id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
19,300
apache/spark
python/pyspark/mllib/random.py
RandomRDDs.gammaRDD
def gammaRDD(sc, shape, scale, size, numPartitions=None, seed=None): """ Generates an RDD comprised of i.i.d. samples from the Gamma distribution with the input shape and scale. :param sc: SparkContext used to create the RDD. :param shape: shape (> 0) parameter for the Gamma distribution :param scale: scale (> 0) parameter for the Gamma distribution :param size: Size of the RDD. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of float comprised of i.i.d. samples ~ Gamma(shape, scale). >>> from math import sqrt >>> shape = 1.0 >>> scale = 2.0 >>> expMean = shape * scale >>> expStd = sqrt(shape * scale * scale) >>> x = RandomRDDs.gammaRDD(sc, shape, scale, 1000, seed=2) >>> stats = x.stats() >>> stats.count() 1000 >>> abs(stats.mean() - expMean) < 0.5 True >>> abs(stats.stdev() - expStd) < 0.5 True """ return callMLlibFunc("gammaRDD", sc._jsc, float(shape), float(scale), size, numPartitions, seed)
python
def gammaRDD(sc, shape, scale, size, numPartitions=None, seed=None): """ Generates an RDD comprised of i.i.d. samples from the Gamma distribution with the input shape and scale. :param sc: SparkContext used to create the RDD. :param shape: shape (> 0) parameter for the Gamma distribution :param scale: scale (> 0) parameter for the Gamma distribution :param size: Size of the RDD. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of float comprised of i.i.d. samples ~ Gamma(shape, scale). >>> from math import sqrt >>> shape = 1.0 >>> scale = 2.0 >>> expMean = shape * scale >>> expStd = sqrt(shape * scale * scale) >>> x = RandomRDDs.gammaRDD(sc, shape, scale, 1000, seed=2) >>> stats = x.stats() >>> stats.count() 1000 >>> abs(stats.mean() - expMean) < 0.5 True >>> abs(stats.stdev() - expStd) < 0.5 True """ return callMLlibFunc("gammaRDD", sc._jsc, float(shape), float(scale), size, numPartitions, seed)
[ "def", "gammaRDD", "(", "sc", ",", "shape", ",", "scale", ",", "size", ",", "numPartitions", "=", "None", ",", "seed", "=", "None", ")", ":", "return", "callMLlibFunc", "(", "\"gammaRDD\"", ",", "sc", ".", "_jsc", ",", "float", "(", "shape", ")", ",", "float", "(", "scale", ")", ",", "size", ",", "numPartitions", ",", "seed", ")" ]
Generates an RDD comprised of i.i.d. samples from the Gamma distribution with the input shape and scale. :param sc: SparkContext used to create the RDD. :param shape: shape (> 0) parameter for the Gamma distribution :param scale: scale (> 0) parameter for the Gamma distribution :param size: Size of the RDD. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of float comprised of i.i.d. samples ~ Gamma(shape, scale). >>> from math import sqrt >>> shape = 1.0 >>> scale = 2.0 >>> expMean = shape * scale >>> expStd = sqrt(shape * scale * scale) >>> x = RandomRDDs.gammaRDD(sc, shape, scale, 1000, seed=2) >>> stats = x.stats() >>> stats.count() 1000 >>> abs(stats.mean() - expMean) < 0.5 True >>> abs(stats.stdev() - expStd) < 0.5 True
[ "Generates", "an", "RDD", "comprised", "of", "i", ".", "i", ".", "d", ".", "samples", "from", "the", "Gamma", "distribution", "with", "the", "input", "shape", "and", "scale", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/random.py#L197-L225
19,301
apache/spark
python/pyspark/mllib/random.py
RandomRDDs.normalVectorRDD
def normalVectorRDD(sc, numRows, numCols, numPartitions=None, seed=None): """ Generates an RDD comprised of vectors containing i.i.d. samples drawn from the standard normal distribution. :param sc: SparkContext used to create the RDD. :param numRows: Number of Vectors in the RDD. :param numCols: Number of elements in each Vector. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of Vector with vectors containing i.i.d. samples ~ `N(0.0, 1.0)`. >>> import numpy as np >>> mat = np.matrix(RandomRDDs.normalVectorRDD(sc, 100, 100, seed=1).collect()) >>> mat.shape (100, 100) >>> abs(mat.mean() - 0.0) < 0.1 True >>> abs(mat.std() - 1.0) < 0.1 True """ return callMLlibFunc("normalVectorRDD", sc._jsc, numRows, numCols, numPartitions, seed)
python
def normalVectorRDD(sc, numRows, numCols, numPartitions=None, seed=None): """ Generates an RDD comprised of vectors containing i.i.d. samples drawn from the standard normal distribution. :param sc: SparkContext used to create the RDD. :param numRows: Number of Vectors in the RDD. :param numCols: Number of elements in each Vector. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of Vector with vectors containing i.i.d. samples ~ `N(0.0, 1.0)`. >>> import numpy as np >>> mat = np.matrix(RandomRDDs.normalVectorRDD(sc, 100, 100, seed=1).collect()) >>> mat.shape (100, 100) >>> abs(mat.mean() - 0.0) < 0.1 True >>> abs(mat.std() - 1.0) < 0.1 True """ return callMLlibFunc("normalVectorRDD", sc._jsc, numRows, numCols, numPartitions, seed)
[ "def", "normalVectorRDD", "(", "sc", ",", "numRows", ",", "numCols", ",", "numPartitions", "=", "None", ",", "seed", "=", "None", ")", ":", "return", "callMLlibFunc", "(", "\"normalVectorRDD\"", ",", "sc", ".", "_jsc", ",", "numRows", ",", "numCols", ",", "numPartitions", ",", "seed", ")" ]
Generates an RDD comprised of vectors containing i.i.d. samples drawn from the standard normal distribution. :param sc: SparkContext used to create the RDD. :param numRows: Number of Vectors in the RDD. :param numCols: Number of elements in each Vector. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of Vector with vectors containing i.i.d. samples ~ `N(0.0, 1.0)`. >>> import numpy as np >>> mat = np.matrix(RandomRDDs.normalVectorRDD(sc, 100, 100, seed=1).collect()) >>> mat.shape (100, 100) >>> abs(mat.mean() - 0.0) < 0.1 True >>> abs(mat.std() - 1.0) < 0.1 True
[ "Generates", "an", "RDD", "comprised", "of", "vectors", "containing", "i", ".", "i", ".", "d", ".", "samples", "drawn", "from", "the", "standard", "normal", "distribution", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/random.py#L256-L277
19,302
apache/spark
python/pyspark/mllib/random.py
RandomRDDs.logNormalVectorRDD
def logNormalVectorRDD(sc, mean, std, numRows, numCols, numPartitions=None, seed=None): """ Generates an RDD comprised of vectors containing i.i.d. samples drawn from the log normal distribution. :param sc: SparkContext used to create the RDD. :param mean: Mean of the log normal distribution :param std: Standard Deviation of the log normal distribution :param numRows: Number of Vectors in the RDD. :param numCols: Number of elements in each Vector. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of Vector with vectors containing i.i.d. samples ~ log `N(mean, std)`. >>> import numpy as np >>> from math import sqrt, exp >>> mean = 0.0 >>> std = 1.0 >>> expMean = exp(mean + 0.5 * std * std) >>> expStd = sqrt((exp(std * std) - 1.0) * exp(2.0 * mean + std * std)) >>> m = RandomRDDs.logNormalVectorRDD(sc, mean, std, 100, 100, seed=1).collect() >>> mat = np.matrix(m) >>> mat.shape (100, 100) >>> abs(mat.mean() - expMean) < 0.1 True >>> abs(mat.std() - expStd) < 0.1 True """ return callMLlibFunc("logNormalVectorRDD", sc._jsc, float(mean), float(std), numRows, numCols, numPartitions, seed)
python
def logNormalVectorRDD(sc, mean, std, numRows, numCols, numPartitions=None, seed=None): """ Generates an RDD comprised of vectors containing i.i.d. samples drawn from the log normal distribution. :param sc: SparkContext used to create the RDD. :param mean: Mean of the log normal distribution :param std: Standard Deviation of the log normal distribution :param numRows: Number of Vectors in the RDD. :param numCols: Number of elements in each Vector. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of Vector with vectors containing i.i.d. samples ~ log `N(mean, std)`. >>> import numpy as np >>> from math import sqrt, exp >>> mean = 0.0 >>> std = 1.0 >>> expMean = exp(mean + 0.5 * std * std) >>> expStd = sqrt((exp(std * std) - 1.0) * exp(2.0 * mean + std * std)) >>> m = RandomRDDs.logNormalVectorRDD(sc, mean, std, 100, 100, seed=1).collect() >>> mat = np.matrix(m) >>> mat.shape (100, 100) >>> abs(mat.mean() - expMean) < 0.1 True >>> abs(mat.std() - expStd) < 0.1 True """ return callMLlibFunc("logNormalVectorRDD", sc._jsc, float(mean), float(std), numRows, numCols, numPartitions, seed)
[ "def", "logNormalVectorRDD", "(", "sc", ",", "mean", ",", "std", ",", "numRows", ",", "numCols", ",", "numPartitions", "=", "None", ",", "seed", "=", "None", ")", ":", "return", "callMLlibFunc", "(", "\"logNormalVectorRDD\"", ",", "sc", ".", "_jsc", ",", "float", "(", "mean", ")", ",", "float", "(", "std", ")", ",", "numRows", ",", "numCols", ",", "numPartitions", ",", "seed", ")" ]
Generates an RDD comprised of vectors containing i.i.d. samples drawn from the log normal distribution. :param sc: SparkContext used to create the RDD. :param mean: Mean of the log normal distribution :param std: Standard Deviation of the log normal distribution :param numRows: Number of Vectors in the RDD. :param numCols: Number of elements in each Vector. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of Vector with vectors containing i.i.d. samples ~ log `N(mean, std)`. >>> import numpy as np >>> from math import sqrt, exp >>> mean = 0.0 >>> std = 1.0 >>> expMean = exp(mean + 0.5 * std * std) >>> expStd = sqrt((exp(std * std) - 1.0) * exp(2.0 * mean + std * std)) >>> m = RandomRDDs.logNormalVectorRDD(sc, mean, std, 100, 100, seed=1).collect() >>> mat = np.matrix(m) >>> mat.shape (100, 100) >>> abs(mat.mean() - expMean) < 0.1 True >>> abs(mat.std() - expStd) < 0.1 True
[ "Generates", "an", "RDD", "comprised", "of", "vectors", "containing", "i", ".", "i", ".", "d", ".", "samples", "drawn", "from", "the", "log", "normal", "distribution", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/random.py#L282-L312
19,303
apache/spark
python/pyspark/mllib/random.py
RandomRDDs.poissonVectorRDD
def poissonVectorRDD(sc, mean, numRows, numCols, numPartitions=None, seed=None): """ Generates an RDD comprised of vectors containing i.i.d. samples drawn from the Poisson distribution with the input mean. :param sc: SparkContext used to create the RDD. :param mean: Mean, or lambda, for the Poisson distribution. :param numRows: Number of Vectors in the RDD. :param numCols: Number of elements in each Vector. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`) :param seed: Random seed (default: a random long integer). :return: RDD of Vector with vectors containing i.i.d. samples ~ Pois(mean). >>> import numpy as np >>> mean = 100.0 >>> rdd = RandomRDDs.poissonVectorRDD(sc, mean, 100, 100, seed=1) >>> mat = np.mat(rdd.collect()) >>> mat.shape (100, 100) >>> abs(mat.mean() - mean) < 0.5 True >>> from math import sqrt >>> abs(mat.std() - sqrt(mean)) < 0.5 True """ return callMLlibFunc("poissonVectorRDD", sc._jsc, float(mean), numRows, numCols, numPartitions, seed)
python
def poissonVectorRDD(sc, mean, numRows, numCols, numPartitions=None, seed=None): """ Generates an RDD comprised of vectors containing i.i.d. samples drawn from the Poisson distribution with the input mean. :param sc: SparkContext used to create the RDD. :param mean: Mean, or lambda, for the Poisson distribution. :param numRows: Number of Vectors in the RDD. :param numCols: Number of elements in each Vector. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`) :param seed: Random seed (default: a random long integer). :return: RDD of Vector with vectors containing i.i.d. samples ~ Pois(mean). >>> import numpy as np >>> mean = 100.0 >>> rdd = RandomRDDs.poissonVectorRDD(sc, mean, 100, 100, seed=1) >>> mat = np.mat(rdd.collect()) >>> mat.shape (100, 100) >>> abs(mat.mean() - mean) < 0.5 True >>> from math import sqrt >>> abs(mat.std() - sqrt(mean)) < 0.5 True """ return callMLlibFunc("poissonVectorRDD", sc._jsc, float(mean), numRows, numCols, numPartitions, seed)
[ "def", "poissonVectorRDD", "(", "sc", ",", "mean", ",", "numRows", ",", "numCols", ",", "numPartitions", "=", "None", ",", "seed", "=", "None", ")", ":", "return", "callMLlibFunc", "(", "\"poissonVectorRDD\"", ",", "sc", ".", "_jsc", ",", "float", "(", "mean", ")", ",", "numRows", ",", "numCols", ",", "numPartitions", ",", "seed", ")" ]
Generates an RDD comprised of vectors containing i.i.d. samples drawn from the Poisson distribution with the input mean. :param sc: SparkContext used to create the RDD. :param mean: Mean, or lambda, for the Poisson distribution. :param numRows: Number of Vectors in the RDD. :param numCols: Number of elements in each Vector. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`) :param seed: Random seed (default: a random long integer). :return: RDD of Vector with vectors containing i.i.d. samples ~ Pois(mean). >>> import numpy as np >>> mean = 100.0 >>> rdd = RandomRDDs.poissonVectorRDD(sc, mean, 100, 100, seed=1) >>> mat = np.mat(rdd.collect()) >>> mat.shape (100, 100) >>> abs(mat.mean() - mean) < 0.5 True >>> from math import sqrt >>> abs(mat.std() - sqrt(mean)) < 0.5 True
[ "Generates", "an", "RDD", "comprised", "of", "vectors", "containing", "i", ".", "i", ".", "d", ".", "samples", "drawn", "from", "the", "Poisson", "distribution", "with", "the", "input", "mean", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/random.py#L317-L343
19,304
apache/spark
python/pyspark/mllib/random.py
RandomRDDs.gammaVectorRDD
def gammaVectorRDD(sc, shape, scale, numRows, numCols, numPartitions=None, seed=None): """ Generates an RDD comprised of vectors containing i.i.d. samples drawn from the Gamma distribution. :param sc: SparkContext used to create the RDD. :param shape: Shape (> 0) of the Gamma distribution :param scale: Scale (> 0) of the Gamma distribution :param numRows: Number of Vectors in the RDD. :param numCols: Number of elements in each Vector. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of Vector with vectors containing i.i.d. samples ~ Gamma(shape, scale). >>> import numpy as np >>> from math import sqrt >>> shape = 1.0 >>> scale = 2.0 >>> expMean = shape * scale >>> expStd = sqrt(shape * scale * scale) >>> mat = np.matrix(RandomRDDs.gammaVectorRDD(sc, shape, scale, 100, 100, seed=1).collect()) >>> mat.shape (100, 100) >>> abs(mat.mean() - expMean) < 0.1 True >>> abs(mat.std() - expStd) < 0.1 True """ return callMLlibFunc("gammaVectorRDD", sc._jsc, float(shape), float(scale), numRows, numCols, numPartitions, seed)
python
def gammaVectorRDD(sc, shape, scale, numRows, numCols, numPartitions=None, seed=None): """ Generates an RDD comprised of vectors containing i.i.d. samples drawn from the Gamma distribution. :param sc: SparkContext used to create the RDD. :param shape: Shape (> 0) of the Gamma distribution :param scale: Scale (> 0) of the Gamma distribution :param numRows: Number of Vectors in the RDD. :param numCols: Number of elements in each Vector. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of Vector with vectors containing i.i.d. samples ~ Gamma(shape, scale). >>> import numpy as np >>> from math import sqrt >>> shape = 1.0 >>> scale = 2.0 >>> expMean = shape * scale >>> expStd = sqrt(shape * scale * scale) >>> mat = np.matrix(RandomRDDs.gammaVectorRDD(sc, shape, scale, 100, 100, seed=1).collect()) >>> mat.shape (100, 100) >>> abs(mat.mean() - expMean) < 0.1 True >>> abs(mat.std() - expStd) < 0.1 True """ return callMLlibFunc("gammaVectorRDD", sc._jsc, float(shape), float(scale), numRows, numCols, numPartitions, seed)
[ "def", "gammaVectorRDD", "(", "sc", ",", "shape", ",", "scale", ",", "numRows", ",", "numCols", ",", "numPartitions", "=", "None", ",", "seed", "=", "None", ")", ":", "return", "callMLlibFunc", "(", "\"gammaVectorRDD\"", ",", "sc", ".", "_jsc", ",", "float", "(", "shape", ")", ",", "float", "(", "scale", ")", ",", "numRows", ",", "numCols", ",", "numPartitions", ",", "seed", ")" ]
Generates an RDD comprised of vectors containing i.i.d. samples drawn from the Gamma distribution. :param sc: SparkContext used to create the RDD. :param shape: Shape (> 0) of the Gamma distribution :param scale: Scale (> 0) of the Gamma distribution :param numRows: Number of Vectors in the RDD. :param numCols: Number of elements in each Vector. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of Vector with vectors containing i.i.d. samples ~ Gamma(shape, scale). >>> import numpy as np >>> from math import sqrt >>> shape = 1.0 >>> scale = 2.0 >>> expMean = shape * scale >>> expStd = sqrt(shape * scale * scale) >>> mat = np.matrix(RandomRDDs.gammaVectorRDD(sc, shape, scale, 100, 100, seed=1).collect()) >>> mat.shape (100, 100) >>> abs(mat.mean() - expMean) < 0.1 True >>> abs(mat.std() - expStd) < 0.1 True
[ "Generates", "an", "RDD", "comprised", "of", "vectors", "containing", "i", ".", "i", ".", "d", ".", "samples", "drawn", "from", "the", "Gamma", "distribution", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/random.py#L379-L408
19,305
apache/spark
python/pyspark/sql/session.py
SparkSession.conf
def conf(self): """Runtime configuration interface for Spark. This is the interface through which the user can get and set all Spark and Hadoop configurations that are relevant to Spark SQL. When getting the value of a config, this defaults to the value set in the underlying :class:`SparkContext`, if any. """ if not hasattr(self, "_conf"): self._conf = RuntimeConfig(self._jsparkSession.conf()) return self._conf
python
def conf(self): """Runtime configuration interface for Spark. This is the interface through which the user can get and set all Spark and Hadoop configurations that are relevant to Spark SQL. When getting the value of a config, this defaults to the value set in the underlying :class:`SparkContext`, if any. """ if not hasattr(self, "_conf"): self._conf = RuntimeConfig(self._jsparkSession.conf()) return self._conf
[ "def", "conf", "(", "self", ")", ":", "if", "not", "hasattr", "(", "self", ",", "\"_conf\"", ")", ":", "self", ".", "_conf", "=", "RuntimeConfig", "(", "self", ".", "_jsparkSession", ".", "conf", "(", ")", ")", "return", "self", ".", "_conf" ]
Runtime configuration interface for Spark. This is the interface through which the user can get and set all Spark and Hadoop configurations that are relevant to Spark SQL. When getting the value of a config, this defaults to the value set in the underlying :class:`SparkContext`, if any.
[ "Runtime", "configuration", "interface", "for", "Spark", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/session.py#L298-L307
19,306
apache/spark
python/pyspark/sql/session.py
SparkSession.catalog
def catalog(self): """Interface through which the user may create, drop, alter or query underlying databases, tables, functions etc. :return: :class:`Catalog` """ from pyspark.sql.catalog import Catalog if not hasattr(self, "_catalog"): self._catalog = Catalog(self) return self._catalog
python
def catalog(self): """Interface through which the user may create, drop, alter or query underlying databases, tables, functions etc. :return: :class:`Catalog` """ from pyspark.sql.catalog import Catalog if not hasattr(self, "_catalog"): self._catalog = Catalog(self) return self._catalog
[ "def", "catalog", "(", "self", ")", ":", "from", "pyspark", ".", "sql", ".", "catalog", "import", "Catalog", "if", "not", "hasattr", "(", "self", ",", "\"_catalog\"", ")", ":", "self", ".", "_catalog", "=", "Catalog", "(", "self", ")", "return", "self", ".", "_catalog" ]
Interface through which the user may create, drop, alter or query underlying databases, tables, functions etc. :return: :class:`Catalog`
[ "Interface", "through", "which", "the", "user", "may", "create", "drop", "alter", "or", "query", "underlying", "databases", "tables", "functions", "etc", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/session.py#L311-L320
19,307
apache/spark
python/pyspark/sql/session.py
SparkSession._inferSchemaFromList
def _inferSchemaFromList(self, data, names=None): """ Infer schema from list of Row or tuple. :param data: list of Row or tuple :param names: list of column names :return: :class:`pyspark.sql.types.StructType` """ if not data: raise ValueError("can not infer schema from empty dataset") first = data[0] if type(first) is dict: warnings.warn("inferring schema from dict is deprecated," "please use pyspark.sql.Row instead") schema = reduce(_merge_type, (_infer_schema(row, names) for row in data)) if _has_nulltype(schema): raise ValueError("Some of types cannot be determined after inferring") return schema
python
def _inferSchemaFromList(self, data, names=None): """ Infer schema from list of Row or tuple. :param data: list of Row or tuple :param names: list of column names :return: :class:`pyspark.sql.types.StructType` """ if not data: raise ValueError("can not infer schema from empty dataset") first = data[0] if type(first) is dict: warnings.warn("inferring schema from dict is deprecated," "please use pyspark.sql.Row instead") schema = reduce(_merge_type, (_infer_schema(row, names) for row in data)) if _has_nulltype(schema): raise ValueError("Some of types cannot be determined after inferring") return schema
[ "def", "_inferSchemaFromList", "(", "self", ",", "data", ",", "names", "=", "None", ")", ":", "if", "not", "data", ":", "raise", "ValueError", "(", "\"can not infer schema from empty dataset\"", ")", "first", "=", "data", "[", "0", "]", "if", "type", "(", "first", ")", "is", "dict", ":", "warnings", ".", "warn", "(", "\"inferring schema from dict is deprecated,\"", "\"please use pyspark.sql.Row instead\"", ")", "schema", "=", "reduce", "(", "_merge_type", ",", "(", "_infer_schema", "(", "row", ",", "names", ")", "for", "row", "in", "data", ")", ")", "if", "_has_nulltype", "(", "schema", ")", ":", "raise", "ValueError", "(", "\"Some of types cannot be determined after inferring\"", ")", "return", "schema" ]
Infer schema from list of Row or tuple. :param data: list of Row or tuple :param names: list of column names :return: :class:`pyspark.sql.types.StructType`
[ "Infer", "schema", "from", "list", "of", "Row", "or", "tuple", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/session.py#L363-L380
19,308
apache/spark
python/pyspark/sql/session.py
SparkSession._inferSchema
def _inferSchema(self, rdd, samplingRatio=None, names=None): """ Infer schema from an RDD of Row or tuple. :param rdd: an RDD of Row or tuple :param samplingRatio: sampling ratio, or no sampling (default) :return: :class:`pyspark.sql.types.StructType` """ first = rdd.first() if not first: raise ValueError("The first row in RDD is empty, " "can not infer schema") if type(first) is dict: warnings.warn("Using RDD of dict to inferSchema is deprecated. " "Use pyspark.sql.Row instead") if samplingRatio is None: schema = _infer_schema(first, names=names) if _has_nulltype(schema): for row in rdd.take(100)[1:]: schema = _merge_type(schema, _infer_schema(row, names=names)) if not _has_nulltype(schema): break else: raise ValueError("Some of types cannot be determined by the " "first 100 rows, please try again with sampling") else: if samplingRatio < 0.99: rdd = rdd.sample(False, float(samplingRatio)) schema = rdd.map(lambda row: _infer_schema(row, names)).reduce(_merge_type) return schema
python
def _inferSchema(self, rdd, samplingRatio=None, names=None): """ Infer schema from an RDD of Row or tuple. :param rdd: an RDD of Row or tuple :param samplingRatio: sampling ratio, or no sampling (default) :return: :class:`pyspark.sql.types.StructType` """ first = rdd.first() if not first: raise ValueError("The first row in RDD is empty, " "can not infer schema") if type(first) is dict: warnings.warn("Using RDD of dict to inferSchema is deprecated. " "Use pyspark.sql.Row instead") if samplingRatio is None: schema = _infer_schema(first, names=names) if _has_nulltype(schema): for row in rdd.take(100)[1:]: schema = _merge_type(schema, _infer_schema(row, names=names)) if not _has_nulltype(schema): break else: raise ValueError("Some of types cannot be determined by the " "first 100 rows, please try again with sampling") else: if samplingRatio < 0.99: rdd = rdd.sample(False, float(samplingRatio)) schema = rdd.map(lambda row: _infer_schema(row, names)).reduce(_merge_type) return schema
[ "def", "_inferSchema", "(", "self", ",", "rdd", ",", "samplingRatio", "=", "None", ",", "names", "=", "None", ")", ":", "first", "=", "rdd", ".", "first", "(", ")", "if", "not", "first", ":", "raise", "ValueError", "(", "\"The first row in RDD is empty, \"", "\"can not infer schema\"", ")", "if", "type", "(", "first", ")", "is", "dict", ":", "warnings", ".", "warn", "(", "\"Using RDD of dict to inferSchema is deprecated. \"", "\"Use pyspark.sql.Row instead\"", ")", "if", "samplingRatio", "is", "None", ":", "schema", "=", "_infer_schema", "(", "first", ",", "names", "=", "names", ")", "if", "_has_nulltype", "(", "schema", ")", ":", "for", "row", "in", "rdd", ".", "take", "(", "100", ")", "[", "1", ":", "]", ":", "schema", "=", "_merge_type", "(", "schema", ",", "_infer_schema", "(", "row", ",", "names", "=", "names", ")", ")", "if", "not", "_has_nulltype", "(", "schema", ")", ":", "break", "else", ":", "raise", "ValueError", "(", "\"Some of types cannot be determined by the \"", "\"first 100 rows, please try again with sampling\"", ")", "else", ":", "if", "samplingRatio", "<", "0.99", ":", "rdd", "=", "rdd", ".", "sample", "(", "False", ",", "float", "(", "samplingRatio", ")", ")", "schema", "=", "rdd", ".", "map", "(", "lambda", "row", ":", "_infer_schema", "(", "row", ",", "names", ")", ")", ".", "reduce", "(", "_merge_type", ")", "return", "schema" ]
Infer schema from an RDD of Row or tuple. :param rdd: an RDD of Row or tuple :param samplingRatio: sampling ratio, or no sampling (default) :return: :class:`pyspark.sql.types.StructType`
[ "Infer", "schema", "from", "an", "RDD", "of", "Row", "or", "tuple", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/session.py#L382-L412
19,309
apache/spark
python/pyspark/sql/session.py
SparkSession._createFromRDD
def _createFromRDD(self, rdd, schema, samplingRatio): """ Create an RDD for DataFrame from an existing RDD, returns the RDD and schema. """ if schema is None or isinstance(schema, (list, tuple)): struct = self._inferSchema(rdd, samplingRatio, names=schema) converter = _create_converter(struct) rdd = rdd.map(converter) if isinstance(schema, (list, tuple)): for i, name in enumerate(schema): struct.fields[i].name = name struct.names[i] = name schema = struct elif not isinstance(schema, StructType): raise TypeError("schema should be StructType or list or None, but got: %s" % schema) # convert python objects to sql data rdd = rdd.map(schema.toInternal) return rdd, schema
python
def _createFromRDD(self, rdd, schema, samplingRatio): """ Create an RDD for DataFrame from an existing RDD, returns the RDD and schema. """ if schema is None or isinstance(schema, (list, tuple)): struct = self._inferSchema(rdd, samplingRatio, names=schema) converter = _create_converter(struct) rdd = rdd.map(converter) if isinstance(schema, (list, tuple)): for i, name in enumerate(schema): struct.fields[i].name = name struct.names[i] = name schema = struct elif not isinstance(schema, StructType): raise TypeError("schema should be StructType or list or None, but got: %s" % schema) # convert python objects to sql data rdd = rdd.map(schema.toInternal) return rdd, schema
[ "def", "_createFromRDD", "(", "self", ",", "rdd", ",", "schema", ",", "samplingRatio", ")", ":", "if", "schema", "is", "None", "or", "isinstance", "(", "schema", ",", "(", "list", ",", "tuple", ")", ")", ":", "struct", "=", "self", ".", "_inferSchema", "(", "rdd", ",", "samplingRatio", ",", "names", "=", "schema", ")", "converter", "=", "_create_converter", "(", "struct", ")", "rdd", "=", "rdd", ".", "map", "(", "converter", ")", "if", "isinstance", "(", "schema", ",", "(", "list", ",", "tuple", ")", ")", ":", "for", "i", ",", "name", "in", "enumerate", "(", "schema", ")", ":", "struct", ".", "fields", "[", "i", "]", ".", "name", "=", "name", "struct", ".", "names", "[", "i", "]", "=", "name", "schema", "=", "struct", "elif", "not", "isinstance", "(", "schema", ",", "StructType", ")", ":", "raise", "TypeError", "(", "\"schema should be StructType or list or None, but got: %s\"", "%", "schema", ")", "# convert python objects to sql data", "rdd", "=", "rdd", ".", "map", "(", "schema", ".", "toInternal", ")", "return", "rdd", ",", "schema" ]
Create an RDD for DataFrame from an existing RDD, returns the RDD and schema.
[ "Create", "an", "RDD", "for", "DataFrame", "from", "an", "existing", "RDD", "returns", "the", "RDD", "and", "schema", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/session.py#L414-L433
19,310
apache/spark
python/pyspark/sql/session.py
SparkSession._createFromLocal
def _createFromLocal(self, data, schema): """ Create an RDD for DataFrame from a list or pandas.DataFrame, returns the RDD and schema. """ # make sure data could consumed multiple times if not isinstance(data, list): data = list(data) if schema is None or isinstance(schema, (list, tuple)): struct = self._inferSchemaFromList(data, names=schema) converter = _create_converter(struct) data = map(converter, data) if isinstance(schema, (list, tuple)): for i, name in enumerate(schema): struct.fields[i].name = name struct.names[i] = name schema = struct elif not isinstance(schema, StructType): raise TypeError("schema should be StructType or list or None, but got: %s" % schema) # convert python objects to sql data data = [schema.toInternal(row) for row in data] return self._sc.parallelize(data), schema
python
def _createFromLocal(self, data, schema): """ Create an RDD for DataFrame from a list or pandas.DataFrame, returns the RDD and schema. """ # make sure data could consumed multiple times if not isinstance(data, list): data = list(data) if schema is None or isinstance(schema, (list, tuple)): struct = self._inferSchemaFromList(data, names=schema) converter = _create_converter(struct) data = map(converter, data) if isinstance(schema, (list, tuple)): for i, name in enumerate(schema): struct.fields[i].name = name struct.names[i] = name schema = struct elif not isinstance(schema, StructType): raise TypeError("schema should be StructType or list or None, but got: %s" % schema) # convert python objects to sql data data = [schema.toInternal(row) for row in data] return self._sc.parallelize(data), schema
[ "def", "_createFromLocal", "(", "self", ",", "data", ",", "schema", ")", ":", "# make sure data could consumed multiple times", "if", "not", "isinstance", "(", "data", ",", "list", ")", ":", "data", "=", "list", "(", "data", ")", "if", "schema", "is", "None", "or", "isinstance", "(", "schema", ",", "(", "list", ",", "tuple", ")", ")", ":", "struct", "=", "self", ".", "_inferSchemaFromList", "(", "data", ",", "names", "=", "schema", ")", "converter", "=", "_create_converter", "(", "struct", ")", "data", "=", "map", "(", "converter", ",", "data", ")", "if", "isinstance", "(", "schema", ",", "(", "list", ",", "tuple", ")", ")", ":", "for", "i", ",", "name", "in", "enumerate", "(", "schema", ")", ":", "struct", ".", "fields", "[", "i", "]", ".", "name", "=", "name", "struct", ".", "names", "[", "i", "]", "=", "name", "schema", "=", "struct", "elif", "not", "isinstance", "(", "schema", ",", "StructType", ")", ":", "raise", "TypeError", "(", "\"schema should be StructType or list or None, but got: %s\"", "%", "schema", ")", "# convert python objects to sql data", "data", "=", "[", "schema", ".", "toInternal", "(", "row", ")", "for", "row", "in", "data", "]", "return", "self", ".", "_sc", ".", "parallelize", "(", "data", ")", ",", "schema" ]
Create an RDD for DataFrame from a list or pandas.DataFrame, returns the RDD and schema.
[ "Create", "an", "RDD", "for", "DataFrame", "from", "a", "list", "or", "pandas", ".", "DataFrame", "returns", "the", "RDD", "and", "schema", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/session.py#L435-L459
19,311
apache/spark
python/pyspark/sql/session.py
SparkSession._create_from_pandas_with_arrow
def _create_from_pandas_with_arrow(self, pdf, schema, timezone): """ Create a DataFrame from a given pandas.DataFrame by slicing it into partitions, converting to Arrow data, then sending to the JVM to parallelize. If a schema is passed in, the data types will be used to coerce the data in Pandas to Arrow conversion. """ from pyspark.serializers import ArrowStreamPandasSerializer from pyspark.sql.types import from_arrow_type, to_arrow_type, TimestampType from pyspark.sql.utils import require_minimum_pandas_version, \ require_minimum_pyarrow_version require_minimum_pandas_version() require_minimum_pyarrow_version() from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype import pyarrow as pa # Create the Spark schema from list of names passed in with Arrow types if isinstance(schema, (list, tuple)): arrow_schema = pa.Schema.from_pandas(pdf, preserve_index=False) struct = StructType() for name, field in zip(schema, arrow_schema): struct.add(name, from_arrow_type(field.type), nullable=field.nullable) schema = struct # Determine arrow types to coerce data when creating batches if isinstance(schema, StructType): arrow_types = [to_arrow_type(f.dataType) for f in schema.fields] elif isinstance(schema, DataType): raise ValueError("Single data type %s is not supported with Arrow" % str(schema)) else: # Any timestamps must be coerced to be compatible with Spark arrow_types = [to_arrow_type(TimestampType()) if is_datetime64_dtype(t) or is_datetime64tz_dtype(t) else None for t in pdf.dtypes] # Slice the DataFrame to be batched step = -(-len(pdf) // self.sparkContext.defaultParallelism) # round int up pdf_slices = (pdf[start:start + step] for start in xrange(0, len(pdf), step)) # Create list of Arrow (columns, type) for serializer dump_stream arrow_data = [[(c, t) for (_, c), t in zip(pdf_slice.iteritems(), arrow_types)] for pdf_slice in pdf_slices] jsqlContext = self._wrapped._jsqlContext safecheck = self._wrapped._conf.arrowSafeTypeConversion() col_by_name = True # col by name only applies to StructType columns, can't happen here ser = ArrowStreamPandasSerializer(timezone, safecheck, col_by_name) def reader_func(temp_filename): return self._jvm.PythonSQLUtils.readArrowStreamFromFile(jsqlContext, temp_filename) def create_RDD_server(): return self._jvm.ArrowRDDServer(jsqlContext) # Create Spark DataFrame from Arrow stream file, using one batch per partition jrdd = self._sc._serialize_to_jvm(arrow_data, ser, reader_func, create_RDD_server) jdf = self._jvm.PythonSQLUtils.toDataFrame(jrdd, schema.json(), jsqlContext) df = DataFrame(jdf, self._wrapped) df._schema = schema return df
python
def _create_from_pandas_with_arrow(self, pdf, schema, timezone): """ Create a DataFrame from a given pandas.DataFrame by slicing it into partitions, converting to Arrow data, then sending to the JVM to parallelize. If a schema is passed in, the data types will be used to coerce the data in Pandas to Arrow conversion. """ from pyspark.serializers import ArrowStreamPandasSerializer from pyspark.sql.types import from_arrow_type, to_arrow_type, TimestampType from pyspark.sql.utils import require_minimum_pandas_version, \ require_minimum_pyarrow_version require_minimum_pandas_version() require_minimum_pyarrow_version() from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype import pyarrow as pa # Create the Spark schema from list of names passed in with Arrow types if isinstance(schema, (list, tuple)): arrow_schema = pa.Schema.from_pandas(pdf, preserve_index=False) struct = StructType() for name, field in zip(schema, arrow_schema): struct.add(name, from_arrow_type(field.type), nullable=field.nullable) schema = struct # Determine arrow types to coerce data when creating batches if isinstance(schema, StructType): arrow_types = [to_arrow_type(f.dataType) for f in schema.fields] elif isinstance(schema, DataType): raise ValueError("Single data type %s is not supported with Arrow" % str(schema)) else: # Any timestamps must be coerced to be compatible with Spark arrow_types = [to_arrow_type(TimestampType()) if is_datetime64_dtype(t) or is_datetime64tz_dtype(t) else None for t in pdf.dtypes] # Slice the DataFrame to be batched step = -(-len(pdf) // self.sparkContext.defaultParallelism) # round int up pdf_slices = (pdf[start:start + step] for start in xrange(0, len(pdf), step)) # Create list of Arrow (columns, type) for serializer dump_stream arrow_data = [[(c, t) for (_, c), t in zip(pdf_slice.iteritems(), arrow_types)] for pdf_slice in pdf_slices] jsqlContext = self._wrapped._jsqlContext safecheck = self._wrapped._conf.arrowSafeTypeConversion() col_by_name = True # col by name only applies to StructType columns, can't happen here ser = ArrowStreamPandasSerializer(timezone, safecheck, col_by_name) def reader_func(temp_filename): return self._jvm.PythonSQLUtils.readArrowStreamFromFile(jsqlContext, temp_filename) def create_RDD_server(): return self._jvm.ArrowRDDServer(jsqlContext) # Create Spark DataFrame from Arrow stream file, using one batch per partition jrdd = self._sc._serialize_to_jvm(arrow_data, ser, reader_func, create_RDD_server) jdf = self._jvm.PythonSQLUtils.toDataFrame(jrdd, schema.json(), jsqlContext) df = DataFrame(jdf, self._wrapped) df._schema = schema return df
[ "def", "_create_from_pandas_with_arrow", "(", "self", ",", "pdf", ",", "schema", ",", "timezone", ")", ":", "from", "pyspark", ".", "serializers", "import", "ArrowStreamPandasSerializer", "from", "pyspark", ".", "sql", ".", "types", "import", "from_arrow_type", ",", "to_arrow_type", ",", "TimestampType", "from", "pyspark", ".", "sql", ".", "utils", "import", "require_minimum_pandas_version", ",", "require_minimum_pyarrow_version", "require_minimum_pandas_version", "(", ")", "require_minimum_pyarrow_version", "(", ")", "from", "pandas", ".", "api", ".", "types", "import", "is_datetime64_dtype", ",", "is_datetime64tz_dtype", "import", "pyarrow", "as", "pa", "# Create the Spark schema from list of names passed in with Arrow types", "if", "isinstance", "(", "schema", ",", "(", "list", ",", "tuple", ")", ")", ":", "arrow_schema", "=", "pa", ".", "Schema", ".", "from_pandas", "(", "pdf", ",", "preserve_index", "=", "False", ")", "struct", "=", "StructType", "(", ")", "for", "name", ",", "field", "in", "zip", "(", "schema", ",", "arrow_schema", ")", ":", "struct", ".", "add", "(", "name", ",", "from_arrow_type", "(", "field", ".", "type", ")", ",", "nullable", "=", "field", ".", "nullable", ")", "schema", "=", "struct", "# Determine arrow types to coerce data when creating batches", "if", "isinstance", "(", "schema", ",", "StructType", ")", ":", "arrow_types", "=", "[", "to_arrow_type", "(", "f", ".", "dataType", ")", "for", "f", "in", "schema", ".", "fields", "]", "elif", "isinstance", "(", "schema", ",", "DataType", ")", ":", "raise", "ValueError", "(", "\"Single data type %s is not supported with Arrow\"", "%", "str", "(", "schema", ")", ")", "else", ":", "# Any timestamps must be coerced to be compatible with Spark", "arrow_types", "=", "[", "to_arrow_type", "(", "TimestampType", "(", ")", ")", "if", "is_datetime64_dtype", "(", "t", ")", "or", "is_datetime64tz_dtype", "(", "t", ")", "else", "None", "for", "t", "in", "pdf", ".", "dtypes", "]", "# Slice the DataFrame to be batched", "step", "=", "-", "(", "-", "len", "(", "pdf", ")", "//", "self", ".", "sparkContext", ".", "defaultParallelism", ")", "# round int up", "pdf_slices", "=", "(", "pdf", "[", "start", ":", "start", "+", "step", "]", "for", "start", "in", "xrange", "(", "0", ",", "len", "(", "pdf", ")", ",", "step", ")", ")", "# Create list of Arrow (columns, type) for serializer dump_stream", "arrow_data", "=", "[", "[", "(", "c", ",", "t", ")", "for", "(", "_", ",", "c", ")", ",", "t", "in", "zip", "(", "pdf_slice", ".", "iteritems", "(", ")", ",", "arrow_types", ")", "]", "for", "pdf_slice", "in", "pdf_slices", "]", "jsqlContext", "=", "self", ".", "_wrapped", ".", "_jsqlContext", "safecheck", "=", "self", ".", "_wrapped", ".", "_conf", ".", "arrowSafeTypeConversion", "(", ")", "col_by_name", "=", "True", "# col by name only applies to StructType columns, can't happen here", "ser", "=", "ArrowStreamPandasSerializer", "(", "timezone", ",", "safecheck", ",", "col_by_name", ")", "def", "reader_func", "(", "temp_filename", ")", ":", "return", "self", ".", "_jvm", ".", "PythonSQLUtils", ".", "readArrowStreamFromFile", "(", "jsqlContext", ",", "temp_filename", ")", "def", "create_RDD_server", "(", ")", ":", "return", "self", ".", "_jvm", ".", "ArrowRDDServer", "(", "jsqlContext", ")", "# Create Spark DataFrame from Arrow stream file, using one batch per partition", "jrdd", "=", "self", ".", "_sc", ".", "_serialize_to_jvm", "(", "arrow_data", ",", "ser", ",", "reader_func", ",", "create_RDD_server", ")", "jdf", "=", "self", ".", "_jvm", ".", "PythonSQLUtils", ".", "toDataFrame", "(", "jrdd", ",", "schema", ".", "json", "(", ")", ",", "jsqlContext", ")", "df", "=", "DataFrame", "(", "jdf", ",", "self", ".", "_wrapped", ")", "df", ".", "_schema", "=", "schema", "return", "df" ]
Create a DataFrame from a given pandas.DataFrame by slicing it into partitions, converting to Arrow data, then sending to the JVM to parallelize. If a schema is passed in, the data types will be used to coerce the data in Pandas to Arrow conversion.
[ "Create", "a", "DataFrame", "from", "a", "given", "pandas", ".", "DataFrame", "by", "slicing", "it", "into", "partitions", "converting", "to", "Arrow", "data", "then", "sending", "to", "the", "JVM", "to", "parallelize", ".", "If", "a", "schema", "is", "passed", "in", "the", "data", "types", "will", "be", "used", "to", "coerce", "the", "data", "in", "Pandas", "to", "Arrow", "conversion", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/session.py#L527-L588
19,312
apache/spark
python/pyspark/sql/session.py
SparkSession._create_shell_session
def _create_shell_session(): """ Initialize a SparkSession for a pyspark shell session. This is called from shell.py to make error handling simpler without needing to declare local variables in that script, which would expose those to users. """ import py4j from pyspark.conf import SparkConf from pyspark.context import SparkContext try: # Try to access HiveConf, it will raise exception if Hive is not added conf = SparkConf() if conf.get('spark.sql.catalogImplementation', 'hive').lower() == 'hive': SparkContext._jvm.org.apache.hadoop.hive.conf.HiveConf() return SparkSession.builder\ .enableHiveSupport()\ .getOrCreate() else: return SparkSession.builder.getOrCreate() except (py4j.protocol.Py4JError, TypeError): if conf.get('spark.sql.catalogImplementation', '').lower() == 'hive': warnings.warn("Fall back to non-hive support because failing to access HiveConf, " "please make sure you build spark with hive") return SparkSession.builder.getOrCreate()
python
def _create_shell_session(): """ Initialize a SparkSession for a pyspark shell session. This is called from shell.py to make error handling simpler without needing to declare local variables in that script, which would expose those to users. """ import py4j from pyspark.conf import SparkConf from pyspark.context import SparkContext try: # Try to access HiveConf, it will raise exception if Hive is not added conf = SparkConf() if conf.get('spark.sql.catalogImplementation', 'hive').lower() == 'hive': SparkContext._jvm.org.apache.hadoop.hive.conf.HiveConf() return SparkSession.builder\ .enableHiveSupport()\ .getOrCreate() else: return SparkSession.builder.getOrCreate() except (py4j.protocol.Py4JError, TypeError): if conf.get('spark.sql.catalogImplementation', '').lower() == 'hive': warnings.warn("Fall back to non-hive support because failing to access HiveConf, " "please make sure you build spark with hive") return SparkSession.builder.getOrCreate()
[ "def", "_create_shell_session", "(", ")", ":", "import", "py4j", "from", "pyspark", ".", "conf", "import", "SparkConf", "from", "pyspark", ".", "context", "import", "SparkContext", "try", ":", "# Try to access HiveConf, it will raise exception if Hive is not added", "conf", "=", "SparkConf", "(", ")", "if", "conf", ".", "get", "(", "'spark.sql.catalogImplementation'", ",", "'hive'", ")", ".", "lower", "(", ")", "==", "'hive'", ":", "SparkContext", ".", "_jvm", ".", "org", ".", "apache", ".", "hadoop", ".", "hive", ".", "conf", ".", "HiveConf", "(", ")", "return", "SparkSession", ".", "builder", ".", "enableHiveSupport", "(", ")", ".", "getOrCreate", "(", ")", "else", ":", "return", "SparkSession", ".", "builder", ".", "getOrCreate", "(", ")", "except", "(", "py4j", ".", "protocol", ".", "Py4JError", ",", "TypeError", ")", ":", "if", "conf", ".", "get", "(", "'spark.sql.catalogImplementation'", ",", "''", ")", ".", "lower", "(", ")", "==", "'hive'", ":", "warnings", ".", "warn", "(", "\"Fall back to non-hive support because failing to access HiveConf, \"", "\"please make sure you build spark with hive\"", ")", "return", "SparkSession", ".", "builder", ".", "getOrCreate", "(", ")" ]
Initialize a SparkSession for a pyspark shell session. This is called from shell.py to make error handling simpler without needing to declare local variables in that script, which would expose those to users.
[ "Initialize", "a", "SparkSession", "for", "a", "pyspark", "shell", "session", ".", "This", "is", "called", "from", "shell", ".", "py", "to", "make", "error", "handling", "simpler", "without", "needing", "to", "declare", "local", "variables", "in", "that", "script", "which", "would", "expose", "those", "to", "users", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/session.py#L591-L615
19,313
apache/spark
python/pyspark/serializers.py
_restore
def _restore(name, fields, value): """ Restore an object of namedtuple""" k = (name, fields) cls = __cls.get(k) if cls is None: cls = collections.namedtuple(name, fields) __cls[k] = cls return cls(*value)
python
def _restore(name, fields, value): """ Restore an object of namedtuple""" k = (name, fields) cls = __cls.get(k) if cls is None: cls = collections.namedtuple(name, fields) __cls[k] = cls return cls(*value)
[ "def", "_restore", "(", "name", ",", "fields", ",", "value", ")", ":", "k", "=", "(", "name", ",", "fields", ")", "cls", "=", "__cls", ".", "get", "(", "k", ")", "if", "cls", "is", "None", ":", "cls", "=", "collections", ".", "namedtuple", "(", "name", ",", "fields", ")", "__cls", "[", "k", "]", "=", "cls", "return", "cls", "(", "*", "value", ")" ]
Restore an object of namedtuple
[ "Restore", "an", "object", "of", "namedtuple" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/serializers.py#L578-L585
19,314
apache/spark
python/pyspark/serializers.py
_hack_namedtuple
def _hack_namedtuple(cls): """ Make class generated by namedtuple picklable """ name = cls.__name__ fields = cls._fields def __reduce__(self): return (_restore, (name, fields, tuple(self))) cls.__reduce__ = __reduce__ cls._is_namedtuple_ = True return cls
python
def _hack_namedtuple(cls): """ Make class generated by namedtuple picklable """ name = cls.__name__ fields = cls._fields def __reduce__(self): return (_restore, (name, fields, tuple(self))) cls.__reduce__ = __reduce__ cls._is_namedtuple_ = True return cls
[ "def", "_hack_namedtuple", "(", "cls", ")", ":", "name", "=", "cls", ".", "__name__", "fields", "=", "cls", ".", "_fields", "def", "__reduce__", "(", "self", ")", ":", "return", "(", "_restore", ",", "(", "name", ",", "fields", ",", "tuple", "(", "self", ")", ")", ")", "cls", ".", "__reduce__", "=", "__reduce__", "cls", ".", "_is_namedtuple_", "=", "True", "return", "cls" ]
Make class generated by namedtuple picklable
[ "Make", "class", "generated", "by", "namedtuple", "picklable" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/serializers.py#L588-L597
19,315
apache/spark
python/pyspark/serializers.py
ArrowCollectSerializer.load_stream
def load_stream(self, stream): """ Load a stream of un-ordered Arrow RecordBatches, where the last iteration yields a list of indices that can be used to put the RecordBatches in the correct order. """ # load the batches for batch in self.serializer.load_stream(stream): yield batch # load the batch order indices num = read_int(stream) batch_order = [] for i in xrange(num): index = read_int(stream) batch_order.append(index) yield batch_order
python
def load_stream(self, stream): """ Load a stream of un-ordered Arrow RecordBatches, where the last iteration yields a list of indices that can be used to put the RecordBatches in the correct order. """ # load the batches for batch in self.serializer.load_stream(stream): yield batch # load the batch order indices num = read_int(stream) batch_order = [] for i in xrange(num): index = read_int(stream) batch_order.append(index) yield batch_order
[ "def", "load_stream", "(", "self", ",", "stream", ")", ":", "# load the batches", "for", "batch", "in", "self", ".", "serializer", ".", "load_stream", "(", "stream", ")", ":", "yield", "batch", "# load the batch order indices", "num", "=", "read_int", "(", "stream", ")", "batch_order", "=", "[", "]", "for", "i", "in", "xrange", "(", "num", ")", ":", "index", "=", "read_int", "(", "stream", ")", "batch_order", ".", "append", "(", "index", ")", "yield", "batch_order" ]
Load a stream of un-ordered Arrow RecordBatches, where the last iteration yields a list of indices that can be used to put the RecordBatches in the correct order.
[ "Load", "a", "stream", "of", "un", "-", "ordered", "Arrow", "RecordBatches", "where", "the", "last", "iteration", "yields", "a", "list", "of", "indices", "that", "can", "be", "used", "to", "put", "the", "RecordBatches", "in", "the", "correct", "order", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/serializers.py#L200-L215
19,316
apache/spark
python/pyspark/serializers.py
ArrowStreamPandasSerializer._create_batch
def _create_batch(self, series): """ Create an Arrow record batch from the given pandas.Series or list of Series, with optional type. :param series: A single pandas.Series, list of Series, or list of (series, arrow_type) :return: Arrow RecordBatch """ import pandas as pd import pyarrow as pa from pyspark.sql.types import _check_series_convert_timestamps_internal # Make input conform to [(series1, type1), (series2, type2), ...] if not isinstance(series, (list, tuple)) or \ (len(series) == 2 and isinstance(series[1], pa.DataType)): series = [series] series = ((s, None) if not isinstance(s, (list, tuple)) else s for s in series) def create_array(s, t): mask = s.isnull() # Ensure timestamp series are in expected form for Spark internal representation if t is not None and pa.types.is_timestamp(t): s = _check_series_convert_timestamps_internal(s.fillna(0), self._timezone) # TODO: need cast after Arrow conversion, ns values cause error with pandas 0.19.2 return pa.Array.from_pandas(s, mask=mask).cast(t, safe=False) try: array = pa.Array.from_pandas(s, mask=mask, type=t, safe=self._safecheck) except pa.ArrowException as e: error_msg = "Exception thrown when converting pandas.Series (%s) to Arrow " + \ "Array (%s). It can be caused by overflows or other unsafe " + \ "conversions warned by Arrow. Arrow safe type check can be " + \ "disabled by using SQL config " + \ "`spark.sql.execution.pandas.arrowSafeTypeConversion`." raise RuntimeError(error_msg % (s.dtype, t), e) return array arrs = [] for s, t in series: if t is not None and pa.types.is_struct(t): if not isinstance(s, pd.DataFrame): raise ValueError("A field of type StructType expects a pandas.DataFrame, " "but got: %s" % str(type(s))) # Input partition and result pandas.DataFrame empty, make empty Arrays with struct if len(s) == 0 and len(s.columns) == 0: arrs_names = [(pa.array([], type=field.type), field.name) for field in t] # Assign result columns by schema name if user labeled with strings elif self._assign_cols_by_name and any(isinstance(name, basestring) for name in s.columns): arrs_names = [(create_array(s[field.name], field.type), field.name) for field in t] # Assign result columns by position else: arrs_names = [(create_array(s[s.columns[i]], field.type), field.name) for i, field in enumerate(t)] struct_arrs, struct_names = zip(*arrs_names) arrs.append(pa.StructArray.from_arrays(struct_arrs, struct_names)) else: arrs.append(create_array(s, t)) return pa.RecordBatch.from_arrays(arrs, ["_%d" % i for i in xrange(len(arrs))])
python
def _create_batch(self, series): """ Create an Arrow record batch from the given pandas.Series or list of Series, with optional type. :param series: A single pandas.Series, list of Series, or list of (series, arrow_type) :return: Arrow RecordBatch """ import pandas as pd import pyarrow as pa from pyspark.sql.types import _check_series_convert_timestamps_internal # Make input conform to [(series1, type1), (series2, type2), ...] if not isinstance(series, (list, tuple)) or \ (len(series) == 2 and isinstance(series[1], pa.DataType)): series = [series] series = ((s, None) if not isinstance(s, (list, tuple)) else s for s in series) def create_array(s, t): mask = s.isnull() # Ensure timestamp series are in expected form for Spark internal representation if t is not None and pa.types.is_timestamp(t): s = _check_series_convert_timestamps_internal(s.fillna(0), self._timezone) # TODO: need cast after Arrow conversion, ns values cause error with pandas 0.19.2 return pa.Array.from_pandas(s, mask=mask).cast(t, safe=False) try: array = pa.Array.from_pandas(s, mask=mask, type=t, safe=self._safecheck) except pa.ArrowException as e: error_msg = "Exception thrown when converting pandas.Series (%s) to Arrow " + \ "Array (%s). It can be caused by overflows or other unsafe " + \ "conversions warned by Arrow. Arrow safe type check can be " + \ "disabled by using SQL config " + \ "`spark.sql.execution.pandas.arrowSafeTypeConversion`." raise RuntimeError(error_msg % (s.dtype, t), e) return array arrs = [] for s, t in series: if t is not None and pa.types.is_struct(t): if not isinstance(s, pd.DataFrame): raise ValueError("A field of type StructType expects a pandas.DataFrame, " "but got: %s" % str(type(s))) # Input partition and result pandas.DataFrame empty, make empty Arrays with struct if len(s) == 0 and len(s.columns) == 0: arrs_names = [(pa.array([], type=field.type), field.name) for field in t] # Assign result columns by schema name if user labeled with strings elif self._assign_cols_by_name and any(isinstance(name, basestring) for name in s.columns): arrs_names = [(create_array(s[field.name], field.type), field.name) for field in t] # Assign result columns by position else: arrs_names = [(create_array(s[s.columns[i]], field.type), field.name) for i, field in enumerate(t)] struct_arrs, struct_names = zip(*arrs_names) arrs.append(pa.StructArray.from_arrays(struct_arrs, struct_names)) else: arrs.append(create_array(s, t)) return pa.RecordBatch.from_arrays(arrs, ["_%d" % i for i in xrange(len(arrs))])
[ "def", "_create_batch", "(", "self", ",", "series", ")", ":", "import", "pandas", "as", "pd", "import", "pyarrow", "as", "pa", "from", "pyspark", ".", "sql", ".", "types", "import", "_check_series_convert_timestamps_internal", "# Make input conform to [(series1, type1), (series2, type2), ...]", "if", "not", "isinstance", "(", "series", ",", "(", "list", ",", "tuple", ")", ")", "or", "(", "len", "(", "series", ")", "==", "2", "and", "isinstance", "(", "series", "[", "1", "]", ",", "pa", ".", "DataType", ")", ")", ":", "series", "=", "[", "series", "]", "series", "=", "(", "(", "s", ",", "None", ")", "if", "not", "isinstance", "(", "s", ",", "(", "list", ",", "tuple", ")", ")", "else", "s", "for", "s", "in", "series", ")", "def", "create_array", "(", "s", ",", "t", ")", ":", "mask", "=", "s", ".", "isnull", "(", ")", "# Ensure timestamp series are in expected form for Spark internal representation", "if", "t", "is", "not", "None", "and", "pa", ".", "types", ".", "is_timestamp", "(", "t", ")", ":", "s", "=", "_check_series_convert_timestamps_internal", "(", "s", ".", "fillna", "(", "0", ")", ",", "self", ".", "_timezone", ")", "# TODO: need cast after Arrow conversion, ns values cause error with pandas 0.19.2", "return", "pa", ".", "Array", ".", "from_pandas", "(", "s", ",", "mask", "=", "mask", ")", ".", "cast", "(", "t", ",", "safe", "=", "False", ")", "try", ":", "array", "=", "pa", ".", "Array", ".", "from_pandas", "(", "s", ",", "mask", "=", "mask", ",", "type", "=", "t", ",", "safe", "=", "self", ".", "_safecheck", ")", "except", "pa", ".", "ArrowException", "as", "e", ":", "error_msg", "=", "\"Exception thrown when converting pandas.Series (%s) to Arrow \"", "+", "\"Array (%s). It can be caused by overflows or other unsafe \"", "+", "\"conversions warned by Arrow. Arrow safe type check can be \"", "+", "\"disabled by using SQL config \"", "+", "\"`spark.sql.execution.pandas.arrowSafeTypeConversion`.\"", "raise", "RuntimeError", "(", "error_msg", "%", "(", "s", ".", "dtype", ",", "t", ")", ",", "e", ")", "return", "array", "arrs", "=", "[", "]", "for", "s", ",", "t", "in", "series", ":", "if", "t", "is", "not", "None", "and", "pa", ".", "types", ".", "is_struct", "(", "t", ")", ":", "if", "not", "isinstance", "(", "s", ",", "pd", ".", "DataFrame", ")", ":", "raise", "ValueError", "(", "\"A field of type StructType expects a pandas.DataFrame, \"", "\"but got: %s\"", "%", "str", "(", "type", "(", "s", ")", ")", ")", "# Input partition and result pandas.DataFrame empty, make empty Arrays with struct", "if", "len", "(", "s", ")", "==", "0", "and", "len", "(", "s", ".", "columns", ")", "==", "0", ":", "arrs_names", "=", "[", "(", "pa", ".", "array", "(", "[", "]", ",", "type", "=", "field", ".", "type", ")", ",", "field", ".", "name", ")", "for", "field", "in", "t", "]", "# Assign result columns by schema name if user labeled with strings", "elif", "self", ".", "_assign_cols_by_name", "and", "any", "(", "isinstance", "(", "name", ",", "basestring", ")", "for", "name", "in", "s", ".", "columns", ")", ":", "arrs_names", "=", "[", "(", "create_array", "(", "s", "[", "field", ".", "name", "]", ",", "field", ".", "type", ")", ",", "field", ".", "name", ")", "for", "field", "in", "t", "]", "# Assign result columns by position", "else", ":", "arrs_names", "=", "[", "(", "create_array", "(", "s", "[", "s", ".", "columns", "[", "i", "]", "]", ",", "field", ".", "type", ")", ",", "field", ".", "name", ")", "for", "i", ",", "field", "in", "enumerate", "(", "t", ")", "]", "struct_arrs", ",", "struct_names", "=", "zip", "(", "*", "arrs_names", ")", "arrs", ".", "append", "(", "pa", ".", "StructArray", ".", "from_arrays", "(", "struct_arrs", ",", "struct_names", ")", ")", "else", ":", "arrs", ".", "append", "(", "create_array", "(", "s", ",", "t", ")", ")", "return", "pa", ".", "RecordBatch", ".", "from_arrays", "(", "arrs", ",", "[", "\"_%d\"", "%", "i", "for", "i", "in", "xrange", "(", "len", "(", "arrs", ")", ")", "]", ")" ]
Create an Arrow record batch from the given pandas.Series or list of Series, with optional type. :param series: A single pandas.Series, list of Series, or list of (series, arrow_type) :return: Arrow RecordBatch
[ "Create", "an", "Arrow", "record", "batch", "from", "the", "given", "pandas", ".", "Series", "or", "list", "of", "Series", "with", "optional", "type", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/serializers.py#L274-L335
19,317
apache/spark
python/pyspark/serializers.py
ArrowStreamPandasSerializer.dump_stream
def dump_stream(self, iterator, stream): """ Make ArrowRecordBatches from Pandas Series and serialize. Input is a single series or a list of series accompanied by an optional pyarrow type to coerce the data to. """ batches = (self._create_batch(series) for series in iterator) super(ArrowStreamPandasSerializer, self).dump_stream(batches, stream)
python
def dump_stream(self, iterator, stream): """ Make ArrowRecordBatches from Pandas Series and serialize. Input is a single series or a list of series accompanied by an optional pyarrow type to coerce the data to. """ batches = (self._create_batch(series) for series in iterator) super(ArrowStreamPandasSerializer, self).dump_stream(batches, stream)
[ "def", "dump_stream", "(", "self", ",", "iterator", ",", "stream", ")", ":", "batches", "=", "(", "self", ".", "_create_batch", "(", "series", ")", "for", "series", "in", "iterator", ")", "super", "(", "ArrowStreamPandasSerializer", ",", "self", ")", ".", "dump_stream", "(", "batches", ",", "stream", ")" ]
Make ArrowRecordBatches from Pandas Series and serialize. Input is a single series or a list of series accompanied by an optional pyarrow type to coerce the data to.
[ "Make", "ArrowRecordBatches", "from", "Pandas", "Series", "and", "serialize", ".", "Input", "is", "a", "single", "series", "or", "a", "list", "of", "series", "accompanied", "by", "an", "optional", "pyarrow", "type", "to", "coerce", "the", "data", "to", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/serializers.py#L337-L343
19,318
apache/spark
python/pyspark/serializers.py
ArrowStreamPandasSerializer.load_stream
def load_stream(self, stream): """ Deserialize ArrowRecordBatches to an Arrow table and return as a list of pandas.Series. """ batches = super(ArrowStreamPandasSerializer, self).load_stream(stream) import pyarrow as pa for batch in batches: yield [self.arrow_to_pandas(c) for c in pa.Table.from_batches([batch]).itercolumns()]
python
def load_stream(self, stream): """ Deserialize ArrowRecordBatches to an Arrow table and return as a list of pandas.Series. """ batches = super(ArrowStreamPandasSerializer, self).load_stream(stream) import pyarrow as pa for batch in batches: yield [self.arrow_to_pandas(c) for c in pa.Table.from_batches([batch]).itercolumns()]
[ "def", "load_stream", "(", "self", ",", "stream", ")", ":", "batches", "=", "super", "(", "ArrowStreamPandasSerializer", ",", "self", ")", ".", "load_stream", "(", "stream", ")", "import", "pyarrow", "as", "pa", "for", "batch", "in", "batches", ":", "yield", "[", "self", ".", "arrow_to_pandas", "(", "c", ")", "for", "c", "in", "pa", ".", "Table", ".", "from_batches", "(", "[", "batch", "]", ")", ".", "itercolumns", "(", ")", "]" ]
Deserialize ArrowRecordBatches to an Arrow table and return as a list of pandas.Series.
[ "Deserialize", "ArrowRecordBatches", "to", "an", "Arrow", "table", "and", "return", "as", "a", "list", "of", "pandas", ".", "Series", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/serializers.py#L345-L352
19,319
apache/spark
python/pyspark/serializers.py
ArrowStreamPandasUDFSerializer.dump_stream
def dump_stream(self, iterator, stream): """ Override because Pandas UDFs require a START_ARROW_STREAM before the Arrow stream is sent. This should be sent after creating the first record batch so in case of an error, it can be sent back to the JVM before the Arrow stream starts. """ def init_stream_yield_batches(): should_write_start_length = True for series in iterator: batch = self._create_batch(series) if should_write_start_length: write_int(SpecialLengths.START_ARROW_STREAM, stream) should_write_start_length = False yield batch return ArrowStreamSerializer.dump_stream(self, init_stream_yield_batches(), stream)
python
def dump_stream(self, iterator, stream): """ Override because Pandas UDFs require a START_ARROW_STREAM before the Arrow stream is sent. This should be sent after creating the first record batch so in case of an error, it can be sent back to the JVM before the Arrow stream starts. """ def init_stream_yield_batches(): should_write_start_length = True for series in iterator: batch = self._create_batch(series) if should_write_start_length: write_int(SpecialLengths.START_ARROW_STREAM, stream) should_write_start_length = False yield batch return ArrowStreamSerializer.dump_stream(self, init_stream_yield_batches(), stream)
[ "def", "dump_stream", "(", "self", ",", "iterator", ",", "stream", ")", ":", "def", "init_stream_yield_batches", "(", ")", ":", "should_write_start_length", "=", "True", "for", "series", "in", "iterator", ":", "batch", "=", "self", ".", "_create_batch", "(", "series", ")", "if", "should_write_start_length", ":", "write_int", "(", "SpecialLengths", ".", "START_ARROW_STREAM", ",", "stream", ")", "should_write_start_length", "=", "False", "yield", "batch", "return", "ArrowStreamSerializer", ".", "dump_stream", "(", "self", ",", "init_stream_yield_batches", "(", ")", ",", "stream", ")" ]
Override because Pandas UDFs require a START_ARROW_STREAM before the Arrow stream is sent. This should be sent after creating the first record batch so in case of an error, it can be sent back to the JVM before the Arrow stream starts.
[ "Override", "because", "Pandas", "UDFs", "require", "a", "START_ARROW_STREAM", "before", "the", "Arrow", "stream", "is", "sent", ".", "This", "should", "be", "sent", "after", "creating", "the", "first", "record", "batch", "so", "in", "case", "of", "an", "error", "it", "can", "be", "sent", "back", "to", "the", "JVM", "before", "the", "Arrow", "stream", "starts", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/serializers.py#L381-L397
19,320
apache/spark
python/pyspark/sql/streaming.py
DataStreamWriter.trigger
def trigger(self, processingTime=None, once=None, continuous=None): """Set the trigger for the stream query. If this is not set it will run the query as fast as possible, which is equivalent to setting the trigger to ``processingTime='0 seconds'``. .. note:: Evolving. :param processingTime: a processing time interval as a string, e.g. '5 seconds', '1 minute'. Set a trigger that runs a query periodically based on the processing time. Only one trigger can be set. :param once: if set to True, set a trigger that processes only one batch of data in a streaming query then terminates the query. Only one trigger can be set. >>> # trigger the query for execution every 5 seconds >>> writer = sdf.writeStream.trigger(processingTime='5 seconds') >>> # trigger the query for just once batch of data >>> writer = sdf.writeStream.trigger(once=True) >>> # trigger the query for execution every 5 seconds >>> writer = sdf.writeStream.trigger(continuous='5 seconds') """ params = [processingTime, once, continuous] if params.count(None) == 3: raise ValueError('No trigger provided') elif params.count(None) < 2: raise ValueError('Multiple triggers not allowed.') jTrigger = None if processingTime is not None: if type(processingTime) != str or len(processingTime.strip()) == 0: raise ValueError('Value for processingTime must be a non empty string. Got: %s' % processingTime) interval = processingTime.strip() jTrigger = self._spark._sc._jvm.org.apache.spark.sql.streaming.Trigger.ProcessingTime( interval) elif once is not None: if once is not True: raise ValueError('Value for once must be True. Got: %s' % once) jTrigger = self._spark._sc._jvm.org.apache.spark.sql.streaming.Trigger.Once() else: if type(continuous) != str or len(continuous.strip()) == 0: raise ValueError('Value for continuous must be a non empty string. Got: %s' % continuous) interval = continuous.strip() jTrigger = self._spark._sc._jvm.org.apache.spark.sql.streaming.Trigger.Continuous( interval) self._jwrite = self._jwrite.trigger(jTrigger) return self
python
def trigger(self, processingTime=None, once=None, continuous=None): """Set the trigger for the stream query. If this is not set it will run the query as fast as possible, which is equivalent to setting the trigger to ``processingTime='0 seconds'``. .. note:: Evolving. :param processingTime: a processing time interval as a string, e.g. '5 seconds', '1 minute'. Set a trigger that runs a query periodically based on the processing time. Only one trigger can be set. :param once: if set to True, set a trigger that processes only one batch of data in a streaming query then terminates the query. Only one trigger can be set. >>> # trigger the query for execution every 5 seconds >>> writer = sdf.writeStream.trigger(processingTime='5 seconds') >>> # trigger the query for just once batch of data >>> writer = sdf.writeStream.trigger(once=True) >>> # trigger the query for execution every 5 seconds >>> writer = sdf.writeStream.trigger(continuous='5 seconds') """ params = [processingTime, once, continuous] if params.count(None) == 3: raise ValueError('No trigger provided') elif params.count(None) < 2: raise ValueError('Multiple triggers not allowed.') jTrigger = None if processingTime is not None: if type(processingTime) != str or len(processingTime.strip()) == 0: raise ValueError('Value for processingTime must be a non empty string. Got: %s' % processingTime) interval = processingTime.strip() jTrigger = self._spark._sc._jvm.org.apache.spark.sql.streaming.Trigger.ProcessingTime( interval) elif once is not None: if once is not True: raise ValueError('Value for once must be True. Got: %s' % once) jTrigger = self._spark._sc._jvm.org.apache.spark.sql.streaming.Trigger.Once() else: if type(continuous) != str or len(continuous.strip()) == 0: raise ValueError('Value for continuous must be a non empty string. Got: %s' % continuous) interval = continuous.strip() jTrigger = self._spark._sc._jvm.org.apache.spark.sql.streaming.Trigger.Continuous( interval) self._jwrite = self._jwrite.trigger(jTrigger) return self
[ "def", "trigger", "(", "self", ",", "processingTime", "=", "None", ",", "once", "=", "None", ",", "continuous", "=", "None", ")", ":", "params", "=", "[", "processingTime", ",", "once", ",", "continuous", "]", "if", "params", ".", "count", "(", "None", ")", "==", "3", ":", "raise", "ValueError", "(", "'No trigger provided'", ")", "elif", "params", ".", "count", "(", "None", ")", "<", "2", ":", "raise", "ValueError", "(", "'Multiple triggers not allowed.'", ")", "jTrigger", "=", "None", "if", "processingTime", "is", "not", "None", ":", "if", "type", "(", "processingTime", ")", "!=", "str", "or", "len", "(", "processingTime", ".", "strip", "(", ")", ")", "==", "0", ":", "raise", "ValueError", "(", "'Value for processingTime must be a non empty string. Got: %s'", "%", "processingTime", ")", "interval", "=", "processingTime", ".", "strip", "(", ")", "jTrigger", "=", "self", ".", "_spark", ".", "_sc", ".", "_jvm", ".", "org", ".", "apache", ".", "spark", ".", "sql", ".", "streaming", ".", "Trigger", ".", "ProcessingTime", "(", "interval", ")", "elif", "once", "is", "not", "None", ":", "if", "once", "is", "not", "True", ":", "raise", "ValueError", "(", "'Value for once must be True. Got: %s'", "%", "once", ")", "jTrigger", "=", "self", ".", "_spark", ".", "_sc", ".", "_jvm", ".", "org", ".", "apache", ".", "spark", ".", "sql", ".", "streaming", ".", "Trigger", ".", "Once", "(", ")", "else", ":", "if", "type", "(", "continuous", ")", "!=", "str", "or", "len", "(", "continuous", ".", "strip", "(", ")", ")", "==", "0", ":", "raise", "ValueError", "(", "'Value for continuous must be a non empty string. Got: %s'", "%", "continuous", ")", "interval", "=", "continuous", ".", "strip", "(", ")", "jTrigger", "=", "self", ".", "_spark", ".", "_sc", ".", "_jvm", ".", "org", ".", "apache", ".", "spark", ".", "sql", ".", "streaming", ".", "Trigger", ".", "Continuous", "(", "interval", ")", "self", ".", "_jwrite", "=", "self", ".", "_jwrite", ".", "trigger", "(", "jTrigger", ")", "return", "self" ]
Set the trigger for the stream query. If this is not set it will run the query as fast as possible, which is equivalent to setting the trigger to ``processingTime='0 seconds'``. .. note:: Evolving. :param processingTime: a processing time interval as a string, e.g. '5 seconds', '1 minute'. Set a trigger that runs a query periodically based on the processing time. Only one trigger can be set. :param once: if set to True, set a trigger that processes only one batch of data in a streaming query then terminates the query. Only one trigger can be set. >>> # trigger the query for execution every 5 seconds >>> writer = sdf.writeStream.trigger(processingTime='5 seconds') >>> # trigger the query for just once batch of data >>> writer = sdf.writeStream.trigger(once=True) >>> # trigger the query for execution every 5 seconds >>> writer = sdf.writeStream.trigger(continuous='5 seconds')
[ "Set", "the", "trigger", "for", "the", "stream", "query", ".", "If", "this", "is", "not", "set", "it", "will", "run", "the", "query", "as", "fast", "as", "possible", "which", "is", "equivalent", "to", "setting", "the", "trigger", "to", "processingTime", "=", "0", "seconds", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/streaming.py#L829-L878
19,321
apache/spark
python/pyspark/sql/streaming.py
DataStreamWriter.foreach
def foreach(self, f): """ Sets the output of the streaming query to be processed using the provided writer ``f``. This is often used to write the output of a streaming query to arbitrary storage systems. The processing logic can be specified in two ways. #. A **function** that takes a row as input. This is a simple way to express your processing logic. Note that this does not allow you to deduplicate generated data when failures cause reprocessing of some input data. That would require you to specify the processing logic in the next way. #. An **object** with a ``process`` method and optional ``open`` and ``close`` methods. The object can have the following methods. * ``open(partition_id, epoch_id)``: *Optional* method that initializes the processing (for example, open a connection, start a transaction, etc). Additionally, you can use the `partition_id` and `epoch_id` to deduplicate regenerated data (discussed later). * ``process(row)``: *Non-optional* method that processes each :class:`Row`. * ``close(error)``: *Optional* method that finalizes and cleans up (for example, close connection, commit transaction, etc.) after all rows have been processed. The object will be used by Spark in the following way. * A single copy of this object is responsible of all the data generated by a single task in a query. In other words, one instance is responsible for processing one partition of the data generated in a distributed manner. * This object must be serializable because each task will get a fresh serialized-deserialized copy of the provided object. Hence, it is strongly recommended that any initialization for writing data (e.g. opening a connection or starting a transaction) is done after the `open(...)` method has been called, which signifies that the task is ready to generate data. * The lifecycle of the methods are as follows. For each partition with ``partition_id``: ... For each batch/epoch of streaming data with ``epoch_id``: ....... Method ``open(partitionId, epochId)`` is called. ....... If ``open(...)`` returns true, for each row in the partition and batch/epoch, method ``process(row)`` is called. ....... Method ``close(errorOrNull)`` is called with error (if any) seen while processing rows. Important points to note: * The `partitionId` and `epochId` can be used to deduplicate generated data when failures cause reprocessing of some input data. This depends on the execution mode of the query. If the streaming query is being executed in the micro-batch mode, then every partition represented by a unique tuple (partition_id, epoch_id) is guaranteed to have the same data. Hence, (partition_id, epoch_id) can be used to deduplicate and/or transactionally commit data and achieve exactly-once guarantees. However, if the streaming query is being executed in the continuous mode, then this guarantee does not hold and therefore should not be used for deduplication. * The ``close()`` method (if exists) will be called if `open()` method exists and returns successfully (irrespective of the return value), except if the Python crashes in the middle. .. note:: Evolving. >>> # Print every row using a function >>> def print_row(row): ... print(row) ... >>> writer = sdf.writeStream.foreach(print_row) >>> # Print every row using a object with process() method >>> class RowPrinter: ... def open(self, partition_id, epoch_id): ... print("Opened %d, %d" % (partition_id, epoch_id)) ... return True ... def process(self, row): ... print(row) ... def close(self, error): ... print("Closed with error: %s" % str(error)) ... >>> writer = sdf.writeStream.foreach(RowPrinter()) """ from pyspark.rdd import _wrap_function from pyspark.serializers import PickleSerializer, AutoBatchedSerializer from pyspark.taskcontext import TaskContext if callable(f): # The provided object is a callable function that is supposed to be called on each row. # Construct a function that takes an iterator and calls the provided function on each # row. def func_without_process(_, iterator): for x in iterator: f(x) return iter([]) func = func_without_process else: # The provided object is not a callable function. Then it is expected to have a # 'process(row)' method, and optional 'open(partition_id, epoch_id)' and # 'close(error)' methods. if not hasattr(f, 'process'): raise Exception("Provided object does not have a 'process' method") if not callable(getattr(f, 'process')): raise Exception("Attribute 'process' in provided object is not callable") def doesMethodExist(method_name): exists = hasattr(f, method_name) if exists and not callable(getattr(f, method_name)): raise Exception( "Attribute '%s' in provided object is not callable" % method_name) return exists open_exists = doesMethodExist('open') close_exists = doesMethodExist('close') def func_with_open_process_close(partition_id, iterator): epoch_id = TaskContext.get().getLocalProperty('streaming.sql.batchId') if epoch_id: epoch_id = int(epoch_id) else: raise Exception("Could not get batch id from TaskContext") # Check if the data should be processed should_process = True if open_exists: should_process = f.open(partition_id, epoch_id) error = None try: if should_process: for x in iterator: f.process(x) except Exception as ex: error = ex finally: if close_exists: f.close(error) if error: raise error return iter([]) func = func_with_open_process_close serializer = AutoBatchedSerializer(PickleSerializer()) wrapped_func = _wrap_function(self._spark._sc, func, serializer, serializer) jForeachWriter = \ self._spark._sc._jvm.org.apache.spark.sql.execution.python.PythonForeachWriter( wrapped_func, self._df._jdf.schema()) self._jwrite.foreach(jForeachWriter) return self
python
def foreach(self, f): """ Sets the output of the streaming query to be processed using the provided writer ``f``. This is often used to write the output of a streaming query to arbitrary storage systems. The processing logic can be specified in two ways. #. A **function** that takes a row as input. This is a simple way to express your processing logic. Note that this does not allow you to deduplicate generated data when failures cause reprocessing of some input data. That would require you to specify the processing logic in the next way. #. An **object** with a ``process`` method and optional ``open`` and ``close`` methods. The object can have the following methods. * ``open(partition_id, epoch_id)``: *Optional* method that initializes the processing (for example, open a connection, start a transaction, etc). Additionally, you can use the `partition_id` and `epoch_id` to deduplicate regenerated data (discussed later). * ``process(row)``: *Non-optional* method that processes each :class:`Row`. * ``close(error)``: *Optional* method that finalizes and cleans up (for example, close connection, commit transaction, etc.) after all rows have been processed. The object will be used by Spark in the following way. * A single copy of this object is responsible of all the data generated by a single task in a query. In other words, one instance is responsible for processing one partition of the data generated in a distributed manner. * This object must be serializable because each task will get a fresh serialized-deserialized copy of the provided object. Hence, it is strongly recommended that any initialization for writing data (e.g. opening a connection or starting a transaction) is done after the `open(...)` method has been called, which signifies that the task is ready to generate data. * The lifecycle of the methods are as follows. For each partition with ``partition_id``: ... For each batch/epoch of streaming data with ``epoch_id``: ....... Method ``open(partitionId, epochId)`` is called. ....... If ``open(...)`` returns true, for each row in the partition and batch/epoch, method ``process(row)`` is called. ....... Method ``close(errorOrNull)`` is called with error (if any) seen while processing rows. Important points to note: * The `partitionId` and `epochId` can be used to deduplicate generated data when failures cause reprocessing of some input data. This depends on the execution mode of the query. If the streaming query is being executed in the micro-batch mode, then every partition represented by a unique tuple (partition_id, epoch_id) is guaranteed to have the same data. Hence, (partition_id, epoch_id) can be used to deduplicate and/or transactionally commit data and achieve exactly-once guarantees. However, if the streaming query is being executed in the continuous mode, then this guarantee does not hold and therefore should not be used for deduplication. * The ``close()`` method (if exists) will be called if `open()` method exists and returns successfully (irrespective of the return value), except if the Python crashes in the middle. .. note:: Evolving. >>> # Print every row using a function >>> def print_row(row): ... print(row) ... >>> writer = sdf.writeStream.foreach(print_row) >>> # Print every row using a object with process() method >>> class RowPrinter: ... def open(self, partition_id, epoch_id): ... print("Opened %d, %d" % (partition_id, epoch_id)) ... return True ... def process(self, row): ... print(row) ... def close(self, error): ... print("Closed with error: %s" % str(error)) ... >>> writer = sdf.writeStream.foreach(RowPrinter()) """ from pyspark.rdd import _wrap_function from pyspark.serializers import PickleSerializer, AutoBatchedSerializer from pyspark.taskcontext import TaskContext if callable(f): # The provided object is a callable function that is supposed to be called on each row. # Construct a function that takes an iterator and calls the provided function on each # row. def func_without_process(_, iterator): for x in iterator: f(x) return iter([]) func = func_without_process else: # The provided object is not a callable function. Then it is expected to have a # 'process(row)' method, and optional 'open(partition_id, epoch_id)' and # 'close(error)' methods. if not hasattr(f, 'process'): raise Exception("Provided object does not have a 'process' method") if not callable(getattr(f, 'process')): raise Exception("Attribute 'process' in provided object is not callable") def doesMethodExist(method_name): exists = hasattr(f, method_name) if exists and not callable(getattr(f, method_name)): raise Exception( "Attribute '%s' in provided object is not callable" % method_name) return exists open_exists = doesMethodExist('open') close_exists = doesMethodExist('close') def func_with_open_process_close(partition_id, iterator): epoch_id = TaskContext.get().getLocalProperty('streaming.sql.batchId') if epoch_id: epoch_id = int(epoch_id) else: raise Exception("Could not get batch id from TaskContext") # Check if the data should be processed should_process = True if open_exists: should_process = f.open(partition_id, epoch_id) error = None try: if should_process: for x in iterator: f.process(x) except Exception as ex: error = ex finally: if close_exists: f.close(error) if error: raise error return iter([]) func = func_with_open_process_close serializer = AutoBatchedSerializer(PickleSerializer()) wrapped_func = _wrap_function(self._spark._sc, func, serializer, serializer) jForeachWriter = \ self._spark._sc._jvm.org.apache.spark.sql.execution.python.PythonForeachWriter( wrapped_func, self._df._jdf.schema()) self._jwrite.foreach(jForeachWriter) return self
[ "def", "foreach", "(", "self", ",", "f", ")", ":", "from", "pyspark", ".", "rdd", "import", "_wrap_function", "from", "pyspark", ".", "serializers", "import", "PickleSerializer", ",", "AutoBatchedSerializer", "from", "pyspark", ".", "taskcontext", "import", "TaskContext", "if", "callable", "(", "f", ")", ":", "# The provided object is a callable function that is supposed to be called on each row.", "# Construct a function that takes an iterator and calls the provided function on each", "# row.", "def", "func_without_process", "(", "_", ",", "iterator", ")", ":", "for", "x", "in", "iterator", ":", "f", "(", "x", ")", "return", "iter", "(", "[", "]", ")", "func", "=", "func_without_process", "else", ":", "# The provided object is not a callable function. Then it is expected to have a", "# 'process(row)' method, and optional 'open(partition_id, epoch_id)' and", "# 'close(error)' methods.", "if", "not", "hasattr", "(", "f", ",", "'process'", ")", ":", "raise", "Exception", "(", "\"Provided object does not have a 'process' method\"", ")", "if", "not", "callable", "(", "getattr", "(", "f", ",", "'process'", ")", ")", ":", "raise", "Exception", "(", "\"Attribute 'process' in provided object is not callable\"", ")", "def", "doesMethodExist", "(", "method_name", ")", ":", "exists", "=", "hasattr", "(", "f", ",", "method_name", ")", "if", "exists", "and", "not", "callable", "(", "getattr", "(", "f", ",", "method_name", ")", ")", ":", "raise", "Exception", "(", "\"Attribute '%s' in provided object is not callable\"", "%", "method_name", ")", "return", "exists", "open_exists", "=", "doesMethodExist", "(", "'open'", ")", "close_exists", "=", "doesMethodExist", "(", "'close'", ")", "def", "func_with_open_process_close", "(", "partition_id", ",", "iterator", ")", ":", "epoch_id", "=", "TaskContext", ".", "get", "(", ")", ".", "getLocalProperty", "(", "'streaming.sql.batchId'", ")", "if", "epoch_id", ":", "epoch_id", "=", "int", "(", "epoch_id", ")", "else", ":", "raise", "Exception", "(", "\"Could not get batch id from TaskContext\"", ")", "# Check if the data should be processed", "should_process", "=", "True", "if", "open_exists", ":", "should_process", "=", "f", ".", "open", "(", "partition_id", ",", "epoch_id", ")", "error", "=", "None", "try", ":", "if", "should_process", ":", "for", "x", "in", "iterator", ":", "f", ".", "process", "(", "x", ")", "except", "Exception", "as", "ex", ":", "error", "=", "ex", "finally", ":", "if", "close_exists", ":", "f", ".", "close", "(", "error", ")", "if", "error", ":", "raise", "error", "return", "iter", "(", "[", "]", ")", "func", "=", "func_with_open_process_close", "serializer", "=", "AutoBatchedSerializer", "(", "PickleSerializer", "(", ")", ")", "wrapped_func", "=", "_wrap_function", "(", "self", ".", "_spark", ".", "_sc", ",", "func", ",", "serializer", ",", "serializer", ")", "jForeachWriter", "=", "self", ".", "_spark", ".", "_sc", ".", "_jvm", ".", "org", ".", "apache", ".", "spark", ".", "sql", ".", "execution", ".", "python", ".", "PythonForeachWriter", "(", "wrapped_func", ",", "self", ".", "_df", ".", "_jdf", ".", "schema", "(", ")", ")", "self", ".", "_jwrite", ".", "foreach", "(", "jForeachWriter", ")", "return", "self" ]
Sets the output of the streaming query to be processed using the provided writer ``f``. This is often used to write the output of a streaming query to arbitrary storage systems. The processing logic can be specified in two ways. #. A **function** that takes a row as input. This is a simple way to express your processing logic. Note that this does not allow you to deduplicate generated data when failures cause reprocessing of some input data. That would require you to specify the processing logic in the next way. #. An **object** with a ``process`` method and optional ``open`` and ``close`` methods. The object can have the following methods. * ``open(partition_id, epoch_id)``: *Optional* method that initializes the processing (for example, open a connection, start a transaction, etc). Additionally, you can use the `partition_id` and `epoch_id` to deduplicate regenerated data (discussed later). * ``process(row)``: *Non-optional* method that processes each :class:`Row`. * ``close(error)``: *Optional* method that finalizes and cleans up (for example, close connection, commit transaction, etc.) after all rows have been processed. The object will be used by Spark in the following way. * A single copy of this object is responsible of all the data generated by a single task in a query. In other words, one instance is responsible for processing one partition of the data generated in a distributed manner. * This object must be serializable because each task will get a fresh serialized-deserialized copy of the provided object. Hence, it is strongly recommended that any initialization for writing data (e.g. opening a connection or starting a transaction) is done after the `open(...)` method has been called, which signifies that the task is ready to generate data. * The lifecycle of the methods are as follows. For each partition with ``partition_id``: ... For each batch/epoch of streaming data with ``epoch_id``: ....... Method ``open(partitionId, epochId)`` is called. ....... If ``open(...)`` returns true, for each row in the partition and batch/epoch, method ``process(row)`` is called. ....... Method ``close(errorOrNull)`` is called with error (if any) seen while processing rows. Important points to note: * The `partitionId` and `epochId` can be used to deduplicate generated data when failures cause reprocessing of some input data. This depends on the execution mode of the query. If the streaming query is being executed in the micro-batch mode, then every partition represented by a unique tuple (partition_id, epoch_id) is guaranteed to have the same data. Hence, (partition_id, epoch_id) can be used to deduplicate and/or transactionally commit data and achieve exactly-once guarantees. However, if the streaming query is being executed in the continuous mode, then this guarantee does not hold and therefore should not be used for deduplication. * The ``close()`` method (if exists) will be called if `open()` method exists and returns successfully (irrespective of the return value), except if the Python crashes in the middle. .. note:: Evolving. >>> # Print every row using a function >>> def print_row(row): ... print(row) ... >>> writer = sdf.writeStream.foreach(print_row) >>> # Print every row using a object with process() method >>> class RowPrinter: ... def open(self, partition_id, epoch_id): ... print("Opened %d, %d" % (partition_id, epoch_id)) ... return True ... def process(self, row): ... print(row) ... def close(self, error): ... print("Closed with error: %s" % str(error)) ... >>> writer = sdf.writeStream.foreach(RowPrinter())
[ "Sets", "the", "output", "of", "the", "streaming", "query", "to", "be", "processed", "using", "the", "provided", "writer", "f", ".", "This", "is", "often", "used", "to", "write", "the", "output", "of", "a", "streaming", "query", "to", "arbitrary", "storage", "systems", ".", "The", "processing", "logic", "can", "be", "specified", "in", "two", "ways", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/streaming.py#L881-L1040
19,322
apache/spark
python/pyspark/cloudpickle.py
dumps
def dumps(obj, protocol=None): """Serialize obj as a string of bytes allocated in memory protocol defaults to cloudpickle.DEFAULT_PROTOCOL which is an alias to pickle.HIGHEST_PROTOCOL. This setting favors maximum communication speed between processes running the same Python version. Set protocol=pickle.DEFAULT_PROTOCOL instead if you need to ensure compatibility with older versions of Python. """ file = StringIO() try: cp = CloudPickler(file, protocol=protocol) cp.dump(obj) return file.getvalue() finally: file.close()
python
def dumps(obj, protocol=None): """Serialize obj as a string of bytes allocated in memory protocol defaults to cloudpickle.DEFAULT_PROTOCOL which is an alias to pickle.HIGHEST_PROTOCOL. This setting favors maximum communication speed between processes running the same Python version. Set protocol=pickle.DEFAULT_PROTOCOL instead if you need to ensure compatibility with older versions of Python. """ file = StringIO() try: cp = CloudPickler(file, protocol=protocol) cp.dump(obj) return file.getvalue() finally: file.close()
[ "def", "dumps", "(", "obj", ",", "protocol", "=", "None", ")", ":", "file", "=", "StringIO", "(", ")", "try", ":", "cp", "=", "CloudPickler", "(", "file", ",", "protocol", "=", "protocol", ")", "cp", ".", "dump", "(", "obj", ")", "return", "file", ".", "getvalue", "(", ")", "finally", ":", "file", ".", "close", "(", ")" ]
Serialize obj as a string of bytes allocated in memory protocol defaults to cloudpickle.DEFAULT_PROTOCOL which is an alias to pickle.HIGHEST_PROTOCOL. This setting favors maximum communication speed between processes running the same Python version. Set protocol=pickle.DEFAULT_PROTOCOL instead if you need to ensure compatibility with older versions of Python.
[ "Serialize", "obj", "as", "a", "string", "of", "bytes", "allocated", "in", "memory" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/cloudpickle.py#L939-L955
19,323
apache/spark
python/pyspark/cloudpickle.py
_fill_function
def _fill_function(*args): """Fills in the rest of function data into the skeleton function object The skeleton itself is create by _make_skel_func(). """ if len(args) == 2: func = args[0] state = args[1] elif len(args) == 5: # Backwards compat for cloudpickle v0.4.0, after which the `module` # argument was introduced func = args[0] keys = ['globals', 'defaults', 'dict', 'closure_values'] state = dict(zip(keys, args[1:])) elif len(args) == 6: # Backwards compat for cloudpickle v0.4.1, after which the function # state was passed as a dict to the _fill_function it-self. func = args[0] keys = ['globals', 'defaults', 'dict', 'module', 'closure_values'] state = dict(zip(keys, args[1:])) else: raise ValueError('Unexpected _fill_value arguments: %r' % (args,)) # - At pickling time, any dynamic global variable used by func is # serialized by value (in state['globals']). # - At unpickling time, func's __globals__ attribute is initialized by # first retrieving an empty isolated namespace that will be shared # with other functions pickled from the same original module # by the same CloudPickler instance and then updated with the # content of state['globals'] to populate the shared isolated # namespace with all the global variables that are specifically # referenced for this function. func.__globals__.update(state['globals']) func.__defaults__ = state['defaults'] func.__dict__ = state['dict'] if 'annotations' in state: func.__annotations__ = state['annotations'] if 'doc' in state: func.__doc__ = state['doc'] if 'name' in state: func.__name__ = state['name'] if 'module' in state: func.__module__ = state['module'] if 'qualname' in state: func.__qualname__ = state['qualname'] cells = func.__closure__ if cells is not None: for cell, value in zip(cells, state['closure_values']): if value is not _empty_cell_value: cell_set(cell, value) return func
python
def _fill_function(*args): """Fills in the rest of function data into the skeleton function object The skeleton itself is create by _make_skel_func(). """ if len(args) == 2: func = args[0] state = args[1] elif len(args) == 5: # Backwards compat for cloudpickle v0.4.0, after which the `module` # argument was introduced func = args[0] keys = ['globals', 'defaults', 'dict', 'closure_values'] state = dict(zip(keys, args[1:])) elif len(args) == 6: # Backwards compat for cloudpickle v0.4.1, after which the function # state was passed as a dict to the _fill_function it-self. func = args[0] keys = ['globals', 'defaults', 'dict', 'module', 'closure_values'] state = dict(zip(keys, args[1:])) else: raise ValueError('Unexpected _fill_value arguments: %r' % (args,)) # - At pickling time, any dynamic global variable used by func is # serialized by value (in state['globals']). # - At unpickling time, func's __globals__ attribute is initialized by # first retrieving an empty isolated namespace that will be shared # with other functions pickled from the same original module # by the same CloudPickler instance and then updated with the # content of state['globals'] to populate the shared isolated # namespace with all the global variables that are specifically # referenced for this function. func.__globals__.update(state['globals']) func.__defaults__ = state['defaults'] func.__dict__ = state['dict'] if 'annotations' in state: func.__annotations__ = state['annotations'] if 'doc' in state: func.__doc__ = state['doc'] if 'name' in state: func.__name__ = state['name'] if 'module' in state: func.__module__ = state['module'] if 'qualname' in state: func.__qualname__ = state['qualname'] cells = func.__closure__ if cells is not None: for cell, value in zip(cells, state['closure_values']): if value is not _empty_cell_value: cell_set(cell, value) return func
[ "def", "_fill_function", "(", "*", "args", ")", ":", "if", "len", "(", "args", ")", "==", "2", ":", "func", "=", "args", "[", "0", "]", "state", "=", "args", "[", "1", "]", "elif", "len", "(", "args", ")", "==", "5", ":", "# Backwards compat for cloudpickle v0.4.0, after which the `module`", "# argument was introduced", "func", "=", "args", "[", "0", "]", "keys", "=", "[", "'globals'", ",", "'defaults'", ",", "'dict'", ",", "'closure_values'", "]", "state", "=", "dict", "(", "zip", "(", "keys", ",", "args", "[", "1", ":", "]", ")", ")", "elif", "len", "(", "args", ")", "==", "6", ":", "# Backwards compat for cloudpickle v0.4.1, after which the function", "# state was passed as a dict to the _fill_function it-self.", "func", "=", "args", "[", "0", "]", "keys", "=", "[", "'globals'", ",", "'defaults'", ",", "'dict'", ",", "'module'", ",", "'closure_values'", "]", "state", "=", "dict", "(", "zip", "(", "keys", ",", "args", "[", "1", ":", "]", ")", ")", "else", ":", "raise", "ValueError", "(", "'Unexpected _fill_value arguments: %r'", "%", "(", "args", ",", ")", ")", "# - At pickling time, any dynamic global variable used by func is", "# serialized by value (in state['globals']).", "# - At unpickling time, func's __globals__ attribute is initialized by", "# first retrieving an empty isolated namespace that will be shared", "# with other functions pickled from the same original module", "# by the same CloudPickler instance and then updated with the", "# content of state['globals'] to populate the shared isolated", "# namespace with all the global variables that are specifically", "# referenced for this function.", "func", ".", "__globals__", ".", "update", "(", "state", "[", "'globals'", "]", ")", "func", ".", "__defaults__", "=", "state", "[", "'defaults'", "]", "func", ".", "__dict__", "=", "state", "[", "'dict'", "]", "if", "'annotations'", "in", "state", ":", "func", ".", "__annotations__", "=", "state", "[", "'annotations'", "]", "if", "'doc'", "in", "state", ":", "func", ".", "__doc__", "=", "state", "[", "'doc'", "]", "if", "'name'", "in", "state", ":", "func", ".", "__name__", "=", "state", "[", "'name'", "]", "if", "'module'", "in", "state", ":", "func", ".", "__module__", "=", "state", "[", "'module'", "]", "if", "'qualname'", "in", "state", ":", "func", ".", "__qualname__", "=", "state", "[", "'qualname'", "]", "cells", "=", "func", ".", "__closure__", "if", "cells", "is", "not", "None", ":", "for", "cell", ",", "value", "in", "zip", "(", "cells", ",", "state", "[", "'closure_values'", "]", ")", ":", "if", "value", "is", "not", "_empty_cell_value", ":", "cell_set", "(", "cell", ",", "value", ")", "return", "func" ]
Fills in the rest of function data into the skeleton function object The skeleton itself is create by _make_skel_func().
[ "Fills", "in", "the", "rest", "of", "function", "data", "into", "the", "skeleton", "function", "object" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/cloudpickle.py#L1060-L1113
19,324
apache/spark
python/pyspark/cloudpickle.py
_is_dynamic
def _is_dynamic(module): """ Return True if the module is special module that cannot be imported by its name. """ # Quick check: module that have __file__ attribute are not dynamic modules. if hasattr(module, '__file__'): return False if hasattr(module, '__spec__'): return module.__spec__ is None else: # Backward compat for Python 2 import imp try: path = None for part in module.__name__.split('.'): if path is not None: path = [path] f, path, description = imp.find_module(part, path) if f is not None: f.close() except ImportError: return True return False
python
def _is_dynamic(module): """ Return True if the module is special module that cannot be imported by its name. """ # Quick check: module that have __file__ attribute are not dynamic modules. if hasattr(module, '__file__'): return False if hasattr(module, '__spec__'): return module.__spec__ is None else: # Backward compat for Python 2 import imp try: path = None for part in module.__name__.split('.'): if path is not None: path = [path] f, path, description = imp.find_module(part, path) if f is not None: f.close() except ImportError: return True return False
[ "def", "_is_dynamic", "(", "module", ")", ":", "# Quick check: module that have __file__ attribute are not dynamic modules.", "if", "hasattr", "(", "module", ",", "'__file__'", ")", ":", "return", "False", "if", "hasattr", "(", "module", ",", "'__spec__'", ")", ":", "return", "module", ".", "__spec__", "is", "None", "else", ":", "# Backward compat for Python 2", "import", "imp", "try", ":", "path", "=", "None", "for", "part", "in", "module", ".", "__name__", ".", "split", "(", "'.'", ")", ":", "if", "path", "is", "not", "None", ":", "path", "=", "[", "path", "]", "f", ",", "path", ",", "description", "=", "imp", ".", "find_module", "(", "part", ",", "path", ")", "if", "f", "is", "not", "None", ":", "f", ".", "close", "(", ")", "except", "ImportError", ":", "return", "True", "return", "False" ]
Return True if the module is special module that cannot be imported by its name.
[ "Return", "True", "if", "the", "module", "is", "special", "module", "that", "cannot", "be", "imported", "by", "its", "name", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/cloudpickle.py#L1164-L1188
19,325
apache/spark
python/pyspark/cloudpickle.py
CloudPickler.save_function
def save_function(self, obj, name=None): """ Registered with the dispatch to handle all function types. Determines what kind of function obj is (e.g. lambda, defined at interactive prompt, etc) and handles the pickling appropriately. """ try: should_special_case = obj in _BUILTIN_TYPE_CONSTRUCTORS except TypeError: # Methods of builtin types aren't hashable in python 2. should_special_case = False if should_special_case: # We keep a special-cased cache of built-in type constructors at # global scope, because these functions are structured very # differently in different python versions and implementations (for # example, they're instances of types.BuiltinFunctionType in # CPython, but they're ordinary types.FunctionType instances in # PyPy). # # If the function we've received is in that cache, we just # serialize it as a lookup into the cache. return self.save_reduce(_BUILTIN_TYPE_CONSTRUCTORS[obj], (), obj=obj) write = self.write if name is None: name = obj.__name__ try: # whichmodule() could fail, see # https://bitbucket.org/gutworth/six/issues/63/importing-six-breaks-pickling modname = pickle.whichmodule(obj, name) except Exception: modname = None # print('which gives %s %s %s' % (modname, obj, name)) try: themodule = sys.modules[modname] except KeyError: # eval'd items such as namedtuple give invalid items for their function __module__ modname = '__main__' if modname == '__main__': themodule = None try: lookedup_by_name = getattr(themodule, name, None) except Exception: lookedup_by_name = None if themodule: if lookedup_by_name is obj: return self.save_global(obj, name) # a builtin_function_or_method which comes in as an attribute of some # object (e.g., itertools.chain.from_iterable) will end # up with modname "__main__" and so end up here. But these functions # have no __code__ attribute in CPython, so the handling for # user-defined functions below will fail. # So we pickle them here using save_reduce; have to do it differently # for different python versions. if not hasattr(obj, '__code__'): if PY3: # pragma: no branch rv = obj.__reduce_ex__(self.proto) else: if hasattr(obj, '__self__'): rv = (getattr, (obj.__self__, name)) else: raise pickle.PicklingError("Can't pickle %r" % obj) return self.save_reduce(obj=obj, *rv) # if func is lambda, def'ed at prompt, is in main, or is nested, then # we'll pickle the actual function object rather than simply saving a # reference (as is done in default pickler), via save_function_tuple. if (islambda(obj) or getattr(obj.__code__, 'co_filename', None) == '<stdin>' or themodule is None): self.save_function_tuple(obj) return else: # func is nested if lookedup_by_name is None or lookedup_by_name is not obj: self.save_function_tuple(obj) return if obj.__dict__: # essentially save_reduce, but workaround needed to avoid recursion self.save(_restore_attr) write(pickle.MARK + pickle.GLOBAL + modname + '\n' + name + '\n') self.memoize(obj) self.save(obj.__dict__) write(pickle.TUPLE + pickle.REDUCE) else: write(pickle.GLOBAL + modname + '\n' + name + '\n') self.memoize(obj)
python
def save_function(self, obj, name=None): """ Registered with the dispatch to handle all function types. Determines what kind of function obj is (e.g. lambda, defined at interactive prompt, etc) and handles the pickling appropriately. """ try: should_special_case = obj in _BUILTIN_TYPE_CONSTRUCTORS except TypeError: # Methods of builtin types aren't hashable in python 2. should_special_case = False if should_special_case: # We keep a special-cased cache of built-in type constructors at # global scope, because these functions are structured very # differently in different python versions and implementations (for # example, they're instances of types.BuiltinFunctionType in # CPython, but they're ordinary types.FunctionType instances in # PyPy). # # If the function we've received is in that cache, we just # serialize it as a lookup into the cache. return self.save_reduce(_BUILTIN_TYPE_CONSTRUCTORS[obj], (), obj=obj) write = self.write if name is None: name = obj.__name__ try: # whichmodule() could fail, see # https://bitbucket.org/gutworth/six/issues/63/importing-six-breaks-pickling modname = pickle.whichmodule(obj, name) except Exception: modname = None # print('which gives %s %s %s' % (modname, obj, name)) try: themodule = sys.modules[modname] except KeyError: # eval'd items such as namedtuple give invalid items for their function __module__ modname = '__main__' if modname == '__main__': themodule = None try: lookedup_by_name = getattr(themodule, name, None) except Exception: lookedup_by_name = None if themodule: if lookedup_by_name is obj: return self.save_global(obj, name) # a builtin_function_or_method which comes in as an attribute of some # object (e.g., itertools.chain.from_iterable) will end # up with modname "__main__" and so end up here. But these functions # have no __code__ attribute in CPython, so the handling for # user-defined functions below will fail. # So we pickle them here using save_reduce; have to do it differently # for different python versions. if not hasattr(obj, '__code__'): if PY3: # pragma: no branch rv = obj.__reduce_ex__(self.proto) else: if hasattr(obj, '__self__'): rv = (getattr, (obj.__self__, name)) else: raise pickle.PicklingError("Can't pickle %r" % obj) return self.save_reduce(obj=obj, *rv) # if func is lambda, def'ed at prompt, is in main, or is nested, then # we'll pickle the actual function object rather than simply saving a # reference (as is done in default pickler), via save_function_tuple. if (islambda(obj) or getattr(obj.__code__, 'co_filename', None) == '<stdin>' or themodule is None): self.save_function_tuple(obj) return else: # func is nested if lookedup_by_name is None or lookedup_by_name is not obj: self.save_function_tuple(obj) return if obj.__dict__: # essentially save_reduce, but workaround needed to avoid recursion self.save(_restore_attr) write(pickle.MARK + pickle.GLOBAL + modname + '\n' + name + '\n') self.memoize(obj) self.save(obj.__dict__) write(pickle.TUPLE + pickle.REDUCE) else: write(pickle.GLOBAL + modname + '\n' + name + '\n') self.memoize(obj)
[ "def", "save_function", "(", "self", ",", "obj", ",", "name", "=", "None", ")", ":", "try", ":", "should_special_case", "=", "obj", "in", "_BUILTIN_TYPE_CONSTRUCTORS", "except", "TypeError", ":", "# Methods of builtin types aren't hashable in python 2.", "should_special_case", "=", "False", "if", "should_special_case", ":", "# We keep a special-cased cache of built-in type constructors at", "# global scope, because these functions are structured very", "# differently in different python versions and implementations (for", "# example, they're instances of types.BuiltinFunctionType in", "# CPython, but they're ordinary types.FunctionType instances in", "# PyPy).", "#", "# If the function we've received is in that cache, we just", "# serialize it as a lookup into the cache.", "return", "self", ".", "save_reduce", "(", "_BUILTIN_TYPE_CONSTRUCTORS", "[", "obj", "]", ",", "(", ")", ",", "obj", "=", "obj", ")", "write", "=", "self", ".", "write", "if", "name", "is", "None", ":", "name", "=", "obj", ".", "__name__", "try", ":", "# whichmodule() could fail, see", "# https://bitbucket.org/gutworth/six/issues/63/importing-six-breaks-pickling", "modname", "=", "pickle", ".", "whichmodule", "(", "obj", ",", "name", ")", "except", "Exception", ":", "modname", "=", "None", "# print('which gives %s %s %s' % (modname, obj, name))", "try", ":", "themodule", "=", "sys", ".", "modules", "[", "modname", "]", "except", "KeyError", ":", "# eval'd items such as namedtuple give invalid items for their function __module__", "modname", "=", "'__main__'", "if", "modname", "==", "'__main__'", ":", "themodule", "=", "None", "try", ":", "lookedup_by_name", "=", "getattr", "(", "themodule", ",", "name", ",", "None", ")", "except", "Exception", ":", "lookedup_by_name", "=", "None", "if", "themodule", ":", "if", "lookedup_by_name", "is", "obj", ":", "return", "self", ".", "save_global", "(", "obj", ",", "name", ")", "# a builtin_function_or_method which comes in as an attribute of some", "# object (e.g., itertools.chain.from_iterable) will end", "# up with modname \"__main__\" and so end up here. But these functions", "# have no __code__ attribute in CPython, so the handling for", "# user-defined functions below will fail.", "# So we pickle them here using save_reduce; have to do it differently", "# for different python versions.", "if", "not", "hasattr", "(", "obj", ",", "'__code__'", ")", ":", "if", "PY3", ":", "# pragma: no branch", "rv", "=", "obj", ".", "__reduce_ex__", "(", "self", ".", "proto", ")", "else", ":", "if", "hasattr", "(", "obj", ",", "'__self__'", ")", ":", "rv", "=", "(", "getattr", ",", "(", "obj", ".", "__self__", ",", "name", ")", ")", "else", ":", "raise", "pickle", ".", "PicklingError", "(", "\"Can't pickle %r\"", "%", "obj", ")", "return", "self", ".", "save_reduce", "(", "obj", "=", "obj", ",", "*", "rv", ")", "# if func is lambda, def'ed at prompt, is in main, or is nested, then", "# we'll pickle the actual function object rather than simply saving a", "# reference (as is done in default pickler), via save_function_tuple.", "if", "(", "islambda", "(", "obj", ")", "or", "getattr", "(", "obj", ".", "__code__", ",", "'co_filename'", ",", "None", ")", "==", "'<stdin>'", "or", "themodule", "is", "None", ")", ":", "self", ".", "save_function_tuple", "(", "obj", ")", "return", "else", ":", "# func is nested", "if", "lookedup_by_name", "is", "None", "or", "lookedup_by_name", "is", "not", "obj", ":", "self", ".", "save_function_tuple", "(", "obj", ")", "return", "if", "obj", ".", "__dict__", ":", "# essentially save_reduce, but workaround needed to avoid recursion", "self", ".", "save", "(", "_restore_attr", ")", "write", "(", "pickle", ".", "MARK", "+", "pickle", ".", "GLOBAL", "+", "modname", "+", "'\\n'", "+", "name", "+", "'\\n'", ")", "self", ".", "memoize", "(", "obj", ")", "self", ".", "save", "(", "obj", ".", "__dict__", ")", "write", "(", "pickle", ".", "TUPLE", "+", "pickle", ".", "REDUCE", ")", "else", ":", "write", "(", "pickle", ".", "GLOBAL", "+", "modname", "+", "'\\n'", "+", "name", "+", "'\\n'", ")", "self", ".", "memoize", "(", "obj", ")" ]
Registered with the dispatch to handle all function types. Determines what kind of function obj is (e.g. lambda, defined at interactive prompt, etc) and handles the pickling appropriately.
[ "Registered", "with", "the", "dispatch", "to", "handle", "all", "function", "types", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/cloudpickle.py#L319-L412
19,326
apache/spark
python/pyspark/cloudpickle.py
CloudPickler.save_inst
def save_inst(self, obj): """Inner logic to save instance. Based off pickle.save_inst""" cls = obj.__class__ # Try the dispatch table (pickle module doesn't do it) f = self.dispatch.get(cls) if f: f(self, obj) # Call unbound method with explicit self return memo = self.memo write = self.write save = self.save if hasattr(obj, '__getinitargs__'): args = obj.__getinitargs__() len(args) # XXX Assert it's a sequence pickle._keep_alive(args, memo) else: args = () write(pickle.MARK) if self.bin: save(cls) for arg in args: save(arg) write(pickle.OBJ) else: for arg in args: save(arg) write(pickle.INST + cls.__module__ + '\n' + cls.__name__ + '\n') self.memoize(obj) try: getstate = obj.__getstate__ except AttributeError: stuff = obj.__dict__ else: stuff = getstate() pickle._keep_alive(stuff, memo) save(stuff) write(pickle.BUILD)
python
def save_inst(self, obj): """Inner logic to save instance. Based off pickle.save_inst""" cls = obj.__class__ # Try the dispatch table (pickle module doesn't do it) f = self.dispatch.get(cls) if f: f(self, obj) # Call unbound method with explicit self return memo = self.memo write = self.write save = self.save if hasattr(obj, '__getinitargs__'): args = obj.__getinitargs__() len(args) # XXX Assert it's a sequence pickle._keep_alive(args, memo) else: args = () write(pickle.MARK) if self.bin: save(cls) for arg in args: save(arg) write(pickle.OBJ) else: for arg in args: save(arg) write(pickle.INST + cls.__module__ + '\n' + cls.__name__ + '\n') self.memoize(obj) try: getstate = obj.__getstate__ except AttributeError: stuff = obj.__dict__ else: stuff = getstate() pickle._keep_alive(stuff, memo) save(stuff) write(pickle.BUILD)
[ "def", "save_inst", "(", "self", ",", "obj", ")", ":", "cls", "=", "obj", ".", "__class__", "# Try the dispatch table (pickle module doesn't do it)", "f", "=", "self", ".", "dispatch", ".", "get", "(", "cls", ")", "if", "f", ":", "f", "(", "self", ",", "obj", ")", "# Call unbound method with explicit self", "return", "memo", "=", "self", ".", "memo", "write", "=", "self", ".", "write", "save", "=", "self", ".", "save", "if", "hasattr", "(", "obj", ",", "'__getinitargs__'", ")", ":", "args", "=", "obj", ".", "__getinitargs__", "(", ")", "len", "(", "args", ")", "# XXX Assert it's a sequence", "pickle", ".", "_keep_alive", "(", "args", ",", "memo", ")", "else", ":", "args", "=", "(", ")", "write", "(", "pickle", ".", "MARK", ")", "if", "self", ".", "bin", ":", "save", "(", "cls", ")", "for", "arg", "in", "args", ":", "save", "(", "arg", ")", "write", "(", "pickle", ".", "OBJ", ")", "else", ":", "for", "arg", "in", "args", ":", "save", "(", "arg", ")", "write", "(", "pickle", ".", "INST", "+", "cls", ".", "__module__", "+", "'\\n'", "+", "cls", ".", "__name__", "+", "'\\n'", ")", "self", ".", "memoize", "(", "obj", ")", "try", ":", "getstate", "=", "obj", ".", "__getstate__", "except", "AttributeError", ":", "stuff", "=", "obj", ".", "__dict__", "else", ":", "stuff", "=", "getstate", "(", ")", "pickle", ".", "_keep_alive", "(", "stuff", ",", "memo", ")", "save", "(", "stuff", ")", "write", "(", "pickle", ".", "BUILD", ")" ]
Inner logic to save instance. Based off pickle.save_inst
[ "Inner", "logic", "to", "save", "instance", ".", "Based", "off", "pickle", ".", "save_inst" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/cloudpickle.py#L725-L768
19,327
apache/spark
python/pyspark/ml/param/__init__.py
Param._copy_new_parent
def _copy_new_parent(self, parent): """Copy the current param to a new parent, must be a dummy param.""" if self.parent == "undefined": param = copy.copy(self) param.parent = parent.uid return param else: raise ValueError("Cannot copy from non-dummy parent %s." % parent)
python
def _copy_new_parent(self, parent): """Copy the current param to a new parent, must be a dummy param.""" if self.parent == "undefined": param = copy.copy(self) param.parent = parent.uid return param else: raise ValueError("Cannot copy from non-dummy parent %s." % parent)
[ "def", "_copy_new_parent", "(", "self", ",", "parent", ")", ":", "if", "self", ".", "parent", "==", "\"undefined\"", ":", "param", "=", "copy", ".", "copy", "(", "self", ")", "param", ".", "parent", "=", "parent", ".", "uid", "return", "param", "else", ":", "raise", "ValueError", "(", "\"Cannot copy from non-dummy parent %s.\"", "%", "parent", ")" ]
Copy the current param to a new parent, must be a dummy param.
[ "Copy", "the", "current", "param", "to", "a", "new", "parent", "must", "be", "a", "dummy", "param", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/param/__init__.py#L52-L59
19,328
apache/spark
python/pyspark/ml/param/__init__.py
TypeConverters.toList
def toList(value): """ Convert a value to a list, if possible. """ if type(value) == list: return value elif type(value) in [np.ndarray, tuple, xrange, array.array]: return list(value) elif isinstance(value, Vector): return list(value.toArray()) else: raise TypeError("Could not convert %s to list" % value)
python
def toList(value): """ Convert a value to a list, if possible. """ if type(value) == list: return value elif type(value) in [np.ndarray, tuple, xrange, array.array]: return list(value) elif isinstance(value, Vector): return list(value.toArray()) else: raise TypeError("Could not convert %s to list" % value)
[ "def", "toList", "(", "value", ")", ":", "if", "type", "(", "value", ")", "==", "list", ":", "return", "value", "elif", "type", "(", "value", ")", "in", "[", "np", ".", "ndarray", ",", "tuple", ",", "xrange", ",", "array", ".", "array", "]", ":", "return", "list", "(", "value", ")", "elif", "isinstance", "(", "value", ",", "Vector", ")", ":", "return", "list", "(", "value", ".", "toArray", "(", ")", ")", "else", ":", "raise", "TypeError", "(", "\"Could not convert %s to list\"", "%", "value", ")" ]
Convert a value to a list, if possible.
[ "Convert", "a", "value", "to", "a", "list", "if", "possible", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/param/__init__.py#L113-L124
19,329
apache/spark
python/pyspark/ml/param/__init__.py
TypeConverters.toListFloat
def toListFloat(value): """ Convert a value to list of floats, if possible. """ if TypeConverters._can_convert_to_list(value): value = TypeConverters.toList(value) if all(map(lambda v: TypeConverters._is_numeric(v), value)): return [float(v) for v in value] raise TypeError("Could not convert %s to list of floats" % value)
python
def toListFloat(value): """ Convert a value to list of floats, if possible. """ if TypeConverters._can_convert_to_list(value): value = TypeConverters.toList(value) if all(map(lambda v: TypeConverters._is_numeric(v), value)): return [float(v) for v in value] raise TypeError("Could not convert %s to list of floats" % value)
[ "def", "toListFloat", "(", "value", ")", ":", "if", "TypeConverters", ".", "_can_convert_to_list", "(", "value", ")", ":", "value", "=", "TypeConverters", ".", "toList", "(", "value", ")", "if", "all", "(", "map", "(", "lambda", "v", ":", "TypeConverters", ".", "_is_numeric", "(", "v", ")", ",", "value", ")", ")", ":", "return", "[", "float", "(", "v", ")", "for", "v", "in", "value", "]", "raise", "TypeError", "(", "\"Could not convert %s to list of floats\"", "%", "value", ")" ]
Convert a value to list of floats, if possible.
[ "Convert", "a", "value", "to", "list", "of", "floats", "if", "possible", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/param/__init__.py#L127-L135
19,330
apache/spark
python/pyspark/ml/param/__init__.py
TypeConverters.toListInt
def toListInt(value): """ Convert a value to list of ints, if possible. """ if TypeConverters._can_convert_to_list(value): value = TypeConverters.toList(value) if all(map(lambda v: TypeConverters._is_integer(v), value)): return [int(v) for v in value] raise TypeError("Could not convert %s to list of ints" % value)
python
def toListInt(value): """ Convert a value to list of ints, if possible. """ if TypeConverters._can_convert_to_list(value): value = TypeConverters.toList(value) if all(map(lambda v: TypeConverters._is_integer(v), value)): return [int(v) for v in value] raise TypeError("Could not convert %s to list of ints" % value)
[ "def", "toListInt", "(", "value", ")", ":", "if", "TypeConverters", ".", "_can_convert_to_list", "(", "value", ")", ":", "value", "=", "TypeConverters", ".", "toList", "(", "value", ")", "if", "all", "(", "map", "(", "lambda", "v", ":", "TypeConverters", ".", "_is_integer", "(", "v", ")", ",", "value", ")", ")", ":", "return", "[", "int", "(", "v", ")", "for", "v", "in", "value", "]", "raise", "TypeError", "(", "\"Could not convert %s to list of ints\"", "%", "value", ")" ]
Convert a value to list of ints, if possible.
[ "Convert", "a", "value", "to", "list", "of", "ints", "if", "possible", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/param/__init__.py#L138-L146
19,331
apache/spark
python/pyspark/ml/param/__init__.py
TypeConverters.toListString
def toListString(value): """ Convert a value to list of strings, if possible. """ if TypeConverters._can_convert_to_list(value): value = TypeConverters.toList(value) if all(map(lambda v: TypeConverters._can_convert_to_string(v), value)): return [TypeConverters.toString(v) for v in value] raise TypeError("Could not convert %s to list of strings" % value)
python
def toListString(value): """ Convert a value to list of strings, if possible. """ if TypeConverters._can_convert_to_list(value): value = TypeConverters.toList(value) if all(map(lambda v: TypeConverters._can_convert_to_string(v), value)): return [TypeConverters.toString(v) for v in value] raise TypeError("Could not convert %s to list of strings" % value)
[ "def", "toListString", "(", "value", ")", ":", "if", "TypeConverters", ".", "_can_convert_to_list", "(", "value", ")", ":", "value", "=", "TypeConverters", ".", "toList", "(", "value", ")", "if", "all", "(", "map", "(", "lambda", "v", ":", "TypeConverters", ".", "_can_convert_to_string", "(", "v", ")", ",", "value", ")", ")", ":", "return", "[", "TypeConverters", ".", "toString", "(", "v", ")", "for", "v", "in", "value", "]", "raise", "TypeError", "(", "\"Could not convert %s to list of strings\"", "%", "value", ")" ]
Convert a value to list of strings, if possible.
[ "Convert", "a", "value", "to", "list", "of", "strings", "if", "possible", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/param/__init__.py#L149-L157
19,332
apache/spark
python/pyspark/ml/param/__init__.py
TypeConverters.toVector
def toVector(value): """ Convert a value to a MLlib Vector, if possible. """ if isinstance(value, Vector): return value elif TypeConverters._can_convert_to_list(value): value = TypeConverters.toList(value) if all(map(lambda v: TypeConverters._is_numeric(v), value)): return DenseVector(value) raise TypeError("Could not convert %s to vector" % value)
python
def toVector(value): """ Convert a value to a MLlib Vector, if possible. """ if isinstance(value, Vector): return value elif TypeConverters._can_convert_to_list(value): value = TypeConverters.toList(value) if all(map(lambda v: TypeConverters._is_numeric(v), value)): return DenseVector(value) raise TypeError("Could not convert %s to vector" % value)
[ "def", "toVector", "(", "value", ")", ":", "if", "isinstance", "(", "value", ",", "Vector", ")", ":", "return", "value", "elif", "TypeConverters", ".", "_can_convert_to_list", "(", "value", ")", ":", "value", "=", "TypeConverters", ".", "toList", "(", "value", ")", "if", "all", "(", "map", "(", "lambda", "v", ":", "TypeConverters", ".", "_is_numeric", "(", "v", ")", ",", "value", ")", ")", ":", "return", "DenseVector", "(", "value", ")", "raise", "TypeError", "(", "\"Could not convert %s to vector\"", "%", "value", ")" ]
Convert a value to a MLlib Vector, if possible.
[ "Convert", "a", "value", "to", "a", "MLlib", "Vector", "if", "possible", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/param/__init__.py#L160-L170
19,333
apache/spark
python/pyspark/ml/param/__init__.py
TypeConverters.toString
def toString(value): """ Convert a value to a string, if possible. """ if isinstance(value, basestring): return value elif type(value) in [np.string_, np.str_]: return str(value) elif type(value) == np.unicode_: return unicode(value) else: raise TypeError("Could not convert %s to string type" % type(value))
python
def toString(value): """ Convert a value to a string, if possible. """ if isinstance(value, basestring): return value elif type(value) in [np.string_, np.str_]: return str(value) elif type(value) == np.unicode_: return unicode(value) else: raise TypeError("Could not convert %s to string type" % type(value))
[ "def", "toString", "(", "value", ")", ":", "if", "isinstance", "(", "value", ",", "basestring", ")", ":", "return", "value", "elif", "type", "(", "value", ")", "in", "[", "np", ".", "string_", ",", "np", ".", "str_", "]", ":", "return", "str", "(", "value", ")", "elif", "type", "(", "value", ")", "==", "np", ".", "unicode_", ":", "return", "unicode", "(", "value", ")", "else", ":", "raise", "TypeError", "(", "\"Could not convert %s to string type\"", "%", "type", "(", "value", ")", ")" ]
Convert a value to a string, if possible.
[ "Convert", "a", "value", "to", "a", "string", "if", "possible", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/param/__init__.py#L202-L213
19,334
apache/spark
python/pyspark/ml/param/__init__.py
Params._copy_params
def _copy_params(self): """ Copy all params defined on the class to current object. """ cls = type(self) src_name_attrs = [(x, getattr(cls, x)) for x in dir(cls)] src_params = list(filter(lambda nameAttr: isinstance(nameAttr[1], Param), src_name_attrs)) for name, param in src_params: setattr(self, name, param._copy_new_parent(self))
python
def _copy_params(self): """ Copy all params defined on the class to current object. """ cls = type(self) src_name_attrs = [(x, getattr(cls, x)) for x in dir(cls)] src_params = list(filter(lambda nameAttr: isinstance(nameAttr[1], Param), src_name_attrs)) for name, param in src_params: setattr(self, name, param._copy_new_parent(self))
[ "def", "_copy_params", "(", "self", ")", ":", "cls", "=", "type", "(", "self", ")", "src_name_attrs", "=", "[", "(", "x", ",", "getattr", "(", "cls", ",", "x", ")", ")", "for", "x", "in", "dir", "(", "cls", ")", "]", "src_params", "=", "list", "(", "filter", "(", "lambda", "nameAttr", ":", "isinstance", "(", "nameAttr", "[", "1", "]", ",", "Param", ")", ",", "src_name_attrs", ")", ")", "for", "name", ",", "param", "in", "src_params", ":", "setattr", "(", "self", ",", "name", ",", "param", ".", "_copy_new_parent", "(", "self", ")", ")" ]
Copy all params defined on the class to current object.
[ "Copy", "all", "params", "defined", "on", "the", "class", "to", "current", "object", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/param/__init__.py#L250-L258
19,335
apache/spark
python/pyspark/ml/param/__init__.py
Params.explainParam
def explainParam(self, param): """ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. """ param = self._resolveParam(param) values = [] if self.isDefined(param): if param in self._defaultParamMap: values.append("default: %s" % self._defaultParamMap[param]) if param in self._paramMap: values.append("current: %s" % self._paramMap[param]) else: values.append("undefined") valueStr = "(" + ", ".join(values) + ")" return "%s: %s %s" % (param.name, param.doc, valueStr)
python
def explainParam(self, param): """ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. """ param = self._resolveParam(param) values = [] if self.isDefined(param): if param in self._defaultParamMap: values.append("default: %s" % self._defaultParamMap[param]) if param in self._paramMap: values.append("current: %s" % self._paramMap[param]) else: values.append("undefined") valueStr = "(" + ", ".join(values) + ")" return "%s: %s %s" % (param.name, param.doc, valueStr)
[ "def", "explainParam", "(", "self", ",", "param", ")", ":", "param", "=", "self", ".", "_resolveParam", "(", "param", ")", "values", "=", "[", "]", "if", "self", ".", "isDefined", "(", "param", ")", ":", "if", "param", "in", "self", ".", "_defaultParamMap", ":", "values", ".", "append", "(", "\"default: %s\"", "%", "self", ".", "_defaultParamMap", "[", "param", "]", ")", "if", "param", "in", "self", ".", "_paramMap", ":", "values", ".", "append", "(", "\"current: %s\"", "%", "self", ".", "_paramMap", "[", "param", "]", ")", "else", ":", "values", ".", "append", "(", "\"undefined\"", ")", "valueStr", "=", "\"(\"", "+", "\", \"", ".", "join", "(", "values", ")", "+", "\")\"", "return", "\"%s: %s %s\"", "%", "(", "param", ".", "name", ",", "param", ".", "doc", ",", "valueStr", ")" ]
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
[ "Explains", "a", "single", "param", "and", "returns", "its", "name", "doc", "and", "optional", "default", "value", "and", "user", "-", "supplied", "value", "in", "a", "string", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/param/__init__.py#L273-L288
19,336
apache/spark
python/pyspark/ml/param/__init__.py
Params.getParam
def getParam(self, paramName): """ Gets a param by its name. """ param = getattr(self, paramName) if isinstance(param, Param): return param else: raise ValueError("Cannot find param with name %s." % paramName)
python
def getParam(self, paramName): """ Gets a param by its name. """ param = getattr(self, paramName) if isinstance(param, Param): return param else: raise ValueError("Cannot find param with name %s." % paramName)
[ "def", "getParam", "(", "self", ",", "paramName", ")", ":", "param", "=", "getattr", "(", "self", ",", "paramName", ")", "if", "isinstance", "(", "param", ",", "Param", ")", ":", "return", "param", "else", ":", "raise", "ValueError", "(", "\"Cannot find param with name %s.\"", "%", "paramName", ")" ]
Gets a param by its name.
[ "Gets", "a", "param", "by", "its", "name", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/param/__init__.py#L297-L305
19,337
apache/spark
python/pyspark/ml/param/__init__.py
Params.isSet
def isSet(self, param): """ Checks whether a param is explicitly set by user. """ param = self._resolveParam(param) return param in self._paramMap
python
def isSet(self, param): """ Checks whether a param is explicitly set by user. """ param = self._resolveParam(param) return param in self._paramMap
[ "def", "isSet", "(", "self", ",", "param", ")", ":", "param", "=", "self", ".", "_resolveParam", "(", "param", ")", "return", "param", "in", "self", ".", "_paramMap" ]
Checks whether a param is explicitly set by user.
[ "Checks", "whether", "a", "param", "is", "explicitly", "set", "by", "user", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/param/__init__.py#L307-L312
19,338
apache/spark
python/pyspark/ml/param/__init__.py
Params.hasDefault
def hasDefault(self, param): """ Checks whether a param has a default value. """ param = self._resolveParam(param) return param in self._defaultParamMap
python
def hasDefault(self, param): """ Checks whether a param has a default value. """ param = self._resolveParam(param) return param in self._defaultParamMap
[ "def", "hasDefault", "(", "self", ",", "param", ")", ":", "param", "=", "self", ".", "_resolveParam", "(", "param", ")", "return", "param", "in", "self", ".", "_defaultParamMap" ]
Checks whether a param has a default value.
[ "Checks", "whether", "a", "param", "has", "a", "default", "value", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/param/__init__.py#L314-L319
19,339
apache/spark
python/pyspark/ml/param/__init__.py
Params.getOrDefault
def getOrDefault(self, param): """ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. """ param = self._resolveParam(param) if param in self._paramMap: return self._paramMap[param] else: return self._defaultParamMap[param]
python
def getOrDefault(self, param): """ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. """ param = self._resolveParam(param) if param in self._paramMap: return self._paramMap[param] else: return self._defaultParamMap[param]
[ "def", "getOrDefault", "(", "self", ",", "param", ")", ":", "param", "=", "self", ".", "_resolveParam", "(", "param", ")", "if", "param", "in", "self", ".", "_paramMap", ":", "return", "self", ".", "_paramMap", "[", "param", "]", "else", ":", "return", "self", ".", "_defaultParamMap", "[", "param", "]" ]
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
[ "Gets", "the", "value", "of", "a", "param", "in", "the", "user", "-", "supplied", "param", "map", "or", "its", "default", "value", ".", "Raises", "an", "error", "if", "neither", "is", "set", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/param/__init__.py#L339-L348
19,340
apache/spark
python/pyspark/ml/param/__init__.py
Params.set
def set(self, param, value): """ Sets a parameter in the embedded param map. """ self._shouldOwn(param) try: value = param.typeConverter(value) except ValueError as e: raise ValueError('Invalid param value given for param "%s". %s' % (param.name, e)) self._paramMap[param] = value
python
def set(self, param, value): """ Sets a parameter in the embedded param map. """ self._shouldOwn(param) try: value = param.typeConverter(value) except ValueError as e: raise ValueError('Invalid param value given for param "%s". %s' % (param.name, e)) self._paramMap[param] = value
[ "def", "set", "(", "self", ",", "param", ",", "value", ")", ":", "self", ".", "_shouldOwn", "(", "param", ")", "try", ":", "value", "=", "param", ".", "typeConverter", "(", "value", ")", "except", "ValueError", "as", "e", ":", "raise", "ValueError", "(", "'Invalid param value given for param \"%s\". %s'", "%", "(", "param", ".", "name", ",", "e", ")", ")", "self", ".", "_paramMap", "[", "param", "]", "=", "value" ]
Sets a parameter in the embedded param map.
[ "Sets", "a", "parameter", "in", "the", "embedded", "param", "map", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/param/__init__.py#L387-L396
19,341
apache/spark
python/pyspark/ml/param/__init__.py
Params._shouldOwn
def _shouldOwn(self, param): """ Validates that the input param belongs to this Params instance. """ if not (self.uid == param.parent and self.hasParam(param.name)): raise ValueError("Param %r does not belong to %r." % (param, self))
python
def _shouldOwn(self, param): """ Validates that the input param belongs to this Params instance. """ if not (self.uid == param.parent and self.hasParam(param.name)): raise ValueError("Param %r does not belong to %r." % (param, self))
[ "def", "_shouldOwn", "(", "self", ",", "param", ")", ":", "if", "not", "(", "self", ".", "uid", "==", "param", ".", "parent", "and", "self", ".", "hasParam", "(", "param", ".", "name", ")", ")", ":", "raise", "ValueError", "(", "\"Param %r does not belong to %r.\"", "%", "(", "param", ",", "self", ")", ")" ]
Validates that the input param belongs to this Params instance.
[ "Validates", "that", "the", "input", "param", "belongs", "to", "this", "Params", "instance", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/param/__init__.py#L398-L403
19,342
apache/spark
python/pyspark/ml/param/__init__.py
Params._resolveParam
def _resolveParam(self, param): """ Resolves a param and validates the ownership. :param param: param name or the param instance, which must belong to this Params instance :return: resolved param instance """ if isinstance(param, Param): self._shouldOwn(param) return param elif isinstance(param, basestring): return self.getParam(param) else: raise ValueError("Cannot resolve %r as a param." % param)
python
def _resolveParam(self, param): """ Resolves a param and validates the ownership. :param param: param name or the param instance, which must belong to this Params instance :return: resolved param instance """ if isinstance(param, Param): self._shouldOwn(param) return param elif isinstance(param, basestring): return self.getParam(param) else: raise ValueError("Cannot resolve %r as a param." % param)
[ "def", "_resolveParam", "(", "self", ",", "param", ")", ":", "if", "isinstance", "(", "param", ",", "Param", ")", ":", "self", ".", "_shouldOwn", "(", "param", ")", "return", "param", "elif", "isinstance", "(", "param", ",", "basestring", ")", ":", "return", "self", ".", "getParam", "(", "param", ")", "else", ":", "raise", "ValueError", "(", "\"Cannot resolve %r as a param.\"", "%", "param", ")" ]
Resolves a param and validates the ownership. :param param: param name or the param instance, which must belong to this Params instance :return: resolved param instance
[ "Resolves", "a", "param", "and", "validates", "the", "ownership", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/param/__init__.py#L405-L419
19,343
apache/spark
python/pyspark/ml/param/__init__.py
Params._set
def _set(self, **kwargs): """ Sets user-supplied params. """ for param, value in kwargs.items(): p = getattr(self, param) if value is not None: try: value = p.typeConverter(value) except TypeError as e: raise TypeError('Invalid param value given for param "%s". %s' % (p.name, e)) self._paramMap[p] = value return self
python
def _set(self, **kwargs): """ Sets user-supplied params. """ for param, value in kwargs.items(): p = getattr(self, param) if value is not None: try: value = p.typeConverter(value) except TypeError as e: raise TypeError('Invalid param value given for param "%s". %s' % (p.name, e)) self._paramMap[p] = value return self
[ "def", "_set", "(", "self", ",", "*", "*", "kwargs", ")", ":", "for", "param", ",", "value", "in", "kwargs", ".", "items", "(", ")", ":", "p", "=", "getattr", "(", "self", ",", "param", ")", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "p", ".", "typeConverter", "(", "value", ")", "except", "TypeError", "as", "e", ":", "raise", "TypeError", "(", "'Invalid param value given for param \"%s\". %s'", "%", "(", "p", ".", "name", ",", "e", ")", ")", "self", ".", "_paramMap", "[", "p", "]", "=", "value", "return", "self" ]
Sets user-supplied params.
[ "Sets", "user", "-", "supplied", "params", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/param/__init__.py#L431-L443
19,344
apache/spark
python/pyspark/ml/param/__init__.py
Params._setDefault
def _setDefault(self, **kwargs): """ Sets default params. """ for param, value in kwargs.items(): p = getattr(self, param) if value is not None and not isinstance(value, JavaObject): try: value = p.typeConverter(value) except TypeError as e: raise TypeError('Invalid default param value given for param "%s". %s' % (p.name, e)) self._defaultParamMap[p] = value return self
python
def _setDefault(self, **kwargs): """ Sets default params. """ for param, value in kwargs.items(): p = getattr(self, param) if value is not None and not isinstance(value, JavaObject): try: value = p.typeConverter(value) except TypeError as e: raise TypeError('Invalid default param value given for param "%s". %s' % (p.name, e)) self._defaultParamMap[p] = value return self
[ "def", "_setDefault", "(", "self", ",", "*", "*", "kwargs", ")", ":", "for", "param", ",", "value", "in", "kwargs", ".", "items", "(", ")", ":", "p", "=", "getattr", "(", "self", ",", "param", ")", "if", "value", "is", "not", "None", "and", "not", "isinstance", "(", "value", ",", "JavaObject", ")", ":", "try", ":", "value", "=", "p", ".", "typeConverter", "(", "value", ")", "except", "TypeError", "as", "e", ":", "raise", "TypeError", "(", "'Invalid default param value given for param \"%s\". %s'", "%", "(", "p", ".", "name", ",", "e", ")", ")", "self", ".", "_defaultParamMap", "[", "p", "]", "=", "value", "return", "self" ]
Sets default params.
[ "Sets", "default", "params", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/param/__init__.py#L452-L465
19,345
apache/spark
python/pyspark/ml/param/__init__.py
Params._copyValues
def _copyValues(self, to, extra=None): """ Copies param values from this instance to another instance for params shared by them. :param to: the target instance :param extra: extra params to be copied :return: the target instance with param values copied """ paramMap = self._paramMap.copy() if extra is not None: paramMap.update(extra) for param in self.params: # copy default params if param in self._defaultParamMap and to.hasParam(param.name): to._defaultParamMap[to.getParam(param.name)] = self._defaultParamMap[param] # copy explicitly set params if param in paramMap and to.hasParam(param.name): to._set(**{param.name: paramMap[param]}) return to
python
def _copyValues(self, to, extra=None): """ Copies param values from this instance to another instance for params shared by them. :param to: the target instance :param extra: extra params to be copied :return: the target instance with param values copied """ paramMap = self._paramMap.copy() if extra is not None: paramMap.update(extra) for param in self.params: # copy default params if param in self._defaultParamMap and to.hasParam(param.name): to._defaultParamMap[to.getParam(param.name)] = self._defaultParamMap[param] # copy explicitly set params if param in paramMap and to.hasParam(param.name): to._set(**{param.name: paramMap[param]}) return to
[ "def", "_copyValues", "(", "self", ",", "to", ",", "extra", "=", "None", ")", ":", "paramMap", "=", "self", ".", "_paramMap", ".", "copy", "(", ")", "if", "extra", "is", "not", "None", ":", "paramMap", ".", "update", "(", "extra", ")", "for", "param", "in", "self", ".", "params", ":", "# copy default params", "if", "param", "in", "self", ".", "_defaultParamMap", "and", "to", ".", "hasParam", "(", "param", ".", "name", ")", ":", "to", ".", "_defaultParamMap", "[", "to", ".", "getParam", "(", "param", ".", "name", ")", "]", "=", "self", ".", "_defaultParamMap", "[", "param", "]", "# copy explicitly set params", "if", "param", "in", "paramMap", "and", "to", ".", "hasParam", "(", "param", ".", "name", ")", ":", "to", ".", "_set", "(", "*", "*", "{", "param", ".", "name", ":", "paramMap", "[", "param", "]", "}", ")", "return", "to" ]
Copies param values from this instance to another instance for params shared by them. :param to: the target instance :param extra: extra params to be copied :return: the target instance with param values copied
[ "Copies", "param", "values", "from", "this", "instance", "to", "another", "instance", "for", "params", "shared", "by", "them", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/param/__init__.py#L467-L486
19,346
apache/spark
python/pyspark/ml/common.py
_to_java_object_rdd
def _to_java_object_rdd(rdd): """ Return an JavaRDD of Object by unpickling It will convert each Python object into Java object by Pyrolite, whenever the RDD is serialized in batch or not. """ rdd = rdd._reserialize(AutoBatchedSerializer(PickleSerializer())) return rdd.ctx._jvm.org.apache.spark.ml.python.MLSerDe.pythonToJava(rdd._jrdd, True)
python
def _to_java_object_rdd(rdd): """ Return an JavaRDD of Object by unpickling It will convert each Python object into Java object by Pyrolite, whenever the RDD is serialized in batch or not. """ rdd = rdd._reserialize(AutoBatchedSerializer(PickleSerializer())) return rdd.ctx._jvm.org.apache.spark.ml.python.MLSerDe.pythonToJava(rdd._jrdd, True)
[ "def", "_to_java_object_rdd", "(", "rdd", ")", ":", "rdd", "=", "rdd", ".", "_reserialize", "(", "AutoBatchedSerializer", "(", "PickleSerializer", "(", ")", ")", ")", "return", "rdd", ".", "ctx", ".", "_jvm", ".", "org", ".", "apache", ".", "spark", ".", "ml", ".", "python", ".", "MLSerDe", ".", "pythonToJava", "(", "rdd", ".", "_jrdd", ",", "True", ")" ]
Return an JavaRDD of Object by unpickling It will convert each Python object into Java object by Pyrolite, whenever the RDD is serialized in batch or not.
[ "Return", "an", "JavaRDD", "of", "Object", "by", "unpickling" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/common.py#L60-L67
19,347
apache/spark
python/pyspark/broadcast.py
Broadcast.value
def value(self): """ Return the broadcasted value """ if not hasattr(self, "_value") and self._path is not None: # we only need to decrypt it here when encryption is enabled and # if its on the driver, since executor decryption is handled already if self._sc is not None and self._sc._encryption_enabled: port, auth_secret = self._python_broadcast.setupDecryptionServer() (decrypted_sock_file, _) = local_connect_and_auth(port, auth_secret) self._python_broadcast.waitTillBroadcastDataSent() return self.load(decrypted_sock_file) else: self._value = self.load_from_path(self._path) return self._value
python
def value(self): """ Return the broadcasted value """ if not hasattr(self, "_value") and self._path is not None: # we only need to decrypt it here when encryption is enabled and # if its on the driver, since executor decryption is handled already if self._sc is not None and self._sc._encryption_enabled: port, auth_secret = self._python_broadcast.setupDecryptionServer() (decrypted_sock_file, _) = local_connect_and_auth(port, auth_secret) self._python_broadcast.waitTillBroadcastDataSent() return self.load(decrypted_sock_file) else: self._value = self.load_from_path(self._path) return self._value
[ "def", "value", "(", "self", ")", ":", "if", "not", "hasattr", "(", "self", ",", "\"_value\"", ")", "and", "self", ".", "_path", "is", "not", "None", ":", "# we only need to decrypt it here when encryption is enabled and", "# if its on the driver, since executor decryption is handled already", "if", "self", ".", "_sc", "is", "not", "None", "and", "self", ".", "_sc", ".", "_encryption_enabled", ":", "port", ",", "auth_secret", "=", "self", ".", "_python_broadcast", ".", "setupDecryptionServer", "(", ")", "(", "decrypted_sock_file", ",", "_", ")", "=", "local_connect_and_auth", "(", "port", ",", "auth_secret", ")", "self", ".", "_python_broadcast", ".", "waitTillBroadcastDataSent", "(", ")", "return", "self", ".", "load", "(", "decrypted_sock_file", ")", "else", ":", "self", ".", "_value", "=", "self", ".", "load_from_path", "(", "self", ".", "_path", ")", "return", "self", ".", "_value" ]
Return the broadcasted value
[ "Return", "the", "broadcasted", "value" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/broadcast.py#L135-L148
19,348
apache/spark
python/pyspark/broadcast.py
Broadcast.unpersist
def unpersist(self, blocking=False): """ Delete cached copies of this broadcast on the executors. If the broadcast is used after this is called, it will need to be re-sent to each executor. :param blocking: Whether to block until unpersisting has completed """ if self._jbroadcast is None: raise Exception("Broadcast can only be unpersisted in driver") self._jbroadcast.unpersist(blocking)
python
def unpersist(self, blocking=False): """ Delete cached copies of this broadcast on the executors. If the broadcast is used after this is called, it will need to be re-sent to each executor. :param blocking: Whether to block until unpersisting has completed """ if self._jbroadcast is None: raise Exception("Broadcast can only be unpersisted in driver") self._jbroadcast.unpersist(blocking)
[ "def", "unpersist", "(", "self", ",", "blocking", "=", "False", ")", ":", "if", "self", ".", "_jbroadcast", "is", "None", ":", "raise", "Exception", "(", "\"Broadcast can only be unpersisted in driver\"", ")", "self", ".", "_jbroadcast", ".", "unpersist", "(", "blocking", ")" ]
Delete cached copies of this broadcast on the executors. If the broadcast is used after this is called, it will need to be re-sent to each executor. :param blocking: Whether to block until unpersisting has completed
[ "Delete", "cached", "copies", "of", "this", "broadcast", "on", "the", "executors", ".", "If", "the", "broadcast", "is", "used", "after", "this", "is", "called", "it", "will", "need", "to", "be", "re", "-", "sent", "to", "each", "executor", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/broadcast.py#L150-L160
19,349
apache/spark
python/pyspark/broadcast.py
Broadcast.destroy
def destroy(self, blocking=False): """ Destroy all data and metadata related to this broadcast variable. Use this with caution; once a broadcast variable has been destroyed, it cannot be used again. .. versionchanged:: 3.0.0 Added optional argument `blocking` to specify whether to block until all blocks are deleted. """ if self._jbroadcast is None: raise Exception("Broadcast can only be destroyed in driver") self._jbroadcast.destroy(blocking) os.unlink(self._path)
python
def destroy(self, blocking=False): """ Destroy all data and metadata related to this broadcast variable. Use this with caution; once a broadcast variable has been destroyed, it cannot be used again. .. versionchanged:: 3.0.0 Added optional argument `blocking` to specify whether to block until all blocks are deleted. """ if self._jbroadcast is None: raise Exception("Broadcast can only be destroyed in driver") self._jbroadcast.destroy(blocking) os.unlink(self._path)
[ "def", "destroy", "(", "self", ",", "blocking", "=", "False", ")", ":", "if", "self", ".", "_jbroadcast", "is", "None", ":", "raise", "Exception", "(", "\"Broadcast can only be destroyed in driver\"", ")", "self", ".", "_jbroadcast", ".", "destroy", "(", "blocking", ")", "os", ".", "unlink", "(", "self", ".", "_path", ")" ]
Destroy all data and metadata related to this broadcast variable. Use this with caution; once a broadcast variable has been destroyed, it cannot be used again. .. versionchanged:: 3.0.0 Added optional argument `blocking` to specify whether to block until all blocks are deleted.
[ "Destroy", "all", "data", "and", "metadata", "related", "to", "this", "broadcast", "variable", ".", "Use", "this", "with", "caution", ";", "once", "a", "broadcast", "variable", "has", "been", "destroyed", "it", "cannot", "be", "used", "again", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/broadcast.py#L162-L175
19,350
apache/spark
python/pyspark/sql/udf.py
UserDefinedFunction._wrapped
def _wrapped(self): """ Wrap this udf with a function and attach docstring from func """ # It is possible for a callable instance without __name__ attribute or/and # __module__ attribute to be wrapped here. For example, functools.partial. In this case, # we should avoid wrapping the attributes from the wrapped function to the wrapper # function. So, we take out these attribute names from the default names to set and # then manually assign it after being wrapped. assignments = tuple( a for a in functools.WRAPPER_ASSIGNMENTS if a != '__name__' and a != '__module__') @functools.wraps(self.func, assigned=assignments) def wrapper(*args): return self(*args) wrapper.__name__ = self._name wrapper.__module__ = (self.func.__module__ if hasattr(self.func, '__module__') else self.func.__class__.__module__) wrapper.func = self.func wrapper.returnType = self.returnType wrapper.evalType = self.evalType wrapper.deterministic = self.deterministic wrapper.asNondeterministic = functools.wraps( self.asNondeterministic)(lambda: self.asNondeterministic()._wrapped()) return wrapper
python
def _wrapped(self): """ Wrap this udf with a function and attach docstring from func """ # It is possible for a callable instance without __name__ attribute or/and # __module__ attribute to be wrapped here. For example, functools.partial. In this case, # we should avoid wrapping the attributes from the wrapped function to the wrapper # function. So, we take out these attribute names from the default names to set and # then manually assign it after being wrapped. assignments = tuple( a for a in functools.WRAPPER_ASSIGNMENTS if a != '__name__' and a != '__module__') @functools.wraps(self.func, assigned=assignments) def wrapper(*args): return self(*args) wrapper.__name__ = self._name wrapper.__module__ = (self.func.__module__ if hasattr(self.func, '__module__') else self.func.__class__.__module__) wrapper.func = self.func wrapper.returnType = self.returnType wrapper.evalType = self.evalType wrapper.deterministic = self.deterministic wrapper.asNondeterministic = functools.wraps( self.asNondeterministic)(lambda: self.asNondeterministic()._wrapped()) return wrapper
[ "def", "_wrapped", "(", "self", ")", ":", "# It is possible for a callable instance without __name__ attribute or/and", "# __module__ attribute to be wrapped here. For example, functools.partial. In this case,", "# we should avoid wrapping the attributes from the wrapped function to the wrapper", "# function. So, we take out these attribute names from the default names to set and", "# then manually assign it after being wrapped.", "assignments", "=", "tuple", "(", "a", "for", "a", "in", "functools", ".", "WRAPPER_ASSIGNMENTS", "if", "a", "!=", "'__name__'", "and", "a", "!=", "'__module__'", ")", "@", "functools", ".", "wraps", "(", "self", ".", "func", ",", "assigned", "=", "assignments", ")", "def", "wrapper", "(", "*", "args", ")", ":", "return", "self", "(", "*", "args", ")", "wrapper", ".", "__name__", "=", "self", ".", "_name", "wrapper", ".", "__module__", "=", "(", "self", ".", "func", ".", "__module__", "if", "hasattr", "(", "self", ".", "func", ",", "'__module__'", ")", "else", "self", ".", "func", ".", "__class__", ".", "__module__", ")", "wrapper", ".", "func", "=", "self", ".", "func", "wrapper", ".", "returnType", "=", "self", ".", "returnType", "wrapper", ".", "evalType", "=", "self", ".", "evalType", "wrapper", ".", "deterministic", "=", "self", ".", "deterministic", "wrapper", ".", "asNondeterministic", "=", "functools", ".", "wraps", "(", "self", ".", "asNondeterministic", ")", "(", "lambda", ":", "self", ".", "asNondeterministic", "(", ")", ".", "_wrapped", "(", ")", ")", "return", "wrapper" ]
Wrap this udf with a function and attach docstring from func
[ "Wrap", "this", "udf", "with", "a", "function", "and", "attach", "docstring", "from", "func" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/udf.py#L177-L204
19,351
apache/spark
python/pyspark/sql/udf.py
UDFRegistration.registerJavaFunction
def registerJavaFunction(self, name, javaClassName, returnType=None): """Register a Java user-defined function as a SQL function. In addition to a name and the function itself, the return type can be optionally specified. When the return type is not specified we would infer it via reflection. :param name: name of the user-defined function :param javaClassName: fully qualified name of java class :param returnType: the return type of the registered Java function. The value can be either a :class:`pyspark.sql.types.DataType` object or a DDL-formatted type string. >>> from pyspark.sql.types import IntegerType >>> spark.udf.registerJavaFunction( ... "javaStringLength", "test.org.apache.spark.sql.JavaStringLength", IntegerType()) >>> spark.sql("SELECT javaStringLength('test')").collect() [Row(UDF:javaStringLength(test)=4)] >>> spark.udf.registerJavaFunction( ... "javaStringLength2", "test.org.apache.spark.sql.JavaStringLength") >>> spark.sql("SELECT javaStringLength2('test')").collect() [Row(UDF:javaStringLength2(test)=4)] >>> spark.udf.registerJavaFunction( ... "javaStringLength3", "test.org.apache.spark.sql.JavaStringLength", "integer") >>> spark.sql("SELECT javaStringLength3('test')").collect() [Row(UDF:javaStringLength3(test)=4)] """ jdt = None if returnType is not None: if not isinstance(returnType, DataType): returnType = _parse_datatype_string(returnType) jdt = self.sparkSession._jsparkSession.parseDataType(returnType.json()) self.sparkSession._jsparkSession.udf().registerJava(name, javaClassName, jdt)
python
def registerJavaFunction(self, name, javaClassName, returnType=None): """Register a Java user-defined function as a SQL function. In addition to a name and the function itself, the return type can be optionally specified. When the return type is not specified we would infer it via reflection. :param name: name of the user-defined function :param javaClassName: fully qualified name of java class :param returnType: the return type of the registered Java function. The value can be either a :class:`pyspark.sql.types.DataType` object or a DDL-formatted type string. >>> from pyspark.sql.types import IntegerType >>> spark.udf.registerJavaFunction( ... "javaStringLength", "test.org.apache.spark.sql.JavaStringLength", IntegerType()) >>> spark.sql("SELECT javaStringLength('test')").collect() [Row(UDF:javaStringLength(test)=4)] >>> spark.udf.registerJavaFunction( ... "javaStringLength2", "test.org.apache.spark.sql.JavaStringLength") >>> spark.sql("SELECT javaStringLength2('test')").collect() [Row(UDF:javaStringLength2(test)=4)] >>> spark.udf.registerJavaFunction( ... "javaStringLength3", "test.org.apache.spark.sql.JavaStringLength", "integer") >>> spark.sql("SELECT javaStringLength3('test')").collect() [Row(UDF:javaStringLength3(test)=4)] """ jdt = None if returnType is not None: if not isinstance(returnType, DataType): returnType = _parse_datatype_string(returnType) jdt = self.sparkSession._jsparkSession.parseDataType(returnType.json()) self.sparkSession._jsparkSession.udf().registerJava(name, javaClassName, jdt)
[ "def", "registerJavaFunction", "(", "self", ",", "name", ",", "javaClassName", ",", "returnType", "=", "None", ")", ":", "jdt", "=", "None", "if", "returnType", "is", "not", "None", ":", "if", "not", "isinstance", "(", "returnType", ",", "DataType", ")", ":", "returnType", "=", "_parse_datatype_string", "(", "returnType", ")", "jdt", "=", "self", ".", "sparkSession", ".", "_jsparkSession", ".", "parseDataType", "(", "returnType", ".", "json", "(", ")", ")", "self", ".", "sparkSession", ".", "_jsparkSession", ".", "udf", "(", ")", ".", "registerJava", "(", "name", ",", "javaClassName", ",", "jdt", ")" ]
Register a Java user-defined function as a SQL function. In addition to a name and the function itself, the return type can be optionally specified. When the return type is not specified we would infer it via reflection. :param name: name of the user-defined function :param javaClassName: fully qualified name of java class :param returnType: the return type of the registered Java function. The value can be either a :class:`pyspark.sql.types.DataType` object or a DDL-formatted type string. >>> from pyspark.sql.types import IntegerType >>> spark.udf.registerJavaFunction( ... "javaStringLength", "test.org.apache.spark.sql.JavaStringLength", IntegerType()) >>> spark.sql("SELECT javaStringLength('test')").collect() [Row(UDF:javaStringLength(test)=4)] >>> spark.udf.registerJavaFunction( ... "javaStringLength2", "test.org.apache.spark.sql.JavaStringLength") >>> spark.sql("SELECT javaStringLength2('test')").collect() [Row(UDF:javaStringLength2(test)=4)] >>> spark.udf.registerJavaFunction( ... "javaStringLength3", "test.org.apache.spark.sql.JavaStringLength", "integer") >>> spark.sql("SELECT javaStringLength3('test')").collect() [Row(UDF:javaStringLength3(test)=4)]
[ "Register", "a", "Java", "user", "-", "defined", "function", "as", "a", "SQL", "function", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/udf.py#L345-L378
19,352
apache/spark
python/pyspark/sql/udf.py
UDFRegistration.registerJavaUDAF
def registerJavaUDAF(self, name, javaClassName): """Register a Java user-defined aggregate function as a SQL function. :param name: name of the user-defined aggregate function :param javaClassName: fully qualified name of java class >>> spark.udf.registerJavaUDAF("javaUDAF", "test.org.apache.spark.sql.MyDoubleAvg") >>> df = spark.createDataFrame([(1, "a"),(2, "b"), (3, "a")],["id", "name"]) >>> df.createOrReplaceTempView("df") >>> spark.sql("SELECT name, javaUDAF(id) as avg from df group by name").collect() [Row(name=u'b', avg=102.0), Row(name=u'a', avg=102.0)] """ self.sparkSession._jsparkSession.udf().registerJavaUDAF(name, javaClassName)
python
def registerJavaUDAF(self, name, javaClassName): """Register a Java user-defined aggregate function as a SQL function. :param name: name of the user-defined aggregate function :param javaClassName: fully qualified name of java class >>> spark.udf.registerJavaUDAF("javaUDAF", "test.org.apache.spark.sql.MyDoubleAvg") >>> df = spark.createDataFrame([(1, "a"),(2, "b"), (3, "a")],["id", "name"]) >>> df.createOrReplaceTempView("df") >>> spark.sql("SELECT name, javaUDAF(id) as avg from df group by name").collect() [Row(name=u'b', avg=102.0), Row(name=u'a', avg=102.0)] """ self.sparkSession._jsparkSession.udf().registerJavaUDAF(name, javaClassName)
[ "def", "registerJavaUDAF", "(", "self", ",", "name", ",", "javaClassName", ")", ":", "self", ".", "sparkSession", ".", "_jsparkSession", ".", "udf", "(", ")", ".", "registerJavaUDAF", "(", "name", ",", "javaClassName", ")" ]
Register a Java user-defined aggregate function as a SQL function. :param name: name of the user-defined aggregate function :param javaClassName: fully qualified name of java class >>> spark.udf.registerJavaUDAF("javaUDAF", "test.org.apache.spark.sql.MyDoubleAvg") >>> df = spark.createDataFrame([(1, "a"),(2, "b"), (3, "a")],["id", "name"]) >>> df.createOrReplaceTempView("df") >>> spark.sql("SELECT name, javaUDAF(id) as avg from df group by name").collect() [Row(name=u'b', avg=102.0), Row(name=u'a', avg=102.0)]
[ "Register", "a", "Java", "user", "-", "defined", "aggregate", "function", "as", "a", "SQL", "function", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/udf.py#L382-L395
19,353
apache/spark
python/pyspark/streaming/context.py
StreamingContext.getOrCreate
def getOrCreate(cls, checkpointPath, setupFunc): """ Either recreate a StreamingContext from checkpoint data or create a new StreamingContext. If checkpoint data exists in the provided `checkpointPath`, then StreamingContext will be recreated from the checkpoint data. If the data does not exist, then the provided setupFunc will be used to create a new context. @param checkpointPath: Checkpoint directory used in an earlier streaming program @param setupFunc: Function to create a new context and setup DStreams """ cls._ensure_initialized() gw = SparkContext._gateway # Check whether valid checkpoint information exists in the given path ssc_option = gw.jvm.StreamingContextPythonHelper().tryRecoverFromCheckpoint(checkpointPath) if ssc_option.isEmpty(): ssc = setupFunc() ssc.checkpoint(checkpointPath) return ssc jssc = gw.jvm.JavaStreamingContext(ssc_option.get()) # If there is already an active instance of Python SparkContext use it, or create a new one if not SparkContext._active_spark_context: jsc = jssc.sparkContext() conf = SparkConf(_jconf=jsc.getConf()) SparkContext(conf=conf, gateway=gw, jsc=jsc) sc = SparkContext._active_spark_context # update ctx in serializer cls._transformerSerializer.ctx = sc return StreamingContext(sc, None, jssc)
python
def getOrCreate(cls, checkpointPath, setupFunc): """ Either recreate a StreamingContext from checkpoint data or create a new StreamingContext. If checkpoint data exists in the provided `checkpointPath`, then StreamingContext will be recreated from the checkpoint data. If the data does not exist, then the provided setupFunc will be used to create a new context. @param checkpointPath: Checkpoint directory used in an earlier streaming program @param setupFunc: Function to create a new context and setup DStreams """ cls._ensure_initialized() gw = SparkContext._gateway # Check whether valid checkpoint information exists in the given path ssc_option = gw.jvm.StreamingContextPythonHelper().tryRecoverFromCheckpoint(checkpointPath) if ssc_option.isEmpty(): ssc = setupFunc() ssc.checkpoint(checkpointPath) return ssc jssc = gw.jvm.JavaStreamingContext(ssc_option.get()) # If there is already an active instance of Python SparkContext use it, or create a new one if not SparkContext._active_spark_context: jsc = jssc.sparkContext() conf = SparkConf(_jconf=jsc.getConf()) SparkContext(conf=conf, gateway=gw, jsc=jsc) sc = SparkContext._active_spark_context # update ctx in serializer cls._transformerSerializer.ctx = sc return StreamingContext(sc, None, jssc)
[ "def", "getOrCreate", "(", "cls", ",", "checkpointPath", ",", "setupFunc", ")", ":", "cls", ".", "_ensure_initialized", "(", ")", "gw", "=", "SparkContext", ".", "_gateway", "# Check whether valid checkpoint information exists in the given path", "ssc_option", "=", "gw", ".", "jvm", ".", "StreamingContextPythonHelper", "(", ")", ".", "tryRecoverFromCheckpoint", "(", "checkpointPath", ")", "if", "ssc_option", ".", "isEmpty", "(", ")", ":", "ssc", "=", "setupFunc", "(", ")", "ssc", ".", "checkpoint", "(", "checkpointPath", ")", "return", "ssc", "jssc", "=", "gw", ".", "jvm", ".", "JavaStreamingContext", "(", "ssc_option", ".", "get", "(", ")", ")", "# If there is already an active instance of Python SparkContext use it, or create a new one", "if", "not", "SparkContext", ".", "_active_spark_context", ":", "jsc", "=", "jssc", ".", "sparkContext", "(", ")", "conf", "=", "SparkConf", "(", "_jconf", "=", "jsc", ".", "getConf", "(", ")", ")", "SparkContext", "(", "conf", "=", "conf", ",", "gateway", "=", "gw", ",", "jsc", "=", "jsc", ")", "sc", "=", "SparkContext", ".", "_active_spark_context", "# update ctx in serializer", "cls", ".", "_transformerSerializer", ".", "ctx", "=", "sc", "return", "StreamingContext", "(", "sc", ",", "None", ",", "jssc", ")" ]
Either recreate a StreamingContext from checkpoint data or create a new StreamingContext. If checkpoint data exists in the provided `checkpointPath`, then StreamingContext will be recreated from the checkpoint data. If the data does not exist, then the provided setupFunc will be used to create a new context. @param checkpointPath: Checkpoint directory used in an earlier streaming program @param setupFunc: Function to create a new context and setup DStreams
[ "Either", "recreate", "a", "StreamingContext", "from", "checkpoint", "data", "or", "create", "a", "new", "StreamingContext", ".", "If", "checkpoint", "data", "exists", "in", "the", "provided", "checkpointPath", "then", "StreamingContext", "will", "be", "recreated", "from", "the", "checkpoint", "data", ".", "If", "the", "data", "does", "not", "exist", "then", "the", "provided", "setupFunc", "will", "be", "used", "to", "create", "a", "new", "context", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/context.py#L88-L120
19,354
apache/spark
python/pyspark/streaming/context.py
StreamingContext.awaitTermination
def awaitTermination(self, timeout=None): """ Wait for the execution to stop. @param timeout: time to wait in seconds """ if timeout is None: self._jssc.awaitTermination() else: self._jssc.awaitTerminationOrTimeout(int(timeout * 1000))
python
def awaitTermination(self, timeout=None): """ Wait for the execution to stop. @param timeout: time to wait in seconds """ if timeout is None: self._jssc.awaitTermination() else: self._jssc.awaitTerminationOrTimeout(int(timeout * 1000))
[ "def", "awaitTermination", "(", "self", ",", "timeout", "=", "None", ")", ":", "if", "timeout", "is", "None", ":", "self", ".", "_jssc", ".", "awaitTermination", "(", ")", "else", ":", "self", ".", "_jssc", ".", "awaitTerminationOrTimeout", "(", "int", "(", "timeout", "*", "1000", ")", ")" ]
Wait for the execution to stop. @param timeout: time to wait in seconds
[ "Wait", "for", "the", "execution", "to", "stop", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/context.py#L182-L191
19,355
apache/spark
python/pyspark/streaming/context.py
StreamingContext.stop
def stop(self, stopSparkContext=True, stopGraceFully=False): """ Stop the execution of the streams, with option of ensuring all received data has been processed. @param stopSparkContext: Stop the associated SparkContext or not @param stopGracefully: Stop gracefully by waiting for the processing of all received data to be completed """ self._jssc.stop(stopSparkContext, stopGraceFully) StreamingContext._activeContext = None if stopSparkContext: self._sc.stop()
python
def stop(self, stopSparkContext=True, stopGraceFully=False): """ Stop the execution of the streams, with option of ensuring all received data has been processed. @param stopSparkContext: Stop the associated SparkContext or not @param stopGracefully: Stop gracefully by waiting for the processing of all received data to be completed """ self._jssc.stop(stopSparkContext, stopGraceFully) StreamingContext._activeContext = None if stopSparkContext: self._sc.stop()
[ "def", "stop", "(", "self", ",", "stopSparkContext", "=", "True", ",", "stopGraceFully", "=", "False", ")", ":", "self", ".", "_jssc", ".", "stop", "(", "stopSparkContext", ",", "stopGraceFully", ")", "StreamingContext", ".", "_activeContext", "=", "None", "if", "stopSparkContext", ":", "self", ".", "_sc", ".", "stop", "(", ")" ]
Stop the execution of the streams, with option of ensuring all received data has been processed. @param stopSparkContext: Stop the associated SparkContext or not @param stopGracefully: Stop gracefully by waiting for the processing of all received data to be completed
[ "Stop", "the", "execution", "of", "the", "streams", "with", "option", "of", "ensuring", "all", "received", "data", "has", "been", "processed", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/context.py#L203-L215
19,356
apache/spark
python/pyspark/streaming/context.py
StreamingContext.textFileStream
def textFileStream(self, directory): """ Create an input stream that monitors a Hadoop-compatible file system for new files and reads them as text files. Files must be wrriten to the monitored directory by "moving" them from another location within the same file system. File names starting with . are ignored. The text files must be encoded as UTF-8. """ return DStream(self._jssc.textFileStream(directory), self, UTF8Deserializer())
python
def textFileStream(self, directory): """ Create an input stream that monitors a Hadoop-compatible file system for new files and reads them as text files. Files must be wrriten to the monitored directory by "moving" them from another location within the same file system. File names starting with . are ignored. The text files must be encoded as UTF-8. """ return DStream(self._jssc.textFileStream(directory), self, UTF8Deserializer())
[ "def", "textFileStream", "(", "self", ",", "directory", ")", ":", "return", "DStream", "(", "self", ".", "_jssc", ".", "textFileStream", "(", "directory", ")", ",", "self", ",", "UTF8Deserializer", "(", ")", ")" ]
Create an input stream that monitors a Hadoop-compatible file system for new files and reads them as text files. Files must be wrriten to the monitored directory by "moving" them from another location within the same file system. File names starting with . are ignored. The text files must be encoded as UTF-8.
[ "Create", "an", "input", "stream", "that", "monitors", "a", "Hadoop", "-", "compatible", "file", "system", "for", "new", "files", "and", "reads", "them", "as", "text", "files", ".", "Files", "must", "be", "wrriten", "to", "the", "monitored", "directory", "by", "moving", "them", "from", "another", "location", "within", "the", "same", "file", "system", ".", "File", "names", "starting", "with", ".", "are", "ignored", ".", "The", "text", "files", "must", "be", "encoded", "as", "UTF", "-", "8", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/context.py#L255-L263
19,357
apache/spark
python/pyspark/streaming/context.py
StreamingContext.binaryRecordsStream
def binaryRecordsStream(self, directory, recordLength): """ Create an input stream that monitors a Hadoop-compatible file system for new files and reads them as flat binary files with records of fixed length. Files must be written to the monitored directory by "moving" them from another location within the same file system. File names starting with . are ignored. @param directory: Directory to load data from @param recordLength: Length of each record in bytes """ return DStream(self._jssc.binaryRecordsStream(directory, recordLength), self, NoOpSerializer())
python
def binaryRecordsStream(self, directory, recordLength): """ Create an input stream that monitors a Hadoop-compatible file system for new files and reads them as flat binary files with records of fixed length. Files must be written to the monitored directory by "moving" them from another location within the same file system. File names starting with . are ignored. @param directory: Directory to load data from @param recordLength: Length of each record in bytes """ return DStream(self._jssc.binaryRecordsStream(directory, recordLength), self, NoOpSerializer())
[ "def", "binaryRecordsStream", "(", "self", ",", "directory", ",", "recordLength", ")", ":", "return", "DStream", "(", "self", ".", "_jssc", ".", "binaryRecordsStream", "(", "directory", ",", "recordLength", ")", ",", "self", ",", "NoOpSerializer", "(", ")", ")" ]
Create an input stream that monitors a Hadoop-compatible file system for new files and reads them as flat binary files with records of fixed length. Files must be written to the monitored directory by "moving" them from another location within the same file system. File names starting with . are ignored. @param directory: Directory to load data from @param recordLength: Length of each record in bytes
[ "Create", "an", "input", "stream", "that", "monitors", "a", "Hadoop", "-", "compatible", "file", "system", "for", "new", "files", "and", "reads", "them", "as", "flat", "binary", "files", "with", "records", "of", "fixed", "length", ".", "Files", "must", "be", "written", "to", "the", "monitored", "directory", "by", "moving", "them", "from", "another", "location", "within", "the", "same", "file", "system", ".", "File", "names", "starting", "with", ".", "are", "ignored", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/context.py#L265-L277
19,358
apache/spark
python/pyspark/streaming/context.py
StreamingContext.queueStream
def queueStream(self, rdds, oneAtATime=True, default=None): """ Create an input stream from a queue of RDDs or list. In each batch, it will process either one or all of the RDDs returned by the queue. .. note:: Changes to the queue after the stream is created will not be recognized. @param rdds: Queue of RDDs @param oneAtATime: pick one rdd each time or pick all of them once. @param default: The default rdd if no more in rdds """ if default and not isinstance(default, RDD): default = self._sc.parallelize(default) if not rdds and default: rdds = [rdds] if rdds and not isinstance(rdds[0], RDD): rdds = [self._sc.parallelize(input) for input in rdds] self._check_serializers(rdds) queue = self._jvm.PythonDStream.toRDDQueue([r._jrdd for r in rdds]) if default: default = default._reserialize(rdds[0]._jrdd_deserializer) jdstream = self._jssc.queueStream(queue, oneAtATime, default._jrdd) else: jdstream = self._jssc.queueStream(queue, oneAtATime) return DStream(jdstream, self, rdds[0]._jrdd_deserializer)
python
def queueStream(self, rdds, oneAtATime=True, default=None): """ Create an input stream from a queue of RDDs or list. In each batch, it will process either one or all of the RDDs returned by the queue. .. note:: Changes to the queue after the stream is created will not be recognized. @param rdds: Queue of RDDs @param oneAtATime: pick one rdd each time or pick all of them once. @param default: The default rdd if no more in rdds """ if default and not isinstance(default, RDD): default = self._sc.parallelize(default) if not rdds and default: rdds = [rdds] if rdds and not isinstance(rdds[0], RDD): rdds = [self._sc.parallelize(input) for input in rdds] self._check_serializers(rdds) queue = self._jvm.PythonDStream.toRDDQueue([r._jrdd for r in rdds]) if default: default = default._reserialize(rdds[0]._jrdd_deserializer) jdstream = self._jssc.queueStream(queue, oneAtATime, default._jrdd) else: jdstream = self._jssc.queueStream(queue, oneAtATime) return DStream(jdstream, self, rdds[0]._jrdd_deserializer)
[ "def", "queueStream", "(", "self", ",", "rdds", ",", "oneAtATime", "=", "True", ",", "default", "=", "None", ")", ":", "if", "default", "and", "not", "isinstance", "(", "default", ",", "RDD", ")", ":", "default", "=", "self", ".", "_sc", ".", "parallelize", "(", "default", ")", "if", "not", "rdds", "and", "default", ":", "rdds", "=", "[", "rdds", "]", "if", "rdds", "and", "not", "isinstance", "(", "rdds", "[", "0", "]", ",", "RDD", ")", ":", "rdds", "=", "[", "self", ".", "_sc", ".", "parallelize", "(", "input", ")", "for", "input", "in", "rdds", "]", "self", ".", "_check_serializers", "(", "rdds", ")", "queue", "=", "self", ".", "_jvm", ".", "PythonDStream", ".", "toRDDQueue", "(", "[", "r", ".", "_jrdd", "for", "r", "in", "rdds", "]", ")", "if", "default", ":", "default", "=", "default", ".", "_reserialize", "(", "rdds", "[", "0", "]", ".", "_jrdd_deserializer", ")", "jdstream", "=", "self", ".", "_jssc", ".", "queueStream", "(", "queue", ",", "oneAtATime", ",", "default", ".", "_jrdd", ")", "else", ":", "jdstream", "=", "self", ".", "_jssc", ".", "queueStream", "(", "queue", ",", "oneAtATime", ")", "return", "DStream", "(", "jdstream", ",", "self", ",", "rdds", "[", "0", "]", ".", "_jrdd_deserializer", ")" ]
Create an input stream from a queue of RDDs or list. In each batch, it will process either one or all of the RDDs returned by the queue. .. note:: Changes to the queue after the stream is created will not be recognized. @param rdds: Queue of RDDs @param oneAtATime: pick one rdd each time or pick all of them once. @param default: The default rdd if no more in rdds
[ "Create", "an", "input", "stream", "from", "a", "queue", "of", "RDDs", "or", "list", ".", "In", "each", "batch", "it", "will", "process", "either", "one", "or", "all", "of", "the", "RDDs", "returned", "by", "the", "queue", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/context.py#L286-L313
19,359
apache/spark
python/pyspark/streaming/context.py
StreamingContext.transform
def transform(self, dstreams, transformFunc): """ Create a new DStream in which each RDD is generated by applying a function on RDDs of the DStreams. The order of the JavaRDDs in the transform function parameter will be the same as the order of corresponding DStreams in the list. """ jdstreams = [d._jdstream for d in dstreams] # change the final serializer to sc.serializer func = TransformFunction(self._sc, lambda t, *rdds: transformFunc(rdds), *[d._jrdd_deserializer for d in dstreams]) jfunc = self._jvm.TransformFunction(func) jdstream = self._jssc.transform(jdstreams, jfunc) return DStream(jdstream, self, self._sc.serializer)
python
def transform(self, dstreams, transformFunc): """ Create a new DStream in which each RDD is generated by applying a function on RDDs of the DStreams. The order of the JavaRDDs in the transform function parameter will be the same as the order of corresponding DStreams in the list. """ jdstreams = [d._jdstream for d in dstreams] # change the final serializer to sc.serializer func = TransformFunction(self._sc, lambda t, *rdds: transformFunc(rdds), *[d._jrdd_deserializer for d in dstreams]) jfunc = self._jvm.TransformFunction(func) jdstream = self._jssc.transform(jdstreams, jfunc) return DStream(jdstream, self, self._sc.serializer)
[ "def", "transform", "(", "self", ",", "dstreams", ",", "transformFunc", ")", ":", "jdstreams", "=", "[", "d", ".", "_jdstream", "for", "d", "in", "dstreams", "]", "# change the final serializer to sc.serializer", "func", "=", "TransformFunction", "(", "self", ".", "_sc", ",", "lambda", "t", ",", "*", "rdds", ":", "transformFunc", "(", "rdds", ")", ",", "*", "[", "d", ".", "_jrdd_deserializer", "for", "d", "in", "dstreams", "]", ")", "jfunc", "=", "self", ".", "_jvm", ".", "TransformFunction", "(", "func", ")", "jdstream", "=", "self", ".", "_jssc", ".", "transform", "(", "jdstreams", ",", "jfunc", ")", "return", "DStream", "(", "jdstream", ",", "self", ",", "self", ".", "_sc", ".", "serializer", ")" ]
Create a new DStream in which each RDD is generated by applying a function on RDDs of the DStreams. The order of the JavaRDDs in the transform function parameter will be the same as the order of corresponding DStreams in the list.
[ "Create", "a", "new", "DStream", "in", "which", "each", "RDD", "is", "generated", "by", "applying", "a", "function", "on", "RDDs", "of", "the", "DStreams", ".", "The", "order", "of", "the", "JavaRDDs", "in", "the", "transform", "function", "parameter", "will", "be", "the", "same", "as", "the", "order", "of", "corresponding", "DStreams", "in", "the", "list", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/context.py#L315-L329
19,360
apache/spark
python/pyspark/streaming/context.py
StreamingContext.union
def union(self, *dstreams): """ Create a unified DStream from multiple DStreams of the same type and same slide duration. """ if not dstreams: raise ValueError("should have at least one DStream to union") if len(dstreams) == 1: return dstreams[0] if len(set(s._jrdd_deserializer for s in dstreams)) > 1: raise ValueError("All DStreams should have same serializer") if len(set(s._slideDuration for s in dstreams)) > 1: raise ValueError("All DStreams should have same slide duration") cls = SparkContext._jvm.org.apache.spark.streaming.api.java.JavaDStream jdstreams = SparkContext._gateway.new_array(cls, len(dstreams)) for i in range(0, len(dstreams)): jdstreams[i] = dstreams[i]._jdstream return DStream(self._jssc.union(jdstreams), self, dstreams[0]._jrdd_deserializer)
python
def union(self, *dstreams): """ Create a unified DStream from multiple DStreams of the same type and same slide duration. """ if not dstreams: raise ValueError("should have at least one DStream to union") if len(dstreams) == 1: return dstreams[0] if len(set(s._jrdd_deserializer for s in dstreams)) > 1: raise ValueError("All DStreams should have same serializer") if len(set(s._slideDuration for s in dstreams)) > 1: raise ValueError("All DStreams should have same slide duration") cls = SparkContext._jvm.org.apache.spark.streaming.api.java.JavaDStream jdstreams = SparkContext._gateway.new_array(cls, len(dstreams)) for i in range(0, len(dstreams)): jdstreams[i] = dstreams[i]._jdstream return DStream(self._jssc.union(jdstreams), self, dstreams[0]._jrdd_deserializer)
[ "def", "union", "(", "self", ",", "*", "dstreams", ")", ":", "if", "not", "dstreams", ":", "raise", "ValueError", "(", "\"should have at least one DStream to union\"", ")", "if", "len", "(", "dstreams", ")", "==", "1", ":", "return", "dstreams", "[", "0", "]", "if", "len", "(", "set", "(", "s", ".", "_jrdd_deserializer", "for", "s", "in", "dstreams", ")", ")", ">", "1", ":", "raise", "ValueError", "(", "\"All DStreams should have same serializer\"", ")", "if", "len", "(", "set", "(", "s", ".", "_slideDuration", "for", "s", "in", "dstreams", ")", ")", ">", "1", ":", "raise", "ValueError", "(", "\"All DStreams should have same slide duration\"", ")", "cls", "=", "SparkContext", ".", "_jvm", ".", "org", ".", "apache", ".", "spark", ".", "streaming", ".", "api", ".", "java", ".", "JavaDStream", "jdstreams", "=", "SparkContext", ".", "_gateway", ".", "new_array", "(", "cls", ",", "len", "(", "dstreams", ")", ")", "for", "i", "in", "range", "(", "0", ",", "len", "(", "dstreams", ")", ")", ":", "jdstreams", "[", "i", "]", "=", "dstreams", "[", "i", "]", ".", "_jdstream", "return", "DStream", "(", "self", ".", "_jssc", ".", "union", "(", "jdstreams", ")", ",", "self", ",", "dstreams", "[", "0", "]", ".", "_jrdd_deserializer", ")" ]
Create a unified DStream from multiple DStreams of the same type and same slide duration.
[ "Create", "a", "unified", "DStream", "from", "multiple", "DStreams", "of", "the", "same", "type", "and", "same", "slide", "duration", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/context.py#L331-L348
19,361
huggingface/pytorch-pretrained-BERT
pytorch_pretrained_bert/modeling_gpt2.py
GPT2Config.from_json_file
def from_json_file(cls, json_file): """Constructs a `GPT2Config` from a json file of parameters.""" with open(json_file, "r", encoding="utf-8") as reader: text = reader.read() return cls.from_dict(json.loads(text))
python
def from_json_file(cls, json_file): """Constructs a `GPT2Config` from a json file of parameters.""" with open(json_file, "r", encoding="utf-8") as reader: text = reader.read() return cls.from_dict(json.loads(text))
[ "def", "from_json_file", "(", "cls", ",", "json_file", ")", ":", "with", "open", "(", "json_file", ",", "\"r\"", ",", "encoding", "=", "\"utf-8\"", ")", "as", "reader", ":", "text", "=", "reader", ".", "read", "(", ")", "return", "cls", ".", "from_dict", "(", "json", ".", "loads", "(", "text", ")", ")" ]
Constructs a `GPT2Config` from a json file of parameters.
[ "Constructs", "a", "GPT2Config", "from", "a", "json", "file", "of", "parameters", "." ]
b832d5bb8a6dfc5965015b828e577677eace601e
https://github.com/huggingface/pytorch-pretrained-BERT/blob/b832d5bb8a6dfc5965015b828e577677eace601e/pytorch_pretrained_bert/modeling_gpt2.py#L162-L166
19,362
huggingface/pytorch-pretrained-BERT
pytorch_pretrained_bert/modeling_gpt2.py
GPT2Config.to_json_file
def to_json_file(self, json_file_path): """ Save this instance to a json file.""" with open(json_file_path, "w", encoding='utf-8') as writer: writer.write(self.to_json_string())
python
def to_json_file(self, json_file_path): """ Save this instance to a json file.""" with open(json_file_path, "w", encoding='utf-8') as writer: writer.write(self.to_json_string())
[ "def", "to_json_file", "(", "self", ",", "json_file_path", ")", ":", "with", "open", "(", "json_file_path", ",", "\"w\"", ",", "encoding", "=", "'utf-8'", ")", "as", "writer", ":", "writer", ".", "write", "(", "self", ".", "to_json_string", "(", ")", ")" ]
Save this instance to a json file.
[ "Save", "this", "instance", "to", "a", "json", "file", "." ]
b832d5bb8a6dfc5965015b828e577677eace601e
https://github.com/huggingface/pytorch-pretrained-BERT/blob/b832d5bb8a6dfc5965015b828e577677eace601e/pytorch_pretrained_bert/modeling_gpt2.py#L180-L183
19,363
huggingface/pytorch-pretrained-BERT
examples/extract_features.py
convert_examples_to_features
def convert_examples_to_features(examples, seq_length, tokenizer): """Loads a data file into a list of `InputFeature`s.""" features = [] for (ex_index, example) in enumerate(examples): tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) if tokens_b: # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" _truncate_seq_pair(tokens_a, tokens_b, seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > seq_length - 2: tokens_a = tokens_a[0:(seq_length - 2)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambigiously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = [] input_type_ids = [] tokens.append("[CLS]") input_type_ids.append(0) for token in tokens_a: tokens.append(token) input_type_ids.append(0) tokens.append("[SEP]") input_type_ids.append(0) if tokens_b: for token in tokens_b: tokens.append(token) input_type_ids.append(1) tokens.append("[SEP]") input_type_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < seq_length: input_ids.append(0) input_mask.append(0) input_type_ids.append(0) assert len(input_ids) == seq_length assert len(input_mask) == seq_length assert len(input_type_ids) == seq_length if ex_index < 5: logger.info("*** Example ***") logger.info("unique_id: %s" % (example.unique_id)) logger.info("tokens: %s" % " ".join([str(x) for x in tokens])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) logger.info( "input_type_ids: %s" % " ".join([str(x) for x in input_type_ids])) features.append( InputFeatures( unique_id=example.unique_id, tokens=tokens, input_ids=input_ids, input_mask=input_mask, input_type_ids=input_type_ids)) return features
python
def convert_examples_to_features(examples, seq_length, tokenizer): """Loads a data file into a list of `InputFeature`s.""" features = [] for (ex_index, example) in enumerate(examples): tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) if tokens_b: # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" _truncate_seq_pair(tokens_a, tokens_b, seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > seq_length - 2: tokens_a = tokens_a[0:(seq_length - 2)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambigiously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = [] input_type_ids = [] tokens.append("[CLS]") input_type_ids.append(0) for token in tokens_a: tokens.append(token) input_type_ids.append(0) tokens.append("[SEP]") input_type_ids.append(0) if tokens_b: for token in tokens_b: tokens.append(token) input_type_ids.append(1) tokens.append("[SEP]") input_type_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < seq_length: input_ids.append(0) input_mask.append(0) input_type_ids.append(0) assert len(input_ids) == seq_length assert len(input_mask) == seq_length assert len(input_type_ids) == seq_length if ex_index < 5: logger.info("*** Example ***") logger.info("unique_id: %s" % (example.unique_id)) logger.info("tokens: %s" % " ".join([str(x) for x in tokens])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) logger.info( "input_type_ids: %s" % " ".join([str(x) for x in input_type_ids])) features.append( InputFeatures( unique_id=example.unique_id, tokens=tokens, input_ids=input_ids, input_mask=input_mask, input_type_ids=input_type_ids)) return features
[ "def", "convert_examples_to_features", "(", "examples", ",", "seq_length", ",", "tokenizer", ")", ":", "features", "=", "[", "]", "for", "(", "ex_index", ",", "example", ")", "in", "enumerate", "(", "examples", ")", ":", "tokens_a", "=", "tokenizer", ".", "tokenize", "(", "example", ".", "text_a", ")", "tokens_b", "=", "None", "if", "example", ".", "text_b", ":", "tokens_b", "=", "tokenizer", ".", "tokenize", "(", "example", ".", "text_b", ")", "if", "tokens_b", ":", "# Modifies `tokens_a` and `tokens_b` in place so that the total", "# length is less than the specified length.", "# Account for [CLS], [SEP], [SEP] with \"- 3\"", "_truncate_seq_pair", "(", "tokens_a", ",", "tokens_b", ",", "seq_length", "-", "3", ")", "else", ":", "# Account for [CLS] and [SEP] with \"- 2\"", "if", "len", "(", "tokens_a", ")", ">", "seq_length", "-", "2", ":", "tokens_a", "=", "tokens_a", "[", "0", ":", "(", "seq_length", "-", "2", ")", "]", "# The convention in BERT is:", "# (a) For sequence pairs:", "# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]", "# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1", "# (b) For single sequences:", "# tokens: [CLS] the dog is hairy . [SEP]", "# type_ids: 0 0 0 0 0 0 0", "#", "# Where \"type_ids\" are used to indicate whether this is the first", "# sequence or the second sequence. The embedding vectors for `type=0` and", "# `type=1` were learned during pre-training and are added to the wordpiece", "# embedding vector (and position vector). This is not *strictly* necessary", "# since the [SEP] token unambigiously separates the sequences, but it makes", "# it easier for the model to learn the concept of sequences.", "#", "# For classification tasks, the first vector (corresponding to [CLS]) is", "# used as as the \"sentence vector\". Note that this only makes sense because", "# the entire model is fine-tuned.", "tokens", "=", "[", "]", "input_type_ids", "=", "[", "]", "tokens", ".", "append", "(", "\"[CLS]\"", ")", "input_type_ids", ".", "append", "(", "0", ")", "for", "token", "in", "tokens_a", ":", "tokens", ".", "append", "(", "token", ")", "input_type_ids", ".", "append", "(", "0", ")", "tokens", ".", "append", "(", "\"[SEP]\"", ")", "input_type_ids", ".", "append", "(", "0", ")", "if", "tokens_b", ":", "for", "token", "in", "tokens_b", ":", "tokens", ".", "append", "(", "token", ")", "input_type_ids", ".", "append", "(", "1", ")", "tokens", ".", "append", "(", "\"[SEP]\"", ")", "input_type_ids", ".", "append", "(", "1", ")", "input_ids", "=", "tokenizer", ".", "convert_tokens_to_ids", "(", "tokens", ")", "# The mask has 1 for real tokens and 0 for padding tokens. Only real", "# tokens are attended to.", "input_mask", "=", "[", "1", "]", "*", "len", "(", "input_ids", ")", "# Zero-pad up to the sequence length.", "while", "len", "(", "input_ids", ")", "<", "seq_length", ":", "input_ids", ".", "append", "(", "0", ")", "input_mask", ".", "append", "(", "0", ")", "input_type_ids", ".", "append", "(", "0", ")", "assert", "len", "(", "input_ids", ")", "==", "seq_length", "assert", "len", "(", "input_mask", ")", "==", "seq_length", "assert", "len", "(", "input_type_ids", ")", "==", "seq_length", "if", "ex_index", "<", "5", ":", "logger", ".", "info", "(", "\"*** Example ***\"", ")", "logger", ".", "info", "(", "\"unique_id: %s\"", "%", "(", "example", ".", "unique_id", ")", ")", "logger", ".", "info", "(", "\"tokens: %s\"", "%", "\" \"", ".", "join", "(", "[", "str", "(", "x", ")", "for", "x", "in", "tokens", "]", ")", ")", "logger", ".", "info", "(", "\"input_ids: %s\"", "%", "\" \"", ".", "join", "(", "[", "str", "(", "x", ")", "for", "x", "in", "input_ids", "]", ")", ")", "logger", ".", "info", "(", "\"input_mask: %s\"", "%", "\" \"", ".", "join", "(", "[", "str", "(", "x", ")", "for", "x", "in", "input_mask", "]", ")", ")", "logger", ".", "info", "(", "\"input_type_ids: %s\"", "%", "\" \"", ".", "join", "(", "[", "str", "(", "x", ")", "for", "x", "in", "input_type_ids", "]", ")", ")", "features", ".", "append", "(", "InputFeatures", "(", "unique_id", "=", "example", ".", "unique_id", ",", "tokens", "=", "tokens", ",", "input_ids", "=", "input_ids", ",", "input_mask", "=", "input_mask", ",", "input_type_ids", "=", "input_type_ids", ")", ")", "return", "features" ]
Loads a data file into a list of `InputFeature`s.
[ "Loads", "a", "data", "file", "into", "a", "list", "of", "InputFeature", "s", "." ]
b832d5bb8a6dfc5965015b828e577677eace601e
https://github.com/huggingface/pytorch-pretrained-BERT/blob/b832d5bb8a6dfc5965015b828e577677eace601e/examples/extract_features.py#L59-L147
19,364
huggingface/pytorch-pretrained-BERT
examples/extract_features.py
read_examples
def read_examples(input_file): """Read a list of `InputExample`s from an input file.""" examples = [] unique_id = 0 with open(input_file, "r", encoding='utf-8') as reader: while True: line = reader.readline() if not line: break line = line.strip() text_a = None text_b = None m = re.match(r"^(.*) \|\|\| (.*)$", line) if m is None: text_a = line else: text_a = m.group(1) text_b = m.group(2) examples.append( InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b)) unique_id += 1 return examples
python
def read_examples(input_file): """Read a list of `InputExample`s from an input file.""" examples = [] unique_id = 0 with open(input_file, "r", encoding='utf-8') as reader: while True: line = reader.readline() if not line: break line = line.strip() text_a = None text_b = None m = re.match(r"^(.*) \|\|\| (.*)$", line) if m is None: text_a = line else: text_a = m.group(1) text_b = m.group(2) examples.append( InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b)) unique_id += 1 return examples
[ "def", "read_examples", "(", "input_file", ")", ":", "examples", "=", "[", "]", "unique_id", "=", "0", "with", "open", "(", "input_file", ",", "\"r\"", ",", "encoding", "=", "'utf-8'", ")", "as", "reader", ":", "while", "True", ":", "line", "=", "reader", ".", "readline", "(", ")", "if", "not", "line", ":", "break", "line", "=", "line", ".", "strip", "(", ")", "text_a", "=", "None", "text_b", "=", "None", "m", "=", "re", ".", "match", "(", "r\"^(.*) \\|\\|\\| (.*)$\"", ",", "line", ")", "if", "m", "is", "None", ":", "text_a", "=", "line", "else", ":", "text_a", "=", "m", ".", "group", "(", "1", ")", "text_b", "=", "m", ".", "group", "(", "2", ")", "examples", ".", "append", "(", "InputExample", "(", "unique_id", "=", "unique_id", ",", "text_a", "=", "text_a", ",", "text_b", "=", "text_b", ")", ")", "unique_id", "+=", "1", "return", "examples" ]
Read a list of `InputExample`s from an input file.
[ "Read", "a", "list", "of", "InputExample", "s", "from", "an", "input", "file", "." ]
b832d5bb8a6dfc5965015b828e577677eace601e
https://github.com/huggingface/pytorch-pretrained-BERT/blob/b832d5bb8a6dfc5965015b828e577677eace601e/examples/extract_features.py#L167-L188
19,365
huggingface/pytorch-pretrained-BERT
examples/run_squad.py
read_squad_examples
def read_squad_examples(input_file, is_training, version_2_with_negative): """Read a SQuAD json file into a list of SquadExample.""" with open(input_file, "r", encoding='utf-8') as reader: input_data = json.load(reader)["data"] def is_whitespace(c): if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: return True return False examples = [] for entry in input_data: for paragraph in entry["paragraphs"]: paragraph_text = paragraph["context"] doc_tokens = [] char_to_word_offset = [] prev_is_whitespace = True for c in paragraph_text: if is_whitespace(c): prev_is_whitespace = True else: if prev_is_whitespace: doc_tokens.append(c) else: doc_tokens[-1] += c prev_is_whitespace = False char_to_word_offset.append(len(doc_tokens) - 1) for qa in paragraph["qas"]: qas_id = qa["id"] question_text = qa["question"] start_position = None end_position = None orig_answer_text = None is_impossible = False if is_training: if version_2_with_negative: is_impossible = qa["is_impossible"] if (len(qa["answers"]) != 1) and (not is_impossible): raise ValueError( "For training, each question should have exactly 1 answer.") if not is_impossible: answer = qa["answers"][0] orig_answer_text = answer["text"] answer_offset = answer["answer_start"] answer_length = len(orig_answer_text) start_position = char_to_word_offset[answer_offset] end_position = char_to_word_offset[answer_offset + answer_length - 1] # Only add answers where the text can be exactly recovered from the # document. If this CAN'T happen it's likely due to weird Unicode # stuff so we will just skip the example. # # Note that this means for training mode, every example is NOT # guaranteed to be preserved. actual_text = " ".join(doc_tokens[start_position:(end_position + 1)]) cleaned_answer_text = " ".join( whitespace_tokenize(orig_answer_text)) if actual_text.find(cleaned_answer_text) == -1: logger.warning("Could not find answer: '%s' vs. '%s'", actual_text, cleaned_answer_text) continue else: start_position = -1 end_position = -1 orig_answer_text = "" example = SquadExample( qas_id=qas_id, question_text=question_text, doc_tokens=doc_tokens, orig_answer_text=orig_answer_text, start_position=start_position, end_position=end_position, is_impossible=is_impossible) examples.append(example) return examples
python
def read_squad_examples(input_file, is_training, version_2_with_negative): """Read a SQuAD json file into a list of SquadExample.""" with open(input_file, "r", encoding='utf-8') as reader: input_data = json.load(reader)["data"] def is_whitespace(c): if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: return True return False examples = [] for entry in input_data: for paragraph in entry["paragraphs"]: paragraph_text = paragraph["context"] doc_tokens = [] char_to_word_offset = [] prev_is_whitespace = True for c in paragraph_text: if is_whitespace(c): prev_is_whitespace = True else: if prev_is_whitespace: doc_tokens.append(c) else: doc_tokens[-1] += c prev_is_whitespace = False char_to_word_offset.append(len(doc_tokens) - 1) for qa in paragraph["qas"]: qas_id = qa["id"] question_text = qa["question"] start_position = None end_position = None orig_answer_text = None is_impossible = False if is_training: if version_2_with_negative: is_impossible = qa["is_impossible"] if (len(qa["answers"]) != 1) and (not is_impossible): raise ValueError( "For training, each question should have exactly 1 answer.") if not is_impossible: answer = qa["answers"][0] orig_answer_text = answer["text"] answer_offset = answer["answer_start"] answer_length = len(orig_answer_text) start_position = char_to_word_offset[answer_offset] end_position = char_to_word_offset[answer_offset + answer_length - 1] # Only add answers where the text can be exactly recovered from the # document. If this CAN'T happen it's likely due to weird Unicode # stuff so we will just skip the example. # # Note that this means for training mode, every example is NOT # guaranteed to be preserved. actual_text = " ".join(doc_tokens[start_position:(end_position + 1)]) cleaned_answer_text = " ".join( whitespace_tokenize(orig_answer_text)) if actual_text.find(cleaned_answer_text) == -1: logger.warning("Could not find answer: '%s' vs. '%s'", actual_text, cleaned_answer_text) continue else: start_position = -1 end_position = -1 orig_answer_text = "" example = SquadExample( qas_id=qas_id, question_text=question_text, doc_tokens=doc_tokens, orig_answer_text=orig_answer_text, start_position=start_position, end_position=end_position, is_impossible=is_impossible) examples.append(example) return examples
[ "def", "read_squad_examples", "(", "input_file", ",", "is_training", ",", "version_2_with_negative", ")", ":", "with", "open", "(", "input_file", ",", "\"r\"", ",", "encoding", "=", "'utf-8'", ")", "as", "reader", ":", "input_data", "=", "json", ".", "load", "(", "reader", ")", "[", "\"data\"", "]", "def", "is_whitespace", "(", "c", ")", ":", "if", "c", "==", "\" \"", "or", "c", "==", "\"\\t\"", "or", "c", "==", "\"\\r\"", "or", "c", "==", "\"\\n\"", "or", "ord", "(", "c", ")", "==", "0x202F", ":", "return", "True", "return", "False", "examples", "=", "[", "]", "for", "entry", "in", "input_data", ":", "for", "paragraph", "in", "entry", "[", "\"paragraphs\"", "]", ":", "paragraph_text", "=", "paragraph", "[", "\"context\"", "]", "doc_tokens", "=", "[", "]", "char_to_word_offset", "=", "[", "]", "prev_is_whitespace", "=", "True", "for", "c", "in", "paragraph_text", ":", "if", "is_whitespace", "(", "c", ")", ":", "prev_is_whitespace", "=", "True", "else", ":", "if", "prev_is_whitespace", ":", "doc_tokens", ".", "append", "(", "c", ")", "else", ":", "doc_tokens", "[", "-", "1", "]", "+=", "c", "prev_is_whitespace", "=", "False", "char_to_word_offset", ".", "append", "(", "len", "(", "doc_tokens", ")", "-", "1", ")", "for", "qa", "in", "paragraph", "[", "\"qas\"", "]", ":", "qas_id", "=", "qa", "[", "\"id\"", "]", "question_text", "=", "qa", "[", "\"question\"", "]", "start_position", "=", "None", "end_position", "=", "None", "orig_answer_text", "=", "None", "is_impossible", "=", "False", "if", "is_training", ":", "if", "version_2_with_negative", ":", "is_impossible", "=", "qa", "[", "\"is_impossible\"", "]", "if", "(", "len", "(", "qa", "[", "\"answers\"", "]", ")", "!=", "1", ")", "and", "(", "not", "is_impossible", ")", ":", "raise", "ValueError", "(", "\"For training, each question should have exactly 1 answer.\"", ")", "if", "not", "is_impossible", ":", "answer", "=", "qa", "[", "\"answers\"", "]", "[", "0", "]", "orig_answer_text", "=", "answer", "[", "\"text\"", "]", "answer_offset", "=", "answer", "[", "\"answer_start\"", "]", "answer_length", "=", "len", "(", "orig_answer_text", ")", "start_position", "=", "char_to_word_offset", "[", "answer_offset", "]", "end_position", "=", "char_to_word_offset", "[", "answer_offset", "+", "answer_length", "-", "1", "]", "# Only add answers where the text can be exactly recovered from the", "# document. If this CAN'T happen it's likely due to weird Unicode", "# stuff so we will just skip the example.", "#", "# Note that this means for training mode, every example is NOT", "# guaranteed to be preserved.", "actual_text", "=", "\" \"", ".", "join", "(", "doc_tokens", "[", "start_position", ":", "(", "end_position", "+", "1", ")", "]", ")", "cleaned_answer_text", "=", "\" \"", ".", "join", "(", "whitespace_tokenize", "(", "orig_answer_text", ")", ")", "if", "actual_text", ".", "find", "(", "cleaned_answer_text", ")", "==", "-", "1", ":", "logger", ".", "warning", "(", "\"Could not find answer: '%s' vs. '%s'\"", ",", "actual_text", ",", "cleaned_answer_text", ")", "continue", "else", ":", "start_position", "=", "-", "1", "end_position", "=", "-", "1", "orig_answer_text", "=", "\"\"", "example", "=", "SquadExample", "(", "qas_id", "=", "qas_id", ",", "question_text", "=", "question_text", ",", "doc_tokens", "=", "doc_tokens", ",", "orig_answer_text", "=", "orig_answer_text", ",", "start_position", "=", "start_position", ",", "end_position", "=", "end_position", ",", "is_impossible", "=", "is_impossible", ")", "examples", ".", "append", "(", "example", ")", "return", "examples" ]
Read a SQuAD json file into a list of SquadExample.
[ "Read", "a", "SQuAD", "json", "file", "into", "a", "list", "of", "SquadExample", "." ]
b832d5bb8a6dfc5965015b828e577677eace601e
https://github.com/huggingface/pytorch-pretrained-BERT/blob/b832d5bb8a6dfc5965015b828e577677eace601e/examples/run_squad.py#L122-L197
19,366
huggingface/pytorch-pretrained-BERT
examples/run_squad.py
_improve_answer_span
def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text): """Returns tokenized answer spans that better match the annotated answer.""" # The SQuAD annotations are character based. We first project them to # whitespace-tokenized words. But then after WordPiece tokenization, we can # often find a "better match". For example: # # Question: What year was John Smith born? # Context: The leader was John Smith (1895-1943). # Answer: 1895 # # The original whitespace-tokenized answer will be "(1895-1943).". However # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match # the exact answer, 1895. # # However, this is not always possible. Consider the following: # # Question: What country is the top exporter of electornics? # Context: The Japanese electronics industry is the lagest in the world. # Answer: Japan # # In this case, the annotator chose "Japan" as a character sub-span of # the word "Japanese". Since our WordPiece tokenizer does not split # "Japanese", we just use "Japanese" as the annotation. This is fairly rare # in SQuAD, but does happen. tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) for new_start in range(input_start, input_end + 1): for new_end in range(input_end, new_start - 1, -1): text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) if text_span == tok_answer_text: return (new_start, new_end) return (input_start, input_end)
python
def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text): """Returns tokenized answer spans that better match the annotated answer.""" # The SQuAD annotations are character based. We first project them to # whitespace-tokenized words. But then after WordPiece tokenization, we can # often find a "better match". For example: # # Question: What year was John Smith born? # Context: The leader was John Smith (1895-1943). # Answer: 1895 # # The original whitespace-tokenized answer will be "(1895-1943).". However # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match # the exact answer, 1895. # # However, this is not always possible. Consider the following: # # Question: What country is the top exporter of electornics? # Context: The Japanese electronics industry is the lagest in the world. # Answer: Japan # # In this case, the annotator chose "Japan" as a character sub-span of # the word "Japanese". Since our WordPiece tokenizer does not split # "Japanese", we just use "Japanese" as the annotation. This is fairly rare # in SQuAD, but does happen. tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) for new_start in range(input_start, input_end + 1): for new_end in range(input_end, new_start - 1, -1): text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) if text_span == tok_answer_text: return (new_start, new_end) return (input_start, input_end)
[ "def", "_improve_answer_span", "(", "doc_tokens", ",", "input_start", ",", "input_end", ",", "tokenizer", ",", "orig_answer_text", ")", ":", "# The SQuAD annotations are character based. We first project them to", "# whitespace-tokenized words. But then after WordPiece tokenization, we can", "# often find a \"better match\". For example:", "#", "# Question: What year was John Smith born?", "# Context: The leader was John Smith (1895-1943).", "# Answer: 1895", "#", "# The original whitespace-tokenized answer will be \"(1895-1943).\". However", "# after tokenization, our tokens will be \"( 1895 - 1943 ) .\". So we can match", "# the exact answer, 1895.", "#", "# However, this is not always possible. Consider the following:", "#", "# Question: What country is the top exporter of electornics?", "# Context: The Japanese electronics industry is the lagest in the world.", "# Answer: Japan", "#", "# In this case, the annotator chose \"Japan\" as a character sub-span of", "# the word \"Japanese\". Since our WordPiece tokenizer does not split", "# \"Japanese\", we just use \"Japanese\" as the annotation. This is fairly rare", "# in SQuAD, but does happen.", "tok_answer_text", "=", "\" \"", ".", "join", "(", "tokenizer", ".", "tokenize", "(", "orig_answer_text", ")", ")", "for", "new_start", "in", "range", "(", "input_start", ",", "input_end", "+", "1", ")", ":", "for", "new_end", "in", "range", "(", "input_end", ",", "new_start", "-", "1", ",", "-", "1", ")", ":", "text_span", "=", "\" \"", ".", "join", "(", "doc_tokens", "[", "new_start", ":", "(", "new_end", "+", "1", ")", "]", ")", "if", "text_span", "==", "tok_answer_text", ":", "return", "(", "new_start", ",", "new_end", ")", "return", "(", "input_start", ",", "input_end", ")" ]
Returns tokenized answer spans that better match the annotated answer.
[ "Returns", "tokenized", "answer", "spans", "that", "better", "match", "the", "annotated", "answer", "." ]
b832d5bb8a6dfc5965015b828e577677eace601e
https://github.com/huggingface/pytorch-pretrained-BERT/blob/b832d5bb8a6dfc5965015b828e577677eace601e/examples/run_squad.py#L363-L397
19,367
huggingface/pytorch-pretrained-BERT
examples/run_squad.py
_check_is_max_context
def _check_is_max_context(doc_spans, cur_span_index, position): """Check if this is the 'max context' doc span for the token.""" # Because of the sliding window approach taken to scoring documents, a single # token can appear in multiple documents. E.g. # Doc: the man went to the store and bought a gallon of milk # Span A: the man went to the # Span B: to the store and bought # Span C: and bought a gallon of # ... # # Now the word 'bought' will have two scores from spans B and C. We only # want to consider the score with "maximum context", which we define as # the *minimum* of its left and right context (the *sum* of left and # right context will always be the same, of course). # # In the example the maximum context for 'bought' would be span C since # it has 1 left context and 3 right context, while span B has 4 left context # and 0 right context. best_score = None best_span_index = None for (span_index, doc_span) in enumerate(doc_spans): end = doc_span.start + doc_span.length - 1 if position < doc_span.start: continue if position > end: continue num_left_context = position - doc_span.start num_right_context = end - position score = min(num_left_context, num_right_context) + 0.01 * doc_span.length if best_score is None or score > best_score: best_score = score best_span_index = span_index return cur_span_index == best_span_index
python
def _check_is_max_context(doc_spans, cur_span_index, position): """Check if this is the 'max context' doc span for the token.""" # Because of the sliding window approach taken to scoring documents, a single # token can appear in multiple documents. E.g. # Doc: the man went to the store and bought a gallon of milk # Span A: the man went to the # Span B: to the store and bought # Span C: and bought a gallon of # ... # # Now the word 'bought' will have two scores from spans B and C. We only # want to consider the score with "maximum context", which we define as # the *minimum* of its left and right context (the *sum* of left and # right context will always be the same, of course). # # In the example the maximum context for 'bought' would be span C since # it has 1 left context and 3 right context, while span B has 4 left context # and 0 right context. best_score = None best_span_index = None for (span_index, doc_span) in enumerate(doc_spans): end = doc_span.start + doc_span.length - 1 if position < doc_span.start: continue if position > end: continue num_left_context = position - doc_span.start num_right_context = end - position score = min(num_left_context, num_right_context) + 0.01 * doc_span.length if best_score is None or score > best_score: best_score = score best_span_index = span_index return cur_span_index == best_span_index
[ "def", "_check_is_max_context", "(", "doc_spans", ",", "cur_span_index", ",", "position", ")", ":", "# Because of the sliding window approach taken to scoring documents, a single", "# token can appear in multiple documents. E.g.", "# Doc: the man went to the store and bought a gallon of milk", "# Span A: the man went to the", "# Span B: to the store and bought", "# Span C: and bought a gallon of", "# ...", "#", "# Now the word 'bought' will have two scores from spans B and C. We only", "# want to consider the score with \"maximum context\", which we define as", "# the *minimum* of its left and right context (the *sum* of left and", "# right context will always be the same, of course).", "#", "# In the example the maximum context for 'bought' would be span C since", "# it has 1 left context and 3 right context, while span B has 4 left context", "# and 0 right context.", "best_score", "=", "None", "best_span_index", "=", "None", "for", "(", "span_index", ",", "doc_span", ")", "in", "enumerate", "(", "doc_spans", ")", ":", "end", "=", "doc_span", ".", "start", "+", "doc_span", ".", "length", "-", "1", "if", "position", "<", "doc_span", ".", "start", ":", "continue", "if", "position", ">", "end", ":", "continue", "num_left_context", "=", "position", "-", "doc_span", ".", "start", "num_right_context", "=", "end", "-", "position", "score", "=", "min", "(", "num_left_context", ",", "num_right_context", ")", "+", "0.01", "*", "doc_span", ".", "length", "if", "best_score", "is", "None", "or", "score", ">", "best_score", ":", "best_score", "=", "score", "best_span_index", "=", "span_index", "return", "cur_span_index", "==", "best_span_index" ]
Check if this is the 'max context' doc span for the token.
[ "Check", "if", "this", "is", "the", "max", "context", "doc", "span", "for", "the", "token", "." ]
b832d5bb8a6dfc5965015b828e577677eace601e
https://github.com/huggingface/pytorch-pretrained-BERT/blob/b832d5bb8a6dfc5965015b828e577677eace601e/examples/run_squad.py#L400-L434
19,368
huggingface/pytorch-pretrained-BERT
examples/run_squad.py
_get_best_indexes
def _get_best_indexes(logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes
python
def _get_best_indexes(logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes
[ "def", "_get_best_indexes", "(", "logits", ",", "n_best_size", ")", ":", "index_and_score", "=", "sorted", "(", "enumerate", "(", "logits", ")", ",", "key", "=", "lambda", "x", ":", "x", "[", "1", "]", ",", "reverse", "=", "True", ")", "best_indexes", "=", "[", "]", "for", "i", "in", "range", "(", "len", "(", "index_and_score", ")", ")", ":", "if", "i", ">=", "n_best_size", ":", "break", "best_indexes", ".", "append", "(", "index_and_score", "[", "i", "]", "[", "0", "]", ")", "return", "best_indexes" ]
Get the n-best logits from a list.
[ "Get", "the", "n", "-", "best", "logits", "from", "a", "list", "." ]
b832d5bb8a6dfc5965015b828e577677eace601e
https://github.com/huggingface/pytorch-pretrained-BERT/blob/b832d5bb8a6dfc5965015b828e577677eace601e/examples/run_squad.py#L729-L738
19,369
huggingface/pytorch-pretrained-BERT
examples/run_squad.py
_compute_softmax
def _compute_softmax(scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs
python
def _compute_softmax(scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs
[ "def", "_compute_softmax", "(", "scores", ")", ":", "if", "not", "scores", ":", "return", "[", "]", "max_score", "=", "None", "for", "score", "in", "scores", ":", "if", "max_score", "is", "None", "or", "score", ">", "max_score", ":", "max_score", "=", "score", "exp_scores", "=", "[", "]", "total_sum", "=", "0.0", "for", "score", "in", "scores", ":", "x", "=", "math", ".", "exp", "(", "score", "-", "max_score", ")", "exp_scores", ".", "append", "(", "x", ")", "total_sum", "+=", "x", "probs", "=", "[", "]", "for", "score", "in", "exp_scores", ":", "probs", ".", "append", "(", "score", "/", "total_sum", ")", "return", "probs" ]
Compute softmax probability over raw logits.
[ "Compute", "softmax", "probability", "over", "raw", "logits", "." ]
b832d5bb8a6dfc5965015b828e577677eace601e
https://github.com/huggingface/pytorch-pretrained-BERT/blob/b832d5bb8a6dfc5965015b828e577677eace601e/examples/run_squad.py#L741-L761
19,370
huggingface/pytorch-pretrained-BERT
examples/run_classifier.py
DataProcessor._read_tsv
def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with open(input_file, "r", encoding="utf-8") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: if sys.version_info[0] == 2: line = list(unicode(cell, 'utf-8') for cell in line) lines.append(line) return lines
python
def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with open(input_file, "r", encoding="utf-8") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: if sys.version_info[0] == 2: line = list(unicode(cell, 'utf-8') for cell in line) lines.append(line) return lines
[ "def", "_read_tsv", "(", "cls", ",", "input_file", ",", "quotechar", "=", "None", ")", ":", "with", "open", "(", "input_file", ",", "\"r\"", ",", "encoding", "=", "\"utf-8\"", ")", "as", "f", ":", "reader", "=", "csv", ".", "reader", "(", "f", ",", "delimiter", "=", "\"\\t\"", ",", "quotechar", "=", "quotechar", ")", "lines", "=", "[", "]", "for", "line", "in", "reader", ":", "if", "sys", ".", "version_info", "[", "0", "]", "==", "2", ":", "line", "=", "list", "(", "unicode", "(", "cell", ",", "'utf-8'", ")", "for", "cell", "in", "line", ")", "lines", ".", "append", "(", "line", ")", "return", "lines" ]
Reads a tab separated value file.
[ "Reads", "a", "tab", "separated", "value", "file", "." ]
b832d5bb8a6dfc5965015b828e577677eace601e
https://github.com/huggingface/pytorch-pretrained-BERT/blob/b832d5bb8a6dfc5965015b828e577677eace601e/examples/run_classifier.py#L93-L102
19,371
huggingface/pytorch-pretrained-BERT
examples/run_classifier.py
MrpcProcessor._create_examples
def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = line[3] text_b = line[4] label = line[0] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples
python
def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = line[3] text_b = line[4] label = line[0] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples
[ "def", "_create_examples", "(", "self", ",", "lines", ",", "set_type", ")", ":", "examples", "=", "[", "]", "for", "(", "i", ",", "line", ")", "in", "enumerate", "(", "lines", ")", ":", "if", "i", "==", "0", ":", "continue", "guid", "=", "\"%s-%s\"", "%", "(", "set_type", ",", "i", ")", "text_a", "=", "line", "[", "3", "]", "text_b", "=", "line", "[", "4", "]", "label", "=", "line", "[", "0", "]", "examples", ".", "append", "(", "InputExample", "(", "guid", "=", "guid", ",", "text_a", "=", "text_a", ",", "text_b", "=", "text_b", ",", "label", "=", "label", ")", ")", "return", "examples" ]
Creates examples for the training and dev sets.
[ "Creates", "examples", "for", "the", "training", "and", "dev", "sets", "." ]
b832d5bb8a6dfc5965015b828e577677eace601e
https://github.com/huggingface/pytorch-pretrained-BERT/blob/b832d5bb8a6dfc5965015b828e577677eace601e/examples/run_classifier.py#L123-L135
19,372
huggingface/pytorch-pretrained-BERT
pytorch_pretrained_bert/modeling_openai.py
OpenAIGPTConfig.from_dict
def from_dict(cls, json_object): """Constructs a `OpenAIGPTConfig` from a Python dictionary of parameters.""" config = OpenAIGPTConfig(vocab_size_or_config_json_file=-1) for key, value in json_object.items(): config.__dict__[key] = value return config
python
def from_dict(cls, json_object): """Constructs a `OpenAIGPTConfig` from a Python dictionary of parameters.""" config = OpenAIGPTConfig(vocab_size_or_config_json_file=-1) for key, value in json_object.items(): config.__dict__[key] = value return config
[ "def", "from_dict", "(", "cls", ",", "json_object", ")", ":", "config", "=", "OpenAIGPTConfig", "(", "vocab_size_or_config_json_file", "=", "-", "1", ")", "for", "key", ",", "value", "in", "json_object", ".", "items", "(", ")", ":", "config", ".", "__dict__", "[", "key", "]", "=", "value", "return", "config" ]
Constructs a `OpenAIGPTConfig` from a Python dictionary of parameters.
[ "Constructs", "a", "OpenAIGPTConfig", "from", "a", "Python", "dictionary", "of", "parameters", "." ]
b832d5bb8a6dfc5965015b828e577677eace601e
https://github.com/huggingface/pytorch-pretrained-BERT/blob/b832d5bb8a6dfc5965015b828e577677eace601e/pytorch_pretrained_bert/modeling_openai.py#L200-L205
19,373
huggingface/pytorch-pretrained-BERT
pytorch_pretrained_bert/modeling_openai.py
OpenAIGPTModel.set_num_special_tokens
def set_num_special_tokens(self, num_special_tokens): " Update input embeddings with new embedding matrice if needed " if self.config.n_special == num_special_tokens: return # Update config self.config.n_special = num_special_tokens # Build new embeddings and initialize all new embeddings (in particular the special tokens) old_embed = self.tokens_embed self.tokens_embed = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd) self.tokens_embed.to(old_embed.weight.device) self.init_weights(self.tokens_embed) # Copy word embeddings from the previous weights self.tokens_embed.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]
python
def set_num_special_tokens(self, num_special_tokens): " Update input embeddings with new embedding matrice if needed " if self.config.n_special == num_special_tokens: return # Update config self.config.n_special = num_special_tokens # Build new embeddings and initialize all new embeddings (in particular the special tokens) old_embed = self.tokens_embed self.tokens_embed = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd) self.tokens_embed.to(old_embed.weight.device) self.init_weights(self.tokens_embed) # Copy word embeddings from the previous weights self.tokens_embed.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]
[ "def", "set_num_special_tokens", "(", "self", ",", "num_special_tokens", ")", ":", "if", "self", ".", "config", ".", "n_special", "==", "num_special_tokens", ":", "return", "# Update config", "self", ".", "config", ".", "n_special", "=", "num_special_tokens", "# Build new embeddings and initialize all new embeddings (in particular the special tokens)", "old_embed", "=", "self", ".", "tokens_embed", "self", ".", "tokens_embed", "=", "nn", ".", "Embedding", "(", "self", ".", "config", ".", "total_tokens_embeddings", ",", "self", ".", "config", ".", "n_embd", ")", "self", ".", "tokens_embed", ".", "to", "(", "old_embed", ".", "weight", ".", "device", ")", "self", ".", "init_weights", "(", "self", ".", "tokens_embed", ")", "# Copy word embeddings from the previous weights", "self", ".", "tokens_embed", ".", "weight", ".", "data", "[", ":", "self", ".", "config", ".", "vocab_size", ",", ":", "]", "=", "old_embed", ".", "weight", ".", "data", "[", ":", "self", ".", "config", ".", "vocab_size", ",", ":", "]" ]
Update input embeddings with new embedding matrice if needed
[ "Update", "input", "embeddings", "with", "new", "embedding", "matrice", "if", "needed" ]
b832d5bb8a6dfc5965015b828e577677eace601e
https://github.com/huggingface/pytorch-pretrained-BERT/blob/b832d5bb8a6dfc5965015b828e577677eace601e/pytorch_pretrained_bert/modeling_openai.py#L605-L617
19,374
huggingface/pytorch-pretrained-BERT
pytorch_pretrained_bert/modeling_openai.py
OpenAIGPTLMHeadModel.set_num_special_tokens
def set_num_special_tokens(self, num_special_tokens): """ Update input and output embeddings with new embedding matrice Make sure we are sharing the embeddings """ self.transformer.set_num_special_tokens(num_special_tokens) self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight)
python
def set_num_special_tokens(self, num_special_tokens): """ Update input and output embeddings with new embedding matrice Make sure we are sharing the embeddings """ self.transformer.set_num_special_tokens(num_special_tokens) self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight)
[ "def", "set_num_special_tokens", "(", "self", ",", "num_special_tokens", ")", ":", "self", ".", "transformer", ".", "set_num_special_tokens", "(", "num_special_tokens", ")", "self", ".", "lm_head", ".", "set_embeddings_weights", "(", "self", ".", "transformer", ".", "tokens_embed", ".", "weight", ")" ]
Update input and output embeddings with new embedding matrice Make sure we are sharing the embeddings
[ "Update", "input", "and", "output", "embeddings", "with", "new", "embedding", "matrice", "Make", "sure", "we", "are", "sharing", "the", "embeddings" ]
b832d5bb8a6dfc5965015b828e577677eace601e
https://github.com/huggingface/pytorch-pretrained-BERT/blob/b832d5bb8a6dfc5965015b828e577677eace601e/pytorch_pretrained_bert/modeling_openai.py#L710-L715
19,375
huggingface/pytorch-pretrained-BERT
pytorch_pretrained_bert/tokenization.py
BertTokenizer.convert_tokens_to_ids
def convert_tokens_to_ids(self, tokens): """Converts a sequence of tokens into ids using the vocab.""" ids = [] for token in tokens: ids.append(self.vocab[token]) if len(ids) > self.max_len: logger.warning( "Token indices sequence length is longer than the specified maximum " " sequence length for this BERT model ({} > {}). Running this" " sequence through BERT will result in indexing errors".format(len(ids), self.max_len) ) return ids
python
def convert_tokens_to_ids(self, tokens): """Converts a sequence of tokens into ids using the vocab.""" ids = [] for token in tokens: ids.append(self.vocab[token]) if len(ids) > self.max_len: logger.warning( "Token indices sequence length is longer than the specified maximum " " sequence length for this BERT model ({} > {}). Running this" " sequence through BERT will result in indexing errors".format(len(ids), self.max_len) ) return ids
[ "def", "convert_tokens_to_ids", "(", "self", ",", "tokens", ")", ":", "ids", "=", "[", "]", "for", "token", "in", "tokens", ":", "ids", ".", "append", "(", "self", ".", "vocab", "[", "token", "]", ")", "if", "len", "(", "ids", ")", ">", "self", ".", "max_len", ":", "logger", ".", "warning", "(", "\"Token indices sequence length is longer than the specified maximum \"", "\" sequence length for this BERT model ({} > {}). Running this\"", "\" sequence through BERT will result in indexing errors\"", ".", "format", "(", "len", "(", "ids", ")", ",", "self", ".", "max_len", ")", ")", "return", "ids" ]
Converts a sequence of tokens into ids using the vocab.
[ "Converts", "a", "sequence", "of", "tokens", "into", "ids", "using", "the", "vocab", "." ]
b832d5bb8a6dfc5965015b828e577677eace601e
https://github.com/huggingface/pytorch-pretrained-BERT/blob/b832d5bb8a6dfc5965015b828e577677eace601e/pytorch_pretrained_bert/tokenization.py#L117-L128
19,376
huggingface/pytorch-pretrained-BERT
pytorch_pretrained_bert/tokenization.py
BertTokenizer.convert_ids_to_tokens
def convert_ids_to_tokens(self, ids): """Converts a sequence of ids in wordpiece tokens using the vocab.""" tokens = [] for i in ids: tokens.append(self.ids_to_tokens[i]) return tokens
python
def convert_ids_to_tokens(self, ids): """Converts a sequence of ids in wordpiece tokens using the vocab.""" tokens = [] for i in ids: tokens.append(self.ids_to_tokens[i]) return tokens
[ "def", "convert_ids_to_tokens", "(", "self", ",", "ids", ")", ":", "tokens", "=", "[", "]", "for", "i", "in", "ids", ":", "tokens", ".", "append", "(", "self", ".", "ids_to_tokens", "[", "i", "]", ")", "return", "tokens" ]
Converts a sequence of ids in wordpiece tokens using the vocab.
[ "Converts", "a", "sequence", "of", "ids", "in", "wordpiece", "tokens", "using", "the", "vocab", "." ]
b832d5bb8a6dfc5965015b828e577677eace601e
https://github.com/huggingface/pytorch-pretrained-BERT/blob/b832d5bb8a6dfc5965015b828e577677eace601e/pytorch_pretrained_bert/tokenization.py#L130-L135
19,377
huggingface/pytorch-pretrained-BERT
pytorch_pretrained_bert/tokenization.py
BertTokenizer.save_vocabulary
def save_vocabulary(self, vocab_path): """Save the tokenizer vocabulary to a directory or file.""" index = 0 if os.path.isdir(vocab_path): vocab_file = os.path.join(vocab_path, VOCAB_NAME) with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning("Saving vocabulary to {}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!".format(vocab_file)) index = token_index writer.write(token + u'\n') index += 1 return vocab_file
python
def save_vocabulary(self, vocab_path): """Save the tokenizer vocabulary to a directory or file.""" index = 0 if os.path.isdir(vocab_path): vocab_file = os.path.join(vocab_path, VOCAB_NAME) with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning("Saving vocabulary to {}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!".format(vocab_file)) index = token_index writer.write(token + u'\n') index += 1 return vocab_file
[ "def", "save_vocabulary", "(", "self", ",", "vocab_path", ")", ":", "index", "=", "0", "if", "os", ".", "path", ".", "isdir", "(", "vocab_path", ")", ":", "vocab_file", "=", "os", ".", "path", ".", "join", "(", "vocab_path", ",", "VOCAB_NAME", ")", "with", "open", "(", "vocab_file", ",", "\"w\"", ",", "encoding", "=", "\"utf-8\"", ")", "as", "writer", ":", "for", "token", ",", "token_index", "in", "sorted", "(", "self", ".", "vocab", ".", "items", "(", ")", ",", "key", "=", "lambda", "kv", ":", "kv", "[", "1", "]", ")", ":", "if", "index", "!=", "token_index", ":", "logger", ".", "warning", "(", "\"Saving vocabulary to {}: vocabulary indices are not consecutive.\"", "\" Please check that the vocabulary is not corrupted!\"", ".", "format", "(", "vocab_file", ")", ")", "index", "=", "token_index", "writer", ".", "write", "(", "token", "+", "u'\\n'", ")", "index", "+=", "1", "return", "vocab_file" ]
Save the tokenizer vocabulary to a directory or file.
[ "Save", "the", "tokenizer", "vocabulary", "to", "a", "directory", "or", "file", "." ]
b832d5bb8a6dfc5965015b828e577677eace601e
https://github.com/huggingface/pytorch-pretrained-BERT/blob/b832d5bb8a6dfc5965015b828e577677eace601e/pytorch_pretrained_bert/tokenization.py#L137-L150
19,378
huggingface/pytorch-pretrained-BERT
pytorch_pretrained_bert/tokenization.py
BertTokenizer.from_pretrained
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs): """ Instantiate a PreTrainedBertModel from a pre-trained model file. Download and cache the pre-trained model file if needed. """ if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP: vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path] if '-cased' in pretrained_model_name_or_path and kwargs.get('do_lower_case', True): logger.warning("The pre-trained model you are loading is a cased model but you have not set " "`do_lower_case` to False. We are setting `do_lower_case=False` for you but " "you may want to check this behavior.") kwargs['do_lower_case'] = False elif '-cased' not in pretrained_model_name_or_path and not kwargs.get('do_lower_case', True): logger.warning("The pre-trained model you are loading is an uncased model but you have set " "`do_lower_case` to False. We are setting `do_lower_case=True` for you " "but you may want to check this behavior.") kwargs['do_lower_case'] = True else: vocab_file = pretrained_model_name_or_path if os.path.isdir(vocab_file): vocab_file = os.path.join(vocab_file, VOCAB_NAME) # redirect to the cache, if necessary try: resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir) except EnvironmentError: logger.error( "Model name '{}' was not found in model name list ({}). " "We assumed '{}' was a path or url but couldn't find any file " "associated to this path or url.".format( pretrained_model_name_or_path, ', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()), vocab_file)) return None if resolved_vocab_file == vocab_file: logger.info("loading vocabulary file {}".format(vocab_file)) else: logger.info("loading vocabulary file {} from cache at {}".format( vocab_file, resolved_vocab_file)) if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP: # if we're using a pretrained model, ensure the tokenizer wont index sequences longer # than the number of positional embeddings max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path] kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len) # Instantiate tokenizer. tokenizer = cls(resolved_vocab_file, *inputs, **kwargs) return tokenizer
python
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs): """ Instantiate a PreTrainedBertModel from a pre-trained model file. Download and cache the pre-trained model file if needed. """ if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP: vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path] if '-cased' in pretrained_model_name_or_path and kwargs.get('do_lower_case', True): logger.warning("The pre-trained model you are loading is a cased model but you have not set " "`do_lower_case` to False. We are setting `do_lower_case=False` for you but " "you may want to check this behavior.") kwargs['do_lower_case'] = False elif '-cased' not in pretrained_model_name_or_path and not kwargs.get('do_lower_case', True): logger.warning("The pre-trained model you are loading is an uncased model but you have set " "`do_lower_case` to False. We are setting `do_lower_case=True` for you " "but you may want to check this behavior.") kwargs['do_lower_case'] = True else: vocab_file = pretrained_model_name_or_path if os.path.isdir(vocab_file): vocab_file = os.path.join(vocab_file, VOCAB_NAME) # redirect to the cache, if necessary try: resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir) except EnvironmentError: logger.error( "Model name '{}' was not found in model name list ({}). " "We assumed '{}' was a path or url but couldn't find any file " "associated to this path or url.".format( pretrained_model_name_or_path, ', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()), vocab_file)) return None if resolved_vocab_file == vocab_file: logger.info("loading vocabulary file {}".format(vocab_file)) else: logger.info("loading vocabulary file {} from cache at {}".format( vocab_file, resolved_vocab_file)) if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP: # if we're using a pretrained model, ensure the tokenizer wont index sequences longer # than the number of positional embeddings max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path] kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len) # Instantiate tokenizer. tokenizer = cls(resolved_vocab_file, *inputs, **kwargs) return tokenizer
[ "def", "from_pretrained", "(", "cls", ",", "pretrained_model_name_or_path", ",", "cache_dir", "=", "None", ",", "*", "inputs", ",", "*", "*", "kwargs", ")", ":", "if", "pretrained_model_name_or_path", "in", "PRETRAINED_VOCAB_ARCHIVE_MAP", ":", "vocab_file", "=", "PRETRAINED_VOCAB_ARCHIVE_MAP", "[", "pretrained_model_name_or_path", "]", "if", "'-cased'", "in", "pretrained_model_name_or_path", "and", "kwargs", ".", "get", "(", "'do_lower_case'", ",", "True", ")", ":", "logger", ".", "warning", "(", "\"The pre-trained model you are loading is a cased model but you have not set \"", "\"`do_lower_case` to False. We are setting `do_lower_case=False` for you but \"", "\"you may want to check this behavior.\"", ")", "kwargs", "[", "'do_lower_case'", "]", "=", "False", "elif", "'-cased'", "not", "in", "pretrained_model_name_or_path", "and", "not", "kwargs", ".", "get", "(", "'do_lower_case'", ",", "True", ")", ":", "logger", ".", "warning", "(", "\"The pre-trained model you are loading is an uncased model but you have set \"", "\"`do_lower_case` to False. We are setting `do_lower_case=True` for you \"", "\"but you may want to check this behavior.\"", ")", "kwargs", "[", "'do_lower_case'", "]", "=", "True", "else", ":", "vocab_file", "=", "pretrained_model_name_or_path", "if", "os", ".", "path", ".", "isdir", "(", "vocab_file", ")", ":", "vocab_file", "=", "os", ".", "path", ".", "join", "(", "vocab_file", ",", "VOCAB_NAME", ")", "# redirect to the cache, if necessary", "try", ":", "resolved_vocab_file", "=", "cached_path", "(", "vocab_file", ",", "cache_dir", "=", "cache_dir", ")", "except", "EnvironmentError", ":", "logger", ".", "error", "(", "\"Model name '{}' was not found in model name list ({}). \"", "\"We assumed '{}' was a path or url but couldn't find any file \"", "\"associated to this path or url.\"", ".", "format", "(", "pretrained_model_name_or_path", ",", "', '", ".", "join", "(", "PRETRAINED_VOCAB_ARCHIVE_MAP", ".", "keys", "(", ")", ")", ",", "vocab_file", ")", ")", "return", "None", "if", "resolved_vocab_file", "==", "vocab_file", ":", "logger", ".", "info", "(", "\"loading vocabulary file {}\"", ".", "format", "(", "vocab_file", ")", ")", "else", ":", "logger", ".", "info", "(", "\"loading vocabulary file {} from cache at {}\"", ".", "format", "(", "vocab_file", ",", "resolved_vocab_file", ")", ")", "if", "pretrained_model_name_or_path", "in", "PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP", ":", "# if we're using a pretrained model, ensure the tokenizer wont index sequences longer", "# than the number of positional embeddings", "max_len", "=", "PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP", "[", "pretrained_model_name_or_path", "]", "kwargs", "[", "'max_len'", "]", "=", "min", "(", "kwargs", ".", "get", "(", "'max_len'", ",", "int", "(", "1e12", ")", ")", ",", "max_len", ")", "# Instantiate tokenizer.", "tokenizer", "=", "cls", "(", "resolved_vocab_file", ",", "*", "inputs", ",", "*", "*", "kwargs", ")", "return", "tokenizer" ]
Instantiate a PreTrainedBertModel from a pre-trained model file. Download and cache the pre-trained model file if needed.
[ "Instantiate", "a", "PreTrainedBertModel", "from", "a", "pre", "-", "trained", "model", "file", ".", "Download", "and", "cache", "the", "pre", "-", "trained", "model", "file", "if", "needed", "." ]
b832d5bb8a6dfc5965015b828e577677eace601e
https://github.com/huggingface/pytorch-pretrained-BERT/blob/b832d5bb8a6dfc5965015b828e577677eace601e/pytorch_pretrained_bert/tokenization.py#L153-L198
19,379
huggingface/pytorch-pretrained-BERT
pytorch_pretrained_bert/tokenization.py
BasicTokenizer._run_strip_accents
def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output)
python
def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output)
[ "def", "_run_strip_accents", "(", "self", ",", "text", ")", ":", "text", "=", "unicodedata", ".", "normalize", "(", "\"NFD\"", ",", "text", ")", "output", "=", "[", "]", "for", "char", "in", "text", ":", "cat", "=", "unicodedata", ".", "category", "(", "char", ")", "if", "cat", "==", "\"Mn\"", ":", "continue", "output", ".", "append", "(", "char", ")", "return", "\"\"", ".", "join", "(", "output", ")" ]
Strips accents from a piece of text.
[ "Strips", "accents", "from", "a", "piece", "of", "text", "." ]
b832d5bb8a6dfc5965015b828e577677eace601e
https://github.com/huggingface/pytorch-pretrained-BERT/blob/b832d5bb8a6dfc5965015b828e577677eace601e/pytorch_pretrained_bert/tokenization.py#L236-L245
19,380
huggingface/pytorch-pretrained-BERT
pytorch_pretrained_bert/tokenization.py
BasicTokenizer._tokenize_chinese_chars
def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output)
python
def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output)
[ "def", "_tokenize_chinese_chars", "(", "self", ",", "text", ")", ":", "output", "=", "[", "]", "for", "char", "in", "text", ":", "cp", "=", "ord", "(", "char", ")", "if", "self", ".", "_is_chinese_char", "(", "cp", ")", ":", "output", ".", "append", "(", "\" \"", ")", "output", ".", "append", "(", "char", ")", "output", ".", "append", "(", "\" \"", ")", "else", ":", "output", ".", "append", "(", "char", ")", "return", "\"\"", ".", "join", "(", "output", ")" ]
Adds whitespace around any CJK character.
[ "Adds", "whitespace", "around", "any", "CJK", "character", "." ]
b832d5bb8a6dfc5965015b828e577677eace601e
https://github.com/huggingface/pytorch-pretrained-BERT/blob/b832d5bb8a6dfc5965015b828e577677eace601e/pytorch_pretrained_bert/tokenization.py#L269-L280
19,381
huggingface/pytorch-pretrained-BERT
pytorch_pretrained_bert/tokenization.py
BasicTokenizer._is_chinese_char
def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ((cp >= 0x4E00 and cp <= 0x9FFF) or # (cp >= 0x3400 and cp <= 0x4DBF) or # (cp >= 0x20000 and cp <= 0x2A6DF) or # (cp >= 0x2A700 and cp <= 0x2B73F) or # (cp >= 0x2B740 and cp <= 0x2B81F) or # (cp >= 0x2B820 and cp <= 0x2CEAF) or (cp >= 0xF900 and cp <= 0xFAFF) or # (cp >= 0x2F800 and cp <= 0x2FA1F)): # return True return False
python
def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ((cp >= 0x4E00 and cp <= 0x9FFF) or # (cp >= 0x3400 and cp <= 0x4DBF) or # (cp >= 0x20000 and cp <= 0x2A6DF) or # (cp >= 0x2A700 and cp <= 0x2B73F) or # (cp >= 0x2B740 and cp <= 0x2B81F) or # (cp >= 0x2B820 and cp <= 0x2CEAF) or (cp >= 0xF900 and cp <= 0xFAFF) or # (cp >= 0x2F800 and cp <= 0x2FA1F)): # return True return False
[ "def", "_is_chinese_char", "(", "self", ",", "cp", ")", ":", "# This defines a \"chinese character\" as anything in the CJK Unicode block:", "# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)", "#", "# Note that the CJK Unicode block is NOT all Japanese and Korean characters,", "# despite its name. The modern Korean Hangul alphabet is a different block,", "# as is Japanese Hiragana and Katakana. Those alphabets are used to write", "# space-separated words, so they are not treated specially and handled", "# like the all of the other languages.", "if", "(", "(", "cp", ">=", "0x4E00", "and", "cp", "<=", "0x9FFF", ")", "or", "#", "(", "cp", ">=", "0x3400", "and", "cp", "<=", "0x4DBF", ")", "or", "#", "(", "cp", ">=", "0x20000", "and", "cp", "<=", "0x2A6DF", ")", "or", "#", "(", "cp", ">=", "0x2A700", "and", "cp", "<=", "0x2B73F", ")", "or", "#", "(", "cp", ">=", "0x2B740", "and", "cp", "<=", "0x2B81F", ")", "or", "#", "(", "cp", ">=", "0x2B820", "and", "cp", "<=", "0x2CEAF", ")", "or", "(", "cp", ">=", "0xF900", "and", "cp", "<=", "0xFAFF", ")", "or", "#", "(", "cp", ">=", "0x2F800", "and", "cp", "<=", "0x2FA1F", ")", ")", ":", "#", "return", "True", "return", "False" ]
Checks whether CP is the codepoint of a CJK character.
[ "Checks", "whether", "CP", "is", "the", "codepoint", "of", "a", "CJK", "character", "." ]
b832d5bb8a6dfc5965015b828e577677eace601e
https://github.com/huggingface/pytorch-pretrained-BERT/blob/b832d5bb8a6dfc5965015b828e577677eace601e/pytorch_pretrained_bert/tokenization.py#L282-L302
19,382
huggingface/pytorch-pretrained-BERT
examples/lm_finetuning/simple_lm_finetuning.py
BERTDataset.get_next_line
def get_next_line(self): """ Gets next line of random_file and starts over when reaching end of file""" try: line = next(self.random_file).strip() #keep track of which document we are currently looking at to later avoid having the same doc as t1 if line == "": self.current_random_doc = self.current_random_doc + 1 line = next(self.random_file).strip() except StopIteration: self.random_file.close() self.random_file = open(self.corpus_path, "r", encoding=self.encoding) line = next(self.random_file).strip() return line
python
def get_next_line(self): """ Gets next line of random_file and starts over when reaching end of file""" try: line = next(self.random_file).strip() #keep track of which document we are currently looking at to later avoid having the same doc as t1 if line == "": self.current_random_doc = self.current_random_doc + 1 line = next(self.random_file).strip() except StopIteration: self.random_file.close() self.random_file = open(self.corpus_path, "r", encoding=self.encoding) line = next(self.random_file).strip() return line
[ "def", "get_next_line", "(", "self", ")", ":", "try", ":", "line", "=", "next", "(", "self", ".", "random_file", ")", ".", "strip", "(", ")", "#keep track of which document we are currently looking at to later avoid having the same doc as t1", "if", "line", "==", "\"\"", ":", "self", ".", "current_random_doc", "=", "self", ".", "current_random_doc", "+", "1", "line", "=", "next", "(", "self", ".", "random_file", ")", ".", "strip", "(", ")", "except", "StopIteration", ":", "self", ".", "random_file", ".", "close", "(", ")", "self", ".", "random_file", "=", "open", "(", "self", ".", "corpus_path", ",", "\"r\"", ",", "encoding", "=", "self", ".", "encoding", ")", "line", "=", "next", "(", "self", ".", "random_file", ")", ".", "strip", "(", ")", "return", "line" ]
Gets next line of random_file and starts over when reaching end of file
[ "Gets", "next", "line", "of", "random_file", "and", "starts", "over", "when", "reaching", "end", "of", "file" ]
b832d5bb8a6dfc5965015b828e577677eace601e
https://github.com/huggingface/pytorch-pretrained-BERT/blob/b832d5bb8a6dfc5965015b828e577677eace601e/examples/lm_finetuning/simple_lm_finetuning.py#L219-L231
19,383
huggingface/pytorch-pretrained-BERT
examples/lm_finetuning/pregenerate_training_data.py
create_masked_lm_predictions
def create_masked_lm_predictions(tokens, masked_lm_prob, max_predictions_per_seq, vocab_list): """Creates the predictions for the masked LM objective. This is mostly copied from the Google BERT repo, but with several refactors to clean it up and remove a lot of unnecessary variables.""" cand_indices = [] for (i, token) in enumerate(tokens): if token == "[CLS]" or token == "[SEP]": continue cand_indices.append(i) num_to_mask = min(max_predictions_per_seq, max(1, int(round(len(tokens) * masked_lm_prob)))) shuffle(cand_indices) mask_indices = sorted(sample(cand_indices, num_to_mask)) masked_token_labels = [] for index in mask_indices: # 80% of the time, replace with [MASK] if random() < 0.8: masked_token = "[MASK]" else: # 10% of the time, keep original if random() < 0.5: masked_token = tokens[index] # 10% of the time, replace with random word else: masked_token = choice(vocab_list) masked_token_labels.append(tokens[index]) # Once we've saved the true label for that token, we can overwrite it with the masked version tokens[index] = masked_token return tokens, mask_indices, masked_token_labels
python
def create_masked_lm_predictions(tokens, masked_lm_prob, max_predictions_per_seq, vocab_list): """Creates the predictions for the masked LM objective. This is mostly copied from the Google BERT repo, but with several refactors to clean it up and remove a lot of unnecessary variables.""" cand_indices = [] for (i, token) in enumerate(tokens): if token == "[CLS]" or token == "[SEP]": continue cand_indices.append(i) num_to_mask = min(max_predictions_per_seq, max(1, int(round(len(tokens) * masked_lm_prob)))) shuffle(cand_indices) mask_indices = sorted(sample(cand_indices, num_to_mask)) masked_token_labels = [] for index in mask_indices: # 80% of the time, replace with [MASK] if random() < 0.8: masked_token = "[MASK]" else: # 10% of the time, keep original if random() < 0.5: masked_token = tokens[index] # 10% of the time, replace with random word else: masked_token = choice(vocab_list) masked_token_labels.append(tokens[index]) # Once we've saved the true label for that token, we can overwrite it with the masked version tokens[index] = masked_token return tokens, mask_indices, masked_token_labels
[ "def", "create_masked_lm_predictions", "(", "tokens", ",", "masked_lm_prob", ",", "max_predictions_per_seq", ",", "vocab_list", ")", ":", "cand_indices", "=", "[", "]", "for", "(", "i", ",", "token", ")", "in", "enumerate", "(", "tokens", ")", ":", "if", "token", "==", "\"[CLS]\"", "or", "token", "==", "\"[SEP]\"", ":", "continue", "cand_indices", ".", "append", "(", "i", ")", "num_to_mask", "=", "min", "(", "max_predictions_per_seq", ",", "max", "(", "1", ",", "int", "(", "round", "(", "len", "(", "tokens", ")", "*", "masked_lm_prob", ")", ")", ")", ")", "shuffle", "(", "cand_indices", ")", "mask_indices", "=", "sorted", "(", "sample", "(", "cand_indices", ",", "num_to_mask", ")", ")", "masked_token_labels", "=", "[", "]", "for", "index", "in", "mask_indices", ":", "# 80% of the time, replace with [MASK]", "if", "random", "(", ")", "<", "0.8", ":", "masked_token", "=", "\"[MASK]\"", "else", ":", "# 10% of the time, keep original", "if", "random", "(", ")", "<", "0.5", ":", "masked_token", "=", "tokens", "[", "index", "]", "# 10% of the time, replace with random word", "else", ":", "masked_token", "=", "choice", "(", "vocab_list", ")", "masked_token_labels", ".", "append", "(", "tokens", "[", "index", "]", ")", "# Once we've saved the true label for that token, we can overwrite it with the masked version", "tokens", "[", "index", "]", "=", "masked_token", "return", "tokens", ",", "mask_indices", ",", "masked_token_labels" ]
Creates the predictions for the masked LM objective. This is mostly copied from the Google BERT repo, but with several refactors to clean it up and remove a lot of unnecessary variables.
[ "Creates", "the", "predictions", "for", "the", "masked", "LM", "objective", ".", "This", "is", "mostly", "copied", "from", "the", "Google", "BERT", "repo", "but", "with", "several", "refactors", "to", "clean", "it", "up", "and", "remove", "a", "lot", "of", "unnecessary", "variables", "." ]
b832d5bb8a6dfc5965015b828e577677eace601e
https://github.com/huggingface/pytorch-pretrained-BERT/blob/b832d5bb8a6dfc5965015b828e577677eace601e/examples/lm_finetuning/pregenerate_training_data.py#L102-L131
19,384
huggingface/pytorch-pretrained-BERT
pytorch_pretrained_bert/modeling_transfo_xl.py
build_tf_to_pytorch_map
def build_tf_to_pytorch_map(model, config): """ A map of modules from TF to PyTorch. This time I use a map to keep the PyTorch model as identical to the original PyTorch model as possible. """ tf_to_pt_map = {} if hasattr(model, 'transformer'): # We are loading in a TransfoXLLMHeadModel => we will load also the Adaptive Softmax tf_to_pt_map.update({ "transformer/adaptive_softmax/cutoff_0/cluster_W": model.crit.cluster_weight, "transformer/adaptive_softmax/cutoff_0/cluster_b": model.crit.cluster_bias}) for i, (out_l, proj_l, tie_proj) in enumerate(zip( model.crit.out_layers, model.crit.out_projs, config.tie_projs)): layer_str = "transformer/adaptive_softmax/cutoff_%d/" % i if config.tie_weight: tf_to_pt_map.update({ layer_str + 'b': out_l.bias}) else: raise NotImplementedError # I don't think this is implemented in the TF code tf_to_pt_map.update({ layer_str + 'lookup_table': out_l.weight, layer_str + 'b': out_l.bias}) if not tie_proj: tf_to_pt_map.update({ layer_str + 'proj': proj_l }) # Now load the rest of the transformer model = model.transformer # Embeddings for i, (embed_l, proj_l) in enumerate(zip(model.word_emb.emb_layers, model.word_emb.emb_projs)): layer_str = "transformer/adaptive_embed/cutoff_%d/" % i tf_to_pt_map.update({ layer_str + 'lookup_table': embed_l.weight, layer_str + 'proj_W': proj_l }) # Transformer blocks for i, b in enumerate(model.layers): layer_str = "transformer/layer_%d/" % i tf_to_pt_map.update({ layer_str + "rel_attn/LayerNorm/gamma": b.dec_attn.layer_norm.weight, layer_str + "rel_attn/LayerNorm/beta": b.dec_attn.layer_norm.bias, layer_str + "rel_attn/o/kernel": b.dec_attn.o_net.weight, layer_str + "rel_attn/qkv/kernel": b.dec_attn.qkv_net.weight, layer_str + "rel_attn/r/kernel": b.dec_attn.r_net.weight, layer_str + "ff/LayerNorm/gamma": b.pos_ff.layer_norm.weight, layer_str + "ff/LayerNorm/beta": b.pos_ff.layer_norm.bias, layer_str + "ff/layer_1/kernel": b.pos_ff.CoreNet[0].weight, layer_str + "ff/layer_1/bias": b.pos_ff.CoreNet[0].bias, layer_str + "ff/layer_2/kernel": b.pos_ff.CoreNet[3].weight, layer_str + "ff/layer_2/bias": b.pos_ff.CoreNet[3].bias, }) # Relative positioning biases if config.untie_r: r_r_list = [] r_w_list = [] for b in model.layers: r_r_list.append(b.dec_attn.r_r_bias) r_w_list.append(b.dec_attn.r_w_bias) else: r_r_list = [model.r_r_bias] r_w_list = [model.r_w_bias] tf_to_pt_map.update({ 'transformer/r_r_bias': r_r_list, 'transformer/r_w_bias': r_w_list}) return tf_to_pt_map
python
def build_tf_to_pytorch_map(model, config): """ A map of modules from TF to PyTorch. This time I use a map to keep the PyTorch model as identical to the original PyTorch model as possible. """ tf_to_pt_map = {} if hasattr(model, 'transformer'): # We are loading in a TransfoXLLMHeadModel => we will load also the Adaptive Softmax tf_to_pt_map.update({ "transformer/adaptive_softmax/cutoff_0/cluster_W": model.crit.cluster_weight, "transformer/adaptive_softmax/cutoff_0/cluster_b": model.crit.cluster_bias}) for i, (out_l, proj_l, tie_proj) in enumerate(zip( model.crit.out_layers, model.crit.out_projs, config.tie_projs)): layer_str = "transformer/adaptive_softmax/cutoff_%d/" % i if config.tie_weight: tf_to_pt_map.update({ layer_str + 'b': out_l.bias}) else: raise NotImplementedError # I don't think this is implemented in the TF code tf_to_pt_map.update({ layer_str + 'lookup_table': out_l.weight, layer_str + 'b': out_l.bias}) if not tie_proj: tf_to_pt_map.update({ layer_str + 'proj': proj_l }) # Now load the rest of the transformer model = model.transformer # Embeddings for i, (embed_l, proj_l) in enumerate(zip(model.word_emb.emb_layers, model.word_emb.emb_projs)): layer_str = "transformer/adaptive_embed/cutoff_%d/" % i tf_to_pt_map.update({ layer_str + 'lookup_table': embed_l.weight, layer_str + 'proj_W': proj_l }) # Transformer blocks for i, b in enumerate(model.layers): layer_str = "transformer/layer_%d/" % i tf_to_pt_map.update({ layer_str + "rel_attn/LayerNorm/gamma": b.dec_attn.layer_norm.weight, layer_str + "rel_attn/LayerNorm/beta": b.dec_attn.layer_norm.bias, layer_str + "rel_attn/o/kernel": b.dec_attn.o_net.weight, layer_str + "rel_attn/qkv/kernel": b.dec_attn.qkv_net.weight, layer_str + "rel_attn/r/kernel": b.dec_attn.r_net.weight, layer_str + "ff/LayerNorm/gamma": b.pos_ff.layer_norm.weight, layer_str + "ff/LayerNorm/beta": b.pos_ff.layer_norm.bias, layer_str + "ff/layer_1/kernel": b.pos_ff.CoreNet[0].weight, layer_str + "ff/layer_1/bias": b.pos_ff.CoreNet[0].bias, layer_str + "ff/layer_2/kernel": b.pos_ff.CoreNet[3].weight, layer_str + "ff/layer_2/bias": b.pos_ff.CoreNet[3].bias, }) # Relative positioning biases if config.untie_r: r_r_list = [] r_w_list = [] for b in model.layers: r_r_list.append(b.dec_attn.r_r_bias) r_w_list.append(b.dec_attn.r_w_bias) else: r_r_list = [model.r_r_bias] r_w_list = [model.r_w_bias] tf_to_pt_map.update({ 'transformer/r_r_bias': r_r_list, 'transformer/r_w_bias': r_w_list}) return tf_to_pt_map
[ "def", "build_tf_to_pytorch_map", "(", "model", ",", "config", ")", ":", "tf_to_pt_map", "=", "{", "}", "if", "hasattr", "(", "model", ",", "'transformer'", ")", ":", "# We are loading in a TransfoXLLMHeadModel => we will load also the Adaptive Softmax", "tf_to_pt_map", ".", "update", "(", "{", "\"transformer/adaptive_softmax/cutoff_0/cluster_W\"", ":", "model", ".", "crit", ".", "cluster_weight", ",", "\"transformer/adaptive_softmax/cutoff_0/cluster_b\"", ":", "model", ".", "crit", ".", "cluster_bias", "}", ")", "for", "i", ",", "(", "out_l", ",", "proj_l", ",", "tie_proj", ")", "in", "enumerate", "(", "zip", "(", "model", ".", "crit", ".", "out_layers", ",", "model", ".", "crit", ".", "out_projs", ",", "config", ".", "tie_projs", ")", ")", ":", "layer_str", "=", "\"transformer/adaptive_softmax/cutoff_%d/\"", "%", "i", "if", "config", ".", "tie_weight", ":", "tf_to_pt_map", ".", "update", "(", "{", "layer_str", "+", "'b'", ":", "out_l", ".", "bias", "}", ")", "else", ":", "raise", "NotImplementedError", "# I don't think this is implemented in the TF code", "tf_to_pt_map", ".", "update", "(", "{", "layer_str", "+", "'lookup_table'", ":", "out_l", ".", "weight", ",", "layer_str", "+", "'b'", ":", "out_l", ".", "bias", "}", ")", "if", "not", "tie_proj", ":", "tf_to_pt_map", ".", "update", "(", "{", "layer_str", "+", "'proj'", ":", "proj_l", "}", ")", "# Now load the rest of the transformer", "model", "=", "model", ".", "transformer", "# Embeddings", "for", "i", ",", "(", "embed_l", ",", "proj_l", ")", "in", "enumerate", "(", "zip", "(", "model", ".", "word_emb", ".", "emb_layers", ",", "model", ".", "word_emb", ".", "emb_projs", ")", ")", ":", "layer_str", "=", "\"transformer/adaptive_embed/cutoff_%d/\"", "%", "i", "tf_to_pt_map", ".", "update", "(", "{", "layer_str", "+", "'lookup_table'", ":", "embed_l", ".", "weight", ",", "layer_str", "+", "'proj_W'", ":", "proj_l", "}", ")", "# Transformer blocks", "for", "i", ",", "b", "in", "enumerate", "(", "model", ".", "layers", ")", ":", "layer_str", "=", "\"transformer/layer_%d/\"", "%", "i", "tf_to_pt_map", ".", "update", "(", "{", "layer_str", "+", "\"rel_attn/LayerNorm/gamma\"", ":", "b", ".", "dec_attn", ".", "layer_norm", ".", "weight", ",", "layer_str", "+", "\"rel_attn/LayerNorm/beta\"", ":", "b", ".", "dec_attn", ".", "layer_norm", ".", "bias", ",", "layer_str", "+", "\"rel_attn/o/kernel\"", ":", "b", ".", "dec_attn", ".", "o_net", ".", "weight", ",", "layer_str", "+", "\"rel_attn/qkv/kernel\"", ":", "b", ".", "dec_attn", ".", "qkv_net", ".", "weight", ",", "layer_str", "+", "\"rel_attn/r/kernel\"", ":", "b", ".", "dec_attn", ".", "r_net", ".", "weight", ",", "layer_str", "+", "\"ff/LayerNorm/gamma\"", ":", "b", ".", "pos_ff", ".", "layer_norm", ".", "weight", ",", "layer_str", "+", "\"ff/LayerNorm/beta\"", ":", "b", ".", "pos_ff", ".", "layer_norm", ".", "bias", ",", "layer_str", "+", "\"ff/layer_1/kernel\"", ":", "b", ".", "pos_ff", ".", "CoreNet", "[", "0", "]", ".", "weight", ",", "layer_str", "+", "\"ff/layer_1/bias\"", ":", "b", ".", "pos_ff", ".", "CoreNet", "[", "0", "]", ".", "bias", ",", "layer_str", "+", "\"ff/layer_2/kernel\"", ":", "b", ".", "pos_ff", ".", "CoreNet", "[", "3", "]", ".", "weight", ",", "layer_str", "+", "\"ff/layer_2/bias\"", ":", "b", ".", "pos_ff", ".", "CoreNet", "[", "3", "]", ".", "bias", ",", "}", ")", "# Relative positioning biases", "if", "config", ".", "untie_r", ":", "r_r_list", "=", "[", "]", "r_w_list", "=", "[", "]", "for", "b", "in", "model", ".", "layers", ":", "r_r_list", ".", "append", "(", "b", ".", "dec_attn", ".", "r_r_bias", ")", "r_w_list", ".", "append", "(", "b", ".", "dec_attn", ".", "r_w_bias", ")", "else", ":", "r_r_list", "=", "[", "model", ".", "r_r_bias", "]", "r_w_list", "=", "[", "model", ".", "r_w_bias", "]", "tf_to_pt_map", ".", "update", "(", "{", "'transformer/r_r_bias'", ":", "r_r_list", ",", "'transformer/r_w_bias'", ":", "r_w_list", "}", ")", "return", "tf_to_pt_map" ]
A map of modules from TF to PyTorch. This time I use a map to keep the PyTorch model as identical to the original PyTorch model as possible.
[ "A", "map", "of", "modules", "from", "TF", "to", "PyTorch", ".", "This", "time", "I", "use", "a", "map", "to", "keep", "the", "PyTorch", "model", "as", "identical", "to", "the", "original", "PyTorch", "model", "as", "possible", "." ]
b832d5bb8a6dfc5965015b828e577677eace601e
https://github.com/huggingface/pytorch-pretrained-BERT/blob/b832d5bb8a6dfc5965015b828e577677eace601e/pytorch_pretrained_bert/modeling_transfo_xl.py#L56-L126
19,385
pandas-dev/pandas
pandas/tseries/frequencies.py
to_offset
def to_offset(freq): """ Return DateOffset object from string or tuple representation or datetime.timedelta object Parameters ---------- freq : str, tuple, datetime.timedelta, DateOffset or None Returns ------- DateOffset None if freq is None. Raises ------ ValueError If freq is an invalid frequency See Also -------- DateOffset Examples -------- >>> to_offset('5min') <5 * Minutes> >>> to_offset('1D1H') <25 * Hours> >>> to_offset(('W', 2)) <2 * Weeks: weekday=6> >>> to_offset((2, 'B')) <2 * BusinessDays> >>> to_offset(datetime.timedelta(days=1)) <Day> >>> to_offset(Hour()) <Hour> """ if freq is None: return None if isinstance(freq, DateOffset): return freq if isinstance(freq, tuple): name = freq[0] stride = freq[1] if isinstance(stride, str): name, stride = stride, name name, _ = libfreqs._base_and_stride(name) delta = get_offset(name) * stride elif isinstance(freq, timedelta): delta = None freq = Timedelta(freq) try: for name in freq.components._fields: offset = _name_to_offset_map[name] stride = getattr(freq.components, name) if stride != 0: offset = stride * offset if delta is None: delta = offset else: delta = delta + offset except Exception: raise ValueError(libfreqs.INVALID_FREQ_ERR_MSG.format(freq)) else: delta = None stride_sign = None try: splitted = re.split(libfreqs.opattern, freq) if splitted[-1] != '' and not splitted[-1].isspace(): # the last element must be blank raise ValueError('last element must be blank') for sep, stride, name in zip(splitted[0::4], splitted[1::4], splitted[2::4]): if sep != '' and not sep.isspace(): raise ValueError('separator must be spaces') prefix = libfreqs._lite_rule_alias.get(name) or name if stride_sign is None: stride_sign = -1 if stride.startswith('-') else 1 if not stride: stride = 1 if prefix in Resolution._reso_str_bump_map.keys(): stride, name = Resolution.get_stride_from_decimal( float(stride), prefix ) stride = int(stride) offset = get_offset(name) offset = offset * int(np.fabs(stride) * stride_sign) if delta is None: delta = offset else: delta = delta + offset except Exception: raise ValueError(libfreqs.INVALID_FREQ_ERR_MSG.format(freq)) if delta is None: raise ValueError(libfreqs.INVALID_FREQ_ERR_MSG.format(freq)) return delta
python
def to_offset(freq): """ Return DateOffset object from string or tuple representation or datetime.timedelta object Parameters ---------- freq : str, tuple, datetime.timedelta, DateOffset or None Returns ------- DateOffset None if freq is None. Raises ------ ValueError If freq is an invalid frequency See Also -------- DateOffset Examples -------- >>> to_offset('5min') <5 * Minutes> >>> to_offset('1D1H') <25 * Hours> >>> to_offset(('W', 2)) <2 * Weeks: weekday=6> >>> to_offset((2, 'B')) <2 * BusinessDays> >>> to_offset(datetime.timedelta(days=1)) <Day> >>> to_offset(Hour()) <Hour> """ if freq is None: return None if isinstance(freq, DateOffset): return freq if isinstance(freq, tuple): name = freq[0] stride = freq[1] if isinstance(stride, str): name, stride = stride, name name, _ = libfreqs._base_and_stride(name) delta = get_offset(name) * stride elif isinstance(freq, timedelta): delta = None freq = Timedelta(freq) try: for name in freq.components._fields: offset = _name_to_offset_map[name] stride = getattr(freq.components, name) if stride != 0: offset = stride * offset if delta is None: delta = offset else: delta = delta + offset except Exception: raise ValueError(libfreqs.INVALID_FREQ_ERR_MSG.format(freq)) else: delta = None stride_sign = None try: splitted = re.split(libfreqs.opattern, freq) if splitted[-1] != '' and not splitted[-1].isspace(): # the last element must be blank raise ValueError('last element must be blank') for sep, stride, name in zip(splitted[0::4], splitted[1::4], splitted[2::4]): if sep != '' and not sep.isspace(): raise ValueError('separator must be spaces') prefix = libfreqs._lite_rule_alias.get(name) or name if stride_sign is None: stride_sign = -1 if stride.startswith('-') else 1 if not stride: stride = 1 if prefix in Resolution._reso_str_bump_map.keys(): stride, name = Resolution.get_stride_from_decimal( float(stride), prefix ) stride = int(stride) offset = get_offset(name) offset = offset * int(np.fabs(stride) * stride_sign) if delta is None: delta = offset else: delta = delta + offset except Exception: raise ValueError(libfreqs.INVALID_FREQ_ERR_MSG.format(freq)) if delta is None: raise ValueError(libfreqs.INVALID_FREQ_ERR_MSG.format(freq)) return delta
[ "def", "to_offset", "(", "freq", ")", ":", "if", "freq", "is", "None", ":", "return", "None", "if", "isinstance", "(", "freq", ",", "DateOffset", ")", ":", "return", "freq", "if", "isinstance", "(", "freq", ",", "tuple", ")", ":", "name", "=", "freq", "[", "0", "]", "stride", "=", "freq", "[", "1", "]", "if", "isinstance", "(", "stride", ",", "str", ")", ":", "name", ",", "stride", "=", "stride", ",", "name", "name", ",", "_", "=", "libfreqs", ".", "_base_and_stride", "(", "name", ")", "delta", "=", "get_offset", "(", "name", ")", "*", "stride", "elif", "isinstance", "(", "freq", ",", "timedelta", ")", ":", "delta", "=", "None", "freq", "=", "Timedelta", "(", "freq", ")", "try", ":", "for", "name", "in", "freq", ".", "components", ".", "_fields", ":", "offset", "=", "_name_to_offset_map", "[", "name", "]", "stride", "=", "getattr", "(", "freq", ".", "components", ",", "name", ")", "if", "stride", "!=", "0", ":", "offset", "=", "stride", "*", "offset", "if", "delta", "is", "None", ":", "delta", "=", "offset", "else", ":", "delta", "=", "delta", "+", "offset", "except", "Exception", ":", "raise", "ValueError", "(", "libfreqs", ".", "INVALID_FREQ_ERR_MSG", ".", "format", "(", "freq", ")", ")", "else", ":", "delta", "=", "None", "stride_sign", "=", "None", "try", ":", "splitted", "=", "re", ".", "split", "(", "libfreqs", ".", "opattern", ",", "freq", ")", "if", "splitted", "[", "-", "1", "]", "!=", "''", "and", "not", "splitted", "[", "-", "1", "]", ".", "isspace", "(", ")", ":", "# the last element must be blank", "raise", "ValueError", "(", "'last element must be blank'", ")", "for", "sep", ",", "stride", ",", "name", "in", "zip", "(", "splitted", "[", "0", ":", ":", "4", "]", ",", "splitted", "[", "1", ":", ":", "4", "]", ",", "splitted", "[", "2", ":", ":", "4", "]", ")", ":", "if", "sep", "!=", "''", "and", "not", "sep", ".", "isspace", "(", ")", ":", "raise", "ValueError", "(", "'separator must be spaces'", ")", "prefix", "=", "libfreqs", ".", "_lite_rule_alias", ".", "get", "(", "name", ")", "or", "name", "if", "stride_sign", "is", "None", ":", "stride_sign", "=", "-", "1", "if", "stride", ".", "startswith", "(", "'-'", ")", "else", "1", "if", "not", "stride", ":", "stride", "=", "1", "if", "prefix", "in", "Resolution", ".", "_reso_str_bump_map", ".", "keys", "(", ")", ":", "stride", ",", "name", "=", "Resolution", ".", "get_stride_from_decimal", "(", "float", "(", "stride", ")", ",", "prefix", ")", "stride", "=", "int", "(", "stride", ")", "offset", "=", "get_offset", "(", "name", ")", "offset", "=", "offset", "*", "int", "(", "np", ".", "fabs", "(", "stride", ")", "*", "stride_sign", ")", "if", "delta", "is", "None", ":", "delta", "=", "offset", "else", ":", "delta", "=", "delta", "+", "offset", "except", "Exception", ":", "raise", "ValueError", "(", "libfreqs", ".", "INVALID_FREQ_ERR_MSG", ".", "format", "(", "freq", ")", ")", "if", "delta", "is", "None", ":", "raise", "ValueError", "(", "libfreqs", ".", "INVALID_FREQ_ERR_MSG", ".", "format", "(", "freq", ")", ")", "return", "delta" ]
Return DateOffset object from string or tuple representation or datetime.timedelta object Parameters ---------- freq : str, tuple, datetime.timedelta, DateOffset or None Returns ------- DateOffset None if freq is None. Raises ------ ValueError If freq is an invalid frequency See Also -------- DateOffset Examples -------- >>> to_offset('5min') <5 * Minutes> >>> to_offset('1D1H') <25 * Hours> >>> to_offset(('W', 2)) <2 * Weeks: weekday=6> >>> to_offset((2, 'B')) <2 * BusinessDays> >>> to_offset(datetime.timedelta(days=1)) <Day> >>> to_offset(Hour()) <Hour>
[ "Return", "DateOffset", "object", "from", "string", "or", "tuple", "representation", "or", "datetime", ".", "timedelta", "object" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/tseries/frequencies.py#L57-L164
19,386
pandas-dev/pandas
pandas/tseries/frequencies.py
get_offset
def get_offset(name): """ Return DateOffset object associated with rule name Examples -------- get_offset('EOM') --> BMonthEnd(1) """ if name not in libfreqs._dont_uppercase: name = name.upper() name = libfreqs._lite_rule_alias.get(name, name) name = libfreqs._lite_rule_alias.get(name.lower(), name) else: name = libfreqs._lite_rule_alias.get(name, name) if name not in _offset_map: try: split = name.split('-') klass = prefix_mapping[split[0]] # handles case where there's no suffix (and will TypeError if too # many '-') offset = klass._from_name(*split[1:]) except (ValueError, TypeError, KeyError): # bad prefix or suffix raise ValueError(libfreqs.INVALID_FREQ_ERR_MSG.format(name)) # cache _offset_map[name] = offset return _offset_map[name]
python
def get_offset(name): """ Return DateOffset object associated with rule name Examples -------- get_offset('EOM') --> BMonthEnd(1) """ if name not in libfreqs._dont_uppercase: name = name.upper() name = libfreqs._lite_rule_alias.get(name, name) name = libfreqs._lite_rule_alias.get(name.lower(), name) else: name = libfreqs._lite_rule_alias.get(name, name) if name not in _offset_map: try: split = name.split('-') klass = prefix_mapping[split[0]] # handles case where there's no suffix (and will TypeError if too # many '-') offset = klass._from_name(*split[1:]) except (ValueError, TypeError, KeyError): # bad prefix or suffix raise ValueError(libfreqs.INVALID_FREQ_ERR_MSG.format(name)) # cache _offset_map[name] = offset return _offset_map[name]
[ "def", "get_offset", "(", "name", ")", ":", "if", "name", "not", "in", "libfreqs", ".", "_dont_uppercase", ":", "name", "=", "name", ".", "upper", "(", ")", "name", "=", "libfreqs", ".", "_lite_rule_alias", ".", "get", "(", "name", ",", "name", ")", "name", "=", "libfreqs", ".", "_lite_rule_alias", ".", "get", "(", "name", ".", "lower", "(", ")", ",", "name", ")", "else", ":", "name", "=", "libfreqs", ".", "_lite_rule_alias", ".", "get", "(", "name", ",", "name", ")", "if", "name", "not", "in", "_offset_map", ":", "try", ":", "split", "=", "name", ".", "split", "(", "'-'", ")", "klass", "=", "prefix_mapping", "[", "split", "[", "0", "]", "]", "# handles case where there's no suffix (and will TypeError if too", "# many '-')", "offset", "=", "klass", ".", "_from_name", "(", "*", "split", "[", "1", ":", "]", ")", "except", "(", "ValueError", ",", "TypeError", ",", "KeyError", ")", ":", "# bad prefix or suffix", "raise", "ValueError", "(", "libfreqs", ".", "INVALID_FREQ_ERR_MSG", ".", "format", "(", "name", ")", ")", "# cache", "_offset_map", "[", "name", "]", "=", "offset", "return", "_offset_map", "[", "name", "]" ]
Return DateOffset object associated with rule name Examples -------- get_offset('EOM') --> BMonthEnd(1)
[ "Return", "DateOffset", "object", "associated", "with", "rule", "name" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/tseries/frequencies.py#L167-L195
19,387
pandas-dev/pandas
pandas/tseries/frequencies.py
infer_freq
def infer_freq(index, warn=True): """ Infer the most likely frequency given the input index. If the frequency is uncertain, a warning will be printed. Parameters ---------- index : DatetimeIndex or TimedeltaIndex if passed a Series will use the values of the series (NOT THE INDEX) warn : boolean, default True Returns ------- str or None None if no discernible frequency TypeError if the index is not datetime-like ValueError if there are less than three values. """ import pandas as pd if isinstance(index, ABCSeries): values = index._values if not (is_datetime64_dtype(values) or is_timedelta64_dtype(values) or values.dtype == object): raise TypeError("cannot infer freq from a non-convertible dtype " "on a Series of {dtype}".format(dtype=index.dtype)) index = values if is_period_arraylike(index): raise TypeError("PeriodIndex given. Check the `freq` attribute " "instead of using infer_freq.") elif is_timedelta64_dtype(index): # Allow TimedeltaIndex and TimedeltaArray inferer = _TimedeltaFrequencyInferer(index, warn=warn) return inferer.get_freq() if isinstance(index, pd.Index) and not isinstance(index, pd.DatetimeIndex): if isinstance(index, (pd.Int64Index, pd.Float64Index)): raise TypeError("cannot infer freq from a non-convertible index " "type {type}".format(type=type(index))) index = index.values if not isinstance(index, pd.DatetimeIndex): try: index = pd.DatetimeIndex(index) except AmbiguousTimeError: index = pd.DatetimeIndex(index.asi8) inferer = _FrequencyInferer(index, warn=warn) return inferer.get_freq()
python
def infer_freq(index, warn=True): """ Infer the most likely frequency given the input index. If the frequency is uncertain, a warning will be printed. Parameters ---------- index : DatetimeIndex or TimedeltaIndex if passed a Series will use the values of the series (NOT THE INDEX) warn : boolean, default True Returns ------- str or None None if no discernible frequency TypeError if the index is not datetime-like ValueError if there are less than three values. """ import pandas as pd if isinstance(index, ABCSeries): values = index._values if not (is_datetime64_dtype(values) or is_timedelta64_dtype(values) or values.dtype == object): raise TypeError("cannot infer freq from a non-convertible dtype " "on a Series of {dtype}".format(dtype=index.dtype)) index = values if is_period_arraylike(index): raise TypeError("PeriodIndex given. Check the `freq` attribute " "instead of using infer_freq.") elif is_timedelta64_dtype(index): # Allow TimedeltaIndex and TimedeltaArray inferer = _TimedeltaFrequencyInferer(index, warn=warn) return inferer.get_freq() if isinstance(index, pd.Index) and not isinstance(index, pd.DatetimeIndex): if isinstance(index, (pd.Int64Index, pd.Float64Index)): raise TypeError("cannot infer freq from a non-convertible index " "type {type}".format(type=type(index))) index = index.values if not isinstance(index, pd.DatetimeIndex): try: index = pd.DatetimeIndex(index) except AmbiguousTimeError: index = pd.DatetimeIndex(index.asi8) inferer = _FrequencyInferer(index, warn=warn) return inferer.get_freq()
[ "def", "infer_freq", "(", "index", ",", "warn", "=", "True", ")", ":", "import", "pandas", "as", "pd", "if", "isinstance", "(", "index", ",", "ABCSeries", ")", ":", "values", "=", "index", ".", "_values", "if", "not", "(", "is_datetime64_dtype", "(", "values", ")", "or", "is_timedelta64_dtype", "(", "values", ")", "or", "values", ".", "dtype", "==", "object", ")", ":", "raise", "TypeError", "(", "\"cannot infer freq from a non-convertible dtype \"", "\"on a Series of {dtype}\"", ".", "format", "(", "dtype", "=", "index", ".", "dtype", ")", ")", "index", "=", "values", "if", "is_period_arraylike", "(", "index", ")", ":", "raise", "TypeError", "(", "\"PeriodIndex given. Check the `freq` attribute \"", "\"instead of using infer_freq.\"", ")", "elif", "is_timedelta64_dtype", "(", "index", ")", ":", "# Allow TimedeltaIndex and TimedeltaArray", "inferer", "=", "_TimedeltaFrequencyInferer", "(", "index", ",", "warn", "=", "warn", ")", "return", "inferer", ".", "get_freq", "(", ")", "if", "isinstance", "(", "index", ",", "pd", ".", "Index", ")", "and", "not", "isinstance", "(", "index", ",", "pd", ".", "DatetimeIndex", ")", ":", "if", "isinstance", "(", "index", ",", "(", "pd", ".", "Int64Index", ",", "pd", ".", "Float64Index", ")", ")", ":", "raise", "TypeError", "(", "\"cannot infer freq from a non-convertible index \"", "\"type {type}\"", ".", "format", "(", "type", "=", "type", "(", "index", ")", ")", ")", "index", "=", "index", ".", "values", "if", "not", "isinstance", "(", "index", ",", "pd", ".", "DatetimeIndex", ")", ":", "try", ":", "index", "=", "pd", ".", "DatetimeIndex", "(", "index", ")", "except", "AmbiguousTimeError", ":", "index", "=", "pd", ".", "DatetimeIndex", "(", "index", ".", "asi8", ")", "inferer", "=", "_FrequencyInferer", "(", "index", ",", "warn", "=", "warn", ")", "return", "inferer", ".", "get_freq", "(", ")" ]
Infer the most likely frequency given the input index. If the frequency is uncertain, a warning will be printed. Parameters ---------- index : DatetimeIndex or TimedeltaIndex if passed a Series will use the values of the series (NOT THE INDEX) warn : boolean, default True Returns ------- str or None None if no discernible frequency TypeError if the index is not datetime-like ValueError if there are less than three values.
[ "Infer", "the", "most", "likely", "frequency", "given", "the", "input", "index", ".", "If", "the", "frequency", "is", "uncertain", "a", "warning", "will", "be", "printed", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/tseries/frequencies.py#L202-L252
19,388
pandas-dev/pandas
pandas/tseries/frequencies.py
_FrequencyInferer.get_freq
def get_freq(self): """ Find the appropriate frequency string to describe the inferred frequency of self.values Returns ------- str or None """ if not self.is_monotonic or not self.index._is_unique: return None delta = self.deltas[0] if _is_multiple(delta, _ONE_DAY): return self._infer_daily_rule() # Business hourly, maybe. 17: one day / 65: one weekend if self.hour_deltas in ([1, 17], [1, 65], [1, 17, 65]): return 'BH' # Possibly intraday frequency. Here we use the # original .asi8 values as the modified values # will not work around DST transitions. See #8772 elif not self.is_unique_asi8: return None delta = self.deltas_asi8[0] if _is_multiple(delta, _ONE_HOUR): # Hours return _maybe_add_count('H', delta / _ONE_HOUR) elif _is_multiple(delta, _ONE_MINUTE): # Minutes return _maybe_add_count('T', delta / _ONE_MINUTE) elif _is_multiple(delta, _ONE_SECOND): # Seconds return _maybe_add_count('S', delta / _ONE_SECOND) elif _is_multiple(delta, _ONE_MILLI): # Milliseconds return _maybe_add_count('L', delta / _ONE_MILLI) elif _is_multiple(delta, _ONE_MICRO): # Microseconds return _maybe_add_count('U', delta / _ONE_MICRO) else: # Nanoseconds return _maybe_add_count('N', delta)
python
def get_freq(self): """ Find the appropriate frequency string to describe the inferred frequency of self.values Returns ------- str or None """ if not self.is_monotonic or not self.index._is_unique: return None delta = self.deltas[0] if _is_multiple(delta, _ONE_DAY): return self._infer_daily_rule() # Business hourly, maybe. 17: one day / 65: one weekend if self.hour_deltas in ([1, 17], [1, 65], [1, 17, 65]): return 'BH' # Possibly intraday frequency. Here we use the # original .asi8 values as the modified values # will not work around DST transitions. See #8772 elif not self.is_unique_asi8: return None delta = self.deltas_asi8[0] if _is_multiple(delta, _ONE_HOUR): # Hours return _maybe_add_count('H', delta / _ONE_HOUR) elif _is_multiple(delta, _ONE_MINUTE): # Minutes return _maybe_add_count('T', delta / _ONE_MINUTE) elif _is_multiple(delta, _ONE_SECOND): # Seconds return _maybe_add_count('S', delta / _ONE_SECOND) elif _is_multiple(delta, _ONE_MILLI): # Milliseconds return _maybe_add_count('L', delta / _ONE_MILLI) elif _is_multiple(delta, _ONE_MICRO): # Microseconds return _maybe_add_count('U', delta / _ONE_MICRO) else: # Nanoseconds return _maybe_add_count('N', delta)
[ "def", "get_freq", "(", "self", ")", ":", "if", "not", "self", ".", "is_monotonic", "or", "not", "self", ".", "index", ".", "_is_unique", ":", "return", "None", "delta", "=", "self", ".", "deltas", "[", "0", "]", "if", "_is_multiple", "(", "delta", ",", "_ONE_DAY", ")", ":", "return", "self", ".", "_infer_daily_rule", "(", ")", "# Business hourly, maybe. 17: one day / 65: one weekend", "if", "self", ".", "hour_deltas", "in", "(", "[", "1", ",", "17", "]", ",", "[", "1", ",", "65", "]", ",", "[", "1", ",", "17", ",", "65", "]", ")", ":", "return", "'BH'", "# Possibly intraday frequency. Here we use the", "# original .asi8 values as the modified values", "# will not work around DST transitions. See #8772", "elif", "not", "self", ".", "is_unique_asi8", ":", "return", "None", "delta", "=", "self", ".", "deltas_asi8", "[", "0", "]", "if", "_is_multiple", "(", "delta", ",", "_ONE_HOUR", ")", ":", "# Hours", "return", "_maybe_add_count", "(", "'H'", ",", "delta", "/", "_ONE_HOUR", ")", "elif", "_is_multiple", "(", "delta", ",", "_ONE_MINUTE", ")", ":", "# Minutes", "return", "_maybe_add_count", "(", "'T'", ",", "delta", "/", "_ONE_MINUTE", ")", "elif", "_is_multiple", "(", "delta", ",", "_ONE_SECOND", ")", ":", "# Seconds", "return", "_maybe_add_count", "(", "'S'", ",", "delta", "/", "_ONE_SECOND", ")", "elif", "_is_multiple", "(", "delta", ",", "_ONE_MILLI", ")", ":", "# Milliseconds", "return", "_maybe_add_count", "(", "'L'", ",", "delta", "/", "_ONE_MILLI", ")", "elif", "_is_multiple", "(", "delta", ",", "_ONE_MICRO", ")", ":", "# Microseconds", "return", "_maybe_add_count", "(", "'U'", ",", "delta", "/", "_ONE_MICRO", ")", "else", ":", "# Nanoseconds", "return", "_maybe_add_count", "(", "'N'", ",", "delta", ")" ]
Find the appropriate frequency string to describe the inferred frequency of self.values Returns ------- str or None
[ "Find", "the", "appropriate", "frequency", "string", "to", "describe", "the", "inferred", "frequency", "of", "self", ".", "values" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/tseries/frequencies.py#L294-L337
19,389
pandas-dev/pandas
pandas/compat/pickle_compat.py
load
def load(fh, encoding=None, is_verbose=False): """load a pickle, with a provided encoding if compat is True: fake the old class hierarchy if it works, then return the new type objects Parameters ---------- fh : a filelike object encoding : an optional encoding is_verbose : show exception output """ try: fh.seek(0) if encoding is not None: up = Unpickler(fh, encoding=encoding) else: up = Unpickler(fh) up.is_verbose = is_verbose return up.load() except (ValueError, TypeError): raise
python
def load(fh, encoding=None, is_verbose=False): """load a pickle, with a provided encoding if compat is True: fake the old class hierarchy if it works, then return the new type objects Parameters ---------- fh : a filelike object encoding : an optional encoding is_verbose : show exception output """ try: fh.seek(0) if encoding is not None: up = Unpickler(fh, encoding=encoding) else: up = Unpickler(fh) up.is_verbose = is_verbose return up.load() except (ValueError, TypeError): raise
[ "def", "load", "(", "fh", ",", "encoding", "=", "None", ",", "is_verbose", "=", "False", ")", ":", "try", ":", "fh", ".", "seek", "(", "0", ")", "if", "encoding", "is", "not", "None", ":", "up", "=", "Unpickler", "(", "fh", ",", "encoding", "=", "encoding", ")", "else", ":", "up", "=", "Unpickler", "(", "fh", ")", "up", ".", "is_verbose", "=", "is_verbose", "return", "up", ".", "load", "(", ")", "except", "(", "ValueError", ",", "TypeError", ")", ":", "raise" ]
load a pickle, with a provided encoding if compat is True: fake the old class hierarchy if it works, then return the new type objects Parameters ---------- fh : a filelike object encoding : an optional encoding is_verbose : show exception output
[ "load", "a", "pickle", "with", "a", "provided", "encoding" ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/compat/pickle_compat.py#L189-L213
19,390
pandas-dev/pandas
pandas/core/indexes/base.py
ensure_index_from_sequences
def ensure_index_from_sequences(sequences, names=None): """ Construct an index from sequences of data. A single sequence returns an Index. Many sequences returns a MultiIndex. Parameters ---------- sequences : sequence of sequences names : sequence of str Returns ------- index : Index or MultiIndex Examples -------- >>> ensure_index_from_sequences([[1, 2, 3]], names=['name']) Int64Index([1, 2, 3], dtype='int64', name='name') >>> ensure_index_from_sequences([['a', 'a'], ['a', 'b']], names=['L1', 'L2']) MultiIndex(levels=[['a'], ['a', 'b']], codes=[[0, 0], [0, 1]], names=['L1', 'L2']) See Also -------- ensure_index """ from .multi import MultiIndex if len(sequences) == 1: if names is not None: names = names[0] return Index(sequences[0], name=names) else: return MultiIndex.from_arrays(sequences, names=names)
python
def ensure_index_from_sequences(sequences, names=None): """ Construct an index from sequences of data. A single sequence returns an Index. Many sequences returns a MultiIndex. Parameters ---------- sequences : sequence of sequences names : sequence of str Returns ------- index : Index or MultiIndex Examples -------- >>> ensure_index_from_sequences([[1, 2, 3]], names=['name']) Int64Index([1, 2, 3], dtype='int64', name='name') >>> ensure_index_from_sequences([['a', 'a'], ['a', 'b']], names=['L1', 'L2']) MultiIndex(levels=[['a'], ['a', 'b']], codes=[[0, 0], [0, 1]], names=['L1', 'L2']) See Also -------- ensure_index """ from .multi import MultiIndex if len(sequences) == 1: if names is not None: names = names[0] return Index(sequences[0], name=names) else: return MultiIndex.from_arrays(sequences, names=names)
[ "def", "ensure_index_from_sequences", "(", "sequences", ",", "names", "=", "None", ")", ":", "from", ".", "multi", "import", "MultiIndex", "if", "len", "(", "sequences", ")", "==", "1", ":", "if", "names", "is", "not", "None", ":", "names", "=", "names", "[", "0", "]", "return", "Index", "(", "sequences", "[", "0", "]", ",", "name", "=", "names", ")", "else", ":", "return", "MultiIndex", ".", "from_arrays", "(", "sequences", ",", "names", "=", "names", ")" ]
Construct an index from sequences of data. A single sequence returns an Index. Many sequences returns a MultiIndex. Parameters ---------- sequences : sequence of sequences names : sequence of str Returns ------- index : Index or MultiIndex Examples -------- >>> ensure_index_from_sequences([[1, 2, 3]], names=['name']) Int64Index([1, 2, 3], dtype='int64', name='name') >>> ensure_index_from_sequences([['a', 'a'], ['a', 'b']], names=['L1', 'L2']) MultiIndex(levels=[['a'], ['a', 'b']], codes=[[0, 0], [0, 1]], names=['L1', 'L2']) See Also -------- ensure_index
[ "Construct", "an", "index", "from", "sequences", "of", "data", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/base.py#L5277-L5315
19,391
pandas-dev/pandas
pandas/core/indexes/base.py
ensure_index
def ensure_index(index_like, copy=False): """ Ensure that we have an index from some index-like object. Parameters ---------- index : sequence An Index or other sequence copy : bool Returns ------- index : Index or MultiIndex Examples -------- >>> ensure_index(['a', 'b']) Index(['a', 'b'], dtype='object') >>> ensure_index([('a', 'a'), ('b', 'c')]) Index([('a', 'a'), ('b', 'c')], dtype='object') >>> ensure_index([['a', 'a'], ['b', 'c']]) MultiIndex(levels=[['a'], ['b', 'c']], codes=[[0, 0], [0, 1]]) See Also -------- ensure_index_from_sequences """ if isinstance(index_like, Index): if copy: index_like = index_like.copy() return index_like if hasattr(index_like, 'name'): return Index(index_like, name=index_like.name, copy=copy) if is_iterator(index_like): index_like = list(index_like) # must check for exactly list here because of strict type # check in clean_index_list if isinstance(index_like, list): if type(index_like) != list: index_like = list(index_like) converted, all_arrays = lib.clean_index_list(index_like) if len(converted) > 0 and all_arrays: from .multi import MultiIndex return MultiIndex.from_arrays(converted) else: index_like = converted else: # clean_index_list does the equivalent of copying # so only need to do this if not list instance if copy: from copy import copy index_like = copy(index_like) return Index(index_like)
python
def ensure_index(index_like, copy=False): """ Ensure that we have an index from some index-like object. Parameters ---------- index : sequence An Index or other sequence copy : bool Returns ------- index : Index or MultiIndex Examples -------- >>> ensure_index(['a', 'b']) Index(['a', 'b'], dtype='object') >>> ensure_index([('a', 'a'), ('b', 'c')]) Index([('a', 'a'), ('b', 'c')], dtype='object') >>> ensure_index([['a', 'a'], ['b', 'c']]) MultiIndex(levels=[['a'], ['b', 'c']], codes=[[0, 0], [0, 1]]) See Also -------- ensure_index_from_sequences """ if isinstance(index_like, Index): if copy: index_like = index_like.copy() return index_like if hasattr(index_like, 'name'): return Index(index_like, name=index_like.name, copy=copy) if is_iterator(index_like): index_like = list(index_like) # must check for exactly list here because of strict type # check in clean_index_list if isinstance(index_like, list): if type(index_like) != list: index_like = list(index_like) converted, all_arrays = lib.clean_index_list(index_like) if len(converted) > 0 and all_arrays: from .multi import MultiIndex return MultiIndex.from_arrays(converted) else: index_like = converted else: # clean_index_list does the equivalent of copying # so only need to do this if not list instance if copy: from copy import copy index_like = copy(index_like) return Index(index_like)
[ "def", "ensure_index", "(", "index_like", ",", "copy", "=", "False", ")", ":", "if", "isinstance", "(", "index_like", ",", "Index", ")", ":", "if", "copy", ":", "index_like", "=", "index_like", ".", "copy", "(", ")", "return", "index_like", "if", "hasattr", "(", "index_like", ",", "'name'", ")", ":", "return", "Index", "(", "index_like", ",", "name", "=", "index_like", ".", "name", ",", "copy", "=", "copy", ")", "if", "is_iterator", "(", "index_like", ")", ":", "index_like", "=", "list", "(", "index_like", ")", "# must check for exactly list here because of strict type", "# check in clean_index_list", "if", "isinstance", "(", "index_like", ",", "list", ")", ":", "if", "type", "(", "index_like", ")", "!=", "list", ":", "index_like", "=", "list", "(", "index_like", ")", "converted", ",", "all_arrays", "=", "lib", ".", "clean_index_list", "(", "index_like", ")", "if", "len", "(", "converted", ")", ">", "0", "and", "all_arrays", ":", "from", ".", "multi", "import", "MultiIndex", "return", "MultiIndex", ".", "from_arrays", "(", "converted", ")", "else", ":", "index_like", "=", "converted", "else", ":", "# clean_index_list does the equivalent of copying", "# so only need to do this if not list instance", "if", "copy", ":", "from", "copy", "import", "copy", "index_like", "=", "copy", "(", "index_like", ")", "return", "Index", "(", "index_like", ")" ]
Ensure that we have an index from some index-like object. Parameters ---------- index : sequence An Index or other sequence copy : bool Returns ------- index : Index or MultiIndex Examples -------- >>> ensure_index(['a', 'b']) Index(['a', 'b'], dtype='object') >>> ensure_index([('a', 'a'), ('b', 'c')]) Index([('a', 'a'), ('b', 'c')], dtype='object') >>> ensure_index([['a', 'a'], ['b', 'c']]) MultiIndex(levels=[['a'], ['b', 'c']], codes=[[0, 0], [0, 1]]) See Also -------- ensure_index_from_sequences
[ "Ensure", "that", "we", "have", "an", "index", "from", "some", "index", "-", "like", "object", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/base.py#L5318-L5378
19,392
pandas-dev/pandas
pandas/core/indexes/base.py
Index._simple_new
def _simple_new(cls, values, name=None, dtype=None, **kwargs): """ We require that we have a dtype compat for the values. If we are passed a non-dtype compat, then coerce using the constructor. Must be careful not to recurse. """ if not hasattr(values, 'dtype'): if (values is None or not len(values)) and dtype is not None: values = np.empty(0, dtype=dtype) else: values = np.array(values, copy=False) if is_object_dtype(values): values = cls(values, name=name, dtype=dtype, **kwargs)._ndarray_values if isinstance(values, (ABCSeries, ABCIndexClass)): # Index._data must always be an ndarray. # This is no-copy for when _values is an ndarray, # which should be always at this point. values = np.asarray(values._values) result = object.__new__(cls) result._data = values # _index_data is a (temporary?) fix to ensure that the direct data # manipulation we do in `_libs/reduction.pyx` continues to work. # We need access to the actual ndarray, since we're messing with # data buffers and strides. We don't re-use `_ndarray_values`, since # we actually set this value too. result._index_data = values result.name = name for k, v in kwargs.items(): setattr(result, k, v) return result._reset_identity()
python
def _simple_new(cls, values, name=None, dtype=None, **kwargs): """ We require that we have a dtype compat for the values. If we are passed a non-dtype compat, then coerce using the constructor. Must be careful not to recurse. """ if not hasattr(values, 'dtype'): if (values is None or not len(values)) and dtype is not None: values = np.empty(0, dtype=dtype) else: values = np.array(values, copy=False) if is_object_dtype(values): values = cls(values, name=name, dtype=dtype, **kwargs)._ndarray_values if isinstance(values, (ABCSeries, ABCIndexClass)): # Index._data must always be an ndarray. # This is no-copy for when _values is an ndarray, # which should be always at this point. values = np.asarray(values._values) result = object.__new__(cls) result._data = values # _index_data is a (temporary?) fix to ensure that the direct data # manipulation we do in `_libs/reduction.pyx` continues to work. # We need access to the actual ndarray, since we're messing with # data buffers and strides. We don't re-use `_ndarray_values`, since # we actually set this value too. result._index_data = values result.name = name for k, v in kwargs.items(): setattr(result, k, v) return result._reset_identity()
[ "def", "_simple_new", "(", "cls", ",", "values", ",", "name", "=", "None", ",", "dtype", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "not", "hasattr", "(", "values", ",", "'dtype'", ")", ":", "if", "(", "values", "is", "None", "or", "not", "len", "(", "values", ")", ")", "and", "dtype", "is", "not", "None", ":", "values", "=", "np", ".", "empty", "(", "0", ",", "dtype", "=", "dtype", ")", "else", ":", "values", "=", "np", ".", "array", "(", "values", ",", "copy", "=", "False", ")", "if", "is_object_dtype", "(", "values", ")", ":", "values", "=", "cls", "(", "values", ",", "name", "=", "name", ",", "dtype", "=", "dtype", ",", "*", "*", "kwargs", ")", ".", "_ndarray_values", "if", "isinstance", "(", "values", ",", "(", "ABCSeries", ",", "ABCIndexClass", ")", ")", ":", "# Index._data must always be an ndarray.", "# This is no-copy for when _values is an ndarray,", "# which should be always at this point.", "values", "=", "np", ".", "asarray", "(", "values", ".", "_values", ")", "result", "=", "object", ".", "__new__", "(", "cls", ")", "result", ".", "_data", "=", "values", "# _index_data is a (temporary?) fix to ensure that the direct data", "# manipulation we do in `_libs/reduction.pyx` continues to work.", "# We need access to the actual ndarray, since we're messing with", "# data buffers and strides. We don't re-use `_ndarray_values`, since", "# we actually set this value too.", "result", ".", "_index_data", "=", "values", "result", ".", "name", "=", "name", "for", "k", ",", "v", "in", "kwargs", ".", "items", "(", ")", ":", "setattr", "(", "result", ",", "k", ",", "v", ")", "return", "result", ".", "_reset_identity", "(", ")" ]
We require that we have a dtype compat for the values. If we are passed a non-dtype compat, then coerce using the constructor. Must be careful not to recurse.
[ "We", "require", "that", "we", "have", "a", "dtype", "compat", "for", "the", "values", ".", "If", "we", "are", "passed", "a", "non", "-", "dtype", "compat", "then", "coerce", "using", "the", "constructor", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/base.py#L506-L539
19,393
pandas-dev/pandas
pandas/core/indexes/base.py
Index._shallow_copy_with_infer
def _shallow_copy_with_infer(self, values, **kwargs): """ Create a new Index inferring the class with passed value, don't copy the data, use the same object attributes with passed in attributes taking precedence. *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ attributes = self._get_attributes_dict() attributes.update(kwargs) attributes['copy'] = False if not len(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype if self._infer_as_myclass: try: return self._constructor(values, **attributes) except (TypeError, ValueError): pass return Index(values, **attributes)
python
def _shallow_copy_with_infer(self, values, **kwargs): """ Create a new Index inferring the class with passed value, don't copy the data, use the same object attributes with passed in attributes taking precedence. *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ attributes = self._get_attributes_dict() attributes.update(kwargs) attributes['copy'] = False if not len(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype if self._infer_as_myclass: try: return self._constructor(values, **attributes) except (TypeError, ValueError): pass return Index(values, **attributes)
[ "def", "_shallow_copy_with_infer", "(", "self", ",", "values", ",", "*", "*", "kwargs", ")", ":", "attributes", "=", "self", ".", "_get_attributes_dict", "(", ")", "attributes", ".", "update", "(", "kwargs", ")", "attributes", "[", "'copy'", "]", "=", "False", "if", "not", "len", "(", "values", ")", "and", "'dtype'", "not", "in", "kwargs", ":", "attributes", "[", "'dtype'", "]", "=", "self", ".", "dtype", "if", "self", ".", "_infer_as_myclass", ":", "try", ":", "return", "self", ".", "_constructor", "(", "values", ",", "*", "*", "attributes", ")", "except", "(", "TypeError", ",", "ValueError", ")", ":", "pass", "return", "Index", "(", "values", ",", "*", "*", "attributes", ")" ]
Create a new Index inferring the class with passed value, don't copy the data, use the same object attributes with passed in attributes taking precedence. *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index
[ "Create", "a", "new", "Index", "inferring", "the", "class", "with", "passed", "value", "don", "t", "copy", "the", "data", "use", "the", "same", "object", "attributes", "with", "passed", "in", "attributes", "taking", "precedence", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/base.py#L585-L608
19,394
pandas-dev/pandas
pandas/core/indexes/base.py
Index.is_
def is_(self, other): """ More flexible, faster check like ``is`` but that works through views. Note: this is *not* the same as ``Index.identical()``, which checks that metadata is also the same. Parameters ---------- other : object other object to compare against. Returns ------- True if both have same underlying data, False otherwise : bool """ # use something other than None to be clearer return self._id is getattr( other, '_id', Ellipsis) and self._id is not None
python
def is_(self, other): """ More flexible, faster check like ``is`` but that works through views. Note: this is *not* the same as ``Index.identical()``, which checks that metadata is also the same. Parameters ---------- other : object other object to compare against. Returns ------- True if both have same underlying data, False otherwise : bool """ # use something other than None to be clearer return self._id is getattr( other, '_id', Ellipsis) and self._id is not None
[ "def", "is_", "(", "self", ",", "other", ")", ":", "# use something other than None to be clearer", "return", "self", ".", "_id", "is", "getattr", "(", "other", ",", "'_id'", ",", "Ellipsis", ")", "and", "self", ".", "_id", "is", "not", "None" ]
More flexible, faster check like ``is`` but that works through views. Note: this is *not* the same as ``Index.identical()``, which checks that metadata is also the same. Parameters ---------- other : object other object to compare against. Returns ------- True if both have same underlying data, False otherwise : bool
[ "More", "flexible", "faster", "check", "like", "is", "but", "that", "works", "through", "views", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/base.py#L614-L632
19,395
pandas-dev/pandas
pandas/core/indexes/base.py
Index._assert_take_fillable
def _assert_take_fillable(self, values, indices, allow_fill=True, fill_value=None, na_value=np.nan): """ Internal method to handle NA filling of take. """ indices = ensure_platform_int(indices) # only fill if we are passing a non-None fill_value if allow_fill and fill_value is not None: if (indices < -1).any(): msg = ('When allow_fill=True and fill_value is not None, ' 'all indices must be >= -1') raise ValueError(msg) taken = algos.take(values, indices, allow_fill=allow_fill, fill_value=na_value) else: taken = values.take(indices) return taken
python
def _assert_take_fillable(self, values, indices, allow_fill=True, fill_value=None, na_value=np.nan): """ Internal method to handle NA filling of take. """ indices = ensure_platform_int(indices) # only fill if we are passing a non-None fill_value if allow_fill and fill_value is not None: if (indices < -1).any(): msg = ('When allow_fill=True and fill_value is not None, ' 'all indices must be >= -1') raise ValueError(msg) taken = algos.take(values, indices, allow_fill=allow_fill, fill_value=na_value) else: taken = values.take(indices) return taken
[ "def", "_assert_take_fillable", "(", "self", ",", "values", ",", "indices", ",", "allow_fill", "=", "True", ",", "fill_value", "=", "None", ",", "na_value", "=", "np", ".", "nan", ")", ":", "indices", "=", "ensure_platform_int", "(", "indices", ")", "# only fill if we are passing a non-None fill_value", "if", "allow_fill", "and", "fill_value", "is", "not", "None", ":", "if", "(", "indices", "<", "-", "1", ")", ".", "any", "(", ")", ":", "msg", "=", "(", "'When allow_fill=True and fill_value is not None, '", "'all indices must be >= -1'", ")", "raise", "ValueError", "(", "msg", ")", "taken", "=", "algos", ".", "take", "(", "values", ",", "indices", ",", "allow_fill", "=", "allow_fill", ",", "fill_value", "=", "na_value", ")", "else", ":", "taken", "=", "values", ".", "take", "(", "indices", ")", "return", "taken" ]
Internal method to handle NA filling of take.
[ "Internal", "method", "to", "handle", "NA", "filling", "of", "take", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/base.py#L803-L822
19,396
pandas-dev/pandas
pandas/core/indexes/base.py
Index._format_data
def _format_data(self, name=None): """ Return the formatted data as a unicode string. """ # do we want to justify (only do so for non-objects) is_justify = not (self.inferred_type in ('string', 'unicode') or (self.inferred_type == 'categorical' and is_object_dtype(self.categories))) return format_object_summary(self, self._formatter_func, is_justify=is_justify, name=name)
python
def _format_data(self, name=None): """ Return the formatted data as a unicode string. """ # do we want to justify (only do so for non-objects) is_justify = not (self.inferred_type in ('string', 'unicode') or (self.inferred_type == 'categorical' and is_object_dtype(self.categories))) return format_object_summary(self, self._formatter_func, is_justify=is_justify, name=name)
[ "def", "_format_data", "(", "self", ",", "name", "=", "None", ")", ":", "# do we want to justify (only do so for non-objects)", "is_justify", "=", "not", "(", "self", ".", "inferred_type", "in", "(", "'string'", ",", "'unicode'", ")", "or", "(", "self", ".", "inferred_type", "==", "'categorical'", "and", "is_object_dtype", "(", "self", ".", "categories", ")", ")", ")", "return", "format_object_summary", "(", "self", ",", "self", ".", "_formatter_func", ",", "is_justify", "=", "is_justify", ",", "name", "=", "name", ")" ]
Return the formatted data as a unicode string.
[ "Return", "the", "formatted", "data", "as", "a", "unicode", "string", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/base.py#L958-L969
19,397
pandas-dev/pandas
pandas/core/indexes/base.py
Index.format
def format(self, name=False, formatter=None, **kwargs): """ Render a string representation of the Index. """ header = [] if name: header.append(pprint_thing(self.name, escape_chars=('\t', '\r', '\n')) if self.name is not None else '') if formatter is not None: return header + list(self.map(formatter)) return self._format_with_header(header, **kwargs)
python
def format(self, name=False, formatter=None, **kwargs): """ Render a string representation of the Index. """ header = [] if name: header.append(pprint_thing(self.name, escape_chars=('\t', '\r', '\n')) if self.name is not None else '') if formatter is not None: return header + list(self.map(formatter)) return self._format_with_header(header, **kwargs)
[ "def", "format", "(", "self", ",", "name", "=", "False", ",", "formatter", "=", "None", ",", "*", "*", "kwargs", ")", ":", "header", "=", "[", "]", "if", "name", ":", "header", ".", "append", "(", "pprint_thing", "(", "self", ".", "name", ",", "escape_chars", "=", "(", "'\\t'", ",", "'\\r'", ",", "'\\n'", ")", ")", "if", "self", ".", "name", "is", "not", "None", "else", "''", ")", "if", "formatter", "is", "not", "None", ":", "return", "header", "+", "list", "(", "self", ".", "map", "(", "formatter", ")", ")", "return", "self", ".", "_format_with_header", "(", "header", ",", "*", "*", "kwargs", ")" ]
Render a string representation of the Index.
[ "Render", "a", "string", "representation", "of", "the", "Index", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/base.py#L981-L994
19,398
pandas-dev/pandas
pandas/core/indexes/base.py
Index.to_native_types
def to_native_types(self, slicer=None, **kwargs): """ Format specified values of `self` and return them. Parameters ---------- slicer : int, array-like An indexer into `self` that specifies which values are used in the formatting process. kwargs : dict Options for specifying how the values should be formatted. These options include the following: 1) na_rep : str The value that serves as a placeholder for NULL values 2) quoting : bool or None Whether or not there are quoted values in `self` 3) date_format : str The format used to represent date-like values """ values = self if slicer is not None: values = values[slicer] return values._format_native_types(**kwargs)
python
def to_native_types(self, slicer=None, **kwargs): """ Format specified values of `self` and return them. Parameters ---------- slicer : int, array-like An indexer into `self` that specifies which values are used in the formatting process. kwargs : dict Options for specifying how the values should be formatted. These options include the following: 1) na_rep : str The value that serves as a placeholder for NULL values 2) quoting : bool or None Whether or not there are quoted values in `self` 3) date_format : str The format used to represent date-like values """ values = self if slicer is not None: values = values[slicer] return values._format_native_types(**kwargs)
[ "def", "to_native_types", "(", "self", ",", "slicer", "=", "None", ",", "*", "*", "kwargs", ")", ":", "values", "=", "self", "if", "slicer", "is", "not", "None", ":", "values", "=", "values", "[", "slicer", "]", "return", "values", ".", "_format_native_types", "(", "*", "*", "kwargs", ")" ]
Format specified values of `self` and return them. Parameters ---------- slicer : int, array-like An indexer into `self` that specifies which values are used in the formatting process. kwargs : dict Options for specifying how the values should be formatted. These options include the following: 1) na_rep : str The value that serves as a placeholder for NULL values 2) quoting : bool or None Whether or not there are quoted values in `self` 3) date_format : str The format used to represent date-like values
[ "Format", "specified", "values", "of", "self", "and", "return", "them", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/base.py#L1022-L1046
19,399
pandas-dev/pandas
pandas/core/indexes/base.py
Index._format_native_types
def _format_native_types(self, na_rep='', quoting=None, **kwargs): """ Actually format specific types of the index. """ mask = isna(self) if not self.is_object() and not quoting: values = np.asarray(self).astype(str) else: values = np.array(self, dtype=object, copy=True) values[mask] = na_rep return values
python
def _format_native_types(self, na_rep='', quoting=None, **kwargs): """ Actually format specific types of the index. """ mask = isna(self) if not self.is_object() and not quoting: values = np.asarray(self).astype(str) else: values = np.array(self, dtype=object, copy=True) values[mask] = na_rep return values
[ "def", "_format_native_types", "(", "self", ",", "na_rep", "=", "''", ",", "quoting", "=", "None", ",", "*", "*", "kwargs", ")", ":", "mask", "=", "isna", "(", "self", ")", "if", "not", "self", ".", "is_object", "(", ")", "and", "not", "quoting", ":", "values", "=", "np", ".", "asarray", "(", "self", ")", ".", "astype", "(", "str", ")", "else", ":", "values", "=", "np", ".", "array", "(", "self", ",", "dtype", "=", "object", ",", "copy", "=", "True", ")", "values", "[", "mask", "]", "=", "na_rep", "return", "values" ]
Actually format specific types of the index.
[ "Actually", "format", "specific", "types", "of", "the", "index", "." ]
9feb3ad92cc0397a04b665803a49299ee7aa1037
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/base.py#L1048-L1059