # convert them into their i8 representation while # keeping their timezone and not using UTC if self.tz is not None and not timezones.is_utc(self.tz): timestamps = self._local_timestamps() else: timestamps = self.asi8 return tslib.ints_to_pydatetime(timestamps, box="time")
[ "def", "time", "(", "self", ")", ":", "# If the Timestamps have a timezone that is not UTC,", "# convert them into their i8 representation while", "# keeping their timezone and not using UTC", "if", "self", ".", "tz", "is", "not", "None", "and", "not", "timezones", ".", "is_utc", "(", "self", ".", "tz", ")", ":", "timestamps", "=", "self", ".", "_local_timestamps", "(", ")", "else", ":", "timestamps", "=", "self", ".", "asi8", "return", "tslib", ".", "ints_to_pydatetime", "(", "timestamps", ",", "box", "=", "\"time\"", ")" ]
Returns numpy array of datetime.time. The time part of the Timestamps.
[ "Returns", "numpy", "array", "of", "datetime", ".", "time", ".", "The", "time", "part", "of", "the", "Timestamps", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/datetimes.py#L1269-L1281
20,405
pandas-dev/pandas
scripts/validate_docstrings.py
get_api_items
def get_api_items(api_doc_fd): """ Yield information about all public API items. Parse api.rst file from the documentation, and extract all the functions, methods, classes, attributes... This should include all pandas public API. Parameters ---------- api_doc_fd : file descriptor A file descriptor of the API documentation page, containing the table of contents with all the public API. Yields ------ name : str The name of the object (e.g. 'pandas.Series.str.upper). func : function The object itself. In most cases this will be a function or method, but it can also be classes, properties, cython objects... section : str The name of the section in the API page where the object item is located. subsection : str The name of the subsection in the API page where the object item is located. """ current_module = 'pandas' previous_line = current_section = current_subsection = '' position = None for line in api_doc_fd: line = line.strip() if len(line) == len(previous_line): if set(line) == set('-'): current_section = previous_line continue if set(line) == set('~'): current_subsection = previous_line continue if line.startswith('.. currentmodule::'): current_module = line.replace('.. currentmodule::', '').strip() continue if line == '.. autosummary::': position = 'autosummary' continue if position == 'autosummary': if line == '': position = 'items' continue if position == 'items': if line == '': position = None continue item = line.strip() func = importlib.import_module(current_module) for part in item.split('.'): func = getattr(func, part) yield ('.'.join([current_module, item]), func, current_section, current_subsection) previous_line = line
python
def get_api_items(api_doc_fd): """ Yield information about all public API items. Parse api.rst file from the documentation, and extract all the functions, methods, classes, attributes... This should include all pandas public API. Parameters ---------- api_doc_fd : file descriptor A file descriptor of the API documentation page, containing the table of contents with all the public API. Yields ------ name : str The name of the object (e.g. 'pandas.Series.str.upper). func : function The object itself. In most cases this will be a function or method, but it can also be classes, properties, cython objects... section : str The name of the section in the API page where the object item is located. subsection : str The name of the subsection in the API page where the object item is located. """ current_module = 'pandas' previous_line = current_section = current_subsection = '' position = None for line in api_doc_fd: line = line.strip() if len(line) == len(previous_line): if set(line) == set('-'): current_section = previous_line continue if set(line) == set('~'): current_subsection = previous_line continue if line.startswith('.. currentmodule::'): current_module = line.replace('.. currentmodule::', '').strip() continue if line == '.. autosummary::': position = 'autosummary' continue if position == 'autosummary': if line == '': position = 'items' continue if position == 'items': if line == '': position = None continue item = line.strip() func = importlib.import_module(current_module) for part in item.split('.'): func = getattr(func, part) yield ('.'.join([current_module, item]), func, current_section, current_subsection) previous_line = line
[ "def", "get_api_items", "(", "api_doc_fd", ")", ":", "current_module", "=", "'pandas'", "previous_line", "=", "current_section", "=", "current_subsection", "=", "''", "position", "=", "None", "for", "line", "in", "api_doc_fd", ":", "line", "=", "line", ".", "strip", "(", ")", "if", "len", "(", "line", ")", "==", "len", "(", "previous_line", ")", ":", "if", "set", "(", "line", ")", "==", "set", "(", "'-'", ")", ":", "current_section", "=", "previous_line", "continue", "if", "set", "(", "line", ")", "==", "set", "(", "'~'", ")", ":", "current_subsection", "=", "previous_line", "continue", "if", "line", ".", "startswith", "(", "'.. currentmodule::'", ")", ":", "current_module", "=", "line", ".", "replace", "(", "'.. currentmodule::'", ",", "''", ")", ".", "strip", "(", ")", "continue", "if", "line", "==", "'.. autosummary::'", ":", "position", "=", "'autosummary'", "continue", "if", "position", "==", "'autosummary'", ":", "if", "line", "==", "''", ":", "position", "=", "'items'", "continue", "if", "position", "==", "'items'", ":", "if", "line", "==", "''", ":", "position", "=", "None", "continue", "item", "=", "line", ".", "strip", "(", ")", "func", "=", "importlib", ".", "import_module", "(", "current_module", ")", "for", "part", "in", "item", ".", "split", "(", "'.'", ")", ":", "func", "=", "getattr", "(", "func", ",", "part", ")", "yield", "(", "'.'", ".", "join", "(", "[", "current_module", ",", "item", "]", ")", ",", "func", ",", "current_section", ",", "current_subsection", ")", "previous_line", "=", "line" ]
Yield information about all public API items. Parse api.rst file from the documentation, and extract all the functions, methods, classes, attributes... This should include all pandas public API. Parameters ---------- api_doc_fd : file descriptor A file descriptor of the API documentation page, containing the table of contents with all the public API. Yields ------ name : str The name of the object (e.g. 'pandas.Series.str.upper). func : function The object itself. In most cases this will be a function or method, but it can also be classes, properties, cython objects... section : str The name of the section in the API page where the object item is located. subsection : str The name of the subsection in the API page where the object item is located.
[ "Yield", "information", "about", "all", "public", "API", "items", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/scripts/validate_docstrings.py#L158-L223
20,406
pandas-dev/pandas
scripts/validate_docstrings.py
validate_one
def validate_one(func_name): """ Validate the docstring for the given func_name Parameters ---------- func_name : function Function whose docstring will be evaluated (e.g. pandas.read_csv). Returns ------- dict A dictionary containing all the information obtained from validating the docstring. """ doc = Docstring(func_name) errs, wrns, examples_errs = get_validation_data(doc) return {'type': doc.type, 'docstring': doc.clean_doc, 'deprecated': doc.deprecated, 'file': doc.source_file_name, 'file_line': doc.source_file_def_line, 'github_link': doc.github_url, 'errors': errs, 'warnings': wrns, 'examples_errors': examples_errs}
python
def validate_one(func_name): """ Validate the docstring for the given func_name Parameters ---------- func_name : function Function whose docstring will be evaluated (e.g. pandas.read_csv). Returns ------- dict A dictionary containing all the information obtained from validating the docstring. """ doc = Docstring(func_name) errs, wrns, examples_errs = get_validation_data(doc) return {'type': doc.type, 'docstring': doc.clean_doc, 'deprecated': doc.deprecated, 'file': doc.source_file_name, 'file_line': doc.source_file_def_line, 'github_link': doc.github_url, 'errors': errs, 'warnings': wrns, 'examples_errors': examples_errs}
[ "def", "validate_one", "(", "func_name", ")", ":", "doc", "=", "Docstring", "(", "func_name", ")", "errs", ",", "wrns", ",", "examples_errs", "=", "get_validation_data", "(", "doc", ")", "return", "{", "'type'", ":", "doc", ".", "type", ",", "'docstring'", ":", "doc", ".", "clean_doc", ",", "'deprecated'", ":", "doc", ".", "deprecated", ",", "'file'", ":", "doc", ".", "source_file_name", ",", "'file_line'", ":", "doc", ".", "source_file_def_line", ",", "'github_link'", ":", "doc", ".", "github_url", ",", "'errors'", ":", "errs", ",", "'warnings'", ":", "wrns", ",", "'examples_errors'", ":", "examples_errs", "}" ]
Validate the docstring for the given func_name Parameters ---------- func_name : function Function whose docstring will be evaluated (e.g. pandas.read_csv). Returns ------- dict A dictionary containing all the information obtained from validating the docstring.
[ "Validate", "the", "docstring", "for", "the", "given", "func_name" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/scripts/validate_docstrings.py#L788-L813
20,407
pandas-dev/pandas
scripts/validate_docstrings.py
validate_all
def validate_all(prefix, ignore_deprecated=False): """ Execute the validation of all docstrings, and return a dict with the results. Parameters ---------- prefix : str or None If provided, only the docstrings that start with this pattern will be validated. If None, all docstrings will be validated. ignore_deprecated: bool, default False If True, deprecated objects are ignored when validating docstrings. Returns ------- dict A dictionary with an item for every function/method... containing all the validation information. """ result = {} seen = {} # functions from the API docs api_doc_fnames = os.path.join( BASE_PATH, 'doc', 'source', 'reference', '*.rst') api_items = [] for api_doc_fname in glob.glob(api_doc_fnames): with open(api_doc_fname) as f: api_items += list(get_api_items(f)) for func_name, func_obj, section, subsection in api_items: if prefix and not func_name.startswith(prefix): continue doc_info = validate_one(func_name) if ignore_deprecated and doc_info['deprecated']: continue result[func_name] = doc_info shared_code_key = doc_info['file'], doc_info['file_line'] shared_code = seen.get(shared_code_key, '') result[func_name].update({'in_api': True, 'section': section, 'subsection': subsection, 'shared_code_with': shared_code}) seen[shared_code_key] = func_name # functions from introspecting Series, DataFrame and Panel api_item_names = set(list(zip(*api_items))[0]) for class_ in (pandas.Series, pandas.DataFrame, pandas.Panel): for member in inspect.getmembers(class_): func_name = 'pandas.{}.{}'.format(class_.__name__, member[0]) if (not member[0].startswith('_') and func_name not in api_item_names): if prefix and not func_name.startswith(prefix): continue doc_info = validate_one(func_name) if ignore_deprecated and doc_info['deprecated']: continue result[func_name] = doc_info result[func_name]['in_api'] = False return result
python
def validate_all(prefix, ignore_deprecated=False): """ Execute the validation of all docstrings, and return a dict with the results. Parameters ---------- prefix : str or None If provided, only the docstrings that start with this pattern will be validated. If None, all docstrings will be validated. ignore_deprecated: bool, default False If True, deprecated objects are ignored when validating docstrings. Returns ------- dict A dictionary with an item for every function/method... containing all the validation information. """ result = {} seen = {} # functions from the API docs api_doc_fnames = os.path.join( BASE_PATH, 'doc', 'source', 'reference', '*.rst') api_items = [] for api_doc_fname in glob.glob(api_doc_fnames): with open(api_doc_fname) as f: api_items += list(get_api_items(f)) for func_name, func_obj, section, subsection in api_items: if prefix and not func_name.startswith(prefix): continue doc_info = validate_one(func_name) if ignore_deprecated and doc_info['deprecated']: continue result[func_name] = doc_info shared_code_key = doc_info['file'], doc_info['file_line'] shared_code = seen.get(shared_code_key, '') result[func_name].update({'in_api': True, 'section': section, 'subsection': subsection, 'shared_code_with': shared_code}) seen[shared_code_key] = func_name # functions from introspecting Series, DataFrame and Panel api_item_names = set(list(zip(*api_items))[0]) for class_ in (pandas.Series, pandas.DataFrame, pandas.Panel): for member in inspect.getmembers(class_): func_name = 'pandas.{}.{}'.format(class_.__name__, member[0]) if (not member[0].startswith('_') and func_name not in api_item_names): if prefix and not func_name.startswith(prefix): continue doc_info = validate_one(func_name) if ignore_deprecated and doc_info['deprecated']: continue result[func_name] = doc_info result[func_name]['in_api'] = False return result
[ "def", "validate_all", "(", "prefix", ",", "ignore_deprecated", "=", "False", ")", ":", "result", "=", "{", "}", "seen", "=", "{", "}", "# functions from the API docs", "api_doc_fnames", "=", "os", ".", "path", ".", "join", "(", "BASE_PATH", ",", "'doc'", ",", "'source'", ",", "'reference'", ",", "'*.rst'", ")", "api_items", "=", "[", "]", "for", "api_doc_fname", "in", "glob", ".", "glob", "(", "api_doc_fnames", ")", ":", "with", "open", "(", "api_doc_fname", ")", "as", "f", ":", "api_items", "+=", "list", "(", "get_api_items", "(", "f", ")", ")", "for", "func_name", ",", "func_obj", ",", "section", ",", "subsection", "in", "api_items", ":", "if", "prefix", "and", "not", "func_name", ".", "startswith", "(", "prefix", ")", ":", "continue", "doc_info", "=", "validate_one", "(", "func_name", ")", "if", "ignore_deprecated", "and", "doc_info", "[", "'deprecated'", "]", ":", "continue", "result", "[", "func_name", "]", "=", "doc_info", "shared_code_key", "=", "doc_info", "[", "'file'", "]", ",", "doc_info", "[", "'file_line'", "]", "shared_code", "=", "seen", ".", "get", "(", "shared_code_key", ",", "''", ")", "result", "[", "func_name", "]", ".", "update", "(", "{", "'in_api'", ":", "True", ",", "'section'", ":", "section", ",", "'subsection'", ":", "subsection", ",", "'shared_code_with'", ":", "shared_code", "}", ")", "seen", "[", "shared_code_key", "]", "=", "func_name", "# functions from introspecting Series, DataFrame and Panel", "api_item_names", "=", "set", "(", "list", "(", "zip", "(", "*", "api_items", ")", ")", "[", "0", "]", ")", "for", "class_", "in", "(", "pandas", ".", "Series", ",", "pandas", ".", "DataFrame", ",", "pandas", ".", "Panel", ")", ":", "for", "member", "in", "inspect", ".", "getmembers", "(", "class_", ")", ":", "func_name", "=", "'pandas.{}.{}'", ".", "format", "(", "class_", ".", "__name__", ",", "member", "[", "0", "]", ")", "if", "(", "not", "member", "[", "0", "]", ".", "startswith", "(", "'_'", ")", "and", "func_name", "not", "in", "api_item_names", ")", ":", "if", "prefix", "and", "not", "func_name", ".", "startswith", "(", "prefix", ")", ":", "continue", "doc_info", "=", "validate_one", "(", "func_name", ")", "if", "ignore_deprecated", "and", "doc_info", "[", "'deprecated'", "]", ":", "continue", "result", "[", "func_name", "]", "=", "doc_info", "result", "[", "func_name", "]", "[", "'in_api'", "]", "=", "False", "return", "result" ]
Execute the validation of all docstrings, and return a dict with the results. Parameters ---------- prefix : str or None If provided, only the docstrings that start with this pattern will be validated. If None, all docstrings will be validated. ignore_deprecated: bool, default False If True, deprecated objects are ignored when validating docstrings. Returns ------- dict A dictionary with an item for every function/method... containing all the validation information.
[ "Execute", "the", "validation", "of", "all", "docstrings", "and", "return", "a", "dict", "with", "the", "results", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/scripts/validate_docstrings.py#L816-L877
20,408
pandas-dev/pandas
scripts/validate_docstrings.py
Docstring._load_obj
def _load_obj(name): """ Import Python object from its name as string. Parameters ---------- name : str Object name to import (e.g. pandas.Series.str.upper) Returns ------- object Python object that can be a class, method, function... Examples -------- >>> Docstring._load_obj('pandas.Series') <class 'pandas.core.series.Series'> """ for maxsplit in range(1, name.count('.') + 1): # TODO when py3 only replace by: module, *func_parts = ... func_name_split = name.rsplit('.', maxsplit) module = func_name_split[0] func_parts = func_name_split[1:] try: obj = importlib.import_module(module) except ImportError: pass else: continue if 'obj' not in locals(): raise ImportError('No module can be imported ' 'from "{}"'.format(name)) for part in func_parts: obj = getattr(obj, part) return obj
python
def _load_obj(name): """ Import Python object from its name as string. Parameters ---------- name : str Object name to import (e.g. pandas.Series.str.upper) Returns ------- object Python object that can be a class, method, function... Examples -------- >>> Docstring._load_obj('pandas.Series') <class 'pandas.core.series.Series'> """ for maxsplit in range(1, name.count('.') + 1): # TODO when py3 only replace by: module, *func_parts = ... func_name_split = name.rsplit('.', maxsplit) module = func_name_split[0] func_parts = func_name_split[1:] try: obj = importlib.import_module(module) except ImportError: pass else: continue if 'obj' not in locals(): raise ImportError('No module can be imported ' 'from "{}"'.format(name)) for part in func_parts: obj = getattr(obj, part) return obj
[ "def", "_load_obj", "(", "name", ")", ":", "for", "maxsplit", "in", "range", "(", "1", ",", "name", ".", "count", "(", "'.'", ")", "+", "1", ")", ":", "# TODO when py3 only replace by: module, *func_parts = ...", "func_name_split", "=", "name", ".", "rsplit", "(", "'.'", ",", "maxsplit", ")", "module", "=", "func_name_split", "[", "0", "]", "func_parts", "=", "func_name_split", "[", "1", ":", "]", "try", ":", "obj", "=", "importlib", ".", "import_module", "(", "module", ")", "except", "ImportError", ":", "pass", "else", ":", "continue", "if", "'obj'", "not", "in", "locals", "(", ")", ":", "raise", "ImportError", "(", "'No module can be imported '", "'from \"{}\"'", ".", "format", "(", "name", ")", ")", "for", "part", "in", "func_parts", ":", "obj", "=", "getattr", "(", "obj", ",", "part", ")", "return", "obj" ]
Import Python object from its name as string. Parameters ---------- name : str Object name to import (e.g. pandas.Series.str.upper) Returns ------- object Python object that can be a class, method, function... Examples -------- >>> Docstring._load_obj('pandas.Series') <class 'pandas.core.series.Series'>
[ "Import", "Python", "object", "from", "its", "name", "as", "string", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/scripts/validate_docstrings.py#L240-L277
20,409
pandas-dev/pandas
scripts/validate_docstrings.py
Docstring._to_original_callable
def _to_original_callable(obj): """ Find the Python object that contains the source code of the object. This is useful to find the place in the source code (file and line number) where a docstring is defined. It does not currently work for all cases, but it should help find some (properties...). """ while True: if inspect.isfunction(obj) or inspect.isclass(obj): f = inspect.getfile(obj) if f.startswith('<') and f.endswith('>'): return None return obj if inspect.ismethod(obj): obj = obj.__func__ elif isinstance(obj, functools.partial): obj = obj.func elif isinstance(obj, property): obj = obj.fget else: return None
python
def _to_original_callable(obj): """ Find the Python object that contains the source code of the object. This is useful to find the place in the source code (file and line number) where a docstring is defined. It does not currently work for all cases, but it should help find some (properties...). """ while True: if inspect.isfunction(obj) or inspect.isclass(obj): f = inspect.getfile(obj) if f.startswith('<') and f.endswith('>'): return None return obj if inspect.ismethod(obj): obj = obj.__func__ elif isinstance(obj, functools.partial): obj = obj.func elif isinstance(obj, property): obj = obj.fget else: return None
[ "def", "_to_original_callable", "(", "obj", ")", ":", "while", "True", ":", "if", "inspect", ".", "isfunction", "(", "obj", ")", "or", "inspect", ".", "isclass", "(", "obj", ")", ":", "f", "=", "inspect", ".", "getfile", "(", "obj", ")", "if", "f", ".", "startswith", "(", "'<'", ")", "and", "f", ".", "endswith", "(", "'>'", ")", ":", "return", "None", "return", "obj", "if", "inspect", ".", "ismethod", "(", "obj", ")", ":", "obj", "=", "obj", ".", "__func__", "elif", "isinstance", "(", "obj", ",", "functools", ".", "partial", ")", ":", "obj", "=", "obj", ".", "func", "elif", "isinstance", "(", "obj", ",", "property", ")", ":", "obj", "=", "obj", ".", "fget", "else", ":", "return", "None" ]
Find the Python object that contains the source code of the object. This is useful to find the place in the source code (file and line number) where a docstring is defined. It does not currently work for all cases, but it should help find some (properties...).
[ "Find", "the", "Python", "object", "that", "contains", "the", "source", "code", "of", "the", "object", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/scripts/validate_docstrings.py#L280-L301
20,410
pandas-dev/pandas
scripts/validate_docstrings.py
Docstring.method_returns_something
def method_returns_something(self): ''' Check if the docstrings method can return something. Bare returns, returns valued None and returns from nested functions are disconsidered. Returns ------- bool Whether the docstrings method can return something. ''' def get_returns_not_on_nested_functions(node): returns = [node] if isinstance(node, ast.Return) else [] for child in ast.iter_child_nodes(node): # Ignore nested functions and its subtrees. if not isinstance(child, ast.FunctionDef): child_returns = get_returns_not_on_nested_functions(child) returns.extend(child_returns) return returns tree = ast.parse(self.method_source).body if tree: returns = get_returns_not_on_nested_functions(tree[0]) return_values = [r.value for r in returns] # Replace NameConstant nodes valued None for None. for i, v in enumerate(return_values): if isinstance(v, ast.NameConstant) and v.value is None: return_values[i] = None return any(return_values) else: return False
python
def method_returns_something(self): ''' Check if the docstrings method can return something. Bare returns, returns valued None and returns from nested functions are disconsidered. Returns ------- bool Whether the docstrings method can return something. ''' def get_returns_not_on_nested_functions(node): returns = [node] if isinstance(node, ast.Return) else [] for child in ast.iter_child_nodes(node): # Ignore nested functions and its subtrees. if not isinstance(child, ast.FunctionDef): child_returns = get_returns_not_on_nested_functions(child) returns.extend(child_returns) return returns tree = ast.parse(self.method_source).body if tree: returns = get_returns_not_on_nested_functions(tree[0]) return_values = [r.value for r in returns] # Replace NameConstant nodes valued None for None. for i, v in enumerate(return_values): if isinstance(v, ast.NameConstant) and v.value is None: return_values[i] = None return any(return_values) else: return False
[ "def", "method_returns_something", "(", "self", ")", ":", "def", "get_returns_not_on_nested_functions", "(", "node", ")", ":", "returns", "=", "[", "node", "]", "if", "isinstance", "(", "node", ",", "ast", ".", "Return", ")", "else", "[", "]", "for", "child", "in", "ast", ".", "iter_child_nodes", "(", "node", ")", ":", "# Ignore nested functions and its subtrees.", "if", "not", "isinstance", "(", "child", ",", "ast", ".", "FunctionDef", ")", ":", "child_returns", "=", "get_returns_not_on_nested_functions", "(", "child", ")", "returns", ".", "extend", "(", "child_returns", ")", "return", "returns", "tree", "=", "ast", ".", "parse", "(", "self", ".", "method_source", ")", ".", "body", "if", "tree", ":", "returns", "=", "get_returns_not_on_nested_functions", "(", "tree", "[", "0", "]", ")", "return_values", "=", "[", "r", ".", "value", "for", "r", "in", "returns", "]", "# Replace NameConstant nodes valued None for None.", "for", "i", ",", "v", "in", "enumerate", "(", "return_values", ")", ":", "if", "isinstance", "(", "v", ",", "ast", ".", "NameConstant", ")", "and", "v", ".", "value", "is", "None", ":", "return_values", "[", "i", "]", "=", "None", "return", "any", "(", "return_values", ")", "else", ":", "return", "False" ]
Check if the docstrings method can return something. Bare returns, returns valued None and returns from nested functions are disconsidered. Returns ------- bool Whether the docstrings method can return something.
[ "Check", "if", "the", "docstrings", "method", "can", "return", "something", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/scripts/validate_docstrings.py#L503-L535
20,411
pandas-dev/pandas
pandas/io/excel/_base.py
ExcelWriter._value_with_fmt
def _value_with_fmt(self, val): """Convert numpy types to Python types for the Excel writers. Parameters ---------- val : object Value to be written into cells Returns ------- Tuple with the first element being the converted value and the second being an optional format """ fmt = None if is_integer(val): val = int(val) elif is_float(val): val = float(val) elif is_bool(val): val = bool(val) elif isinstance(val, datetime): fmt = self.datetime_format elif isinstance(val, date): fmt = self.date_format elif isinstance(val, timedelta): val = val.total_seconds() / float(86400) fmt = '0' else: val = compat.to_str(val) return val, fmt
python
def _value_with_fmt(self, val): """Convert numpy types to Python types for the Excel writers. Parameters ---------- val : object Value to be written into cells Returns ------- Tuple with the first element being the converted value and the second being an optional format """ fmt = None if is_integer(val): val = int(val) elif is_float(val): val = float(val) elif is_bool(val): val = bool(val) elif isinstance(val, datetime): fmt = self.datetime_format elif isinstance(val, date): fmt = self.date_format elif isinstance(val, timedelta): val = val.total_seconds() / float(86400) fmt = '0' else: val = compat.to_str(val) return val, fmt
[ "def", "_value_with_fmt", "(", "self", ",", "val", ")", ":", "fmt", "=", "None", "if", "is_integer", "(", "val", ")", ":", "val", "=", "int", "(", "val", ")", "elif", "is_float", "(", "val", ")", ":", "val", "=", "float", "(", "val", ")", "elif", "is_bool", "(", "val", ")", ":", "val", "=", "bool", "(", "val", ")", "elif", "isinstance", "(", "val", ",", "datetime", ")", ":", "fmt", "=", "self", ".", "datetime_format", "elif", "isinstance", "(", "val", ",", "date", ")", ":", "fmt", "=", "self", ".", "date_format", "elif", "isinstance", "(", "val", ",", "timedelta", ")", ":", "val", "=", "val", ".", "total_seconds", "(", ")", "/", "float", "(", "86400", ")", "fmt", "=", "'0'", "else", ":", "val", "=", "compat", ".", "to_str", "(", "val", ")", "return", "val", ",", "fmt" ]
Convert numpy types to Python types for the Excel writers. Parameters ---------- val : object Value to be written into cells Returns ------- Tuple with the first element being the converted value and the second being an optional format
[ "Convert", "numpy", "types", "to", "Python", "types", "for", "the", "Excel", "writers", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/excel/_base.py#L675-L706
20,412
pandas-dev/pandas
pandas/io/excel/_base.py
ExcelWriter.check_extension
def check_extension(cls, ext): """checks that path's extension against the Writer's supported extensions. If it isn't supported, raises UnsupportedFiletypeError.""" if ext.startswith('.'): ext = ext[1:] if not any(ext in extension for extension in cls.supported_extensions): msg = ("Invalid extension for engine '{engine}': '{ext}'" .format(engine=pprint_thing(cls.engine), ext=pprint_thing(ext))) raise ValueError(msg) else: return True
python
def check_extension(cls, ext): """checks that path's extension against the Writer's supported extensions. If it isn't supported, raises UnsupportedFiletypeError.""" if ext.startswith('.'): ext = ext[1:] if not any(ext in extension for extension in cls.supported_extensions): msg = ("Invalid extension for engine '{engine}': '{ext}'" .format(engine=pprint_thing(cls.engine), ext=pprint_thing(ext))) raise ValueError(msg) else: return True
[ "def", "check_extension", "(", "cls", ",", "ext", ")", ":", "if", "ext", ".", "startswith", "(", "'.'", ")", ":", "ext", "=", "ext", "[", "1", ":", "]", "if", "not", "any", "(", "ext", "in", "extension", "for", "extension", "in", "cls", ".", "supported_extensions", ")", ":", "msg", "=", "(", "\"Invalid extension for engine '{engine}': '{ext}'\"", ".", "format", "(", "engine", "=", "pprint_thing", "(", "cls", ".", "engine", ")", ",", "ext", "=", "pprint_thing", "(", "ext", ")", ")", ")", "raise", "ValueError", "(", "msg", ")", "else", ":", "return", "True" ]
checks that path's extension against the Writer's supported extensions. If it isn't supported, raises UnsupportedFiletypeError.
[ "checks", "that", "path", "s", "extension", "against", "the", "Writer", "s", "supported", "extensions", ".", "If", "it", "isn", "t", "supported", "raises", "UnsupportedFiletypeError", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/excel/_base.py#L709-L720
20,413
pandas-dev/pandas
pandas/core/computation/pytables.py
_validate_where
def _validate_where(w): """ Validate that the where statement is of the right type. The type may either be String, Expr, or list-like of Exprs. Parameters ---------- w : String term expression, Expr, or list-like of Exprs. Returns ------- where : The original where clause if the check was successful. Raises ------ TypeError : An invalid data type was passed in for w (e.g. dict). """ if not (isinstance(w, (Expr, str)) or is_list_like(w)): raise TypeError("where must be passed as a string, Expr, " "or list-like of Exprs") return w
python
def _validate_where(w): """ Validate that the where statement is of the right type. The type may either be String, Expr, or list-like of Exprs. Parameters ---------- w : String term expression, Expr, or list-like of Exprs. Returns ------- where : The original where clause if the check was successful. Raises ------ TypeError : An invalid data type was passed in for w (e.g. dict). """ if not (isinstance(w, (Expr, str)) or is_list_like(w)): raise TypeError("where must be passed as a string, Expr, " "or list-like of Exprs") return w
[ "def", "_validate_where", "(", "w", ")", ":", "if", "not", "(", "isinstance", "(", "w", ",", "(", "Expr", ",", "str", ")", ")", "or", "is_list_like", "(", "w", ")", ")", ":", "raise", "TypeError", "(", "\"where must be passed as a string, Expr, \"", "\"or list-like of Exprs\"", ")", "return", "w" ]
Validate that the where statement is of the right type. The type may either be String, Expr, or list-like of Exprs. Parameters ---------- w : String term expression, Expr, or list-like of Exprs. Returns ------- where : The original where clause if the check was successful. Raises ------ TypeError : An invalid data type was passed in for w (e.g. dict).
[ "Validate", "that", "the", "where", "statement", "is", "of", "the", "right", "type", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/computation/pytables.py#L460-L483
20,414
pandas-dev/pandas
pandas/core/computation/pytables.py
maybe_expression
def maybe_expression(s): """ loose checking if s is a pytables-acceptable expression """ if not isinstance(s, str): return False ops = ExprVisitor.binary_ops + ExprVisitor.unary_ops + ('=',) # make sure we have an op at least return any(op in s for op in ops)
python
def maybe_expression(s): """ loose checking if s is a pytables-acceptable expression """ if not isinstance(s, str): return False ops = ExprVisitor.binary_ops + ExprVisitor.unary_ops + ('=',) # make sure we have an op at least return any(op in s for op in ops)
[ "def", "maybe_expression", "(", "s", ")", ":", "if", "not", "isinstance", "(", "s", ",", "str", ")", ":", "return", "False", "ops", "=", "ExprVisitor", ".", "binary_ops", "+", "ExprVisitor", ".", "unary_ops", "+", "(", "'='", ",", ")", "# make sure we have an op at least", "return", "any", "(", "op", "in", "s", "for", "op", "in", "ops", ")" ]
loose checking if s is a pytables-acceptable expression
[ "loose", "checking", "if", "s", "is", "a", "pytables", "-", "acceptable", "expression" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/computation/pytables.py#L598-L605
20,415
pandas-dev/pandas
pandas/core/computation/pytables.py
BinOp.conform
def conform(self, rhs): """ inplace conform rhs """ if not is_list_like(rhs): rhs = [rhs] if isinstance(rhs, np.ndarray): rhs = rhs.ravel() return rhs
python
def conform(self, rhs): """ inplace conform rhs """ if not is_list_like(rhs): rhs = [rhs] if isinstance(rhs, np.ndarray): rhs = rhs.ravel() return rhs
[ "def", "conform", "(", "self", ",", "rhs", ")", ":", "if", "not", "is_list_like", "(", "rhs", ")", ":", "rhs", "=", "[", "rhs", "]", "if", "isinstance", "(", "rhs", ",", "np", ".", "ndarray", ")", ":", "rhs", "=", "rhs", ".", "ravel", "(", ")", "return", "rhs" ]
inplace conform rhs
[ "inplace", "conform", "rhs" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/computation/pytables.py#L132-L138
20,416
pandas-dev/pandas
pandas/core/computation/pytables.py
BinOp.generate
def generate(self, v): """ create and return the op string for this TermValue """ val = v.tostring(self.encoding) return "({lhs} {op} {val})".format(lhs=self.lhs, op=self.op, val=val)
python
def generate(self, v): """ create and return the op string for this TermValue """ val = v.tostring(self.encoding) return "({lhs} {op} {val})".format(lhs=self.lhs, op=self.op, val=val)
[ "def", "generate", "(", "self", ",", "v", ")", ":", "val", "=", "v", ".", "tostring", "(", "self", ".", "encoding", ")", "return", "\"({lhs} {op} {val})\"", ".", "format", "(", "lhs", "=", "self", ".", "lhs", ",", "op", "=", "self", ".", "op", ",", "val", "=", "val", ")" ]
create and return the op string for this TermValue
[ "create", "and", "return", "the", "op", "string", "for", "this", "TermValue" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/computation/pytables.py#L166-L169
20,417
pandas-dev/pandas
pandas/core/computation/pytables.py
BinOp.convert_value
def convert_value(self, v): """ convert the expression that is in the term to something that is accepted by pytables """ def stringify(value): if self.encoding is not None: encoder = partial(pprint_thing_encoded, encoding=self.encoding) else: encoder = pprint_thing return encoder(value) kind = _ensure_decoded(self.kind) meta = _ensure_decoded(self.meta) if kind == 'datetime64' or kind == 'datetime': if isinstance(v, (int, float)): v = stringify(v) v = _ensure_decoded(v) v = Timestamp(v) if v.tz is not None: v = v.tz_convert('UTC') return TermValue(v, v.value, kind) elif kind == 'timedelta64' or kind == 'timedelta': v = Timedelta(v, unit='s').value return TermValue(int(v), v, kind) elif meta == 'category': metadata = com.values_from_object(self.metadata) result = metadata.searchsorted(v, side='left') # result returns 0 if v is first element or if v is not in metadata # check that metadata contains v if not result and v not in metadata: result = -1 return TermValue(result, result, 'integer') elif kind == 'integer': v = int(float(v)) return TermValue(v, v, kind) elif kind == 'float': v = float(v) return TermValue(v, v, kind) elif kind == 'bool': if isinstance(v, str): v = not v.strip().lower() in ['false', 'f', 'no', 'n', 'none', '0', '[]', '{}', ''] else: v = bool(v) return TermValue(v, v, kind) elif isinstance(v, str): # string quoting return TermValue(v, stringify(v), 'string') else: raise TypeError("Cannot compare {v} of type {typ} to {kind} column" .format(v=v, typ=type(v), kind=kind))
python
def convert_value(self, v): """ convert the expression that is in the term to something that is accepted by pytables """ def stringify(value): if self.encoding is not None: encoder = partial(pprint_thing_encoded, encoding=self.encoding) else: encoder = pprint_thing return encoder(value) kind = _ensure_decoded(self.kind) meta = _ensure_decoded(self.meta) if kind == 'datetime64' or kind == 'datetime': if isinstance(v, (int, float)): v = stringify(v) v = _ensure_decoded(v) v = Timestamp(v) if v.tz is not None: v = v.tz_convert('UTC') return TermValue(v, v.value, kind) elif kind == 'timedelta64' or kind == 'timedelta': v = Timedelta(v, unit='s').value return TermValue(int(v), v, kind) elif meta == 'category': metadata = com.values_from_object(self.metadata) result = metadata.searchsorted(v, side='left') # result returns 0 if v is first element or if v is not in metadata # check that metadata contains v if not result and v not in metadata: result = -1 return TermValue(result, result, 'integer') elif kind == 'integer': v = int(float(v)) return TermValue(v, v, kind) elif kind == 'float': v = float(v) return TermValue(v, v, kind) elif kind == 'bool': if isinstance(v, str): v = not v.strip().lower() in ['false', 'f', 'no', 'n', 'none', '0', '[]', '{}', ''] else: v = bool(v) return TermValue(v, v, kind) elif isinstance(v, str): # string quoting return TermValue(v, stringify(v), 'string') else: raise TypeError("Cannot compare {v} of type {typ} to {kind} column" .format(v=v, typ=type(v), kind=kind))
[ "def", "convert_value", "(", "self", ",", "v", ")", ":", "def", "stringify", "(", "value", ")", ":", "if", "self", ".", "encoding", "is", "not", "None", ":", "encoder", "=", "partial", "(", "pprint_thing_encoded", ",", "encoding", "=", "self", ".", "encoding", ")", "else", ":", "encoder", "=", "pprint_thing", "return", "encoder", "(", "value", ")", "kind", "=", "_ensure_decoded", "(", "self", ".", "kind", ")", "meta", "=", "_ensure_decoded", "(", "self", ".", "meta", ")", "if", "kind", "==", "'datetime64'", "or", "kind", "==", "'datetime'", ":", "if", "isinstance", "(", "v", ",", "(", "int", ",", "float", ")", ")", ":", "v", "=", "stringify", "(", "v", ")", "v", "=", "_ensure_decoded", "(", "v", ")", "v", "=", "Timestamp", "(", "v", ")", "if", "v", ".", "tz", "is", "not", "None", ":", "v", "=", "v", ".", "tz_convert", "(", "'UTC'", ")", "return", "TermValue", "(", "v", ",", "v", ".", "value", ",", "kind", ")", "elif", "kind", "==", "'timedelta64'", "or", "kind", "==", "'timedelta'", ":", "v", "=", "Timedelta", "(", "v", ",", "unit", "=", "'s'", ")", ".", "value", "return", "TermValue", "(", "int", "(", "v", ")", ",", "v", ",", "kind", ")", "elif", "meta", "==", "'category'", ":", "metadata", "=", "com", ".", "values_from_object", "(", "self", ".", "metadata", ")", "result", "=", "metadata", ".", "searchsorted", "(", "v", ",", "side", "=", "'left'", ")", "# result returns 0 if v is first element or if v is not in metadata", "# check that metadata contains v", "if", "not", "result", "and", "v", "not", "in", "metadata", ":", "result", "=", "-", "1", "return", "TermValue", "(", "result", ",", "result", ",", "'integer'", ")", "elif", "kind", "==", "'integer'", ":", "v", "=", "int", "(", "float", "(", "v", ")", ")", "return", "TermValue", "(", "v", ",", "v", ",", "kind", ")", "elif", "kind", "==", "'float'", ":", "v", "=", "float", "(", "v", ")", "return", "TermValue", "(", "v", ",", "v", ",", "kind", ")", "elif", "kind", "==", "'bool'", ":", "if", "isinstance", "(", "v", ",", "str", ")", ":", "v", "=", "not", "v", ".", "strip", "(", ")", ".", "lower", "(", ")", "in", "[", "'false'", ",", "'f'", ",", "'no'", ",", "'n'", ",", "'none'", ",", "'0'", ",", "'[]'", ",", "'{}'", ",", "''", "]", "else", ":", "v", "=", "bool", "(", "v", ")", "return", "TermValue", "(", "v", ",", "v", ",", "kind", ")", "elif", "isinstance", "(", "v", ",", "str", ")", ":", "# string quoting", "return", "TermValue", "(", "v", ",", "stringify", "(", "v", ")", ",", "'string'", ")", "else", ":", "raise", "TypeError", "(", "\"Cannot compare {v} of type {typ} to {kind} column\"", ".", "format", "(", "v", "=", "v", ",", "typ", "=", "type", "(", "v", ")", ",", "kind", "=", "kind", ")", ")" ]
convert the expression that is in the term to something that is accepted by pytables
[ "convert", "the", "expression", "that", "is", "in", "the", "term", "to", "something", "that", "is", "accepted", "by", "pytables" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/computation/pytables.py#L171-L224
20,418
pandas-dev/pandas
pandas/core/computation/pytables.py
FilterBinOp.invert
def invert(self): """ invert the filter """ if self.filter is not None: f = list(self.filter) f[1] = self.generate_filter_op(invert=True) self.filter = tuple(f) return self
python
def invert(self): """ invert the filter """ if self.filter is not None: f = list(self.filter) f[1] = self.generate_filter_op(invert=True) self.filter = tuple(f) return self
[ "def", "invert", "(", "self", ")", ":", "if", "self", ".", "filter", "is", "not", "None", ":", "f", "=", "list", "(", "self", ".", "filter", ")", "f", "[", "1", "]", "=", "self", ".", "generate_filter_op", "(", "invert", "=", "True", ")", "self", ".", "filter", "=", "tuple", "(", "f", ")", "return", "self" ]
invert the filter
[ "invert", "the", "filter" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/computation/pytables.py#L236-L242
20,419
pandas-dev/pandas
pandas/core/computation/pytables.py
Expr.evaluate
def evaluate(self): """ create and return the numexpr condition and filter """ try: self.condition = self.terms.prune(ConditionBinOp) except AttributeError: raise ValueError("cannot process expression [{expr}], [{slf}] " "is not a valid condition".format(expr=self.expr, slf=self)) try: self.filter = self.terms.prune(FilterBinOp) except AttributeError: raise ValueError("cannot process expression [{expr}], [{slf}] " "is not a valid filter".format(expr=self.expr, slf=self)) return self.condition, self.filter
python
def evaluate(self): """ create and return the numexpr condition and filter """ try: self.condition = self.terms.prune(ConditionBinOp) except AttributeError: raise ValueError("cannot process expression [{expr}], [{slf}] " "is not a valid condition".format(expr=self.expr, slf=self)) try: self.filter = self.terms.prune(FilterBinOp) except AttributeError: raise ValueError("cannot process expression [{expr}], [{slf}] " "is not a valid filter".format(expr=self.expr, slf=self)) return self.condition, self.filter
[ "def", "evaluate", "(", "self", ")", ":", "try", ":", "self", ".", "condition", "=", "self", ".", "terms", ".", "prune", "(", "ConditionBinOp", ")", "except", "AttributeError", ":", "raise", "ValueError", "(", "\"cannot process expression [{expr}], [{slf}] \"", "\"is not a valid condition\"", ".", "format", "(", "expr", "=", "self", ".", "expr", ",", "slf", "=", "self", ")", ")", "try", ":", "self", ".", "filter", "=", "self", ".", "terms", ".", "prune", "(", "FilterBinOp", ")", "except", "AttributeError", ":", "raise", "ValueError", "(", "\"cannot process expression [{expr}], [{slf}] \"", "\"is not a valid filter\"", ".", "format", "(", "expr", "=", "self", ".", "expr", ",", "slf", "=", "self", ")", ")", "return", "self", ".", "condition", ",", "self", ".", "filter" ]
create and return the numexpr condition and filter
[ "create", "and", "return", "the", "numexpr", "condition", "and", "filter" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/computation/pytables.py#L556-L572
20,420
pandas-dev/pandas
pandas/core/computation/pytables.py
TermValue.tostring
def tostring(self, encoding): """ quote the string if not encoded else encode and return """ if self.kind == 'string': if encoding is not None: return self.converted return '"{converted}"'.format(converted=self.converted) elif self.kind == 'float': # python 2 str(float) is not always # round-trippable so use repr() return repr(self.converted) return self.converted
python
def tostring(self, encoding): """ quote the string if not encoded else encode and return """ if self.kind == 'string': if encoding is not None: return self.converted return '"{converted}"'.format(converted=self.converted) elif self.kind == 'float': # python 2 str(float) is not always # round-trippable so use repr() return repr(self.converted) return self.converted
[ "def", "tostring", "(", "self", ",", "encoding", ")", ":", "if", "self", ".", "kind", "==", "'string'", ":", "if", "encoding", "is", "not", "None", ":", "return", "self", ".", "converted", "return", "'\"{converted}\"'", ".", "format", "(", "converted", "=", "self", ".", "converted", ")", "elif", "self", ".", "kind", "==", "'float'", ":", "# python 2 str(float) is not always", "# round-trippable so use repr()", "return", "repr", "(", "self", ".", "converted", ")", "return", "self", ".", "converted" ]
quote the string if not encoded else encode and return
[ "quote", "the", "string", "if", "not", "encoded", "else", "encode", "and", "return" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/computation/pytables.py#L584-L595
20,421
pandas-dev/pandas
pandas/compat/numpy/function.py
validate_argmin_with_skipna
def validate_argmin_with_skipna(skipna, args, kwargs): """ If 'Series.argmin' is called via the 'numpy' library, the third parameter in its signature is 'out', which takes either an ndarray or 'None', so check if the 'skipna' parameter is either an instance of ndarray or is None, since 'skipna' itself should be a boolean """ skipna, args = process_skipna(skipna, args) validate_argmin(args, kwargs) return skipna
python
def validate_argmin_with_skipna(skipna, args, kwargs): """ If 'Series.argmin' is called via the 'numpy' library, the third parameter in its signature is 'out', which takes either an ndarray or 'None', so check if the 'skipna' parameter is either an instance of ndarray or is None, since 'skipna' itself should be a boolean """ skipna, args = process_skipna(skipna, args) validate_argmin(args, kwargs) return skipna
[ "def", "validate_argmin_with_skipna", "(", "skipna", ",", "args", ",", "kwargs", ")", ":", "skipna", ",", "args", "=", "process_skipna", "(", "skipna", ",", "args", ")", "validate_argmin", "(", "args", ",", "kwargs", ")", "return", "skipna" ]
If 'Series.argmin' is called via the 'numpy' library, the third parameter in its signature is 'out', which takes either an ndarray or 'None', so check if the 'skipna' parameter is either an instance of ndarray or is None, since 'skipna' itself should be a boolean
[ "If", "Series", ".", "argmin", "is", "called", "via", "the", "numpy", "library", "the", "third", "parameter", "in", "its", "signature", "is", "out", "which", "takes", "either", "an", "ndarray", "or", "None", "so", "check", "if", "the", "skipna", "parameter", "is", "either", "an", "instance", "of", "ndarray", "or", "is", "None", "since", "skipna", "itself", "should", "be", "a", "boolean" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/compat/numpy/function.py#L77-L88
20,422
pandas-dev/pandas
pandas/compat/numpy/function.py
validate_argmax_with_skipna
def validate_argmax_with_skipna(skipna, args, kwargs): """ If 'Series.argmax' is called via the 'numpy' library, the third parameter in its signature is 'out', which takes either an ndarray or 'None', so check if the 'skipna' parameter is either an instance of ndarray or is None, since 'skipna' itself should be a boolean """ skipna, args = process_skipna(skipna, args) validate_argmax(args, kwargs) return skipna
python
def validate_argmax_with_skipna(skipna, args, kwargs): """ If 'Series.argmax' is called via the 'numpy' library, the third parameter in its signature is 'out', which takes either an ndarray or 'None', so check if the 'skipna' parameter is either an instance of ndarray or is None, since 'skipna' itself should be a boolean """ skipna, args = process_skipna(skipna, args) validate_argmax(args, kwargs) return skipna
[ "def", "validate_argmax_with_skipna", "(", "skipna", ",", "args", ",", "kwargs", ")", ":", "skipna", ",", "args", "=", "process_skipna", "(", "skipna", ",", "args", ")", "validate_argmax", "(", "args", ",", "kwargs", ")", "return", "skipna" ]
If 'Series.argmax' is called via the 'numpy' library, the third parameter in its signature is 'out', which takes either an ndarray or 'None', so check if the 'skipna' parameter is either an instance of ndarray or is None, since 'skipna' itself should be a boolean
[ "If", "Series", ".", "argmax", "is", "called", "via", "the", "numpy", "library", "the", "third", "parameter", "in", "its", "signature", "is", "out", "which", "takes", "either", "an", "ndarray", "or", "None", "so", "check", "if", "the", "skipna", "parameter", "is", "either", "an", "instance", "of", "ndarray", "or", "is", "None", "since", "skipna", "itself", "should", "be", "a", "boolean" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/compat/numpy/function.py#L91-L102
20,423
pandas-dev/pandas
pandas/compat/numpy/function.py
validate_argsort_with_ascending
def validate_argsort_with_ascending(ascending, args, kwargs): """ If 'Categorical.argsort' is called via the 'numpy' library, the first parameter in its signature is 'axis', which takes either an integer or 'None', so check if the 'ascending' parameter has either integer type or is None, since 'ascending' itself should be a boolean """ if is_integer(ascending) or ascending is None: args = (ascending,) + args ascending = True validate_argsort_kind(args, kwargs, max_fname_arg_count=3) return ascending
python
def validate_argsort_with_ascending(ascending, args, kwargs): """ If 'Categorical.argsort' is called via the 'numpy' library, the first parameter in its signature is 'axis', which takes either an integer or 'None', so check if the 'ascending' parameter has either integer type or is None, since 'ascending' itself should be a boolean """ if is_integer(ascending) or ascending is None: args = (ascending,) + args ascending = True validate_argsort_kind(args, kwargs, max_fname_arg_count=3) return ascending
[ "def", "validate_argsort_with_ascending", "(", "ascending", ",", "args", ",", "kwargs", ")", ":", "if", "is_integer", "(", "ascending", ")", "or", "ascending", "is", "None", ":", "args", "=", "(", "ascending", ",", ")", "+", "args", "ascending", "=", "True", "validate_argsort_kind", "(", "args", ",", "kwargs", ",", "max_fname_arg_count", "=", "3", ")", "return", "ascending" ]
If 'Categorical.argsort' is called via the 'numpy' library, the first parameter in its signature is 'axis', which takes either an integer or 'None', so check if the 'ascending' parameter has either integer type or is None, since 'ascending' itself should be a boolean
[ "If", "Categorical", ".", "argsort", "is", "called", "via", "the", "numpy", "library", "the", "first", "parameter", "in", "its", "signature", "is", "axis", "which", "takes", "either", "an", "integer", "or", "None", "so", "check", "if", "the", "ascending", "parameter", "has", "either", "integer", "type", "or", "is", "None", "since", "ascending", "itself", "should", "be", "a", "boolean" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/compat/numpy/function.py#L123-L137
20,424
pandas-dev/pandas
pandas/compat/numpy/function.py
validate_clip_with_axis
def validate_clip_with_axis(axis, args, kwargs): """ If 'NDFrame.clip' is called via the numpy library, the third parameter in its signature is 'out', which can takes an ndarray, so check if the 'axis' parameter is an instance of ndarray, since 'axis' itself should either be an integer or None """ if isinstance(axis, ndarray): args = (axis,) + args axis = None validate_clip(args, kwargs) return axis
python
def validate_clip_with_axis(axis, args, kwargs): """ If 'NDFrame.clip' is called via the numpy library, the third parameter in its signature is 'out', which can takes an ndarray, so check if the 'axis' parameter is an instance of ndarray, since 'axis' itself should either be an integer or None """ if isinstance(axis, ndarray): args = (axis,) + args axis = None validate_clip(args, kwargs) return axis
[ "def", "validate_clip_with_axis", "(", "axis", ",", "args", ",", "kwargs", ")", ":", "if", "isinstance", "(", "axis", ",", "ndarray", ")", ":", "args", "=", "(", "axis", ",", ")", "+", "args", "axis", "=", "None", "validate_clip", "(", "args", ",", "kwargs", ")", "return", "axis" ]
If 'NDFrame.clip' is called via the numpy library, the third parameter in its signature is 'out', which can takes an ndarray, so check if the 'axis' parameter is an instance of ndarray, since 'axis' itself should either be an integer or None
[ "If", "NDFrame", ".", "clip", "is", "called", "via", "the", "numpy", "library", "the", "third", "parameter", "in", "its", "signature", "is", "out", "which", "can", "takes", "an", "ndarray", "so", "check", "if", "the", "axis", "parameter", "is", "an", "instance", "of", "ndarray", "since", "axis", "itself", "should", "either", "be", "an", "integer", "or", "None" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/compat/numpy/function.py#L145-L158
20,425
pandas-dev/pandas
pandas/compat/numpy/function.py
validate_cum_func_with_skipna
def validate_cum_func_with_skipna(skipna, args, kwargs, name): """ If this function is called via the 'numpy' library, the third parameter in its signature is 'dtype', which takes either a 'numpy' dtype or 'None', so check if the 'skipna' parameter is a boolean or not """ if not is_bool(skipna): args = (skipna,) + args skipna = True validate_cum_func(args, kwargs, fname=name) return skipna
python
def validate_cum_func_with_skipna(skipna, args, kwargs, name): """ If this function is called via the 'numpy' library, the third parameter in its signature is 'dtype', which takes either a 'numpy' dtype or 'None', so check if the 'skipna' parameter is a boolean or not """ if not is_bool(skipna): args = (skipna,) + args skipna = True validate_cum_func(args, kwargs, fname=name) return skipna
[ "def", "validate_cum_func_with_skipna", "(", "skipna", ",", "args", ",", "kwargs", ",", "name", ")", ":", "if", "not", "is_bool", "(", "skipna", ")", ":", "args", "=", "(", "skipna", ",", ")", "+", "args", "skipna", "=", "True", "validate_cum_func", "(", "args", ",", "kwargs", ",", "fname", "=", "name", ")", "return", "skipna" ]
If this function is called via the 'numpy' library, the third parameter in its signature is 'dtype', which takes either a 'numpy' dtype or 'None', so check if the 'skipna' parameter is a boolean or not
[ "If", "this", "function", "is", "called", "via", "the", "numpy", "library", "the", "third", "parameter", "in", "its", "signature", "is", "dtype", "which", "takes", "either", "a", "numpy", "dtype", "or", "None", "so", "check", "if", "the", "skipna", "parameter", "is", "a", "boolean", "or", "not" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/compat/numpy/function.py#L176-L188
20,426
pandas-dev/pandas
pandas/compat/numpy/function.py
validate_take_with_convert
def validate_take_with_convert(convert, args, kwargs): """ If this function is called via the 'numpy' library, the third parameter in its signature is 'axis', which takes either an ndarray or 'None', so check if the 'convert' parameter is either an instance of ndarray or is None """ if isinstance(convert, ndarray) or convert is None: args = (convert,) + args convert = True validate_take(args, kwargs, max_fname_arg_count=3, method='both') return convert
python
def validate_take_with_convert(convert, args, kwargs): """ If this function is called via the 'numpy' library, the third parameter in its signature is 'axis', which takes either an ndarray or 'None', so check if the 'convert' parameter is either an instance of ndarray or is None """ if isinstance(convert, ndarray) or convert is None: args = (convert,) + args convert = True validate_take(args, kwargs, max_fname_arg_count=3, method='both') return convert
[ "def", "validate_take_with_convert", "(", "convert", ",", "args", ",", "kwargs", ")", ":", "if", "isinstance", "(", "convert", ",", "ndarray", ")", "or", "convert", "is", "None", ":", "args", "=", "(", "convert", ",", ")", "+", "args", "convert", "=", "True", "validate_take", "(", "args", ",", "kwargs", ",", "max_fname_arg_count", "=", "3", ",", "method", "=", "'both'", ")", "return", "convert" ]
If this function is called via the 'numpy' library, the third parameter in its signature is 'axis', which takes either an ndarray or 'None', so check if the 'convert' parameter is either an instance of ndarray or is None
[ "If", "this", "function", "is", "called", "via", "the", "numpy", "library", "the", "third", "parameter", "in", "its", "signature", "is", "axis", "which", "takes", "either", "an", "ndarray", "or", "None", "so", "check", "if", "the", "convert", "parameter", "is", "either", "an", "instance", "of", "ndarray", "or", "is", "None" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/compat/numpy/function.py#L269-L282
20,427
pandas-dev/pandas
pandas/compat/numpy/function.py
validate_groupby_func
def validate_groupby_func(name, args, kwargs, allowed=None): """ 'args' and 'kwargs' should be empty, except for allowed kwargs because all of their necessary parameters are explicitly listed in the function signature """ if allowed is None: allowed = [] kwargs = set(kwargs) - set(allowed) if len(args) + len(kwargs) > 0: raise UnsupportedFunctionCall(( "numpy operations are not valid " "with groupby. Use .groupby(...)." "{func}() instead".format(func=name)))
python
def validate_groupby_func(name, args, kwargs, allowed=None): """ 'args' and 'kwargs' should be empty, except for allowed kwargs because all of their necessary parameters are explicitly listed in the function signature """ if allowed is None: allowed = [] kwargs = set(kwargs) - set(allowed) if len(args) + len(kwargs) > 0: raise UnsupportedFunctionCall(( "numpy operations are not valid " "with groupby. Use .groupby(...)." "{func}() instead".format(func=name)))
[ "def", "validate_groupby_func", "(", "name", ",", "args", ",", "kwargs", ",", "allowed", "=", "None", ")", ":", "if", "allowed", "is", "None", ":", "allowed", "=", "[", "]", "kwargs", "=", "set", "(", "kwargs", ")", "-", "set", "(", "allowed", ")", "if", "len", "(", "args", ")", "+", "len", "(", "kwargs", ")", ">", "0", ":", "raise", "UnsupportedFunctionCall", "(", "(", "\"numpy operations are not valid \"", "\"with groupby. Use .groupby(...).\"", "\"{func}() instead\"", ".", "format", "(", "func", "=", "name", ")", ")", ")" ]
'args' and 'kwargs' should be empty, except for allowed kwargs because all of their necessary parameters are explicitly listed in the function signature
[ "args", "and", "kwargs", "should", "be", "empty", "except", "for", "allowed", "kwargs", "because", "all", "of", "their", "necessary", "parameters", "are", "explicitly", "listed", "in", "the", "function", "signature" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/compat/numpy/function.py#L349-L365
20,428
pandas-dev/pandas
pandas/compat/numpy/function.py
validate_resampler_func
def validate_resampler_func(method, args, kwargs): """ 'args' and 'kwargs' should be empty because all of their necessary parameters are explicitly listed in the function signature """ if len(args) + len(kwargs) > 0: if method in RESAMPLER_NUMPY_OPS: raise UnsupportedFunctionCall(( "numpy operations are not valid " "with resample. Use .resample(...)." "{func}() instead".format(func=method))) else: raise TypeError("too many arguments passed in")
python
def validate_resampler_func(method, args, kwargs): """ 'args' and 'kwargs' should be empty because all of their necessary parameters are explicitly listed in the function signature """ if len(args) + len(kwargs) > 0: if method in RESAMPLER_NUMPY_OPS: raise UnsupportedFunctionCall(( "numpy operations are not valid " "with resample. Use .resample(...)." "{func}() instead".format(func=method))) else: raise TypeError("too many arguments passed in")
[ "def", "validate_resampler_func", "(", "method", ",", "args", ",", "kwargs", ")", ":", "if", "len", "(", "args", ")", "+", "len", "(", "kwargs", ")", ">", "0", ":", "if", "method", "in", "RESAMPLER_NUMPY_OPS", ":", "raise", "UnsupportedFunctionCall", "(", "(", "\"numpy operations are not valid \"", "\"with resample. Use .resample(...).\"", "\"{func}() instead\"", ".", "format", "(", "func", "=", "method", ")", ")", ")", "else", ":", "raise", "TypeError", "(", "\"too many arguments passed in\"", ")" ]
'args' and 'kwargs' should be empty because all of their necessary parameters are explicitly listed in the function signature
[ "args", "and", "kwargs", "should", "be", "empty", "because", "all", "of", "their", "necessary", "parameters", "are", "explicitly", "listed", "in", "the", "function", "signature" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/compat/numpy/function.py#L372-L385
20,429
pandas-dev/pandas
pandas/compat/numpy/function.py
validate_minmax_axis
def validate_minmax_axis(axis): """ Ensure that the axis argument passed to min, max, argmin, or argmax is zero or None, as otherwise it will be incorrectly ignored. Parameters ---------- axis : int or None Raises ------ ValueError """ ndim = 1 # hard-coded for Index if axis is None: return if axis >= ndim or (axis < 0 and ndim + axis < 0): raise ValueError("`axis` must be fewer than the number of " "dimensions ({ndim})".format(ndim=ndim))
python
def validate_minmax_axis(axis): """ Ensure that the axis argument passed to min, max, argmin, or argmax is zero or None, as otherwise it will be incorrectly ignored. Parameters ---------- axis : int or None Raises ------ ValueError """ ndim = 1 # hard-coded for Index if axis is None: return if axis >= ndim or (axis < 0 and ndim + axis < 0): raise ValueError("`axis` must be fewer than the number of " "dimensions ({ndim})".format(ndim=ndim))
[ "def", "validate_minmax_axis", "(", "axis", ")", ":", "ndim", "=", "1", "# hard-coded for Index", "if", "axis", "is", "None", ":", "return", "if", "axis", ">=", "ndim", "or", "(", "axis", "<", "0", "and", "ndim", "+", "axis", "<", "0", ")", ":", "raise", "ValueError", "(", "\"`axis` must be fewer than the number of \"", "\"dimensions ({ndim})\"", ".", "format", "(", "ndim", "=", "ndim", ")", ")" ]
Ensure that the axis argument passed to min, max, argmin, or argmax is zero or None, as otherwise it will be incorrectly ignored. Parameters ---------- axis : int or None Raises ------ ValueError
[ "Ensure", "that", "the", "axis", "argument", "passed", "to", "min", "max", "argmin", "or", "argmax", "is", "zero", "or", "None", "as", "otherwise", "it", "will", "be", "incorrectly", "ignored", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/compat/numpy/function.py#L388-L406
20,430
pandas-dev/pandas
pandas/io/packers.py
read_msgpack
def read_msgpack(path_or_buf, encoding='utf-8', iterator=False, **kwargs): """ Load msgpack pandas object from the specified file path THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release. Parameters ---------- path_or_buf : string File path, BytesIO like or string encoding : Encoding for decoding msgpack str type iterator : boolean, if True, return an iterator to the unpacker (default is False) Returns ------- obj : same type as object stored in file """ path_or_buf, _, _, should_close = get_filepath_or_buffer(path_or_buf) if iterator: return Iterator(path_or_buf) def read(fh): unpacked_obj = list(unpack(fh, encoding=encoding, **kwargs)) if len(unpacked_obj) == 1: return unpacked_obj[0] if should_close: try: path_or_buf.close() except IOError: pass return unpacked_obj # see if we have an actual file if isinstance(path_or_buf, str): try: exists = os.path.exists(path_or_buf) except (TypeError, ValueError): exists = False if exists: with open(path_or_buf, 'rb') as fh: return read(fh) if isinstance(path_or_buf, bytes): # treat as a binary-like fh = None try: fh = BytesIO(path_or_buf) return read(fh) finally: if fh is not None: fh.close() elif hasattr(path_or_buf, 'read') and callable(path_or_buf.read): # treat as a buffer like return read(path_or_buf) raise ValueError('path_or_buf needs to be a string file path or file-like')
python
def read_msgpack(path_or_buf, encoding='utf-8', iterator=False, **kwargs): """ Load msgpack pandas object from the specified file path THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release. Parameters ---------- path_or_buf : string File path, BytesIO like or string encoding : Encoding for decoding msgpack str type iterator : boolean, if True, return an iterator to the unpacker (default is False) Returns ------- obj : same type as object stored in file """ path_or_buf, _, _, should_close = get_filepath_or_buffer(path_or_buf) if iterator: return Iterator(path_or_buf) def read(fh): unpacked_obj = list(unpack(fh, encoding=encoding, **kwargs)) if len(unpacked_obj) == 1: return unpacked_obj[0] if should_close: try: path_or_buf.close() except IOError: pass return unpacked_obj # see if we have an actual file if isinstance(path_or_buf, str): try: exists = os.path.exists(path_or_buf) except (TypeError, ValueError): exists = False if exists: with open(path_or_buf, 'rb') as fh: return read(fh) if isinstance(path_or_buf, bytes): # treat as a binary-like fh = None try: fh = BytesIO(path_or_buf) return read(fh) finally: if fh is not None: fh.close() elif hasattr(path_or_buf, 'read') and callable(path_or_buf.read): # treat as a buffer like return read(path_or_buf) raise ValueError('path_or_buf needs to be a string file path or file-like')
[ "def", "read_msgpack", "(", "path_or_buf", ",", "encoding", "=", "'utf-8'", ",", "iterator", "=", "False", ",", "*", "*", "kwargs", ")", ":", "path_or_buf", ",", "_", ",", "_", ",", "should_close", "=", "get_filepath_or_buffer", "(", "path_or_buf", ")", "if", "iterator", ":", "return", "Iterator", "(", "path_or_buf", ")", "def", "read", "(", "fh", ")", ":", "unpacked_obj", "=", "list", "(", "unpack", "(", "fh", ",", "encoding", "=", "encoding", ",", "*", "*", "kwargs", ")", ")", "if", "len", "(", "unpacked_obj", ")", "==", "1", ":", "return", "unpacked_obj", "[", "0", "]", "if", "should_close", ":", "try", ":", "path_or_buf", ".", "close", "(", ")", "except", "IOError", ":", "pass", "return", "unpacked_obj", "# see if we have an actual file", "if", "isinstance", "(", "path_or_buf", ",", "str", ")", ":", "try", ":", "exists", "=", "os", ".", "path", ".", "exists", "(", "path_or_buf", ")", "except", "(", "TypeError", ",", "ValueError", ")", ":", "exists", "=", "False", "if", "exists", ":", "with", "open", "(", "path_or_buf", ",", "'rb'", ")", "as", "fh", ":", "return", "read", "(", "fh", ")", "if", "isinstance", "(", "path_or_buf", ",", "bytes", ")", ":", "# treat as a binary-like", "fh", "=", "None", "try", ":", "fh", "=", "BytesIO", "(", "path_or_buf", ")", "return", "read", "(", "fh", ")", "finally", ":", "if", "fh", "is", "not", "None", ":", "fh", ".", "close", "(", ")", "elif", "hasattr", "(", "path_or_buf", ",", "'read'", ")", "and", "callable", "(", "path_or_buf", ".", "read", ")", ":", "# treat as a buffer like", "return", "read", "(", "path_or_buf", ")", "raise", "ValueError", "(", "'path_or_buf needs to be a string file path or file-like'", ")" ]
Load msgpack pandas object from the specified file path THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release. Parameters ---------- path_or_buf : string File path, BytesIO like or string encoding : Encoding for decoding msgpack str type iterator : boolean, if True, return an iterator to the unpacker (default is False) Returns ------- obj : same type as object stored in file
[ "Load", "msgpack", "pandas", "object", "from", "the", "specified", "file", "path" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/packers.py#L160-L219
20,431
pandas-dev/pandas
pandas/io/packers.py
dtype_for
def dtype_for(t): """ return my dtype mapping, whether number or name """ if t in dtype_dict: return dtype_dict[t] return np.typeDict.get(t, t)
python
def dtype_for(t): """ return my dtype mapping, whether number or name """ if t in dtype_dict: return dtype_dict[t] return np.typeDict.get(t, t)
[ "def", "dtype_for", "(", "t", ")", ":", "if", "t", "in", "dtype_dict", ":", "return", "dtype_dict", "[", "t", "]", "return", "np", ".", "typeDict", ".", "get", "(", "t", ",", "t", ")" ]
return my dtype mapping, whether number or name
[ "return", "my", "dtype", "mapping", "whether", "number", "or", "name" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/packers.py#L236-L240
20,432
pandas-dev/pandas
pandas/io/packers.py
c2f
def c2f(r, i, ctype_name): """ Convert strings to complex number instance with specified numpy type. """ ftype = c2f_dict[ctype_name] return np.typeDict[ctype_name](ftype(r) + 1j * ftype(i))
python
def c2f(r, i, ctype_name): """ Convert strings to complex number instance with specified numpy type. """ ftype = c2f_dict[ctype_name] return np.typeDict[ctype_name](ftype(r) + 1j * ftype(i))
[ "def", "c2f", "(", "r", ",", "i", ",", "ctype_name", ")", ":", "ftype", "=", "c2f_dict", "[", "ctype_name", "]", "return", "np", ".", "typeDict", "[", "ctype_name", "]", "(", "ftype", "(", "r", ")", "+", "1j", "*", "ftype", "(", "i", ")", ")" ]
Convert strings to complex number instance with specified numpy type.
[ "Convert", "strings", "to", "complex", "number", "instance", "with", "specified", "numpy", "type", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/packers.py#L252-L258
20,433
pandas-dev/pandas
pandas/io/packers.py
convert
def convert(values): """ convert the numpy values to a list """ dtype = values.dtype if is_categorical_dtype(values): return values elif is_object_dtype(dtype): return values.ravel().tolist() if needs_i8_conversion(dtype): values = values.view('i8') v = values.ravel() if compressor == 'zlib': _check_zlib() # return string arrays like they are if dtype == np.object_: return v.tolist() # convert to a bytes array v = v.tostring() return ExtType(0, zlib.compress(v)) elif compressor == 'blosc': _check_blosc() # return string arrays like they are if dtype == np.object_: return v.tolist() # convert to a bytes array v = v.tostring() return ExtType(0, blosc.compress(v, typesize=dtype.itemsize)) # ndarray (on original dtype) return ExtType(0, v.tostring())
python
def convert(values): """ convert the numpy values to a list """ dtype = values.dtype if is_categorical_dtype(values): return values elif is_object_dtype(dtype): return values.ravel().tolist() if needs_i8_conversion(dtype): values = values.view('i8') v = values.ravel() if compressor == 'zlib': _check_zlib() # return string arrays like they are if dtype == np.object_: return v.tolist() # convert to a bytes array v = v.tostring() return ExtType(0, zlib.compress(v)) elif compressor == 'blosc': _check_blosc() # return string arrays like they are if dtype == np.object_: return v.tolist() # convert to a bytes array v = v.tostring() return ExtType(0, blosc.compress(v, typesize=dtype.itemsize)) # ndarray (on original dtype) return ExtType(0, v.tostring())
[ "def", "convert", "(", "values", ")", ":", "dtype", "=", "values", ".", "dtype", "if", "is_categorical_dtype", "(", "values", ")", ":", "return", "values", "elif", "is_object_dtype", "(", "dtype", ")", ":", "return", "values", ".", "ravel", "(", ")", ".", "tolist", "(", ")", "if", "needs_i8_conversion", "(", "dtype", ")", ":", "values", "=", "values", ".", "view", "(", "'i8'", ")", "v", "=", "values", ".", "ravel", "(", ")", "if", "compressor", "==", "'zlib'", ":", "_check_zlib", "(", ")", "# return string arrays like they are", "if", "dtype", "==", "np", ".", "object_", ":", "return", "v", ".", "tolist", "(", ")", "# convert to a bytes array", "v", "=", "v", ".", "tostring", "(", ")", "return", "ExtType", "(", "0", ",", "zlib", ".", "compress", "(", "v", ")", ")", "elif", "compressor", "==", "'blosc'", ":", "_check_blosc", "(", ")", "# return string arrays like they are", "if", "dtype", "==", "np", ".", "object_", ":", "return", "v", ".", "tolist", "(", ")", "# convert to a bytes array", "v", "=", "v", ".", "tostring", "(", ")", "return", "ExtType", "(", "0", ",", "blosc", ".", "compress", "(", "v", ",", "typesize", "=", "dtype", ".", "itemsize", ")", ")", "# ndarray (on original dtype)", "return", "ExtType", "(", "0", ",", "v", ".", "tostring", "(", ")", ")" ]
convert the numpy values to a list
[ "convert", "the", "numpy", "values", "to", "a", "list" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/packers.py#L261-L299
20,434
pandas-dev/pandas
pandas/io/packers.py
pack
def pack(o, default=encode, encoding='utf-8', unicode_errors='strict', use_single_float=False, autoreset=1, use_bin_type=1): """ Pack an object and return the packed bytes. """ return Packer(default=default, encoding=encoding, unicode_errors=unicode_errors, use_single_float=use_single_float, autoreset=autoreset, use_bin_type=use_bin_type).pack(o)
python
def pack(o, default=encode, encoding='utf-8', unicode_errors='strict', use_single_float=False, autoreset=1, use_bin_type=1): """ Pack an object and return the packed bytes. """ return Packer(default=default, encoding=encoding, unicode_errors=unicode_errors, use_single_float=use_single_float, autoreset=autoreset, use_bin_type=use_bin_type).pack(o)
[ "def", "pack", "(", "o", ",", "default", "=", "encode", ",", "encoding", "=", "'utf-8'", ",", "unicode_errors", "=", "'strict'", ",", "use_single_float", "=", "False", ",", "autoreset", "=", "1", ",", "use_bin_type", "=", "1", ")", ":", "return", "Packer", "(", "default", "=", "default", ",", "encoding", "=", "encoding", ",", "unicode_errors", "=", "unicode_errors", ",", "use_single_float", "=", "use_single_float", ",", "autoreset", "=", "autoreset", ",", "use_bin_type", "=", "use_bin_type", ")", ".", "pack", "(", "o", ")" ]
Pack an object and return the packed bytes.
[ "Pack", "an", "object", "and", "return", "the", "packed", "bytes", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/packers.py#L714-L725
20,435
pandas-dev/pandas
pandas/io/json/json.py
read_json
def read_json(path_or_buf=None, orient=None, typ='frame', dtype=None, convert_axes=None, convert_dates=True, keep_default_dates=True, numpy=False, precise_float=False, date_unit=None, encoding=None, lines=False, chunksize=None, compression='infer'): """ Convert a JSON string to pandas object. Parameters ---------- path_or_buf : a valid JSON string or file-like, default: None The string could be a URL. Valid URL schemes include http, ftp, s3, gcs, and file. For file URLs, a host is expected. For instance, a local file could be ``file://localhost/path/to/table.json`` orient : string, Indication of expected JSON string format. Compatible JSON strings can be produced by ``to_json()`` with a corresponding orient value. The set of possible orients is: - ``'split'`` : dict like ``{index -> [index], columns -> [columns], data -> [values]}`` - ``'records'`` : list like ``[{column -> value}, ... , {column -> value}]`` - ``'index'`` : dict like ``{index -> {column -> value}}`` - ``'columns'`` : dict like ``{column -> {index -> value}}`` - ``'values'`` : just the values array The allowed and default values depend on the value of the `typ` parameter. * when ``typ == 'series'``, - allowed orients are ``{'split','records','index'}`` - default is ``'index'`` - The Series index must be unique for orient ``'index'``. * when ``typ == 'frame'``, - allowed orients are ``{'split','records','index', 'columns','values', 'table'}`` - default is ``'columns'`` - The DataFrame index must be unique for orients ``'index'`` and ``'columns'``. - The DataFrame columns must be unique for orients ``'index'``, ``'columns'``, and ``'records'``. .. versionadded:: 0.23.0 'table' as an allowed value for the ``orient`` argument typ : type of object to recover (series or frame), default 'frame' dtype : boolean or dict, default None If True, infer dtypes; if a dict of column to dtype, then use those; if False, then don't infer dtypes at all, applies only to the data. For all ``orient`` values except ``'table'``, default is True. .. versionchanged:: 0.25.0 Not applicable for ``orient='table'``. convert_axes : boolean, default None Try to convert the axes to the proper dtypes. For all ``orient`` values except ``'table'``, default is True. .. versionchanged:: 0.25.0 Not applicable for ``orient='table'``. convert_dates : boolean, default True List of columns to parse for dates; If True, then try to parse datelike columns default is True; a column label is datelike if * it ends with ``'_at'``, * it ends with ``'_time'``, * it begins with ``'timestamp'``, * it is ``'modified'``, or * it is ``'date'`` keep_default_dates : boolean, default True If parsing dates, then parse the default datelike columns numpy : boolean, default False Direct decoding to numpy arrays. Supports numeric data only, but non-numeric column and index labels are supported. Note also that the JSON ordering MUST be the same for each term if numpy=True. precise_float : boolean, default False Set to enable usage of higher precision (strtod) function when decoding string to double values. Default (False) is to use fast but less precise builtin functionality date_unit : string, default None The timestamp unit to detect if converting dates. The default behaviour is to try and detect the correct precision, but if this is not desired then pass one of 's', 'ms', 'us' or 'ns' to force parsing only seconds, milliseconds, microseconds or nanoseconds respectively. encoding : str, default is 'utf-8' The encoding to use to decode py3 bytes. .. versionadded:: 0.19.0 lines : boolean, default False Read the file as a json object per line. .. versionadded:: 0.19.0 chunksize : integer, default None Return JsonReader object for iteration. See the `line-delimted json docs <http://pandas.pydata.org/pandas-docs/stable/io.html#io-jsonl>`_ for more information on ``chunksize``. This can only be passed if `lines=True`. If this is None, the file will be read into memory all at once. .. versionadded:: 0.21.0 compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer' For on-the-fly decompression of on-disk data. If 'infer', then use gzip, bz2, zip or xz if path_or_buf is a string ending in '.gz', '.bz2', '.zip', or 'xz', respectively, and no decompression otherwise. If using 'zip', the ZIP file must contain only one data file to be read in. Set to None for no decompression. .. versionadded:: 0.21.0 Returns ------- result : Series or DataFrame, depending on the value of `typ`. See Also -------- DataFrame.to_json Notes ----- Specific to ``orient='table'``, if a :class:`DataFrame` with a literal :class:`Index` name of `index` gets written with :func:`to_json`, the subsequent read operation will incorrectly set the :class:`Index` name to ``None``. This is because `index` is also used by :func:`DataFrame.to_json` to denote a missing :class:`Index` name, and the subsequent :func:`read_json` operation cannot distinguish between the two. The same limitation is encountered with a :class:`MultiIndex` and any names beginning with ``'level_'``. Examples -------- >>> df = pd.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2']) Encoding/decoding a Dataframe using ``'split'`` formatted JSON: >>> df.to_json(orient='split') '{"columns":["col 1","col 2"], "index":["row 1","row 2"], "data":[["a","b"],["c","d"]]}' >>> pd.read_json(_, orient='split') col 1 col 2 row 1 a b row 2 c d Encoding/decoding a Dataframe using ``'index'`` formatted JSON: >>> df.to_json(orient='index') '{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}' >>> pd.read_json(_, orient='index') col 1 col 2 row 1 a b row 2 c d Encoding/decoding a Dataframe using ``'records'`` formatted JSON. Note that index labels are not preserved with this encoding. >>> df.to_json(orient='records') '[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]' >>> pd.read_json(_, orient='records') col 1 col 2 0 a b 1 c d Encoding with Table Schema >>> df.to_json(orient='table') '{"schema": {"fields": [{"name": "index", "type": "string"}, {"name": "col 1", "type": "string"}, {"name": "col 2", "type": "string"}], "primaryKey": "index", "pandas_version": "0.20.0"}, "data": [{"index": "row 1", "col 1": "a", "col 2": "b"}, {"index": "row 2", "col 1": "c", "col 2": "d"}]}' """ if orient == 'table' and dtype: raise ValueError("cannot pass both dtype and orient='table'") if orient == 'table' and convert_axes: raise ValueError("cannot pass both convert_axes and orient='table'") if dtype is None and orient != 'table': dtype = True if convert_axes is None and orient != 'table': convert_axes = True compression = _infer_compression(path_or_buf, compression) filepath_or_buffer, _, compression, should_close = get_filepath_or_buffer( path_or_buf, encoding=encoding, compression=compression, ) json_reader = JsonReader( filepath_or_buffer, orient=orient, typ=typ, dtype=dtype, convert_axes=convert_axes, convert_dates=convert_dates, keep_default_dates=keep_default_dates, numpy=numpy, precise_float=precise_float, date_unit=date_unit, encoding=encoding, lines=lines, chunksize=chunksize, compression=compression, ) if chunksize: return json_reader result = json_reader.read() if should_close: try: filepath_or_buffer.close() except: # noqa: flake8 pass return result
python
def read_json(path_or_buf=None, orient=None, typ='frame', dtype=None, convert_axes=None, convert_dates=True, keep_default_dates=True, numpy=False, precise_float=False, date_unit=None, encoding=None, lines=False, chunksize=None, compression='infer'): """ Convert a JSON string to pandas object. Parameters ---------- path_or_buf : a valid JSON string or file-like, default: None The string could be a URL. Valid URL schemes include http, ftp, s3, gcs, and file. For file URLs, a host is expected. For instance, a local file could be ``file://localhost/path/to/table.json`` orient : string, Indication of expected JSON string format. Compatible JSON strings can be produced by ``to_json()`` with a corresponding orient value. The set of possible orients is: - ``'split'`` : dict like ``{index -> [index], columns -> [columns], data -> [values]}`` - ``'records'`` : list like ``[{column -> value}, ... , {column -> value}]`` - ``'index'`` : dict like ``{index -> {column -> value}}`` - ``'columns'`` : dict like ``{column -> {index -> value}}`` - ``'values'`` : just the values array The allowed and default values depend on the value of the `typ` parameter. * when ``typ == 'series'``, - allowed orients are ``{'split','records','index'}`` - default is ``'index'`` - The Series index must be unique for orient ``'index'``. * when ``typ == 'frame'``, - allowed orients are ``{'split','records','index', 'columns','values', 'table'}`` - default is ``'columns'`` - The DataFrame index must be unique for orients ``'index'`` and ``'columns'``. - The DataFrame columns must be unique for orients ``'index'``, ``'columns'``, and ``'records'``. .. versionadded:: 0.23.0 'table' as an allowed value for the ``orient`` argument typ : type of object to recover (series or frame), default 'frame' dtype : boolean or dict, default None If True, infer dtypes; if a dict of column to dtype, then use those; if False, then don't infer dtypes at all, applies only to the data. For all ``orient`` values except ``'table'``, default is True. .. versionchanged:: 0.25.0 Not applicable for ``orient='table'``. convert_axes : boolean, default None Try to convert the axes to the proper dtypes. For all ``orient`` values except ``'table'``, default is True. .. versionchanged:: 0.25.0 Not applicable for ``orient='table'``. convert_dates : boolean, default True List of columns to parse for dates; If True, then try to parse datelike columns default is True; a column label is datelike if * it ends with ``'_at'``, * it ends with ``'_time'``, * it begins with ``'timestamp'``, * it is ``'modified'``, or * it is ``'date'`` keep_default_dates : boolean, default True If parsing dates, then parse the default datelike columns numpy : boolean, default False Direct decoding to numpy arrays. Supports numeric data only, but non-numeric column and index labels are supported. Note also that the JSON ordering MUST be the same for each term if numpy=True. precise_float : boolean, default False Set to enable usage of higher precision (strtod) function when decoding string to double values. Default (False) is to use fast but less precise builtin functionality date_unit : string, default None The timestamp unit to detect if converting dates. The default behaviour is to try and detect the correct precision, but if this is not desired then pass one of 's', 'ms', 'us' or 'ns' to force parsing only seconds, milliseconds, microseconds or nanoseconds respectively. encoding : str, default is 'utf-8' The encoding to use to decode py3 bytes. .. versionadded:: 0.19.0 lines : boolean, default False Read the file as a json object per line. .. versionadded:: 0.19.0 chunksize : integer, default None Return JsonReader object for iteration. See the `line-delimted json docs <http://pandas.pydata.org/pandas-docs/stable/io.html#io-jsonl>`_ for more information on ``chunksize``. This can only be passed if `lines=True`. If this is None, the file will be read into memory all at once. .. versionadded:: 0.21.0 compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer' For on-the-fly decompression of on-disk data. If 'infer', then use gzip, bz2, zip or xz if path_or_buf is a string ending in '.gz', '.bz2', '.zip', or 'xz', respectively, and no decompression otherwise. If using 'zip', the ZIP file must contain only one data file to be read in. Set to None for no decompression. .. versionadded:: 0.21.0 Returns ------- result : Series or DataFrame, depending on the value of `typ`. See Also -------- DataFrame.to_json Notes ----- Specific to ``orient='table'``, if a :class:`DataFrame` with a literal :class:`Index` name of `index` gets written with :func:`to_json`, the subsequent read operation will incorrectly set the :class:`Index` name to ``None``. This is because `index` is also used by :func:`DataFrame.to_json` to denote a missing :class:`Index` name, and the subsequent :func:`read_json` operation cannot distinguish between the two. The same limitation is encountered with a :class:`MultiIndex` and any names beginning with ``'level_'``. Examples -------- >>> df = pd.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2']) Encoding/decoding a Dataframe using ``'split'`` formatted JSON: >>> df.to_json(orient='split') '{"columns":["col 1","col 2"], "index":["row 1","row 2"], "data":[["a","b"],["c","d"]]}' >>> pd.read_json(_, orient='split') col 1 col 2 row 1 a b row 2 c d Encoding/decoding a Dataframe using ``'index'`` formatted JSON: >>> df.to_json(orient='index') '{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}' >>> pd.read_json(_, orient='index') col 1 col 2 row 1 a b row 2 c d Encoding/decoding a Dataframe using ``'records'`` formatted JSON. Note that index labels are not preserved with this encoding. >>> df.to_json(orient='records') '[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]' >>> pd.read_json(_, orient='records') col 1 col 2 0 a b 1 c d Encoding with Table Schema >>> df.to_json(orient='table') '{"schema": {"fields": [{"name": "index", "type": "string"}, {"name": "col 1", "type": "string"}, {"name": "col 2", "type": "string"}], "primaryKey": "index", "pandas_version": "0.20.0"}, "data": [{"index": "row 1", "col 1": "a", "col 2": "b"}, {"index": "row 2", "col 1": "c", "col 2": "d"}]}' """ if orient == 'table' and dtype: raise ValueError("cannot pass both dtype and orient='table'") if orient == 'table' and convert_axes: raise ValueError("cannot pass both convert_axes and orient='table'") if dtype is None and orient != 'table': dtype = True if convert_axes is None and orient != 'table': convert_axes = True compression = _infer_compression(path_or_buf, compression) filepath_or_buffer, _, compression, should_close = get_filepath_or_buffer( path_or_buf, encoding=encoding, compression=compression, ) json_reader = JsonReader( filepath_or_buffer, orient=orient, typ=typ, dtype=dtype, convert_axes=convert_axes, convert_dates=convert_dates, keep_default_dates=keep_default_dates, numpy=numpy, precise_float=precise_float, date_unit=date_unit, encoding=encoding, lines=lines, chunksize=chunksize, compression=compression, ) if chunksize: return json_reader result = json_reader.read() if should_close: try: filepath_or_buffer.close() except: # noqa: flake8 pass return result
[ "def", "read_json", "(", "path_or_buf", "=", "None", ",", "orient", "=", "None", ",", "typ", "=", "'frame'", ",", "dtype", "=", "None", ",", "convert_axes", "=", "None", ",", "convert_dates", "=", "True", ",", "keep_default_dates", "=", "True", ",", "numpy", "=", "False", ",", "precise_float", "=", "False", ",", "date_unit", "=", "None", ",", "encoding", "=", "None", ",", "lines", "=", "False", ",", "chunksize", "=", "None", ",", "compression", "=", "'infer'", ")", ":", "if", "orient", "==", "'table'", "and", "dtype", ":", "raise", "ValueError", "(", "\"cannot pass both dtype and orient='table'\"", ")", "if", "orient", "==", "'table'", "and", "convert_axes", ":", "raise", "ValueError", "(", "\"cannot pass both convert_axes and orient='table'\"", ")", "if", "dtype", "is", "None", "and", "orient", "!=", "'table'", ":", "dtype", "=", "True", "if", "convert_axes", "is", "None", "and", "orient", "!=", "'table'", ":", "convert_axes", "=", "True", "compression", "=", "_infer_compression", "(", "path_or_buf", ",", "compression", ")", "filepath_or_buffer", ",", "_", ",", "compression", ",", "should_close", "=", "get_filepath_or_buffer", "(", "path_or_buf", ",", "encoding", "=", "encoding", ",", "compression", "=", "compression", ",", ")", "json_reader", "=", "JsonReader", "(", "filepath_or_buffer", ",", "orient", "=", "orient", ",", "typ", "=", "typ", ",", "dtype", "=", "dtype", ",", "convert_axes", "=", "convert_axes", ",", "convert_dates", "=", "convert_dates", ",", "keep_default_dates", "=", "keep_default_dates", ",", "numpy", "=", "numpy", ",", "precise_float", "=", "precise_float", ",", "date_unit", "=", "date_unit", ",", "encoding", "=", "encoding", ",", "lines", "=", "lines", ",", "chunksize", "=", "chunksize", ",", "compression", "=", "compression", ",", ")", "if", "chunksize", ":", "return", "json_reader", "result", "=", "json_reader", ".", "read", "(", ")", "if", "should_close", ":", "try", ":", "filepath_or_buffer", ".", "close", "(", ")", "except", ":", "# noqa: flake8", "pass", "return", "result" ]
Convert a JSON string to pandas object. Parameters ---------- path_or_buf : a valid JSON string or file-like, default: None The string could be a URL. Valid URL schemes include http, ftp, s3, gcs, and file. For file URLs, a host is expected. For instance, a local file could be ``file://localhost/path/to/table.json`` orient : string, Indication of expected JSON string format. Compatible JSON strings can be produced by ``to_json()`` with a corresponding orient value. The set of possible orients is: - ``'split'`` : dict like ``{index -> [index], columns -> [columns], data -> [values]}`` - ``'records'`` : list like ``[{column -> value}, ... , {column -> value}]`` - ``'index'`` : dict like ``{index -> {column -> value}}`` - ``'columns'`` : dict like ``{column -> {index -> value}}`` - ``'values'`` : just the values array The allowed and default values depend on the value of the `typ` parameter. * when ``typ == 'series'``, - allowed orients are ``{'split','records','index'}`` - default is ``'index'`` - The Series index must be unique for orient ``'index'``. * when ``typ == 'frame'``, - allowed orients are ``{'split','records','index', 'columns','values', 'table'}`` - default is ``'columns'`` - The DataFrame index must be unique for orients ``'index'`` and ``'columns'``. - The DataFrame columns must be unique for orients ``'index'``, ``'columns'``, and ``'records'``. .. versionadded:: 0.23.0 'table' as an allowed value for the ``orient`` argument typ : type of object to recover (series or frame), default 'frame' dtype : boolean or dict, default None If True, infer dtypes; if a dict of column to dtype, then use those; if False, then don't infer dtypes at all, applies only to the data. For all ``orient`` values except ``'table'``, default is True. .. versionchanged:: 0.25.0 Not applicable for ``orient='table'``. convert_axes : boolean, default None Try to convert the axes to the proper dtypes. For all ``orient`` values except ``'table'``, default is True. .. versionchanged:: 0.25.0 Not applicable for ``orient='table'``. convert_dates : boolean, default True List of columns to parse for dates; If True, then try to parse datelike columns default is True; a column label is datelike if * it ends with ``'_at'``, * it ends with ``'_time'``, * it begins with ``'timestamp'``, * it is ``'modified'``, or * it is ``'date'`` keep_default_dates : boolean, default True If parsing dates, then parse the default datelike columns numpy : boolean, default False Direct decoding to numpy arrays. Supports numeric data only, but non-numeric column and index labels are supported. Note also that the JSON ordering MUST be the same for each term if numpy=True. precise_float : boolean, default False Set to enable usage of higher precision (strtod) function when decoding string to double values. Default (False) is to use fast but less precise builtin functionality date_unit : string, default None The timestamp unit to detect if converting dates. The default behaviour is to try and detect the correct precision, but if this is not desired then pass one of 's', 'ms', 'us' or 'ns' to force parsing only seconds, milliseconds, microseconds or nanoseconds respectively. encoding : str, default is 'utf-8' The encoding to use to decode py3 bytes. .. versionadded:: 0.19.0 lines : boolean, default False Read the file as a json object per line. .. versionadded:: 0.19.0 chunksize : integer, default None Return JsonReader object for iteration. See the `line-delimted json docs <http://pandas.pydata.org/pandas-docs/stable/io.html#io-jsonl>`_ for more information on ``chunksize``. This can only be passed if `lines=True`. If this is None, the file will be read into memory all at once. .. versionadded:: 0.21.0 compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer' For on-the-fly decompression of on-disk data. If 'infer', then use gzip, bz2, zip or xz if path_or_buf is a string ending in '.gz', '.bz2', '.zip', or 'xz', respectively, and no decompression otherwise. If using 'zip', the ZIP file must contain only one data file to be read in. Set to None for no decompression. .. versionadded:: 0.21.0 Returns ------- result : Series or DataFrame, depending on the value of `typ`. See Also -------- DataFrame.to_json Notes ----- Specific to ``orient='table'``, if a :class:`DataFrame` with a literal :class:`Index` name of `index` gets written with :func:`to_json`, the subsequent read operation will incorrectly set the :class:`Index` name to ``None``. This is because `index` is also used by :func:`DataFrame.to_json` to denote a missing :class:`Index` name, and the subsequent :func:`read_json` operation cannot distinguish between the two. The same limitation is encountered with a :class:`MultiIndex` and any names beginning with ``'level_'``. Examples -------- >>> df = pd.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2']) Encoding/decoding a Dataframe using ``'split'`` formatted JSON: >>> df.to_json(orient='split') '{"columns":["col 1","col 2"], "index":["row 1","row 2"], "data":[["a","b"],["c","d"]]}' >>> pd.read_json(_, orient='split') col 1 col 2 row 1 a b row 2 c d Encoding/decoding a Dataframe using ``'index'`` formatted JSON: >>> df.to_json(orient='index') '{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}' >>> pd.read_json(_, orient='index') col 1 col 2 row 1 a b row 2 c d Encoding/decoding a Dataframe using ``'records'`` formatted JSON. Note that index labels are not preserved with this encoding. >>> df.to_json(orient='records') '[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]' >>> pd.read_json(_, orient='records') col 1 col 2 0 a b 1 c d Encoding with Table Schema >>> df.to_json(orient='table') '{"schema": {"fields": [{"name": "index", "type": "string"}, {"name": "col 1", "type": "string"}, {"name": "col 2", "type": "string"}], "primaryKey": "index", "pandas_version": "0.20.0"}, "data": [{"index": "row 1", "col 1": "a", "col 2": "b"}, {"index": "row 2", "col 1": "c", "col 2": "d"}]}'
[ "Convert", "a", "JSON", "string", "to", "pandas", "object", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/json/json.py#L222-L450
20,436
pandas-dev/pandas
pandas/io/json/json.py
FrameWriter._format_axes
def _format_axes(self): """ Try to format axes if they are datelike. """ if not self.obj.index.is_unique and self.orient in ( 'index', 'columns'): raise ValueError("DataFrame index must be unique for orient=" "'{orient}'.".format(orient=self.orient)) if not self.obj.columns.is_unique and self.orient in ( 'index', 'columns', 'records'): raise ValueError("DataFrame columns must be unique for orient=" "'{orient}'.".format(orient=self.orient))
python
def _format_axes(self): """ Try to format axes if they are datelike. """ if not self.obj.index.is_unique and self.orient in ( 'index', 'columns'): raise ValueError("DataFrame index must be unique for orient=" "'{orient}'.".format(orient=self.orient)) if not self.obj.columns.is_unique and self.orient in ( 'index', 'columns', 'records'): raise ValueError("DataFrame columns must be unique for orient=" "'{orient}'.".format(orient=self.orient))
[ "def", "_format_axes", "(", "self", ")", ":", "if", "not", "self", ".", "obj", ".", "index", ".", "is_unique", "and", "self", ".", "orient", "in", "(", "'index'", ",", "'columns'", ")", ":", "raise", "ValueError", "(", "\"DataFrame index must be unique for orient=\"", "\"'{orient}'.\"", ".", "format", "(", "orient", "=", "self", ".", "orient", ")", ")", "if", "not", "self", ".", "obj", ".", "columns", ".", "is_unique", "and", "self", ".", "orient", "in", "(", "'index'", ",", "'columns'", ",", "'records'", ")", ":", "raise", "ValueError", "(", "\"DataFrame columns must be unique for orient=\"", "\"'{orient}'.\"", ".", "format", "(", "orient", "=", "self", ".", "orient", ")", ")" ]
Try to format axes if they are datelike.
[ "Try", "to", "format", "axes", "if", "they", "are", "datelike", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/json/json.py#L138-L149
20,437
pandas-dev/pandas
pandas/io/json/json.py
JsonReader._combine_lines
def _combine_lines(self, lines): """ Combines a list of JSON objects into one JSON object. """ lines = filter(None, map(lambda x: x.strip(), lines)) return '[' + ','.join(lines) + ']'
python
def _combine_lines(self, lines): """ Combines a list of JSON objects into one JSON object. """ lines = filter(None, map(lambda x: x.strip(), lines)) return '[' + ','.join(lines) + ']'
[ "def", "_combine_lines", "(", "self", ",", "lines", ")", ":", "lines", "=", "filter", "(", "None", ",", "map", "(", "lambda", "x", ":", "x", ".", "strip", "(", ")", ",", "lines", ")", ")", "return", "'['", "+", "','", ".", "join", "(", "lines", ")", "+", "']'" ]
Combines a list of JSON objects into one JSON object.
[ "Combines", "a", "list", "of", "JSON", "objects", "into", "one", "JSON", "object", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/json/json.py#L534-L539
20,438
pandas-dev/pandas
pandas/io/json/json.py
JsonReader.read
def read(self): """ Read the whole JSON input into a pandas object. """ if self.lines and self.chunksize: obj = concat(self) elif self.lines: data = to_str(self.data) obj = self._get_object_parser( self._combine_lines(data.split('\n')) ) else: obj = self._get_object_parser(self.data) self.close() return obj
python
def read(self): """ Read the whole JSON input into a pandas object. """ if self.lines and self.chunksize: obj = concat(self) elif self.lines: data = to_str(self.data) obj = self._get_object_parser( self._combine_lines(data.split('\n')) ) else: obj = self._get_object_parser(self.data) self.close() return obj
[ "def", "read", "(", "self", ")", ":", "if", "self", ".", "lines", "and", "self", ".", "chunksize", ":", "obj", "=", "concat", "(", "self", ")", "elif", "self", ".", "lines", ":", "data", "=", "to_str", "(", "self", ".", "data", ")", "obj", "=", "self", ".", "_get_object_parser", "(", "self", ".", "_combine_lines", "(", "data", ".", "split", "(", "'\\n'", ")", ")", ")", "else", ":", "obj", "=", "self", ".", "_get_object_parser", "(", "self", ".", "data", ")", "self", ".", "close", "(", ")", "return", "obj" ]
Read the whole JSON input into a pandas object.
[ "Read", "the", "whole", "JSON", "input", "into", "a", "pandas", "object", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/json/json.py#L541-L556
20,439
pandas-dev/pandas
pandas/io/json/json.py
JsonReader._get_object_parser
def _get_object_parser(self, json): """ Parses a json document into a pandas object. """ typ = self.typ dtype = self.dtype kwargs = { "orient": self.orient, "dtype": self.dtype, "convert_axes": self.convert_axes, "convert_dates": self.convert_dates, "keep_default_dates": self.keep_default_dates, "numpy": self.numpy, "precise_float": self.precise_float, "date_unit": self.date_unit } obj = None if typ == 'frame': obj = FrameParser(json, **kwargs).parse() if typ == 'series' or obj is None: if not isinstance(dtype, bool): kwargs['dtype'] = dtype obj = SeriesParser(json, **kwargs).parse() return obj
python
def _get_object_parser(self, json): """ Parses a json document into a pandas object. """ typ = self.typ dtype = self.dtype kwargs = { "orient": self.orient, "dtype": self.dtype, "convert_axes": self.convert_axes, "convert_dates": self.convert_dates, "keep_default_dates": self.keep_default_dates, "numpy": self.numpy, "precise_float": self.precise_float, "date_unit": self.date_unit } obj = None if typ == 'frame': obj = FrameParser(json, **kwargs).parse() if typ == 'series' or obj is None: if not isinstance(dtype, bool): kwargs['dtype'] = dtype obj = SeriesParser(json, **kwargs).parse() return obj
[ "def", "_get_object_parser", "(", "self", ",", "json", ")", ":", "typ", "=", "self", ".", "typ", "dtype", "=", "self", ".", "dtype", "kwargs", "=", "{", "\"orient\"", ":", "self", ".", "orient", ",", "\"dtype\"", ":", "self", ".", "dtype", ",", "\"convert_axes\"", ":", "self", ".", "convert_axes", ",", "\"convert_dates\"", ":", "self", ".", "convert_dates", ",", "\"keep_default_dates\"", ":", "self", ".", "keep_default_dates", ",", "\"numpy\"", ":", "self", ".", "numpy", ",", "\"precise_float\"", ":", "self", ".", "precise_float", ",", "\"date_unit\"", ":", "self", ".", "date_unit", "}", "obj", "=", "None", "if", "typ", "==", "'frame'", ":", "obj", "=", "FrameParser", "(", "json", ",", "*", "*", "kwargs", ")", ".", "parse", "(", ")", "if", "typ", "==", "'series'", "or", "obj", "is", "None", ":", "if", "not", "isinstance", "(", "dtype", ",", "bool", ")", ":", "kwargs", "[", "'dtype'", "]", "=", "dtype", "obj", "=", "SeriesParser", "(", "json", ",", "*", "*", "kwargs", ")", ".", "parse", "(", ")", "return", "obj" ]
Parses a json document into a pandas object.
[ "Parses", "a", "json", "document", "into", "a", "pandas", "object", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/json/json.py#L558-L580
20,440
pandas-dev/pandas
pandas/io/json/json.py
Parser.check_keys_split
def check_keys_split(self, decoded): """ Checks that dict has only the appropriate keys for orient='split'. """ bad_keys = set(decoded.keys()).difference(set(self._split_keys)) if bad_keys: bad_keys = ", ".join(bad_keys) raise ValueError("JSON data had unexpected key(s): {bad_keys}" .format(bad_keys=pprint_thing(bad_keys)))
python
def check_keys_split(self, decoded): """ Checks that dict has only the appropriate keys for orient='split'. """ bad_keys = set(decoded.keys()).difference(set(self._split_keys)) if bad_keys: bad_keys = ", ".join(bad_keys) raise ValueError("JSON data had unexpected key(s): {bad_keys}" .format(bad_keys=pprint_thing(bad_keys)))
[ "def", "check_keys_split", "(", "self", ",", "decoded", ")", ":", "bad_keys", "=", "set", "(", "decoded", ".", "keys", "(", ")", ")", ".", "difference", "(", "set", "(", "self", ".", "_split_keys", ")", ")", "if", "bad_keys", ":", "bad_keys", "=", "\", \"", ".", "join", "(", "bad_keys", ")", "raise", "ValueError", "(", "\"JSON data had unexpected key(s): {bad_keys}\"", ".", "format", "(", "bad_keys", "=", "pprint_thing", "(", "bad_keys", ")", ")", ")" ]
Checks that dict has only the appropriate keys for orient='split'.
[ "Checks", "that", "dict", "has", "only", "the", "appropriate", "keys", "for", "orient", "=", "split", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/json/json.py#L651-L659
20,441
pandas-dev/pandas
pandas/io/json/json.py
Parser._convert_axes
def _convert_axes(self): """ Try to convert axes. """ for axis in self.obj._AXIS_NUMBERS.keys(): new_axis, result = self._try_convert_data( axis, self.obj._get_axis(axis), use_dtypes=False, convert_dates=True) if result: setattr(self.obj, axis, new_axis)
python
def _convert_axes(self): """ Try to convert axes. """ for axis in self.obj._AXIS_NUMBERS.keys(): new_axis, result = self._try_convert_data( axis, self.obj._get_axis(axis), use_dtypes=False, convert_dates=True) if result: setattr(self.obj, axis, new_axis)
[ "def", "_convert_axes", "(", "self", ")", ":", "for", "axis", "in", "self", ".", "obj", ".", "_AXIS_NUMBERS", ".", "keys", "(", ")", ":", "new_axis", ",", "result", "=", "self", ".", "_try_convert_data", "(", "axis", ",", "self", ".", "obj", ".", "_get_axis", "(", "axis", ")", ",", "use_dtypes", "=", "False", ",", "convert_dates", "=", "True", ")", "if", "result", ":", "setattr", "(", "self", ".", "obj", ",", "axis", ",", "new_axis", ")" ]
Try to convert axes.
[ "Try", "to", "convert", "axes", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/json/json.py#L678-L687
20,442
pandas-dev/pandas
pandas/io/json/json.py
FrameParser._process_converter
def _process_converter(self, f, filt=None): """ Take a conversion function and possibly recreate the frame. """ if filt is None: filt = lambda col, c: True needs_new_obj = False new_obj = dict() for i, (col, c) in enumerate(self.obj.iteritems()): if filt(col, c): new_data, result = f(col, c) if result: c = new_data needs_new_obj = True new_obj[i] = c if needs_new_obj: # possibly handle dup columns new_obj = DataFrame(new_obj, index=self.obj.index) new_obj.columns = self.obj.columns self.obj = new_obj
python
def _process_converter(self, f, filt=None): """ Take a conversion function and possibly recreate the frame. """ if filt is None: filt = lambda col, c: True needs_new_obj = False new_obj = dict() for i, (col, c) in enumerate(self.obj.iteritems()): if filt(col, c): new_data, result = f(col, c) if result: c = new_data needs_new_obj = True new_obj[i] = c if needs_new_obj: # possibly handle dup columns new_obj = DataFrame(new_obj, index=self.obj.index) new_obj.columns = self.obj.columns self.obj = new_obj
[ "def", "_process_converter", "(", "self", ",", "f", ",", "filt", "=", "None", ")", ":", "if", "filt", "is", "None", ":", "filt", "=", "lambda", "col", ",", "c", ":", "True", "needs_new_obj", "=", "False", "new_obj", "=", "dict", "(", ")", "for", "i", ",", "(", "col", ",", "c", ")", "in", "enumerate", "(", "self", ".", "obj", ".", "iteritems", "(", ")", ")", ":", "if", "filt", "(", "col", ",", "c", ")", ":", "new_data", ",", "result", "=", "f", "(", "col", ",", "c", ")", "if", "result", ":", "c", "=", "new_data", "needs_new_obj", "=", "True", "new_obj", "[", "i", "]", "=", "c", "if", "needs_new_obj", ":", "# possibly handle dup columns", "new_obj", "=", "DataFrame", "(", "new_obj", ",", "index", "=", "self", ".", "obj", ".", "index", ")", "new_obj", ".", "columns", "=", "self", ".", "obj", ".", "columns", "self", ".", "obj", "=", "new_obj" ]
Take a conversion function and possibly recreate the frame.
[ "Take", "a", "conversion", "function", "and", "possibly", "recreate", "the", "frame", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/json/json.py#L904-L927
20,443
pandas-dev/pandas
pandas/io/formats/format.py
format_array
def format_array(values, formatter, float_format=None, na_rep='NaN', digits=None, space=None, justify='right', decimal='.', leading_space=None): """ Format an array for printing. Parameters ---------- values formatter float_format na_rep digits space justify decimal leading_space : bool, optional Whether the array should be formatted with a leading space. When an array as a column of a Series or DataFrame, we do want the leading space to pad between columns. When formatting an Index subclass (e.g. IntervalIndex._format_native_types), we don't want the leading space since it should be left-aligned. Returns ------- List[str] """ if is_datetime64_dtype(values.dtype): fmt_klass = Datetime64Formatter elif is_datetime64tz_dtype(values): fmt_klass = Datetime64TZFormatter elif is_timedelta64_dtype(values.dtype): fmt_klass = Timedelta64Formatter elif is_extension_array_dtype(values.dtype): fmt_klass = ExtensionArrayFormatter elif is_float_dtype(values.dtype) or is_complex_dtype(values.dtype): fmt_klass = FloatArrayFormatter elif is_integer_dtype(values.dtype): fmt_klass = IntArrayFormatter else: fmt_klass = GenericArrayFormatter if space is None: space = get_option("display.column_space") if float_format is None: float_format = get_option("display.float_format") if digits is None: digits = get_option("display.precision") fmt_obj = fmt_klass(values, digits=digits, na_rep=na_rep, float_format=float_format, formatter=formatter, space=space, justify=justify, decimal=decimal, leading_space=leading_space) return fmt_obj.get_result()
python
def format_array(values, formatter, float_format=None, na_rep='NaN', digits=None, space=None, justify='right', decimal='.', leading_space=None): """ Format an array for printing. Parameters ---------- values formatter float_format na_rep digits space justify decimal leading_space : bool, optional Whether the array should be formatted with a leading space. When an array as a column of a Series or DataFrame, we do want the leading space to pad between columns. When formatting an Index subclass (e.g. IntervalIndex._format_native_types), we don't want the leading space since it should be left-aligned. Returns ------- List[str] """ if is_datetime64_dtype(values.dtype): fmt_klass = Datetime64Formatter elif is_datetime64tz_dtype(values): fmt_klass = Datetime64TZFormatter elif is_timedelta64_dtype(values.dtype): fmt_klass = Timedelta64Formatter elif is_extension_array_dtype(values.dtype): fmt_klass = ExtensionArrayFormatter elif is_float_dtype(values.dtype) or is_complex_dtype(values.dtype): fmt_klass = FloatArrayFormatter elif is_integer_dtype(values.dtype): fmt_klass = IntArrayFormatter else: fmt_klass = GenericArrayFormatter if space is None: space = get_option("display.column_space") if float_format is None: float_format = get_option("display.float_format") if digits is None: digits = get_option("display.precision") fmt_obj = fmt_klass(values, digits=digits, na_rep=na_rep, float_format=float_format, formatter=formatter, space=space, justify=justify, decimal=decimal, leading_space=leading_space) return fmt_obj.get_result()
[ "def", "format_array", "(", "values", ",", "formatter", ",", "float_format", "=", "None", ",", "na_rep", "=", "'NaN'", ",", "digits", "=", "None", ",", "space", "=", "None", ",", "justify", "=", "'right'", ",", "decimal", "=", "'.'", ",", "leading_space", "=", "None", ")", ":", "if", "is_datetime64_dtype", "(", "values", ".", "dtype", ")", ":", "fmt_klass", "=", "Datetime64Formatter", "elif", "is_datetime64tz_dtype", "(", "values", ")", ":", "fmt_klass", "=", "Datetime64TZFormatter", "elif", "is_timedelta64_dtype", "(", "values", ".", "dtype", ")", ":", "fmt_klass", "=", "Timedelta64Formatter", "elif", "is_extension_array_dtype", "(", "values", ".", "dtype", ")", ":", "fmt_klass", "=", "ExtensionArrayFormatter", "elif", "is_float_dtype", "(", "values", ".", "dtype", ")", "or", "is_complex_dtype", "(", "values", ".", "dtype", ")", ":", "fmt_klass", "=", "FloatArrayFormatter", "elif", "is_integer_dtype", "(", "values", ".", "dtype", ")", ":", "fmt_klass", "=", "IntArrayFormatter", "else", ":", "fmt_klass", "=", "GenericArrayFormatter", "if", "space", "is", "None", ":", "space", "=", "get_option", "(", "\"display.column_space\"", ")", "if", "float_format", "is", "None", ":", "float_format", "=", "get_option", "(", "\"display.float_format\"", ")", "if", "digits", "is", "None", ":", "digits", "=", "get_option", "(", "\"display.precision\"", ")", "fmt_obj", "=", "fmt_klass", "(", "values", ",", "digits", "=", "digits", ",", "na_rep", "=", "na_rep", ",", "float_format", "=", "float_format", ",", "formatter", "=", "formatter", ",", "space", "=", "space", ",", "justify", "=", "justify", ",", "decimal", "=", "decimal", ",", "leading_space", "=", "leading_space", ")", "return", "fmt_obj", ".", "get_result", "(", ")" ]
Format an array for printing. Parameters ---------- values formatter float_format na_rep digits space justify decimal leading_space : bool, optional Whether the array should be formatted with a leading space. When an array as a column of a Series or DataFrame, we do want the leading space to pad between columns. When formatting an Index subclass (e.g. IntervalIndex._format_native_types), we don't want the leading space since it should be left-aligned. Returns ------- List[str]
[ "Format", "an", "array", "for", "printing", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/formats/format.py#L853-L912
20,444
pandas-dev/pandas
pandas/io/formats/format.py
format_percentiles
def format_percentiles(percentiles): """ Outputs rounded and formatted percentiles. Parameters ---------- percentiles : list-like, containing floats from interval [0,1] Returns ------- formatted : list of strings Notes ----- Rounding precision is chosen so that: (1) if any two elements of ``percentiles`` differ, they remain different after rounding (2) no entry is *rounded* to 0% or 100%. Any non-integer is always rounded to at least 1 decimal place. Examples -------- Keeps all entries different after rounding: >>> format_percentiles([0.01999, 0.02001, 0.5, 0.666666, 0.9999]) ['1.999%', '2.001%', '50%', '66.667%', '99.99%'] No element is rounded to 0% or 100% (unless already equal to it). Duplicates are allowed: >>> format_percentiles([0, 0.5, 0.02001, 0.5, 0.666666, 0.9999]) ['0%', '50%', '2.0%', '50%', '66.67%', '99.99%'] """ percentiles = np.asarray(percentiles) # It checks for np.NaN as well with np.errstate(invalid='ignore'): if not is_numeric_dtype(percentiles) or not np.all(percentiles >= 0) \ or not np.all(percentiles <= 1): raise ValueError("percentiles should all be in the interval [0,1]") percentiles = 100 * percentiles int_idx = (percentiles.astype(int) == percentiles) if np.all(int_idx): out = percentiles.astype(int).astype(str) return [i + '%' for i in out] unique_pcts = np.unique(percentiles) to_begin = unique_pcts[0] if unique_pcts[0] > 0 else None to_end = 100 - unique_pcts[-1] if unique_pcts[-1] < 100 else None # Least precision that keeps percentiles unique after rounding prec = -np.floor(np.log10(np.min( np.ediff1d(unique_pcts, to_begin=to_begin, to_end=to_end) ))).astype(int) prec = max(1, prec) out = np.empty_like(percentiles, dtype=object) out[int_idx] = percentiles[int_idx].astype(int).astype(str) out[~int_idx] = percentiles[~int_idx].round(prec).astype(str) return [i + '%' for i in out]
python
def format_percentiles(percentiles): """ Outputs rounded and formatted percentiles. Parameters ---------- percentiles : list-like, containing floats from interval [0,1] Returns ------- formatted : list of strings Notes ----- Rounding precision is chosen so that: (1) if any two elements of ``percentiles`` differ, they remain different after rounding (2) no entry is *rounded* to 0% or 100%. Any non-integer is always rounded to at least 1 decimal place. Examples -------- Keeps all entries different after rounding: >>> format_percentiles([0.01999, 0.02001, 0.5, 0.666666, 0.9999]) ['1.999%', '2.001%', '50%', '66.667%', '99.99%'] No element is rounded to 0% or 100% (unless already equal to it). Duplicates are allowed: >>> format_percentiles([0, 0.5, 0.02001, 0.5, 0.666666, 0.9999]) ['0%', '50%', '2.0%', '50%', '66.67%', '99.99%'] """ percentiles = np.asarray(percentiles) # It checks for np.NaN as well with np.errstate(invalid='ignore'): if not is_numeric_dtype(percentiles) or not np.all(percentiles >= 0) \ or not np.all(percentiles <= 1): raise ValueError("percentiles should all be in the interval [0,1]") percentiles = 100 * percentiles int_idx = (percentiles.astype(int) == percentiles) if np.all(int_idx): out = percentiles.astype(int).astype(str) return [i + '%' for i in out] unique_pcts = np.unique(percentiles) to_begin = unique_pcts[0] if unique_pcts[0] > 0 else None to_end = 100 - unique_pcts[-1] if unique_pcts[-1] < 100 else None # Least precision that keeps percentiles unique after rounding prec = -np.floor(np.log10(np.min( np.ediff1d(unique_pcts, to_begin=to_begin, to_end=to_end) ))).astype(int) prec = max(1, prec) out = np.empty_like(percentiles, dtype=object) out[int_idx] = percentiles[int_idx].astype(int).astype(str) out[~int_idx] = percentiles[~int_idx].round(prec).astype(str) return [i + '%' for i in out]
[ "def", "format_percentiles", "(", "percentiles", ")", ":", "percentiles", "=", "np", ".", "asarray", "(", "percentiles", ")", "# It checks for np.NaN as well", "with", "np", ".", "errstate", "(", "invalid", "=", "'ignore'", ")", ":", "if", "not", "is_numeric_dtype", "(", "percentiles", ")", "or", "not", "np", ".", "all", "(", "percentiles", ">=", "0", ")", "or", "not", "np", ".", "all", "(", "percentiles", "<=", "1", ")", ":", "raise", "ValueError", "(", "\"percentiles should all be in the interval [0,1]\"", ")", "percentiles", "=", "100", "*", "percentiles", "int_idx", "=", "(", "percentiles", ".", "astype", "(", "int", ")", "==", "percentiles", ")", "if", "np", ".", "all", "(", "int_idx", ")", ":", "out", "=", "percentiles", ".", "astype", "(", "int", ")", ".", "astype", "(", "str", ")", "return", "[", "i", "+", "'%'", "for", "i", "in", "out", "]", "unique_pcts", "=", "np", ".", "unique", "(", "percentiles", ")", "to_begin", "=", "unique_pcts", "[", "0", "]", "if", "unique_pcts", "[", "0", "]", ">", "0", "else", "None", "to_end", "=", "100", "-", "unique_pcts", "[", "-", "1", "]", "if", "unique_pcts", "[", "-", "1", "]", "<", "100", "else", "None", "# Least precision that keeps percentiles unique after rounding", "prec", "=", "-", "np", ".", "floor", "(", "np", ".", "log10", "(", "np", ".", "min", "(", "np", ".", "ediff1d", "(", "unique_pcts", ",", "to_begin", "=", "to_begin", ",", "to_end", "=", "to_end", ")", ")", ")", ")", ".", "astype", "(", "int", ")", "prec", "=", "max", "(", "1", ",", "prec", ")", "out", "=", "np", ".", "empty_like", "(", "percentiles", ",", "dtype", "=", "object", ")", "out", "[", "int_idx", "]", "=", "percentiles", "[", "int_idx", "]", ".", "astype", "(", "int", ")", ".", "astype", "(", "str", ")", "out", "[", "~", "int_idx", "]", "=", "percentiles", "[", "~", "int_idx", "]", ".", "round", "(", "prec", ")", ".", "astype", "(", "str", ")", "return", "[", "i", "+", "'%'", "for", "i", "in", "out", "]" ]
Outputs rounded and formatted percentiles. Parameters ---------- percentiles : list-like, containing floats from interval [0,1] Returns ------- formatted : list of strings Notes ----- Rounding precision is chosen so that: (1) if any two elements of ``percentiles`` differ, they remain different after rounding (2) no entry is *rounded* to 0% or 100%. Any non-integer is always rounded to at least 1 decimal place. Examples -------- Keeps all entries different after rounding: >>> format_percentiles([0.01999, 0.02001, 0.5, 0.666666, 0.9999]) ['1.999%', '2.001%', '50%', '66.667%', '99.99%'] No element is rounded to 0% or 100% (unless already equal to it). Duplicates are allowed: >>> format_percentiles([0, 0.5, 0.02001, 0.5, 0.666666, 0.9999]) ['0%', '50%', '2.0%', '50%', '66.67%', '99.99%']
[ "Outputs", "rounded", "and", "formatted", "percentiles", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/formats/format.py#L1208-L1268
20,445
pandas-dev/pandas
pandas/io/formats/format.py
_get_format_timedelta64
def _get_format_timedelta64(values, nat_rep='NaT', box=False): """ Return a formatter function for a range of timedeltas. These will all have the same format argument If box, then show the return in quotes """ values_int = values.astype(np.int64) consider_values = values_int != iNaT one_day_nanos = (86400 * 1e9) even_days = np.logical_and(consider_values, values_int % one_day_nanos != 0).sum() == 0 all_sub_day = np.logical_and( consider_values, np.abs(values_int) >= one_day_nanos).sum() == 0 if even_days: format = None elif all_sub_day: format = 'sub_day' else: format = 'long' def _formatter(x): if x is None or (is_scalar(x) and isna(x)): return nat_rep if not isinstance(x, Timedelta): x = Timedelta(x) result = x._repr_base(format=format) if box: result = "'{res}'".format(res=result) return result return _formatter
python
def _get_format_timedelta64(values, nat_rep='NaT', box=False): """ Return a formatter function for a range of timedeltas. These will all have the same format argument If box, then show the return in quotes """ values_int = values.astype(np.int64) consider_values = values_int != iNaT one_day_nanos = (86400 * 1e9) even_days = np.logical_and(consider_values, values_int % one_day_nanos != 0).sum() == 0 all_sub_day = np.logical_and( consider_values, np.abs(values_int) >= one_day_nanos).sum() == 0 if even_days: format = None elif all_sub_day: format = 'sub_day' else: format = 'long' def _formatter(x): if x is None or (is_scalar(x) and isna(x)): return nat_rep if not isinstance(x, Timedelta): x = Timedelta(x) result = x._repr_base(format=format) if box: result = "'{res}'".format(res=result) return result return _formatter
[ "def", "_get_format_timedelta64", "(", "values", ",", "nat_rep", "=", "'NaT'", ",", "box", "=", "False", ")", ":", "values_int", "=", "values", ".", "astype", "(", "np", ".", "int64", ")", "consider_values", "=", "values_int", "!=", "iNaT", "one_day_nanos", "=", "(", "86400", "*", "1e9", ")", "even_days", "=", "np", ".", "logical_and", "(", "consider_values", ",", "values_int", "%", "one_day_nanos", "!=", "0", ")", ".", "sum", "(", ")", "==", "0", "all_sub_day", "=", "np", ".", "logical_and", "(", "consider_values", ",", "np", ".", "abs", "(", "values_int", ")", ">=", "one_day_nanos", ")", ".", "sum", "(", ")", "==", "0", "if", "even_days", ":", "format", "=", "None", "elif", "all_sub_day", ":", "format", "=", "'sub_day'", "else", ":", "format", "=", "'long'", "def", "_formatter", "(", "x", ")", ":", "if", "x", "is", "None", "or", "(", "is_scalar", "(", "x", ")", "and", "isna", "(", "x", ")", ")", ":", "return", "nat_rep", "if", "not", "isinstance", "(", "x", ",", "Timedelta", ")", ":", "x", "=", "Timedelta", "(", "x", ")", "result", "=", "x", ".", "_repr_base", "(", "format", "=", "format", ")", "if", "box", ":", "result", "=", "\"'{res}'\"", ".", "format", "(", "res", "=", "result", ")", "return", "result", "return", "_formatter" ]
Return a formatter function for a range of timedeltas. These will all have the same format argument If box, then show the return in quotes
[ "Return", "a", "formatter", "function", "for", "a", "range", "of", "timedeltas", ".", "These", "will", "all", "have", "the", "same", "format", "argument" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/formats/format.py#L1360-L1396
20,446
pandas-dev/pandas
pandas/io/formats/format.py
_trim_zeros_complex
def _trim_zeros_complex(str_complexes, na_rep='NaN'): """ Separates the real and imaginary parts from the complex number, and executes the _trim_zeros_float method on each of those. """ def separate_and_trim(str_complex, na_rep): num_arr = str_complex.split('+') return (_trim_zeros_float([num_arr[0]], na_rep) + ['+'] + _trim_zeros_float([num_arr[1][:-1]], na_rep) + ['j']) return [''.join(separate_and_trim(x, na_rep)) for x in str_complexes]
python
def _trim_zeros_complex(str_complexes, na_rep='NaN'): """ Separates the real and imaginary parts from the complex number, and executes the _trim_zeros_float method on each of those. """ def separate_and_trim(str_complex, na_rep): num_arr = str_complex.split('+') return (_trim_zeros_float([num_arr[0]], na_rep) + ['+'] + _trim_zeros_float([num_arr[1][:-1]], na_rep) + ['j']) return [''.join(separate_and_trim(x, na_rep)) for x in str_complexes]
[ "def", "_trim_zeros_complex", "(", "str_complexes", ",", "na_rep", "=", "'NaN'", ")", ":", "def", "separate_and_trim", "(", "str_complex", ",", "na_rep", ")", ":", "num_arr", "=", "str_complex", ".", "split", "(", "'+'", ")", "return", "(", "_trim_zeros_float", "(", "[", "num_arr", "[", "0", "]", "]", ",", "na_rep", ")", "+", "[", "'+'", "]", "+", "_trim_zeros_float", "(", "[", "num_arr", "[", "1", "]", "[", ":", "-", "1", "]", "]", ",", "na_rep", ")", "+", "[", "'j'", "]", ")", "return", "[", "''", ".", "join", "(", "separate_and_trim", "(", "x", ",", "na_rep", ")", ")", "for", "x", "in", "str_complexes", "]" ]
Separates the real and imaginary parts from the complex number, and executes the _trim_zeros_float method on each of those.
[ "Separates", "the", "real", "and", "imaginary", "parts", "from", "the", "complex", "number", "and", "executes", "the", "_trim_zeros_float", "method", "on", "each", "of", "those", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/formats/format.py#L1427-L1439
20,447
pandas-dev/pandas
pandas/io/formats/format.py
_trim_zeros_float
def _trim_zeros_float(str_floats, na_rep='NaN'): """ Trims zeros, leaving just one before the decimal points if need be. """ trimmed = str_floats def _is_number(x): return (x != na_rep and not x.endswith('inf')) def _cond(values): finite = [x for x in values if _is_number(x)] return (len(finite) > 0 and all(x.endswith('0') for x in finite) and not (any(('e' in x) or ('E' in x) for x in finite))) while _cond(trimmed): trimmed = [x[:-1] if _is_number(x) else x for x in trimmed] # leave one 0 after the decimal points if need be. return [x + "0" if x.endswith('.') and _is_number(x) else x for x in trimmed]
python
def _trim_zeros_float(str_floats, na_rep='NaN'): """ Trims zeros, leaving just one before the decimal points if need be. """ trimmed = str_floats def _is_number(x): return (x != na_rep and not x.endswith('inf')) def _cond(values): finite = [x for x in values if _is_number(x)] return (len(finite) > 0 and all(x.endswith('0') for x in finite) and not (any(('e' in x) or ('E' in x) for x in finite))) while _cond(trimmed): trimmed = [x[:-1] if _is_number(x) else x for x in trimmed] # leave one 0 after the decimal points if need be. return [x + "0" if x.endswith('.') and _is_number(x) else x for x in trimmed]
[ "def", "_trim_zeros_float", "(", "str_floats", ",", "na_rep", "=", "'NaN'", ")", ":", "trimmed", "=", "str_floats", "def", "_is_number", "(", "x", ")", ":", "return", "(", "x", "!=", "na_rep", "and", "not", "x", ".", "endswith", "(", "'inf'", ")", ")", "def", "_cond", "(", "values", ")", ":", "finite", "=", "[", "x", "for", "x", "in", "values", "if", "_is_number", "(", "x", ")", "]", "return", "(", "len", "(", "finite", ")", ">", "0", "and", "all", "(", "x", ".", "endswith", "(", "'0'", ")", "for", "x", "in", "finite", ")", "and", "not", "(", "any", "(", "(", "'e'", "in", "x", ")", "or", "(", "'E'", "in", "x", ")", "for", "x", "in", "finite", ")", ")", ")", "while", "_cond", "(", "trimmed", ")", ":", "trimmed", "=", "[", "x", "[", ":", "-", "1", "]", "if", "_is_number", "(", "x", ")", "else", "x", "for", "x", "in", "trimmed", "]", "# leave one 0 after the decimal points if need be.", "return", "[", "x", "+", "\"0\"", "if", "x", ".", "endswith", "(", "'.'", ")", "and", "_is_number", "(", "x", ")", "else", "x", "for", "x", "in", "trimmed", "]" ]
Trims zeros, leaving just one before the decimal points if need be.
[ "Trims", "zeros", "leaving", "just", "one", "before", "the", "decimal", "points", "if", "need", "be", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/formats/format.py#L1442-L1461
20,448
pandas-dev/pandas
pandas/io/formats/format.py
set_eng_float_format
def set_eng_float_format(accuracy=3, use_eng_prefix=False): """ Alter default behavior on how float is formatted in DataFrame. Format float in engineering format. By accuracy, we mean the number of decimal digits after the floating point. See also EngFormatter. """ set_option("display.float_format", EngFormatter(accuracy, use_eng_prefix)) set_option("display.column_space", max(12, accuracy + 9))
python
def set_eng_float_format(accuracy=3, use_eng_prefix=False): """ Alter default behavior on how float is formatted in DataFrame. Format float in engineering format. By accuracy, we mean the number of decimal digits after the floating point. See also EngFormatter. """ set_option("display.float_format", EngFormatter(accuracy, use_eng_prefix)) set_option("display.column_space", max(12, accuracy + 9))
[ "def", "set_eng_float_format", "(", "accuracy", "=", "3", ",", "use_eng_prefix", "=", "False", ")", ":", "set_option", "(", "\"display.float_format\"", ",", "EngFormatter", "(", "accuracy", ",", "use_eng_prefix", ")", ")", "set_option", "(", "\"display.column_space\"", ",", "max", "(", "12", ",", "accuracy", "+", "9", ")", ")" ]
Alter default behavior on how float is formatted in DataFrame. Format float in engineering format. By accuracy, we mean the number of decimal digits after the floating point. See also EngFormatter.
[ "Alter", "default", "behavior", "on", "how", "float", "is", "formatted", "in", "DataFrame", ".", "Format", "float", "in", "engineering", "format", ".", "By", "accuracy", "we", "mean", "the", "number", "of", "decimal", "digits", "after", "the", "floating", "point", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/formats/format.py#L1570-L1580
20,449
pandas-dev/pandas
pandas/io/formats/format.py
get_level_lengths
def get_level_lengths(levels, sentinel=''): """For each index in each level the function returns lengths of indexes. Parameters ---------- levels : list of lists List of values on for level. sentinel : string, optional Value which states that no new index starts on there. Returns ---------- Returns list of maps. For each level returns map of indexes (key is index in row and value is length of index). """ if len(levels) == 0: return [] control = [True] * len(levels[0]) result = [] for level in levels: last_index = 0 lengths = {} for i, key in enumerate(level): if control[i] and key == sentinel: pass else: control[i] = False lengths[last_index] = i - last_index last_index = i lengths[last_index] = len(level) - last_index result.append(lengths) return result
python
def get_level_lengths(levels, sentinel=''): """For each index in each level the function returns lengths of indexes. Parameters ---------- levels : list of lists List of values on for level. sentinel : string, optional Value which states that no new index starts on there. Returns ---------- Returns list of maps. For each level returns map of indexes (key is index in row and value is length of index). """ if len(levels) == 0: return [] control = [True] * len(levels[0]) result = [] for level in levels: last_index = 0 lengths = {} for i, key in enumerate(level): if control[i] and key == sentinel: pass else: control[i] = False lengths[last_index] = i - last_index last_index = i lengths[last_index] = len(level) - last_index result.append(lengths) return result
[ "def", "get_level_lengths", "(", "levels", ",", "sentinel", "=", "''", ")", ":", "if", "len", "(", "levels", ")", "==", "0", ":", "return", "[", "]", "control", "=", "[", "True", "]", "*", "len", "(", "levels", "[", "0", "]", ")", "result", "=", "[", "]", "for", "level", "in", "levels", ":", "last_index", "=", "0", "lengths", "=", "{", "}", "for", "i", ",", "key", "in", "enumerate", "(", "level", ")", ":", "if", "control", "[", "i", "]", "and", "key", "==", "sentinel", ":", "pass", "else", ":", "control", "[", "i", "]", "=", "False", "lengths", "[", "last_index", "]", "=", "i", "-", "last_index", "last_index", "=", "i", "lengths", "[", "last_index", "]", "=", "len", "(", "level", ")", "-", "last_index", "result", ".", "append", "(", "lengths", ")", "return", "result" ]
For each index in each level the function returns lengths of indexes. Parameters ---------- levels : list of lists List of values on for level. sentinel : string, optional Value which states that no new index starts on there. Returns ---------- Returns list of maps. For each level returns map of indexes (key is index in row and value is length of index).
[ "For", "each", "index", "in", "each", "level", "the", "function", "returns", "lengths", "of", "indexes", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/formats/format.py#L1603-L1640
20,450
pandas-dev/pandas
pandas/io/formats/format.py
buffer_put_lines
def buffer_put_lines(buf, lines): """ Appends lines to a buffer. Parameters ---------- buf The buffer to write to lines The lines to append. """ if any(isinstance(x, str) for x in lines): lines = [str(x) for x in lines] buf.write('\n'.join(lines))
python
def buffer_put_lines(buf, lines): """ Appends lines to a buffer. Parameters ---------- buf The buffer to write to lines The lines to append. """ if any(isinstance(x, str) for x in lines): lines = [str(x) for x in lines] buf.write('\n'.join(lines))
[ "def", "buffer_put_lines", "(", "buf", ",", "lines", ")", ":", "if", "any", "(", "isinstance", "(", "x", ",", "str", ")", "for", "x", "in", "lines", ")", ":", "lines", "=", "[", "str", "(", "x", ")", "for", "x", "in", "lines", "]", "buf", ".", "write", "(", "'\\n'", ".", "join", "(", "lines", ")", ")" ]
Appends lines to a buffer. Parameters ---------- buf The buffer to write to lines The lines to append.
[ "Appends", "lines", "to", "a", "buffer", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/formats/format.py#L1643-L1656
20,451
pandas-dev/pandas
pandas/io/formats/format.py
EastAsianTextAdjustment.len
def len(self, text): """ Calculate display width considering unicode East Asian Width """ if not isinstance(text, str): return len(text) return sum(self._EAW_MAP.get(east_asian_width(c), self.ambiguous_width) for c in text)
python
def len(self, text): """ Calculate display width considering unicode East Asian Width """ if not isinstance(text, str): return len(text) return sum(self._EAW_MAP.get(east_asian_width(c), self.ambiguous_width) for c in text)
[ "def", "len", "(", "self", ",", "text", ")", ":", "if", "not", "isinstance", "(", "text", ",", "str", ")", ":", "return", "len", "(", "text", ")", "return", "sum", "(", "self", ".", "_EAW_MAP", ".", "get", "(", "east_asian_width", "(", "c", ")", ",", "self", ".", "ambiguous_width", ")", "for", "c", "in", "text", ")" ]
Calculate display width considering unicode East Asian Width
[ "Calculate", "display", "width", "considering", "unicode", "East", "Asian", "Width" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/formats/format.py#L322-L330
20,452
pandas-dev/pandas
pandas/io/formats/format.py
FloatArrayFormatter._value_formatter
def _value_formatter(self, float_format=None, threshold=None): """Returns a function to be applied on each value to format it """ # the float_format parameter supersedes self.float_format if float_format is None: float_format = self.float_format # we are going to compose different functions, to first convert to # a string, then replace the decimal symbol, and finally chop according # to the threshold # when there is no float_format, we use str instead of '%g' # because str(0.0) = '0.0' while '%g' % 0.0 = '0' if float_format: def base_formatter(v): return float_format(value=v) if notna(v) else self.na_rep else: def base_formatter(v): return str(v) if notna(v) else self.na_rep if self.decimal != '.': def decimal_formatter(v): return base_formatter(v).replace('.', self.decimal, 1) else: decimal_formatter = base_formatter if threshold is None: return decimal_formatter def formatter(value): if notna(value): if abs(value) > threshold: return decimal_formatter(value) else: return decimal_formatter(0.0) else: return self.na_rep return formatter
python
def _value_formatter(self, float_format=None, threshold=None): """Returns a function to be applied on each value to format it """ # the float_format parameter supersedes self.float_format if float_format is None: float_format = self.float_format # we are going to compose different functions, to first convert to # a string, then replace the decimal symbol, and finally chop according # to the threshold # when there is no float_format, we use str instead of '%g' # because str(0.0) = '0.0' while '%g' % 0.0 = '0' if float_format: def base_formatter(v): return float_format(value=v) if notna(v) else self.na_rep else: def base_formatter(v): return str(v) if notna(v) else self.na_rep if self.decimal != '.': def decimal_formatter(v): return base_formatter(v).replace('.', self.decimal, 1) else: decimal_formatter = base_formatter if threshold is None: return decimal_formatter def formatter(value): if notna(value): if abs(value) > threshold: return decimal_formatter(value) else: return decimal_formatter(0.0) else: return self.na_rep return formatter
[ "def", "_value_formatter", "(", "self", ",", "float_format", "=", "None", ",", "threshold", "=", "None", ")", ":", "# the float_format parameter supersedes self.float_format", "if", "float_format", "is", "None", ":", "float_format", "=", "self", ".", "float_format", "# we are going to compose different functions, to first convert to", "# a string, then replace the decimal symbol, and finally chop according", "# to the threshold", "# when there is no float_format, we use str instead of '%g'", "# because str(0.0) = '0.0' while '%g' % 0.0 = '0'", "if", "float_format", ":", "def", "base_formatter", "(", "v", ")", ":", "return", "float_format", "(", "value", "=", "v", ")", "if", "notna", "(", "v", ")", "else", "self", ".", "na_rep", "else", ":", "def", "base_formatter", "(", "v", ")", ":", "return", "str", "(", "v", ")", "if", "notna", "(", "v", ")", "else", "self", ".", "na_rep", "if", "self", ".", "decimal", "!=", "'.'", ":", "def", "decimal_formatter", "(", "v", ")", ":", "return", "base_formatter", "(", "v", ")", ".", "replace", "(", "'.'", ",", "self", ".", "decimal", ",", "1", ")", "else", ":", "decimal_formatter", "=", "base_formatter", "if", "threshold", "is", "None", ":", "return", "decimal_formatter", "def", "formatter", "(", "value", ")", ":", "if", "notna", "(", "value", ")", ":", "if", "abs", "(", "value", ")", ">", "threshold", ":", "return", "decimal_formatter", "(", "value", ")", "else", ":", "return", "decimal_formatter", "(", "0.0", ")", "else", ":", "return", "self", ".", "na_rep", "return", "formatter" ]
Returns a function to be applied on each value to format it
[ "Returns", "a", "function", "to", "be", "applied", "on", "each", "value", "to", "format", "it" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/formats/format.py#L1015-L1054
20,453
pandas-dev/pandas
pandas/io/formats/format.py
FloatArrayFormatter.get_result_as_array
def get_result_as_array(self): """ Returns the float values converted into strings using the parameters given at initialisation, as a numpy array """ if self.formatter is not None: return np.array([self.formatter(x) for x in self.values]) if self.fixed_width: threshold = get_option("display.chop_threshold") else: threshold = None # if we have a fixed_width, we'll need to try different float_format def format_values_with(float_format): formatter = self._value_formatter(float_format, threshold) # default formatter leaves a space to the left when formatting # floats, must be consistent for left-justifying NaNs (GH #25061) if self.justify == 'left': na_rep = ' ' + self.na_rep else: na_rep = self.na_rep # separate the wheat from the chaff values = self.values is_complex = is_complex_dtype(values) mask = isna(values) if hasattr(values, 'to_dense'): # sparse numpy ndarray values = values.to_dense() values = np.array(values, dtype='object') values[mask] = na_rep imask = (~mask).ravel() values.flat[imask] = np.array([formatter(val) for val in values.ravel()[imask]]) if self.fixed_width: if is_complex: return _trim_zeros_complex(values, na_rep) else: return _trim_zeros_float(values, na_rep) return values # There is a special default string when we are fixed-width # The default is otherwise to use str instead of a formatting string if self.float_format is None: if self.fixed_width: float_format = partial('{value: .{digits:d}f}'.format, digits=self.digits) else: float_format = self.float_format else: float_format = lambda value: self.float_format % value formatted_values = format_values_with(float_format) if not self.fixed_width: return formatted_values # we need do convert to engineering format if some values are too small # and would appear as 0, or if some values are too big and take too # much space if len(formatted_values) > 0: maxlen = max(len(x) for x in formatted_values) too_long = maxlen > self.digits + 6 else: too_long = False with np.errstate(invalid='ignore'): abs_vals = np.abs(self.values) # this is pretty arbitrary for now # large values: more that 8 characters including decimal symbol # and first digit, hence > 1e6 has_large_values = (abs_vals > 1e6).any() has_small_values = ((abs_vals < 10**(-self.digits)) & (abs_vals > 0)).any() if has_small_values or (too_long and has_large_values): float_format = partial('{value: .{digits:d}e}'.format, digits=self.digits) formatted_values = format_values_with(float_format) return formatted_values
python
def get_result_as_array(self): """ Returns the float values converted into strings using the parameters given at initialisation, as a numpy array """ if self.formatter is not None: return np.array([self.formatter(x) for x in self.values]) if self.fixed_width: threshold = get_option("display.chop_threshold") else: threshold = None # if we have a fixed_width, we'll need to try different float_format def format_values_with(float_format): formatter = self._value_formatter(float_format, threshold) # default formatter leaves a space to the left when formatting # floats, must be consistent for left-justifying NaNs (GH #25061) if self.justify == 'left': na_rep = ' ' + self.na_rep else: na_rep = self.na_rep # separate the wheat from the chaff values = self.values is_complex = is_complex_dtype(values) mask = isna(values) if hasattr(values, 'to_dense'): # sparse numpy ndarray values = values.to_dense() values = np.array(values, dtype='object') values[mask] = na_rep imask = (~mask).ravel() values.flat[imask] = np.array([formatter(val) for val in values.ravel()[imask]]) if self.fixed_width: if is_complex: return _trim_zeros_complex(values, na_rep) else: return _trim_zeros_float(values, na_rep) return values # There is a special default string when we are fixed-width # The default is otherwise to use str instead of a formatting string if self.float_format is None: if self.fixed_width: float_format = partial('{value: .{digits:d}f}'.format, digits=self.digits) else: float_format = self.float_format else: float_format = lambda value: self.float_format % value formatted_values = format_values_with(float_format) if not self.fixed_width: return formatted_values # we need do convert to engineering format if some values are too small # and would appear as 0, or if some values are too big and take too # much space if len(formatted_values) > 0: maxlen = max(len(x) for x in formatted_values) too_long = maxlen > self.digits + 6 else: too_long = False with np.errstate(invalid='ignore'): abs_vals = np.abs(self.values) # this is pretty arbitrary for now # large values: more that 8 characters including decimal symbol # and first digit, hence > 1e6 has_large_values = (abs_vals > 1e6).any() has_small_values = ((abs_vals < 10**(-self.digits)) & (abs_vals > 0)).any() if has_small_values or (too_long and has_large_values): float_format = partial('{value: .{digits:d}e}'.format, digits=self.digits) formatted_values = format_values_with(float_format) return formatted_values
[ "def", "get_result_as_array", "(", "self", ")", ":", "if", "self", ".", "formatter", "is", "not", "None", ":", "return", "np", ".", "array", "(", "[", "self", ".", "formatter", "(", "x", ")", "for", "x", "in", "self", ".", "values", "]", ")", "if", "self", ".", "fixed_width", ":", "threshold", "=", "get_option", "(", "\"display.chop_threshold\"", ")", "else", ":", "threshold", "=", "None", "# if we have a fixed_width, we'll need to try different float_format", "def", "format_values_with", "(", "float_format", ")", ":", "formatter", "=", "self", ".", "_value_formatter", "(", "float_format", ",", "threshold", ")", "# default formatter leaves a space to the left when formatting", "# floats, must be consistent for left-justifying NaNs (GH #25061)", "if", "self", ".", "justify", "==", "'left'", ":", "na_rep", "=", "' '", "+", "self", ".", "na_rep", "else", ":", "na_rep", "=", "self", ".", "na_rep", "# separate the wheat from the chaff", "values", "=", "self", ".", "values", "is_complex", "=", "is_complex_dtype", "(", "values", ")", "mask", "=", "isna", "(", "values", ")", "if", "hasattr", "(", "values", ",", "'to_dense'", ")", ":", "# sparse numpy ndarray", "values", "=", "values", ".", "to_dense", "(", ")", "values", "=", "np", ".", "array", "(", "values", ",", "dtype", "=", "'object'", ")", "values", "[", "mask", "]", "=", "na_rep", "imask", "=", "(", "~", "mask", ")", ".", "ravel", "(", ")", "values", ".", "flat", "[", "imask", "]", "=", "np", ".", "array", "(", "[", "formatter", "(", "val", ")", "for", "val", "in", "values", ".", "ravel", "(", ")", "[", "imask", "]", "]", ")", "if", "self", ".", "fixed_width", ":", "if", "is_complex", ":", "return", "_trim_zeros_complex", "(", "values", ",", "na_rep", ")", "else", ":", "return", "_trim_zeros_float", "(", "values", ",", "na_rep", ")", "return", "values", "# There is a special default string when we are fixed-width", "# The default is otherwise to use str instead of a formatting string", "if", "self", ".", "float_format", "is", "None", ":", "if", "self", ".", "fixed_width", ":", "float_format", "=", "partial", "(", "'{value: .{digits:d}f}'", ".", "format", ",", "digits", "=", "self", ".", "digits", ")", "else", ":", "float_format", "=", "self", ".", "float_format", "else", ":", "float_format", "=", "lambda", "value", ":", "self", ".", "float_format", "%", "value", "formatted_values", "=", "format_values_with", "(", "float_format", ")", "if", "not", "self", ".", "fixed_width", ":", "return", "formatted_values", "# we need do convert to engineering format if some values are too small", "# and would appear as 0, or if some values are too big and take too", "# much space", "if", "len", "(", "formatted_values", ")", ">", "0", ":", "maxlen", "=", "max", "(", "len", "(", "x", ")", "for", "x", "in", "formatted_values", ")", "too_long", "=", "maxlen", ">", "self", ".", "digits", "+", "6", "else", ":", "too_long", "=", "False", "with", "np", ".", "errstate", "(", "invalid", "=", "'ignore'", ")", ":", "abs_vals", "=", "np", ".", "abs", "(", "self", ".", "values", ")", "# this is pretty arbitrary for now", "# large values: more that 8 characters including decimal symbol", "# and first digit, hence > 1e6", "has_large_values", "=", "(", "abs_vals", ">", "1e6", ")", ".", "any", "(", ")", "has_small_values", "=", "(", "(", "abs_vals", "<", "10", "**", "(", "-", "self", ".", "digits", ")", ")", "&", "(", "abs_vals", ">", "0", ")", ")", ".", "any", "(", ")", "if", "has_small_values", "or", "(", "too_long", "and", "has_large_values", ")", ":", "float_format", "=", "partial", "(", "'{value: .{digits:d}e}'", ".", "format", ",", "digits", "=", "self", ".", "digits", ")", "formatted_values", "=", "format_values_with", "(", "float_format", ")", "return", "formatted_values" ]
Returns the float values converted into strings using the parameters given at initialisation, as a numpy array
[ "Returns", "the", "float", "values", "converted", "into", "strings", "using", "the", "parameters", "given", "at", "initialisation", "as", "a", "numpy", "array" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/formats/format.py#L1056-L1141
20,454
pandas-dev/pandas
pandas/io/formats/format.py
Datetime64TZFormatter._format_strings
def _format_strings(self): """ we by definition have a TZ """ values = self.values.astype(object) is_dates_only = _is_dates_only(values) formatter = (self.formatter or _get_format_datetime64(is_dates_only, date_format=self.date_format)) fmt_values = [formatter(x) for x in values] return fmt_values
python
def _format_strings(self): """ we by definition have a TZ """ values = self.values.astype(object) is_dates_only = _is_dates_only(values) formatter = (self.formatter or _get_format_datetime64(is_dates_only, date_format=self.date_format)) fmt_values = [formatter(x) for x in values] return fmt_values
[ "def", "_format_strings", "(", "self", ")", ":", "values", "=", "self", ".", "values", ".", "astype", "(", "object", ")", "is_dates_only", "=", "_is_dates_only", "(", "values", ")", "formatter", "=", "(", "self", ".", "formatter", "or", "_get_format_datetime64", "(", "is_dates_only", ",", "date_format", "=", "self", ".", "date_format", ")", ")", "fmt_values", "=", "[", "formatter", "(", "x", ")", "for", "x", "in", "values", "]", "return", "fmt_values" ]
we by definition have a TZ
[ "we", "by", "definition", "have", "a", "TZ" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/formats/format.py#L1332-L1342
20,455
pandas-dev/pandas
pandas/core/indexes/interval.py
_get_interval_closed_bounds
def _get_interval_closed_bounds(interval): """ Given an Interval or IntervalIndex, return the corresponding interval with closed bounds. """ left, right = interval.left, interval.right if interval.open_left: left = _get_next_label(left) if interval.open_right: right = _get_prev_label(right) return left, right
python
def _get_interval_closed_bounds(interval): """ Given an Interval or IntervalIndex, return the corresponding interval with closed bounds. """ left, right = interval.left, interval.right if interval.open_left: left = _get_next_label(left) if interval.open_right: right = _get_prev_label(right) return left, right
[ "def", "_get_interval_closed_bounds", "(", "interval", ")", ":", "left", ",", "right", "=", "interval", ".", "left", ",", "interval", ".", "right", "if", "interval", ".", "open_left", ":", "left", "=", "_get_next_label", "(", "left", ")", "if", "interval", ".", "open_right", ":", "right", "=", "_get_prev_label", "(", "right", ")", "return", "left", ",", "right" ]
Given an Interval or IntervalIndex, return the corresponding interval with closed bounds.
[ "Given", "an", "Interval", "or", "IntervalIndex", "return", "the", "corresponding", "interval", "with", "closed", "bounds", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/interval.py#L79-L89
20,456
pandas-dev/pandas
pandas/core/indexes/interval.py
interval_range
def interval_range(start=None, end=None, periods=None, freq=None, name=None, closed='right'): """ Return a fixed frequency IntervalIndex Parameters ---------- start : numeric or datetime-like, default None Left bound for generating intervals end : numeric or datetime-like, default None Right bound for generating intervals periods : integer, default None Number of periods to generate freq : numeric, string, or DateOffset, default None The length of each interval. Must be consistent with the type of start and end, e.g. 2 for numeric, or '5H' for datetime-like. Default is 1 for numeric and 'D' for datetime-like. name : string, default None Name of the resulting IntervalIndex closed : {'left', 'right', 'both', 'neither'}, default 'right' Whether the intervals are closed on the left-side, right-side, both or neither. Returns ------- rng : IntervalIndex See Also -------- IntervalIndex : An Index of intervals that are all closed on the same side. Notes ----- Of the four parameters ``start``, ``end``, ``periods``, and ``freq``, exactly three must be specified. If ``freq`` is omitted, the resulting ``IntervalIndex`` will have ``periods`` linearly spaced elements between ``start`` and ``end``, inclusively. To learn more about datetime-like frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. Examples -------- Numeric ``start`` and ``end`` is supported. >>> pd.interval_range(start=0, end=5) IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]], closed='right', dtype='interval[int64]') Additionally, datetime-like input is also supported. >>> pd.interval_range(start=pd.Timestamp('2017-01-01'), ... end=pd.Timestamp('2017-01-04')) IntervalIndex([(2017-01-01, 2017-01-02], (2017-01-02, 2017-01-03], (2017-01-03, 2017-01-04]], closed='right', dtype='interval[datetime64[ns]]') The ``freq`` parameter specifies the frequency between the left and right. endpoints of the individual intervals within the ``IntervalIndex``. For numeric ``start`` and ``end``, the frequency must also be numeric. >>> pd.interval_range(start=0, periods=4, freq=1.5) IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]], closed='right', dtype='interval[float64]') Similarly, for datetime-like ``start`` and ``end``, the frequency must be convertible to a DateOffset. >>> pd.interval_range(start=pd.Timestamp('2017-01-01'), ... periods=3, freq='MS') IntervalIndex([(2017-01-01, 2017-02-01], (2017-02-01, 2017-03-01], (2017-03-01, 2017-04-01]], closed='right', dtype='interval[datetime64[ns]]') Specify ``start``, ``end``, and ``periods``; the frequency is generated automatically (linearly spaced). >>> pd.interval_range(start=0, end=6, periods=4) IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]], closed='right', dtype='interval[float64]') The ``closed`` parameter specifies which endpoints of the individual intervals within the ``IntervalIndex`` are closed. >>> pd.interval_range(end=5, periods=4, closed='both') IntervalIndex([[1, 2], [2, 3], [3, 4], [4, 5]], closed='both', dtype='interval[int64]') """ start = com.maybe_box_datetimelike(start) end = com.maybe_box_datetimelike(end) endpoint = start if start is not None else end if freq is None and com._any_none(periods, start, end): freq = 1 if is_number(endpoint) else 'D' if com.count_not_none(start, end, periods, freq) != 3: raise ValueError('Of the four parameters: start, end, periods, and ' 'freq, exactly three must be specified') if not _is_valid_endpoint(start): msg = 'start must be numeric or datetime-like, got {start}' raise ValueError(msg.format(start=start)) elif not _is_valid_endpoint(end): msg = 'end must be numeric or datetime-like, got {end}' raise ValueError(msg.format(end=end)) if is_float(periods): periods = int(periods) elif not is_integer(periods) and periods is not None: msg = 'periods must be a number, got {periods}' raise TypeError(msg.format(periods=periods)) if freq is not None and not is_number(freq): try: freq = to_offset(freq) except ValueError: raise ValueError('freq must be numeric or convertible to ' 'DateOffset, got {freq}'.format(freq=freq)) # verify type compatibility if not all([_is_type_compatible(start, end), _is_type_compatible(start, freq), _is_type_compatible(end, freq)]): raise TypeError("start, end, freq need to be type compatible") # +1 to convert interval count to breaks count (n breaks = n-1 intervals) if periods is not None: periods += 1 if is_number(endpoint): # force consistency between start/end/freq (lower end if freq skips it) if com._all_not_none(start, end, freq): end -= (end - start) % freq # compute the period/start/end if unspecified (at most one) if periods is None: periods = int((end - start) // freq) + 1 elif start is None: start = end - (periods - 1) * freq elif end is None: end = start + (periods - 1) * freq breaks = np.linspace(start, end, periods) if all(is_integer(x) for x in com._not_none(start, end, freq)): # np.linspace always produces float output breaks = maybe_downcast_to_dtype(breaks, 'int64') else: # delegate to the appropriate range function if isinstance(endpoint, Timestamp): range_func = date_range else: range_func = timedelta_range breaks = range_func(start=start, end=end, periods=periods, freq=freq) return IntervalIndex.from_breaks(breaks, name=name, closed=closed)
python
def interval_range(start=None, end=None, periods=None, freq=None, name=None, closed='right'): """ Return a fixed frequency IntervalIndex Parameters ---------- start : numeric or datetime-like, default None Left bound for generating intervals end : numeric or datetime-like, default None Right bound for generating intervals periods : integer, default None Number of periods to generate freq : numeric, string, or DateOffset, default None The length of each interval. Must be consistent with the type of start and end, e.g. 2 for numeric, or '5H' for datetime-like. Default is 1 for numeric and 'D' for datetime-like. name : string, default None Name of the resulting IntervalIndex closed : {'left', 'right', 'both', 'neither'}, default 'right' Whether the intervals are closed on the left-side, right-side, both or neither. Returns ------- rng : IntervalIndex See Also -------- IntervalIndex : An Index of intervals that are all closed on the same side. Notes ----- Of the four parameters ``start``, ``end``, ``periods``, and ``freq``, exactly three must be specified. If ``freq`` is omitted, the resulting ``IntervalIndex`` will have ``periods`` linearly spaced elements between ``start`` and ``end``, inclusively. To learn more about datetime-like frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. Examples -------- Numeric ``start`` and ``end`` is supported. >>> pd.interval_range(start=0, end=5) IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]], closed='right', dtype='interval[int64]') Additionally, datetime-like input is also supported. >>> pd.interval_range(start=pd.Timestamp('2017-01-01'), ... end=pd.Timestamp('2017-01-04')) IntervalIndex([(2017-01-01, 2017-01-02], (2017-01-02, 2017-01-03], (2017-01-03, 2017-01-04]], closed='right', dtype='interval[datetime64[ns]]') The ``freq`` parameter specifies the frequency between the left and right. endpoints of the individual intervals within the ``IntervalIndex``. For numeric ``start`` and ``end``, the frequency must also be numeric. >>> pd.interval_range(start=0, periods=4, freq=1.5) IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]], closed='right', dtype='interval[float64]') Similarly, for datetime-like ``start`` and ``end``, the frequency must be convertible to a DateOffset. >>> pd.interval_range(start=pd.Timestamp('2017-01-01'), ... periods=3, freq='MS') IntervalIndex([(2017-01-01, 2017-02-01], (2017-02-01, 2017-03-01], (2017-03-01, 2017-04-01]], closed='right', dtype='interval[datetime64[ns]]') Specify ``start``, ``end``, and ``periods``; the frequency is generated automatically (linearly spaced). >>> pd.interval_range(start=0, end=6, periods=4) IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]], closed='right', dtype='interval[float64]') The ``closed`` parameter specifies which endpoints of the individual intervals within the ``IntervalIndex`` are closed. >>> pd.interval_range(end=5, periods=4, closed='both') IntervalIndex([[1, 2], [2, 3], [3, 4], [4, 5]], closed='both', dtype='interval[int64]') """ start = com.maybe_box_datetimelike(start) end = com.maybe_box_datetimelike(end) endpoint = start if start is not None else end if freq is None and com._any_none(periods, start, end): freq = 1 if is_number(endpoint) else 'D' if com.count_not_none(start, end, periods, freq) != 3: raise ValueError('Of the four parameters: start, end, periods, and ' 'freq, exactly three must be specified') if not _is_valid_endpoint(start): msg = 'start must be numeric or datetime-like, got {start}' raise ValueError(msg.format(start=start)) elif not _is_valid_endpoint(end): msg = 'end must be numeric or datetime-like, got {end}' raise ValueError(msg.format(end=end)) if is_float(periods): periods = int(periods) elif not is_integer(periods) and periods is not None: msg = 'periods must be a number, got {periods}' raise TypeError(msg.format(periods=periods)) if freq is not None and not is_number(freq): try: freq = to_offset(freq) except ValueError: raise ValueError('freq must be numeric or convertible to ' 'DateOffset, got {freq}'.format(freq=freq)) # verify type compatibility if not all([_is_type_compatible(start, end), _is_type_compatible(start, freq), _is_type_compatible(end, freq)]): raise TypeError("start, end, freq need to be type compatible") # +1 to convert interval count to breaks count (n breaks = n-1 intervals) if periods is not None: periods += 1 if is_number(endpoint): # force consistency between start/end/freq (lower end if freq skips it) if com._all_not_none(start, end, freq): end -= (end - start) % freq # compute the period/start/end if unspecified (at most one) if periods is None: periods = int((end - start) // freq) + 1 elif start is None: start = end - (periods - 1) * freq elif end is None: end = start + (periods - 1) * freq breaks = np.linspace(start, end, periods) if all(is_integer(x) for x in com._not_none(start, end, freq)): # np.linspace always produces float output breaks = maybe_downcast_to_dtype(breaks, 'int64') else: # delegate to the appropriate range function if isinstance(endpoint, Timestamp): range_func = date_range else: range_func = timedelta_range breaks = range_func(start=start, end=end, periods=periods, freq=freq) return IntervalIndex.from_breaks(breaks, name=name, closed=closed)
[ "def", "interval_range", "(", "start", "=", "None", ",", "end", "=", "None", ",", "periods", "=", "None", ",", "freq", "=", "None", ",", "name", "=", "None", ",", "closed", "=", "'right'", ")", ":", "start", "=", "com", ".", "maybe_box_datetimelike", "(", "start", ")", "end", "=", "com", ".", "maybe_box_datetimelike", "(", "end", ")", "endpoint", "=", "start", "if", "start", "is", "not", "None", "else", "end", "if", "freq", "is", "None", "and", "com", ".", "_any_none", "(", "periods", ",", "start", ",", "end", ")", ":", "freq", "=", "1", "if", "is_number", "(", "endpoint", ")", "else", "'D'", "if", "com", ".", "count_not_none", "(", "start", ",", "end", ",", "periods", ",", "freq", ")", "!=", "3", ":", "raise", "ValueError", "(", "'Of the four parameters: start, end, periods, and '", "'freq, exactly three must be specified'", ")", "if", "not", "_is_valid_endpoint", "(", "start", ")", ":", "msg", "=", "'start must be numeric or datetime-like, got {start}'", "raise", "ValueError", "(", "msg", ".", "format", "(", "start", "=", "start", ")", ")", "elif", "not", "_is_valid_endpoint", "(", "end", ")", ":", "msg", "=", "'end must be numeric or datetime-like, got {end}'", "raise", "ValueError", "(", "msg", ".", "format", "(", "end", "=", "end", ")", ")", "if", "is_float", "(", "periods", ")", ":", "periods", "=", "int", "(", "periods", ")", "elif", "not", "is_integer", "(", "periods", ")", "and", "periods", "is", "not", "None", ":", "msg", "=", "'periods must be a number, got {periods}'", "raise", "TypeError", "(", "msg", ".", "format", "(", "periods", "=", "periods", ")", ")", "if", "freq", "is", "not", "None", "and", "not", "is_number", "(", "freq", ")", ":", "try", ":", "freq", "=", "to_offset", "(", "freq", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'freq must be numeric or convertible to '", "'DateOffset, got {freq}'", ".", "format", "(", "freq", "=", "freq", ")", ")", "# verify type compatibility", "if", "not", "all", "(", "[", "_is_type_compatible", "(", "start", ",", "end", ")", ",", "_is_type_compatible", "(", "start", ",", "freq", ")", ",", "_is_type_compatible", "(", "end", ",", "freq", ")", "]", ")", ":", "raise", "TypeError", "(", "\"start, end, freq need to be type compatible\"", ")", "# +1 to convert interval count to breaks count (n breaks = n-1 intervals)", "if", "periods", "is", "not", "None", ":", "periods", "+=", "1", "if", "is_number", "(", "endpoint", ")", ":", "# force consistency between start/end/freq (lower end if freq skips it)", "if", "com", ".", "_all_not_none", "(", "start", ",", "end", ",", "freq", ")", ":", "end", "-=", "(", "end", "-", "start", ")", "%", "freq", "# compute the period/start/end if unspecified (at most one)", "if", "periods", "is", "None", ":", "periods", "=", "int", "(", "(", "end", "-", "start", ")", "//", "freq", ")", "+", "1", "elif", "start", "is", "None", ":", "start", "=", "end", "-", "(", "periods", "-", "1", ")", "*", "freq", "elif", "end", "is", "None", ":", "end", "=", "start", "+", "(", "periods", "-", "1", ")", "*", "freq", "breaks", "=", "np", ".", "linspace", "(", "start", ",", "end", ",", "periods", ")", "if", "all", "(", "is_integer", "(", "x", ")", "for", "x", "in", "com", ".", "_not_none", "(", "start", ",", "end", ",", "freq", ")", ")", ":", "# np.linspace always produces float output", "breaks", "=", "maybe_downcast_to_dtype", "(", "breaks", ",", "'int64'", ")", "else", ":", "# delegate to the appropriate range function", "if", "isinstance", "(", "endpoint", ",", "Timestamp", ")", ":", "range_func", "=", "date_range", "else", ":", "range_func", "=", "timedelta_range", "breaks", "=", "range_func", "(", "start", "=", "start", ",", "end", "=", "end", ",", "periods", "=", "periods", ",", "freq", "=", "freq", ")", "return", "IntervalIndex", ".", "from_breaks", "(", "breaks", ",", "name", "=", "name", ",", "closed", "=", "closed", ")" ]
Return a fixed frequency IntervalIndex Parameters ---------- start : numeric or datetime-like, default None Left bound for generating intervals end : numeric or datetime-like, default None Right bound for generating intervals periods : integer, default None Number of periods to generate freq : numeric, string, or DateOffset, default None The length of each interval. Must be consistent with the type of start and end, e.g. 2 for numeric, or '5H' for datetime-like. Default is 1 for numeric and 'D' for datetime-like. name : string, default None Name of the resulting IntervalIndex closed : {'left', 'right', 'both', 'neither'}, default 'right' Whether the intervals are closed on the left-side, right-side, both or neither. Returns ------- rng : IntervalIndex See Also -------- IntervalIndex : An Index of intervals that are all closed on the same side. Notes ----- Of the four parameters ``start``, ``end``, ``periods``, and ``freq``, exactly three must be specified. If ``freq`` is omitted, the resulting ``IntervalIndex`` will have ``periods`` linearly spaced elements between ``start`` and ``end``, inclusively. To learn more about datetime-like frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. Examples -------- Numeric ``start`` and ``end`` is supported. >>> pd.interval_range(start=0, end=5) IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]], closed='right', dtype='interval[int64]') Additionally, datetime-like input is also supported. >>> pd.interval_range(start=pd.Timestamp('2017-01-01'), ... end=pd.Timestamp('2017-01-04')) IntervalIndex([(2017-01-01, 2017-01-02], (2017-01-02, 2017-01-03], (2017-01-03, 2017-01-04]], closed='right', dtype='interval[datetime64[ns]]') The ``freq`` parameter specifies the frequency between the left and right. endpoints of the individual intervals within the ``IntervalIndex``. For numeric ``start`` and ``end``, the frequency must also be numeric. >>> pd.interval_range(start=0, periods=4, freq=1.5) IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]], closed='right', dtype='interval[float64]') Similarly, for datetime-like ``start`` and ``end``, the frequency must be convertible to a DateOffset. >>> pd.interval_range(start=pd.Timestamp('2017-01-01'), ... periods=3, freq='MS') IntervalIndex([(2017-01-01, 2017-02-01], (2017-02-01, 2017-03-01], (2017-03-01, 2017-04-01]], closed='right', dtype='interval[datetime64[ns]]') Specify ``start``, ``end``, and ``periods``; the frequency is generated automatically (linearly spaced). >>> pd.interval_range(start=0, end=6, periods=4) IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]], closed='right', dtype='interval[float64]') The ``closed`` parameter specifies which endpoints of the individual intervals within the ``IntervalIndex`` are closed. >>> pd.interval_range(end=5, periods=4, closed='both') IntervalIndex([[1, 2], [2, 3], [3, 4], [4, 5]], closed='both', dtype='interval[int64]')
[ "Return", "a", "fixed", "frequency", "IntervalIndex" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/interval.py#L1156-L1312
20,457
pandas-dev/pandas
pandas/io/formats/csvs.py
CSVFormatter.save
def save(self): """ Create the writer & save """ # GH21227 internal compression is not used when file-like passed. if self.compression and hasattr(self.path_or_buf, 'write'): msg = ("compression has no effect when passing file-like " "object as input.") warnings.warn(msg, RuntimeWarning, stacklevel=2) # when zip compression is called. is_zip = isinstance(self.path_or_buf, ZipFile) or ( not hasattr(self.path_or_buf, 'write') and self.compression == 'zip') if is_zip: # zipfile doesn't support writing string to archive. uses string # buffer to receive csv writing and dump into zip compression # file handle. GH21241, GH21118 f = StringIO() close = False elif hasattr(self.path_or_buf, 'write'): f = self.path_or_buf close = False else: f, handles = _get_handle(self.path_or_buf, self.mode, encoding=self.encoding, compression=self.compression) close = True try: writer_kwargs = dict(lineterminator=self.line_terminator, delimiter=self.sep, quoting=self.quoting, doublequote=self.doublequote, escapechar=self.escapechar, quotechar=self.quotechar) if self.encoding == 'ascii': self.writer = csvlib.writer(f, **writer_kwargs) else: writer_kwargs['encoding'] = self.encoding self.writer = UnicodeWriter(f, **writer_kwargs) self._save() finally: if is_zip: # GH17778 handles zip compression separately. buf = f.getvalue() if hasattr(self.path_or_buf, 'write'): self.path_or_buf.write(buf) else: f, handles = _get_handle(self.path_or_buf, self.mode, encoding=self.encoding, compression=self.compression) f.write(buf) close = True if close: f.close() for _fh in handles: _fh.close()
python
def save(self): """ Create the writer & save """ # GH21227 internal compression is not used when file-like passed. if self.compression and hasattr(self.path_or_buf, 'write'): msg = ("compression has no effect when passing file-like " "object as input.") warnings.warn(msg, RuntimeWarning, stacklevel=2) # when zip compression is called. is_zip = isinstance(self.path_or_buf, ZipFile) or ( not hasattr(self.path_or_buf, 'write') and self.compression == 'zip') if is_zip: # zipfile doesn't support writing string to archive. uses string # buffer to receive csv writing and dump into zip compression # file handle. GH21241, GH21118 f = StringIO() close = False elif hasattr(self.path_or_buf, 'write'): f = self.path_or_buf close = False else: f, handles = _get_handle(self.path_or_buf, self.mode, encoding=self.encoding, compression=self.compression) close = True try: writer_kwargs = dict(lineterminator=self.line_terminator, delimiter=self.sep, quoting=self.quoting, doublequote=self.doublequote, escapechar=self.escapechar, quotechar=self.quotechar) if self.encoding == 'ascii': self.writer = csvlib.writer(f, **writer_kwargs) else: writer_kwargs['encoding'] = self.encoding self.writer = UnicodeWriter(f, **writer_kwargs) self._save() finally: if is_zip: # GH17778 handles zip compression separately. buf = f.getvalue() if hasattr(self.path_or_buf, 'write'): self.path_or_buf.write(buf) else: f, handles = _get_handle(self.path_or_buf, self.mode, encoding=self.encoding, compression=self.compression) f.write(buf) close = True if close: f.close() for _fh in handles: _fh.close()
[ "def", "save", "(", "self", ")", ":", "# GH21227 internal compression is not used when file-like passed.", "if", "self", ".", "compression", "and", "hasattr", "(", "self", ".", "path_or_buf", ",", "'write'", ")", ":", "msg", "=", "(", "\"compression has no effect when passing file-like \"", "\"object as input.\"", ")", "warnings", ".", "warn", "(", "msg", ",", "RuntimeWarning", ",", "stacklevel", "=", "2", ")", "# when zip compression is called.", "is_zip", "=", "isinstance", "(", "self", ".", "path_or_buf", ",", "ZipFile", ")", "or", "(", "not", "hasattr", "(", "self", ".", "path_or_buf", ",", "'write'", ")", "and", "self", ".", "compression", "==", "'zip'", ")", "if", "is_zip", ":", "# zipfile doesn't support writing string to archive. uses string", "# buffer to receive csv writing and dump into zip compression", "# file handle. GH21241, GH21118", "f", "=", "StringIO", "(", ")", "close", "=", "False", "elif", "hasattr", "(", "self", ".", "path_or_buf", ",", "'write'", ")", ":", "f", "=", "self", ".", "path_or_buf", "close", "=", "False", "else", ":", "f", ",", "handles", "=", "_get_handle", "(", "self", ".", "path_or_buf", ",", "self", ".", "mode", ",", "encoding", "=", "self", ".", "encoding", ",", "compression", "=", "self", ".", "compression", ")", "close", "=", "True", "try", ":", "writer_kwargs", "=", "dict", "(", "lineterminator", "=", "self", ".", "line_terminator", ",", "delimiter", "=", "self", ".", "sep", ",", "quoting", "=", "self", ".", "quoting", ",", "doublequote", "=", "self", ".", "doublequote", ",", "escapechar", "=", "self", ".", "escapechar", ",", "quotechar", "=", "self", ".", "quotechar", ")", "if", "self", ".", "encoding", "==", "'ascii'", ":", "self", ".", "writer", "=", "csvlib", ".", "writer", "(", "f", ",", "*", "*", "writer_kwargs", ")", "else", ":", "writer_kwargs", "[", "'encoding'", "]", "=", "self", ".", "encoding", "self", ".", "writer", "=", "UnicodeWriter", "(", "f", ",", "*", "*", "writer_kwargs", ")", "self", ".", "_save", "(", ")", "finally", ":", "if", "is_zip", ":", "# GH17778 handles zip compression separately.", "buf", "=", "f", ".", "getvalue", "(", ")", "if", "hasattr", "(", "self", ".", "path_or_buf", ",", "'write'", ")", ":", "self", ".", "path_or_buf", ".", "write", "(", "buf", ")", "else", ":", "f", ",", "handles", "=", "_get_handle", "(", "self", ".", "path_or_buf", ",", "self", ".", "mode", ",", "encoding", "=", "self", ".", "encoding", ",", "compression", "=", "self", ".", "compression", ")", "f", ".", "write", "(", "buf", ")", "close", "=", "True", "if", "close", ":", "f", ".", "close", "(", ")", "for", "_fh", "in", "handles", ":", "_fh", ".", "close", "(", ")" ]
Create the writer & save
[ "Create", "the", "writer", "&", "save" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/formats/csvs.py#L125-L184
20,458
pandas-dev/pandas
pandas/core/accessor.py
delegate_names
def delegate_names(delegate, accessors, typ, overwrite=False): """ Add delegated names to a class using a class decorator. This provides an alternative usage to directly calling `_add_delegate_accessors` below a class definition. Parameters ---------- delegate : object the class to get methods/properties & doc-strings accessors : Sequence[str] List of accessor to add typ : {'property', 'method'} overwrite : boolean, default False overwrite the method/property in the target class if it exists Returns ------- callable A class decorator. Examples -------- @delegate_names(Categorical, ["categories", "ordered"], "property") class CategoricalAccessor(PandasDelegate): [...] """ def add_delegate_accessors(cls): cls._add_delegate_accessors(delegate, accessors, typ, overwrite=overwrite) return cls return add_delegate_accessors
python
def delegate_names(delegate, accessors, typ, overwrite=False): """ Add delegated names to a class using a class decorator. This provides an alternative usage to directly calling `_add_delegate_accessors` below a class definition. Parameters ---------- delegate : object the class to get methods/properties & doc-strings accessors : Sequence[str] List of accessor to add typ : {'property', 'method'} overwrite : boolean, default False overwrite the method/property in the target class if it exists Returns ------- callable A class decorator. Examples -------- @delegate_names(Categorical, ["categories", "ordered"], "property") class CategoricalAccessor(PandasDelegate): [...] """ def add_delegate_accessors(cls): cls._add_delegate_accessors(delegate, accessors, typ, overwrite=overwrite) return cls return add_delegate_accessors
[ "def", "delegate_names", "(", "delegate", ",", "accessors", ",", "typ", ",", "overwrite", "=", "False", ")", ":", "def", "add_delegate_accessors", "(", "cls", ")", ":", "cls", ".", "_add_delegate_accessors", "(", "delegate", ",", "accessors", ",", "typ", ",", "overwrite", "=", "overwrite", ")", "return", "cls", "return", "add_delegate_accessors" ]
Add delegated names to a class using a class decorator. This provides an alternative usage to directly calling `_add_delegate_accessors` below a class definition. Parameters ---------- delegate : object the class to get methods/properties & doc-strings accessors : Sequence[str] List of accessor to add typ : {'property', 'method'} overwrite : boolean, default False overwrite the method/property in the target class if it exists Returns ------- callable A class decorator. Examples -------- @delegate_names(Categorical, ["categories", "ordered"], "property") class CategoricalAccessor(PandasDelegate): [...]
[ "Add", "delegated", "names", "to", "a", "class", "using", "a", "class", "decorator", ".", "This", "provides", "an", "alternative", "usage", "to", "directly", "calling", "_add_delegate_accessors", "below", "a", "class", "definition", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/accessor.py#L114-L146
20,459
pandas-dev/pandas
pandas/core/accessor.py
PandasDelegate._add_delegate_accessors
def _add_delegate_accessors(cls, delegate, accessors, typ, overwrite=False): """ Add accessors to cls from the delegate class. Parameters ---------- cls : the class to add the methods/properties to delegate : the class to get methods/properties & doc-strings accessors : string list of accessors to add typ : 'property' or 'method' overwrite : boolean, default False overwrite the method/property in the target class if it exists. """ def _create_delegator_property(name): def _getter(self): return self._delegate_property_get(name) def _setter(self, new_values): return self._delegate_property_set(name, new_values) _getter.__name__ = name _setter.__name__ = name return property(fget=_getter, fset=_setter, doc=getattr(delegate, name).__doc__) def _create_delegator_method(name): def f(self, *args, **kwargs): return self._delegate_method(name, *args, **kwargs) f.__name__ = name f.__doc__ = getattr(delegate, name).__doc__ return f for name in accessors: if typ == 'property': f = _create_delegator_property(name) else: f = _create_delegator_method(name) # don't overwrite existing methods/properties if overwrite or not hasattr(cls, name): setattr(cls, name, f)
python
def _add_delegate_accessors(cls, delegate, accessors, typ, overwrite=False): """ Add accessors to cls from the delegate class. Parameters ---------- cls : the class to add the methods/properties to delegate : the class to get methods/properties & doc-strings accessors : string list of accessors to add typ : 'property' or 'method' overwrite : boolean, default False overwrite the method/property in the target class if it exists. """ def _create_delegator_property(name): def _getter(self): return self._delegate_property_get(name) def _setter(self, new_values): return self._delegate_property_set(name, new_values) _getter.__name__ = name _setter.__name__ = name return property(fget=_getter, fset=_setter, doc=getattr(delegate, name).__doc__) def _create_delegator_method(name): def f(self, *args, **kwargs): return self._delegate_method(name, *args, **kwargs) f.__name__ = name f.__doc__ = getattr(delegate, name).__doc__ return f for name in accessors: if typ == 'property': f = _create_delegator_property(name) else: f = _create_delegator_method(name) # don't overwrite existing methods/properties if overwrite or not hasattr(cls, name): setattr(cls, name, f)
[ "def", "_add_delegate_accessors", "(", "cls", ",", "delegate", ",", "accessors", ",", "typ", ",", "overwrite", "=", "False", ")", ":", "def", "_create_delegator_property", "(", "name", ")", ":", "def", "_getter", "(", "self", ")", ":", "return", "self", ".", "_delegate_property_get", "(", "name", ")", "def", "_setter", "(", "self", ",", "new_values", ")", ":", "return", "self", ".", "_delegate_property_set", "(", "name", ",", "new_values", ")", "_getter", ".", "__name__", "=", "name", "_setter", ".", "__name__", "=", "name", "return", "property", "(", "fget", "=", "_getter", ",", "fset", "=", "_setter", ",", "doc", "=", "getattr", "(", "delegate", ",", "name", ")", ".", "__doc__", ")", "def", "_create_delegator_method", "(", "name", ")", ":", "def", "f", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "self", ".", "_delegate_method", "(", "name", ",", "*", "args", ",", "*", "*", "kwargs", ")", "f", ".", "__name__", "=", "name", "f", ".", "__doc__", "=", "getattr", "(", "delegate", ",", "name", ")", ".", "__doc__", "return", "f", "for", "name", "in", "accessors", ":", "if", "typ", "==", "'property'", ":", "f", "=", "_create_delegator_property", "(", "name", ")", "else", ":", "f", "=", "_create_delegator_method", "(", "name", ")", "# don't overwrite existing methods/properties", "if", "overwrite", "or", "not", "hasattr", "(", "cls", ",", "name", ")", ":", "setattr", "(", "cls", ",", "name", ",", "f", ")" ]
Add accessors to cls from the delegate class. Parameters ---------- cls : the class to add the methods/properties to delegate : the class to get methods/properties & doc-strings accessors : string list of accessors to add typ : 'property' or 'method' overwrite : boolean, default False overwrite the method/property in the target class if it exists.
[ "Add", "accessors", "to", "cls", "from", "the", "delegate", "class", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/accessor.py#L63-L111
20,460
pandas-dev/pandas
pandas/core/computation/expressions.py
_can_use_numexpr
def _can_use_numexpr(op, op_str, a, b, dtype_check): """ return a boolean if we WILL be using numexpr """ if op_str is not None: # required min elements (otherwise we are adding overhead) if np.prod(a.shape) > _MIN_ELEMENTS: # check for dtype compatibility dtypes = set() for o in [a, b]: if hasattr(o, 'get_dtype_counts'): s = o.get_dtype_counts() if len(s) > 1: return False dtypes |= set(s.index) elif isinstance(o, np.ndarray): dtypes |= {o.dtype.name} # allowed are a superset if not len(dtypes) or _ALLOWED_DTYPES[dtype_check] >= dtypes: return True return False
python
def _can_use_numexpr(op, op_str, a, b, dtype_check): """ return a boolean if we WILL be using numexpr """ if op_str is not None: # required min elements (otherwise we are adding overhead) if np.prod(a.shape) > _MIN_ELEMENTS: # check for dtype compatibility dtypes = set() for o in [a, b]: if hasattr(o, 'get_dtype_counts'): s = o.get_dtype_counts() if len(s) > 1: return False dtypes |= set(s.index) elif isinstance(o, np.ndarray): dtypes |= {o.dtype.name} # allowed are a superset if not len(dtypes) or _ALLOWED_DTYPES[dtype_check] >= dtypes: return True return False
[ "def", "_can_use_numexpr", "(", "op", ",", "op_str", ",", "a", ",", "b", ",", "dtype_check", ")", ":", "if", "op_str", "is", "not", "None", ":", "# required min elements (otherwise we are adding overhead)", "if", "np", ".", "prod", "(", "a", ".", "shape", ")", ">", "_MIN_ELEMENTS", ":", "# check for dtype compatibility", "dtypes", "=", "set", "(", ")", "for", "o", "in", "[", "a", ",", "b", "]", ":", "if", "hasattr", "(", "o", ",", "'get_dtype_counts'", ")", ":", "s", "=", "o", ".", "get_dtype_counts", "(", ")", "if", "len", "(", "s", ")", ">", "1", ":", "return", "False", "dtypes", "|=", "set", "(", "s", ".", "index", ")", "elif", "isinstance", "(", "o", ",", "np", ".", "ndarray", ")", ":", "dtypes", "|=", "{", "o", ".", "dtype", ".", "name", "}", "# allowed are a superset", "if", "not", "len", "(", "dtypes", ")", "or", "_ALLOWED_DTYPES", "[", "dtype_check", "]", ">=", "dtypes", ":", "return", "True", "return", "False" ]
return a boolean if we WILL be using numexpr
[ "return", "a", "boolean", "if", "we", "WILL", "be", "using", "numexpr" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/computation/expressions.py#L72-L94
20,461
pandas-dev/pandas
pandas/core/computation/expressions.py
evaluate
def evaluate(op, op_str, a, b, use_numexpr=True, **eval_kwargs): """ evaluate and return the expression of the op on a and b Parameters ---------- op : the actual operand op_str: the string version of the op a : left operand b : right operand use_numexpr : whether to try to use numexpr (default True) """ use_numexpr = use_numexpr and _bool_arith_check(op_str, a, b) if use_numexpr: return _evaluate(op, op_str, a, b, **eval_kwargs) return _evaluate_standard(op, op_str, a, b)
python
def evaluate(op, op_str, a, b, use_numexpr=True, **eval_kwargs): """ evaluate and return the expression of the op on a and b Parameters ---------- op : the actual operand op_str: the string version of the op a : left operand b : right operand use_numexpr : whether to try to use numexpr (default True) """ use_numexpr = use_numexpr and _bool_arith_check(op_str, a, b) if use_numexpr: return _evaluate(op, op_str, a, b, **eval_kwargs) return _evaluate_standard(op, op_str, a, b)
[ "def", "evaluate", "(", "op", ",", "op_str", ",", "a", ",", "b", ",", "use_numexpr", "=", "True", ",", "*", "*", "eval_kwargs", ")", ":", "use_numexpr", "=", "use_numexpr", "and", "_bool_arith_check", "(", "op_str", ",", "a", ",", "b", ")", "if", "use_numexpr", ":", "return", "_evaluate", "(", "op", ",", "op_str", ",", "a", ",", "b", ",", "*", "*", "eval_kwargs", ")", "return", "_evaluate_standard", "(", "op", ",", "op_str", ",", "a", ",", "b", ")" ]
evaluate and return the expression of the op on a and b Parameters ---------- op : the actual operand op_str: the string version of the op a : left operand b : right operand use_numexpr : whether to try to use numexpr (default True)
[ "evaluate", "and", "return", "the", "expression", "of", "the", "op", "on", "a", "and", "b" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/computation/expressions.py#L193-L210
20,462
pandas-dev/pandas
pandas/core/computation/expressions.py
where
def where(cond, a, b, use_numexpr=True): """ evaluate the where condition cond on a and b Parameters ---------- cond : a boolean array a : return if cond is True b : return if cond is False use_numexpr : whether to try to use numexpr (default True) """ if use_numexpr: return _where(cond, a, b) return _where_standard(cond, a, b)
python
def where(cond, a, b, use_numexpr=True): """ evaluate the where condition cond on a and b Parameters ---------- cond : a boolean array a : return if cond is True b : return if cond is False use_numexpr : whether to try to use numexpr (default True) """ if use_numexpr: return _where(cond, a, b) return _where_standard(cond, a, b)
[ "def", "where", "(", "cond", ",", "a", ",", "b", ",", "use_numexpr", "=", "True", ")", ":", "if", "use_numexpr", ":", "return", "_where", "(", "cond", ",", "a", ",", "b", ")", "return", "_where_standard", "(", "cond", ",", "a", ",", "b", ")" ]
evaluate the where condition cond on a and b Parameters ---------- cond : a boolean array a : return if cond is True b : return if cond is False use_numexpr : whether to try to use numexpr (default True)
[ "evaluate", "the", "where", "condition", "cond", "on", "a", "and", "b" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/computation/expressions.py#L213-L227
20,463
pandas-dev/pandas
pandas/io/feather_format.py
to_feather
def to_feather(df, path): """ Write a DataFrame to the feather-format Parameters ---------- df : DataFrame path : string file path, or file-like object """ path = _stringify_path(path) if not isinstance(df, DataFrame): raise ValueError("feather only support IO with DataFrames") feather = _try_import()[0] valid_types = {'string', 'unicode'} # validate index # -------------- # validate that we have only a default index # raise on anything else as we don't serialize the index if not isinstance(df.index, Int64Index): raise ValueError("feather does not support serializing {} " "for the index; you can .reset_index()" "to make the index into column(s)".format( type(df.index))) if not df.index.equals(RangeIndex.from_range(range(len(df)))): raise ValueError("feather does not support serializing a " "non-default index for the index; you " "can .reset_index() to make the index " "into column(s)") if df.index.name is not None: raise ValueError("feather does not serialize index meta-data on a " "default index") # validate columns # ---------------- # must have value column names (strings only) if df.columns.inferred_type not in valid_types: raise ValueError("feather must have string column names") feather.write_feather(df, path)
python
def to_feather(df, path): """ Write a DataFrame to the feather-format Parameters ---------- df : DataFrame path : string file path, or file-like object """ path = _stringify_path(path) if not isinstance(df, DataFrame): raise ValueError("feather only support IO with DataFrames") feather = _try_import()[0] valid_types = {'string', 'unicode'} # validate index # -------------- # validate that we have only a default index # raise on anything else as we don't serialize the index if not isinstance(df.index, Int64Index): raise ValueError("feather does not support serializing {} " "for the index; you can .reset_index()" "to make the index into column(s)".format( type(df.index))) if not df.index.equals(RangeIndex.from_range(range(len(df)))): raise ValueError("feather does not support serializing a " "non-default index for the index; you " "can .reset_index() to make the index " "into column(s)") if df.index.name is not None: raise ValueError("feather does not serialize index meta-data on a " "default index") # validate columns # ---------------- # must have value column names (strings only) if df.columns.inferred_type not in valid_types: raise ValueError("feather must have string column names") feather.write_feather(df, path)
[ "def", "to_feather", "(", "df", ",", "path", ")", ":", "path", "=", "_stringify_path", "(", "path", ")", "if", "not", "isinstance", "(", "df", ",", "DataFrame", ")", ":", "raise", "ValueError", "(", "\"feather only support IO with DataFrames\"", ")", "feather", "=", "_try_import", "(", ")", "[", "0", "]", "valid_types", "=", "{", "'string'", ",", "'unicode'", "}", "# validate index", "# --------------", "# validate that we have only a default index", "# raise on anything else as we don't serialize the index", "if", "not", "isinstance", "(", "df", ".", "index", ",", "Int64Index", ")", ":", "raise", "ValueError", "(", "\"feather does not support serializing {} \"", "\"for the index; you can .reset_index()\"", "\"to make the index into column(s)\"", ".", "format", "(", "type", "(", "df", ".", "index", ")", ")", ")", "if", "not", "df", ".", "index", ".", "equals", "(", "RangeIndex", ".", "from_range", "(", "range", "(", "len", "(", "df", ")", ")", ")", ")", ":", "raise", "ValueError", "(", "\"feather does not support serializing a \"", "\"non-default index for the index; you \"", "\"can .reset_index() to make the index \"", "\"into column(s)\"", ")", "if", "df", ".", "index", ".", "name", "is", "not", "None", ":", "raise", "ValueError", "(", "\"feather does not serialize index meta-data on a \"", "\"default index\"", ")", "# validate columns", "# ----------------", "# must have value column names (strings only)", "if", "df", ".", "columns", ".", "inferred_type", "not", "in", "valid_types", ":", "raise", "ValueError", "(", "\"feather must have string column names\"", ")", "feather", ".", "write_feather", "(", "df", ",", "path", ")" ]
Write a DataFrame to the feather-format Parameters ---------- df : DataFrame path : string file path, or file-like object
[ "Write", "a", "DataFrame", "to", "the", "feather", "-", "format" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/feather_format.py#L36-L82
20,464
pandas-dev/pandas
pandas/io/feather_format.py
read_feather
def read_feather(path, columns=None, use_threads=True): """ Load a feather-format object from the file path .. versionadded 0.20.0 Parameters ---------- path : string file path, or file-like object columns : sequence, default None If not provided, all columns are read .. versionadded 0.24.0 nthreads : int, default 1 Number of CPU threads to use when reading to pandas.DataFrame .. versionadded 0.21.0 .. deprecated 0.24.0 use_threads : bool, default True Whether to parallelize reading using multiple threads .. versionadded 0.24.0 Returns ------- type of object stored in file """ feather, pyarrow = _try_import() path = _stringify_path(path) if LooseVersion(pyarrow.__version__) < LooseVersion('0.11.0'): int_use_threads = int(use_threads) if int_use_threads < 1: int_use_threads = 1 return feather.read_feather(path, columns=columns, nthreads=int_use_threads) return feather.read_feather(path, columns=columns, use_threads=bool(use_threads))
python
def read_feather(path, columns=None, use_threads=True): """ Load a feather-format object from the file path .. versionadded 0.20.0 Parameters ---------- path : string file path, or file-like object columns : sequence, default None If not provided, all columns are read .. versionadded 0.24.0 nthreads : int, default 1 Number of CPU threads to use when reading to pandas.DataFrame .. versionadded 0.21.0 .. deprecated 0.24.0 use_threads : bool, default True Whether to parallelize reading using multiple threads .. versionadded 0.24.0 Returns ------- type of object stored in file """ feather, pyarrow = _try_import() path = _stringify_path(path) if LooseVersion(pyarrow.__version__) < LooseVersion('0.11.0'): int_use_threads = int(use_threads) if int_use_threads < 1: int_use_threads = 1 return feather.read_feather(path, columns=columns, nthreads=int_use_threads) return feather.read_feather(path, columns=columns, use_threads=bool(use_threads))
[ "def", "read_feather", "(", "path", ",", "columns", "=", "None", ",", "use_threads", "=", "True", ")", ":", "feather", ",", "pyarrow", "=", "_try_import", "(", ")", "path", "=", "_stringify_path", "(", "path", ")", "if", "LooseVersion", "(", "pyarrow", ".", "__version__", ")", "<", "LooseVersion", "(", "'0.11.0'", ")", ":", "int_use_threads", "=", "int", "(", "use_threads", ")", "if", "int_use_threads", "<", "1", ":", "int_use_threads", "=", "1", "return", "feather", ".", "read_feather", "(", "path", ",", "columns", "=", "columns", ",", "nthreads", "=", "int_use_threads", ")", "return", "feather", ".", "read_feather", "(", "path", ",", "columns", "=", "columns", ",", "use_threads", "=", "bool", "(", "use_threads", ")", ")" ]
Load a feather-format object from the file path .. versionadded 0.20.0 Parameters ---------- path : string file path, or file-like object columns : sequence, default None If not provided, all columns are read .. versionadded 0.24.0 nthreads : int, default 1 Number of CPU threads to use when reading to pandas.DataFrame .. versionadded 0.21.0 .. deprecated 0.24.0 use_threads : bool, default True Whether to parallelize reading using multiple threads .. versionadded 0.24.0 Returns ------- type of object stored in file
[ "Load", "a", "feather", "-", "format", "object", "from", "the", "file", "path" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/feather_format.py#L86-L125
20,465
pandas-dev/pandas
pandas/core/arrays/_ranges.py
generate_regular_range
def generate_regular_range(start, end, periods, freq): """ Generate a range of dates with the spans between dates described by the given `freq` DateOffset. Parameters ---------- start : Timestamp or None first point of produced date range end : Timestamp or None last point of produced date range periods : int number of periods in produced date range freq : DateOffset describes space between dates in produced date range Returns ------- ndarray[np.int64] representing nanosecond unix timestamps """ if isinstance(freq, Tick): stride = freq.nanos if periods is None: b = Timestamp(start).value # cannot just use e = Timestamp(end) + 1 because arange breaks when # stride is too large, see GH10887 e = (b + (Timestamp(end).value - b) // stride * stride + stride // 2 + 1) # end.tz == start.tz by this point due to _generate implementation tz = start.tz elif start is not None: b = Timestamp(start).value e = _generate_range_overflow_safe(b, periods, stride, side='start') tz = start.tz elif end is not None: e = Timestamp(end).value + stride b = _generate_range_overflow_safe(e, periods, stride, side='end') tz = end.tz else: raise ValueError("at least 'start' or 'end' should be specified " "if a 'period' is given.") with np.errstate(over="raise"): # If the range is sufficiently large, np.arange may overflow # and incorrectly return an empty array if not caught. try: values = np.arange(b, e, stride, dtype=np.int64) except FloatingPointError: xdr = [b] while xdr[-1] != e: xdr.append(xdr[-1] + stride) values = np.array(xdr[:-1], dtype=np.int64) else: tz = None # start and end should have the same timezone by this point if start is not None: tz = start.tz elif end is not None: tz = end.tz xdr = generate_range(start=start, end=end, periods=periods, offset=freq) values = np.array([x.value for x in xdr], dtype=np.int64) return values, tz
python
def generate_regular_range(start, end, periods, freq): """ Generate a range of dates with the spans between dates described by the given `freq` DateOffset. Parameters ---------- start : Timestamp or None first point of produced date range end : Timestamp or None last point of produced date range periods : int number of periods in produced date range freq : DateOffset describes space between dates in produced date range Returns ------- ndarray[np.int64] representing nanosecond unix timestamps """ if isinstance(freq, Tick): stride = freq.nanos if periods is None: b = Timestamp(start).value # cannot just use e = Timestamp(end) + 1 because arange breaks when # stride is too large, see GH10887 e = (b + (Timestamp(end).value - b) // stride * stride + stride // 2 + 1) # end.tz == start.tz by this point due to _generate implementation tz = start.tz elif start is not None: b = Timestamp(start).value e = _generate_range_overflow_safe(b, periods, stride, side='start') tz = start.tz elif end is not None: e = Timestamp(end).value + stride b = _generate_range_overflow_safe(e, periods, stride, side='end') tz = end.tz else: raise ValueError("at least 'start' or 'end' should be specified " "if a 'period' is given.") with np.errstate(over="raise"): # If the range is sufficiently large, np.arange may overflow # and incorrectly return an empty array if not caught. try: values = np.arange(b, e, stride, dtype=np.int64) except FloatingPointError: xdr = [b] while xdr[-1] != e: xdr.append(xdr[-1] + stride) values = np.array(xdr[:-1], dtype=np.int64) else: tz = None # start and end should have the same timezone by this point if start is not None: tz = start.tz elif end is not None: tz = end.tz xdr = generate_range(start=start, end=end, periods=periods, offset=freq) values = np.array([x.value for x in xdr], dtype=np.int64) return values, tz
[ "def", "generate_regular_range", "(", "start", ",", "end", ",", "periods", ",", "freq", ")", ":", "if", "isinstance", "(", "freq", ",", "Tick", ")", ":", "stride", "=", "freq", ".", "nanos", "if", "periods", "is", "None", ":", "b", "=", "Timestamp", "(", "start", ")", ".", "value", "# cannot just use e = Timestamp(end) + 1 because arange breaks when", "# stride is too large, see GH10887", "e", "=", "(", "b", "+", "(", "Timestamp", "(", "end", ")", ".", "value", "-", "b", ")", "//", "stride", "*", "stride", "+", "stride", "//", "2", "+", "1", ")", "# end.tz == start.tz by this point due to _generate implementation", "tz", "=", "start", ".", "tz", "elif", "start", "is", "not", "None", ":", "b", "=", "Timestamp", "(", "start", ")", ".", "value", "e", "=", "_generate_range_overflow_safe", "(", "b", ",", "periods", ",", "stride", ",", "side", "=", "'start'", ")", "tz", "=", "start", ".", "tz", "elif", "end", "is", "not", "None", ":", "e", "=", "Timestamp", "(", "end", ")", ".", "value", "+", "stride", "b", "=", "_generate_range_overflow_safe", "(", "e", ",", "periods", ",", "stride", ",", "side", "=", "'end'", ")", "tz", "=", "end", ".", "tz", "else", ":", "raise", "ValueError", "(", "\"at least 'start' or 'end' should be specified \"", "\"if a 'period' is given.\"", ")", "with", "np", ".", "errstate", "(", "over", "=", "\"raise\"", ")", ":", "# If the range is sufficiently large, np.arange may overflow", "# and incorrectly return an empty array if not caught.", "try", ":", "values", "=", "np", ".", "arange", "(", "b", ",", "e", ",", "stride", ",", "dtype", "=", "np", ".", "int64", ")", "except", "FloatingPointError", ":", "xdr", "=", "[", "b", "]", "while", "xdr", "[", "-", "1", "]", "!=", "e", ":", "xdr", ".", "append", "(", "xdr", "[", "-", "1", "]", "+", "stride", ")", "values", "=", "np", ".", "array", "(", "xdr", "[", ":", "-", "1", "]", ",", "dtype", "=", "np", ".", "int64", ")", "else", ":", "tz", "=", "None", "# start and end should have the same timezone by this point", "if", "start", "is", "not", "None", ":", "tz", "=", "start", ".", "tz", "elif", "end", "is", "not", "None", ":", "tz", "=", "end", ".", "tz", "xdr", "=", "generate_range", "(", "start", "=", "start", ",", "end", "=", "end", ",", "periods", "=", "periods", ",", "offset", "=", "freq", ")", "values", "=", "np", ".", "array", "(", "[", "x", ".", "value", "for", "x", "in", "xdr", "]", ",", "dtype", "=", "np", ".", "int64", ")", "return", "values", ",", "tz" ]
Generate a range of dates with the spans between dates described by the given `freq` DateOffset. Parameters ---------- start : Timestamp or None first point of produced date range end : Timestamp or None last point of produced date range periods : int number of periods in produced date range freq : DateOffset describes space between dates in produced date range Returns ------- ndarray[np.int64] representing nanosecond unix timestamps
[ "Generate", "a", "range", "of", "dates", "with", "the", "spans", "between", "dates", "described", "by", "the", "given", "freq", "DateOffset", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/_ranges.py#L13-L79
20,466
pandas-dev/pandas
pandas/core/arrays/_ranges.py
_generate_range_overflow_safe
def _generate_range_overflow_safe(endpoint, periods, stride, side='start'): """ Calculate the second endpoint for passing to np.arange, checking to avoid an integer overflow. Catch OverflowError and re-raise as OutOfBoundsDatetime. Parameters ---------- endpoint : int nanosecond timestamp of the known endpoint of the desired range periods : int number of periods in the desired range stride : int nanoseconds between periods in the desired range side : {'start', 'end'} which end of the range `endpoint` refers to Returns ------- other_end : int Raises ------ OutOfBoundsDatetime """ # GH#14187 raise instead of incorrectly wrapping around assert side in ['start', 'end'] i64max = np.uint64(np.iinfo(np.int64).max) msg = ('Cannot generate range with {side}={endpoint} and ' 'periods={periods}' .format(side=side, endpoint=endpoint, periods=periods)) with np.errstate(over="raise"): # if periods * strides cannot be multiplied within the *uint64* bounds, # we cannot salvage the operation by recursing, so raise try: addend = np.uint64(periods) * np.uint64(np.abs(stride)) except FloatingPointError: raise OutOfBoundsDatetime(msg) if np.abs(addend) <= i64max: # relatively easy case without casting concerns return _generate_range_overflow_safe_signed( endpoint, periods, stride, side) elif ((endpoint > 0 and side == 'start' and stride > 0) or (endpoint < 0 and side == 'end' and stride > 0)): # no chance of not-overflowing raise OutOfBoundsDatetime(msg) elif (side == 'end' and endpoint > i64max and endpoint - stride <= i64max): # in _generate_regular_range we added `stride` thereby overflowing # the bounds. Adjust to fix this. return _generate_range_overflow_safe(endpoint - stride, periods - 1, stride, side) # split into smaller pieces mid_periods = periods // 2 remaining = periods - mid_periods assert 0 < remaining < periods, (remaining, periods, endpoint, stride) midpoint = _generate_range_overflow_safe(endpoint, mid_periods, stride, side) return _generate_range_overflow_safe(midpoint, remaining, stride, side)
python
def _generate_range_overflow_safe(endpoint, periods, stride, side='start'): """ Calculate the second endpoint for passing to np.arange, checking to avoid an integer overflow. Catch OverflowError and re-raise as OutOfBoundsDatetime. Parameters ---------- endpoint : int nanosecond timestamp of the known endpoint of the desired range periods : int number of periods in the desired range stride : int nanoseconds between periods in the desired range side : {'start', 'end'} which end of the range `endpoint` refers to Returns ------- other_end : int Raises ------ OutOfBoundsDatetime """ # GH#14187 raise instead of incorrectly wrapping around assert side in ['start', 'end'] i64max = np.uint64(np.iinfo(np.int64).max) msg = ('Cannot generate range with {side}={endpoint} and ' 'periods={periods}' .format(side=side, endpoint=endpoint, periods=periods)) with np.errstate(over="raise"): # if periods * strides cannot be multiplied within the *uint64* bounds, # we cannot salvage the operation by recursing, so raise try: addend = np.uint64(periods) * np.uint64(np.abs(stride)) except FloatingPointError: raise OutOfBoundsDatetime(msg) if np.abs(addend) <= i64max: # relatively easy case without casting concerns return _generate_range_overflow_safe_signed( endpoint, periods, stride, side) elif ((endpoint > 0 and side == 'start' and stride > 0) or (endpoint < 0 and side == 'end' and stride > 0)): # no chance of not-overflowing raise OutOfBoundsDatetime(msg) elif (side == 'end' and endpoint > i64max and endpoint - stride <= i64max): # in _generate_regular_range we added `stride` thereby overflowing # the bounds. Adjust to fix this. return _generate_range_overflow_safe(endpoint - stride, periods - 1, stride, side) # split into smaller pieces mid_periods = periods // 2 remaining = periods - mid_periods assert 0 < remaining < periods, (remaining, periods, endpoint, stride) midpoint = _generate_range_overflow_safe(endpoint, mid_periods, stride, side) return _generate_range_overflow_safe(midpoint, remaining, stride, side)
[ "def", "_generate_range_overflow_safe", "(", "endpoint", ",", "periods", ",", "stride", ",", "side", "=", "'start'", ")", ":", "# GH#14187 raise instead of incorrectly wrapping around", "assert", "side", "in", "[", "'start'", ",", "'end'", "]", "i64max", "=", "np", ".", "uint64", "(", "np", ".", "iinfo", "(", "np", ".", "int64", ")", ".", "max", ")", "msg", "=", "(", "'Cannot generate range with {side}={endpoint} and '", "'periods={periods}'", ".", "format", "(", "side", "=", "side", ",", "endpoint", "=", "endpoint", ",", "periods", "=", "periods", ")", ")", "with", "np", ".", "errstate", "(", "over", "=", "\"raise\"", ")", ":", "# if periods * strides cannot be multiplied within the *uint64* bounds,", "# we cannot salvage the operation by recursing, so raise", "try", ":", "addend", "=", "np", ".", "uint64", "(", "periods", ")", "*", "np", ".", "uint64", "(", "np", ".", "abs", "(", "stride", ")", ")", "except", "FloatingPointError", ":", "raise", "OutOfBoundsDatetime", "(", "msg", ")", "if", "np", ".", "abs", "(", "addend", ")", "<=", "i64max", ":", "# relatively easy case without casting concerns", "return", "_generate_range_overflow_safe_signed", "(", "endpoint", ",", "periods", ",", "stride", ",", "side", ")", "elif", "(", "(", "endpoint", ">", "0", "and", "side", "==", "'start'", "and", "stride", ">", "0", ")", "or", "(", "endpoint", "<", "0", "and", "side", "==", "'end'", "and", "stride", ">", "0", ")", ")", ":", "# no chance of not-overflowing", "raise", "OutOfBoundsDatetime", "(", "msg", ")", "elif", "(", "side", "==", "'end'", "and", "endpoint", ">", "i64max", "and", "endpoint", "-", "stride", "<=", "i64max", ")", ":", "# in _generate_regular_range we added `stride` thereby overflowing", "# the bounds. Adjust to fix this.", "return", "_generate_range_overflow_safe", "(", "endpoint", "-", "stride", ",", "periods", "-", "1", ",", "stride", ",", "side", ")", "# split into smaller pieces", "mid_periods", "=", "periods", "//", "2", "remaining", "=", "periods", "-", "mid_periods", "assert", "0", "<", "remaining", "<", "periods", ",", "(", "remaining", ",", "periods", ",", "endpoint", ",", "stride", ")", "midpoint", "=", "_generate_range_overflow_safe", "(", "endpoint", ",", "mid_periods", ",", "stride", ",", "side", ")", "return", "_generate_range_overflow_safe", "(", "midpoint", ",", "remaining", ",", "stride", ",", "side", ")" ]
Calculate the second endpoint for passing to np.arange, checking to avoid an integer overflow. Catch OverflowError and re-raise as OutOfBoundsDatetime. Parameters ---------- endpoint : int nanosecond timestamp of the known endpoint of the desired range periods : int number of periods in the desired range stride : int nanoseconds between periods in the desired range side : {'start', 'end'} which end of the range `endpoint` refers to Returns ------- other_end : int Raises ------ OutOfBoundsDatetime
[ "Calculate", "the", "second", "endpoint", "for", "passing", "to", "np", ".", "arange", "checking", "to", "avoid", "an", "integer", "overflow", ".", "Catch", "OverflowError", "and", "re", "-", "raise", "as", "OutOfBoundsDatetime", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/_ranges.py#L82-L146
20,467
pandas-dev/pandas
pandas/_config/localization.py
set_locale
def set_locale(new_locale, lc_var=locale.LC_ALL): """ Context manager for temporarily setting a locale. Parameters ---------- new_locale : str or tuple A string of the form <language_country>.<encoding>. For example to set the current locale to US English with a UTF8 encoding, you would pass "en_US.UTF-8". lc_var : int, default `locale.LC_ALL` The category of the locale being set. Notes ----- This is useful when you want to run a particular block of code under a particular locale, without globally setting the locale. This probably isn't thread-safe. """ current_locale = locale.getlocale() try: locale.setlocale(lc_var, new_locale) normalized_locale = locale.getlocale() if all(x is not None for x in normalized_locale): yield '.'.join(normalized_locale) else: yield new_locale finally: locale.setlocale(lc_var, current_locale)
python
def set_locale(new_locale, lc_var=locale.LC_ALL): """ Context manager for temporarily setting a locale. Parameters ---------- new_locale : str or tuple A string of the form <language_country>.<encoding>. For example to set the current locale to US English with a UTF8 encoding, you would pass "en_US.UTF-8". lc_var : int, default `locale.LC_ALL` The category of the locale being set. Notes ----- This is useful when you want to run a particular block of code under a particular locale, without globally setting the locale. This probably isn't thread-safe. """ current_locale = locale.getlocale() try: locale.setlocale(lc_var, new_locale) normalized_locale = locale.getlocale() if all(x is not None for x in normalized_locale): yield '.'.join(normalized_locale) else: yield new_locale finally: locale.setlocale(lc_var, current_locale)
[ "def", "set_locale", "(", "new_locale", ",", "lc_var", "=", "locale", ".", "LC_ALL", ")", ":", "current_locale", "=", "locale", ".", "getlocale", "(", ")", "try", ":", "locale", ".", "setlocale", "(", "lc_var", ",", "new_locale", ")", "normalized_locale", "=", "locale", ".", "getlocale", "(", ")", "if", "all", "(", "x", "is", "not", "None", "for", "x", "in", "normalized_locale", ")", ":", "yield", "'.'", ".", "join", "(", "normalized_locale", ")", "else", ":", "yield", "new_locale", "finally", ":", "locale", ".", "setlocale", "(", "lc_var", ",", "current_locale", ")" ]
Context manager for temporarily setting a locale. Parameters ---------- new_locale : str or tuple A string of the form <language_country>.<encoding>. For example to set the current locale to US English with a UTF8 encoding, you would pass "en_US.UTF-8". lc_var : int, default `locale.LC_ALL` The category of the locale being set. Notes ----- This is useful when you want to run a particular block of code under a particular locale, without globally setting the locale. This probably isn't thread-safe.
[ "Context", "manager", "for", "temporarily", "setting", "a", "locale", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/_config/localization.py#L15-L44
20,468
pandas-dev/pandas
pandas/_config/localization.py
can_set_locale
def can_set_locale(lc, lc_var=locale.LC_ALL): """ Check to see if we can set a locale, and subsequently get the locale, without raising an Exception. Parameters ---------- lc : str The locale to attempt to set. lc_var : int, default `locale.LC_ALL` The category of the locale being set. Returns ------- is_valid : bool Whether the passed locale can be set """ try: with set_locale(lc, lc_var=lc_var): pass except (ValueError, locale.Error): # horrible name for a Exception subclass return False else: return True
python
def can_set_locale(lc, lc_var=locale.LC_ALL): """ Check to see if we can set a locale, and subsequently get the locale, without raising an Exception. Parameters ---------- lc : str The locale to attempt to set. lc_var : int, default `locale.LC_ALL` The category of the locale being set. Returns ------- is_valid : bool Whether the passed locale can be set """ try: with set_locale(lc, lc_var=lc_var): pass except (ValueError, locale.Error): # horrible name for a Exception subclass return False else: return True
[ "def", "can_set_locale", "(", "lc", ",", "lc_var", "=", "locale", ".", "LC_ALL", ")", ":", "try", ":", "with", "set_locale", "(", "lc", ",", "lc_var", "=", "lc_var", ")", ":", "pass", "except", "(", "ValueError", ",", "locale", ".", "Error", ")", ":", "# horrible name for a Exception subclass", "return", "False", "else", ":", "return", "True" ]
Check to see if we can set a locale, and subsequently get the locale, without raising an Exception. Parameters ---------- lc : str The locale to attempt to set. lc_var : int, default `locale.LC_ALL` The category of the locale being set. Returns ------- is_valid : bool Whether the passed locale can be set
[ "Check", "to", "see", "if", "we", "can", "set", "a", "locale", "and", "subsequently", "get", "the", "locale", "without", "raising", "an", "Exception", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/_config/localization.py#L47-L72
20,469
pandas-dev/pandas
pandas/_config/localization.py
_valid_locales
def _valid_locales(locales, normalize): """ Return a list of normalized locales that do not throw an ``Exception`` when set. Parameters ---------- locales : str A string where each locale is separated by a newline. normalize : bool Whether to call ``locale.normalize`` on each locale. Returns ------- valid_locales : list A list of valid locales. """ if normalize: normalizer = lambda x: locale.normalize(x.strip()) else: normalizer = lambda x: x.strip() return list(filter(can_set_locale, map(normalizer, locales)))
python
def _valid_locales(locales, normalize): """ Return a list of normalized locales that do not throw an ``Exception`` when set. Parameters ---------- locales : str A string where each locale is separated by a newline. normalize : bool Whether to call ``locale.normalize`` on each locale. Returns ------- valid_locales : list A list of valid locales. """ if normalize: normalizer = lambda x: locale.normalize(x.strip()) else: normalizer = lambda x: x.strip() return list(filter(can_set_locale, map(normalizer, locales)))
[ "def", "_valid_locales", "(", "locales", ",", "normalize", ")", ":", "if", "normalize", ":", "normalizer", "=", "lambda", "x", ":", "locale", ".", "normalize", "(", "x", ".", "strip", "(", ")", ")", "else", ":", "normalizer", "=", "lambda", "x", ":", "x", ".", "strip", "(", ")", "return", "list", "(", "filter", "(", "can_set_locale", ",", "map", "(", "normalizer", ",", "locales", ")", ")", ")" ]
Return a list of normalized locales that do not throw an ``Exception`` when set. Parameters ---------- locales : str A string where each locale is separated by a newline. normalize : bool Whether to call ``locale.normalize`` on each locale. Returns ------- valid_locales : list A list of valid locales.
[ "Return", "a", "list", "of", "normalized", "locales", "that", "do", "not", "throw", "an", "Exception", "when", "set", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/_config/localization.py#L75-L97
20,470
pandas-dev/pandas
pandas/_config/localization.py
get_locales
def get_locales(prefix=None, normalize=True, locale_getter=_default_locale_getter): """ Get all the locales that are available on the system. Parameters ---------- prefix : str If not ``None`` then return only those locales with the prefix provided. For example to get all English language locales (those that start with ``"en"``), pass ``prefix="en"``. normalize : bool Call ``locale.normalize`` on the resulting list of available locales. If ``True``, only locales that can be set without throwing an ``Exception`` are returned. locale_getter : callable The function to use to retrieve the current locales. This should return a string with each locale separated by a newline character. Returns ------- locales : list of strings A list of locale strings that can be set with ``locale.setlocale()``. For example:: locale.setlocale(locale.LC_ALL, locale_string) On error will return None (no locale available, e.g. Windows) """ try: raw_locales = locale_getter() except Exception: return None try: # raw_locales is "\n" separated list of locales # it may contain non-decodable parts, so split # extract what we can and then rejoin. raw_locales = raw_locales.split(b'\n') out_locales = [] for x in raw_locales: out_locales.append(str( x, encoding=options.display.encoding)) except TypeError: pass if prefix is None: return _valid_locales(out_locales, normalize) pattern = re.compile('{prefix}.*'.format(prefix=prefix)) found = pattern.findall('\n'.join(out_locales)) return _valid_locales(found, normalize)
python
def get_locales(prefix=None, normalize=True, locale_getter=_default_locale_getter): """ Get all the locales that are available on the system. Parameters ---------- prefix : str If not ``None`` then return only those locales with the prefix provided. For example to get all English language locales (those that start with ``"en"``), pass ``prefix="en"``. normalize : bool Call ``locale.normalize`` on the resulting list of available locales. If ``True``, only locales that can be set without throwing an ``Exception`` are returned. locale_getter : callable The function to use to retrieve the current locales. This should return a string with each locale separated by a newline character. Returns ------- locales : list of strings A list of locale strings that can be set with ``locale.setlocale()``. For example:: locale.setlocale(locale.LC_ALL, locale_string) On error will return None (no locale available, e.g. Windows) """ try: raw_locales = locale_getter() except Exception: return None try: # raw_locales is "\n" separated list of locales # it may contain non-decodable parts, so split # extract what we can and then rejoin. raw_locales = raw_locales.split(b'\n') out_locales = [] for x in raw_locales: out_locales.append(str( x, encoding=options.display.encoding)) except TypeError: pass if prefix is None: return _valid_locales(out_locales, normalize) pattern = re.compile('{prefix}.*'.format(prefix=prefix)) found = pattern.findall('\n'.join(out_locales)) return _valid_locales(found, normalize)
[ "def", "get_locales", "(", "prefix", "=", "None", ",", "normalize", "=", "True", ",", "locale_getter", "=", "_default_locale_getter", ")", ":", "try", ":", "raw_locales", "=", "locale_getter", "(", ")", "except", "Exception", ":", "return", "None", "try", ":", "# raw_locales is \"\\n\" separated list of locales", "# it may contain non-decodable parts, so split", "# extract what we can and then rejoin.", "raw_locales", "=", "raw_locales", ".", "split", "(", "b'\\n'", ")", "out_locales", "=", "[", "]", "for", "x", "in", "raw_locales", ":", "out_locales", ".", "append", "(", "str", "(", "x", ",", "encoding", "=", "options", ".", "display", ".", "encoding", ")", ")", "except", "TypeError", ":", "pass", "if", "prefix", "is", "None", ":", "return", "_valid_locales", "(", "out_locales", ",", "normalize", ")", "pattern", "=", "re", ".", "compile", "(", "'{prefix}.*'", ".", "format", "(", "prefix", "=", "prefix", ")", ")", "found", "=", "pattern", ".", "findall", "(", "'\\n'", ".", "join", "(", "out_locales", ")", ")", "return", "_valid_locales", "(", "found", ",", "normalize", ")" ]
Get all the locales that are available on the system. Parameters ---------- prefix : str If not ``None`` then return only those locales with the prefix provided. For example to get all English language locales (those that start with ``"en"``), pass ``prefix="en"``. normalize : bool Call ``locale.normalize`` on the resulting list of available locales. If ``True``, only locales that can be set without throwing an ``Exception`` are returned. locale_getter : callable The function to use to retrieve the current locales. This should return a string with each locale separated by a newline character. Returns ------- locales : list of strings A list of locale strings that can be set with ``locale.setlocale()``. For example:: locale.setlocale(locale.LC_ALL, locale_string) On error will return None (no locale available, e.g. Windows)
[ "Get", "all", "the", "locales", "that", "are", "available", "on", "the", "system", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/_config/localization.py#L109-L162
20,471
pandas-dev/pandas
pandas/core/dtypes/common.py
ensure_float
def ensure_float(arr): """ Ensure that an array object has a float dtype if possible. Parameters ---------- arr : array-like The array whose data type we want to enforce as float. Returns ------- float_arr : The original array cast to the float dtype if possible. Otherwise, the original array is returned. """ if issubclass(arr.dtype.type, (np.integer, np.bool_)): arr = arr.astype(float) return arr
python
def ensure_float(arr): """ Ensure that an array object has a float dtype if possible. Parameters ---------- arr : array-like The array whose data type we want to enforce as float. Returns ------- float_arr : The original array cast to the float dtype if possible. Otherwise, the original array is returned. """ if issubclass(arr.dtype.type, (np.integer, np.bool_)): arr = arr.astype(float) return arr
[ "def", "ensure_float", "(", "arr", ")", ":", "if", "issubclass", "(", "arr", ".", "dtype", ".", "type", ",", "(", "np", ".", "integer", ",", "np", ".", "bool_", ")", ")", ":", "arr", "=", "arr", ".", "astype", "(", "float", ")", "return", "arr" ]
Ensure that an array object has a float dtype if possible. Parameters ---------- arr : array-like The array whose data type we want to enforce as float. Returns ------- float_arr : The original array cast to the float dtype if possible. Otherwise, the original array is returned.
[ "Ensure", "that", "an", "array", "object", "has", "a", "float", "dtype", "if", "possible", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L40-L57
20,472
pandas-dev/pandas
pandas/core/dtypes/common.py
ensure_int64_or_float64
def ensure_int64_or_float64(arr, copy=False): """ Ensure that an dtype array of some integer dtype has an int64 dtype if possible If it's not possible, potentially because of overflow, convert the array to float64 instead. Parameters ---------- arr : array-like The array whose data type we want to enforce. copy: boolean Whether to copy the original array or reuse it in place, if possible. Returns ------- out_arr : The input array cast as int64 if possible without overflow. Otherwise the input array cast to float64. """ try: return arr.astype('int64', copy=copy, casting='safe') except TypeError: return arr.astype('float64', copy=copy)
python
def ensure_int64_or_float64(arr, copy=False): """ Ensure that an dtype array of some integer dtype has an int64 dtype if possible If it's not possible, potentially because of overflow, convert the array to float64 instead. Parameters ---------- arr : array-like The array whose data type we want to enforce. copy: boolean Whether to copy the original array or reuse it in place, if possible. Returns ------- out_arr : The input array cast as int64 if possible without overflow. Otherwise the input array cast to float64. """ try: return arr.astype('int64', copy=copy, casting='safe') except TypeError: return arr.astype('float64', copy=copy)
[ "def", "ensure_int64_or_float64", "(", "arr", ",", "copy", "=", "False", ")", ":", "try", ":", "return", "arr", ".", "astype", "(", "'int64'", ",", "copy", "=", "copy", ",", "casting", "=", "'safe'", ")", "except", "TypeError", ":", "return", "arr", ".", "astype", "(", "'float64'", ",", "copy", "=", "copy", ")" ]
Ensure that an dtype array of some integer dtype has an int64 dtype if possible If it's not possible, potentially because of overflow, convert the array to float64 instead. Parameters ---------- arr : array-like The array whose data type we want to enforce. copy: boolean Whether to copy the original array or reuse it in place, if possible. Returns ------- out_arr : The input array cast as int64 if possible without overflow. Otherwise the input array cast to float64.
[ "Ensure", "that", "an", "dtype", "array", "of", "some", "integer", "dtype", "has", "an", "int64", "dtype", "if", "possible", "If", "it", "s", "not", "possible", "potentially", "because", "of", "overflow", "convert", "the", "array", "to", "float64", "instead", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L90-L114
20,473
pandas-dev/pandas
pandas/core/dtypes/common.py
classes_and_not_datetimelike
def classes_and_not_datetimelike(*klasses): """ evaluate if the tipo is a subclass of the klasses and not a datetimelike """ return lambda tipo: (issubclass(tipo, klasses) and not issubclass(tipo, (np.datetime64, np.timedelta64)))
python
def classes_and_not_datetimelike(*klasses): """ evaluate if the tipo is a subclass of the klasses and not a datetimelike """ return lambda tipo: (issubclass(tipo, klasses) and not issubclass(tipo, (np.datetime64, np.timedelta64)))
[ "def", "classes_and_not_datetimelike", "(", "*", "klasses", ")", ":", "return", "lambda", "tipo", ":", "(", "issubclass", "(", "tipo", ",", "klasses", ")", "and", "not", "issubclass", "(", "tipo", ",", "(", "np", ".", "datetime64", ",", "np", ".", "timedelta64", ")", ")", ")" ]
evaluate if the tipo is a subclass of the klasses and not a datetimelike
[ "evaluate", "if", "the", "tipo", "is", "a", "subclass", "of", "the", "klasses", "and", "not", "a", "datetimelike" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L122-L128
20,474
pandas-dev/pandas
pandas/core/dtypes/common.py
is_sparse
def is_sparse(arr): """ Check whether an array-like is a 1-D pandas sparse array. Check that the one-dimensional array-like is a pandas sparse array. Returns True if it is a pandas sparse array, not another type of sparse array. Parameters ---------- arr : array-like Array-like to check. Returns ------- bool Whether or not the array-like is a pandas sparse array. See Also -------- DataFrame.to_sparse : Convert DataFrame to a SparseDataFrame. Series.to_sparse : Convert Series to SparseSeries. Series.to_dense : Return dense representation of a Series. Examples -------- Returns `True` if the parameter is a 1-D pandas sparse array. >>> is_sparse(pd.SparseArray([0, 0, 1, 0])) True >>> is_sparse(pd.SparseSeries([0, 0, 1, 0])) True Returns `False` if the parameter is not sparse. >>> is_sparse(np.array([0, 0, 1, 0])) False >>> is_sparse(pd.Series([0, 1, 0, 0])) False Returns `False` if the parameter is not a pandas sparse array. >>> from scipy.sparse import bsr_matrix >>> is_sparse(bsr_matrix([0, 1, 0, 0])) False Returns `False` if the parameter has more than one dimension. >>> df = pd.SparseDataFrame([389., 24., 80.5, np.nan], columns=['max_speed'], index=['falcon', 'parrot', 'lion', 'monkey']) >>> is_sparse(df) False >>> is_sparse(df.max_speed) True """ from pandas.core.arrays.sparse import SparseDtype dtype = getattr(arr, 'dtype', arr) return isinstance(dtype, SparseDtype)
python
def is_sparse(arr): """ Check whether an array-like is a 1-D pandas sparse array. Check that the one-dimensional array-like is a pandas sparse array. Returns True if it is a pandas sparse array, not another type of sparse array. Parameters ---------- arr : array-like Array-like to check. Returns ------- bool Whether or not the array-like is a pandas sparse array. See Also -------- DataFrame.to_sparse : Convert DataFrame to a SparseDataFrame. Series.to_sparse : Convert Series to SparseSeries. Series.to_dense : Return dense representation of a Series. Examples -------- Returns `True` if the parameter is a 1-D pandas sparse array. >>> is_sparse(pd.SparseArray([0, 0, 1, 0])) True >>> is_sparse(pd.SparseSeries([0, 0, 1, 0])) True Returns `False` if the parameter is not sparse. >>> is_sparse(np.array([0, 0, 1, 0])) False >>> is_sparse(pd.Series([0, 1, 0, 0])) False Returns `False` if the parameter is not a pandas sparse array. >>> from scipy.sparse import bsr_matrix >>> is_sparse(bsr_matrix([0, 1, 0, 0])) False Returns `False` if the parameter has more than one dimension. >>> df = pd.SparseDataFrame([389., 24., 80.5, np.nan], columns=['max_speed'], index=['falcon', 'parrot', 'lion', 'monkey']) >>> is_sparse(df) False >>> is_sparse(df.max_speed) True """ from pandas.core.arrays.sparse import SparseDtype dtype = getattr(arr, 'dtype', arr) return isinstance(dtype, SparseDtype)
[ "def", "is_sparse", "(", "arr", ")", ":", "from", "pandas", ".", "core", ".", "arrays", ".", "sparse", "import", "SparseDtype", "dtype", "=", "getattr", "(", "arr", ",", "'dtype'", ",", "arr", ")", "return", "isinstance", "(", "dtype", ",", "SparseDtype", ")" ]
Check whether an array-like is a 1-D pandas sparse array. Check that the one-dimensional array-like is a pandas sparse array. Returns True if it is a pandas sparse array, not another type of sparse array. Parameters ---------- arr : array-like Array-like to check. Returns ------- bool Whether or not the array-like is a pandas sparse array. See Also -------- DataFrame.to_sparse : Convert DataFrame to a SparseDataFrame. Series.to_sparse : Convert Series to SparseSeries. Series.to_dense : Return dense representation of a Series. Examples -------- Returns `True` if the parameter is a 1-D pandas sparse array. >>> is_sparse(pd.SparseArray([0, 0, 1, 0])) True >>> is_sparse(pd.SparseSeries([0, 0, 1, 0])) True Returns `False` if the parameter is not sparse. >>> is_sparse(np.array([0, 0, 1, 0])) False >>> is_sparse(pd.Series([0, 1, 0, 0])) False Returns `False` if the parameter is not a pandas sparse array. >>> from scipy.sparse import bsr_matrix >>> is_sparse(bsr_matrix([0, 1, 0, 0])) False Returns `False` if the parameter has more than one dimension. >>> df = pd.SparseDataFrame([389., 24., 80.5, np.nan], columns=['max_speed'], index=['falcon', 'parrot', 'lion', 'monkey']) >>> is_sparse(df) False >>> is_sparse(df.max_speed) True
[ "Check", "whether", "an", "array", "-", "like", "is", "a", "1", "-", "D", "pandas", "sparse", "array", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L161-L220
20,475
pandas-dev/pandas
pandas/core/dtypes/common.py
is_scipy_sparse
def is_scipy_sparse(arr): """ Check whether an array-like is a scipy.sparse.spmatrix instance. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean Whether or not the array-like is a scipy.sparse.spmatrix instance. Notes ----- If scipy is not installed, this function will always return False. Examples -------- >>> from scipy.sparse import bsr_matrix >>> is_scipy_sparse(bsr_matrix([1, 2, 3])) True >>> is_scipy_sparse(pd.SparseArray([1, 2, 3])) False >>> is_scipy_sparse(pd.SparseSeries([1, 2, 3])) False """ global _is_scipy_sparse if _is_scipy_sparse is None: try: from scipy.sparse import issparse as _is_scipy_sparse except ImportError: _is_scipy_sparse = lambda _: False return _is_scipy_sparse(arr)
python
def is_scipy_sparse(arr): """ Check whether an array-like is a scipy.sparse.spmatrix instance. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean Whether or not the array-like is a scipy.sparse.spmatrix instance. Notes ----- If scipy is not installed, this function will always return False. Examples -------- >>> from scipy.sparse import bsr_matrix >>> is_scipy_sparse(bsr_matrix([1, 2, 3])) True >>> is_scipy_sparse(pd.SparseArray([1, 2, 3])) False >>> is_scipy_sparse(pd.SparseSeries([1, 2, 3])) False """ global _is_scipy_sparse if _is_scipy_sparse is None: try: from scipy.sparse import issparse as _is_scipy_sparse except ImportError: _is_scipy_sparse = lambda _: False return _is_scipy_sparse(arr)
[ "def", "is_scipy_sparse", "(", "arr", ")", ":", "global", "_is_scipy_sparse", "if", "_is_scipy_sparse", "is", "None", ":", "try", ":", "from", "scipy", ".", "sparse", "import", "issparse", "as", "_is_scipy_sparse", "except", "ImportError", ":", "_is_scipy_sparse", "=", "lambda", "_", ":", "False", "return", "_is_scipy_sparse", "(", "arr", ")" ]
Check whether an array-like is a scipy.sparse.spmatrix instance. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean Whether or not the array-like is a scipy.sparse.spmatrix instance. Notes ----- If scipy is not installed, this function will always return False. Examples -------- >>> from scipy.sparse import bsr_matrix >>> is_scipy_sparse(bsr_matrix([1, 2, 3])) True >>> is_scipy_sparse(pd.SparseArray([1, 2, 3])) False >>> is_scipy_sparse(pd.SparseSeries([1, 2, 3])) False
[ "Check", "whether", "an", "array", "-", "like", "is", "a", "scipy", ".", "sparse", ".", "spmatrix", "instance", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L223-L260
20,476
pandas-dev/pandas
pandas/core/dtypes/common.py
is_offsetlike
def is_offsetlike(arr_or_obj): """ Check if obj or all elements of list-like is DateOffset Parameters ---------- arr_or_obj : object Returns ------- boolean Whether the object is a DateOffset or listlike of DatetOffsets Examples -------- >>> is_offsetlike(pd.DateOffset(days=1)) True >>> is_offsetlike('offset') False >>> is_offsetlike([pd.offsets.Minute(4), pd.offsets.MonthEnd()]) True >>> is_offsetlike(np.array([pd.DateOffset(months=3), pd.Timestamp.now()])) False """ if isinstance(arr_or_obj, ABCDateOffset): return True elif (is_list_like(arr_or_obj) and len(arr_or_obj) and is_object_dtype(arr_or_obj)): return all(isinstance(x, ABCDateOffset) for x in arr_or_obj) return False
python
def is_offsetlike(arr_or_obj): """ Check if obj or all elements of list-like is DateOffset Parameters ---------- arr_or_obj : object Returns ------- boolean Whether the object is a DateOffset or listlike of DatetOffsets Examples -------- >>> is_offsetlike(pd.DateOffset(days=1)) True >>> is_offsetlike('offset') False >>> is_offsetlike([pd.offsets.Minute(4), pd.offsets.MonthEnd()]) True >>> is_offsetlike(np.array([pd.DateOffset(months=3), pd.Timestamp.now()])) False """ if isinstance(arr_or_obj, ABCDateOffset): return True elif (is_list_like(arr_or_obj) and len(arr_or_obj) and is_object_dtype(arr_or_obj)): return all(isinstance(x, ABCDateOffset) for x in arr_or_obj) return False
[ "def", "is_offsetlike", "(", "arr_or_obj", ")", ":", "if", "isinstance", "(", "arr_or_obj", ",", "ABCDateOffset", ")", ":", "return", "True", "elif", "(", "is_list_like", "(", "arr_or_obj", ")", "and", "len", "(", "arr_or_obj", ")", "and", "is_object_dtype", "(", "arr_or_obj", ")", ")", ":", "return", "all", "(", "isinstance", "(", "x", ",", "ABCDateOffset", ")", "for", "x", "in", "arr_or_obj", ")", "return", "False" ]
Check if obj or all elements of list-like is DateOffset Parameters ---------- arr_or_obj : object Returns ------- boolean Whether the object is a DateOffset or listlike of DatetOffsets Examples -------- >>> is_offsetlike(pd.DateOffset(days=1)) True >>> is_offsetlike('offset') False >>> is_offsetlike([pd.offsets.Minute(4), pd.offsets.MonthEnd()]) True >>> is_offsetlike(np.array([pd.DateOffset(months=3), pd.Timestamp.now()])) False
[ "Check", "if", "obj", "or", "all", "elements", "of", "list", "-", "like", "is", "DateOffset" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L343-L372
20,477
pandas-dev/pandas
pandas/core/dtypes/common.py
is_period
def is_period(arr): """ Check whether an array-like is a periodical index. .. deprecated:: 0.24.0 Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean Whether or not the array-like is a periodical index. Examples -------- >>> is_period([1, 2, 3]) False >>> is_period(pd.Index([1, 2, 3])) False >>> is_period(pd.PeriodIndex(["2017-01-01"], freq="D")) True """ warnings.warn("'is_period' is deprecated and will be removed in a future " "version. Use 'is_period_dtype' or is_period_arraylike' " "instead.", FutureWarning, stacklevel=2) return isinstance(arr, ABCPeriodIndex) or is_period_arraylike(arr)
python
def is_period(arr): """ Check whether an array-like is a periodical index. .. deprecated:: 0.24.0 Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean Whether or not the array-like is a periodical index. Examples -------- >>> is_period([1, 2, 3]) False >>> is_period(pd.Index([1, 2, 3])) False >>> is_period(pd.PeriodIndex(["2017-01-01"], freq="D")) True """ warnings.warn("'is_period' is deprecated and will be removed in a future " "version. Use 'is_period_dtype' or is_period_arraylike' " "instead.", FutureWarning, stacklevel=2) return isinstance(arr, ABCPeriodIndex) or is_period_arraylike(arr)
[ "def", "is_period", "(", "arr", ")", ":", "warnings", ".", "warn", "(", "\"'is_period' is deprecated and will be removed in a future \"", "\"version. Use 'is_period_dtype' or is_period_arraylike' \"", "\"instead.\"", ",", "FutureWarning", ",", "stacklevel", "=", "2", ")", "return", "isinstance", "(", "arr", ",", "ABCPeriodIndex", ")", "or", "is_period_arraylike", "(", "arr", ")" ]
Check whether an array-like is a periodical index. .. deprecated:: 0.24.0 Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean Whether or not the array-like is a periodical index. Examples -------- >>> is_period([1, 2, 3]) False >>> is_period(pd.Index([1, 2, 3])) False >>> is_period(pd.PeriodIndex(["2017-01-01"], freq="D")) True
[ "Check", "whether", "an", "array", "-", "like", "is", "a", "periodical", "index", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L375-L405
20,478
pandas-dev/pandas
pandas/core/dtypes/common.py
is_string_dtype
def is_string_dtype(arr_or_dtype): """ Check whether the provided array or dtype is of the string dtype. Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean Whether or not the array or dtype is of the string dtype. Examples -------- >>> is_string_dtype(str) True >>> is_string_dtype(object) True >>> is_string_dtype(int) False >>> >>> is_string_dtype(np.array(['a', 'b'])) True >>> is_string_dtype(pd.Series([1, 2])) False """ # TODO: gh-15585: consider making the checks stricter. def condition(dtype): return dtype.kind in ('O', 'S', 'U') and not is_period_dtype(dtype) return _is_dtype(arr_or_dtype, condition)
python
def is_string_dtype(arr_or_dtype): """ Check whether the provided array or dtype is of the string dtype. Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean Whether or not the array or dtype is of the string dtype. Examples -------- >>> is_string_dtype(str) True >>> is_string_dtype(object) True >>> is_string_dtype(int) False >>> >>> is_string_dtype(np.array(['a', 'b'])) True >>> is_string_dtype(pd.Series([1, 2])) False """ # TODO: gh-15585: consider making the checks stricter. def condition(dtype): return dtype.kind in ('O', 'S', 'U') and not is_period_dtype(dtype) return _is_dtype(arr_or_dtype, condition)
[ "def", "is_string_dtype", "(", "arr_or_dtype", ")", ":", "# TODO: gh-15585: consider making the checks stricter.", "def", "condition", "(", "dtype", ")", ":", "return", "dtype", ".", "kind", "in", "(", "'O'", ",", "'S'", ",", "'U'", ")", "and", "not", "is_period_dtype", "(", "dtype", ")", "return", "_is_dtype", "(", "arr_or_dtype", ",", "condition", ")" ]
Check whether the provided array or dtype is of the string dtype. Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean Whether or not the array or dtype is of the string dtype. Examples -------- >>> is_string_dtype(str) True >>> is_string_dtype(object) True >>> is_string_dtype(int) False >>> >>> is_string_dtype(np.array(['a', 'b'])) True >>> is_string_dtype(pd.Series([1, 2])) False
[ "Check", "whether", "the", "provided", "array", "or", "dtype", "is", "of", "the", "string", "dtype", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L611-L643
20,479
pandas-dev/pandas
pandas/core/dtypes/common.py
is_period_arraylike
def is_period_arraylike(arr): """ Check whether an array-like is a periodical array-like or PeriodIndex. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean Whether or not the array-like is a periodical array-like or PeriodIndex instance. Examples -------- >>> is_period_arraylike([1, 2, 3]) False >>> is_period_arraylike(pd.Index([1, 2, 3])) False >>> is_period_arraylike(pd.PeriodIndex(["2017-01-01"], freq="D")) True """ if isinstance(arr, (ABCPeriodIndex, ABCPeriodArray)): return True elif isinstance(arr, (np.ndarray, ABCSeries)): return is_period_dtype(arr.dtype) return getattr(arr, 'inferred_type', None) == 'period'
python
def is_period_arraylike(arr): """ Check whether an array-like is a periodical array-like or PeriodIndex. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean Whether or not the array-like is a periodical array-like or PeriodIndex instance. Examples -------- >>> is_period_arraylike([1, 2, 3]) False >>> is_period_arraylike(pd.Index([1, 2, 3])) False >>> is_period_arraylike(pd.PeriodIndex(["2017-01-01"], freq="D")) True """ if isinstance(arr, (ABCPeriodIndex, ABCPeriodArray)): return True elif isinstance(arr, (np.ndarray, ABCSeries)): return is_period_dtype(arr.dtype) return getattr(arr, 'inferred_type', None) == 'period'
[ "def", "is_period_arraylike", "(", "arr", ")", ":", "if", "isinstance", "(", "arr", ",", "(", "ABCPeriodIndex", ",", "ABCPeriodArray", ")", ")", ":", "return", "True", "elif", "isinstance", "(", "arr", ",", "(", "np", ".", "ndarray", ",", "ABCSeries", ")", ")", ":", "return", "is_period_dtype", "(", "arr", ".", "dtype", ")", "return", "getattr", "(", "arr", ",", "'inferred_type'", ",", "None", ")", "==", "'period'" ]
Check whether an array-like is a periodical array-like or PeriodIndex. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean Whether or not the array-like is a periodical array-like or PeriodIndex instance. Examples -------- >>> is_period_arraylike([1, 2, 3]) False >>> is_period_arraylike(pd.Index([1, 2, 3])) False >>> is_period_arraylike(pd.PeriodIndex(["2017-01-01"], freq="D")) True
[ "Check", "whether", "an", "array", "-", "like", "is", "a", "periodical", "array", "-", "like", "or", "PeriodIndex", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L646-L675
20,480
pandas-dev/pandas
pandas/core/dtypes/common.py
is_datetime_arraylike
def is_datetime_arraylike(arr): """ Check whether an array-like is a datetime array-like or DatetimeIndex. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean Whether or not the array-like is a datetime array-like or DatetimeIndex. Examples -------- >>> is_datetime_arraylike([1, 2, 3]) False >>> is_datetime_arraylike(pd.Index([1, 2, 3])) False >>> is_datetime_arraylike(pd.DatetimeIndex([1, 2, 3])) True """ if isinstance(arr, ABCDatetimeIndex): return True elif isinstance(arr, (np.ndarray, ABCSeries)): return (is_object_dtype(arr.dtype) and lib.infer_dtype(arr, skipna=False) == 'datetime') return getattr(arr, 'inferred_type', None) == 'datetime'
python
def is_datetime_arraylike(arr): """ Check whether an array-like is a datetime array-like or DatetimeIndex. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean Whether or not the array-like is a datetime array-like or DatetimeIndex. Examples -------- >>> is_datetime_arraylike([1, 2, 3]) False >>> is_datetime_arraylike(pd.Index([1, 2, 3])) False >>> is_datetime_arraylike(pd.DatetimeIndex([1, 2, 3])) True """ if isinstance(arr, ABCDatetimeIndex): return True elif isinstance(arr, (np.ndarray, ABCSeries)): return (is_object_dtype(arr.dtype) and lib.infer_dtype(arr, skipna=False) == 'datetime') return getattr(arr, 'inferred_type', None) == 'datetime'
[ "def", "is_datetime_arraylike", "(", "arr", ")", ":", "if", "isinstance", "(", "arr", ",", "ABCDatetimeIndex", ")", ":", "return", "True", "elif", "isinstance", "(", "arr", ",", "(", "np", ".", "ndarray", ",", "ABCSeries", ")", ")", ":", "return", "(", "is_object_dtype", "(", "arr", ".", "dtype", ")", "and", "lib", ".", "infer_dtype", "(", "arr", ",", "skipna", "=", "False", ")", "==", "'datetime'", ")", "return", "getattr", "(", "arr", ",", "'inferred_type'", ",", "None", ")", "==", "'datetime'" ]
Check whether an array-like is a datetime array-like or DatetimeIndex. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean Whether or not the array-like is a datetime array-like or DatetimeIndex. Examples -------- >>> is_datetime_arraylike([1, 2, 3]) False >>> is_datetime_arraylike(pd.Index([1, 2, 3])) False >>> is_datetime_arraylike(pd.DatetimeIndex([1, 2, 3])) True
[ "Check", "whether", "an", "array", "-", "like", "is", "a", "datetime", "array", "-", "like", "or", "DatetimeIndex", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L678-L708
20,481
pandas-dev/pandas
pandas/core/dtypes/common.py
is_datetimelike
def is_datetimelike(arr): """ Check whether an array-like is a datetime-like array-like. Acceptable datetime-like objects are (but not limited to) datetime indices, periodic indices, and timedelta indices. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean Whether or not the array-like is a datetime-like array-like. Examples -------- >>> is_datetimelike([1, 2, 3]) False >>> is_datetimelike(pd.Index([1, 2, 3])) False >>> is_datetimelike(pd.DatetimeIndex([1, 2, 3])) True >>> is_datetimelike(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern")) True >>> is_datetimelike(pd.PeriodIndex([], freq="A")) True >>> is_datetimelike(np.array([], dtype=np.datetime64)) True >>> is_datetimelike(pd.Series([], dtype="timedelta64[ns]")) True >>> >>> dtype = DatetimeTZDtype("ns", tz="US/Eastern") >>> s = pd.Series([], dtype=dtype) >>> is_datetimelike(s) True """ return (is_datetime64_dtype(arr) or is_datetime64tz_dtype(arr) or is_timedelta64_dtype(arr) or isinstance(arr, ABCPeriodIndex))
python
def is_datetimelike(arr): """ Check whether an array-like is a datetime-like array-like. Acceptable datetime-like objects are (but not limited to) datetime indices, periodic indices, and timedelta indices. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean Whether or not the array-like is a datetime-like array-like. Examples -------- >>> is_datetimelike([1, 2, 3]) False >>> is_datetimelike(pd.Index([1, 2, 3])) False >>> is_datetimelike(pd.DatetimeIndex([1, 2, 3])) True >>> is_datetimelike(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern")) True >>> is_datetimelike(pd.PeriodIndex([], freq="A")) True >>> is_datetimelike(np.array([], dtype=np.datetime64)) True >>> is_datetimelike(pd.Series([], dtype="timedelta64[ns]")) True >>> >>> dtype = DatetimeTZDtype("ns", tz="US/Eastern") >>> s = pd.Series([], dtype=dtype) >>> is_datetimelike(s) True """ return (is_datetime64_dtype(arr) or is_datetime64tz_dtype(arr) or is_timedelta64_dtype(arr) or isinstance(arr, ABCPeriodIndex))
[ "def", "is_datetimelike", "(", "arr", ")", ":", "return", "(", "is_datetime64_dtype", "(", "arr", ")", "or", "is_datetime64tz_dtype", "(", "arr", ")", "or", "is_timedelta64_dtype", "(", "arr", ")", "or", "isinstance", "(", "arr", ",", "ABCPeriodIndex", ")", ")" ]
Check whether an array-like is a datetime-like array-like. Acceptable datetime-like objects are (but not limited to) datetime indices, periodic indices, and timedelta indices. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean Whether or not the array-like is a datetime-like array-like. Examples -------- >>> is_datetimelike([1, 2, 3]) False >>> is_datetimelike(pd.Index([1, 2, 3])) False >>> is_datetimelike(pd.DatetimeIndex([1, 2, 3])) True >>> is_datetimelike(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern")) True >>> is_datetimelike(pd.PeriodIndex([], freq="A")) True >>> is_datetimelike(np.array([], dtype=np.datetime64)) True >>> is_datetimelike(pd.Series([], dtype="timedelta64[ns]")) True >>> >>> dtype = DatetimeTZDtype("ns", tz="US/Eastern") >>> s = pd.Series([], dtype=dtype) >>> is_datetimelike(s) True
[ "Check", "whether", "an", "array", "-", "like", "is", "a", "datetime", "-", "like", "array", "-", "like", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L711-L753
20,482
pandas-dev/pandas
pandas/core/dtypes/common.py
is_dtype_equal
def is_dtype_equal(source, target): """ Check if two dtypes are equal. Parameters ---------- source : The first dtype to compare target : The second dtype to compare Returns ---------- boolean Whether or not the two dtypes are equal. Examples -------- >>> is_dtype_equal(int, float) False >>> is_dtype_equal("int", int) True >>> is_dtype_equal(object, "category") False >>> is_dtype_equal(CategoricalDtype(), "category") True >>> is_dtype_equal(DatetimeTZDtype(), "datetime64") False """ try: source = _get_dtype(source) target = _get_dtype(target) return source == target except (TypeError, AttributeError): # invalid comparison # object == category will hit this return False
python
def is_dtype_equal(source, target): """ Check if two dtypes are equal. Parameters ---------- source : The first dtype to compare target : The second dtype to compare Returns ---------- boolean Whether or not the two dtypes are equal. Examples -------- >>> is_dtype_equal(int, float) False >>> is_dtype_equal("int", int) True >>> is_dtype_equal(object, "category") False >>> is_dtype_equal(CategoricalDtype(), "category") True >>> is_dtype_equal(DatetimeTZDtype(), "datetime64") False """ try: source = _get_dtype(source) target = _get_dtype(target) return source == target except (TypeError, AttributeError): # invalid comparison # object == category will hit this return False
[ "def", "is_dtype_equal", "(", "source", ",", "target", ")", ":", "try", ":", "source", "=", "_get_dtype", "(", "source", ")", "target", "=", "_get_dtype", "(", "target", ")", "return", "source", "==", "target", "except", "(", "TypeError", ",", "AttributeError", ")", ":", "# invalid comparison", "# object == category will hit this", "return", "False" ]
Check if two dtypes are equal. Parameters ---------- source : The first dtype to compare target : The second dtype to compare Returns ---------- boolean Whether or not the two dtypes are equal. Examples -------- >>> is_dtype_equal(int, float) False >>> is_dtype_equal("int", int) True >>> is_dtype_equal(object, "category") False >>> is_dtype_equal(CategoricalDtype(), "category") True >>> is_dtype_equal(DatetimeTZDtype(), "datetime64") False
[ "Check", "if", "two", "dtypes", "are", "equal", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L756-L792
20,483
pandas-dev/pandas
pandas/core/dtypes/common.py
is_dtype_union_equal
def is_dtype_union_equal(source, target): """ Check whether two arrays have compatible dtypes to do a union. numpy types are checked with ``is_dtype_equal``. Extension types are checked separately. Parameters ---------- source : The first dtype to compare target : The second dtype to compare Returns ---------- boolean Whether or not the two dtypes are equal. >>> is_dtype_equal("int", int) True >>> is_dtype_equal(CategoricalDtype(['a', 'b'], ... CategoricalDtype(['b', 'c'])) True >>> is_dtype_equal(CategoricalDtype(['a', 'b'], ... CategoricalDtype(['b', 'c'], ordered=True)) False """ source = _get_dtype(source) target = _get_dtype(target) if is_categorical_dtype(source) and is_categorical_dtype(target): # ordered False for both return source.ordered is target.ordered return is_dtype_equal(source, target)
python
def is_dtype_union_equal(source, target): """ Check whether two arrays have compatible dtypes to do a union. numpy types are checked with ``is_dtype_equal``. Extension types are checked separately. Parameters ---------- source : The first dtype to compare target : The second dtype to compare Returns ---------- boolean Whether or not the two dtypes are equal. >>> is_dtype_equal("int", int) True >>> is_dtype_equal(CategoricalDtype(['a', 'b'], ... CategoricalDtype(['b', 'c'])) True >>> is_dtype_equal(CategoricalDtype(['a', 'b'], ... CategoricalDtype(['b', 'c'], ordered=True)) False """ source = _get_dtype(source) target = _get_dtype(target) if is_categorical_dtype(source) and is_categorical_dtype(target): # ordered False for both return source.ordered is target.ordered return is_dtype_equal(source, target)
[ "def", "is_dtype_union_equal", "(", "source", ",", "target", ")", ":", "source", "=", "_get_dtype", "(", "source", ")", "target", "=", "_get_dtype", "(", "target", ")", "if", "is_categorical_dtype", "(", "source", ")", "and", "is_categorical_dtype", "(", "target", ")", ":", "# ordered False for both", "return", "source", ".", "ordered", "is", "target", ".", "ordered", "return", "is_dtype_equal", "(", "source", ",", "target", ")" ]
Check whether two arrays have compatible dtypes to do a union. numpy types are checked with ``is_dtype_equal``. Extension types are checked separately. Parameters ---------- source : The first dtype to compare target : The second dtype to compare Returns ---------- boolean Whether or not the two dtypes are equal. >>> is_dtype_equal("int", int) True >>> is_dtype_equal(CategoricalDtype(['a', 'b'], ... CategoricalDtype(['b', 'c'])) True >>> is_dtype_equal(CategoricalDtype(['a', 'b'], ... CategoricalDtype(['b', 'c'], ordered=True)) False
[ "Check", "whether", "two", "arrays", "have", "compatible", "dtypes", "to", "do", "a", "union", ".", "numpy", "types", "are", "checked", "with", "is_dtype_equal", ".", "Extension", "types", "are", "checked", "separately", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L795-L827
20,484
pandas-dev/pandas
pandas/core/dtypes/common.py
is_numeric_v_string_like
def is_numeric_v_string_like(a, b): """ Check if we are comparing a string-like object to a numeric ndarray. NumPy doesn't like to compare such objects, especially numeric arrays and scalar string-likes. Parameters ---------- a : array-like, scalar The first object to check. b : array-like, scalar The second object to check. Returns ------- boolean Whether we return a comparing a string-like object to a numeric array. Examples -------- >>> is_numeric_v_string_like(1, 1) False >>> is_numeric_v_string_like("foo", "foo") False >>> is_numeric_v_string_like(1, "foo") # non-array numeric False >>> is_numeric_v_string_like(np.array([1]), "foo") True >>> is_numeric_v_string_like("foo", np.array([1])) # symmetric check True >>> is_numeric_v_string_like(np.array([1, 2]), np.array(["foo"])) True >>> is_numeric_v_string_like(np.array(["foo"]), np.array([1, 2])) True >>> is_numeric_v_string_like(np.array([1]), np.array([2])) False >>> is_numeric_v_string_like(np.array(["foo"]), np.array(["foo"])) False """ is_a_array = isinstance(a, np.ndarray) is_b_array = isinstance(b, np.ndarray) is_a_numeric_array = is_a_array and is_numeric_dtype(a) is_b_numeric_array = is_b_array and is_numeric_dtype(b) is_a_string_array = is_a_array and is_string_like_dtype(a) is_b_string_array = is_b_array and is_string_like_dtype(b) is_a_scalar_string_like = not is_a_array and is_string_like(a) is_b_scalar_string_like = not is_b_array and is_string_like(b) return ((is_a_numeric_array and is_b_scalar_string_like) or (is_b_numeric_array and is_a_scalar_string_like) or (is_a_numeric_array and is_b_string_array) or (is_b_numeric_array and is_a_string_array))
python
def is_numeric_v_string_like(a, b): """ Check if we are comparing a string-like object to a numeric ndarray. NumPy doesn't like to compare such objects, especially numeric arrays and scalar string-likes. Parameters ---------- a : array-like, scalar The first object to check. b : array-like, scalar The second object to check. Returns ------- boolean Whether we return a comparing a string-like object to a numeric array. Examples -------- >>> is_numeric_v_string_like(1, 1) False >>> is_numeric_v_string_like("foo", "foo") False >>> is_numeric_v_string_like(1, "foo") # non-array numeric False >>> is_numeric_v_string_like(np.array([1]), "foo") True >>> is_numeric_v_string_like("foo", np.array([1])) # symmetric check True >>> is_numeric_v_string_like(np.array([1, 2]), np.array(["foo"])) True >>> is_numeric_v_string_like(np.array(["foo"]), np.array([1, 2])) True >>> is_numeric_v_string_like(np.array([1]), np.array([2])) False >>> is_numeric_v_string_like(np.array(["foo"]), np.array(["foo"])) False """ is_a_array = isinstance(a, np.ndarray) is_b_array = isinstance(b, np.ndarray) is_a_numeric_array = is_a_array and is_numeric_dtype(a) is_b_numeric_array = is_b_array and is_numeric_dtype(b) is_a_string_array = is_a_array and is_string_like_dtype(a) is_b_string_array = is_b_array and is_string_like_dtype(b) is_a_scalar_string_like = not is_a_array and is_string_like(a) is_b_scalar_string_like = not is_b_array and is_string_like(b) return ((is_a_numeric_array and is_b_scalar_string_like) or (is_b_numeric_array and is_a_scalar_string_like) or (is_a_numeric_array and is_b_string_array) or (is_b_numeric_array and is_a_string_array))
[ "def", "is_numeric_v_string_like", "(", "a", ",", "b", ")", ":", "is_a_array", "=", "isinstance", "(", "a", ",", "np", ".", "ndarray", ")", "is_b_array", "=", "isinstance", "(", "b", ",", "np", ".", "ndarray", ")", "is_a_numeric_array", "=", "is_a_array", "and", "is_numeric_dtype", "(", "a", ")", "is_b_numeric_array", "=", "is_b_array", "and", "is_numeric_dtype", "(", "b", ")", "is_a_string_array", "=", "is_a_array", "and", "is_string_like_dtype", "(", "a", ")", "is_b_string_array", "=", "is_b_array", "and", "is_string_like_dtype", "(", "b", ")", "is_a_scalar_string_like", "=", "not", "is_a_array", "and", "is_string_like", "(", "a", ")", "is_b_scalar_string_like", "=", "not", "is_b_array", "and", "is_string_like", "(", "b", ")", "return", "(", "(", "is_a_numeric_array", "and", "is_b_scalar_string_like", ")", "or", "(", "is_b_numeric_array", "and", "is_a_scalar_string_like", ")", "or", "(", "is_a_numeric_array", "and", "is_b_string_array", ")", "or", "(", "is_b_numeric_array", "and", "is_a_string_array", ")", ")" ]
Check if we are comparing a string-like object to a numeric ndarray. NumPy doesn't like to compare such objects, especially numeric arrays and scalar string-likes. Parameters ---------- a : array-like, scalar The first object to check. b : array-like, scalar The second object to check. Returns ------- boolean Whether we return a comparing a string-like object to a numeric array. Examples -------- >>> is_numeric_v_string_like(1, 1) False >>> is_numeric_v_string_like("foo", "foo") False >>> is_numeric_v_string_like(1, "foo") # non-array numeric False >>> is_numeric_v_string_like(np.array([1]), "foo") True >>> is_numeric_v_string_like("foo", np.array([1])) # symmetric check True >>> is_numeric_v_string_like(np.array([1, 2]), np.array(["foo"])) True >>> is_numeric_v_string_like(np.array(["foo"]), np.array([1, 2])) True >>> is_numeric_v_string_like(np.array([1]), np.array([2])) False >>> is_numeric_v_string_like(np.array(["foo"]), np.array(["foo"])) False
[ "Check", "if", "we", "are", "comparing", "a", "string", "-", "like", "object", "to", "a", "numeric", "ndarray", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L1280-L1335
20,485
pandas-dev/pandas
pandas/core/dtypes/common.py
is_datetimelike_v_numeric
def is_datetimelike_v_numeric(a, b): """ Check if we are comparing a datetime-like object to a numeric object. By "numeric," we mean an object that is either of an int or float dtype. Parameters ---------- a : array-like, scalar The first object to check. b : array-like, scalar The second object to check. Returns ------- boolean Whether we return a comparing a datetime-like to a numeric object. Examples -------- >>> dt = np.datetime64(pd.datetime(2017, 1, 1)) >>> >>> is_datetimelike_v_numeric(1, 1) False >>> is_datetimelike_v_numeric(dt, dt) False >>> is_datetimelike_v_numeric(1, dt) True >>> is_datetimelike_v_numeric(dt, 1) # symmetric check True >>> is_datetimelike_v_numeric(np.array([dt]), 1) True >>> is_datetimelike_v_numeric(np.array([1]), dt) True >>> is_datetimelike_v_numeric(np.array([dt]), np.array([1])) True >>> is_datetimelike_v_numeric(np.array([1]), np.array([2])) False >>> is_datetimelike_v_numeric(np.array([dt]), np.array([dt])) False """ if not hasattr(a, 'dtype'): a = np.asarray(a) if not hasattr(b, 'dtype'): b = np.asarray(b) def is_numeric(x): """ Check if an object has a numeric dtype (i.e. integer or float). """ return is_integer_dtype(x) or is_float_dtype(x) is_datetimelike = needs_i8_conversion return ((is_datetimelike(a) and is_numeric(b)) or (is_datetimelike(b) and is_numeric(a)))
python
def is_datetimelike_v_numeric(a, b): """ Check if we are comparing a datetime-like object to a numeric object. By "numeric," we mean an object that is either of an int or float dtype. Parameters ---------- a : array-like, scalar The first object to check. b : array-like, scalar The second object to check. Returns ------- boolean Whether we return a comparing a datetime-like to a numeric object. Examples -------- >>> dt = np.datetime64(pd.datetime(2017, 1, 1)) >>> >>> is_datetimelike_v_numeric(1, 1) False >>> is_datetimelike_v_numeric(dt, dt) False >>> is_datetimelike_v_numeric(1, dt) True >>> is_datetimelike_v_numeric(dt, 1) # symmetric check True >>> is_datetimelike_v_numeric(np.array([dt]), 1) True >>> is_datetimelike_v_numeric(np.array([1]), dt) True >>> is_datetimelike_v_numeric(np.array([dt]), np.array([1])) True >>> is_datetimelike_v_numeric(np.array([1]), np.array([2])) False >>> is_datetimelike_v_numeric(np.array([dt]), np.array([dt])) False """ if not hasattr(a, 'dtype'): a = np.asarray(a) if not hasattr(b, 'dtype'): b = np.asarray(b) def is_numeric(x): """ Check if an object has a numeric dtype (i.e. integer or float). """ return is_integer_dtype(x) or is_float_dtype(x) is_datetimelike = needs_i8_conversion return ((is_datetimelike(a) and is_numeric(b)) or (is_datetimelike(b) and is_numeric(a)))
[ "def", "is_datetimelike_v_numeric", "(", "a", ",", "b", ")", ":", "if", "not", "hasattr", "(", "a", ",", "'dtype'", ")", ":", "a", "=", "np", ".", "asarray", "(", "a", ")", "if", "not", "hasattr", "(", "b", ",", "'dtype'", ")", ":", "b", "=", "np", ".", "asarray", "(", "b", ")", "def", "is_numeric", "(", "x", ")", ":", "\"\"\"\n Check if an object has a numeric dtype (i.e. integer or float).\n \"\"\"", "return", "is_integer_dtype", "(", "x", ")", "or", "is_float_dtype", "(", "x", ")", "is_datetimelike", "=", "needs_i8_conversion", "return", "(", "(", "is_datetimelike", "(", "a", ")", "and", "is_numeric", "(", "b", ")", ")", "or", "(", "is_datetimelike", "(", "b", ")", "and", "is_numeric", "(", "a", ")", ")", ")" ]
Check if we are comparing a datetime-like object to a numeric object. By "numeric," we mean an object that is either of an int or float dtype. Parameters ---------- a : array-like, scalar The first object to check. b : array-like, scalar The second object to check. Returns ------- boolean Whether we return a comparing a datetime-like to a numeric object. Examples -------- >>> dt = np.datetime64(pd.datetime(2017, 1, 1)) >>> >>> is_datetimelike_v_numeric(1, 1) False >>> is_datetimelike_v_numeric(dt, dt) False >>> is_datetimelike_v_numeric(1, dt) True >>> is_datetimelike_v_numeric(dt, 1) # symmetric check True >>> is_datetimelike_v_numeric(np.array([dt]), 1) True >>> is_datetimelike_v_numeric(np.array([1]), dt) True >>> is_datetimelike_v_numeric(np.array([dt]), np.array([1])) True >>> is_datetimelike_v_numeric(np.array([1]), np.array([2])) False >>> is_datetimelike_v_numeric(np.array([dt]), np.array([dt])) False
[ "Check", "if", "we", "are", "comparing", "a", "datetime", "-", "like", "object", "to", "a", "numeric", "object", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L1338-L1393
20,486
pandas-dev/pandas
pandas/core/dtypes/common.py
is_datetimelike_v_object
def is_datetimelike_v_object(a, b): """ Check if we are comparing a datetime-like object to an object instance. Parameters ---------- a : array-like, scalar The first object to check. b : array-like, scalar The second object to check. Returns ------- boolean Whether we return a comparing a datetime-like to an object instance. Examples -------- >>> obj = object() >>> dt = np.datetime64(pd.datetime(2017, 1, 1)) >>> >>> is_datetimelike_v_object(obj, obj) False >>> is_datetimelike_v_object(dt, dt) False >>> is_datetimelike_v_object(obj, dt) True >>> is_datetimelike_v_object(dt, obj) # symmetric check True >>> is_datetimelike_v_object(np.array([dt]), obj) True >>> is_datetimelike_v_object(np.array([obj]), dt) True >>> is_datetimelike_v_object(np.array([dt]), np.array([obj])) True >>> is_datetimelike_v_object(np.array([obj]), np.array([obj])) False >>> is_datetimelike_v_object(np.array([dt]), np.array([1])) False >>> is_datetimelike_v_object(np.array([dt]), np.array([dt])) False """ if not hasattr(a, 'dtype'): a = np.asarray(a) if not hasattr(b, 'dtype'): b = np.asarray(b) is_datetimelike = needs_i8_conversion return ((is_datetimelike(a) and is_object_dtype(b)) or (is_datetimelike(b) and is_object_dtype(a)))
python
def is_datetimelike_v_object(a, b): """ Check if we are comparing a datetime-like object to an object instance. Parameters ---------- a : array-like, scalar The first object to check. b : array-like, scalar The second object to check. Returns ------- boolean Whether we return a comparing a datetime-like to an object instance. Examples -------- >>> obj = object() >>> dt = np.datetime64(pd.datetime(2017, 1, 1)) >>> >>> is_datetimelike_v_object(obj, obj) False >>> is_datetimelike_v_object(dt, dt) False >>> is_datetimelike_v_object(obj, dt) True >>> is_datetimelike_v_object(dt, obj) # symmetric check True >>> is_datetimelike_v_object(np.array([dt]), obj) True >>> is_datetimelike_v_object(np.array([obj]), dt) True >>> is_datetimelike_v_object(np.array([dt]), np.array([obj])) True >>> is_datetimelike_v_object(np.array([obj]), np.array([obj])) False >>> is_datetimelike_v_object(np.array([dt]), np.array([1])) False >>> is_datetimelike_v_object(np.array([dt]), np.array([dt])) False """ if not hasattr(a, 'dtype'): a = np.asarray(a) if not hasattr(b, 'dtype'): b = np.asarray(b) is_datetimelike = needs_i8_conversion return ((is_datetimelike(a) and is_object_dtype(b)) or (is_datetimelike(b) and is_object_dtype(a)))
[ "def", "is_datetimelike_v_object", "(", "a", ",", "b", ")", ":", "if", "not", "hasattr", "(", "a", ",", "'dtype'", ")", ":", "a", "=", "np", ".", "asarray", "(", "a", ")", "if", "not", "hasattr", "(", "b", ",", "'dtype'", ")", ":", "b", "=", "np", ".", "asarray", "(", "b", ")", "is_datetimelike", "=", "needs_i8_conversion", "return", "(", "(", "is_datetimelike", "(", "a", ")", "and", "is_object_dtype", "(", "b", ")", ")", "or", "(", "is_datetimelike", "(", "b", ")", "and", "is_object_dtype", "(", "a", ")", ")", ")" ]
Check if we are comparing a datetime-like object to an object instance. Parameters ---------- a : array-like, scalar The first object to check. b : array-like, scalar The second object to check. Returns ------- boolean Whether we return a comparing a datetime-like to an object instance. Examples -------- >>> obj = object() >>> dt = np.datetime64(pd.datetime(2017, 1, 1)) >>> >>> is_datetimelike_v_object(obj, obj) False >>> is_datetimelike_v_object(dt, dt) False >>> is_datetimelike_v_object(obj, dt) True >>> is_datetimelike_v_object(dt, obj) # symmetric check True >>> is_datetimelike_v_object(np.array([dt]), obj) True >>> is_datetimelike_v_object(np.array([obj]), dt) True >>> is_datetimelike_v_object(np.array([dt]), np.array([obj])) True >>> is_datetimelike_v_object(np.array([obj]), np.array([obj])) False >>> is_datetimelike_v_object(np.array([dt]), np.array([1])) False >>> is_datetimelike_v_object(np.array([dt]), np.array([dt])) False
[ "Check", "if", "we", "are", "comparing", "a", "datetime", "-", "like", "object", "to", "an", "object", "instance", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L1396-L1446
20,487
pandas-dev/pandas
pandas/core/dtypes/common.py
needs_i8_conversion
def needs_i8_conversion(arr_or_dtype): """ Check whether the array or dtype should be converted to int64. An array-like or dtype "needs" such a conversion if the array-like or dtype is of a datetime-like dtype Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean Whether or not the array or dtype should be converted to int64. Examples -------- >>> needs_i8_conversion(str) False >>> needs_i8_conversion(np.int64) False >>> needs_i8_conversion(np.datetime64) True >>> needs_i8_conversion(np.array(['a', 'b'])) False >>> needs_i8_conversion(pd.Series([1, 2])) False >>> needs_i8_conversion(pd.Series([], dtype="timedelta64[ns]")) True >>> needs_i8_conversion(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern")) True """ if arr_or_dtype is None: return False return (is_datetime_or_timedelta_dtype(arr_or_dtype) or is_datetime64tz_dtype(arr_or_dtype) or is_period_dtype(arr_or_dtype))
python
def needs_i8_conversion(arr_or_dtype): """ Check whether the array or dtype should be converted to int64. An array-like or dtype "needs" such a conversion if the array-like or dtype is of a datetime-like dtype Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean Whether or not the array or dtype should be converted to int64. Examples -------- >>> needs_i8_conversion(str) False >>> needs_i8_conversion(np.int64) False >>> needs_i8_conversion(np.datetime64) True >>> needs_i8_conversion(np.array(['a', 'b'])) False >>> needs_i8_conversion(pd.Series([1, 2])) False >>> needs_i8_conversion(pd.Series([], dtype="timedelta64[ns]")) True >>> needs_i8_conversion(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern")) True """ if arr_or_dtype is None: return False return (is_datetime_or_timedelta_dtype(arr_or_dtype) or is_datetime64tz_dtype(arr_or_dtype) or is_period_dtype(arr_or_dtype))
[ "def", "needs_i8_conversion", "(", "arr_or_dtype", ")", ":", "if", "arr_or_dtype", "is", "None", ":", "return", "False", "return", "(", "is_datetime_or_timedelta_dtype", "(", "arr_or_dtype", ")", "or", "is_datetime64tz_dtype", "(", "arr_or_dtype", ")", "or", "is_period_dtype", "(", "arr_or_dtype", ")", ")" ]
Check whether the array or dtype should be converted to int64. An array-like or dtype "needs" such a conversion if the array-like or dtype is of a datetime-like dtype Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean Whether or not the array or dtype should be converted to int64. Examples -------- >>> needs_i8_conversion(str) False >>> needs_i8_conversion(np.int64) False >>> needs_i8_conversion(np.datetime64) True >>> needs_i8_conversion(np.array(['a', 'b'])) False >>> needs_i8_conversion(pd.Series([1, 2])) False >>> needs_i8_conversion(pd.Series([], dtype="timedelta64[ns]")) True >>> needs_i8_conversion(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern")) True
[ "Check", "whether", "the", "array", "or", "dtype", "should", "be", "converted", "to", "int64", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L1449-L1488
20,488
pandas-dev/pandas
pandas/core/dtypes/common.py
is_bool_dtype
def is_bool_dtype(arr_or_dtype): """ Check whether the provided array or dtype is of a boolean dtype. Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean Whether or not the array or dtype is of a boolean dtype. Notes ----- An ExtensionArray is considered boolean when the ``_is_boolean`` attribute is set to True. Examples -------- >>> is_bool_dtype(str) False >>> is_bool_dtype(int) False >>> is_bool_dtype(bool) True >>> is_bool_dtype(np.bool) True >>> is_bool_dtype(np.array(['a', 'b'])) False >>> is_bool_dtype(pd.Series([1, 2])) False >>> is_bool_dtype(np.array([True, False])) True >>> is_bool_dtype(pd.Categorical([True, False])) True >>> is_bool_dtype(pd.SparseArray([True, False])) True """ if arr_or_dtype is None: return False try: dtype = _get_dtype(arr_or_dtype) except TypeError: return False if isinstance(arr_or_dtype, CategoricalDtype): arr_or_dtype = arr_or_dtype.categories # now we use the special definition for Index if isinstance(arr_or_dtype, ABCIndexClass): # TODO(jreback) # we don't have a boolean Index class # so its object, we need to infer to # guess this return (arr_or_dtype.is_object and arr_or_dtype.inferred_type == 'boolean') elif is_extension_array_dtype(arr_or_dtype): dtype = getattr(arr_or_dtype, 'dtype', arr_or_dtype) return dtype._is_boolean return issubclass(dtype.type, np.bool_)
python
def is_bool_dtype(arr_or_dtype): """ Check whether the provided array or dtype is of a boolean dtype. Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean Whether or not the array or dtype is of a boolean dtype. Notes ----- An ExtensionArray is considered boolean when the ``_is_boolean`` attribute is set to True. Examples -------- >>> is_bool_dtype(str) False >>> is_bool_dtype(int) False >>> is_bool_dtype(bool) True >>> is_bool_dtype(np.bool) True >>> is_bool_dtype(np.array(['a', 'b'])) False >>> is_bool_dtype(pd.Series([1, 2])) False >>> is_bool_dtype(np.array([True, False])) True >>> is_bool_dtype(pd.Categorical([True, False])) True >>> is_bool_dtype(pd.SparseArray([True, False])) True """ if arr_or_dtype is None: return False try: dtype = _get_dtype(arr_or_dtype) except TypeError: return False if isinstance(arr_or_dtype, CategoricalDtype): arr_or_dtype = arr_or_dtype.categories # now we use the special definition for Index if isinstance(arr_or_dtype, ABCIndexClass): # TODO(jreback) # we don't have a boolean Index class # so its object, we need to infer to # guess this return (arr_or_dtype.is_object and arr_or_dtype.inferred_type == 'boolean') elif is_extension_array_dtype(arr_or_dtype): dtype = getattr(arr_or_dtype, 'dtype', arr_or_dtype) return dtype._is_boolean return issubclass(dtype.type, np.bool_)
[ "def", "is_bool_dtype", "(", "arr_or_dtype", ")", ":", "if", "arr_or_dtype", "is", "None", ":", "return", "False", "try", ":", "dtype", "=", "_get_dtype", "(", "arr_or_dtype", ")", "except", "TypeError", ":", "return", "False", "if", "isinstance", "(", "arr_or_dtype", ",", "CategoricalDtype", ")", ":", "arr_or_dtype", "=", "arr_or_dtype", ".", "categories", "# now we use the special definition for Index", "if", "isinstance", "(", "arr_or_dtype", ",", "ABCIndexClass", ")", ":", "# TODO(jreback)", "# we don't have a boolean Index class", "# so its object, we need to infer to", "# guess this", "return", "(", "arr_or_dtype", ".", "is_object", "and", "arr_or_dtype", ".", "inferred_type", "==", "'boolean'", ")", "elif", "is_extension_array_dtype", "(", "arr_or_dtype", ")", ":", "dtype", "=", "getattr", "(", "arr_or_dtype", ",", "'dtype'", ",", "arr_or_dtype", ")", "return", "dtype", ".", "_is_boolean", "return", "issubclass", "(", "dtype", ".", "type", ",", "np", ".", "bool_", ")" ]
Check whether the provided array or dtype is of a boolean dtype. Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean Whether or not the array or dtype is of a boolean dtype. Notes ----- An ExtensionArray is considered boolean when the ``_is_boolean`` attribute is set to True. Examples -------- >>> is_bool_dtype(str) False >>> is_bool_dtype(int) False >>> is_bool_dtype(bool) True >>> is_bool_dtype(np.bool) True >>> is_bool_dtype(np.array(['a', 'b'])) False >>> is_bool_dtype(pd.Series([1, 2])) False >>> is_bool_dtype(np.array([True, False])) True >>> is_bool_dtype(pd.Categorical([True, False])) True >>> is_bool_dtype(pd.SparseArray([True, False])) True
[ "Check", "whether", "the", "provided", "array", "or", "dtype", "is", "of", "a", "boolean", "dtype", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L1600-L1663
20,489
pandas-dev/pandas
pandas/core/dtypes/common.py
is_extension_type
def is_extension_type(arr): """ Check whether an array-like is of a pandas extension class instance. Extension classes include categoricals, pandas sparse objects (i.e. classes represented within the pandas library and not ones external to it like scipy sparse matrices), and datetime-like arrays. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean Whether or not the array-like is of a pandas extension class instance. Examples -------- >>> is_extension_type([1, 2, 3]) False >>> is_extension_type(np.array([1, 2, 3])) False >>> >>> cat = pd.Categorical([1, 2, 3]) >>> >>> is_extension_type(cat) True >>> is_extension_type(pd.Series(cat)) True >>> is_extension_type(pd.SparseArray([1, 2, 3])) True >>> is_extension_type(pd.SparseSeries([1, 2, 3])) True >>> >>> from scipy.sparse import bsr_matrix >>> is_extension_type(bsr_matrix([1, 2, 3])) False >>> is_extension_type(pd.DatetimeIndex([1, 2, 3])) False >>> is_extension_type(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern")) True >>> >>> dtype = DatetimeTZDtype("ns", tz="US/Eastern") >>> s = pd.Series([], dtype=dtype) >>> is_extension_type(s) True """ if is_categorical(arr): return True elif is_sparse(arr): return True elif is_datetime64tz_dtype(arr): return True return False
python
def is_extension_type(arr): """ Check whether an array-like is of a pandas extension class instance. Extension classes include categoricals, pandas sparse objects (i.e. classes represented within the pandas library and not ones external to it like scipy sparse matrices), and datetime-like arrays. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean Whether or not the array-like is of a pandas extension class instance. Examples -------- >>> is_extension_type([1, 2, 3]) False >>> is_extension_type(np.array([1, 2, 3])) False >>> >>> cat = pd.Categorical([1, 2, 3]) >>> >>> is_extension_type(cat) True >>> is_extension_type(pd.Series(cat)) True >>> is_extension_type(pd.SparseArray([1, 2, 3])) True >>> is_extension_type(pd.SparseSeries([1, 2, 3])) True >>> >>> from scipy.sparse import bsr_matrix >>> is_extension_type(bsr_matrix([1, 2, 3])) False >>> is_extension_type(pd.DatetimeIndex([1, 2, 3])) False >>> is_extension_type(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern")) True >>> >>> dtype = DatetimeTZDtype("ns", tz="US/Eastern") >>> s = pd.Series([], dtype=dtype) >>> is_extension_type(s) True """ if is_categorical(arr): return True elif is_sparse(arr): return True elif is_datetime64tz_dtype(arr): return True return False
[ "def", "is_extension_type", "(", "arr", ")", ":", "if", "is_categorical", "(", "arr", ")", ":", "return", "True", "elif", "is_sparse", "(", "arr", ")", ":", "return", "True", "elif", "is_datetime64tz_dtype", "(", "arr", ")", ":", "return", "True", "return", "False" ]
Check whether an array-like is of a pandas extension class instance. Extension classes include categoricals, pandas sparse objects (i.e. classes represented within the pandas library and not ones external to it like scipy sparse matrices), and datetime-like arrays. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean Whether or not the array-like is of a pandas extension class instance. Examples -------- >>> is_extension_type([1, 2, 3]) False >>> is_extension_type(np.array([1, 2, 3])) False >>> >>> cat = pd.Categorical([1, 2, 3]) >>> >>> is_extension_type(cat) True >>> is_extension_type(pd.Series(cat)) True >>> is_extension_type(pd.SparseArray([1, 2, 3])) True >>> is_extension_type(pd.SparseSeries([1, 2, 3])) True >>> >>> from scipy.sparse import bsr_matrix >>> is_extension_type(bsr_matrix([1, 2, 3])) False >>> is_extension_type(pd.DatetimeIndex([1, 2, 3])) False >>> is_extension_type(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern")) True >>> >>> dtype = DatetimeTZDtype("ns", tz="US/Eastern") >>> s = pd.Series([], dtype=dtype) >>> is_extension_type(s) True
[ "Check", "whether", "an", "array", "-", "like", "is", "of", "a", "pandas", "extension", "class", "instance", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L1666-L1722
20,490
pandas-dev/pandas
pandas/core/dtypes/common.py
is_extension_array_dtype
def is_extension_array_dtype(arr_or_dtype): """ Check if an object is a pandas extension array type. See the :ref:`Use Guide <extending.extension-types>` for more. Parameters ---------- arr_or_dtype : object For array-like input, the ``.dtype`` attribute will be extracted. Returns ------- bool Whether the `arr_or_dtype` is an extension array type. Notes ----- This checks whether an object implements the pandas extension array interface. In pandas, this includes: * Categorical * Sparse * Interval * Period * DatetimeArray * TimedeltaArray Third-party libraries may implement arrays or types satisfying this interface as well. Examples -------- >>> from pandas.api.types import is_extension_array_dtype >>> arr = pd.Categorical(['a', 'b']) >>> is_extension_array_dtype(arr) True >>> is_extension_array_dtype(arr.dtype) True >>> arr = np.array(['a', 'b']) >>> is_extension_array_dtype(arr.dtype) False """ dtype = getattr(arr_or_dtype, 'dtype', arr_or_dtype) return (isinstance(dtype, ExtensionDtype) or registry.find(dtype) is not None)
python
def is_extension_array_dtype(arr_or_dtype): """ Check if an object is a pandas extension array type. See the :ref:`Use Guide <extending.extension-types>` for more. Parameters ---------- arr_or_dtype : object For array-like input, the ``.dtype`` attribute will be extracted. Returns ------- bool Whether the `arr_or_dtype` is an extension array type. Notes ----- This checks whether an object implements the pandas extension array interface. In pandas, this includes: * Categorical * Sparse * Interval * Period * DatetimeArray * TimedeltaArray Third-party libraries may implement arrays or types satisfying this interface as well. Examples -------- >>> from pandas.api.types import is_extension_array_dtype >>> arr = pd.Categorical(['a', 'b']) >>> is_extension_array_dtype(arr) True >>> is_extension_array_dtype(arr.dtype) True >>> arr = np.array(['a', 'b']) >>> is_extension_array_dtype(arr.dtype) False """ dtype = getattr(arr_or_dtype, 'dtype', arr_or_dtype) return (isinstance(dtype, ExtensionDtype) or registry.find(dtype) is not None)
[ "def", "is_extension_array_dtype", "(", "arr_or_dtype", ")", ":", "dtype", "=", "getattr", "(", "arr_or_dtype", ",", "'dtype'", ",", "arr_or_dtype", ")", "return", "(", "isinstance", "(", "dtype", ",", "ExtensionDtype", ")", "or", "registry", ".", "find", "(", "dtype", ")", "is", "not", "None", ")" ]
Check if an object is a pandas extension array type. See the :ref:`Use Guide <extending.extension-types>` for more. Parameters ---------- arr_or_dtype : object For array-like input, the ``.dtype`` attribute will be extracted. Returns ------- bool Whether the `arr_or_dtype` is an extension array type. Notes ----- This checks whether an object implements the pandas extension array interface. In pandas, this includes: * Categorical * Sparse * Interval * Period * DatetimeArray * TimedeltaArray Third-party libraries may implement arrays or types satisfying this interface as well. Examples -------- >>> from pandas.api.types import is_extension_array_dtype >>> arr = pd.Categorical(['a', 'b']) >>> is_extension_array_dtype(arr) True >>> is_extension_array_dtype(arr.dtype) True >>> arr = np.array(['a', 'b']) >>> is_extension_array_dtype(arr.dtype) False
[ "Check", "if", "an", "object", "is", "a", "pandas", "extension", "array", "type", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L1725-L1772
20,491
pandas-dev/pandas
pandas/core/dtypes/common.py
_get_dtype
def _get_dtype(arr_or_dtype): """ Get the dtype instance associated with an array or dtype object. Parameters ---------- arr_or_dtype : array-like The array-like or dtype object whose dtype we want to extract. Returns ------- obj_dtype : The extract dtype instance from the passed in array or dtype object. Raises ------ TypeError : The passed in object is None. """ if arr_or_dtype is None: raise TypeError("Cannot deduce dtype from null object") # fastpath elif isinstance(arr_or_dtype, np.dtype): return arr_or_dtype elif isinstance(arr_or_dtype, type): return np.dtype(arr_or_dtype) # if we have an array-like elif hasattr(arr_or_dtype, 'dtype'): arr_or_dtype = arr_or_dtype.dtype return pandas_dtype(arr_or_dtype)
python
def _get_dtype(arr_or_dtype): """ Get the dtype instance associated with an array or dtype object. Parameters ---------- arr_or_dtype : array-like The array-like or dtype object whose dtype we want to extract. Returns ------- obj_dtype : The extract dtype instance from the passed in array or dtype object. Raises ------ TypeError : The passed in object is None. """ if arr_or_dtype is None: raise TypeError("Cannot deduce dtype from null object") # fastpath elif isinstance(arr_or_dtype, np.dtype): return arr_or_dtype elif isinstance(arr_or_dtype, type): return np.dtype(arr_or_dtype) # if we have an array-like elif hasattr(arr_or_dtype, 'dtype'): arr_or_dtype = arr_or_dtype.dtype return pandas_dtype(arr_or_dtype)
[ "def", "_get_dtype", "(", "arr_or_dtype", ")", ":", "if", "arr_or_dtype", "is", "None", ":", "raise", "TypeError", "(", "\"Cannot deduce dtype from null object\"", ")", "# fastpath", "elif", "isinstance", "(", "arr_or_dtype", ",", "np", ".", "dtype", ")", ":", "return", "arr_or_dtype", "elif", "isinstance", "(", "arr_or_dtype", ",", "type", ")", ":", "return", "np", ".", "dtype", "(", "arr_or_dtype", ")", "# if we have an array-like", "elif", "hasattr", "(", "arr_or_dtype", ",", "'dtype'", ")", ":", "arr_or_dtype", "=", "arr_or_dtype", ".", "dtype", "return", "pandas_dtype", "(", "arr_or_dtype", ")" ]
Get the dtype instance associated with an array or dtype object. Parameters ---------- arr_or_dtype : array-like The array-like or dtype object whose dtype we want to extract. Returns ------- obj_dtype : The extract dtype instance from the passed in array or dtype object. Raises ------ TypeError : The passed in object is None.
[ "Get", "the", "dtype", "instance", "associated", "with", "an", "array", "or", "dtype", "object", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L1833-L1866
20,492
pandas-dev/pandas
pandas/core/dtypes/common.py
infer_dtype_from_object
def infer_dtype_from_object(dtype): """ Get a numpy dtype.type-style object for a dtype object. This methods also includes handling of the datetime64[ns] and datetime64[ns, TZ] objects. If no dtype can be found, we return ``object``. Parameters ---------- dtype : dtype, type The dtype object whose numpy dtype.type-style object we want to extract. Returns ------- dtype_object : The extracted numpy dtype.type-style object. """ if isinstance(dtype, type) and issubclass(dtype, np.generic): # Type object from a dtype return dtype elif isinstance(dtype, (np.dtype, PandasExtensionDtype, ExtensionDtype)): # dtype object try: _validate_date_like_dtype(dtype) except TypeError: # Should still pass if we don't have a date-like pass return dtype.type try: dtype = pandas_dtype(dtype) except TypeError: pass if is_extension_array_dtype(dtype): return dtype.type elif isinstance(dtype, str): # TODO(jreback) # should deprecate these if dtype in ['datetimetz', 'datetime64tz']: return DatetimeTZDtype.type elif dtype in ['period']: raise NotImplementedError if dtype == 'datetime' or dtype == 'timedelta': dtype += '64' try: return infer_dtype_from_object(getattr(np, dtype)) except (AttributeError, TypeError): # Handles cases like _get_dtype(int) i.e., # Python objects that are valid dtypes # (unlike user-defined types, in general) # # TypeError handles the float16 type code of 'e' # further handle internal types pass return infer_dtype_from_object(np.dtype(dtype))
python
def infer_dtype_from_object(dtype): """ Get a numpy dtype.type-style object for a dtype object. This methods also includes handling of the datetime64[ns] and datetime64[ns, TZ] objects. If no dtype can be found, we return ``object``. Parameters ---------- dtype : dtype, type The dtype object whose numpy dtype.type-style object we want to extract. Returns ------- dtype_object : The extracted numpy dtype.type-style object. """ if isinstance(dtype, type) and issubclass(dtype, np.generic): # Type object from a dtype return dtype elif isinstance(dtype, (np.dtype, PandasExtensionDtype, ExtensionDtype)): # dtype object try: _validate_date_like_dtype(dtype) except TypeError: # Should still pass if we don't have a date-like pass return dtype.type try: dtype = pandas_dtype(dtype) except TypeError: pass if is_extension_array_dtype(dtype): return dtype.type elif isinstance(dtype, str): # TODO(jreback) # should deprecate these if dtype in ['datetimetz', 'datetime64tz']: return DatetimeTZDtype.type elif dtype in ['period']: raise NotImplementedError if dtype == 'datetime' or dtype == 'timedelta': dtype += '64' try: return infer_dtype_from_object(getattr(np, dtype)) except (AttributeError, TypeError): # Handles cases like _get_dtype(int) i.e., # Python objects that are valid dtypes # (unlike user-defined types, in general) # # TypeError handles the float16 type code of 'e' # further handle internal types pass return infer_dtype_from_object(np.dtype(dtype))
[ "def", "infer_dtype_from_object", "(", "dtype", ")", ":", "if", "isinstance", "(", "dtype", ",", "type", ")", "and", "issubclass", "(", "dtype", ",", "np", ".", "generic", ")", ":", "# Type object from a dtype", "return", "dtype", "elif", "isinstance", "(", "dtype", ",", "(", "np", ".", "dtype", ",", "PandasExtensionDtype", ",", "ExtensionDtype", ")", ")", ":", "# dtype object", "try", ":", "_validate_date_like_dtype", "(", "dtype", ")", "except", "TypeError", ":", "# Should still pass if we don't have a date-like", "pass", "return", "dtype", ".", "type", "try", ":", "dtype", "=", "pandas_dtype", "(", "dtype", ")", "except", "TypeError", ":", "pass", "if", "is_extension_array_dtype", "(", "dtype", ")", ":", "return", "dtype", ".", "type", "elif", "isinstance", "(", "dtype", ",", "str", ")", ":", "# TODO(jreback)", "# should deprecate these", "if", "dtype", "in", "[", "'datetimetz'", ",", "'datetime64tz'", "]", ":", "return", "DatetimeTZDtype", ".", "type", "elif", "dtype", "in", "[", "'period'", "]", ":", "raise", "NotImplementedError", "if", "dtype", "==", "'datetime'", "or", "dtype", "==", "'timedelta'", ":", "dtype", "+=", "'64'", "try", ":", "return", "infer_dtype_from_object", "(", "getattr", "(", "np", ",", "dtype", ")", ")", "except", "(", "AttributeError", ",", "TypeError", ")", ":", "# Handles cases like _get_dtype(int) i.e.,", "# Python objects that are valid dtypes", "# (unlike user-defined types, in general)", "#", "# TypeError handles the float16 type code of 'e'", "# further handle internal types", "pass", "return", "infer_dtype_from_object", "(", "np", ".", "dtype", "(", "dtype", ")", ")" ]
Get a numpy dtype.type-style object for a dtype object. This methods also includes handling of the datetime64[ns] and datetime64[ns, TZ] objects. If no dtype can be found, we return ``object``. Parameters ---------- dtype : dtype, type The dtype object whose numpy dtype.type-style object we want to extract. Returns ------- dtype_object : The extracted numpy dtype.type-style object.
[ "Get", "a", "numpy", "dtype", ".", "type", "-", "style", "object", "for", "a", "dtype", "object", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L1916-L1977
20,493
pandas-dev/pandas
pandas/core/dtypes/common.py
_validate_date_like_dtype
def _validate_date_like_dtype(dtype): """ Check whether the dtype is a date-like dtype. Raises an error if invalid. Parameters ---------- dtype : dtype, type The dtype to check. Raises ------ TypeError : The dtype could not be casted to a date-like dtype. ValueError : The dtype is an illegal date-like dtype (e.g. the the frequency provided is too specific) """ try: typ = np.datetime_data(dtype)[0] except ValueError as e: raise TypeError('{error}'.format(error=e)) if typ != 'generic' and typ != 'ns': msg = '{name!r} is too specific of a frequency, try passing {type!r}' raise ValueError(msg.format(name=dtype.name, type=dtype.type.__name__))
python
def _validate_date_like_dtype(dtype): """ Check whether the dtype is a date-like dtype. Raises an error if invalid. Parameters ---------- dtype : dtype, type The dtype to check. Raises ------ TypeError : The dtype could not be casted to a date-like dtype. ValueError : The dtype is an illegal date-like dtype (e.g. the the frequency provided is too specific) """ try: typ = np.datetime_data(dtype)[0] except ValueError as e: raise TypeError('{error}'.format(error=e)) if typ != 'generic' and typ != 'ns': msg = '{name!r} is too specific of a frequency, try passing {type!r}' raise ValueError(msg.format(name=dtype.name, type=dtype.type.__name__))
[ "def", "_validate_date_like_dtype", "(", "dtype", ")", ":", "try", ":", "typ", "=", "np", ".", "datetime_data", "(", "dtype", ")", "[", "0", "]", "except", "ValueError", "as", "e", ":", "raise", "TypeError", "(", "'{error}'", ".", "format", "(", "error", "=", "e", ")", ")", "if", "typ", "!=", "'generic'", "and", "typ", "!=", "'ns'", ":", "msg", "=", "'{name!r} is too specific of a frequency, try passing {type!r}'", "raise", "ValueError", "(", "msg", ".", "format", "(", "name", "=", "dtype", ".", "name", ",", "type", "=", "dtype", ".", "type", ".", "__name__", ")", ")" ]
Check whether the dtype is a date-like dtype. Raises an error if invalid. Parameters ---------- dtype : dtype, type The dtype to check. Raises ------ TypeError : The dtype could not be casted to a date-like dtype. ValueError : The dtype is an illegal date-like dtype (e.g. the the frequency provided is too specific)
[ "Check", "whether", "the", "dtype", "is", "a", "date", "-", "like", "dtype", ".", "Raises", "an", "error", "if", "invalid", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L1980-L2002
20,494
pandas-dev/pandas
pandas/core/dtypes/common.py
pandas_dtype
def pandas_dtype(dtype): """ Convert input into a pandas only dtype object or a numpy dtype object. Parameters ---------- dtype : object to be converted Returns ------- np.dtype or a pandas dtype Raises ------ TypeError if not a dtype """ # short-circuit if isinstance(dtype, np.ndarray): return dtype.dtype elif isinstance(dtype, (np.dtype, PandasExtensionDtype, ExtensionDtype)): return dtype # registered extension types result = registry.find(dtype) if result is not None: return result # try a numpy dtype # raise a consistent TypeError if failed try: npdtype = np.dtype(dtype) except Exception: # we don't want to force a repr of the non-string if not isinstance(dtype, str): raise TypeError("data type not understood") raise TypeError("data type '{}' not understood".format( dtype)) # Any invalid dtype (such as pd.Timestamp) should raise an error. # np.dtype(invalid_type).kind = 0 for such objects. However, this will # also catch some valid dtypes such as object, np.object_ and 'object' # which we safeguard against by catching them earlier and returning # np.dtype(valid_dtype) before this condition is evaluated. if is_hashable(dtype) and dtype in [object, np.object_, 'object', 'O']: # check hashability to avoid errors/DeprecationWarning when we get # here and `dtype` is an array return npdtype elif npdtype.kind == 'O': raise TypeError("dtype '{}' not understood".format(dtype)) return npdtype
python
def pandas_dtype(dtype): """ Convert input into a pandas only dtype object or a numpy dtype object. Parameters ---------- dtype : object to be converted Returns ------- np.dtype or a pandas dtype Raises ------ TypeError if not a dtype """ # short-circuit if isinstance(dtype, np.ndarray): return dtype.dtype elif isinstance(dtype, (np.dtype, PandasExtensionDtype, ExtensionDtype)): return dtype # registered extension types result = registry.find(dtype) if result is not None: return result # try a numpy dtype # raise a consistent TypeError if failed try: npdtype = np.dtype(dtype) except Exception: # we don't want to force a repr of the non-string if not isinstance(dtype, str): raise TypeError("data type not understood") raise TypeError("data type '{}' not understood".format( dtype)) # Any invalid dtype (such as pd.Timestamp) should raise an error. # np.dtype(invalid_type).kind = 0 for such objects. However, this will # also catch some valid dtypes such as object, np.object_ and 'object' # which we safeguard against by catching them earlier and returning # np.dtype(valid_dtype) before this condition is evaluated. if is_hashable(dtype) and dtype in [object, np.object_, 'object', 'O']: # check hashability to avoid errors/DeprecationWarning when we get # here and `dtype` is an array return npdtype elif npdtype.kind == 'O': raise TypeError("dtype '{}' not understood".format(dtype)) return npdtype
[ "def", "pandas_dtype", "(", "dtype", ")", ":", "# short-circuit", "if", "isinstance", "(", "dtype", ",", "np", ".", "ndarray", ")", ":", "return", "dtype", ".", "dtype", "elif", "isinstance", "(", "dtype", ",", "(", "np", ".", "dtype", ",", "PandasExtensionDtype", ",", "ExtensionDtype", ")", ")", ":", "return", "dtype", "# registered extension types", "result", "=", "registry", ".", "find", "(", "dtype", ")", "if", "result", "is", "not", "None", ":", "return", "result", "# try a numpy dtype", "# raise a consistent TypeError if failed", "try", ":", "npdtype", "=", "np", ".", "dtype", "(", "dtype", ")", "except", "Exception", ":", "# we don't want to force a repr of the non-string", "if", "not", "isinstance", "(", "dtype", ",", "str", ")", ":", "raise", "TypeError", "(", "\"data type not understood\"", ")", "raise", "TypeError", "(", "\"data type '{}' not understood\"", ".", "format", "(", "dtype", ")", ")", "# Any invalid dtype (such as pd.Timestamp) should raise an error.", "# np.dtype(invalid_type).kind = 0 for such objects. However, this will", "# also catch some valid dtypes such as object, np.object_ and 'object'", "# which we safeguard against by catching them earlier and returning", "# np.dtype(valid_dtype) before this condition is evaluated.", "if", "is_hashable", "(", "dtype", ")", "and", "dtype", "in", "[", "object", ",", "np", ".", "object_", ",", "'object'", ",", "'O'", "]", ":", "# check hashability to avoid errors/DeprecationWarning when we get", "# here and `dtype` is an array", "return", "npdtype", "elif", "npdtype", ".", "kind", "==", "'O'", ":", "raise", "TypeError", "(", "\"dtype '{}' not understood\"", ".", "format", "(", "dtype", ")", ")", "return", "npdtype" ]
Convert input into a pandas only dtype object or a numpy dtype object. Parameters ---------- dtype : object to be converted Returns ------- np.dtype or a pandas dtype Raises ------ TypeError if not a dtype
[ "Convert", "input", "into", "a", "pandas", "only", "dtype", "object", "or", "a", "numpy", "dtype", "object", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/common.py#L2005-L2055
20,495
pandas-dev/pandas
pandas/core/reshape/merge.py
_groupby_and_merge
def _groupby_and_merge(by, on, left, right, _merge_pieces, check_duplicates=True): """ groupby & merge; we are always performing a left-by type operation Parameters ---------- by: field to group on: duplicates field left: left frame right: right frame _merge_pieces: function for merging check_duplicates: boolean, default True should we check & clean duplicates """ pieces = [] if not isinstance(by, (list, tuple)): by = [by] lby = left.groupby(by, sort=False) # if we can groupby the rhs # then we can get vastly better perf try: # we will check & remove duplicates if indicated if check_duplicates: if on is None: on = [] elif not isinstance(on, (list, tuple)): on = [on] if right.duplicated(by + on).any(): right = right.drop_duplicates(by + on, keep='last') rby = right.groupby(by, sort=False) except KeyError: rby = None for key, lhs in lby: if rby is None: rhs = right else: try: rhs = right.take(rby.indices[key]) except KeyError: # key doesn't exist in left lcols = lhs.columns.tolist() cols = lcols + [r for r in right.columns if r not in set(lcols)] merged = lhs.reindex(columns=cols) merged.index = range(len(merged)) pieces.append(merged) continue merged = _merge_pieces(lhs, rhs) # make sure join keys are in the merged # TODO, should _merge_pieces do this? for k in by: try: if k in merged: merged[k] = key except KeyError: pass pieces.append(merged) # preserve the original order # if we have a missing piece this can be reset from pandas.core.reshape.concat import concat result = concat(pieces, ignore_index=True) result = result.reindex(columns=pieces[0].columns, copy=False) return result, lby
python
def _groupby_and_merge(by, on, left, right, _merge_pieces, check_duplicates=True): """ groupby & merge; we are always performing a left-by type operation Parameters ---------- by: field to group on: duplicates field left: left frame right: right frame _merge_pieces: function for merging check_duplicates: boolean, default True should we check & clean duplicates """ pieces = [] if not isinstance(by, (list, tuple)): by = [by] lby = left.groupby(by, sort=False) # if we can groupby the rhs # then we can get vastly better perf try: # we will check & remove duplicates if indicated if check_duplicates: if on is None: on = [] elif not isinstance(on, (list, tuple)): on = [on] if right.duplicated(by + on).any(): right = right.drop_duplicates(by + on, keep='last') rby = right.groupby(by, sort=False) except KeyError: rby = None for key, lhs in lby: if rby is None: rhs = right else: try: rhs = right.take(rby.indices[key]) except KeyError: # key doesn't exist in left lcols = lhs.columns.tolist() cols = lcols + [r for r in right.columns if r not in set(lcols)] merged = lhs.reindex(columns=cols) merged.index = range(len(merged)) pieces.append(merged) continue merged = _merge_pieces(lhs, rhs) # make sure join keys are in the merged # TODO, should _merge_pieces do this? for k in by: try: if k in merged: merged[k] = key except KeyError: pass pieces.append(merged) # preserve the original order # if we have a missing piece this can be reset from pandas.core.reshape.concat import concat result = concat(pieces, ignore_index=True) result = result.reindex(columns=pieces[0].columns, copy=False) return result, lby
[ "def", "_groupby_and_merge", "(", "by", ",", "on", ",", "left", ",", "right", ",", "_merge_pieces", ",", "check_duplicates", "=", "True", ")", ":", "pieces", "=", "[", "]", "if", "not", "isinstance", "(", "by", ",", "(", "list", ",", "tuple", ")", ")", ":", "by", "=", "[", "by", "]", "lby", "=", "left", ".", "groupby", "(", "by", ",", "sort", "=", "False", ")", "# if we can groupby the rhs", "# then we can get vastly better perf", "try", ":", "# we will check & remove duplicates if indicated", "if", "check_duplicates", ":", "if", "on", "is", "None", ":", "on", "=", "[", "]", "elif", "not", "isinstance", "(", "on", ",", "(", "list", ",", "tuple", ")", ")", ":", "on", "=", "[", "on", "]", "if", "right", ".", "duplicated", "(", "by", "+", "on", ")", ".", "any", "(", ")", ":", "right", "=", "right", ".", "drop_duplicates", "(", "by", "+", "on", ",", "keep", "=", "'last'", ")", "rby", "=", "right", ".", "groupby", "(", "by", ",", "sort", "=", "False", ")", "except", "KeyError", ":", "rby", "=", "None", "for", "key", ",", "lhs", "in", "lby", ":", "if", "rby", "is", "None", ":", "rhs", "=", "right", "else", ":", "try", ":", "rhs", "=", "right", ".", "take", "(", "rby", ".", "indices", "[", "key", "]", ")", "except", "KeyError", ":", "# key doesn't exist in left", "lcols", "=", "lhs", ".", "columns", ".", "tolist", "(", ")", "cols", "=", "lcols", "+", "[", "r", "for", "r", "in", "right", ".", "columns", "if", "r", "not", "in", "set", "(", "lcols", ")", "]", "merged", "=", "lhs", ".", "reindex", "(", "columns", "=", "cols", ")", "merged", ".", "index", "=", "range", "(", "len", "(", "merged", ")", ")", "pieces", ".", "append", "(", "merged", ")", "continue", "merged", "=", "_merge_pieces", "(", "lhs", ",", "rhs", ")", "# make sure join keys are in the merged", "# TODO, should _merge_pieces do this?", "for", "k", "in", "by", ":", "try", ":", "if", "k", "in", "merged", ":", "merged", "[", "k", "]", "=", "key", "except", "KeyError", ":", "pass", "pieces", ".", "append", "(", "merged", ")", "# preserve the original order", "# if we have a missing piece this can be reset", "from", "pandas", ".", "core", ".", "reshape", ".", "concat", "import", "concat", "result", "=", "concat", "(", "pieces", ",", "ignore_index", "=", "True", ")", "result", "=", "result", ".", "reindex", "(", "columns", "=", "pieces", "[", "0", "]", ".", "columns", ",", "copy", "=", "False", ")", "return", "result", ",", "lby" ]
groupby & merge; we are always performing a left-by type operation Parameters ---------- by: field to group on: duplicates field left: left frame right: right frame _merge_pieces: function for merging check_duplicates: boolean, default True should we check & clean duplicates
[ "groupby", "&", "merge", ";", "we", "are", "always", "performing", "a", "left", "-", "by", "type", "operation" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/reshape/merge.py#L54-L128
20,496
pandas-dev/pandas
pandas/core/reshape/merge.py
merge_asof
def merge_asof(left, right, on=None, left_on=None, right_on=None, left_index=False, right_index=False, by=None, left_by=None, right_by=None, suffixes=('_x', '_y'), tolerance=None, allow_exact_matches=True, direction='backward'): """Perform an asof merge. This is similar to a left-join except that we match on nearest key rather than equal keys. Both DataFrames must be sorted by the key. For each row in the left DataFrame: - A "backward" search selects the last row in the right DataFrame whose 'on' key is less than or equal to the left's key. - A "forward" search selects the first row in the right DataFrame whose 'on' key is greater than or equal to the left's key. - A "nearest" search selects the row in the right DataFrame whose 'on' key is closest in absolute distance to the left's key. The default is "backward" and is compatible in versions below 0.20.0. The direction parameter was added in version 0.20.0 and introduces "forward" and "nearest". Optionally match on equivalent keys with 'by' before searching with 'on'. .. versionadded:: 0.19.0 Parameters ---------- left : DataFrame right : DataFrame on : label Field name to join on. Must be found in both DataFrames. The data MUST be ordered. Furthermore this must be a numeric column, such as datetimelike, integer, or float. On or left_on/right_on must be given. left_on : label Field name to join on in left DataFrame. right_on : label Field name to join on in right DataFrame. left_index : boolean Use the index of the left DataFrame as the join key. .. versionadded:: 0.19.2 right_index : boolean Use the index of the right DataFrame as the join key. .. versionadded:: 0.19.2 by : column name or list of column names Match on these columns before performing merge operation. left_by : column name Field names to match on in the left DataFrame. .. versionadded:: 0.19.2 right_by : column name Field names to match on in the right DataFrame. .. versionadded:: 0.19.2 suffixes : 2-length sequence (tuple, list, ...) Suffix to apply to overlapping column names in the left and right side, respectively. tolerance : integer or Timedelta, optional, default None Select asof tolerance within this range; must be compatible with the merge index. allow_exact_matches : boolean, default True - If True, allow matching with the same 'on' value (i.e. less-than-or-equal-to / greater-than-or-equal-to) - If False, don't match the same 'on' value (i.e., strictly less-than / strictly greater-than) direction : 'backward' (default), 'forward', or 'nearest' Whether to search for prior, subsequent, or closest matches. .. versionadded:: 0.20.0 Returns ------- merged : DataFrame See Also -------- merge merge_ordered Examples -------- >>> left = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c']}) >>> left a left_val 0 1 a 1 5 b 2 10 c >>> right = pd.DataFrame({'a': [1, 2, 3, 6, 7], ... 'right_val': [1, 2, 3, 6, 7]}) >>> right a right_val 0 1 1 1 2 2 2 3 3 3 6 6 4 7 7 >>> pd.merge_asof(left, right, on='a') a left_val right_val 0 1 a 1 1 5 b 3 2 10 c 7 >>> pd.merge_asof(left, right, on='a', allow_exact_matches=False) a left_val right_val 0 1 a NaN 1 5 b 3.0 2 10 c 7.0 >>> pd.merge_asof(left, right, on='a', direction='forward') a left_val right_val 0 1 a 1.0 1 5 b 6.0 2 10 c NaN >>> pd.merge_asof(left, right, on='a', direction='nearest') a left_val right_val 0 1 a 1 1 5 b 6 2 10 c 7 We can use indexed DataFrames as well. >>> left = pd.DataFrame({'left_val': ['a', 'b', 'c']}, index=[1, 5, 10]) >>> left left_val 1 a 5 b 10 c >>> right = pd.DataFrame({'right_val': [1, 2, 3, 6, 7]}, ... index=[1, 2, 3, 6, 7]) >>> right right_val 1 1 2 2 3 3 6 6 7 7 >>> pd.merge_asof(left, right, left_index=True, right_index=True) left_val right_val 1 a 1 5 b 3 10 c 7 Here is a real-world times-series example >>> quotes time ticker bid ask 0 2016-05-25 13:30:00.023 GOOG 720.50 720.93 1 2016-05-25 13:30:00.023 MSFT 51.95 51.96 2 2016-05-25 13:30:00.030 MSFT 51.97 51.98 3 2016-05-25 13:30:00.041 MSFT 51.99 52.00 4 2016-05-25 13:30:00.048 GOOG 720.50 720.93 5 2016-05-25 13:30:00.049 AAPL 97.99 98.01 6 2016-05-25 13:30:00.072 GOOG 720.50 720.88 7 2016-05-25 13:30:00.075 MSFT 52.01 52.03 >>> trades time ticker price quantity 0 2016-05-25 13:30:00.023 MSFT 51.95 75 1 2016-05-25 13:30:00.038 MSFT 51.95 155 2 2016-05-25 13:30:00.048 GOOG 720.77 100 3 2016-05-25 13:30:00.048 GOOG 720.92 100 4 2016-05-25 13:30:00.048 AAPL 98.00 100 By default we are taking the asof of the quotes >>> pd.merge_asof(trades, quotes, ... on='time', ... by='ticker') time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96 1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98 2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93 3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN We only asof within 2ms between the quote time and the trade time >>> pd.merge_asof(trades, quotes, ... on='time', ... by='ticker', ... tolerance=pd.Timedelta('2ms')) time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96 1 2016-05-25 13:30:00.038 MSFT 51.95 155 NaN NaN 2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93 3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN We only asof within 10ms between the quote time and the trade time and we exclude exact matches on time. However *prior* data will propagate forward >>> pd.merge_asof(trades, quotes, ... on='time', ... by='ticker', ... tolerance=pd.Timedelta('10ms'), ... allow_exact_matches=False) time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 NaN NaN 1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98 2 2016-05-25 13:30:00.048 GOOG 720.77 100 NaN NaN 3 2016-05-25 13:30:00.048 GOOG 720.92 100 NaN NaN 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN """ op = _AsOfMerge(left, right, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, by=by, left_by=left_by, right_by=right_by, suffixes=suffixes, how='asof', tolerance=tolerance, allow_exact_matches=allow_exact_matches, direction=direction) return op.get_result()
python
def merge_asof(left, right, on=None, left_on=None, right_on=None, left_index=False, right_index=False, by=None, left_by=None, right_by=None, suffixes=('_x', '_y'), tolerance=None, allow_exact_matches=True, direction='backward'): """Perform an asof merge. This is similar to a left-join except that we match on nearest key rather than equal keys. Both DataFrames must be sorted by the key. For each row in the left DataFrame: - A "backward" search selects the last row in the right DataFrame whose 'on' key is less than or equal to the left's key. - A "forward" search selects the first row in the right DataFrame whose 'on' key is greater than or equal to the left's key. - A "nearest" search selects the row in the right DataFrame whose 'on' key is closest in absolute distance to the left's key. The default is "backward" and is compatible in versions below 0.20.0. The direction parameter was added in version 0.20.0 and introduces "forward" and "nearest". Optionally match on equivalent keys with 'by' before searching with 'on'. .. versionadded:: 0.19.0 Parameters ---------- left : DataFrame right : DataFrame on : label Field name to join on. Must be found in both DataFrames. The data MUST be ordered. Furthermore this must be a numeric column, such as datetimelike, integer, or float. On or left_on/right_on must be given. left_on : label Field name to join on in left DataFrame. right_on : label Field name to join on in right DataFrame. left_index : boolean Use the index of the left DataFrame as the join key. .. versionadded:: 0.19.2 right_index : boolean Use the index of the right DataFrame as the join key. .. versionadded:: 0.19.2 by : column name or list of column names Match on these columns before performing merge operation. left_by : column name Field names to match on in the left DataFrame. .. versionadded:: 0.19.2 right_by : column name Field names to match on in the right DataFrame. .. versionadded:: 0.19.2 suffixes : 2-length sequence (tuple, list, ...) Suffix to apply to overlapping column names in the left and right side, respectively. tolerance : integer or Timedelta, optional, default None Select asof tolerance within this range; must be compatible with the merge index. allow_exact_matches : boolean, default True - If True, allow matching with the same 'on' value (i.e. less-than-or-equal-to / greater-than-or-equal-to) - If False, don't match the same 'on' value (i.e., strictly less-than / strictly greater-than) direction : 'backward' (default), 'forward', or 'nearest' Whether to search for prior, subsequent, or closest matches. .. versionadded:: 0.20.0 Returns ------- merged : DataFrame See Also -------- merge merge_ordered Examples -------- >>> left = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c']}) >>> left a left_val 0 1 a 1 5 b 2 10 c >>> right = pd.DataFrame({'a': [1, 2, 3, 6, 7], ... 'right_val': [1, 2, 3, 6, 7]}) >>> right a right_val 0 1 1 1 2 2 2 3 3 3 6 6 4 7 7 >>> pd.merge_asof(left, right, on='a') a left_val right_val 0 1 a 1 1 5 b 3 2 10 c 7 >>> pd.merge_asof(left, right, on='a', allow_exact_matches=False) a left_val right_val 0 1 a NaN 1 5 b 3.0 2 10 c 7.0 >>> pd.merge_asof(left, right, on='a', direction='forward') a left_val right_val 0 1 a 1.0 1 5 b 6.0 2 10 c NaN >>> pd.merge_asof(left, right, on='a', direction='nearest') a left_val right_val 0 1 a 1 1 5 b 6 2 10 c 7 We can use indexed DataFrames as well. >>> left = pd.DataFrame({'left_val': ['a', 'b', 'c']}, index=[1, 5, 10]) >>> left left_val 1 a 5 b 10 c >>> right = pd.DataFrame({'right_val': [1, 2, 3, 6, 7]}, ... index=[1, 2, 3, 6, 7]) >>> right right_val 1 1 2 2 3 3 6 6 7 7 >>> pd.merge_asof(left, right, left_index=True, right_index=True) left_val right_val 1 a 1 5 b 3 10 c 7 Here is a real-world times-series example >>> quotes time ticker bid ask 0 2016-05-25 13:30:00.023 GOOG 720.50 720.93 1 2016-05-25 13:30:00.023 MSFT 51.95 51.96 2 2016-05-25 13:30:00.030 MSFT 51.97 51.98 3 2016-05-25 13:30:00.041 MSFT 51.99 52.00 4 2016-05-25 13:30:00.048 GOOG 720.50 720.93 5 2016-05-25 13:30:00.049 AAPL 97.99 98.01 6 2016-05-25 13:30:00.072 GOOG 720.50 720.88 7 2016-05-25 13:30:00.075 MSFT 52.01 52.03 >>> trades time ticker price quantity 0 2016-05-25 13:30:00.023 MSFT 51.95 75 1 2016-05-25 13:30:00.038 MSFT 51.95 155 2 2016-05-25 13:30:00.048 GOOG 720.77 100 3 2016-05-25 13:30:00.048 GOOG 720.92 100 4 2016-05-25 13:30:00.048 AAPL 98.00 100 By default we are taking the asof of the quotes >>> pd.merge_asof(trades, quotes, ... on='time', ... by='ticker') time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96 1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98 2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93 3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN We only asof within 2ms between the quote time and the trade time >>> pd.merge_asof(trades, quotes, ... on='time', ... by='ticker', ... tolerance=pd.Timedelta('2ms')) time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96 1 2016-05-25 13:30:00.038 MSFT 51.95 155 NaN NaN 2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93 3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN We only asof within 10ms between the quote time and the trade time and we exclude exact matches on time. However *prior* data will propagate forward >>> pd.merge_asof(trades, quotes, ... on='time', ... by='ticker', ... tolerance=pd.Timedelta('10ms'), ... allow_exact_matches=False) time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 NaN NaN 1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98 2 2016-05-25 13:30:00.048 GOOG 720.77 100 NaN NaN 3 2016-05-25 13:30:00.048 GOOG 720.92 100 NaN NaN 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN """ op = _AsOfMerge(left, right, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, by=by, left_by=left_by, right_by=right_by, suffixes=suffixes, how='asof', tolerance=tolerance, allow_exact_matches=allow_exact_matches, direction=direction) return op.get_result()
[ "def", "merge_asof", "(", "left", ",", "right", ",", "on", "=", "None", ",", "left_on", "=", "None", ",", "right_on", "=", "None", ",", "left_index", "=", "False", ",", "right_index", "=", "False", ",", "by", "=", "None", ",", "left_by", "=", "None", ",", "right_by", "=", "None", ",", "suffixes", "=", "(", "'_x'", ",", "'_y'", ")", ",", "tolerance", "=", "None", ",", "allow_exact_matches", "=", "True", ",", "direction", "=", "'backward'", ")", ":", "op", "=", "_AsOfMerge", "(", "left", ",", "right", ",", "on", "=", "on", ",", "left_on", "=", "left_on", ",", "right_on", "=", "right_on", ",", "left_index", "=", "left_index", ",", "right_index", "=", "right_index", ",", "by", "=", "by", ",", "left_by", "=", "left_by", ",", "right_by", "=", "right_by", ",", "suffixes", "=", "suffixes", ",", "how", "=", "'asof'", ",", "tolerance", "=", "tolerance", ",", "allow_exact_matches", "=", "allow_exact_matches", ",", "direction", "=", "direction", ")", "return", "op", ".", "get_result", "(", ")" ]
Perform an asof merge. This is similar to a left-join except that we match on nearest key rather than equal keys. Both DataFrames must be sorted by the key. For each row in the left DataFrame: - A "backward" search selects the last row in the right DataFrame whose 'on' key is less than or equal to the left's key. - A "forward" search selects the first row in the right DataFrame whose 'on' key is greater than or equal to the left's key. - A "nearest" search selects the row in the right DataFrame whose 'on' key is closest in absolute distance to the left's key. The default is "backward" and is compatible in versions below 0.20.0. The direction parameter was added in version 0.20.0 and introduces "forward" and "nearest". Optionally match on equivalent keys with 'by' before searching with 'on'. .. versionadded:: 0.19.0 Parameters ---------- left : DataFrame right : DataFrame on : label Field name to join on. Must be found in both DataFrames. The data MUST be ordered. Furthermore this must be a numeric column, such as datetimelike, integer, or float. On or left_on/right_on must be given. left_on : label Field name to join on in left DataFrame. right_on : label Field name to join on in right DataFrame. left_index : boolean Use the index of the left DataFrame as the join key. .. versionadded:: 0.19.2 right_index : boolean Use the index of the right DataFrame as the join key. .. versionadded:: 0.19.2 by : column name or list of column names Match on these columns before performing merge operation. left_by : column name Field names to match on in the left DataFrame. .. versionadded:: 0.19.2 right_by : column name Field names to match on in the right DataFrame. .. versionadded:: 0.19.2 suffixes : 2-length sequence (tuple, list, ...) Suffix to apply to overlapping column names in the left and right side, respectively. tolerance : integer or Timedelta, optional, default None Select asof tolerance within this range; must be compatible with the merge index. allow_exact_matches : boolean, default True - If True, allow matching with the same 'on' value (i.e. less-than-or-equal-to / greater-than-or-equal-to) - If False, don't match the same 'on' value (i.e., strictly less-than / strictly greater-than) direction : 'backward' (default), 'forward', or 'nearest' Whether to search for prior, subsequent, or closest matches. .. versionadded:: 0.20.0 Returns ------- merged : DataFrame See Also -------- merge merge_ordered Examples -------- >>> left = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c']}) >>> left a left_val 0 1 a 1 5 b 2 10 c >>> right = pd.DataFrame({'a': [1, 2, 3, 6, 7], ... 'right_val': [1, 2, 3, 6, 7]}) >>> right a right_val 0 1 1 1 2 2 2 3 3 3 6 6 4 7 7 >>> pd.merge_asof(left, right, on='a') a left_val right_val 0 1 a 1 1 5 b 3 2 10 c 7 >>> pd.merge_asof(left, right, on='a', allow_exact_matches=False) a left_val right_val 0 1 a NaN 1 5 b 3.0 2 10 c 7.0 >>> pd.merge_asof(left, right, on='a', direction='forward') a left_val right_val 0 1 a 1.0 1 5 b 6.0 2 10 c NaN >>> pd.merge_asof(left, right, on='a', direction='nearest') a left_val right_val 0 1 a 1 1 5 b 6 2 10 c 7 We can use indexed DataFrames as well. >>> left = pd.DataFrame({'left_val': ['a', 'b', 'c']}, index=[1, 5, 10]) >>> left left_val 1 a 5 b 10 c >>> right = pd.DataFrame({'right_val': [1, 2, 3, 6, 7]}, ... index=[1, 2, 3, 6, 7]) >>> right right_val 1 1 2 2 3 3 6 6 7 7 >>> pd.merge_asof(left, right, left_index=True, right_index=True) left_val right_val 1 a 1 5 b 3 10 c 7 Here is a real-world times-series example >>> quotes time ticker bid ask 0 2016-05-25 13:30:00.023 GOOG 720.50 720.93 1 2016-05-25 13:30:00.023 MSFT 51.95 51.96 2 2016-05-25 13:30:00.030 MSFT 51.97 51.98 3 2016-05-25 13:30:00.041 MSFT 51.99 52.00 4 2016-05-25 13:30:00.048 GOOG 720.50 720.93 5 2016-05-25 13:30:00.049 AAPL 97.99 98.01 6 2016-05-25 13:30:00.072 GOOG 720.50 720.88 7 2016-05-25 13:30:00.075 MSFT 52.01 52.03 >>> trades time ticker price quantity 0 2016-05-25 13:30:00.023 MSFT 51.95 75 1 2016-05-25 13:30:00.038 MSFT 51.95 155 2 2016-05-25 13:30:00.048 GOOG 720.77 100 3 2016-05-25 13:30:00.048 GOOG 720.92 100 4 2016-05-25 13:30:00.048 AAPL 98.00 100 By default we are taking the asof of the quotes >>> pd.merge_asof(trades, quotes, ... on='time', ... by='ticker') time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96 1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98 2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93 3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN We only asof within 2ms between the quote time and the trade time >>> pd.merge_asof(trades, quotes, ... on='time', ... by='ticker', ... tolerance=pd.Timedelta('2ms')) time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96 1 2016-05-25 13:30:00.038 MSFT 51.95 155 NaN NaN 2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93 3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN We only asof within 10ms between the quote time and the trade time and we exclude exact matches on time. However *prior* data will propagate forward >>> pd.merge_asof(trades, quotes, ... on='time', ... by='ticker', ... tolerance=pd.Timedelta('10ms'), ... allow_exact_matches=False) time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 NaN NaN 1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98 2 2016-05-25 13:30:00.048 GOOG 720.77 100 NaN NaN 3 2016-05-25 13:30:00.048 GOOG 720.92 100 NaN NaN 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN
[ "Perform", "an", "asof", "merge", ".", "This", "is", "similar", "to", "a", "left", "-", "join", "except", "that", "we", "match", "on", "nearest", "key", "rather", "than", "equal", "keys", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/reshape/merge.py#L235-L467
20,497
pandas-dev/pandas
pandas/core/reshape/merge.py
_MergeOperation._maybe_restore_index_levels
def _maybe_restore_index_levels(self, result): """ Restore index levels specified as `on` parameters Here we check for cases where `self.left_on` and `self.right_on` pairs each reference an index level in their respective DataFrames. The joined columns corresponding to these pairs are then restored to the index of `result`. **Note:** This method has side effects. It modifies `result` in-place Parameters ---------- result: DataFrame merge result Returns ------- None """ names_to_restore = [] for name, left_key, right_key in zip(self.join_names, self.left_on, self.right_on): if (self.orig_left._is_level_reference(left_key) and self.orig_right._is_level_reference(right_key) and name not in result.index.names): names_to_restore.append(name) if names_to_restore: result.set_index(names_to_restore, inplace=True)
python
def _maybe_restore_index_levels(self, result): """ Restore index levels specified as `on` parameters Here we check for cases where `self.left_on` and `self.right_on` pairs each reference an index level in their respective DataFrames. The joined columns corresponding to these pairs are then restored to the index of `result`. **Note:** This method has side effects. It modifies `result` in-place Parameters ---------- result: DataFrame merge result Returns ------- None """ names_to_restore = [] for name, left_key, right_key in zip(self.join_names, self.left_on, self.right_on): if (self.orig_left._is_level_reference(left_key) and self.orig_right._is_level_reference(right_key) and name not in result.index.names): names_to_restore.append(name) if names_to_restore: result.set_index(names_to_restore, inplace=True)
[ "def", "_maybe_restore_index_levels", "(", "self", ",", "result", ")", ":", "names_to_restore", "=", "[", "]", "for", "name", ",", "left_key", ",", "right_key", "in", "zip", "(", "self", ".", "join_names", ",", "self", ".", "left_on", ",", "self", ".", "right_on", ")", ":", "if", "(", "self", ".", "orig_left", ".", "_is_level_reference", "(", "left_key", ")", "and", "self", ".", "orig_right", ".", "_is_level_reference", "(", "right_key", ")", "and", "name", "not", "in", "result", ".", "index", ".", "names", ")", ":", "names_to_restore", ".", "append", "(", "name", ")", "if", "names_to_restore", ":", "result", ".", "set_index", "(", "names_to_restore", ",", "inplace", "=", "True", ")" ]
Restore index levels specified as `on` parameters Here we check for cases where `self.left_on` and `self.right_on` pairs each reference an index level in their respective DataFrames. The joined columns corresponding to these pairs are then restored to the index of `result`. **Note:** This method has side effects. It modifies `result` in-place Parameters ---------- result: DataFrame merge result Returns ------- None
[ "Restore", "index", "levels", "specified", "as", "on", "parameters" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/reshape/merge.py#L619-L650
20,498
pandas-dev/pandas
pandas/core/reshape/merge.py
_MergeOperation._create_join_index
def _create_join_index(self, index, other_index, indexer, other_indexer, how='left'): """ Create a join index by rearranging one index to match another Parameters ---------- index: Index being rearranged other_index: Index used to supply values not found in index indexer: how to rearrange index how: replacement is only necessary if indexer based on other_index Returns ------- join_index """ join_index = index.take(indexer) if (self.how in (how, 'outer') and not isinstance(other_index, MultiIndex)): # if final index requires values in other_index but not target # index, indexer may hold missing (-1) values, causing Index.take # to take the final value in target index mask = indexer == -1 if np.any(mask): # if values missing (-1) from target index, # take from other_index instead join_list = join_index.to_numpy() other_list = other_index.take(other_indexer).to_numpy() join_list[mask] = other_list[mask] join_index = Index(join_list, dtype=join_index.dtype, name=join_index.name) return join_index
python
def _create_join_index(self, index, other_index, indexer, other_indexer, how='left'): """ Create a join index by rearranging one index to match another Parameters ---------- index: Index being rearranged other_index: Index used to supply values not found in index indexer: how to rearrange index how: replacement is only necessary if indexer based on other_index Returns ------- join_index """ join_index = index.take(indexer) if (self.how in (how, 'outer') and not isinstance(other_index, MultiIndex)): # if final index requires values in other_index but not target # index, indexer may hold missing (-1) values, causing Index.take # to take the final value in target index mask = indexer == -1 if np.any(mask): # if values missing (-1) from target index, # take from other_index instead join_list = join_index.to_numpy() other_list = other_index.take(other_indexer).to_numpy() join_list[mask] = other_list[mask] join_index = Index(join_list, dtype=join_index.dtype, name=join_index.name) return join_index
[ "def", "_create_join_index", "(", "self", ",", "index", ",", "other_index", ",", "indexer", ",", "other_indexer", ",", "how", "=", "'left'", ")", ":", "join_index", "=", "index", ".", "take", "(", "indexer", ")", "if", "(", "self", ".", "how", "in", "(", "how", ",", "'outer'", ")", "and", "not", "isinstance", "(", "other_index", ",", "MultiIndex", ")", ")", ":", "# if final index requires values in other_index but not target", "# index, indexer may hold missing (-1) values, causing Index.take", "# to take the final value in target index", "mask", "=", "indexer", "==", "-", "1", "if", "np", ".", "any", "(", "mask", ")", ":", "# if values missing (-1) from target index,", "# take from other_index instead", "join_list", "=", "join_index", ".", "to_numpy", "(", ")", "other_list", "=", "other_index", ".", "take", "(", "other_indexer", ")", ".", "to_numpy", "(", ")", "join_list", "[", "mask", "]", "=", "other_list", "[", "mask", "]", "join_index", "=", "Index", "(", "join_list", ",", "dtype", "=", "join_index", ".", "dtype", ",", "name", "=", "join_index", ".", "name", ")", "return", "join_index" ]
Create a join index by rearranging one index to match another Parameters ---------- index: Index being rearranged other_index: Index used to supply values not found in index indexer: how to rearrange index how: replacement is only necessary if indexer based on other_index Returns ------- join_index
[ "Create", "a", "join", "index", "by", "rearranging", "one", "index", "to", "match", "another" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/reshape/merge.py#L790-L821
20,499
pandas-dev/pandas
pandas/core/dtypes/base.py
_DtypeOpsMixin.is_dtype
def is_dtype(cls, dtype): """Check if we match 'dtype'. Parameters ---------- dtype : object The object to check. Returns ------- is_dtype : bool Notes ----- The default implementation is True if 1. ``cls.construct_from_string(dtype)`` is an instance of ``cls``. 2. ``dtype`` is an object and is an instance of ``cls`` 3. ``dtype`` has a ``dtype`` attribute, and any of the above conditions is true for ``dtype.dtype``. """ dtype = getattr(dtype, 'dtype', dtype) if isinstance(dtype, (ABCSeries, ABCIndexClass, ABCDataFrame, np.dtype)): # https://github.com/pandas-dev/pandas/issues/22960 # avoid passing data to `construct_from_string`. This could # cause a FutureWarning from numpy about failing elementwise # comparison from, e.g., comparing DataFrame == 'category'. return False elif dtype is None: return False elif isinstance(dtype, cls): return True try: return cls.construct_from_string(dtype) is not None except TypeError: return False
python
def is_dtype(cls, dtype): """Check if we match 'dtype'. Parameters ---------- dtype : object The object to check. Returns ------- is_dtype : bool Notes ----- The default implementation is True if 1. ``cls.construct_from_string(dtype)`` is an instance of ``cls``. 2. ``dtype`` is an object and is an instance of ``cls`` 3. ``dtype`` has a ``dtype`` attribute, and any of the above conditions is true for ``dtype.dtype``. """ dtype = getattr(dtype, 'dtype', dtype) if isinstance(dtype, (ABCSeries, ABCIndexClass, ABCDataFrame, np.dtype)): # https://github.com/pandas-dev/pandas/issues/22960 # avoid passing data to `construct_from_string`. This could # cause a FutureWarning from numpy about failing elementwise # comparison from, e.g., comparing DataFrame == 'category'. return False elif dtype is None: return False elif isinstance(dtype, cls): return True try: return cls.construct_from_string(dtype) is not None except TypeError: return False
[ "def", "is_dtype", "(", "cls", ",", "dtype", ")", ":", "dtype", "=", "getattr", "(", "dtype", ",", "'dtype'", ",", "dtype", ")", "if", "isinstance", "(", "dtype", ",", "(", "ABCSeries", ",", "ABCIndexClass", ",", "ABCDataFrame", ",", "np", ".", "dtype", ")", ")", ":", "# https://github.com/pandas-dev/pandas/issues/22960", "# avoid passing data to `construct_from_string`. This could", "# cause a FutureWarning from numpy about failing elementwise", "# comparison from, e.g., comparing DataFrame == 'category'.", "return", "False", "elif", "dtype", "is", "None", ":", "return", "False", "elif", "isinstance", "(", "dtype", ",", "cls", ")", ":", "return", "True", "try", ":", "return", "cls", ".", "construct_from_string", "(", "dtype", ")", "is", "not", "None", "except", "TypeError", ":", "return", "False" ]
Check if we match 'dtype'. Parameters ---------- dtype : object The object to check. Returns ------- is_dtype : bool Notes ----- The default implementation is True if 1. ``cls.construct_from_string(dtype)`` is an instance of ``cls``. 2. ``dtype`` is an object and is an instance of ``cls`` 3. ``dtype`` has a ``dtype`` attribute, and any of the above conditions is true for ``dtype.dtype``.
[ "Check", "if", "we", "match", "dtype", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/dtypes/base.py#L75-L113