id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
19,200
apache/spark
python/pyspark/sql/functions.py
sequence
def sequence(start, stop, step=None): """ Generate a sequence of integers from `start` to `stop`, incrementing by `step`. If `step` is not set, incrementing by 1 if `start` is less than or equal to `stop`, otherwise -1. >>> df1 = spark.createDataFrame([(-2, 2)], ('C1', 'C2')) >>> df1.select(sequence('C1', 'C2').alias('r')).collect() [Row(r=[-2, -1, 0, 1, 2])] >>> df2 = spark.createDataFrame([(4, -4, -2)], ('C1', 'C2', 'C3')) >>> df2.select(sequence('C1', 'C2', 'C3').alias('r')).collect() [Row(r=[4, 2, 0, -2, -4])] """ sc = SparkContext._active_spark_context if step is None: return Column(sc._jvm.functions.sequence(_to_java_column(start), _to_java_column(stop))) else: return Column(sc._jvm.functions.sequence( _to_java_column(start), _to_java_column(stop), _to_java_column(step)))
python
def sequence(start, stop, step=None): """ Generate a sequence of integers from `start` to `stop`, incrementing by `step`. If `step` is not set, incrementing by 1 if `start` is less than or equal to `stop`, otherwise -1. >>> df1 = spark.createDataFrame([(-2, 2)], ('C1', 'C2')) >>> df1.select(sequence('C1', 'C2').alias('r')).collect() [Row(r=[-2, -1, 0, 1, 2])] >>> df2 = spark.createDataFrame([(4, -4, -2)], ('C1', 'C2', 'C3')) >>> df2.select(sequence('C1', 'C2', 'C3').alias('r')).collect() [Row(r=[4, 2, 0, -2, -4])] """ sc = SparkContext._active_spark_context if step is None: return Column(sc._jvm.functions.sequence(_to_java_column(start), _to_java_column(stop))) else: return Column(sc._jvm.functions.sequence( _to_java_column(start), _to_java_column(stop), _to_java_column(step)))
[ "def", "sequence", "(", "start", ",", "stop", ",", "step", "=", "None", ")", ":", "sc", "=", "SparkContext", ".", "_active_spark_context", "if", "step", "is", "None", ":", "return", "Column", "(", "sc", ".", "_jvm", ".", "functions", ".", "sequence", "(", "_to_java_column", "(", "start", ")", ",", "_to_java_column", "(", "stop", ")", ")", ")", "else", ":", "return", "Column", "(", "sc", ".", "_jvm", ".", "functions", ".", "sequence", "(", "_to_java_column", "(", "start", ")", ",", "_to_java_column", "(", "stop", ")", ",", "_to_java_column", "(", "step", ")", ")", ")" ]
Generate a sequence of integers from `start` to `stop`, incrementing by `step`. If `step` is not set, incrementing by 1 if `start` is less than or equal to `stop`, otherwise -1. >>> df1 = spark.createDataFrame([(-2, 2)], ('C1', 'C2')) >>> df1.select(sequence('C1', 'C2').alias('r')).collect() [Row(r=[-2, -1, 0, 1, 2])] >>> df2 = spark.createDataFrame([(4, -4, -2)], ('C1', 'C2', 'C3')) >>> df2.select(sequence('C1', 'C2', 'C3').alias('r')).collect() [Row(r=[4, 2, 0, -2, -4])]
[ "Generate", "a", "sequence", "of", "integers", "from", "start", "to", "stop", "incrementing", "by", "step", ".", "If", "step", "is", "not", "set", "incrementing", "by", "1", "if", "start", "is", "less", "than", "or", "equal", "to", "stop", "otherwise", "-", "1", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/functions.py#L2739-L2757
19,201
apache/spark
python/pyspark/sql/functions.py
from_csv
def from_csv(col, schema, options={}): """ Parses a column containing a CSV string to a row with the specified schema. Returns `null`, in the case of an unparseable string. :param col: string column in CSV format :param schema: a string with schema in DDL format to use when parsing the CSV column. :param options: options to control parsing. accepts the same options as the CSV datasource >>> data = [("1,2,3",)] >>> df = spark.createDataFrame(data, ("value",)) >>> df.select(from_csv(df.value, "a INT, b INT, c INT").alias("csv")).collect() [Row(csv=Row(a=1, b=2, c=3))] >>> value = data[0][0] >>> df.select(from_csv(df.value, schema_of_csv(value)).alias("csv")).collect() [Row(csv=Row(_c0=1, _c1=2, _c2=3))] """ sc = SparkContext._active_spark_context if isinstance(schema, basestring): schema = _create_column_from_literal(schema) elif isinstance(schema, Column): schema = _to_java_column(schema) else: raise TypeError("schema argument should be a column or string") jc = sc._jvm.functions.from_csv(_to_java_column(col), schema, options) return Column(jc)
python
def from_csv(col, schema, options={}): """ Parses a column containing a CSV string to a row with the specified schema. Returns `null`, in the case of an unparseable string. :param col: string column in CSV format :param schema: a string with schema in DDL format to use when parsing the CSV column. :param options: options to control parsing. accepts the same options as the CSV datasource >>> data = [("1,2,3",)] >>> df = spark.createDataFrame(data, ("value",)) >>> df.select(from_csv(df.value, "a INT, b INT, c INT").alias("csv")).collect() [Row(csv=Row(a=1, b=2, c=3))] >>> value = data[0][0] >>> df.select(from_csv(df.value, schema_of_csv(value)).alias("csv")).collect() [Row(csv=Row(_c0=1, _c1=2, _c2=3))] """ sc = SparkContext._active_spark_context if isinstance(schema, basestring): schema = _create_column_from_literal(schema) elif isinstance(schema, Column): schema = _to_java_column(schema) else: raise TypeError("schema argument should be a column or string") jc = sc._jvm.functions.from_csv(_to_java_column(col), schema, options) return Column(jc)
[ "def", "from_csv", "(", "col", ",", "schema", ",", "options", "=", "{", "}", ")", ":", "sc", "=", "SparkContext", ".", "_active_spark_context", "if", "isinstance", "(", "schema", ",", "basestring", ")", ":", "schema", "=", "_create_column_from_literal", "(", "schema", ")", "elif", "isinstance", "(", "schema", ",", "Column", ")", ":", "schema", "=", "_to_java_column", "(", "schema", ")", "else", ":", "raise", "TypeError", "(", "\"schema argument should be a column or string\"", ")", "jc", "=", "sc", ".", "_jvm", ".", "functions", ".", "from_csv", "(", "_to_java_column", "(", "col", ")", ",", "schema", ",", "options", ")", "return", "Column", "(", "jc", ")" ]
Parses a column containing a CSV string to a row with the specified schema. Returns `null`, in the case of an unparseable string. :param col: string column in CSV format :param schema: a string with schema in DDL format to use when parsing the CSV column. :param options: options to control parsing. accepts the same options as the CSV datasource >>> data = [("1,2,3",)] >>> df = spark.createDataFrame(data, ("value",)) >>> df.select(from_csv(df.value, "a INT, b INT, c INT").alias("csv")).collect() [Row(csv=Row(a=1, b=2, c=3))] >>> value = data[0][0] >>> df.select(from_csv(df.value, schema_of_csv(value)).alias("csv")).collect() [Row(csv=Row(_c0=1, _c1=2, _c2=3))]
[ "Parses", "a", "column", "containing", "a", "CSV", "string", "to", "a", "row", "with", "the", "specified", "schema", ".", "Returns", "null", "in", "the", "case", "of", "an", "unparseable", "string", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/functions.py#L2762-L2789
19,202
apache/spark
python/pyspark/sql/readwriter.py
DataFrameReader.format
def format(self, source): """Specifies the input data source format. :param source: string, name of the data source, e.g. 'json', 'parquet'. >>> df = spark.read.format('json').load('python/test_support/sql/people.json') >>> df.dtypes [('age', 'bigint'), ('name', 'string')] """ self._jreader = self._jreader.format(source) return self
python
def format(self, source): """Specifies the input data source format. :param source: string, name of the data source, e.g. 'json', 'parquet'. >>> df = spark.read.format('json').load('python/test_support/sql/people.json') >>> df.dtypes [('age', 'bigint'), ('name', 'string')] """ self._jreader = self._jreader.format(source) return self
[ "def", "format", "(", "self", ",", "source", ")", ":", "self", ".", "_jreader", "=", "self", ".", "_jreader", ".", "format", "(", "source", ")", "return", "self" ]
Specifies the input data source format. :param source: string, name of the data source, e.g. 'json', 'parquet'. >>> df = spark.read.format('json').load('python/test_support/sql/people.json') >>> df.dtypes [('age', 'bigint'), ('name', 'string')]
[ "Specifies", "the", "input", "data", "source", "format", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/readwriter.py#L78-L89
19,203
apache/spark
python/pyspark/sql/readwriter.py
DataFrameReader.schema
def schema(self, schema): """Specifies the input schema. Some data sources (e.g. JSON) can infer the input schema automatically from data. By specifying the schema here, the underlying data source can skip the schema inference step, and thus speed up data loading. :param schema: a :class:`pyspark.sql.types.StructType` object or a DDL-formatted string (For example ``col0 INT, col1 DOUBLE``). >>> s = spark.read.schema("col0 INT, col1 DOUBLE") """ from pyspark.sql import SparkSession spark = SparkSession.builder.getOrCreate() if isinstance(schema, StructType): jschema = spark._jsparkSession.parseDataType(schema.json()) self._jreader = self._jreader.schema(jschema) elif isinstance(schema, basestring): self._jreader = self._jreader.schema(schema) else: raise TypeError("schema should be StructType or string") return self
python
def schema(self, schema): """Specifies the input schema. Some data sources (e.g. JSON) can infer the input schema automatically from data. By specifying the schema here, the underlying data source can skip the schema inference step, and thus speed up data loading. :param schema: a :class:`pyspark.sql.types.StructType` object or a DDL-formatted string (For example ``col0 INT, col1 DOUBLE``). >>> s = spark.read.schema("col0 INT, col1 DOUBLE") """ from pyspark.sql import SparkSession spark = SparkSession.builder.getOrCreate() if isinstance(schema, StructType): jschema = spark._jsparkSession.parseDataType(schema.json()) self._jreader = self._jreader.schema(jschema) elif isinstance(schema, basestring): self._jreader = self._jreader.schema(schema) else: raise TypeError("schema should be StructType or string") return self
[ "def", "schema", "(", "self", ",", "schema", ")", ":", "from", "pyspark", ".", "sql", "import", "SparkSession", "spark", "=", "SparkSession", ".", "builder", ".", "getOrCreate", "(", ")", "if", "isinstance", "(", "schema", ",", "StructType", ")", ":", "jschema", "=", "spark", ".", "_jsparkSession", ".", "parseDataType", "(", "schema", ".", "json", "(", ")", ")", "self", ".", "_jreader", "=", "self", ".", "_jreader", ".", "schema", "(", "jschema", ")", "elif", "isinstance", "(", "schema", ",", "basestring", ")", ":", "self", ".", "_jreader", "=", "self", ".", "_jreader", ".", "schema", "(", "schema", ")", "else", ":", "raise", "TypeError", "(", "\"schema should be StructType or string\"", ")", "return", "self" ]
Specifies the input schema. Some data sources (e.g. JSON) can infer the input schema automatically from data. By specifying the schema here, the underlying data source can skip the schema inference step, and thus speed up data loading. :param schema: a :class:`pyspark.sql.types.StructType` object or a DDL-formatted string (For example ``col0 INT, col1 DOUBLE``). >>> s = spark.read.schema("col0 INT, col1 DOUBLE")
[ "Specifies", "the", "input", "schema", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/readwriter.py#L92-L113
19,204
apache/spark
python/pyspark/sql/readwriter.py
DataFrameReader.option
def option(self, key, value): """Adds an input option for the underlying data source. You can set the following option(s) for reading files: * ``timeZone``: sets the string that indicates a timezone to be used to parse timestamps in the JSON/CSV datasources or partition values. If it isn't set, it uses the default value, session local timezone. """ self._jreader = self._jreader.option(key, to_str(value)) return self
python
def option(self, key, value): """Adds an input option for the underlying data source. You can set the following option(s) for reading files: * ``timeZone``: sets the string that indicates a timezone to be used to parse timestamps in the JSON/CSV datasources or partition values. If it isn't set, it uses the default value, session local timezone. """ self._jreader = self._jreader.option(key, to_str(value)) return self
[ "def", "option", "(", "self", ",", "key", ",", "value", ")", ":", "self", ".", "_jreader", "=", "self", ".", "_jreader", ".", "option", "(", "key", ",", "to_str", "(", "value", ")", ")", "return", "self" ]
Adds an input option for the underlying data source. You can set the following option(s) for reading files: * ``timeZone``: sets the string that indicates a timezone to be used to parse timestamps in the JSON/CSV datasources or partition values. If it isn't set, it uses the default value, session local timezone.
[ "Adds", "an", "input", "option", "for", "the", "underlying", "data", "source", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/readwriter.py#L116-L125
19,205
apache/spark
python/pyspark/sql/readwriter.py
DataFrameReader.options
def options(self, **options): """Adds input options for the underlying data source. You can set the following option(s) for reading files: * ``timeZone``: sets the string that indicates a timezone to be used to parse timestamps in the JSON/CSV datasources or partition values. If it isn't set, it uses the default value, session local timezone. """ for k in options: self._jreader = self._jreader.option(k, to_str(options[k])) return self
python
def options(self, **options): """Adds input options for the underlying data source. You can set the following option(s) for reading files: * ``timeZone``: sets the string that indicates a timezone to be used to parse timestamps in the JSON/CSV datasources or partition values. If it isn't set, it uses the default value, session local timezone. """ for k in options: self._jreader = self._jreader.option(k, to_str(options[k])) return self
[ "def", "options", "(", "self", ",", "*", "*", "options", ")", ":", "for", "k", "in", "options", ":", "self", ".", "_jreader", "=", "self", ".", "_jreader", ".", "option", "(", "k", ",", "to_str", "(", "options", "[", "k", "]", ")", ")", "return", "self" ]
Adds input options for the underlying data source. You can set the following option(s) for reading files: * ``timeZone``: sets the string that indicates a timezone to be used to parse timestamps in the JSON/CSV datasources or partition values. If it isn't set, it uses the default value, session local timezone.
[ "Adds", "input", "options", "for", "the", "underlying", "data", "source", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/readwriter.py#L128-L138
19,206
apache/spark
python/pyspark/sql/readwriter.py
DataFrameWriter.mode
def mode(self, saveMode): """Specifies the behavior when data or table already exists. Options include: * `append`: Append contents of this :class:`DataFrame` to existing data. * `overwrite`: Overwrite existing data. * `error` or `errorifexists`: Throw an exception if data already exists. * `ignore`: Silently ignore this operation if data already exists. >>> df.write.mode('append').parquet(os.path.join(tempfile.mkdtemp(), 'data')) """ # At the JVM side, the default value of mode is already set to "error". # So, if the given saveMode is None, we will not call JVM-side's mode method. if saveMode is not None: self._jwrite = self._jwrite.mode(saveMode) return self
python
def mode(self, saveMode): """Specifies the behavior when data or table already exists. Options include: * `append`: Append contents of this :class:`DataFrame` to existing data. * `overwrite`: Overwrite existing data. * `error` or `errorifexists`: Throw an exception if data already exists. * `ignore`: Silently ignore this operation if data already exists. >>> df.write.mode('append').parquet(os.path.join(tempfile.mkdtemp(), 'data')) """ # At the JVM side, the default value of mode is already set to "error". # So, if the given saveMode is None, we will not call JVM-side's mode method. if saveMode is not None: self._jwrite = self._jwrite.mode(saveMode) return self
[ "def", "mode", "(", "self", ",", "saveMode", ")", ":", "# At the JVM side, the default value of mode is already set to \"error\".", "# So, if the given saveMode is None, we will not call JVM-side's mode method.", "if", "saveMode", "is", "not", "None", ":", "self", ".", "_jwrite", "=", "self", ".", "_jwrite", ".", "mode", "(", "saveMode", ")", "return", "self" ]
Specifies the behavior when data or table already exists. Options include: * `append`: Append contents of this :class:`DataFrame` to existing data. * `overwrite`: Overwrite existing data. * `error` or `errorifexists`: Throw an exception if data already exists. * `ignore`: Silently ignore this operation if data already exists. >>> df.write.mode('append').parquet(os.path.join(tempfile.mkdtemp(), 'data'))
[ "Specifies", "the", "behavior", "when", "data", "or", "table", "already", "exists", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/readwriter.py#L590-L606
19,207
apache/spark
python/pyspark/sql/readwriter.py
DataFrameWriter.format
def format(self, source): """Specifies the underlying output data source. :param source: string, name of the data source, e.g. 'json', 'parquet'. >>> df.write.format('json').save(os.path.join(tempfile.mkdtemp(), 'data')) """ self._jwrite = self._jwrite.format(source) return self
python
def format(self, source): """Specifies the underlying output data source. :param source: string, name of the data source, e.g. 'json', 'parquet'. >>> df.write.format('json').save(os.path.join(tempfile.mkdtemp(), 'data')) """ self._jwrite = self._jwrite.format(source) return self
[ "def", "format", "(", "self", ",", "source", ")", ":", "self", ".", "_jwrite", "=", "self", ".", "_jwrite", ".", "format", "(", "source", ")", "return", "self" ]
Specifies the underlying output data source. :param source: string, name of the data source, e.g. 'json', 'parquet'. >>> df.write.format('json').save(os.path.join(tempfile.mkdtemp(), 'data'))
[ "Specifies", "the", "underlying", "output", "data", "source", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/readwriter.py#L609-L617
19,208
apache/spark
python/pyspark/sql/readwriter.py
DataFrameWriter.option
def option(self, key, value): """Adds an output option for the underlying data source. You can set the following option(s) for writing files: * ``timeZone``: sets the string that indicates a timezone to be used to format timestamps in the JSON/CSV datasources or partition values. If it isn't set, it uses the default value, session local timezone. """ self._jwrite = self._jwrite.option(key, to_str(value)) return self
python
def option(self, key, value): """Adds an output option for the underlying data source. You can set the following option(s) for writing files: * ``timeZone``: sets the string that indicates a timezone to be used to format timestamps in the JSON/CSV datasources or partition values. If it isn't set, it uses the default value, session local timezone. """ self._jwrite = self._jwrite.option(key, to_str(value)) return self
[ "def", "option", "(", "self", ",", "key", ",", "value", ")", ":", "self", ".", "_jwrite", "=", "self", ".", "_jwrite", ".", "option", "(", "key", ",", "to_str", "(", "value", ")", ")", "return", "self" ]
Adds an output option for the underlying data source. You can set the following option(s) for writing files: * ``timeZone``: sets the string that indicates a timezone to be used to format timestamps in the JSON/CSV datasources or partition values. If it isn't set, it uses the default value, session local timezone.
[ "Adds", "an", "output", "option", "for", "the", "underlying", "data", "source", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/readwriter.py#L620-L629
19,209
apache/spark
python/pyspark/sql/readwriter.py
DataFrameWriter.options
def options(self, **options): """Adds output options for the underlying data source. You can set the following option(s) for writing files: * ``timeZone``: sets the string that indicates a timezone to be used to format timestamps in the JSON/CSV datasources or partition values. If it isn't set, it uses the default value, session local timezone. """ for k in options: self._jwrite = self._jwrite.option(k, to_str(options[k])) return self
python
def options(self, **options): """Adds output options for the underlying data source. You can set the following option(s) for writing files: * ``timeZone``: sets the string that indicates a timezone to be used to format timestamps in the JSON/CSV datasources or partition values. If it isn't set, it uses the default value, session local timezone. """ for k in options: self._jwrite = self._jwrite.option(k, to_str(options[k])) return self
[ "def", "options", "(", "self", ",", "*", "*", "options", ")", ":", "for", "k", "in", "options", ":", "self", ".", "_jwrite", "=", "self", ".", "_jwrite", ".", "option", "(", "k", ",", "to_str", "(", "options", "[", "k", "]", ")", ")", "return", "self" ]
Adds output options for the underlying data source. You can set the following option(s) for writing files: * ``timeZone``: sets the string that indicates a timezone to be used to format timestamps in the JSON/CSV datasources or partition values. If it isn't set, it uses the default value, session local timezone.
[ "Adds", "output", "options", "for", "the", "underlying", "data", "source", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/readwriter.py#L632-L642
19,210
apache/spark
python/pyspark/sql/readwriter.py
DataFrameWriter.partitionBy
def partitionBy(self, *cols): """Partitions the output by the given columns on the file system. If specified, the output is laid out on the file system similar to Hive's partitioning scheme. :param cols: name of columns >>> df.write.partitionBy('year', 'month').parquet(os.path.join(tempfile.mkdtemp(), 'data')) """ if len(cols) == 1 and isinstance(cols[0], (list, tuple)): cols = cols[0] self._jwrite = self._jwrite.partitionBy(_to_seq(self._spark._sc, cols)) return self
python
def partitionBy(self, *cols): """Partitions the output by the given columns on the file system. If specified, the output is laid out on the file system similar to Hive's partitioning scheme. :param cols: name of columns >>> df.write.partitionBy('year', 'month').parquet(os.path.join(tempfile.mkdtemp(), 'data')) """ if len(cols) == 1 and isinstance(cols[0], (list, tuple)): cols = cols[0] self._jwrite = self._jwrite.partitionBy(_to_seq(self._spark._sc, cols)) return self
[ "def", "partitionBy", "(", "self", ",", "*", "cols", ")", ":", "if", "len", "(", "cols", ")", "==", "1", "and", "isinstance", "(", "cols", "[", "0", "]", ",", "(", "list", ",", "tuple", ")", ")", ":", "cols", "=", "cols", "[", "0", "]", "self", ".", "_jwrite", "=", "self", ".", "_jwrite", ".", "partitionBy", "(", "_to_seq", "(", "self", ".", "_spark", ".", "_sc", ",", "cols", ")", ")", "return", "self" ]
Partitions the output by the given columns on the file system. If specified, the output is laid out on the file system similar to Hive's partitioning scheme. :param cols: name of columns >>> df.write.partitionBy('year', 'month').parquet(os.path.join(tempfile.mkdtemp(), 'data'))
[ "Partitions", "the", "output", "by", "the", "given", "columns", "on", "the", "file", "system", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/readwriter.py#L645-L658
19,211
apache/spark
python/pyspark/sql/readwriter.py
DataFrameWriter.sortBy
def sortBy(self, col, *cols): """Sorts the output in each bucket by the given columns on the file system. :param col: a name of a column, or a list of names. :param cols: additional names (optional). If `col` is a list it should be empty. >>> (df.write.format('parquet') # doctest: +SKIP ... .bucketBy(100, 'year', 'month') ... .sortBy('day') ... .mode("overwrite") ... .saveAsTable('sorted_bucketed_table')) """ if isinstance(col, (list, tuple)): if cols: raise ValueError("col is a {0} but cols are not empty".format(type(col))) col, cols = col[0], col[1:] if not all(isinstance(c, basestring) for c in cols) or not(isinstance(col, basestring)): raise TypeError("all names should be `str`") self._jwrite = self._jwrite.sortBy(col, _to_seq(self._spark._sc, cols)) return self
python
def sortBy(self, col, *cols): """Sorts the output in each bucket by the given columns on the file system. :param col: a name of a column, or a list of names. :param cols: additional names (optional). If `col` is a list it should be empty. >>> (df.write.format('parquet') # doctest: +SKIP ... .bucketBy(100, 'year', 'month') ... .sortBy('day') ... .mode("overwrite") ... .saveAsTable('sorted_bucketed_table')) """ if isinstance(col, (list, tuple)): if cols: raise ValueError("col is a {0} but cols are not empty".format(type(col))) col, cols = col[0], col[1:] if not all(isinstance(c, basestring) for c in cols) or not(isinstance(col, basestring)): raise TypeError("all names should be `str`") self._jwrite = self._jwrite.sortBy(col, _to_seq(self._spark._sc, cols)) return self
[ "def", "sortBy", "(", "self", ",", "col", ",", "*", "cols", ")", ":", "if", "isinstance", "(", "col", ",", "(", "list", ",", "tuple", ")", ")", ":", "if", "cols", ":", "raise", "ValueError", "(", "\"col is a {0} but cols are not empty\"", ".", "format", "(", "type", "(", "col", ")", ")", ")", "col", ",", "cols", "=", "col", "[", "0", "]", ",", "col", "[", "1", ":", "]", "if", "not", "all", "(", "isinstance", "(", "c", ",", "basestring", ")", "for", "c", "in", "cols", ")", "or", "not", "(", "isinstance", "(", "col", ",", "basestring", ")", ")", ":", "raise", "TypeError", "(", "\"all names should be `str`\"", ")", "self", ".", "_jwrite", "=", "self", ".", "_jwrite", ".", "sortBy", "(", "col", ",", "_to_seq", "(", "self", ".", "_spark", ".", "_sc", ",", "cols", ")", ")", "return", "self" ]
Sorts the output in each bucket by the given columns on the file system. :param col: a name of a column, or a list of names. :param cols: additional names (optional). If `col` is a list it should be empty. >>> (df.write.format('parquet') # doctest: +SKIP ... .bucketBy(100, 'year', 'month') ... .sortBy('day') ... .mode("overwrite") ... .saveAsTable('sorted_bucketed_table'))
[ "Sorts", "the", "output", "in", "each", "bucket", "by", "the", "given", "columns", "on", "the", "file", "system", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/readwriter.py#L693-L715
19,212
apache/spark
python/pyspark/sql/readwriter.py
DataFrameWriter.text
def text(self, path, compression=None, lineSep=None): """Saves the content of the DataFrame in a text file at the specified path. The text files will be encoded as UTF-8. :param path: the path in any Hadoop supported file system :param compression: compression codec to use when saving to file. This can be one of the known case-insensitive shorten names (none, bzip2, gzip, lz4, snappy and deflate). :param lineSep: defines the line separator that should be used for writing. If None is set, it uses the default value, ``\\n``. The DataFrame must have only one column that is of string type. Each row becomes a new line in the output file. """ self._set_opts(compression=compression, lineSep=lineSep) self._jwrite.text(path)
python
def text(self, path, compression=None, lineSep=None): """Saves the content of the DataFrame in a text file at the specified path. The text files will be encoded as UTF-8. :param path: the path in any Hadoop supported file system :param compression: compression codec to use when saving to file. This can be one of the known case-insensitive shorten names (none, bzip2, gzip, lz4, snappy and deflate). :param lineSep: defines the line separator that should be used for writing. If None is set, it uses the default value, ``\\n``. The DataFrame must have only one column that is of string type. Each row becomes a new line in the output file. """ self._set_opts(compression=compression, lineSep=lineSep) self._jwrite.text(path)
[ "def", "text", "(", "self", ",", "path", ",", "compression", "=", "None", ",", "lineSep", "=", "None", ")", ":", "self", ".", "_set_opts", "(", "compression", "=", "compression", ",", "lineSep", "=", "lineSep", ")", "self", ".", "_jwrite", ".", "text", "(", "path", ")" ]
Saves the content of the DataFrame in a text file at the specified path. The text files will be encoded as UTF-8. :param path: the path in any Hadoop supported file system :param compression: compression codec to use when saving to file. This can be one of the known case-insensitive shorten names (none, bzip2, gzip, lz4, snappy and deflate). :param lineSep: defines the line separator that should be used for writing. If None is set, it uses the default value, ``\\n``. The DataFrame must have only one column that is of string type. Each row becomes a new line in the output file.
[ "Saves", "the", "content", "of", "the", "DataFrame", "in", "a", "text", "file", "at", "the", "specified", "path", ".", "The", "text", "files", "will", "be", "encoded", "as", "UTF", "-", "8", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/readwriter.py#L856-L871
19,213
apache/spark
dev/merge_spark_pr.py
choose_jira_assignee
def choose_jira_assignee(issue, asf_jira): """ Prompt the user to choose who to assign the issue to in jira, given a list of candidates, including the original reporter and all commentors """ while True: try: reporter = issue.fields.reporter commentors = map(lambda x: x.author, issue.fields.comment.comments) candidates = set(commentors) candidates.add(reporter) candidates = list(candidates) print("JIRA is unassigned, choose assignee") for idx, author in enumerate(candidates): if author.key == "apachespark": continue annotations = ["Reporter"] if author == reporter else [] if author in commentors: annotations.append("Commentor") print("[%d] %s (%s)" % (idx, author.displayName, ",".join(annotations))) raw_assignee = input( "Enter number of user, or userid, to assign to (blank to leave unassigned):") if raw_assignee == "": return None else: try: id = int(raw_assignee) assignee = candidates[id] except: # assume it's a user id, and try to assign (might fail, we just prompt again) assignee = asf_jira.user(raw_assignee) asf_jira.assign_issue(issue.key, assignee.key) return assignee except KeyboardInterrupt: raise except: traceback.print_exc() print("Error assigning JIRA, try again (or leave blank and fix manually)")
python
def choose_jira_assignee(issue, asf_jira): """ Prompt the user to choose who to assign the issue to in jira, given a list of candidates, including the original reporter and all commentors """ while True: try: reporter = issue.fields.reporter commentors = map(lambda x: x.author, issue.fields.comment.comments) candidates = set(commentors) candidates.add(reporter) candidates = list(candidates) print("JIRA is unassigned, choose assignee") for idx, author in enumerate(candidates): if author.key == "apachespark": continue annotations = ["Reporter"] if author == reporter else [] if author in commentors: annotations.append("Commentor") print("[%d] %s (%s)" % (idx, author.displayName, ",".join(annotations))) raw_assignee = input( "Enter number of user, or userid, to assign to (blank to leave unassigned):") if raw_assignee == "": return None else: try: id = int(raw_assignee) assignee = candidates[id] except: # assume it's a user id, and try to assign (might fail, we just prompt again) assignee = asf_jira.user(raw_assignee) asf_jira.assign_issue(issue.key, assignee.key) return assignee except KeyboardInterrupt: raise except: traceback.print_exc() print("Error assigning JIRA, try again (or leave blank and fix manually)")
[ "def", "choose_jira_assignee", "(", "issue", ",", "asf_jira", ")", ":", "while", "True", ":", "try", ":", "reporter", "=", "issue", ".", "fields", ".", "reporter", "commentors", "=", "map", "(", "lambda", "x", ":", "x", ".", "author", ",", "issue", ".", "fields", ".", "comment", ".", "comments", ")", "candidates", "=", "set", "(", "commentors", ")", "candidates", ".", "add", "(", "reporter", ")", "candidates", "=", "list", "(", "candidates", ")", "print", "(", "\"JIRA is unassigned, choose assignee\"", ")", "for", "idx", ",", "author", "in", "enumerate", "(", "candidates", ")", ":", "if", "author", ".", "key", "==", "\"apachespark\"", ":", "continue", "annotations", "=", "[", "\"Reporter\"", "]", "if", "author", "==", "reporter", "else", "[", "]", "if", "author", "in", "commentors", ":", "annotations", ".", "append", "(", "\"Commentor\"", ")", "print", "(", "\"[%d] %s (%s)\"", "%", "(", "idx", ",", "author", ".", "displayName", ",", "\",\"", ".", "join", "(", "annotations", ")", ")", ")", "raw_assignee", "=", "input", "(", "\"Enter number of user, or userid, to assign to (blank to leave unassigned):\"", ")", "if", "raw_assignee", "==", "\"\"", ":", "return", "None", "else", ":", "try", ":", "id", "=", "int", "(", "raw_assignee", ")", "assignee", "=", "candidates", "[", "id", "]", "except", ":", "# assume it's a user id, and try to assign (might fail, we just prompt again)", "assignee", "=", "asf_jira", ".", "user", "(", "raw_assignee", ")", "asf_jira", ".", "assign_issue", "(", "issue", ".", "key", ",", "assignee", ".", "key", ")", "return", "assignee", "except", "KeyboardInterrupt", ":", "raise", "except", ":", "traceback", ".", "print_exc", "(", ")", "print", "(", "\"Error assigning JIRA, try again (or leave blank and fix manually)\"", ")" ]
Prompt the user to choose who to assign the issue to in jira, given a list of candidates, including the original reporter and all commentors
[ "Prompt", "the", "user", "to", "choose", "who", "to", "assign", "the", "issue", "to", "in", "jira", "given", "a", "list", "of", "candidates", "including", "the", "original", "reporter", "and", "all", "commentors" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/dev/merge_spark_pr.py#L325-L362
19,214
apache/spark
python/pyspark/mllib/util.py
MLUtils._convert_labeled_point_to_libsvm
def _convert_labeled_point_to_libsvm(p): """Converts a LabeledPoint to a string in LIBSVM format.""" from pyspark.mllib.regression import LabeledPoint assert isinstance(p, LabeledPoint) items = [str(p.label)] v = _convert_to_vector(p.features) if isinstance(v, SparseVector): nnz = len(v.indices) for i in xrange(nnz): items.append(str(v.indices[i] + 1) + ":" + str(v.values[i])) else: for i in xrange(len(v)): items.append(str(i + 1) + ":" + str(v[i])) return " ".join(items)
python
def _convert_labeled_point_to_libsvm(p): """Converts a LabeledPoint to a string in LIBSVM format.""" from pyspark.mllib.regression import LabeledPoint assert isinstance(p, LabeledPoint) items = [str(p.label)] v = _convert_to_vector(p.features) if isinstance(v, SparseVector): nnz = len(v.indices) for i in xrange(nnz): items.append(str(v.indices[i] + 1) + ":" + str(v.values[i])) else: for i in xrange(len(v)): items.append(str(i + 1) + ":" + str(v[i])) return " ".join(items)
[ "def", "_convert_labeled_point_to_libsvm", "(", "p", ")", ":", "from", "pyspark", ".", "mllib", ".", "regression", "import", "LabeledPoint", "assert", "isinstance", "(", "p", ",", "LabeledPoint", ")", "items", "=", "[", "str", "(", "p", ".", "label", ")", "]", "v", "=", "_convert_to_vector", "(", "p", ".", "features", ")", "if", "isinstance", "(", "v", ",", "SparseVector", ")", ":", "nnz", "=", "len", "(", "v", ".", "indices", ")", "for", "i", "in", "xrange", "(", "nnz", ")", ":", "items", ".", "append", "(", "str", "(", "v", ".", "indices", "[", "i", "]", "+", "1", ")", "+", "\":\"", "+", "str", "(", "v", ".", "values", "[", "i", "]", ")", ")", "else", ":", "for", "i", "in", "xrange", "(", "len", "(", "v", ")", ")", ":", "items", ".", "append", "(", "str", "(", "i", "+", "1", ")", "+", "\":\"", "+", "str", "(", "v", "[", "i", "]", ")", ")", "return", "\" \"", ".", "join", "(", "items", ")" ]
Converts a LabeledPoint to a string in LIBSVM format.
[ "Converts", "a", "LabeledPoint", "to", "a", "string", "in", "LIBSVM", "format", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/util.py#L56-L69
19,215
apache/spark
python/pyspark/mllib/util.py
MLUtils.saveAsLibSVMFile
def saveAsLibSVMFile(data, dir): """ Save labeled data in LIBSVM format. :param data: an RDD of LabeledPoint to be saved :param dir: directory to save the data >>> from tempfile import NamedTemporaryFile >>> from fileinput import input >>> from pyspark.mllib.regression import LabeledPoint >>> from glob import glob >>> from pyspark.mllib.util import MLUtils >>> examples = [LabeledPoint(1.1, Vectors.sparse(3, [(0, 1.23), (2, 4.56)])), ... LabeledPoint(0.0, Vectors.dense([1.01, 2.02, 3.03]))] >>> tempFile = NamedTemporaryFile(delete=True) >>> tempFile.close() >>> MLUtils.saveAsLibSVMFile(sc.parallelize(examples), tempFile.name) >>> ''.join(sorted(input(glob(tempFile.name + "/part-0000*")))) '0.0 1:1.01 2:2.02 3:3.03\\n1.1 1:1.23 3:4.56\\n' """ lines = data.map(lambda p: MLUtils._convert_labeled_point_to_libsvm(p)) lines.saveAsTextFile(dir)
python
def saveAsLibSVMFile(data, dir): """ Save labeled data in LIBSVM format. :param data: an RDD of LabeledPoint to be saved :param dir: directory to save the data >>> from tempfile import NamedTemporaryFile >>> from fileinput import input >>> from pyspark.mllib.regression import LabeledPoint >>> from glob import glob >>> from pyspark.mllib.util import MLUtils >>> examples = [LabeledPoint(1.1, Vectors.sparse(3, [(0, 1.23), (2, 4.56)])), ... LabeledPoint(0.0, Vectors.dense([1.01, 2.02, 3.03]))] >>> tempFile = NamedTemporaryFile(delete=True) >>> tempFile.close() >>> MLUtils.saveAsLibSVMFile(sc.parallelize(examples), tempFile.name) >>> ''.join(sorted(input(glob(tempFile.name + "/part-0000*")))) '0.0 1:1.01 2:2.02 3:3.03\\n1.1 1:1.23 3:4.56\\n' """ lines = data.map(lambda p: MLUtils._convert_labeled_point_to_libsvm(p)) lines.saveAsTextFile(dir)
[ "def", "saveAsLibSVMFile", "(", "data", ",", "dir", ")", ":", "lines", "=", "data", ".", "map", "(", "lambda", "p", ":", "MLUtils", ".", "_convert_labeled_point_to_libsvm", "(", "p", ")", ")", "lines", ".", "saveAsTextFile", "(", "dir", ")" ]
Save labeled data in LIBSVM format. :param data: an RDD of LabeledPoint to be saved :param dir: directory to save the data >>> from tempfile import NamedTemporaryFile >>> from fileinput import input >>> from pyspark.mllib.regression import LabeledPoint >>> from glob import glob >>> from pyspark.mllib.util import MLUtils >>> examples = [LabeledPoint(1.1, Vectors.sparse(3, [(0, 1.23), (2, 4.56)])), ... LabeledPoint(0.0, Vectors.dense([1.01, 2.02, 3.03]))] >>> tempFile = NamedTemporaryFile(delete=True) >>> tempFile.close() >>> MLUtils.saveAsLibSVMFile(sc.parallelize(examples), tempFile.name) >>> ''.join(sorted(input(glob(tempFile.name + "/part-0000*")))) '0.0 1:1.01 2:2.02 3:3.03\\n1.1 1:1.23 3:4.56\\n'
[ "Save", "labeled", "data", "in", "LIBSVM", "format", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/util.py#L126-L147
19,216
apache/spark
python/pyspark/mllib/util.py
MLUtils.loadLabeledPoints
def loadLabeledPoints(sc, path, minPartitions=None): """ Load labeled points saved using RDD.saveAsTextFile. :param sc: Spark context :param path: file or directory path in any Hadoop-supported file system URI :param minPartitions: min number of partitions @return: labeled data stored as an RDD of LabeledPoint >>> from tempfile import NamedTemporaryFile >>> from pyspark.mllib.util import MLUtils >>> from pyspark.mllib.regression import LabeledPoint >>> examples = [LabeledPoint(1.1, Vectors.sparse(3, [(0, -1.23), (2, 4.56e-7)])), ... LabeledPoint(0.0, Vectors.dense([1.01, 2.02, 3.03]))] >>> tempFile = NamedTemporaryFile(delete=True) >>> tempFile.close() >>> sc.parallelize(examples, 1).saveAsTextFile(tempFile.name) >>> MLUtils.loadLabeledPoints(sc, tempFile.name).collect() [LabeledPoint(1.1, (3,[0,2],[-1.23,4.56e-07])), LabeledPoint(0.0, [1.01,2.02,3.03])] """ minPartitions = minPartitions or min(sc.defaultParallelism, 2) return callMLlibFunc("loadLabeledPoints", sc, path, minPartitions)
python
def loadLabeledPoints(sc, path, minPartitions=None): """ Load labeled points saved using RDD.saveAsTextFile. :param sc: Spark context :param path: file or directory path in any Hadoop-supported file system URI :param minPartitions: min number of partitions @return: labeled data stored as an RDD of LabeledPoint >>> from tempfile import NamedTemporaryFile >>> from pyspark.mllib.util import MLUtils >>> from pyspark.mllib.regression import LabeledPoint >>> examples = [LabeledPoint(1.1, Vectors.sparse(3, [(0, -1.23), (2, 4.56e-7)])), ... LabeledPoint(0.0, Vectors.dense([1.01, 2.02, 3.03]))] >>> tempFile = NamedTemporaryFile(delete=True) >>> tempFile.close() >>> sc.parallelize(examples, 1).saveAsTextFile(tempFile.name) >>> MLUtils.loadLabeledPoints(sc, tempFile.name).collect() [LabeledPoint(1.1, (3,[0,2],[-1.23,4.56e-07])), LabeledPoint(0.0, [1.01,2.02,3.03])] """ minPartitions = minPartitions or min(sc.defaultParallelism, 2) return callMLlibFunc("loadLabeledPoints", sc, path, minPartitions)
[ "def", "loadLabeledPoints", "(", "sc", ",", "path", ",", "minPartitions", "=", "None", ")", ":", "minPartitions", "=", "minPartitions", "or", "min", "(", "sc", ".", "defaultParallelism", ",", "2", ")", "return", "callMLlibFunc", "(", "\"loadLabeledPoints\"", ",", "sc", ",", "path", ",", "minPartitions", ")" ]
Load labeled points saved using RDD.saveAsTextFile. :param sc: Spark context :param path: file or directory path in any Hadoop-supported file system URI :param minPartitions: min number of partitions @return: labeled data stored as an RDD of LabeledPoint >>> from tempfile import NamedTemporaryFile >>> from pyspark.mllib.util import MLUtils >>> from pyspark.mllib.regression import LabeledPoint >>> examples = [LabeledPoint(1.1, Vectors.sparse(3, [(0, -1.23), (2, 4.56e-7)])), ... LabeledPoint(0.0, Vectors.dense([1.01, 2.02, 3.03]))] >>> tempFile = NamedTemporaryFile(delete=True) >>> tempFile.close() >>> sc.parallelize(examples, 1).saveAsTextFile(tempFile.name) >>> MLUtils.loadLabeledPoints(sc, tempFile.name).collect() [LabeledPoint(1.1, (3,[0,2],[-1.23,4.56e-07])), LabeledPoint(0.0, [1.01,2.02,3.03])]
[ "Load", "labeled", "points", "saved", "using", "RDD", ".", "saveAsTextFile", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/util.py#L151-L173
19,217
apache/spark
python/pyspark/mllib/util.py
LinearDataGenerator.generateLinearRDD
def generateLinearRDD(sc, nexamples, nfeatures, eps, nParts=2, intercept=0.0): """ Generate an RDD of LabeledPoints. """ return callMLlibFunc( "generateLinearRDDWrapper", sc, int(nexamples), int(nfeatures), float(eps), int(nParts), float(intercept))
python
def generateLinearRDD(sc, nexamples, nfeatures, eps, nParts=2, intercept=0.0): """ Generate an RDD of LabeledPoints. """ return callMLlibFunc( "generateLinearRDDWrapper", sc, int(nexamples), int(nfeatures), float(eps), int(nParts), float(intercept))
[ "def", "generateLinearRDD", "(", "sc", ",", "nexamples", ",", "nfeatures", ",", "eps", ",", "nParts", "=", "2", ",", "intercept", "=", "0.0", ")", ":", "return", "callMLlibFunc", "(", "\"generateLinearRDDWrapper\"", ",", "sc", ",", "int", "(", "nexamples", ")", ",", "int", "(", "nfeatures", ")", ",", "float", "(", "eps", ")", ",", "int", "(", "nParts", ")", ",", "float", "(", "intercept", ")", ")" ]
Generate an RDD of LabeledPoints.
[ "Generate", "an", "RDD", "of", "LabeledPoints", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/util.py#L494-L501
19,218
apache/spark
python/pyspark/mllib/regression.py
IsotonicRegressionModel.save
def save(self, sc, path): """Save an IsotonicRegressionModel.""" java_boundaries = _py2java(sc, self.boundaries.tolist()) java_predictions = _py2java(sc, self.predictions.tolist()) java_model = sc._jvm.org.apache.spark.mllib.regression.IsotonicRegressionModel( java_boundaries, java_predictions, self.isotonic) java_model.save(sc._jsc.sc(), path)
python
def save(self, sc, path): """Save an IsotonicRegressionModel.""" java_boundaries = _py2java(sc, self.boundaries.tolist()) java_predictions = _py2java(sc, self.predictions.tolist()) java_model = sc._jvm.org.apache.spark.mllib.regression.IsotonicRegressionModel( java_boundaries, java_predictions, self.isotonic) java_model.save(sc._jsc.sc(), path)
[ "def", "save", "(", "self", ",", "sc", ",", "path", ")", ":", "java_boundaries", "=", "_py2java", "(", "sc", ",", "self", ".", "boundaries", ".", "tolist", "(", ")", ")", "java_predictions", "=", "_py2java", "(", "sc", ",", "self", ".", "predictions", ".", "tolist", "(", ")", ")", "java_model", "=", "sc", ".", "_jvm", ".", "org", ".", "apache", ".", "spark", ".", "mllib", ".", "regression", ".", "IsotonicRegressionModel", "(", "java_boundaries", ",", "java_predictions", ",", "self", ".", "isotonic", ")", "java_model", ".", "save", "(", "sc", ".", "_jsc", ".", "sc", "(", ")", ",", "path", ")" ]
Save an IsotonicRegressionModel.
[ "Save", "an", "IsotonicRegressionModel", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/regression.py#L654-L660
19,219
apache/spark
python/pyspark/mllib/regression.py
IsotonicRegressionModel.load
def load(cls, sc, path): """Load an IsotonicRegressionModel.""" java_model = sc._jvm.org.apache.spark.mllib.regression.IsotonicRegressionModel.load( sc._jsc.sc(), path) py_boundaries = _java2py(sc, java_model.boundaryVector()).toArray() py_predictions = _java2py(sc, java_model.predictionVector()).toArray() return IsotonicRegressionModel(py_boundaries, py_predictions, java_model.isotonic)
python
def load(cls, sc, path): """Load an IsotonicRegressionModel.""" java_model = sc._jvm.org.apache.spark.mllib.regression.IsotonicRegressionModel.load( sc._jsc.sc(), path) py_boundaries = _java2py(sc, java_model.boundaryVector()).toArray() py_predictions = _java2py(sc, java_model.predictionVector()).toArray() return IsotonicRegressionModel(py_boundaries, py_predictions, java_model.isotonic)
[ "def", "load", "(", "cls", ",", "sc", ",", "path", ")", ":", "java_model", "=", "sc", ".", "_jvm", ".", "org", ".", "apache", ".", "spark", ".", "mllib", ".", "regression", ".", "IsotonicRegressionModel", ".", "load", "(", "sc", ".", "_jsc", ".", "sc", "(", ")", ",", "path", ")", "py_boundaries", "=", "_java2py", "(", "sc", ",", "java_model", ".", "boundaryVector", "(", ")", ")", ".", "toArray", "(", ")", "py_predictions", "=", "_java2py", "(", "sc", ",", "java_model", ".", "predictionVector", "(", ")", ")", ".", "toArray", "(", ")", "return", "IsotonicRegressionModel", "(", "py_boundaries", ",", "py_predictions", ",", "java_model", ".", "isotonic", ")" ]
Load an IsotonicRegressionModel.
[ "Load", "an", "IsotonicRegressionModel", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/regression.py#L664-L670
19,220
apache/spark
python/pyspark/mllib/regression.py
IsotonicRegression.train
def train(cls, data, isotonic=True): """ Train an isotonic regression model on the given data. :param data: RDD of (label, feature, weight) tuples. :param isotonic: Whether this is isotonic (which is default) or antitonic. (default: True) """ boundaries, predictions = callMLlibFunc("trainIsotonicRegressionModel", data.map(_convert_to_vector), bool(isotonic)) return IsotonicRegressionModel(boundaries.toArray(), predictions.toArray(), isotonic)
python
def train(cls, data, isotonic=True): """ Train an isotonic regression model on the given data. :param data: RDD of (label, feature, weight) tuples. :param isotonic: Whether this is isotonic (which is default) or antitonic. (default: True) """ boundaries, predictions = callMLlibFunc("trainIsotonicRegressionModel", data.map(_convert_to_vector), bool(isotonic)) return IsotonicRegressionModel(boundaries.toArray(), predictions.toArray(), isotonic)
[ "def", "train", "(", "cls", ",", "data", ",", "isotonic", "=", "True", ")", ":", "boundaries", ",", "predictions", "=", "callMLlibFunc", "(", "\"trainIsotonicRegressionModel\"", ",", "data", ".", "map", "(", "_convert_to_vector", ")", ",", "bool", "(", "isotonic", ")", ")", "return", "IsotonicRegressionModel", "(", "boundaries", ".", "toArray", "(", ")", ",", "predictions", ".", "toArray", "(", ")", ",", "isotonic", ")" ]
Train an isotonic regression model on the given data. :param data: RDD of (label, feature, weight) tuples. :param isotonic: Whether this is isotonic (which is default) or antitonic. (default: True)
[ "Train", "an", "isotonic", "regression", "model", "on", "the", "given", "data", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/regression.py#L699-L711
19,221
apache/spark
python/pyspark/mllib/linalg/distributed.py
RowMatrix.columnSimilarities
def columnSimilarities(self, threshold=0.0): """ Compute similarities between columns of this matrix. The threshold parameter is a trade-off knob between estimate quality and computational cost. The default threshold setting of 0 guarantees deterministically correct results, but uses the brute-force approach of computing normalized dot products. Setting the threshold to positive values uses a sampling approach and incurs strictly less computational cost than the brute-force approach. However the similarities computed will be estimates. The sampling guarantees relative-error correctness for those pairs of columns that have similarity greater than the given similarity threshold. To describe the guarantee, we set some notation: * Let A be the smallest in magnitude non-zero element of this matrix. * Let B be the largest in magnitude non-zero element of this matrix. * Let L be the maximum number of non-zeros per row. For example, for {0,1} matrices: A=B=1. Another example, for the Netflix matrix: A=1, B=5 For those column pairs that are above the threshold, the computed similarity is correct to within 20% relative error with probability at least 1 - (0.981)^10/B^ The shuffle size is bounded by the *smaller* of the following two expressions: * O(n log(n) L / (threshold * A)) * O(m L^2^) The latter is the cost of the brute-force approach, so for non-zero thresholds, the cost is always cheaper than the brute-force approach. :param: threshold: Set to 0 for deterministic guaranteed correctness. Similarities above this threshold are estimated with the cost vs estimate quality trade-off described above. :return: An n x n sparse upper-triangular CoordinateMatrix of cosine similarities between columns of this matrix. >>> rows = sc.parallelize([[1, 2], [1, 5]]) >>> mat = RowMatrix(rows) >>> sims = mat.columnSimilarities() >>> sims.entries.first().value 0.91914503... """ java_sims_mat = self._java_matrix_wrapper.call("columnSimilarities", float(threshold)) return CoordinateMatrix(java_sims_mat)
python
def columnSimilarities(self, threshold=0.0): """ Compute similarities between columns of this matrix. The threshold parameter is a trade-off knob between estimate quality and computational cost. The default threshold setting of 0 guarantees deterministically correct results, but uses the brute-force approach of computing normalized dot products. Setting the threshold to positive values uses a sampling approach and incurs strictly less computational cost than the brute-force approach. However the similarities computed will be estimates. The sampling guarantees relative-error correctness for those pairs of columns that have similarity greater than the given similarity threshold. To describe the guarantee, we set some notation: * Let A be the smallest in magnitude non-zero element of this matrix. * Let B be the largest in magnitude non-zero element of this matrix. * Let L be the maximum number of non-zeros per row. For example, for {0,1} matrices: A=B=1. Another example, for the Netflix matrix: A=1, B=5 For those column pairs that are above the threshold, the computed similarity is correct to within 20% relative error with probability at least 1 - (0.981)^10/B^ The shuffle size is bounded by the *smaller* of the following two expressions: * O(n log(n) L / (threshold * A)) * O(m L^2^) The latter is the cost of the brute-force approach, so for non-zero thresholds, the cost is always cheaper than the brute-force approach. :param: threshold: Set to 0 for deterministic guaranteed correctness. Similarities above this threshold are estimated with the cost vs estimate quality trade-off described above. :return: An n x n sparse upper-triangular CoordinateMatrix of cosine similarities between columns of this matrix. >>> rows = sc.parallelize([[1, 2], [1, 5]]) >>> mat = RowMatrix(rows) >>> sims = mat.columnSimilarities() >>> sims.entries.first().value 0.91914503... """ java_sims_mat = self._java_matrix_wrapper.call("columnSimilarities", float(threshold)) return CoordinateMatrix(java_sims_mat)
[ "def", "columnSimilarities", "(", "self", ",", "threshold", "=", "0.0", ")", ":", "java_sims_mat", "=", "self", ".", "_java_matrix_wrapper", ".", "call", "(", "\"columnSimilarities\"", ",", "float", "(", "threshold", ")", ")", "return", "CoordinateMatrix", "(", "java_sims_mat", ")" ]
Compute similarities between columns of this matrix. The threshold parameter is a trade-off knob between estimate quality and computational cost. The default threshold setting of 0 guarantees deterministically correct results, but uses the brute-force approach of computing normalized dot products. Setting the threshold to positive values uses a sampling approach and incurs strictly less computational cost than the brute-force approach. However the similarities computed will be estimates. The sampling guarantees relative-error correctness for those pairs of columns that have similarity greater than the given similarity threshold. To describe the guarantee, we set some notation: * Let A be the smallest in magnitude non-zero element of this matrix. * Let B be the largest in magnitude non-zero element of this matrix. * Let L be the maximum number of non-zeros per row. For example, for {0,1} matrices: A=B=1. Another example, for the Netflix matrix: A=1, B=5 For those column pairs that are above the threshold, the computed similarity is correct to within 20% relative error with probability at least 1 - (0.981)^10/B^ The shuffle size is bounded by the *smaller* of the following two expressions: * O(n log(n) L / (threshold * A)) * O(m L^2^) The latter is the cost of the brute-force approach, so for non-zero thresholds, the cost is always cheaper than the brute-force approach. :param: threshold: Set to 0 for deterministic guaranteed correctness. Similarities above this threshold are estimated with the cost vs estimate quality trade-off described above. :return: An n x n sparse upper-triangular CoordinateMatrix of cosine similarities between columns of this matrix. >>> rows = sc.parallelize([[1, 2], [1, 5]]) >>> mat = RowMatrix(rows) >>> sims = mat.columnSimilarities() >>> sims.entries.first().value 0.91914503...
[ "Compute", "similarities", "between", "columns", "of", "this", "matrix", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/distributed.py#L201-L260
19,222
apache/spark
python/pyspark/mllib/linalg/distributed.py
RowMatrix.tallSkinnyQR
def tallSkinnyQR(self, computeQ=False): """ Compute the QR decomposition of this RowMatrix. The implementation is designed to optimize the QR decomposition (factorization) for the RowMatrix of a tall and skinny shape. Reference: Paul G. Constantine, David F. Gleich. "Tall and skinny QR factorizations in MapReduce architectures" ([[https://doi.org/10.1145/1996092.1996103]]) :param: computeQ: whether to computeQ :return: QRDecomposition(Q: RowMatrix, R: Matrix), where Q = None if computeQ = false. >>> rows = sc.parallelize([[3, -6], [4, -8], [0, 1]]) >>> mat = RowMatrix(rows) >>> decomp = mat.tallSkinnyQR(True) >>> Q = decomp.Q >>> R = decomp.R >>> # Test with absolute values >>> absQRows = Q.rows.map(lambda row: abs(row.toArray()).tolist()) >>> absQRows.collect() [[0.6..., 0.0], [0.8..., 0.0], [0.0, 1.0]] >>> # Test with absolute values >>> abs(R.toArray()).tolist() [[5.0, 10.0], [0.0, 1.0]] """ decomp = JavaModelWrapper(self._java_matrix_wrapper.call("tallSkinnyQR", computeQ)) if computeQ: java_Q = decomp.call("Q") Q = RowMatrix(java_Q) else: Q = None R = decomp.call("R") return QRDecomposition(Q, R)
python
def tallSkinnyQR(self, computeQ=False): """ Compute the QR decomposition of this RowMatrix. The implementation is designed to optimize the QR decomposition (factorization) for the RowMatrix of a tall and skinny shape. Reference: Paul G. Constantine, David F. Gleich. "Tall and skinny QR factorizations in MapReduce architectures" ([[https://doi.org/10.1145/1996092.1996103]]) :param: computeQ: whether to computeQ :return: QRDecomposition(Q: RowMatrix, R: Matrix), where Q = None if computeQ = false. >>> rows = sc.parallelize([[3, -6], [4, -8], [0, 1]]) >>> mat = RowMatrix(rows) >>> decomp = mat.tallSkinnyQR(True) >>> Q = decomp.Q >>> R = decomp.R >>> # Test with absolute values >>> absQRows = Q.rows.map(lambda row: abs(row.toArray()).tolist()) >>> absQRows.collect() [[0.6..., 0.0], [0.8..., 0.0], [0.0, 1.0]] >>> # Test with absolute values >>> abs(R.toArray()).tolist() [[5.0, 10.0], [0.0, 1.0]] """ decomp = JavaModelWrapper(self._java_matrix_wrapper.call("tallSkinnyQR", computeQ)) if computeQ: java_Q = decomp.call("Q") Q = RowMatrix(java_Q) else: Q = None R = decomp.call("R") return QRDecomposition(Q, R)
[ "def", "tallSkinnyQR", "(", "self", ",", "computeQ", "=", "False", ")", ":", "decomp", "=", "JavaModelWrapper", "(", "self", ".", "_java_matrix_wrapper", ".", "call", "(", "\"tallSkinnyQR\"", ",", "computeQ", ")", ")", "if", "computeQ", ":", "java_Q", "=", "decomp", ".", "call", "(", "\"Q\"", ")", "Q", "=", "RowMatrix", "(", "java_Q", ")", "else", ":", "Q", "=", "None", "R", "=", "decomp", ".", "call", "(", "\"R\"", ")", "return", "QRDecomposition", "(", "Q", ",", "R", ")" ]
Compute the QR decomposition of this RowMatrix. The implementation is designed to optimize the QR decomposition (factorization) for the RowMatrix of a tall and skinny shape. Reference: Paul G. Constantine, David F. Gleich. "Tall and skinny QR factorizations in MapReduce architectures" ([[https://doi.org/10.1145/1996092.1996103]]) :param: computeQ: whether to computeQ :return: QRDecomposition(Q: RowMatrix, R: Matrix), where Q = None if computeQ = false. >>> rows = sc.parallelize([[3, -6], [4, -8], [0, 1]]) >>> mat = RowMatrix(rows) >>> decomp = mat.tallSkinnyQR(True) >>> Q = decomp.Q >>> R = decomp.R >>> # Test with absolute values >>> absQRows = Q.rows.map(lambda row: abs(row.toArray()).tolist()) >>> absQRows.collect() [[0.6..., 0.0], [0.8..., 0.0], [0.0, 1.0]] >>> # Test with absolute values >>> abs(R.toArray()).tolist() [[5.0, 10.0], [0.0, 1.0]]
[ "Compute", "the", "QR", "decomposition", "of", "this", "RowMatrix", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/distributed.py#L263-L301
19,223
apache/spark
python/pyspark/mllib/linalg/distributed.py
RowMatrix.computeSVD
def computeSVD(self, k, computeU=False, rCond=1e-9): """ Computes the singular value decomposition of the RowMatrix. The given row matrix A of dimension (m X n) is decomposed into U * s * V'T where * U: (m X k) (left singular vectors) is a RowMatrix whose columns are the eigenvectors of (A X A') * s: DenseVector consisting of square root of the eigenvalues (singular values) in descending order. * v: (n X k) (right singular vectors) is a Matrix whose columns are the eigenvectors of (A' X A) For more specific details on implementation, please refer the Scala documentation. :param k: Number of leading singular values to keep (`0 < k <= n`). It might return less than k if there are numerically zero singular values or there are not enough Ritz values converged before the maximum number of Arnoldi update iterations is reached (in case that matrix A is ill-conditioned). :param computeU: Whether or not to compute U. If set to be True, then U is computed by A * V * s^-1 :param rCond: Reciprocal condition number. All singular values smaller than rCond * s[0] are treated as zero where s[0] is the largest singular value. :returns: :py:class:`SingularValueDecomposition` >>> rows = sc.parallelize([[3, 1, 1], [-1, 3, 1]]) >>> rm = RowMatrix(rows) >>> svd_model = rm.computeSVD(2, True) >>> svd_model.U.rows.collect() [DenseVector([-0.7071, 0.7071]), DenseVector([-0.7071, -0.7071])] >>> svd_model.s DenseVector([3.4641, 3.1623]) >>> svd_model.V DenseMatrix(3, 2, [-0.4082, -0.8165, -0.4082, 0.8944, -0.4472, 0.0], 0) """ j_model = self._java_matrix_wrapper.call( "computeSVD", int(k), bool(computeU), float(rCond)) return SingularValueDecomposition(j_model)
python
def computeSVD(self, k, computeU=False, rCond=1e-9): """ Computes the singular value decomposition of the RowMatrix. The given row matrix A of dimension (m X n) is decomposed into U * s * V'T where * U: (m X k) (left singular vectors) is a RowMatrix whose columns are the eigenvectors of (A X A') * s: DenseVector consisting of square root of the eigenvalues (singular values) in descending order. * v: (n X k) (right singular vectors) is a Matrix whose columns are the eigenvectors of (A' X A) For more specific details on implementation, please refer the Scala documentation. :param k: Number of leading singular values to keep (`0 < k <= n`). It might return less than k if there are numerically zero singular values or there are not enough Ritz values converged before the maximum number of Arnoldi update iterations is reached (in case that matrix A is ill-conditioned). :param computeU: Whether or not to compute U. If set to be True, then U is computed by A * V * s^-1 :param rCond: Reciprocal condition number. All singular values smaller than rCond * s[0] are treated as zero where s[0] is the largest singular value. :returns: :py:class:`SingularValueDecomposition` >>> rows = sc.parallelize([[3, 1, 1], [-1, 3, 1]]) >>> rm = RowMatrix(rows) >>> svd_model = rm.computeSVD(2, True) >>> svd_model.U.rows.collect() [DenseVector([-0.7071, 0.7071]), DenseVector([-0.7071, -0.7071])] >>> svd_model.s DenseVector([3.4641, 3.1623]) >>> svd_model.V DenseMatrix(3, 2, [-0.4082, -0.8165, -0.4082, 0.8944, -0.4472, 0.0], 0) """ j_model = self._java_matrix_wrapper.call( "computeSVD", int(k), bool(computeU), float(rCond)) return SingularValueDecomposition(j_model)
[ "def", "computeSVD", "(", "self", ",", "k", ",", "computeU", "=", "False", ",", "rCond", "=", "1e-9", ")", ":", "j_model", "=", "self", ".", "_java_matrix_wrapper", ".", "call", "(", "\"computeSVD\"", ",", "int", "(", "k", ")", ",", "bool", "(", "computeU", ")", ",", "float", "(", "rCond", ")", ")", "return", "SingularValueDecomposition", "(", "j_model", ")" ]
Computes the singular value decomposition of the RowMatrix. The given row matrix A of dimension (m X n) is decomposed into U * s * V'T where * U: (m X k) (left singular vectors) is a RowMatrix whose columns are the eigenvectors of (A X A') * s: DenseVector consisting of square root of the eigenvalues (singular values) in descending order. * v: (n X k) (right singular vectors) is a Matrix whose columns are the eigenvectors of (A' X A) For more specific details on implementation, please refer the Scala documentation. :param k: Number of leading singular values to keep (`0 < k <= n`). It might return less than k if there are numerically zero singular values or there are not enough Ritz values converged before the maximum number of Arnoldi update iterations is reached (in case that matrix A is ill-conditioned). :param computeU: Whether or not to compute U. If set to be True, then U is computed by A * V * s^-1 :param rCond: Reciprocal condition number. All singular values smaller than rCond * s[0] are treated as zero where s[0] is the largest singular value. :returns: :py:class:`SingularValueDecomposition` >>> rows = sc.parallelize([[3, 1, 1], [-1, 3, 1]]) >>> rm = RowMatrix(rows) >>> svd_model = rm.computeSVD(2, True) >>> svd_model.U.rows.collect() [DenseVector([-0.7071, 0.7071]), DenseVector([-0.7071, -0.7071])] >>> svd_model.s DenseVector([3.4641, 3.1623]) >>> svd_model.V DenseMatrix(3, 2, [-0.4082, -0.8165, -0.4082, 0.8944, -0.4472, 0.0], 0)
[ "Computes", "the", "singular", "value", "decomposition", "of", "the", "RowMatrix", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/distributed.py#L304-L345
19,224
apache/spark
python/pyspark/mllib/linalg/distributed.py
SingularValueDecomposition.U
def U(self): """ Returns a distributed matrix whose columns are the left singular vectors of the SingularValueDecomposition if computeU was set to be True. """ u = self.call("U") if u is not None: mat_name = u.getClass().getSimpleName() if mat_name == "RowMatrix": return RowMatrix(u) elif mat_name == "IndexedRowMatrix": return IndexedRowMatrix(u) else: raise TypeError("Expected RowMatrix/IndexedRowMatrix got %s" % mat_name)
python
def U(self): """ Returns a distributed matrix whose columns are the left singular vectors of the SingularValueDecomposition if computeU was set to be True. """ u = self.call("U") if u is not None: mat_name = u.getClass().getSimpleName() if mat_name == "RowMatrix": return RowMatrix(u) elif mat_name == "IndexedRowMatrix": return IndexedRowMatrix(u) else: raise TypeError("Expected RowMatrix/IndexedRowMatrix got %s" % mat_name)
[ "def", "U", "(", "self", ")", ":", "u", "=", "self", ".", "call", "(", "\"U\"", ")", "if", "u", "is", "not", "None", ":", "mat_name", "=", "u", ".", "getClass", "(", ")", ".", "getSimpleName", "(", ")", "if", "mat_name", "==", "\"RowMatrix\"", ":", "return", "RowMatrix", "(", "u", ")", "elif", "mat_name", "==", "\"IndexedRowMatrix\"", ":", "return", "IndexedRowMatrix", "(", "u", ")", "else", ":", "raise", "TypeError", "(", "\"Expected RowMatrix/IndexedRowMatrix got %s\"", "%", "mat_name", ")" ]
Returns a distributed matrix whose columns are the left singular vectors of the SingularValueDecomposition if computeU was set to be True.
[ "Returns", "a", "distributed", "matrix", "whose", "columns", "are", "the", "left", "singular", "vectors", "of", "the", "SingularValueDecomposition", "if", "computeU", "was", "set", "to", "be", "True", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/distributed.py#L401-L414
19,225
apache/spark
python/pyspark/mllib/linalg/distributed.py
IndexedRowMatrix.rows
def rows(self): """ Rows of the IndexedRowMatrix stored as an RDD of IndexedRows. >>> mat = IndexedRowMatrix(sc.parallelize([IndexedRow(0, [1, 2, 3]), ... IndexedRow(1, [4, 5, 6])])) >>> rows = mat.rows >>> rows.first() IndexedRow(0, [1.0,2.0,3.0]) """ # We use DataFrames for serialization of IndexedRows from # Java, so we first convert the RDD of rows to a DataFrame # on the Scala/Java side. Then we map each Row in the # DataFrame back to an IndexedRow on this side. rows_df = callMLlibFunc("getIndexedRows", self._java_matrix_wrapper._java_model) rows = rows_df.rdd.map(lambda row: IndexedRow(row[0], row[1])) return rows
python
def rows(self): """ Rows of the IndexedRowMatrix stored as an RDD of IndexedRows. >>> mat = IndexedRowMatrix(sc.parallelize([IndexedRow(0, [1, 2, 3]), ... IndexedRow(1, [4, 5, 6])])) >>> rows = mat.rows >>> rows.first() IndexedRow(0, [1.0,2.0,3.0]) """ # We use DataFrames for serialization of IndexedRows from # Java, so we first convert the RDD of rows to a DataFrame # on the Scala/Java side. Then we map each Row in the # DataFrame back to an IndexedRow on this side. rows_df = callMLlibFunc("getIndexedRows", self._java_matrix_wrapper._java_model) rows = rows_df.rdd.map(lambda row: IndexedRow(row[0], row[1])) return rows
[ "def", "rows", "(", "self", ")", ":", "# We use DataFrames for serialization of IndexedRows from", "# Java, so we first convert the RDD of rows to a DataFrame", "# on the Scala/Java side. Then we map each Row in the", "# DataFrame back to an IndexedRow on this side.", "rows_df", "=", "callMLlibFunc", "(", "\"getIndexedRows\"", ",", "self", ".", "_java_matrix_wrapper", ".", "_java_model", ")", "rows", "=", "rows_df", ".", "rdd", ".", "map", "(", "lambda", "row", ":", "IndexedRow", "(", "row", "[", "0", "]", ",", "row", "[", "1", "]", ")", ")", "return", "rows" ]
Rows of the IndexedRowMatrix stored as an RDD of IndexedRows. >>> mat = IndexedRowMatrix(sc.parallelize([IndexedRow(0, [1, 2, 3]), ... IndexedRow(1, [4, 5, 6])])) >>> rows = mat.rows >>> rows.first() IndexedRow(0, [1.0,2.0,3.0])
[ "Rows", "of", "the", "IndexedRowMatrix", "stored", "as", "an", "RDD", "of", "IndexedRows", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/distributed.py#L519-L535
19,226
apache/spark
python/pyspark/mllib/linalg/distributed.py
IndexedRowMatrix.toBlockMatrix
def toBlockMatrix(self, rowsPerBlock=1024, colsPerBlock=1024): """ Convert this matrix to a BlockMatrix. :param rowsPerBlock: Number of rows that make up each block. The blocks forming the final rows are not required to have the given number of rows. :param colsPerBlock: Number of columns that make up each block. The blocks forming the final columns are not required to have the given number of columns. >>> rows = sc.parallelize([IndexedRow(0, [1, 2, 3]), ... IndexedRow(6, [4, 5, 6])]) >>> mat = IndexedRowMatrix(rows).toBlockMatrix() >>> # This IndexedRowMatrix will have 7 effective rows, due to >>> # the highest row index being 6, and the ensuing >>> # BlockMatrix will have 7 rows as well. >>> print(mat.numRows()) 7 >>> print(mat.numCols()) 3 """ java_block_matrix = self._java_matrix_wrapper.call("toBlockMatrix", rowsPerBlock, colsPerBlock) return BlockMatrix(java_block_matrix, rowsPerBlock, colsPerBlock)
python
def toBlockMatrix(self, rowsPerBlock=1024, colsPerBlock=1024): """ Convert this matrix to a BlockMatrix. :param rowsPerBlock: Number of rows that make up each block. The blocks forming the final rows are not required to have the given number of rows. :param colsPerBlock: Number of columns that make up each block. The blocks forming the final columns are not required to have the given number of columns. >>> rows = sc.parallelize([IndexedRow(0, [1, 2, 3]), ... IndexedRow(6, [4, 5, 6])]) >>> mat = IndexedRowMatrix(rows).toBlockMatrix() >>> # This IndexedRowMatrix will have 7 effective rows, due to >>> # the highest row index being 6, and the ensuing >>> # BlockMatrix will have 7 rows as well. >>> print(mat.numRows()) 7 >>> print(mat.numCols()) 3 """ java_block_matrix = self._java_matrix_wrapper.call("toBlockMatrix", rowsPerBlock, colsPerBlock) return BlockMatrix(java_block_matrix, rowsPerBlock, colsPerBlock)
[ "def", "toBlockMatrix", "(", "self", ",", "rowsPerBlock", "=", "1024", ",", "colsPerBlock", "=", "1024", ")", ":", "java_block_matrix", "=", "self", ".", "_java_matrix_wrapper", ".", "call", "(", "\"toBlockMatrix\"", ",", "rowsPerBlock", ",", "colsPerBlock", ")", "return", "BlockMatrix", "(", "java_block_matrix", ",", "rowsPerBlock", ",", "colsPerBlock", ")" ]
Convert this matrix to a BlockMatrix. :param rowsPerBlock: Number of rows that make up each block. The blocks forming the final rows are not required to have the given number of rows. :param colsPerBlock: Number of columns that make up each block. The blocks forming the final columns are not required to have the given number of columns. >>> rows = sc.parallelize([IndexedRow(0, [1, 2, 3]), ... IndexedRow(6, [4, 5, 6])]) >>> mat = IndexedRowMatrix(rows).toBlockMatrix() >>> # This IndexedRowMatrix will have 7 effective rows, due to >>> # the highest row index being 6, and the ensuing >>> # BlockMatrix will have 7 rows as well. >>> print(mat.numRows()) 7 >>> print(mat.numCols()) 3
[ "Convert", "this", "matrix", "to", "a", "BlockMatrix", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/distributed.py#L631-L658
19,227
apache/spark
python/pyspark/mllib/linalg/distributed.py
CoordinateMatrix.entries
def entries(self): """ Entries of the CoordinateMatrix stored as an RDD of MatrixEntries. >>> mat = CoordinateMatrix(sc.parallelize([MatrixEntry(0, 0, 1.2), ... MatrixEntry(6, 4, 2.1)])) >>> entries = mat.entries >>> entries.first() MatrixEntry(0, 0, 1.2) """ # We use DataFrames for serialization of MatrixEntry entries # from Java, so we first convert the RDD of entries to a # DataFrame on the Scala/Java side. Then we map each Row in # the DataFrame back to a MatrixEntry on this side. entries_df = callMLlibFunc("getMatrixEntries", self._java_matrix_wrapper._java_model) entries = entries_df.rdd.map(lambda row: MatrixEntry(row[0], row[1], row[2])) return entries
python
def entries(self): """ Entries of the CoordinateMatrix stored as an RDD of MatrixEntries. >>> mat = CoordinateMatrix(sc.parallelize([MatrixEntry(0, 0, 1.2), ... MatrixEntry(6, 4, 2.1)])) >>> entries = mat.entries >>> entries.first() MatrixEntry(0, 0, 1.2) """ # We use DataFrames for serialization of MatrixEntry entries # from Java, so we first convert the RDD of entries to a # DataFrame on the Scala/Java side. Then we map each Row in # the DataFrame back to a MatrixEntry on this side. entries_df = callMLlibFunc("getMatrixEntries", self._java_matrix_wrapper._java_model) entries = entries_df.rdd.map(lambda row: MatrixEntry(row[0], row[1], row[2])) return entries
[ "def", "entries", "(", "self", ")", ":", "# We use DataFrames for serialization of MatrixEntry entries", "# from Java, so we first convert the RDD of entries to a", "# DataFrame on the Scala/Java side. Then we map each Row in", "# the DataFrame back to a MatrixEntry on this side.", "entries_df", "=", "callMLlibFunc", "(", "\"getMatrixEntries\"", ",", "self", ".", "_java_matrix_wrapper", ".", "_java_model", ")", "entries", "=", "entries_df", ".", "rdd", ".", "map", "(", "lambda", "row", ":", "MatrixEntry", "(", "row", "[", "0", "]", ",", "row", "[", "1", "]", ",", "row", "[", "2", "]", ")", ")", "return", "entries" ]
Entries of the CoordinateMatrix stored as an RDD of MatrixEntries. >>> mat = CoordinateMatrix(sc.parallelize([MatrixEntry(0, 0, 1.2), ... MatrixEntry(6, 4, 2.1)])) >>> entries = mat.entries >>> entries.first() MatrixEntry(0, 0, 1.2)
[ "Entries", "of", "the", "CoordinateMatrix", "stored", "as", "an", "RDD", "of", "MatrixEntries", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/distributed.py#L811-L828
19,228
apache/spark
python/pyspark/mllib/linalg/distributed.py
BlockMatrix.persist
def persist(self, storageLevel): """ Persists the underlying RDD with the specified storage level. """ if not isinstance(storageLevel, StorageLevel): raise TypeError("`storageLevel` should be a StorageLevel, got %s" % type(storageLevel)) javaStorageLevel = self._java_matrix_wrapper._sc._getJavaStorageLevel(storageLevel) self._java_matrix_wrapper.call("persist", javaStorageLevel) return self
python
def persist(self, storageLevel): """ Persists the underlying RDD with the specified storage level. """ if not isinstance(storageLevel, StorageLevel): raise TypeError("`storageLevel` should be a StorageLevel, got %s" % type(storageLevel)) javaStorageLevel = self._java_matrix_wrapper._sc._getJavaStorageLevel(storageLevel) self._java_matrix_wrapper.call("persist", javaStorageLevel) return self
[ "def", "persist", "(", "self", ",", "storageLevel", ")", ":", "if", "not", "isinstance", "(", "storageLevel", ",", "StorageLevel", ")", ":", "raise", "TypeError", "(", "\"`storageLevel` should be a StorageLevel, got %s\"", "%", "type", "(", "storageLevel", ")", ")", "javaStorageLevel", "=", "self", ".", "_java_matrix_wrapper", ".", "_sc", ".", "_getJavaStorageLevel", "(", "storageLevel", ")", "self", ".", "_java_matrix_wrapper", ".", "call", "(", "\"persist\"", ",", "javaStorageLevel", ")", "return", "self" ]
Persists the underlying RDD with the specified storage level.
[ "Persists", "the", "underlying", "RDD", "with", "the", "specified", "storage", "level", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/distributed.py#L1168-L1176
19,229
apache/spark
python/pyspark/mllib/linalg/distributed.py
BlockMatrix.add
def add(self, other): """ Adds two block matrices together. The matrices must have the same size and matching `rowsPerBlock` and `colsPerBlock` values. If one of the sub matrix blocks that are being added is a SparseMatrix, the resulting sub matrix block will also be a SparseMatrix, even if it is being added to a DenseMatrix. If two dense sub matrix blocks are added, the output block will also be a DenseMatrix. >>> dm1 = Matrices.dense(3, 2, [1, 2, 3, 4, 5, 6]) >>> dm2 = Matrices.dense(3, 2, [7, 8, 9, 10, 11, 12]) >>> sm = Matrices.sparse(3, 2, [0, 1, 3], [0, 1, 2], [7, 11, 12]) >>> blocks1 = sc.parallelize([((0, 0), dm1), ((1, 0), dm2)]) >>> blocks2 = sc.parallelize([((0, 0), dm1), ((1, 0), dm2)]) >>> blocks3 = sc.parallelize([((0, 0), sm), ((1, 0), dm2)]) >>> mat1 = BlockMatrix(blocks1, 3, 2) >>> mat2 = BlockMatrix(blocks2, 3, 2) >>> mat3 = BlockMatrix(blocks3, 3, 2) >>> mat1.add(mat2).toLocalMatrix() DenseMatrix(6, 2, [2.0, 4.0, 6.0, 14.0, 16.0, 18.0, 8.0, 10.0, 12.0, 20.0, 22.0, 24.0], 0) >>> mat1.add(mat3).toLocalMatrix() DenseMatrix(6, 2, [8.0, 2.0, 3.0, 14.0, 16.0, 18.0, 4.0, 16.0, 18.0, 20.0, 22.0, 24.0], 0) """ if not isinstance(other, BlockMatrix): raise TypeError("Other should be a BlockMatrix, got %s" % type(other)) other_java_block_matrix = other._java_matrix_wrapper._java_model java_block_matrix = self._java_matrix_wrapper.call("add", other_java_block_matrix) return BlockMatrix(java_block_matrix, self.rowsPerBlock, self.colsPerBlock)
python
def add(self, other): """ Adds two block matrices together. The matrices must have the same size and matching `rowsPerBlock` and `colsPerBlock` values. If one of the sub matrix blocks that are being added is a SparseMatrix, the resulting sub matrix block will also be a SparseMatrix, even if it is being added to a DenseMatrix. If two dense sub matrix blocks are added, the output block will also be a DenseMatrix. >>> dm1 = Matrices.dense(3, 2, [1, 2, 3, 4, 5, 6]) >>> dm2 = Matrices.dense(3, 2, [7, 8, 9, 10, 11, 12]) >>> sm = Matrices.sparse(3, 2, [0, 1, 3], [0, 1, 2], [7, 11, 12]) >>> blocks1 = sc.parallelize([((0, 0), dm1), ((1, 0), dm2)]) >>> blocks2 = sc.parallelize([((0, 0), dm1), ((1, 0), dm2)]) >>> blocks3 = sc.parallelize([((0, 0), sm), ((1, 0), dm2)]) >>> mat1 = BlockMatrix(blocks1, 3, 2) >>> mat2 = BlockMatrix(blocks2, 3, 2) >>> mat3 = BlockMatrix(blocks3, 3, 2) >>> mat1.add(mat2).toLocalMatrix() DenseMatrix(6, 2, [2.0, 4.0, 6.0, 14.0, 16.0, 18.0, 8.0, 10.0, 12.0, 20.0, 22.0, 24.0], 0) >>> mat1.add(mat3).toLocalMatrix() DenseMatrix(6, 2, [8.0, 2.0, 3.0, 14.0, 16.0, 18.0, 4.0, 16.0, 18.0, 20.0, 22.0, 24.0], 0) """ if not isinstance(other, BlockMatrix): raise TypeError("Other should be a BlockMatrix, got %s" % type(other)) other_java_block_matrix = other._java_matrix_wrapper._java_model java_block_matrix = self._java_matrix_wrapper.call("add", other_java_block_matrix) return BlockMatrix(java_block_matrix, self.rowsPerBlock, self.colsPerBlock)
[ "def", "add", "(", "self", ",", "other", ")", ":", "if", "not", "isinstance", "(", "other", ",", "BlockMatrix", ")", ":", "raise", "TypeError", "(", "\"Other should be a BlockMatrix, got %s\"", "%", "type", "(", "other", ")", ")", "other_java_block_matrix", "=", "other", ".", "_java_matrix_wrapper", ".", "_java_model", "java_block_matrix", "=", "self", ".", "_java_matrix_wrapper", ".", "call", "(", "\"add\"", ",", "other_java_block_matrix", ")", "return", "BlockMatrix", "(", "java_block_matrix", ",", "self", ".", "rowsPerBlock", ",", "self", ".", "colsPerBlock", ")" ]
Adds two block matrices together. The matrices must have the same size and matching `rowsPerBlock` and `colsPerBlock` values. If one of the sub matrix blocks that are being added is a SparseMatrix, the resulting sub matrix block will also be a SparseMatrix, even if it is being added to a DenseMatrix. If two dense sub matrix blocks are added, the output block will also be a DenseMatrix. >>> dm1 = Matrices.dense(3, 2, [1, 2, 3, 4, 5, 6]) >>> dm2 = Matrices.dense(3, 2, [7, 8, 9, 10, 11, 12]) >>> sm = Matrices.sparse(3, 2, [0, 1, 3], [0, 1, 2], [7, 11, 12]) >>> blocks1 = sc.parallelize([((0, 0), dm1), ((1, 0), dm2)]) >>> blocks2 = sc.parallelize([((0, 0), dm1), ((1, 0), dm2)]) >>> blocks3 = sc.parallelize([((0, 0), sm), ((1, 0), dm2)]) >>> mat1 = BlockMatrix(blocks1, 3, 2) >>> mat2 = BlockMatrix(blocks2, 3, 2) >>> mat3 = BlockMatrix(blocks3, 3, 2) >>> mat1.add(mat2).toLocalMatrix() DenseMatrix(6, 2, [2.0, 4.0, 6.0, 14.0, 16.0, 18.0, 8.0, 10.0, 12.0, 20.0, 22.0, 24.0], 0) >>> mat1.add(mat3).toLocalMatrix() DenseMatrix(6, 2, [8.0, 2.0, 3.0, 14.0, 16.0, 18.0, 4.0, 16.0, 18.0, 20.0, 22.0, 24.0], 0)
[ "Adds", "two", "block", "matrices", "together", ".", "The", "matrices", "must", "have", "the", "same", "size", "and", "matching", "rowsPerBlock", "and", "colsPerBlock", "values", ".", "If", "one", "of", "the", "sub", "matrix", "blocks", "that", "are", "being", "added", "is", "a", "SparseMatrix", "the", "resulting", "sub", "matrix", "block", "will", "also", "be", "a", "SparseMatrix", "even", "if", "it", "is", "being", "added", "to", "a", "DenseMatrix", ".", "If", "two", "dense", "sub", "matrix", "blocks", "are", "added", "the", "output", "block", "will", "also", "be", "a", "DenseMatrix", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/distributed.py#L1186-L1217
19,230
apache/spark
python/pyspark/mllib/linalg/distributed.py
BlockMatrix.transpose
def transpose(self): """ Transpose this BlockMatrix. Returns a new BlockMatrix instance sharing the same underlying data. Is a lazy operation. >>> blocks = sc.parallelize([((0, 0), Matrices.dense(3, 2, [1, 2, 3, 4, 5, 6])), ... ((1, 0), Matrices.dense(3, 2, [7, 8, 9, 10, 11, 12]))]) >>> mat = BlockMatrix(blocks, 3, 2) >>> mat_transposed = mat.transpose() >>> mat_transposed.toLocalMatrix() DenseMatrix(2, 6, [1.0, 4.0, 2.0, 5.0, 3.0, 6.0, 7.0, 10.0, 8.0, 11.0, 9.0, 12.0], 0) """ java_transposed_matrix = self._java_matrix_wrapper.call("transpose") return BlockMatrix(java_transposed_matrix, self.colsPerBlock, self.rowsPerBlock)
python
def transpose(self): """ Transpose this BlockMatrix. Returns a new BlockMatrix instance sharing the same underlying data. Is a lazy operation. >>> blocks = sc.parallelize([((0, 0), Matrices.dense(3, 2, [1, 2, 3, 4, 5, 6])), ... ((1, 0), Matrices.dense(3, 2, [7, 8, 9, 10, 11, 12]))]) >>> mat = BlockMatrix(blocks, 3, 2) >>> mat_transposed = mat.transpose() >>> mat_transposed.toLocalMatrix() DenseMatrix(2, 6, [1.0, 4.0, 2.0, 5.0, 3.0, 6.0, 7.0, 10.0, 8.0, 11.0, 9.0, 12.0], 0) """ java_transposed_matrix = self._java_matrix_wrapper.call("transpose") return BlockMatrix(java_transposed_matrix, self.colsPerBlock, self.rowsPerBlock)
[ "def", "transpose", "(", "self", ")", ":", "java_transposed_matrix", "=", "self", ".", "_java_matrix_wrapper", ".", "call", "(", "\"transpose\"", ")", "return", "BlockMatrix", "(", "java_transposed_matrix", ",", "self", ".", "colsPerBlock", ",", "self", ".", "rowsPerBlock", ")" ]
Transpose this BlockMatrix. Returns a new BlockMatrix instance sharing the same underlying data. Is a lazy operation. >>> blocks = sc.parallelize([((0, 0), Matrices.dense(3, 2, [1, 2, 3, 4, 5, 6])), ... ((1, 0), Matrices.dense(3, 2, [7, 8, 9, 10, 11, 12]))]) >>> mat = BlockMatrix(blocks, 3, 2) >>> mat_transposed = mat.transpose() >>> mat_transposed.toLocalMatrix() DenseMatrix(2, 6, [1.0, 4.0, 2.0, 5.0, 3.0, 6.0, 7.0, 10.0, 8.0, 11.0, 9.0, 12.0], 0)
[ "Transpose", "this", "BlockMatrix", ".", "Returns", "a", "new", "BlockMatrix", "instance", "sharing", "the", "same", "underlying", "data", ".", "Is", "a", "lazy", "operation", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/distributed.py#L1290-L1304
19,231
apache/spark
python/pyspark/mllib/linalg/__init__.py
_vector_size
def _vector_size(v): """ Returns the size of the vector. >>> _vector_size([1., 2., 3.]) 3 >>> _vector_size((1., 2., 3.)) 3 >>> _vector_size(array.array('d', [1., 2., 3.])) 3 >>> _vector_size(np.zeros(3)) 3 >>> _vector_size(np.zeros((3, 1))) 3 >>> _vector_size(np.zeros((1, 3))) Traceback (most recent call last): ... ValueError: Cannot treat an ndarray of shape (1, 3) as a vector """ if isinstance(v, Vector): return len(v) elif type(v) in (array.array, list, tuple, xrange): return len(v) elif type(v) == np.ndarray: if v.ndim == 1 or (v.ndim == 2 and v.shape[1] == 1): return len(v) else: raise ValueError("Cannot treat an ndarray of shape %s as a vector" % str(v.shape)) elif _have_scipy and scipy.sparse.issparse(v): assert v.shape[1] == 1, "Expected column vector" return v.shape[0] else: raise TypeError("Cannot treat type %s as a vector" % type(v))
python
def _vector_size(v): """ Returns the size of the vector. >>> _vector_size([1., 2., 3.]) 3 >>> _vector_size((1., 2., 3.)) 3 >>> _vector_size(array.array('d', [1., 2., 3.])) 3 >>> _vector_size(np.zeros(3)) 3 >>> _vector_size(np.zeros((3, 1))) 3 >>> _vector_size(np.zeros((1, 3))) Traceback (most recent call last): ... ValueError: Cannot treat an ndarray of shape (1, 3) as a vector """ if isinstance(v, Vector): return len(v) elif type(v) in (array.array, list, tuple, xrange): return len(v) elif type(v) == np.ndarray: if v.ndim == 1 or (v.ndim == 2 and v.shape[1] == 1): return len(v) else: raise ValueError("Cannot treat an ndarray of shape %s as a vector" % str(v.shape)) elif _have_scipy and scipy.sparse.issparse(v): assert v.shape[1] == 1, "Expected column vector" return v.shape[0] else: raise TypeError("Cannot treat type %s as a vector" % type(v))
[ "def", "_vector_size", "(", "v", ")", ":", "if", "isinstance", "(", "v", ",", "Vector", ")", ":", "return", "len", "(", "v", ")", "elif", "type", "(", "v", ")", "in", "(", "array", ".", "array", ",", "list", ",", "tuple", ",", "xrange", ")", ":", "return", "len", "(", "v", ")", "elif", "type", "(", "v", ")", "==", "np", ".", "ndarray", ":", "if", "v", ".", "ndim", "==", "1", "or", "(", "v", ".", "ndim", "==", "2", "and", "v", ".", "shape", "[", "1", "]", "==", "1", ")", ":", "return", "len", "(", "v", ")", "else", ":", "raise", "ValueError", "(", "\"Cannot treat an ndarray of shape %s as a vector\"", "%", "str", "(", "v", ".", "shape", ")", ")", "elif", "_have_scipy", "and", "scipy", ".", "sparse", ".", "issparse", "(", "v", ")", ":", "assert", "v", ".", "shape", "[", "1", "]", "==", "1", ",", "\"Expected column vector\"", "return", "v", ".", "shape", "[", "0", "]", "else", ":", "raise", "TypeError", "(", "\"Cannot treat type %s as a vector\"", "%", "type", "(", "v", ")", ")" ]
Returns the size of the vector. >>> _vector_size([1., 2., 3.]) 3 >>> _vector_size((1., 2., 3.)) 3 >>> _vector_size(array.array('d', [1., 2., 3.])) 3 >>> _vector_size(np.zeros(3)) 3 >>> _vector_size(np.zeros((3, 1))) 3 >>> _vector_size(np.zeros((1, 3))) Traceback (most recent call last): ... ValueError: Cannot treat an ndarray of shape (1, 3) as a vector
[ "Returns", "the", "size", "of", "the", "vector", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/__init__.py#L86-L118
19,232
apache/spark
python/pyspark/mllib/linalg/__init__.py
DenseVector.parse
def parse(s): """ Parse string representation back into the DenseVector. >>> DenseVector.parse(' [ 0.0,1.0,2.0, 3.0]') DenseVector([0.0, 1.0, 2.0, 3.0]) """ start = s.find('[') if start == -1: raise ValueError("Array should start with '['.") end = s.find(']') if end == -1: raise ValueError("Array should end with ']'.") s = s[start + 1: end] try: values = [float(val) for val in s.split(',') if val] except ValueError: raise ValueError("Unable to parse values from %s" % s) return DenseVector(values)
python
def parse(s): """ Parse string representation back into the DenseVector. >>> DenseVector.parse(' [ 0.0,1.0,2.0, 3.0]') DenseVector([0.0, 1.0, 2.0, 3.0]) """ start = s.find('[') if start == -1: raise ValueError("Array should start with '['.") end = s.find(']') if end == -1: raise ValueError("Array should end with ']'.") s = s[start + 1: end] try: values = [float(val) for val in s.split(',') if val] except ValueError: raise ValueError("Unable to parse values from %s" % s) return DenseVector(values)
[ "def", "parse", "(", "s", ")", ":", "start", "=", "s", ".", "find", "(", "'['", ")", "if", "start", "==", "-", "1", ":", "raise", "ValueError", "(", "\"Array should start with '['.\"", ")", "end", "=", "s", ".", "find", "(", "']'", ")", "if", "end", "==", "-", "1", ":", "raise", "ValueError", "(", "\"Array should end with ']'.\"", ")", "s", "=", "s", "[", "start", "+", "1", ":", "end", "]", "try", ":", "values", "=", "[", "float", "(", "val", ")", "for", "val", "in", "s", ".", "split", "(", "','", ")", "if", "val", "]", "except", "ValueError", ":", "raise", "ValueError", "(", "\"Unable to parse values from %s\"", "%", "s", ")", "return", "DenseVector", "(", "values", ")" ]
Parse string representation back into the DenseVector. >>> DenseVector.parse(' [ 0.0,1.0,2.0, 3.0]') DenseVector([0.0, 1.0, 2.0, 3.0])
[ "Parse", "string", "representation", "back", "into", "the", "DenseVector", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/__init__.py#L297-L316
19,233
apache/spark
python/pyspark/mllib/linalg/__init__.py
DenseVector.squared_distance
def squared_distance(self, other): """ Squared distance of two Vectors. >>> dense1 = DenseVector(array.array('d', [1., 2.])) >>> dense1.squared_distance(dense1) 0.0 >>> dense2 = np.array([2., 1.]) >>> dense1.squared_distance(dense2) 2.0 >>> dense3 = [2., 1.] >>> dense1.squared_distance(dense3) 2.0 >>> sparse1 = SparseVector(2, [0, 1], [2., 1.]) >>> dense1.squared_distance(sparse1) 2.0 >>> dense1.squared_distance([1.,]) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> dense1.squared_distance(SparseVector(1, [0,], [1.,])) Traceback (most recent call last): ... AssertionError: dimension mismatch """ assert len(self) == _vector_size(other), "dimension mismatch" if isinstance(other, SparseVector): return other.squared_distance(self) elif _have_scipy and scipy.sparse.issparse(other): return _convert_to_vector(other).squared_distance(self) if isinstance(other, Vector): other = other.toArray() elif not isinstance(other, np.ndarray): other = np.array(other) diff = self.toArray() - other return np.dot(diff, diff)
python
def squared_distance(self, other): """ Squared distance of two Vectors. >>> dense1 = DenseVector(array.array('d', [1., 2.])) >>> dense1.squared_distance(dense1) 0.0 >>> dense2 = np.array([2., 1.]) >>> dense1.squared_distance(dense2) 2.0 >>> dense3 = [2., 1.] >>> dense1.squared_distance(dense3) 2.0 >>> sparse1 = SparseVector(2, [0, 1], [2., 1.]) >>> dense1.squared_distance(sparse1) 2.0 >>> dense1.squared_distance([1.,]) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> dense1.squared_distance(SparseVector(1, [0,], [1.,])) Traceback (most recent call last): ... AssertionError: dimension mismatch """ assert len(self) == _vector_size(other), "dimension mismatch" if isinstance(other, SparseVector): return other.squared_distance(self) elif _have_scipy and scipy.sparse.issparse(other): return _convert_to_vector(other).squared_distance(self) if isinstance(other, Vector): other = other.toArray() elif not isinstance(other, np.ndarray): other = np.array(other) diff = self.toArray() - other return np.dot(diff, diff)
[ "def", "squared_distance", "(", "self", ",", "other", ")", ":", "assert", "len", "(", "self", ")", "==", "_vector_size", "(", "other", ")", ",", "\"dimension mismatch\"", "if", "isinstance", "(", "other", ",", "SparseVector", ")", ":", "return", "other", ".", "squared_distance", "(", "self", ")", "elif", "_have_scipy", "and", "scipy", ".", "sparse", ".", "issparse", "(", "other", ")", ":", "return", "_convert_to_vector", "(", "other", ")", ".", "squared_distance", "(", "self", ")", "if", "isinstance", "(", "other", ",", "Vector", ")", ":", "other", "=", "other", ".", "toArray", "(", ")", "elif", "not", "isinstance", "(", "other", ",", "np", ".", "ndarray", ")", ":", "other", "=", "np", ".", "array", "(", "other", ")", "diff", "=", "self", ".", "toArray", "(", ")", "-", "other", "return", "np", ".", "dot", "(", "diff", ",", "diff", ")" ]
Squared distance of two Vectors. >>> dense1 = DenseVector(array.array('d', [1., 2.])) >>> dense1.squared_distance(dense1) 0.0 >>> dense2 = np.array([2., 1.]) >>> dense1.squared_distance(dense2) 2.0 >>> dense3 = [2., 1.] >>> dense1.squared_distance(dense3) 2.0 >>> sparse1 = SparseVector(2, [0, 1], [2., 1.]) >>> dense1.squared_distance(sparse1) 2.0 >>> dense1.squared_distance([1.,]) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> dense1.squared_distance(SparseVector(1, [0,], [1.,])) Traceback (most recent call last): ... AssertionError: dimension mismatch
[ "Squared", "distance", "of", "two", "Vectors", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/__init__.py#L382-L418
19,234
apache/spark
python/pyspark/mllib/linalg/__init__.py
SparseVector.parse
def parse(s): """ Parse string representation back into the SparseVector. >>> SparseVector.parse(' (4, [0,1 ],[ 4.0,5.0] )') SparseVector(4, {0: 4.0, 1: 5.0}) """ start = s.find('(') if start == -1: raise ValueError("Tuple should start with '('") end = s.find(')') if end == -1: raise ValueError("Tuple should end with ')'") s = s[start + 1: end].strip() size = s[: s.find(',')] try: size = int(size) except ValueError: raise ValueError("Cannot parse size %s." % size) ind_start = s.find('[') if ind_start == -1: raise ValueError("Indices array should start with '['.") ind_end = s.find(']') if ind_end == -1: raise ValueError("Indices array should end with ']'") new_s = s[ind_start + 1: ind_end] ind_list = new_s.split(',') try: indices = [int(ind) for ind in ind_list if ind] except ValueError: raise ValueError("Unable to parse indices from %s." % new_s) s = s[ind_end + 1:].strip() val_start = s.find('[') if val_start == -1: raise ValueError("Values array should start with '['.") val_end = s.find(']') if val_end == -1: raise ValueError("Values array should end with ']'.") val_list = s[val_start + 1: val_end].split(',') try: values = [float(val) for val in val_list if val] except ValueError: raise ValueError("Unable to parse values from %s." % s) return SparseVector(size, indices, values)
python
def parse(s): """ Parse string representation back into the SparseVector. >>> SparseVector.parse(' (4, [0,1 ],[ 4.0,5.0] )') SparseVector(4, {0: 4.0, 1: 5.0}) """ start = s.find('(') if start == -1: raise ValueError("Tuple should start with '('") end = s.find(')') if end == -1: raise ValueError("Tuple should end with ')'") s = s[start + 1: end].strip() size = s[: s.find(',')] try: size = int(size) except ValueError: raise ValueError("Cannot parse size %s." % size) ind_start = s.find('[') if ind_start == -1: raise ValueError("Indices array should start with '['.") ind_end = s.find(']') if ind_end == -1: raise ValueError("Indices array should end with ']'") new_s = s[ind_start + 1: ind_end] ind_list = new_s.split(',') try: indices = [int(ind) for ind in ind_list if ind] except ValueError: raise ValueError("Unable to parse indices from %s." % new_s) s = s[ind_end + 1:].strip() val_start = s.find('[') if val_start == -1: raise ValueError("Values array should start with '['.") val_end = s.find(']') if val_end == -1: raise ValueError("Values array should end with ']'.") val_list = s[val_start + 1: val_end].split(',') try: values = [float(val) for val in val_list if val] except ValueError: raise ValueError("Unable to parse values from %s." % s) return SparseVector(size, indices, values)
[ "def", "parse", "(", "s", ")", ":", "start", "=", "s", ".", "find", "(", "'('", ")", "if", "start", "==", "-", "1", ":", "raise", "ValueError", "(", "\"Tuple should start with '('\"", ")", "end", "=", "s", ".", "find", "(", "')'", ")", "if", "end", "==", "-", "1", ":", "raise", "ValueError", "(", "\"Tuple should end with ')'\"", ")", "s", "=", "s", "[", "start", "+", "1", ":", "end", "]", ".", "strip", "(", ")", "size", "=", "s", "[", ":", "s", ".", "find", "(", "','", ")", "]", "try", ":", "size", "=", "int", "(", "size", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "\"Cannot parse size %s.\"", "%", "size", ")", "ind_start", "=", "s", ".", "find", "(", "'['", ")", "if", "ind_start", "==", "-", "1", ":", "raise", "ValueError", "(", "\"Indices array should start with '['.\"", ")", "ind_end", "=", "s", ".", "find", "(", "']'", ")", "if", "ind_end", "==", "-", "1", ":", "raise", "ValueError", "(", "\"Indices array should end with ']'\"", ")", "new_s", "=", "s", "[", "ind_start", "+", "1", ":", "ind_end", "]", "ind_list", "=", "new_s", ".", "split", "(", "','", ")", "try", ":", "indices", "=", "[", "int", "(", "ind", ")", "for", "ind", "in", "ind_list", "if", "ind", "]", "except", "ValueError", ":", "raise", "ValueError", "(", "\"Unable to parse indices from %s.\"", "%", "new_s", ")", "s", "=", "s", "[", "ind_end", "+", "1", ":", "]", ".", "strip", "(", ")", "val_start", "=", "s", ".", "find", "(", "'['", ")", "if", "val_start", "==", "-", "1", ":", "raise", "ValueError", "(", "\"Values array should start with '['.\"", ")", "val_end", "=", "s", ".", "find", "(", "']'", ")", "if", "val_end", "==", "-", "1", ":", "raise", "ValueError", "(", "\"Values array should end with ']'.\"", ")", "val_list", "=", "s", "[", "val_start", "+", "1", ":", "val_end", "]", ".", "split", "(", "','", ")", "try", ":", "values", "=", "[", "float", "(", "val", ")", "for", "val", "in", "val_list", "if", "val", "]", "except", "ValueError", ":", "raise", "ValueError", "(", "\"Unable to parse values from %s.\"", "%", "s", ")", "return", "SparseVector", "(", "size", ",", "indices", ",", "values", ")" ]
Parse string representation back into the SparseVector. >>> SparseVector.parse(' (4, [0,1 ],[ 4.0,5.0] )') SparseVector(4, {0: 4.0, 1: 5.0})
[ "Parse", "string", "representation", "back", "into", "the", "SparseVector", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/__init__.py#L589-L635
19,235
apache/spark
python/pyspark/mllib/linalg/__init__.py
SparseVector.dot
def dot(self, other): """ Dot product with a SparseVector or 1- or 2-dimensional Numpy array. >>> a = SparseVector(4, [1, 3], [3.0, 4.0]) >>> a.dot(a) 25.0 >>> a.dot(array.array('d', [1., 2., 3., 4.])) 22.0 >>> b = SparseVector(4, [2], [1.0]) >>> a.dot(b) 0.0 >>> a.dot(np.array([[1, 1], [2, 2], [3, 3], [4, 4]])) array([ 22., 22.]) >>> a.dot([1., 2., 3.]) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> a.dot(np.array([1., 2.])) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> a.dot(DenseVector([1., 2.])) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> a.dot(np.zeros((3, 2))) Traceback (most recent call last): ... AssertionError: dimension mismatch """ if isinstance(other, np.ndarray): if other.ndim not in [2, 1]: raise ValueError("Cannot call dot with %d-dimensional array" % other.ndim) assert len(self) == other.shape[0], "dimension mismatch" return np.dot(self.values, other[self.indices]) assert len(self) == _vector_size(other), "dimension mismatch" if isinstance(other, DenseVector): return np.dot(other.array[self.indices], self.values) elif isinstance(other, SparseVector): # Find out common indices. self_cmind = np.in1d(self.indices, other.indices, assume_unique=True) self_values = self.values[self_cmind] if self_values.size == 0: return 0.0 else: other_cmind = np.in1d(other.indices, self.indices, assume_unique=True) return np.dot(self_values, other.values[other_cmind]) else: return self.dot(_convert_to_vector(other))
python
def dot(self, other): """ Dot product with a SparseVector or 1- or 2-dimensional Numpy array. >>> a = SparseVector(4, [1, 3], [3.0, 4.0]) >>> a.dot(a) 25.0 >>> a.dot(array.array('d', [1., 2., 3., 4.])) 22.0 >>> b = SparseVector(4, [2], [1.0]) >>> a.dot(b) 0.0 >>> a.dot(np.array([[1, 1], [2, 2], [3, 3], [4, 4]])) array([ 22., 22.]) >>> a.dot([1., 2., 3.]) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> a.dot(np.array([1., 2.])) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> a.dot(DenseVector([1., 2.])) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> a.dot(np.zeros((3, 2))) Traceback (most recent call last): ... AssertionError: dimension mismatch """ if isinstance(other, np.ndarray): if other.ndim not in [2, 1]: raise ValueError("Cannot call dot with %d-dimensional array" % other.ndim) assert len(self) == other.shape[0], "dimension mismatch" return np.dot(self.values, other[self.indices]) assert len(self) == _vector_size(other), "dimension mismatch" if isinstance(other, DenseVector): return np.dot(other.array[self.indices], self.values) elif isinstance(other, SparseVector): # Find out common indices. self_cmind = np.in1d(self.indices, other.indices, assume_unique=True) self_values = self.values[self_cmind] if self_values.size == 0: return 0.0 else: other_cmind = np.in1d(other.indices, self.indices, assume_unique=True) return np.dot(self_values, other.values[other_cmind]) else: return self.dot(_convert_to_vector(other))
[ "def", "dot", "(", "self", ",", "other", ")", ":", "if", "isinstance", "(", "other", ",", "np", ".", "ndarray", ")", ":", "if", "other", ".", "ndim", "not", "in", "[", "2", ",", "1", "]", ":", "raise", "ValueError", "(", "\"Cannot call dot with %d-dimensional array\"", "%", "other", ".", "ndim", ")", "assert", "len", "(", "self", ")", "==", "other", ".", "shape", "[", "0", "]", ",", "\"dimension mismatch\"", "return", "np", ".", "dot", "(", "self", ".", "values", ",", "other", "[", "self", ".", "indices", "]", ")", "assert", "len", "(", "self", ")", "==", "_vector_size", "(", "other", ")", ",", "\"dimension mismatch\"", "if", "isinstance", "(", "other", ",", "DenseVector", ")", ":", "return", "np", ".", "dot", "(", "other", ".", "array", "[", "self", ".", "indices", "]", ",", "self", ".", "values", ")", "elif", "isinstance", "(", "other", ",", "SparseVector", ")", ":", "# Find out common indices.", "self_cmind", "=", "np", ".", "in1d", "(", "self", ".", "indices", ",", "other", ".", "indices", ",", "assume_unique", "=", "True", ")", "self_values", "=", "self", ".", "values", "[", "self_cmind", "]", "if", "self_values", ".", "size", "==", "0", ":", "return", "0.0", "else", ":", "other_cmind", "=", "np", ".", "in1d", "(", "other", ".", "indices", ",", "self", ".", "indices", ",", "assume_unique", "=", "True", ")", "return", "np", ".", "dot", "(", "self_values", ",", "other", ".", "values", "[", "other_cmind", "]", ")", "else", ":", "return", "self", ".", "dot", "(", "_convert_to_vector", "(", "other", ")", ")" ]
Dot product with a SparseVector or 1- or 2-dimensional Numpy array. >>> a = SparseVector(4, [1, 3], [3.0, 4.0]) >>> a.dot(a) 25.0 >>> a.dot(array.array('d', [1., 2., 3., 4.])) 22.0 >>> b = SparseVector(4, [2], [1.0]) >>> a.dot(b) 0.0 >>> a.dot(np.array([[1, 1], [2, 2], [3, 3], [4, 4]])) array([ 22., 22.]) >>> a.dot([1., 2., 3.]) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> a.dot(np.array([1., 2.])) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> a.dot(DenseVector([1., 2.])) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> a.dot(np.zeros((3, 2))) Traceback (most recent call last): ... AssertionError: dimension mismatch
[ "Dot", "product", "with", "a", "SparseVector", "or", "1", "-", "or", "2", "-", "dimensional", "Numpy", "array", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/__init__.py#L637-L691
19,236
apache/spark
python/pyspark/mllib/linalg/__init__.py
SparseVector.squared_distance
def squared_distance(self, other): """ Squared distance from a SparseVector or 1-dimensional NumPy array. >>> a = SparseVector(4, [1, 3], [3.0, 4.0]) >>> a.squared_distance(a) 0.0 >>> a.squared_distance(array.array('d', [1., 2., 3., 4.])) 11.0 >>> a.squared_distance(np.array([1., 2., 3., 4.])) 11.0 >>> b = SparseVector(4, [2], [1.0]) >>> a.squared_distance(b) 26.0 >>> b.squared_distance(a) 26.0 >>> b.squared_distance([1., 2.]) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> b.squared_distance(SparseVector(3, [1,], [1.0,])) Traceback (most recent call last): ... AssertionError: dimension mismatch """ assert len(self) == _vector_size(other), "dimension mismatch" if isinstance(other, np.ndarray) or isinstance(other, DenseVector): if isinstance(other, np.ndarray) and other.ndim != 1: raise Exception("Cannot call squared_distance with %d-dimensional array" % other.ndim) if isinstance(other, DenseVector): other = other.array sparse_ind = np.zeros(other.size, dtype=bool) sparse_ind[self.indices] = True dist = other[sparse_ind] - self.values result = np.dot(dist, dist) other_ind = other[~sparse_ind] result += np.dot(other_ind, other_ind) return result elif isinstance(other, SparseVector): result = 0.0 i, j = 0, 0 while i < len(self.indices) and j < len(other.indices): if self.indices[i] == other.indices[j]: diff = self.values[i] - other.values[j] result += diff * diff i += 1 j += 1 elif self.indices[i] < other.indices[j]: result += self.values[i] * self.values[i] i += 1 else: result += other.values[j] * other.values[j] j += 1 while i < len(self.indices): result += self.values[i] * self.values[i] i += 1 while j < len(other.indices): result += other.values[j] * other.values[j] j += 1 return result else: return self.squared_distance(_convert_to_vector(other))
python
def squared_distance(self, other): """ Squared distance from a SparseVector or 1-dimensional NumPy array. >>> a = SparseVector(4, [1, 3], [3.0, 4.0]) >>> a.squared_distance(a) 0.0 >>> a.squared_distance(array.array('d', [1., 2., 3., 4.])) 11.0 >>> a.squared_distance(np.array([1., 2., 3., 4.])) 11.0 >>> b = SparseVector(4, [2], [1.0]) >>> a.squared_distance(b) 26.0 >>> b.squared_distance(a) 26.0 >>> b.squared_distance([1., 2.]) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> b.squared_distance(SparseVector(3, [1,], [1.0,])) Traceback (most recent call last): ... AssertionError: dimension mismatch """ assert len(self) == _vector_size(other), "dimension mismatch" if isinstance(other, np.ndarray) or isinstance(other, DenseVector): if isinstance(other, np.ndarray) and other.ndim != 1: raise Exception("Cannot call squared_distance with %d-dimensional array" % other.ndim) if isinstance(other, DenseVector): other = other.array sparse_ind = np.zeros(other.size, dtype=bool) sparse_ind[self.indices] = True dist = other[sparse_ind] - self.values result = np.dot(dist, dist) other_ind = other[~sparse_ind] result += np.dot(other_ind, other_ind) return result elif isinstance(other, SparseVector): result = 0.0 i, j = 0, 0 while i < len(self.indices) and j < len(other.indices): if self.indices[i] == other.indices[j]: diff = self.values[i] - other.values[j] result += diff * diff i += 1 j += 1 elif self.indices[i] < other.indices[j]: result += self.values[i] * self.values[i] i += 1 else: result += other.values[j] * other.values[j] j += 1 while i < len(self.indices): result += self.values[i] * self.values[i] i += 1 while j < len(other.indices): result += other.values[j] * other.values[j] j += 1 return result else: return self.squared_distance(_convert_to_vector(other))
[ "def", "squared_distance", "(", "self", ",", "other", ")", ":", "assert", "len", "(", "self", ")", "==", "_vector_size", "(", "other", ")", ",", "\"dimension mismatch\"", "if", "isinstance", "(", "other", ",", "np", ".", "ndarray", ")", "or", "isinstance", "(", "other", ",", "DenseVector", ")", ":", "if", "isinstance", "(", "other", ",", "np", ".", "ndarray", ")", "and", "other", ".", "ndim", "!=", "1", ":", "raise", "Exception", "(", "\"Cannot call squared_distance with %d-dimensional array\"", "%", "other", ".", "ndim", ")", "if", "isinstance", "(", "other", ",", "DenseVector", ")", ":", "other", "=", "other", ".", "array", "sparse_ind", "=", "np", ".", "zeros", "(", "other", ".", "size", ",", "dtype", "=", "bool", ")", "sparse_ind", "[", "self", ".", "indices", "]", "=", "True", "dist", "=", "other", "[", "sparse_ind", "]", "-", "self", ".", "values", "result", "=", "np", ".", "dot", "(", "dist", ",", "dist", ")", "other_ind", "=", "other", "[", "~", "sparse_ind", "]", "result", "+=", "np", ".", "dot", "(", "other_ind", ",", "other_ind", ")", "return", "result", "elif", "isinstance", "(", "other", ",", "SparseVector", ")", ":", "result", "=", "0.0", "i", ",", "j", "=", "0", ",", "0", "while", "i", "<", "len", "(", "self", ".", "indices", ")", "and", "j", "<", "len", "(", "other", ".", "indices", ")", ":", "if", "self", ".", "indices", "[", "i", "]", "==", "other", ".", "indices", "[", "j", "]", ":", "diff", "=", "self", ".", "values", "[", "i", "]", "-", "other", ".", "values", "[", "j", "]", "result", "+=", "diff", "*", "diff", "i", "+=", "1", "j", "+=", "1", "elif", "self", ".", "indices", "[", "i", "]", "<", "other", ".", "indices", "[", "j", "]", ":", "result", "+=", "self", ".", "values", "[", "i", "]", "*", "self", ".", "values", "[", "i", "]", "i", "+=", "1", "else", ":", "result", "+=", "other", ".", "values", "[", "j", "]", "*", "other", ".", "values", "[", "j", "]", "j", "+=", "1", "while", "i", "<", "len", "(", "self", ".", "indices", ")", ":", "result", "+=", "self", ".", "values", "[", "i", "]", "*", "self", ".", "values", "[", "i", "]", "i", "+=", "1", "while", "j", "<", "len", "(", "other", ".", "indices", ")", ":", "result", "+=", "other", ".", "values", "[", "j", "]", "*", "other", ".", "values", "[", "j", "]", "j", "+=", "1", "return", "result", "else", ":", "return", "self", ".", "squared_distance", "(", "_convert_to_vector", "(", "other", ")", ")" ]
Squared distance from a SparseVector or 1-dimensional NumPy array. >>> a = SparseVector(4, [1, 3], [3.0, 4.0]) >>> a.squared_distance(a) 0.0 >>> a.squared_distance(array.array('d', [1., 2., 3., 4.])) 11.0 >>> a.squared_distance(np.array([1., 2., 3., 4.])) 11.0 >>> b = SparseVector(4, [2], [1.0]) >>> a.squared_distance(b) 26.0 >>> b.squared_distance(a) 26.0 >>> b.squared_distance([1., 2.]) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> b.squared_distance(SparseVector(3, [1,], [1.0,])) Traceback (most recent call last): ... AssertionError: dimension mismatch
[ "Squared", "distance", "from", "a", "SparseVector", "or", "1", "-", "dimensional", "NumPy", "array", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/__init__.py#L693-L758
19,237
apache/spark
python/pyspark/mllib/linalg/__init__.py
SparseVector.toArray
def toArray(self): """ Returns a copy of this SparseVector as a 1-dimensional NumPy array. """ arr = np.zeros((self.size,), dtype=np.float64) arr[self.indices] = self.values return arr
python
def toArray(self): """ Returns a copy of this SparseVector as a 1-dimensional NumPy array. """ arr = np.zeros((self.size,), dtype=np.float64) arr[self.indices] = self.values return arr
[ "def", "toArray", "(", "self", ")", ":", "arr", "=", "np", ".", "zeros", "(", "(", "self", ".", "size", ",", ")", ",", "dtype", "=", "np", ".", "float64", ")", "arr", "[", "self", ".", "indices", "]", "=", "self", ".", "values", "return", "arr" ]
Returns a copy of this SparseVector as a 1-dimensional NumPy array.
[ "Returns", "a", "copy", "of", "this", "SparseVector", "as", "a", "1", "-", "dimensional", "NumPy", "array", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/__init__.py#L760-L766
19,238
apache/spark
python/pyspark/mllib/linalg/__init__.py
SparseVector.asML
def asML(self): """ Convert this vector to the new mllib-local representation. This does NOT copy the data; it copies references. :return: :py:class:`pyspark.ml.linalg.SparseVector` .. versionadded:: 2.0.0 """ return newlinalg.SparseVector(self.size, self.indices, self.values)
python
def asML(self): """ Convert this vector to the new mllib-local representation. This does NOT copy the data; it copies references. :return: :py:class:`pyspark.ml.linalg.SparseVector` .. versionadded:: 2.0.0 """ return newlinalg.SparseVector(self.size, self.indices, self.values)
[ "def", "asML", "(", "self", ")", ":", "return", "newlinalg", ".", "SparseVector", "(", "self", ".", "size", ",", "self", ".", "indices", ",", "self", ".", "values", ")" ]
Convert this vector to the new mllib-local representation. This does NOT copy the data; it copies references. :return: :py:class:`pyspark.ml.linalg.SparseVector` .. versionadded:: 2.0.0
[ "Convert", "this", "vector", "to", "the", "new", "mllib", "-", "local", "representation", ".", "This", "does", "NOT", "copy", "the", "data", ";", "it", "copies", "references", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/__init__.py#L768-L777
19,239
apache/spark
python/pyspark/mllib/linalg/__init__.py
Vectors.dense
def dense(*elements): """ Create a dense vector of 64-bit floats from a Python list or numbers. >>> Vectors.dense([1, 2, 3]) DenseVector([1.0, 2.0, 3.0]) >>> Vectors.dense(1.0, 2.0) DenseVector([1.0, 2.0]) """ if len(elements) == 1 and not isinstance(elements[0], (float, int, long)): # it's list, numpy.array or other iterable object. elements = elements[0] return DenseVector(elements)
python
def dense(*elements): """ Create a dense vector of 64-bit floats from a Python list or numbers. >>> Vectors.dense([1, 2, 3]) DenseVector([1.0, 2.0, 3.0]) >>> Vectors.dense(1.0, 2.0) DenseVector([1.0, 2.0]) """ if len(elements) == 1 and not isinstance(elements[0], (float, int, long)): # it's list, numpy.array or other iterable object. elements = elements[0] return DenseVector(elements)
[ "def", "dense", "(", "*", "elements", ")", ":", "if", "len", "(", "elements", ")", "==", "1", "and", "not", "isinstance", "(", "elements", "[", "0", "]", ",", "(", "float", ",", "int", ",", "long", ")", ")", ":", "# it's list, numpy.array or other iterable object.", "elements", "=", "elements", "[", "0", "]", "return", "DenseVector", "(", "elements", ")" ]
Create a dense vector of 64-bit floats from a Python list or numbers. >>> Vectors.dense([1, 2, 3]) DenseVector([1.0, 2.0, 3.0]) >>> Vectors.dense(1.0, 2.0) DenseVector([1.0, 2.0])
[ "Create", "a", "dense", "vector", "of", "64", "-", "bit", "floats", "from", "a", "Python", "list", "or", "numbers", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/__init__.py#L874-L886
19,240
apache/spark
python/pyspark/mllib/linalg/__init__.py
Vectors.fromML
def fromML(vec): """ Convert a vector from the new mllib-local representation. This does NOT copy the data; it copies references. :param vec: a :py:class:`pyspark.ml.linalg.Vector` :return: a :py:class:`pyspark.mllib.linalg.Vector` .. versionadded:: 2.0.0 """ if isinstance(vec, newlinalg.DenseVector): return DenseVector(vec.array) elif isinstance(vec, newlinalg.SparseVector): return SparseVector(vec.size, vec.indices, vec.values) else: raise TypeError("Unsupported vector type %s" % type(vec))
python
def fromML(vec): """ Convert a vector from the new mllib-local representation. This does NOT copy the data; it copies references. :param vec: a :py:class:`pyspark.ml.linalg.Vector` :return: a :py:class:`pyspark.mllib.linalg.Vector` .. versionadded:: 2.0.0 """ if isinstance(vec, newlinalg.DenseVector): return DenseVector(vec.array) elif isinstance(vec, newlinalg.SparseVector): return SparseVector(vec.size, vec.indices, vec.values) else: raise TypeError("Unsupported vector type %s" % type(vec))
[ "def", "fromML", "(", "vec", ")", ":", "if", "isinstance", "(", "vec", ",", "newlinalg", ".", "DenseVector", ")", ":", "return", "DenseVector", "(", "vec", ".", "array", ")", "elif", "isinstance", "(", "vec", ",", "newlinalg", ".", "SparseVector", ")", ":", "return", "SparseVector", "(", "vec", ".", "size", ",", "vec", ".", "indices", ",", "vec", ".", "values", ")", "else", ":", "raise", "TypeError", "(", "\"Unsupported vector type %s\"", "%", "type", "(", "vec", ")", ")" ]
Convert a vector from the new mllib-local representation. This does NOT copy the data; it copies references. :param vec: a :py:class:`pyspark.ml.linalg.Vector` :return: a :py:class:`pyspark.mllib.linalg.Vector` .. versionadded:: 2.0.0
[ "Convert", "a", "vector", "from", "the", "new", "mllib", "-", "local", "representation", ".", "This", "does", "NOT", "copy", "the", "data", ";", "it", "copies", "references", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/__init__.py#L889-L904
19,241
apache/spark
python/pyspark/mllib/linalg/__init__.py
Vectors.squared_distance
def squared_distance(v1, v2): """ Squared distance between two vectors. a and b can be of type SparseVector, DenseVector, np.ndarray or array.array. >>> a = Vectors.sparse(4, [(0, 1), (3, 4)]) >>> b = Vectors.dense([2, 5, 4, 1]) >>> a.squared_distance(b) 51.0 """ v1, v2 = _convert_to_vector(v1), _convert_to_vector(v2) return v1.squared_distance(v2)
python
def squared_distance(v1, v2): """ Squared distance between two vectors. a and b can be of type SparseVector, DenseVector, np.ndarray or array.array. >>> a = Vectors.sparse(4, [(0, 1), (3, 4)]) >>> b = Vectors.dense([2, 5, 4, 1]) >>> a.squared_distance(b) 51.0 """ v1, v2 = _convert_to_vector(v1), _convert_to_vector(v2) return v1.squared_distance(v2)
[ "def", "squared_distance", "(", "v1", ",", "v2", ")", ":", "v1", ",", "v2", "=", "_convert_to_vector", "(", "v1", ")", ",", "_convert_to_vector", "(", "v2", ")", "return", "v1", ".", "squared_distance", "(", "v2", ")" ]
Squared distance between two vectors. a and b can be of type SparseVector, DenseVector, np.ndarray or array.array. >>> a = Vectors.sparse(4, [(0, 1), (3, 4)]) >>> b = Vectors.dense([2, 5, 4, 1]) >>> a.squared_distance(b) 51.0
[ "Squared", "distance", "between", "two", "vectors", ".", "a", "and", "b", "can", "be", "of", "type", "SparseVector", "DenseVector", "np", ".", "ndarray", "or", "array", ".", "array", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/__init__.py#L920-L932
19,242
apache/spark
python/pyspark/mllib/linalg/__init__.py
Vectors.parse
def parse(s): """Parse a string representation back into the Vector. >>> Vectors.parse('[2,1,2 ]') DenseVector([2.0, 1.0, 2.0]) >>> Vectors.parse(' ( 100, [0], [2])') SparseVector(100, {0: 2.0}) """ if s.find('(') == -1 and s.find('[') != -1: return DenseVector.parse(s) elif s.find('(') != -1: return SparseVector.parse(s) else: raise ValueError( "Cannot find tokens '[' or '(' from the input string.")
python
def parse(s): """Parse a string representation back into the Vector. >>> Vectors.parse('[2,1,2 ]') DenseVector([2.0, 1.0, 2.0]) >>> Vectors.parse(' ( 100, [0], [2])') SparseVector(100, {0: 2.0}) """ if s.find('(') == -1 and s.find('[') != -1: return DenseVector.parse(s) elif s.find('(') != -1: return SparseVector.parse(s) else: raise ValueError( "Cannot find tokens '[' or '(' from the input string.")
[ "def", "parse", "(", "s", ")", ":", "if", "s", ".", "find", "(", "'('", ")", "==", "-", "1", "and", "s", ".", "find", "(", "'['", ")", "!=", "-", "1", ":", "return", "DenseVector", ".", "parse", "(", "s", ")", "elif", "s", ".", "find", "(", "'('", ")", "!=", "-", "1", ":", "return", "SparseVector", ".", "parse", "(", "s", ")", "else", ":", "raise", "ValueError", "(", "\"Cannot find tokens '[' or '(' from the input string.\"", ")" ]
Parse a string representation back into the Vector. >>> Vectors.parse('[2,1,2 ]') DenseVector([2.0, 1.0, 2.0]) >>> Vectors.parse(' ( 100, [0], [2])') SparseVector(100, {0: 2.0})
[ "Parse", "a", "string", "representation", "back", "into", "the", "Vector", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/__init__.py#L942-L956
19,243
apache/spark
python/pyspark/mllib/linalg/__init__.py
Matrix._convert_to_array
def _convert_to_array(array_like, dtype): """ Convert Matrix attributes which are array-like or buffer to array. """ if isinstance(array_like, bytes): return np.frombuffer(array_like, dtype=dtype) return np.asarray(array_like, dtype=dtype)
python
def _convert_to_array(array_like, dtype): """ Convert Matrix attributes which are array-like or buffer to array. """ if isinstance(array_like, bytes): return np.frombuffer(array_like, dtype=dtype) return np.asarray(array_like, dtype=dtype)
[ "def", "_convert_to_array", "(", "array_like", ",", "dtype", ")", ":", "if", "isinstance", "(", "array_like", ",", "bytes", ")", ":", "return", "np", ".", "frombuffer", "(", "array_like", ",", "dtype", "=", "dtype", ")", "return", "np", ".", "asarray", "(", "array_like", ",", "dtype", "=", "dtype", ")" ]
Convert Matrix attributes which are array-like or buffer to array.
[ "Convert", "Matrix", "attributes", "which", "are", "array", "-", "like", "or", "buffer", "to", "array", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/__init__.py#L1014-L1020
19,244
apache/spark
python/pyspark/mllib/linalg/__init__.py
DenseMatrix.toSparse
def toSparse(self): """Convert to SparseMatrix""" if self.isTransposed: values = np.ravel(self.toArray(), order='F') else: values = self.values indices = np.nonzero(values)[0] colCounts = np.bincount(indices // self.numRows) colPtrs = np.cumsum(np.hstack( (0, colCounts, np.zeros(self.numCols - colCounts.size)))) values = values[indices] rowIndices = indices % self.numRows return SparseMatrix(self.numRows, self.numCols, colPtrs, rowIndices, values)
python
def toSparse(self): """Convert to SparseMatrix""" if self.isTransposed: values = np.ravel(self.toArray(), order='F') else: values = self.values indices = np.nonzero(values)[0] colCounts = np.bincount(indices // self.numRows) colPtrs = np.cumsum(np.hstack( (0, colCounts, np.zeros(self.numCols - colCounts.size)))) values = values[indices] rowIndices = indices % self.numRows return SparseMatrix(self.numRows, self.numCols, colPtrs, rowIndices, values)
[ "def", "toSparse", "(", "self", ")", ":", "if", "self", ".", "isTransposed", ":", "values", "=", "np", ".", "ravel", "(", "self", ".", "toArray", "(", ")", ",", "order", "=", "'F'", ")", "else", ":", "values", "=", "self", ".", "values", "indices", "=", "np", ".", "nonzero", "(", "values", ")", "[", "0", "]", "colCounts", "=", "np", ".", "bincount", "(", "indices", "//", "self", ".", "numRows", ")", "colPtrs", "=", "np", ".", "cumsum", "(", "np", ".", "hstack", "(", "(", "0", ",", "colCounts", ",", "np", ".", "zeros", "(", "self", ".", "numCols", "-", "colCounts", ".", "size", ")", ")", ")", ")", "values", "=", "values", "[", "indices", "]", "rowIndices", "=", "indices", "%", "self", ".", "numRows", "return", "SparseMatrix", "(", "self", ".", "numRows", ",", "self", ".", "numCols", ",", "colPtrs", ",", "rowIndices", ",", "values", ")" ]
Convert to SparseMatrix
[ "Convert", "to", "SparseMatrix" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/__init__.py#L1097-L1110
19,245
apache/spark
python/pyspark/mllib/linalg/__init__.py
Matrices.sparse
def sparse(numRows, numCols, colPtrs, rowIndices, values): """ Create a SparseMatrix """ return SparseMatrix(numRows, numCols, colPtrs, rowIndices, values)
python
def sparse(numRows, numCols, colPtrs, rowIndices, values): """ Create a SparseMatrix """ return SparseMatrix(numRows, numCols, colPtrs, rowIndices, values)
[ "def", "sparse", "(", "numRows", ",", "numCols", ",", "colPtrs", ",", "rowIndices", ",", "values", ")", ":", "return", "SparseMatrix", "(", "numRows", ",", "numCols", ",", "colPtrs", ",", "rowIndices", ",", "values", ")" ]
Create a SparseMatrix
[ "Create", "a", "SparseMatrix" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/__init__.py#L1321-L1325
19,246
apache/spark
python/pyspark/mllib/linalg/__init__.py
Matrices.fromML
def fromML(mat): """ Convert a matrix from the new mllib-local representation. This does NOT copy the data; it copies references. :param mat: a :py:class:`pyspark.ml.linalg.Matrix` :return: a :py:class:`pyspark.mllib.linalg.Matrix` .. versionadded:: 2.0.0 """ if isinstance(mat, newlinalg.DenseMatrix): return DenseMatrix(mat.numRows, mat.numCols, mat.values, mat.isTransposed) elif isinstance(mat, newlinalg.SparseMatrix): return SparseMatrix(mat.numRows, mat.numCols, mat.colPtrs, mat.rowIndices, mat.values, mat.isTransposed) else: raise TypeError("Unsupported matrix type %s" % type(mat))
python
def fromML(mat): """ Convert a matrix from the new mllib-local representation. This does NOT copy the data; it copies references. :param mat: a :py:class:`pyspark.ml.linalg.Matrix` :return: a :py:class:`pyspark.mllib.linalg.Matrix` .. versionadded:: 2.0.0 """ if isinstance(mat, newlinalg.DenseMatrix): return DenseMatrix(mat.numRows, mat.numCols, mat.values, mat.isTransposed) elif isinstance(mat, newlinalg.SparseMatrix): return SparseMatrix(mat.numRows, mat.numCols, mat.colPtrs, mat.rowIndices, mat.values, mat.isTransposed) else: raise TypeError("Unsupported matrix type %s" % type(mat))
[ "def", "fromML", "(", "mat", ")", ":", "if", "isinstance", "(", "mat", ",", "newlinalg", ".", "DenseMatrix", ")", ":", "return", "DenseMatrix", "(", "mat", ".", "numRows", ",", "mat", ".", "numCols", ",", "mat", ".", "values", ",", "mat", ".", "isTransposed", ")", "elif", "isinstance", "(", "mat", ",", "newlinalg", ".", "SparseMatrix", ")", ":", "return", "SparseMatrix", "(", "mat", ".", "numRows", ",", "mat", ".", "numCols", ",", "mat", ".", "colPtrs", ",", "mat", ".", "rowIndices", ",", "mat", ".", "values", ",", "mat", ".", "isTransposed", ")", "else", ":", "raise", "TypeError", "(", "\"Unsupported matrix type %s\"", "%", "type", "(", "mat", ")", ")" ]
Convert a matrix from the new mllib-local representation. This does NOT copy the data; it copies references. :param mat: a :py:class:`pyspark.ml.linalg.Matrix` :return: a :py:class:`pyspark.mllib.linalg.Matrix` .. versionadded:: 2.0.0
[ "Convert", "a", "matrix", "from", "the", "new", "mllib", "-", "local", "representation", ".", "This", "does", "NOT", "copy", "the", "data", ";", "it", "copies", "references", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/__init__.py#L1328-L1344
19,247
apache/spark
python/pyspark/ml/feature.py
StringIndexerModel.from_labels
def from_labels(cls, labels, inputCol, outputCol=None, handleInvalid=None): """ Construct the model directly from an array of label strings, requires an active SparkContext. """ sc = SparkContext._active_spark_context java_class = sc._gateway.jvm.java.lang.String jlabels = StringIndexerModel._new_java_array(labels, java_class) model = StringIndexerModel._create_from_java_class( "org.apache.spark.ml.feature.StringIndexerModel", jlabels) model.setInputCol(inputCol) if outputCol is not None: model.setOutputCol(outputCol) if handleInvalid is not None: model.setHandleInvalid(handleInvalid) return model
python
def from_labels(cls, labels, inputCol, outputCol=None, handleInvalid=None): """ Construct the model directly from an array of label strings, requires an active SparkContext. """ sc = SparkContext._active_spark_context java_class = sc._gateway.jvm.java.lang.String jlabels = StringIndexerModel._new_java_array(labels, java_class) model = StringIndexerModel._create_from_java_class( "org.apache.spark.ml.feature.StringIndexerModel", jlabels) model.setInputCol(inputCol) if outputCol is not None: model.setOutputCol(outputCol) if handleInvalid is not None: model.setHandleInvalid(handleInvalid) return model
[ "def", "from_labels", "(", "cls", ",", "labels", ",", "inputCol", ",", "outputCol", "=", "None", ",", "handleInvalid", "=", "None", ")", ":", "sc", "=", "SparkContext", ".", "_active_spark_context", "java_class", "=", "sc", ".", "_gateway", ".", "jvm", ".", "java", ".", "lang", ".", "String", "jlabels", "=", "StringIndexerModel", ".", "_new_java_array", "(", "labels", ",", "java_class", ")", "model", "=", "StringIndexerModel", ".", "_create_from_java_class", "(", "\"org.apache.spark.ml.feature.StringIndexerModel\"", ",", "jlabels", ")", "model", ".", "setInputCol", "(", "inputCol", ")", "if", "outputCol", "is", "not", "None", ":", "model", ".", "setOutputCol", "(", "outputCol", ")", "if", "handleInvalid", "is", "not", "None", ":", "model", ".", "setHandleInvalid", "(", "handleInvalid", ")", "return", "model" ]
Construct the model directly from an array of label strings, requires an active SparkContext.
[ "Construct", "the", "model", "directly", "from", "an", "array", "of", "label", "strings", "requires", "an", "active", "SparkContext", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/feature.py#L2503-L2518
19,248
apache/spark
python/pyspark/ml/feature.py
StringIndexerModel.from_arrays_of_labels
def from_arrays_of_labels(cls, arrayOfLabels, inputCols, outputCols=None, handleInvalid=None): """ Construct the model directly from an array of array of label strings, requires an active SparkContext. """ sc = SparkContext._active_spark_context java_class = sc._gateway.jvm.java.lang.String jlabels = StringIndexerModel._new_java_array(arrayOfLabels, java_class) model = StringIndexerModel._create_from_java_class( "org.apache.spark.ml.feature.StringIndexerModel", jlabels) model.setInputCols(inputCols) if outputCols is not None: model.setOutputCols(outputCols) if handleInvalid is not None: model.setHandleInvalid(handleInvalid) return model
python
def from_arrays_of_labels(cls, arrayOfLabels, inputCols, outputCols=None, handleInvalid=None): """ Construct the model directly from an array of array of label strings, requires an active SparkContext. """ sc = SparkContext._active_spark_context java_class = sc._gateway.jvm.java.lang.String jlabels = StringIndexerModel._new_java_array(arrayOfLabels, java_class) model = StringIndexerModel._create_from_java_class( "org.apache.spark.ml.feature.StringIndexerModel", jlabels) model.setInputCols(inputCols) if outputCols is not None: model.setOutputCols(outputCols) if handleInvalid is not None: model.setHandleInvalid(handleInvalid) return model
[ "def", "from_arrays_of_labels", "(", "cls", ",", "arrayOfLabels", ",", "inputCols", ",", "outputCols", "=", "None", ",", "handleInvalid", "=", "None", ")", ":", "sc", "=", "SparkContext", ".", "_active_spark_context", "java_class", "=", "sc", ".", "_gateway", ".", "jvm", ".", "java", ".", "lang", ".", "String", "jlabels", "=", "StringIndexerModel", ".", "_new_java_array", "(", "arrayOfLabels", ",", "java_class", ")", "model", "=", "StringIndexerModel", ".", "_create_from_java_class", "(", "\"org.apache.spark.ml.feature.StringIndexerModel\"", ",", "jlabels", ")", "model", ".", "setInputCols", "(", "inputCols", ")", "if", "outputCols", "is", "not", "None", ":", "model", ".", "setOutputCols", "(", "outputCols", ")", "if", "handleInvalid", "is", "not", "None", ":", "model", ".", "setHandleInvalid", "(", "handleInvalid", ")", "return", "model" ]
Construct the model directly from an array of array of label strings, requires an active SparkContext.
[ "Construct", "the", "model", "directly", "from", "an", "array", "of", "array", "of", "label", "strings", "requires", "an", "active", "SparkContext", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/feature.py#L2522-L2538
19,249
apache/spark
python/pyspark/sql/utils.py
install_exception_handler
def install_exception_handler(): """ Hook an exception handler into Py4j, which could capture some SQL exceptions in Java. When calling Java API, it will call `get_return_value` to parse the returned object. If any exception happened in JVM, the result will be Java exception object, it raise py4j.protocol.Py4JJavaError. We replace the original `get_return_value` with one that could capture the Java exception and throw a Python one (with the same error message). It's idempotent, could be called multiple times. """ original = py4j.protocol.get_return_value # The original `get_return_value` is not patched, it's idempotent. patched = capture_sql_exception(original) # only patch the one used in py4j.java_gateway (call Java API) py4j.java_gateway.get_return_value = patched
python
def install_exception_handler(): """ Hook an exception handler into Py4j, which could capture some SQL exceptions in Java. When calling Java API, it will call `get_return_value` to parse the returned object. If any exception happened in JVM, the result will be Java exception object, it raise py4j.protocol.Py4JJavaError. We replace the original `get_return_value` with one that could capture the Java exception and throw a Python one (with the same error message). It's idempotent, could be called multiple times. """ original = py4j.protocol.get_return_value # The original `get_return_value` is not patched, it's idempotent. patched = capture_sql_exception(original) # only patch the one used in py4j.java_gateway (call Java API) py4j.java_gateway.get_return_value = patched
[ "def", "install_exception_handler", "(", ")", ":", "original", "=", "py4j", ".", "protocol", ".", "get_return_value", "# The original `get_return_value` is not patched, it's idempotent.", "patched", "=", "capture_sql_exception", "(", "original", ")", "# only patch the one used in py4j.java_gateway (call Java API)", "py4j", ".", "java_gateway", ".", "get_return_value", "=", "patched" ]
Hook an exception handler into Py4j, which could capture some SQL exceptions in Java. When calling Java API, it will call `get_return_value` to parse the returned object. If any exception happened in JVM, the result will be Java exception object, it raise py4j.protocol.Py4JJavaError. We replace the original `get_return_value` with one that could capture the Java exception and throw a Python one (with the same error message). It's idempotent, could be called multiple times.
[ "Hook", "an", "exception", "handler", "into", "Py4j", "which", "could", "capture", "some", "SQL", "exceptions", "in", "Java", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/utils.py#L99-L114
19,250
apache/spark
python/pyspark/sql/utils.py
require_minimum_pandas_version
def require_minimum_pandas_version(): """ Raise ImportError if minimum version of Pandas is not installed """ # TODO(HyukjinKwon): Relocate and deduplicate the version specification. minimum_pandas_version = "0.19.2" from distutils.version import LooseVersion try: import pandas have_pandas = True except ImportError: have_pandas = False if not have_pandas: raise ImportError("Pandas >= %s must be installed; however, " "it was not found." % minimum_pandas_version) if LooseVersion(pandas.__version__) < LooseVersion(minimum_pandas_version): raise ImportError("Pandas >= %s must be installed; however, " "your version was %s." % (minimum_pandas_version, pandas.__version__))
python
def require_minimum_pandas_version(): """ Raise ImportError if minimum version of Pandas is not installed """ # TODO(HyukjinKwon): Relocate and deduplicate the version specification. minimum_pandas_version = "0.19.2" from distutils.version import LooseVersion try: import pandas have_pandas = True except ImportError: have_pandas = False if not have_pandas: raise ImportError("Pandas >= %s must be installed; however, " "it was not found." % minimum_pandas_version) if LooseVersion(pandas.__version__) < LooseVersion(minimum_pandas_version): raise ImportError("Pandas >= %s must be installed; however, " "your version was %s." % (minimum_pandas_version, pandas.__version__))
[ "def", "require_minimum_pandas_version", "(", ")", ":", "# TODO(HyukjinKwon): Relocate and deduplicate the version specification.", "minimum_pandas_version", "=", "\"0.19.2\"", "from", "distutils", ".", "version", "import", "LooseVersion", "try", ":", "import", "pandas", "have_pandas", "=", "True", "except", "ImportError", ":", "have_pandas", "=", "False", "if", "not", "have_pandas", ":", "raise", "ImportError", "(", "\"Pandas >= %s must be installed; however, \"", "\"it was not found.\"", "%", "minimum_pandas_version", ")", "if", "LooseVersion", "(", "pandas", ".", "__version__", ")", "<", "LooseVersion", "(", "minimum_pandas_version", ")", ":", "raise", "ImportError", "(", "\"Pandas >= %s must be installed; however, \"", "\"your version was %s.\"", "%", "(", "minimum_pandas_version", ",", "pandas", ".", "__version__", ")", ")" ]
Raise ImportError if minimum version of Pandas is not installed
[ "Raise", "ImportError", "if", "minimum", "version", "of", "Pandas", "is", "not", "installed" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/utils.py#L130-L147
19,251
apache/spark
python/pyspark/sql/utils.py
require_minimum_pyarrow_version
def require_minimum_pyarrow_version(): """ Raise ImportError if minimum version of pyarrow is not installed """ # TODO(HyukjinKwon): Relocate and deduplicate the version specification. minimum_pyarrow_version = "0.12.1" from distutils.version import LooseVersion try: import pyarrow have_arrow = True except ImportError: have_arrow = False if not have_arrow: raise ImportError("PyArrow >= %s must be installed; however, " "it was not found." % minimum_pyarrow_version) if LooseVersion(pyarrow.__version__) < LooseVersion(minimum_pyarrow_version): raise ImportError("PyArrow >= %s must be installed; however, " "your version was %s." % (minimum_pyarrow_version, pyarrow.__version__))
python
def require_minimum_pyarrow_version(): """ Raise ImportError if minimum version of pyarrow is not installed """ # TODO(HyukjinKwon): Relocate and deduplicate the version specification. minimum_pyarrow_version = "0.12.1" from distutils.version import LooseVersion try: import pyarrow have_arrow = True except ImportError: have_arrow = False if not have_arrow: raise ImportError("PyArrow >= %s must be installed; however, " "it was not found." % minimum_pyarrow_version) if LooseVersion(pyarrow.__version__) < LooseVersion(minimum_pyarrow_version): raise ImportError("PyArrow >= %s must be installed; however, " "your version was %s." % (minimum_pyarrow_version, pyarrow.__version__))
[ "def", "require_minimum_pyarrow_version", "(", ")", ":", "# TODO(HyukjinKwon): Relocate and deduplicate the version specification.", "minimum_pyarrow_version", "=", "\"0.12.1\"", "from", "distutils", ".", "version", "import", "LooseVersion", "try", ":", "import", "pyarrow", "have_arrow", "=", "True", "except", "ImportError", ":", "have_arrow", "=", "False", "if", "not", "have_arrow", ":", "raise", "ImportError", "(", "\"PyArrow >= %s must be installed; however, \"", "\"it was not found.\"", "%", "minimum_pyarrow_version", ")", "if", "LooseVersion", "(", "pyarrow", ".", "__version__", ")", "<", "LooseVersion", "(", "minimum_pyarrow_version", ")", ":", "raise", "ImportError", "(", "\"PyArrow >= %s must be installed; however, \"", "\"your version was %s.\"", "%", "(", "minimum_pyarrow_version", ",", "pyarrow", ".", "__version__", ")", ")" ]
Raise ImportError if minimum version of pyarrow is not installed
[ "Raise", "ImportError", "if", "minimum", "version", "of", "pyarrow", "is", "not", "installed" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/utils.py#L150-L167
19,252
apache/spark
python/pyspark/java_gateway.py
_do_server_auth
def _do_server_auth(conn, auth_secret): """ Performs the authentication protocol defined by the SocketAuthHelper class on the given file-like object 'conn'. """ write_with_length(auth_secret.encode("utf-8"), conn) conn.flush() reply = UTF8Deserializer().loads(conn) if reply != "ok": conn.close() raise Exception("Unexpected reply from iterator server.")
python
def _do_server_auth(conn, auth_secret): """ Performs the authentication protocol defined by the SocketAuthHelper class on the given file-like object 'conn'. """ write_with_length(auth_secret.encode("utf-8"), conn) conn.flush() reply = UTF8Deserializer().loads(conn) if reply != "ok": conn.close() raise Exception("Unexpected reply from iterator server.")
[ "def", "_do_server_auth", "(", "conn", ",", "auth_secret", ")", ":", "write_with_length", "(", "auth_secret", ".", "encode", "(", "\"utf-8\"", ")", ",", "conn", ")", "conn", ".", "flush", "(", ")", "reply", "=", "UTF8Deserializer", "(", ")", ".", "loads", "(", "conn", ")", "if", "reply", "!=", "\"ok\"", ":", "conn", ".", "close", "(", ")", "raise", "Exception", "(", "\"Unexpected reply from iterator server.\"", ")" ]
Performs the authentication protocol defined by the SocketAuthHelper class on the given file-like object 'conn'.
[ "Performs", "the", "authentication", "protocol", "defined", "by", "the", "SocketAuthHelper", "class", "on", "the", "given", "file", "-", "like", "object", "conn", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/java_gateway.py#L150-L160
19,253
apache/spark
python/pyspark/java_gateway.py
ensure_callback_server_started
def ensure_callback_server_started(gw): """ Start callback server if not already started. The callback server is needed if the Java driver process needs to callback into the Python driver process to execute Python code. """ # getattr will fallback to JVM, so we cannot test by hasattr() if "_callback_server" not in gw.__dict__ or gw._callback_server is None: gw.callback_server_parameters.eager_load = True gw.callback_server_parameters.daemonize = True gw.callback_server_parameters.daemonize_connections = True gw.callback_server_parameters.port = 0 gw.start_callback_server(gw.callback_server_parameters) cbport = gw._callback_server.server_socket.getsockname()[1] gw._callback_server.port = cbport # gateway with real port gw._python_proxy_port = gw._callback_server.port # get the GatewayServer object in JVM by ID jgws = JavaObject("GATEWAY_SERVER", gw._gateway_client) # update the port of CallbackClient with real port jgws.resetCallbackClient(jgws.getCallbackClient().getAddress(), gw._python_proxy_port)
python
def ensure_callback_server_started(gw): """ Start callback server if not already started. The callback server is needed if the Java driver process needs to callback into the Python driver process to execute Python code. """ # getattr will fallback to JVM, so we cannot test by hasattr() if "_callback_server" not in gw.__dict__ or gw._callback_server is None: gw.callback_server_parameters.eager_load = True gw.callback_server_parameters.daemonize = True gw.callback_server_parameters.daemonize_connections = True gw.callback_server_parameters.port = 0 gw.start_callback_server(gw.callback_server_parameters) cbport = gw._callback_server.server_socket.getsockname()[1] gw._callback_server.port = cbport # gateway with real port gw._python_proxy_port = gw._callback_server.port # get the GatewayServer object in JVM by ID jgws = JavaObject("GATEWAY_SERVER", gw._gateway_client) # update the port of CallbackClient with real port jgws.resetCallbackClient(jgws.getCallbackClient().getAddress(), gw._python_proxy_port)
[ "def", "ensure_callback_server_started", "(", "gw", ")", ":", "# getattr will fallback to JVM, so we cannot test by hasattr()", "if", "\"_callback_server\"", "not", "in", "gw", ".", "__dict__", "or", "gw", ".", "_callback_server", "is", "None", ":", "gw", ".", "callback_server_parameters", ".", "eager_load", "=", "True", "gw", ".", "callback_server_parameters", ".", "daemonize", "=", "True", "gw", ".", "callback_server_parameters", ".", "daemonize_connections", "=", "True", "gw", ".", "callback_server_parameters", ".", "port", "=", "0", "gw", ".", "start_callback_server", "(", "gw", ".", "callback_server_parameters", ")", "cbport", "=", "gw", ".", "_callback_server", ".", "server_socket", ".", "getsockname", "(", ")", "[", "1", "]", "gw", ".", "_callback_server", ".", "port", "=", "cbport", "# gateway with real port", "gw", ".", "_python_proxy_port", "=", "gw", ".", "_callback_server", ".", "port", "# get the GatewayServer object in JVM by ID", "jgws", "=", "JavaObject", "(", "\"GATEWAY_SERVER\"", ",", "gw", ".", "_gateway_client", ")", "# update the port of CallbackClient with real port", "jgws", ".", "resetCallbackClient", "(", "jgws", ".", "getCallbackClient", "(", ")", ".", "getAddress", "(", ")", ",", "gw", ".", "_python_proxy_port", ")" ]
Start callback server if not already started. The callback server is needed if the Java driver process needs to callback into the Python driver process to execute Python code.
[ "Start", "callback", "server", "if", "not", "already", "started", ".", "The", "callback", "server", "is", "needed", "if", "the", "Java", "driver", "process", "needs", "to", "callback", "into", "the", "Python", "driver", "process", "to", "execute", "Python", "code", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/java_gateway.py#L192-L212
19,254
apache/spark
python/pyspark/find_spark_home.py
_find_spark_home
def _find_spark_home(): """Find the SPARK_HOME.""" # If the environment has SPARK_HOME set trust it. if "SPARK_HOME" in os.environ: return os.environ["SPARK_HOME"] def is_spark_home(path): """Takes a path and returns true if the provided path could be a reasonable SPARK_HOME""" return (os.path.isfile(os.path.join(path, "bin/spark-submit")) and (os.path.isdir(os.path.join(path, "jars")) or os.path.isdir(os.path.join(path, "assembly")))) paths = ["../", os.path.dirname(os.path.realpath(__file__))] # Add the path of the PySpark module if it exists if sys.version < "3": import imp try: module_home = imp.find_module("pyspark")[1] paths.append(module_home) # If we are installed in edit mode also look two dirs up paths.append(os.path.join(module_home, "../../")) except ImportError: # Not pip installed no worries pass else: from importlib.util import find_spec try: module_home = os.path.dirname(find_spec("pyspark").origin) paths.append(module_home) # If we are installed in edit mode also look two dirs up paths.append(os.path.join(module_home, "../../")) except ImportError: # Not pip installed no worries pass # Normalize the paths paths = [os.path.abspath(p) for p in paths] try: return next(path for path in paths if is_spark_home(path)) except StopIteration: print("Could not find valid SPARK_HOME while searching {0}".format(paths), file=sys.stderr) sys.exit(-1)
python
def _find_spark_home(): """Find the SPARK_HOME.""" # If the environment has SPARK_HOME set trust it. if "SPARK_HOME" in os.environ: return os.environ["SPARK_HOME"] def is_spark_home(path): """Takes a path and returns true if the provided path could be a reasonable SPARK_HOME""" return (os.path.isfile(os.path.join(path, "bin/spark-submit")) and (os.path.isdir(os.path.join(path, "jars")) or os.path.isdir(os.path.join(path, "assembly")))) paths = ["../", os.path.dirname(os.path.realpath(__file__))] # Add the path of the PySpark module if it exists if sys.version < "3": import imp try: module_home = imp.find_module("pyspark")[1] paths.append(module_home) # If we are installed in edit mode also look two dirs up paths.append(os.path.join(module_home, "../../")) except ImportError: # Not pip installed no worries pass else: from importlib.util import find_spec try: module_home = os.path.dirname(find_spec("pyspark").origin) paths.append(module_home) # If we are installed in edit mode also look two dirs up paths.append(os.path.join(module_home, "../../")) except ImportError: # Not pip installed no worries pass # Normalize the paths paths = [os.path.abspath(p) for p in paths] try: return next(path for path in paths if is_spark_home(path)) except StopIteration: print("Could not find valid SPARK_HOME while searching {0}".format(paths), file=sys.stderr) sys.exit(-1)
[ "def", "_find_spark_home", "(", ")", ":", "# If the environment has SPARK_HOME set trust it.", "if", "\"SPARK_HOME\"", "in", "os", ".", "environ", ":", "return", "os", ".", "environ", "[", "\"SPARK_HOME\"", "]", "def", "is_spark_home", "(", "path", ")", ":", "\"\"\"Takes a path and returns true if the provided path could be a reasonable SPARK_HOME\"\"\"", "return", "(", "os", ".", "path", ".", "isfile", "(", "os", ".", "path", ".", "join", "(", "path", ",", "\"bin/spark-submit\"", ")", ")", "and", "(", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "path", ",", "\"jars\"", ")", ")", "or", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "path", ",", "\"assembly\"", ")", ")", ")", ")", "paths", "=", "[", "\"../\"", ",", "os", ".", "path", ".", "dirname", "(", "os", ".", "path", ".", "realpath", "(", "__file__", ")", ")", "]", "# Add the path of the PySpark module if it exists", "if", "sys", ".", "version", "<", "\"3\"", ":", "import", "imp", "try", ":", "module_home", "=", "imp", ".", "find_module", "(", "\"pyspark\"", ")", "[", "1", "]", "paths", ".", "append", "(", "module_home", ")", "# If we are installed in edit mode also look two dirs up", "paths", ".", "append", "(", "os", ".", "path", ".", "join", "(", "module_home", ",", "\"../../\"", ")", ")", "except", "ImportError", ":", "# Not pip installed no worries", "pass", "else", ":", "from", "importlib", ".", "util", "import", "find_spec", "try", ":", "module_home", "=", "os", ".", "path", ".", "dirname", "(", "find_spec", "(", "\"pyspark\"", ")", ".", "origin", ")", "paths", ".", "append", "(", "module_home", ")", "# If we are installed in edit mode also look two dirs up", "paths", ".", "append", "(", "os", ".", "path", ".", "join", "(", "module_home", ",", "\"../../\"", ")", ")", "except", "ImportError", ":", "# Not pip installed no worries", "pass", "# Normalize the paths", "paths", "=", "[", "os", ".", "path", ".", "abspath", "(", "p", ")", "for", "p", "in", "paths", "]", "try", ":", "return", "next", "(", "path", "for", "path", "in", "paths", "if", "is_spark_home", "(", "path", ")", ")", "except", "StopIteration", ":", "print", "(", "\"Could not find valid SPARK_HOME while searching {0}\"", ".", "format", "(", "paths", ")", ",", "file", "=", "sys", ".", "stderr", ")", "sys", ".", "exit", "(", "-", "1", ")" ]
Find the SPARK_HOME.
[ "Find", "the", "SPARK_HOME", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/find_spark_home.py#L28-L71
19,255
apache/spark
examples/src/main/python/pagerank.py
computeContribs
def computeContribs(urls, rank): """Calculates URL contributions to the rank of other URLs.""" num_urls = len(urls) for url in urls: yield (url, rank / num_urls)
python
def computeContribs(urls, rank): """Calculates URL contributions to the rank of other URLs.""" num_urls = len(urls) for url in urls: yield (url, rank / num_urls)
[ "def", "computeContribs", "(", "urls", ",", "rank", ")", ":", "num_urls", "=", "len", "(", "urls", ")", "for", "url", "in", "urls", ":", "yield", "(", "url", ",", "rank", "/", "num_urls", ")" ]
Calculates URL contributions to the rank of other URLs.
[ "Calculates", "URL", "contributions", "to", "the", "rank", "of", "other", "URLs", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/examples/src/main/python/pagerank.py#L34-L38
19,256
apache/spark
python/pyspark/ml/image.py
_ImageSchema.imageSchema
def imageSchema(self): """ Returns the image schema. :return: a :class:`StructType` with a single column of images named "image" (nullable) and having the same type returned by :meth:`columnSchema`. .. versionadded:: 2.3.0 """ if self._imageSchema is None: ctx = SparkContext._active_spark_context jschema = ctx._jvm.org.apache.spark.ml.image.ImageSchema.imageSchema() self._imageSchema = _parse_datatype_json_string(jschema.json()) return self._imageSchema
python
def imageSchema(self): """ Returns the image schema. :return: a :class:`StructType` with a single column of images named "image" (nullable) and having the same type returned by :meth:`columnSchema`. .. versionadded:: 2.3.0 """ if self._imageSchema is None: ctx = SparkContext._active_spark_context jschema = ctx._jvm.org.apache.spark.ml.image.ImageSchema.imageSchema() self._imageSchema = _parse_datatype_json_string(jschema.json()) return self._imageSchema
[ "def", "imageSchema", "(", "self", ")", ":", "if", "self", ".", "_imageSchema", "is", "None", ":", "ctx", "=", "SparkContext", ".", "_active_spark_context", "jschema", "=", "ctx", ".", "_jvm", ".", "org", ".", "apache", ".", "spark", ".", "ml", ".", "image", ".", "ImageSchema", ".", "imageSchema", "(", ")", "self", ".", "_imageSchema", "=", "_parse_datatype_json_string", "(", "jschema", ".", "json", "(", ")", ")", "return", "self", ".", "_imageSchema" ]
Returns the image schema. :return: a :class:`StructType` with a single column of images named "image" (nullable) and having the same type returned by :meth:`columnSchema`. .. versionadded:: 2.3.0
[ "Returns", "the", "image", "schema", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/image.py#L55-L69
19,257
apache/spark
python/pyspark/ml/image.py
_ImageSchema.ocvTypes
def ocvTypes(self): """ Returns the OpenCV type mapping supported. :return: a dictionary containing the OpenCV type mapping supported. .. versionadded:: 2.3.0 """ if self._ocvTypes is None: ctx = SparkContext._active_spark_context self._ocvTypes = dict(ctx._jvm.org.apache.spark.ml.image.ImageSchema.javaOcvTypes()) return self._ocvTypes
python
def ocvTypes(self): """ Returns the OpenCV type mapping supported. :return: a dictionary containing the OpenCV type mapping supported. .. versionadded:: 2.3.0 """ if self._ocvTypes is None: ctx = SparkContext._active_spark_context self._ocvTypes = dict(ctx._jvm.org.apache.spark.ml.image.ImageSchema.javaOcvTypes()) return self._ocvTypes
[ "def", "ocvTypes", "(", "self", ")", ":", "if", "self", ".", "_ocvTypes", "is", "None", ":", "ctx", "=", "SparkContext", ".", "_active_spark_context", "self", ".", "_ocvTypes", "=", "dict", "(", "ctx", ".", "_jvm", ".", "org", ".", "apache", ".", "spark", ".", "ml", ".", "image", ".", "ImageSchema", ".", "javaOcvTypes", "(", ")", ")", "return", "self", ".", "_ocvTypes" ]
Returns the OpenCV type mapping supported. :return: a dictionary containing the OpenCV type mapping supported. .. versionadded:: 2.3.0
[ "Returns", "the", "OpenCV", "type", "mapping", "supported", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/image.py#L72-L84
19,258
apache/spark
python/pyspark/ml/image.py
_ImageSchema.columnSchema
def columnSchema(self): """ Returns the schema for the image column. :return: a :class:`StructType` for image column, ``struct<origin:string, height:int, width:int, nChannels:int, mode:int, data:binary>``. .. versionadded:: 2.4.0 """ if self._columnSchema is None: ctx = SparkContext._active_spark_context jschema = ctx._jvm.org.apache.spark.ml.image.ImageSchema.columnSchema() self._columnSchema = _parse_datatype_json_string(jschema.json()) return self._columnSchema
python
def columnSchema(self): """ Returns the schema for the image column. :return: a :class:`StructType` for image column, ``struct<origin:string, height:int, width:int, nChannels:int, mode:int, data:binary>``. .. versionadded:: 2.4.0 """ if self._columnSchema is None: ctx = SparkContext._active_spark_context jschema = ctx._jvm.org.apache.spark.ml.image.ImageSchema.columnSchema() self._columnSchema = _parse_datatype_json_string(jschema.json()) return self._columnSchema
[ "def", "columnSchema", "(", "self", ")", ":", "if", "self", ".", "_columnSchema", "is", "None", ":", "ctx", "=", "SparkContext", ".", "_active_spark_context", "jschema", "=", "ctx", ".", "_jvm", ".", "org", ".", "apache", ".", "spark", ".", "ml", ".", "image", ".", "ImageSchema", ".", "columnSchema", "(", ")", "self", ".", "_columnSchema", "=", "_parse_datatype_json_string", "(", "jschema", ".", "json", "(", ")", ")", "return", "self", ".", "_columnSchema" ]
Returns the schema for the image column. :return: a :class:`StructType` for image column, ``struct<origin:string, height:int, width:int, nChannels:int, mode:int, data:binary>``. .. versionadded:: 2.4.0
[ "Returns", "the", "schema", "for", "the", "image", "column", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/image.py#L87-L101
19,259
apache/spark
python/pyspark/ml/image.py
_ImageSchema.imageFields
def imageFields(self): """ Returns field names of image columns. :return: a list of field names. .. versionadded:: 2.3.0 """ if self._imageFields is None: ctx = SparkContext._active_spark_context self._imageFields = list(ctx._jvm.org.apache.spark.ml.image.ImageSchema.imageFields()) return self._imageFields
python
def imageFields(self): """ Returns field names of image columns. :return: a list of field names. .. versionadded:: 2.3.0 """ if self._imageFields is None: ctx = SparkContext._active_spark_context self._imageFields = list(ctx._jvm.org.apache.spark.ml.image.ImageSchema.imageFields()) return self._imageFields
[ "def", "imageFields", "(", "self", ")", ":", "if", "self", ".", "_imageFields", "is", "None", ":", "ctx", "=", "SparkContext", ".", "_active_spark_context", "self", ".", "_imageFields", "=", "list", "(", "ctx", ".", "_jvm", ".", "org", ".", "apache", ".", "spark", ".", "ml", ".", "image", ".", "ImageSchema", ".", "imageFields", "(", ")", ")", "return", "self", ".", "_imageFields" ]
Returns field names of image columns. :return: a list of field names. .. versionadded:: 2.3.0
[ "Returns", "field", "names", "of", "image", "columns", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/image.py#L104-L116
19,260
apache/spark
python/pyspark/ml/image.py
_ImageSchema.undefinedImageType
def undefinedImageType(self): """ Returns the name of undefined image type for the invalid image. .. versionadded:: 2.3.0 """ if self._undefinedImageType is None: ctx = SparkContext._active_spark_context self._undefinedImageType = \ ctx._jvm.org.apache.spark.ml.image.ImageSchema.undefinedImageType() return self._undefinedImageType
python
def undefinedImageType(self): """ Returns the name of undefined image type for the invalid image. .. versionadded:: 2.3.0 """ if self._undefinedImageType is None: ctx = SparkContext._active_spark_context self._undefinedImageType = \ ctx._jvm.org.apache.spark.ml.image.ImageSchema.undefinedImageType() return self._undefinedImageType
[ "def", "undefinedImageType", "(", "self", ")", ":", "if", "self", ".", "_undefinedImageType", "is", "None", ":", "ctx", "=", "SparkContext", ".", "_active_spark_context", "self", ".", "_undefinedImageType", "=", "ctx", ".", "_jvm", ".", "org", ".", "apache", ".", "spark", ".", "ml", ".", "image", ".", "ImageSchema", ".", "undefinedImageType", "(", ")", "return", "self", ".", "_undefinedImageType" ]
Returns the name of undefined image type for the invalid image. .. versionadded:: 2.3.0
[ "Returns", "the", "name", "of", "undefined", "image", "type", "for", "the", "invalid", "image", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/image.py#L119-L130
19,261
apache/spark
python/pyspark/ml/image.py
_ImageSchema.toNDArray
def toNDArray(self, image): """ Converts an image to an array with metadata. :param `Row` image: A row that contains the image to be converted. It should have the attributes specified in `ImageSchema.imageSchema`. :return: a `numpy.ndarray` that is an image. .. versionadded:: 2.3.0 """ if not isinstance(image, Row): raise TypeError( "image argument should be pyspark.sql.types.Row; however, " "it got [%s]." % type(image)) if any(not hasattr(image, f) for f in self.imageFields): raise ValueError( "image argument should have attributes specified in " "ImageSchema.imageSchema [%s]." % ", ".join(self.imageFields)) height = image.height width = image.width nChannels = image.nChannels return np.ndarray( shape=(height, width, nChannels), dtype=np.uint8, buffer=image.data, strides=(width * nChannels, nChannels, 1))
python
def toNDArray(self, image): """ Converts an image to an array with metadata. :param `Row` image: A row that contains the image to be converted. It should have the attributes specified in `ImageSchema.imageSchema`. :return: a `numpy.ndarray` that is an image. .. versionadded:: 2.3.0 """ if not isinstance(image, Row): raise TypeError( "image argument should be pyspark.sql.types.Row; however, " "it got [%s]." % type(image)) if any(not hasattr(image, f) for f in self.imageFields): raise ValueError( "image argument should have attributes specified in " "ImageSchema.imageSchema [%s]." % ", ".join(self.imageFields)) height = image.height width = image.width nChannels = image.nChannels return np.ndarray( shape=(height, width, nChannels), dtype=np.uint8, buffer=image.data, strides=(width * nChannels, nChannels, 1))
[ "def", "toNDArray", "(", "self", ",", "image", ")", ":", "if", "not", "isinstance", "(", "image", ",", "Row", ")", ":", "raise", "TypeError", "(", "\"image argument should be pyspark.sql.types.Row; however, \"", "\"it got [%s].\"", "%", "type", "(", "image", ")", ")", "if", "any", "(", "not", "hasattr", "(", "image", ",", "f", ")", "for", "f", "in", "self", ".", "imageFields", ")", ":", "raise", "ValueError", "(", "\"image argument should have attributes specified in \"", "\"ImageSchema.imageSchema [%s].\"", "%", "\", \"", ".", "join", "(", "self", ".", "imageFields", ")", ")", "height", "=", "image", ".", "height", "width", "=", "image", ".", "width", "nChannels", "=", "image", ".", "nChannels", "return", "np", ".", "ndarray", "(", "shape", "=", "(", "height", ",", "width", ",", "nChannels", ")", ",", "dtype", "=", "np", ".", "uint8", ",", "buffer", "=", "image", ".", "data", ",", "strides", "=", "(", "width", "*", "nChannels", ",", "nChannels", ",", "1", ")", ")" ]
Converts an image to an array with metadata. :param `Row` image: A row that contains the image to be converted. It should have the attributes specified in `ImageSchema.imageSchema`. :return: a `numpy.ndarray` that is an image. .. versionadded:: 2.3.0
[ "Converts", "an", "image", "to", "an", "array", "with", "metadata", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/image.py#L132-L160
19,262
apache/spark
python/pyspark/ml/image.py
_ImageSchema.toImage
def toImage(self, array, origin=""): """ Converts an array with metadata to a two-dimensional image. :param `numpy.ndarray` array: The array to convert to image. :param str origin: Path to the image, optional. :return: a :class:`Row` that is a two dimensional image. .. versionadded:: 2.3.0 """ if not isinstance(array, np.ndarray): raise TypeError( "array argument should be numpy.ndarray; however, it got [%s]." % type(array)) if array.ndim != 3: raise ValueError("Invalid array shape") height, width, nChannels = array.shape ocvTypes = ImageSchema.ocvTypes if nChannels == 1: mode = ocvTypes["CV_8UC1"] elif nChannels == 3: mode = ocvTypes["CV_8UC3"] elif nChannels == 4: mode = ocvTypes["CV_8UC4"] else: raise ValueError("Invalid number of channels") # Running `bytearray(numpy.array([1]))` fails in specific Python versions # with a specific Numpy version, for example in Python 3.6.0 and NumPy 1.13.3. # Here, it avoids it by converting it to bytes. if LooseVersion(np.__version__) >= LooseVersion('1.9'): data = bytearray(array.astype(dtype=np.uint8).ravel().tobytes()) else: # Numpy prior to 1.9 don't have `tobytes` method. data = bytearray(array.astype(dtype=np.uint8).ravel()) # Creating new Row with _create_row(), because Row(name = value, ... ) # orders fields by name, which conflicts with expected schema order # when the new DataFrame is created by UDF return _create_row(self.imageFields, [origin, height, width, nChannels, mode, data])
python
def toImage(self, array, origin=""): """ Converts an array with metadata to a two-dimensional image. :param `numpy.ndarray` array: The array to convert to image. :param str origin: Path to the image, optional. :return: a :class:`Row` that is a two dimensional image. .. versionadded:: 2.3.0 """ if not isinstance(array, np.ndarray): raise TypeError( "array argument should be numpy.ndarray; however, it got [%s]." % type(array)) if array.ndim != 3: raise ValueError("Invalid array shape") height, width, nChannels = array.shape ocvTypes = ImageSchema.ocvTypes if nChannels == 1: mode = ocvTypes["CV_8UC1"] elif nChannels == 3: mode = ocvTypes["CV_8UC3"] elif nChannels == 4: mode = ocvTypes["CV_8UC4"] else: raise ValueError("Invalid number of channels") # Running `bytearray(numpy.array([1]))` fails in specific Python versions # with a specific Numpy version, for example in Python 3.6.0 and NumPy 1.13.3. # Here, it avoids it by converting it to bytes. if LooseVersion(np.__version__) >= LooseVersion('1.9'): data = bytearray(array.astype(dtype=np.uint8).ravel().tobytes()) else: # Numpy prior to 1.9 don't have `tobytes` method. data = bytearray(array.astype(dtype=np.uint8).ravel()) # Creating new Row with _create_row(), because Row(name = value, ... ) # orders fields by name, which conflicts with expected schema order # when the new DataFrame is created by UDF return _create_row(self.imageFields, [origin, height, width, nChannels, mode, data])
[ "def", "toImage", "(", "self", ",", "array", ",", "origin", "=", "\"\"", ")", ":", "if", "not", "isinstance", "(", "array", ",", "np", ".", "ndarray", ")", ":", "raise", "TypeError", "(", "\"array argument should be numpy.ndarray; however, it got [%s].\"", "%", "type", "(", "array", ")", ")", "if", "array", ".", "ndim", "!=", "3", ":", "raise", "ValueError", "(", "\"Invalid array shape\"", ")", "height", ",", "width", ",", "nChannels", "=", "array", ".", "shape", "ocvTypes", "=", "ImageSchema", ".", "ocvTypes", "if", "nChannels", "==", "1", ":", "mode", "=", "ocvTypes", "[", "\"CV_8UC1\"", "]", "elif", "nChannels", "==", "3", ":", "mode", "=", "ocvTypes", "[", "\"CV_8UC3\"", "]", "elif", "nChannels", "==", "4", ":", "mode", "=", "ocvTypes", "[", "\"CV_8UC4\"", "]", "else", ":", "raise", "ValueError", "(", "\"Invalid number of channels\"", ")", "# Running `bytearray(numpy.array([1]))` fails in specific Python versions", "# with a specific Numpy version, for example in Python 3.6.0 and NumPy 1.13.3.", "# Here, it avoids it by converting it to bytes.", "if", "LooseVersion", "(", "np", ".", "__version__", ")", ">=", "LooseVersion", "(", "'1.9'", ")", ":", "data", "=", "bytearray", "(", "array", ".", "astype", "(", "dtype", "=", "np", ".", "uint8", ")", ".", "ravel", "(", ")", ".", "tobytes", "(", ")", ")", "else", ":", "# Numpy prior to 1.9 don't have `tobytes` method.", "data", "=", "bytearray", "(", "array", ".", "astype", "(", "dtype", "=", "np", ".", "uint8", ")", ".", "ravel", "(", ")", ")", "# Creating new Row with _create_row(), because Row(name = value, ... )", "# orders fields by name, which conflicts with expected schema order", "# when the new DataFrame is created by UDF", "return", "_create_row", "(", "self", ".", "imageFields", ",", "[", "origin", ",", "height", ",", "width", ",", "nChannels", ",", "mode", ",", "data", "]", ")" ]
Converts an array with metadata to a two-dimensional image. :param `numpy.ndarray` array: The array to convert to image. :param str origin: Path to the image, optional. :return: a :class:`Row` that is a two dimensional image. .. versionadded:: 2.3.0
[ "Converts", "an", "array", "with", "metadata", "to", "a", "two", "-", "dimensional", "image", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/image.py#L162-L204
19,263
apache/spark
python/pyspark/ml/image.py
_ImageSchema.readImages
def readImages(self, path, recursive=False, numPartitions=-1, dropImageFailures=False, sampleRatio=1.0, seed=0): """ Reads the directory of images from the local or remote source. .. note:: If multiple jobs are run in parallel with different sampleRatio or recursive flag, there may be a race condition where one job overwrites the hadoop configs of another. .. note:: If sample ratio is less than 1, sampling uses a PathFilter that is efficient but potentially non-deterministic. .. note:: Deprecated in 2.4.0. Use `spark.read.format("image").load(path)` instead and this `readImages` will be removed in 3.0.0. :param str path: Path to the image directory. :param bool recursive: Recursive search flag. :param int numPartitions: Number of DataFrame partitions. :param bool dropImageFailures: Drop the files that are not valid images. :param float sampleRatio: Fraction of the images loaded. :param int seed: Random number seed. :return: a :class:`DataFrame` with a single column of "images", see ImageSchema for details. >>> df = ImageSchema.readImages('data/mllib/images/origin/kittens', recursive=True) >>> df.count() 5 .. versionadded:: 2.3.0 """ warnings.warn("`ImageSchema.readImage` is deprecated. " + "Use `spark.read.format(\"image\").load(path)` instead.", DeprecationWarning) spark = SparkSession.builder.getOrCreate() image_schema = spark._jvm.org.apache.spark.ml.image.ImageSchema jsession = spark._jsparkSession jresult = image_schema.readImages(path, jsession, recursive, numPartitions, dropImageFailures, float(sampleRatio), seed) return DataFrame(jresult, spark._wrapped)
python
def readImages(self, path, recursive=False, numPartitions=-1, dropImageFailures=False, sampleRatio=1.0, seed=0): """ Reads the directory of images from the local or remote source. .. note:: If multiple jobs are run in parallel with different sampleRatio or recursive flag, there may be a race condition where one job overwrites the hadoop configs of another. .. note:: If sample ratio is less than 1, sampling uses a PathFilter that is efficient but potentially non-deterministic. .. note:: Deprecated in 2.4.0. Use `spark.read.format("image").load(path)` instead and this `readImages` will be removed in 3.0.0. :param str path: Path to the image directory. :param bool recursive: Recursive search flag. :param int numPartitions: Number of DataFrame partitions. :param bool dropImageFailures: Drop the files that are not valid images. :param float sampleRatio: Fraction of the images loaded. :param int seed: Random number seed. :return: a :class:`DataFrame` with a single column of "images", see ImageSchema for details. >>> df = ImageSchema.readImages('data/mllib/images/origin/kittens', recursive=True) >>> df.count() 5 .. versionadded:: 2.3.0 """ warnings.warn("`ImageSchema.readImage` is deprecated. " + "Use `spark.read.format(\"image\").load(path)` instead.", DeprecationWarning) spark = SparkSession.builder.getOrCreate() image_schema = spark._jvm.org.apache.spark.ml.image.ImageSchema jsession = spark._jsparkSession jresult = image_schema.readImages(path, jsession, recursive, numPartitions, dropImageFailures, float(sampleRatio), seed) return DataFrame(jresult, spark._wrapped)
[ "def", "readImages", "(", "self", ",", "path", ",", "recursive", "=", "False", ",", "numPartitions", "=", "-", "1", ",", "dropImageFailures", "=", "False", ",", "sampleRatio", "=", "1.0", ",", "seed", "=", "0", ")", ":", "warnings", ".", "warn", "(", "\"`ImageSchema.readImage` is deprecated. \"", "+", "\"Use `spark.read.format(\\\"image\\\").load(path)` instead.\"", ",", "DeprecationWarning", ")", "spark", "=", "SparkSession", ".", "builder", ".", "getOrCreate", "(", ")", "image_schema", "=", "spark", ".", "_jvm", ".", "org", ".", "apache", ".", "spark", ".", "ml", ".", "image", ".", "ImageSchema", "jsession", "=", "spark", ".", "_jsparkSession", "jresult", "=", "image_schema", ".", "readImages", "(", "path", ",", "jsession", ",", "recursive", ",", "numPartitions", ",", "dropImageFailures", ",", "float", "(", "sampleRatio", ")", ",", "seed", ")", "return", "DataFrame", "(", "jresult", ",", "spark", ".", "_wrapped", ")" ]
Reads the directory of images from the local or remote source. .. note:: If multiple jobs are run in parallel with different sampleRatio or recursive flag, there may be a race condition where one job overwrites the hadoop configs of another. .. note:: If sample ratio is less than 1, sampling uses a PathFilter that is efficient but potentially non-deterministic. .. note:: Deprecated in 2.4.0. Use `spark.read.format("image").load(path)` instead and this `readImages` will be removed in 3.0.0. :param str path: Path to the image directory. :param bool recursive: Recursive search flag. :param int numPartitions: Number of DataFrame partitions. :param bool dropImageFailures: Drop the files that are not valid images. :param float sampleRatio: Fraction of the images loaded. :param int seed: Random number seed. :return: a :class:`DataFrame` with a single column of "images", see ImageSchema for details. >>> df = ImageSchema.readImages('data/mllib/images/origin/kittens', recursive=True) >>> df.count() 5 .. versionadded:: 2.3.0
[ "Reads", "the", "directory", "of", "images", "from", "the", "local", "or", "remote", "source", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/image.py#L206-L242
19,264
apache/spark
python/pyspark/ml/wrapper.py
JavaWrapper._create_from_java_class
def _create_from_java_class(cls, java_class, *args): """ Construct this object from given Java classname and arguments """ java_obj = JavaWrapper._new_java_obj(java_class, *args) return cls(java_obj)
python
def _create_from_java_class(cls, java_class, *args): """ Construct this object from given Java classname and arguments """ java_obj = JavaWrapper._new_java_obj(java_class, *args) return cls(java_obj)
[ "def", "_create_from_java_class", "(", "cls", ",", "java_class", ",", "*", "args", ")", ":", "java_obj", "=", "JavaWrapper", ".", "_new_java_obj", "(", "java_class", ",", "*", "args", ")", "return", "cls", "(", "java_obj", ")" ]
Construct this object from given Java classname and arguments
[ "Construct", "this", "object", "from", "given", "Java", "classname", "and", "arguments" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/wrapper.py#L44-L49
19,265
apache/spark
python/pyspark/ml/wrapper.py
JavaWrapper._new_java_array
def _new_java_array(pylist, java_class): """ Create a Java array of given java_class type. Useful for calling a method with a Scala Array from Python with Py4J. If the param pylist is a 2D array, then a 2D java array will be returned. The returned 2D java array is a square, non-jagged 2D array that is big enough for all elements. The empty slots in the inner Java arrays will be filled with null to make the non-jagged 2D array. :param pylist: Python list to convert to a Java Array. :param java_class: Java class to specify the type of Array. Should be in the form of sc._gateway.jvm.* (sc is a valid Spark Context). :return: Java Array of converted pylist. Example primitive Java classes: - basestring -> sc._gateway.jvm.java.lang.String - int -> sc._gateway.jvm.java.lang.Integer - float -> sc._gateway.jvm.java.lang.Double - bool -> sc._gateway.jvm.java.lang.Boolean """ sc = SparkContext._active_spark_context java_array = None if len(pylist) > 0 and isinstance(pylist[0], list): # If pylist is a 2D array, then a 2D java array will be created. # The 2D array is a square, non-jagged 2D array that is big enough for all elements. inner_array_length = 0 for i in xrange(len(pylist)): inner_array_length = max(inner_array_length, len(pylist[i])) java_array = sc._gateway.new_array(java_class, len(pylist), inner_array_length) for i in xrange(len(pylist)): for j in xrange(len(pylist[i])): java_array[i][j] = pylist[i][j] else: java_array = sc._gateway.new_array(java_class, len(pylist)) for i in xrange(len(pylist)): java_array[i] = pylist[i] return java_array
python
def _new_java_array(pylist, java_class): """ Create a Java array of given java_class type. Useful for calling a method with a Scala Array from Python with Py4J. If the param pylist is a 2D array, then a 2D java array will be returned. The returned 2D java array is a square, non-jagged 2D array that is big enough for all elements. The empty slots in the inner Java arrays will be filled with null to make the non-jagged 2D array. :param pylist: Python list to convert to a Java Array. :param java_class: Java class to specify the type of Array. Should be in the form of sc._gateway.jvm.* (sc is a valid Spark Context). :return: Java Array of converted pylist. Example primitive Java classes: - basestring -> sc._gateway.jvm.java.lang.String - int -> sc._gateway.jvm.java.lang.Integer - float -> sc._gateway.jvm.java.lang.Double - bool -> sc._gateway.jvm.java.lang.Boolean """ sc = SparkContext._active_spark_context java_array = None if len(pylist) > 0 and isinstance(pylist[0], list): # If pylist is a 2D array, then a 2D java array will be created. # The 2D array is a square, non-jagged 2D array that is big enough for all elements. inner_array_length = 0 for i in xrange(len(pylist)): inner_array_length = max(inner_array_length, len(pylist[i])) java_array = sc._gateway.new_array(java_class, len(pylist), inner_array_length) for i in xrange(len(pylist)): for j in xrange(len(pylist[i])): java_array[i][j] = pylist[i][j] else: java_array = sc._gateway.new_array(java_class, len(pylist)) for i in xrange(len(pylist)): java_array[i] = pylist[i] return java_array
[ "def", "_new_java_array", "(", "pylist", ",", "java_class", ")", ":", "sc", "=", "SparkContext", ".", "_active_spark_context", "java_array", "=", "None", "if", "len", "(", "pylist", ")", ">", "0", "and", "isinstance", "(", "pylist", "[", "0", "]", ",", "list", ")", ":", "# If pylist is a 2D array, then a 2D java array will be created.", "# The 2D array is a square, non-jagged 2D array that is big enough for all elements.", "inner_array_length", "=", "0", "for", "i", "in", "xrange", "(", "len", "(", "pylist", ")", ")", ":", "inner_array_length", "=", "max", "(", "inner_array_length", ",", "len", "(", "pylist", "[", "i", "]", ")", ")", "java_array", "=", "sc", ".", "_gateway", ".", "new_array", "(", "java_class", ",", "len", "(", "pylist", ")", ",", "inner_array_length", ")", "for", "i", "in", "xrange", "(", "len", "(", "pylist", ")", ")", ":", "for", "j", "in", "xrange", "(", "len", "(", "pylist", "[", "i", "]", ")", ")", ":", "java_array", "[", "i", "]", "[", "j", "]", "=", "pylist", "[", "i", "]", "[", "j", "]", "else", ":", "java_array", "=", "sc", ".", "_gateway", ".", "new_array", "(", "java_class", ",", "len", "(", "pylist", ")", ")", "for", "i", "in", "xrange", "(", "len", "(", "pylist", ")", ")", ":", "java_array", "[", "i", "]", "=", "pylist", "[", "i", "]", "return", "java_array" ]
Create a Java array of given java_class type. Useful for calling a method with a Scala Array from Python with Py4J. If the param pylist is a 2D array, then a 2D java array will be returned. The returned 2D java array is a square, non-jagged 2D array that is big enough for all elements. The empty slots in the inner Java arrays will be filled with null to make the non-jagged 2D array. :param pylist: Python list to convert to a Java Array. :param java_class: Java class to specify the type of Array. Should be in the form of sc._gateway.jvm.* (sc is a valid Spark Context). :return: Java Array of converted pylist. Example primitive Java classes: - basestring -> sc._gateway.jvm.java.lang.String - int -> sc._gateway.jvm.java.lang.Integer - float -> sc._gateway.jvm.java.lang.Double - bool -> sc._gateway.jvm.java.lang.Boolean
[ "Create", "a", "Java", "array", "of", "given", "java_class", "type", ".", "Useful", "for", "calling", "a", "method", "with", "a", "Scala", "Array", "from", "Python", "with", "Py4J", ".", "If", "the", "param", "pylist", "is", "a", "2D", "array", "then", "a", "2D", "java", "array", "will", "be", "returned", ".", "The", "returned", "2D", "java", "array", "is", "a", "square", "non", "-", "jagged", "2D", "array", "that", "is", "big", "enough", "for", "all", "elements", ".", "The", "empty", "slots", "in", "the", "inner", "Java", "arrays", "will", "be", "filled", "with", "null", "to", "make", "the", "non", "-", "jagged", "2D", "array", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/wrapper.py#L70-L109
19,266
apache/spark
python/pyspark/profiler.py
ProfilerCollector.add_profiler
def add_profiler(self, id, profiler): """ Add a profiler for RDD `id` """ if not self.profilers: if self.profile_dump_path: atexit.register(self.dump_profiles, self.profile_dump_path) else: atexit.register(self.show_profiles) self.profilers.append([id, profiler, False])
python
def add_profiler(self, id, profiler): """ Add a profiler for RDD `id` """ if not self.profilers: if self.profile_dump_path: atexit.register(self.dump_profiles, self.profile_dump_path) else: atexit.register(self.show_profiles) self.profilers.append([id, profiler, False])
[ "def", "add_profiler", "(", "self", ",", "id", ",", "profiler", ")", ":", "if", "not", "self", ".", "profilers", ":", "if", "self", ".", "profile_dump_path", ":", "atexit", ".", "register", "(", "self", ".", "dump_profiles", ",", "self", ".", "profile_dump_path", ")", "else", ":", "atexit", ".", "register", "(", "self", ".", "show_profiles", ")", "self", ".", "profilers", ".", "append", "(", "[", "id", ",", "profiler", ",", "False", "]", ")" ]
Add a profiler for RDD `id`
[ "Add", "a", "profiler", "for", "RDD", "id" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/profiler.py#L43-L51
19,267
apache/spark
python/pyspark/profiler.py
ProfilerCollector.show_profiles
def show_profiles(self): """ Print the profile stats to stdout """ for i, (id, profiler, showed) in enumerate(self.profilers): if not showed and profiler: profiler.show(id) # mark it as showed self.profilers[i][2] = True
python
def show_profiles(self): """ Print the profile stats to stdout """ for i, (id, profiler, showed) in enumerate(self.profilers): if not showed and profiler: profiler.show(id) # mark it as showed self.profilers[i][2] = True
[ "def", "show_profiles", "(", "self", ")", ":", "for", "i", ",", "(", "id", ",", "profiler", ",", "showed", ")", "in", "enumerate", "(", "self", ".", "profilers", ")", ":", "if", "not", "showed", "and", "profiler", ":", "profiler", ".", "show", "(", "id", ")", "# mark it as showed", "self", ".", "profilers", "[", "i", "]", "[", "2", "]", "=", "True" ]
Print the profile stats to stdout
[ "Print", "the", "profile", "stats", "to", "stdout" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/profiler.py#L59-L65
19,268
apache/spark
python/pyspark/profiler.py
Profiler.show
def show(self, id): """ Print the profile stats to stdout, id is the RDD id """ stats = self.stats() if stats: print("=" * 60) print("Profile of RDD<id=%d>" % id) print("=" * 60) stats.sort_stats("time", "cumulative").print_stats()
python
def show(self, id): """ Print the profile stats to stdout, id is the RDD id """ stats = self.stats() if stats: print("=" * 60) print("Profile of RDD<id=%d>" % id) print("=" * 60) stats.sort_stats("time", "cumulative").print_stats()
[ "def", "show", "(", "self", ",", "id", ")", ":", "stats", "=", "self", ".", "stats", "(", ")", "if", "stats", ":", "print", "(", "\"=\"", "*", "60", ")", "print", "(", "\"Profile of RDD<id=%d>\"", "%", "id", ")", "print", "(", "\"=\"", "*", "60", ")", "stats", ".", "sort_stats", "(", "\"time\"", ",", "\"cumulative\"", ")", ".", "print_stats", "(", ")" ]
Print the profile stats to stdout, id is the RDD id
[ "Print", "the", "profile", "stats", "to", "stdout", "id", "is", "the", "RDD", "id" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/profiler.py#L113-L120
19,269
apache/spark
python/pyspark/profiler.py
Profiler.dump
def dump(self, id, path): """ Dump the profile into path, id is the RDD id """ if not os.path.exists(path): os.makedirs(path) stats = self.stats() if stats: p = os.path.join(path, "rdd_%d.pstats" % id) stats.dump_stats(p)
python
def dump(self, id, path): """ Dump the profile into path, id is the RDD id """ if not os.path.exists(path): os.makedirs(path) stats = self.stats() if stats: p = os.path.join(path, "rdd_%d.pstats" % id) stats.dump_stats(p)
[ "def", "dump", "(", "self", ",", "id", ",", "path", ")", ":", "if", "not", "os", ".", "path", ".", "exists", "(", "path", ")", ":", "os", ".", "makedirs", "(", "path", ")", "stats", "=", "self", ".", "stats", "(", ")", "if", "stats", ":", "p", "=", "os", ".", "path", ".", "join", "(", "path", ",", "\"rdd_%d.pstats\"", "%", "id", ")", "stats", ".", "dump_stats", "(", "p", ")" ]
Dump the profile into path, id is the RDD id
[ "Dump", "the", "profile", "into", "path", "id", "is", "the", "RDD", "id" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/profiler.py#L122-L129
19,270
apache/spark
python/pyspark/profiler.py
BasicProfiler.profile
def profile(self, func): """ Runs and profiles the method to_profile passed in. A profile object is returned. """ pr = cProfile.Profile() pr.runcall(func) st = pstats.Stats(pr) st.stream = None # make it picklable st.strip_dirs() # Adds a new profile to the existing accumulated value self._accumulator.add(st)
python
def profile(self, func): """ Runs and profiles the method to_profile passed in. A profile object is returned. """ pr = cProfile.Profile() pr.runcall(func) st = pstats.Stats(pr) st.stream = None # make it picklable st.strip_dirs() # Adds a new profile to the existing accumulated value self._accumulator.add(st)
[ "def", "profile", "(", "self", ",", "func", ")", ":", "pr", "=", "cProfile", ".", "Profile", "(", ")", "pr", ".", "runcall", "(", "func", ")", "st", "=", "pstats", ".", "Stats", "(", "pr", ")", "st", ".", "stream", "=", "None", "# make it picklable", "st", ".", "strip_dirs", "(", ")", "# Adds a new profile to the existing accumulated value", "self", ".", "_accumulator", ".", "add", "(", "st", ")" ]
Runs and profiles the method to_profile passed in. A profile object is returned.
[ "Runs", "and", "profiles", "the", "method", "to_profile", "passed", "in", ".", "A", "profile", "object", "is", "returned", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/profiler.py#L158-L167
19,271
apache/spark
python/pyspark/sql/context.py
SQLContext.getOrCreate
def getOrCreate(cls, sc): """ Get the existing SQLContext or create a new one with given SparkContext. :param sc: SparkContext """ if cls._instantiatedContext is None: jsqlContext = sc._jvm.SQLContext.getOrCreate(sc._jsc.sc()) sparkSession = SparkSession(sc, jsqlContext.sparkSession()) cls(sc, sparkSession, jsqlContext) return cls._instantiatedContext
python
def getOrCreate(cls, sc): """ Get the existing SQLContext or create a new one with given SparkContext. :param sc: SparkContext """ if cls._instantiatedContext is None: jsqlContext = sc._jvm.SQLContext.getOrCreate(sc._jsc.sc()) sparkSession = SparkSession(sc, jsqlContext.sparkSession()) cls(sc, sparkSession, jsqlContext) return cls._instantiatedContext
[ "def", "getOrCreate", "(", "cls", ",", "sc", ")", ":", "if", "cls", ".", "_instantiatedContext", "is", "None", ":", "jsqlContext", "=", "sc", ".", "_jvm", ".", "SQLContext", ".", "getOrCreate", "(", "sc", ".", "_jsc", ".", "sc", "(", ")", ")", "sparkSession", "=", "SparkSession", "(", "sc", ",", "jsqlContext", ".", "sparkSession", "(", ")", ")", "cls", "(", "sc", ",", "sparkSession", ",", "jsqlContext", ")", "return", "cls", ".", "_instantiatedContext" ]
Get the existing SQLContext or create a new one with given SparkContext. :param sc: SparkContext
[ "Get", "the", "existing", "SQLContext", "or", "create", "a", "new", "one", "with", "given", "SparkContext", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/context.py#L103-L113
19,272
apache/spark
python/pyspark/sql/context.py
SQLContext.setConf
def setConf(self, key, value): """Sets the given Spark SQL configuration property. """ self.sparkSession.conf.set(key, value)
python
def setConf(self, key, value): """Sets the given Spark SQL configuration property. """ self.sparkSession.conf.set(key, value)
[ "def", "setConf", "(", "self", ",", "key", ",", "value", ")", ":", "self", ".", "sparkSession", ".", "conf", ".", "set", "(", "key", ",", "value", ")" ]
Sets the given Spark SQL configuration property.
[ "Sets", "the", "given", "Spark", "SQL", "configuration", "property", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/context.py#L125-L128
19,273
apache/spark
python/pyspark/sql/context.py
SQLContext.getConf
def getConf(self, key, defaultValue=_NoValue): """Returns the value of Spark SQL configuration property for the given key. If the key is not set and defaultValue is set, return defaultValue. If the key is not set and defaultValue is not set, return the system default value. >>> sqlContext.getConf("spark.sql.shuffle.partitions") u'200' >>> sqlContext.getConf("spark.sql.shuffle.partitions", u"10") u'10' >>> sqlContext.setConf("spark.sql.shuffle.partitions", u"50") >>> sqlContext.getConf("spark.sql.shuffle.partitions", u"10") u'50' """ return self.sparkSession.conf.get(key, defaultValue)
python
def getConf(self, key, defaultValue=_NoValue): """Returns the value of Spark SQL configuration property for the given key. If the key is not set and defaultValue is set, return defaultValue. If the key is not set and defaultValue is not set, return the system default value. >>> sqlContext.getConf("spark.sql.shuffle.partitions") u'200' >>> sqlContext.getConf("spark.sql.shuffle.partitions", u"10") u'10' >>> sqlContext.setConf("spark.sql.shuffle.partitions", u"50") >>> sqlContext.getConf("spark.sql.shuffle.partitions", u"10") u'50' """ return self.sparkSession.conf.get(key, defaultValue)
[ "def", "getConf", "(", "self", ",", "key", ",", "defaultValue", "=", "_NoValue", ")", ":", "return", "self", ".", "sparkSession", ".", "conf", ".", "get", "(", "key", ",", "defaultValue", ")" ]
Returns the value of Spark SQL configuration property for the given key. If the key is not set and defaultValue is set, return defaultValue. If the key is not set and defaultValue is not set, return the system default value. >>> sqlContext.getConf("spark.sql.shuffle.partitions") u'200' >>> sqlContext.getConf("spark.sql.shuffle.partitions", u"10") u'10' >>> sqlContext.setConf("spark.sql.shuffle.partitions", u"50") >>> sqlContext.getConf("spark.sql.shuffle.partitions", u"10") u'50'
[ "Returns", "the", "value", "of", "Spark", "SQL", "configuration", "property", "for", "the", "given", "key", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/context.py#L132-L147
19,274
apache/spark
python/pyspark/sql/context.py
SQLContext.createExternalTable
def createExternalTable(self, tableName, path=None, source=None, schema=None, **options): """Creates an external table based on the dataset in a data source. It returns the DataFrame associated with the external table. The data source is specified by the ``source`` and a set of ``options``. If ``source`` is not specified, the default data source configured by ``spark.sql.sources.default`` will be used. Optionally, a schema can be provided as the schema of the returned :class:`DataFrame` and created external table. :return: :class:`DataFrame` """ return self.sparkSession.catalog.createExternalTable( tableName, path, source, schema, **options)
python
def createExternalTable(self, tableName, path=None, source=None, schema=None, **options): """Creates an external table based on the dataset in a data source. It returns the DataFrame associated with the external table. The data source is specified by the ``source`` and a set of ``options``. If ``source`` is not specified, the default data source configured by ``spark.sql.sources.default`` will be used. Optionally, a schema can be provided as the schema of the returned :class:`DataFrame` and created external table. :return: :class:`DataFrame` """ return self.sparkSession.catalog.createExternalTable( tableName, path, source, schema, **options)
[ "def", "createExternalTable", "(", "self", ",", "tableName", ",", "path", "=", "None", ",", "source", "=", "None", ",", "schema", "=", "None", ",", "*", "*", "options", ")", ":", "return", "self", ".", "sparkSession", ".", "catalog", ".", "createExternalTable", "(", "tableName", ",", "path", ",", "source", ",", "schema", ",", "*", "*", "options", ")" ]
Creates an external table based on the dataset in a data source. It returns the DataFrame associated with the external table. The data source is specified by the ``source`` and a set of ``options``. If ``source`` is not specified, the default data source configured by ``spark.sql.sources.default`` will be used. Optionally, a schema can be provided as the schema of the returned :class:`DataFrame` and created external table. :return: :class:`DataFrame`
[ "Creates", "an", "external", "table", "based", "on", "the", "dataset", "in", "a", "data", "source", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/context.py#L329-L344
19,275
apache/spark
python/pyspark/sql/context.py
SQLContext.tableNames
def tableNames(self, dbName=None): """Returns a list of names of tables in the database ``dbName``. :param dbName: string, name of the database to use. Default to the current database. :return: list of table names, in string >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> "table1" in sqlContext.tableNames() True >>> "table1" in sqlContext.tableNames("default") True """ if dbName is None: return [name for name in self._ssql_ctx.tableNames()] else: return [name for name in self._ssql_ctx.tableNames(dbName)]
python
def tableNames(self, dbName=None): """Returns a list of names of tables in the database ``dbName``. :param dbName: string, name of the database to use. Default to the current database. :return: list of table names, in string >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> "table1" in sqlContext.tableNames() True >>> "table1" in sqlContext.tableNames("default") True """ if dbName is None: return [name for name in self._ssql_ctx.tableNames()] else: return [name for name in self._ssql_ctx.tableNames(dbName)]
[ "def", "tableNames", "(", "self", ",", "dbName", "=", "None", ")", ":", "if", "dbName", "is", "None", ":", "return", "[", "name", "for", "name", "in", "self", ".", "_ssql_ctx", ".", "tableNames", "(", ")", "]", "else", ":", "return", "[", "name", "for", "name", "in", "self", ".", "_ssql_ctx", ".", "tableNames", "(", "dbName", ")", "]" ]
Returns a list of names of tables in the database ``dbName``. :param dbName: string, name of the database to use. Default to the current database. :return: list of table names, in string >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> "table1" in sqlContext.tableNames() True >>> "table1" in sqlContext.tableNames("default") True
[ "Returns", "a", "list", "of", "names", "of", "tables", "in", "the", "database", "dbName", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/context.py#L397-L412
19,276
apache/spark
python/pyspark/ml/classification.py
OneVsRestModel.copy
def copy(self, extra=None): """ Creates a copy of this instance with a randomly generated uid and some extra params. This creates a deep copy of the embedded paramMap, and copies the embedded and extra parameters over. :param extra: Extra parameters to copy to the new instance :return: Copy of this instance """ if extra is None: extra = dict() newModel = Params.copy(self, extra) newModel.models = [model.copy(extra) for model in self.models] return newModel
python
def copy(self, extra=None): """ Creates a copy of this instance with a randomly generated uid and some extra params. This creates a deep copy of the embedded paramMap, and copies the embedded and extra parameters over. :param extra: Extra parameters to copy to the new instance :return: Copy of this instance """ if extra is None: extra = dict() newModel = Params.copy(self, extra) newModel.models = [model.copy(extra) for model in self.models] return newModel
[ "def", "copy", "(", "self", ",", "extra", "=", "None", ")", ":", "if", "extra", "is", "None", ":", "extra", "=", "dict", "(", ")", "newModel", "=", "Params", ".", "copy", "(", "self", ",", "extra", ")", "newModel", ".", "models", "=", "[", "model", ".", "copy", "(", "extra", ")", "for", "model", "in", "self", ".", "models", "]", "return", "newModel" ]
Creates a copy of this instance with a randomly generated uid and some extra params. This creates a deep copy of the embedded paramMap, and copies the embedded and extra parameters over. :param extra: Extra parameters to copy to the new instance :return: Copy of this instance
[ "Creates", "a", "copy", "of", "this", "instance", "with", "a", "randomly", "generated", "uid", "and", "some", "extra", "params", ".", "This", "creates", "a", "deep", "copy", "of", "the", "embedded", "paramMap", "and", "copies", "the", "embedded", "and", "extra", "parameters", "over", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/classification.py#L2046-L2059
19,277
apache/spark
python/pyspark/ml/classification.py
OneVsRestModel._from_java
def _from_java(cls, java_stage): """ Given a Java OneVsRestModel, create and return a Python wrapper of it. Used for ML persistence. """ featuresCol = java_stage.getFeaturesCol() labelCol = java_stage.getLabelCol() predictionCol = java_stage.getPredictionCol() classifier = JavaParams._from_java(java_stage.getClassifier()) models = [JavaParams._from_java(model) for model in java_stage.models()] py_stage = cls(models=models).setPredictionCol(predictionCol).setLabelCol(labelCol)\ .setFeaturesCol(featuresCol).setClassifier(classifier) py_stage._resetUid(java_stage.uid()) return py_stage
python
def _from_java(cls, java_stage): """ Given a Java OneVsRestModel, create and return a Python wrapper of it. Used for ML persistence. """ featuresCol = java_stage.getFeaturesCol() labelCol = java_stage.getLabelCol() predictionCol = java_stage.getPredictionCol() classifier = JavaParams._from_java(java_stage.getClassifier()) models = [JavaParams._from_java(model) for model in java_stage.models()] py_stage = cls(models=models).setPredictionCol(predictionCol).setLabelCol(labelCol)\ .setFeaturesCol(featuresCol).setClassifier(classifier) py_stage._resetUid(java_stage.uid()) return py_stage
[ "def", "_from_java", "(", "cls", ",", "java_stage", ")", ":", "featuresCol", "=", "java_stage", ".", "getFeaturesCol", "(", ")", "labelCol", "=", "java_stage", ".", "getLabelCol", "(", ")", "predictionCol", "=", "java_stage", ".", "getPredictionCol", "(", ")", "classifier", "=", "JavaParams", ".", "_from_java", "(", "java_stage", ".", "getClassifier", "(", ")", ")", "models", "=", "[", "JavaParams", ".", "_from_java", "(", "model", ")", "for", "model", "in", "java_stage", ".", "models", "(", ")", "]", "py_stage", "=", "cls", "(", "models", "=", "models", ")", ".", "setPredictionCol", "(", "predictionCol", ")", ".", "setLabelCol", "(", "labelCol", ")", ".", "setFeaturesCol", "(", "featuresCol", ")", ".", "setClassifier", "(", "classifier", ")", "py_stage", ".", "_resetUid", "(", "java_stage", ".", "uid", "(", ")", ")", "return", "py_stage" ]
Given a Java OneVsRestModel, create and return a Python wrapper of it. Used for ML persistence.
[ "Given", "a", "Java", "OneVsRestModel", "create", "and", "return", "a", "Python", "wrapper", "of", "it", ".", "Used", "for", "ML", "persistence", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/classification.py#L2062-L2075
19,278
apache/spark
python/pyspark/ml/classification.py
OneVsRestModel._to_java
def _to_java(self): """ Transfer this instance to a Java OneVsRestModel. Used for ML persistence. :return: Java object equivalent to this instance. """ sc = SparkContext._active_spark_context java_models = [model._to_java() for model in self.models] java_models_array = JavaWrapper._new_java_array( java_models, sc._gateway.jvm.org.apache.spark.ml.classification.ClassificationModel) metadata = JavaParams._new_java_obj("org.apache.spark.sql.types.Metadata") _java_obj = JavaParams._new_java_obj("org.apache.spark.ml.classification.OneVsRestModel", self.uid, metadata.empty(), java_models_array) _java_obj.set("classifier", self.getClassifier()._to_java()) _java_obj.set("featuresCol", self.getFeaturesCol()) _java_obj.set("labelCol", self.getLabelCol()) _java_obj.set("predictionCol", self.getPredictionCol()) return _java_obj
python
def _to_java(self): """ Transfer this instance to a Java OneVsRestModel. Used for ML persistence. :return: Java object equivalent to this instance. """ sc = SparkContext._active_spark_context java_models = [model._to_java() for model in self.models] java_models_array = JavaWrapper._new_java_array( java_models, sc._gateway.jvm.org.apache.spark.ml.classification.ClassificationModel) metadata = JavaParams._new_java_obj("org.apache.spark.sql.types.Metadata") _java_obj = JavaParams._new_java_obj("org.apache.spark.ml.classification.OneVsRestModel", self.uid, metadata.empty(), java_models_array) _java_obj.set("classifier", self.getClassifier()._to_java()) _java_obj.set("featuresCol", self.getFeaturesCol()) _java_obj.set("labelCol", self.getLabelCol()) _java_obj.set("predictionCol", self.getPredictionCol()) return _java_obj
[ "def", "_to_java", "(", "self", ")", ":", "sc", "=", "SparkContext", ".", "_active_spark_context", "java_models", "=", "[", "model", ".", "_to_java", "(", ")", "for", "model", "in", "self", ".", "models", "]", "java_models_array", "=", "JavaWrapper", ".", "_new_java_array", "(", "java_models", ",", "sc", ".", "_gateway", ".", "jvm", ".", "org", ".", "apache", ".", "spark", ".", "ml", ".", "classification", ".", "ClassificationModel", ")", "metadata", "=", "JavaParams", ".", "_new_java_obj", "(", "\"org.apache.spark.sql.types.Metadata\"", ")", "_java_obj", "=", "JavaParams", ".", "_new_java_obj", "(", "\"org.apache.spark.ml.classification.OneVsRestModel\"", ",", "self", ".", "uid", ",", "metadata", ".", "empty", "(", ")", ",", "java_models_array", ")", "_java_obj", ".", "set", "(", "\"classifier\"", ",", "self", ".", "getClassifier", "(", ")", ".", "_to_java", "(", ")", ")", "_java_obj", ".", "set", "(", "\"featuresCol\"", ",", "self", ".", "getFeaturesCol", "(", ")", ")", "_java_obj", ".", "set", "(", "\"labelCol\"", ",", "self", ".", "getLabelCol", "(", ")", ")", "_java_obj", ".", "set", "(", "\"predictionCol\"", ",", "self", ".", "getPredictionCol", "(", ")", ")", "return", "_java_obj" ]
Transfer this instance to a Java OneVsRestModel. Used for ML persistence. :return: Java object equivalent to this instance.
[ "Transfer", "this", "instance", "to", "a", "Java", "OneVsRestModel", ".", "Used", "for", "ML", "persistence", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/classification.py#L2077-L2094
19,279
apache/spark
python/pyspark/util.py
_exception_message
def _exception_message(excp): """Return the message from an exception as either a str or unicode object. Supports both Python 2 and Python 3. >>> msg = "Exception message" >>> excp = Exception(msg) >>> msg == _exception_message(excp) True >>> msg = u"unicöde" >>> excp = Exception(msg) >>> msg == _exception_message(excp) True """ if isinstance(excp, Py4JJavaError): # 'Py4JJavaError' doesn't contain the stack trace available on the Java side in 'message' # attribute in Python 2. We should call 'str' function on this exception in general but # 'Py4JJavaError' has an issue about addressing non-ascii strings. So, here we work # around by the direct call, '__str__()'. Please see SPARK-23517. return excp.__str__() if hasattr(excp, "message"): return excp.message return str(excp)
python
def _exception_message(excp): """Return the message from an exception as either a str or unicode object. Supports both Python 2 and Python 3. >>> msg = "Exception message" >>> excp = Exception(msg) >>> msg == _exception_message(excp) True >>> msg = u"unicöde" >>> excp = Exception(msg) >>> msg == _exception_message(excp) True """ if isinstance(excp, Py4JJavaError): # 'Py4JJavaError' doesn't contain the stack trace available on the Java side in 'message' # attribute in Python 2. We should call 'str' function on this exception in general but # 'Py4JJavaError' has an issue about addressing non-ascii strings. So, here we work # around by the direct call, '__str__()'. Please see SPARK-23517. return excp.__str__() if hasattr(excp, "message"): return excp.message return str(excp)
[ "def", "_exception_message", "(", "excp", ")", ":", "if", "isinstance", "(", "excp", ",", "Py4JJavaError", ")", ":", "# 'Py4JJavaError' doesn't contain the stack trace available on the Java side in 'message'", "# attribute in Python 2. We should call 'str' function on this exception in general but", "# 'Py4JJavaError' has an issue about addressing non-ascii strings. So, here we work", "# around by the direct call, '__str__()'. Please see SPARK-23517.", "return", "excp", ".", "__str__", "(", ")", "if", "hasattr", "(", "excp", ",", "\"message\"", ")", ":", "return", "excp", ".", "message", "return", "str", "(", "excp", ")" ]
Return the message from an exception as either a str or unicode object. Supports both Python 2 and Python 3. >>> msg = "Exception message" >>> excp = Exception(msg) >>> msg == _exception_message(excp) True >>> msg = u"unicöde" >>> excp = Exception(msg) >>> msg == _exception_message(excp) True
[ "Return", "the", "message", "from", "an", "exception", "as", "either", "a", "str", "or", "unicode", "object", ".", "Supports", "both", "Python", "2", "and", "Python", "3", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/util.py#L27-L49
19,280
apache/spark
python/pyspark/util.py
_get_argspec
def _get_argspec(f): """ Get argspec of a function. Supports both Python 2 and Python 3. """ if sys.version_info[0] < 3: argspec = inspect.getargspec(f) else: # `getargspec` is deprecated since python3.0 (incompatible with function annotations). # See SPARK-23569. argspec = inspect.getfullargspec(f) return argspec
python
def _get_argspec(f): """ Get argspec of a function. Supports both Python 2 and Python 3. """ if sys.version_info[0] < 3: argspec = inspect.getargspec(f) else: # `getargspec` is deprecated since python3.0 (incompatible with function annotations). # See SPARK-23569. argspec = inspect.getfullargspec(f) return argspec
[ "def", "_get_argspec", "(", "f", ")", ":", "if", "sys", ".", "version_info", "[", "0", "]", "<", "3", ":", "argspec", "=", "inspect", ".", "getargspec", "(", "f", ")", "else", ":", "# `getargspec` is deprecated since python3.0 (incompatible with function annotations).", "# See SPARK-23569.", "argspec", "=", "inspect", ".", "getfullargspec", "(", "f", ")", "return", "argspec" ]
Get argspec of a function. Supports both Python 2 and Python 3.
[ "Get", "argspec", "of", "a", "function", ".", "Supports", "both", "Python", "2", "and", "Python", "3", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/util.py#L52-L62
19,281
apache/spark
python/pyspark/util.py
fail_on_stopiteration
def fail_on_stopiteration(f): """ Wraps the input function to fail on 'StopIteration' by raising a 'RuntimeError' prevents silent loss of data when 'f' is used in a for loop in Spark code """ def wrapper(*args, **kwargs): try: return f(*args, **kwargs) except StopIteration as exc: raise RuntimeError( "Caught StopIteration thrown from user's code; failing the task", exc ) return wrapper
python
def fail_on_stopiteration(f): """ Wraps the input function to fail on 'StopIteration' by raising a 'RuntimeError' prevents silent loss of data when 'f' is used in a for loop in Spark code """ def wrapper(*args, **kwargs): try: return f(*args, **kwargs) except StopIteration as exc: raise RuntimeError( "Caught StopIteration thrown from user's code; failing the task", exc ) return wrapper
[ "def", "fail_on_stopiteration", "(", "f", ")", ":", "def", "wrapper", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "try", ":", "return", "f", "(", "*", "args", ",", "*", "*", "kwargs", ")", "except", "StopIteration", "as", "exc", ":", "raise", "RuntimeError", "(", "\"Caught StopIteration thrown from user's code; failing the task\"", ",", "exc", ")", "return", "wrapper" ]
Wraps the input function to fail on 'StopIteration' by raising a 'RuntimeError' prevents silent loss of data when 'f' is used in a for loop in Spark code
[ "Wraps", "the", "input", "function", "to", "fail", "on", "StopIteration", "by", "raising", "a", "RuntimeError", "prevents", "silent", "loss", "of", "data", "when", "f", "is", "used", "in", "a", "for", "loop", "in", "Spark", "code" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/util.py#L92-L106
19,282
apache/spark
python/pyspark/context.py
SparkContext._ensure_initialized
def _ensure_initialized(cls, instance=None, gateway=None, conf=None): """ Checks whether a SparkContext is initialized or not. Throws error if a SparkContext is already running. """ with SparkContext._lock: if not SparkContext._gateway: SparkContext._gateway = gateway or launch_gateway(conf) SparkContext._jvm = SparkContext._gateway.jvm if instance: if (SparkContext._active_spark_context and SparkContext._active_spark_context != instance): currentMaster = SparkContext._active_spark_context.master currentAppName = SparkContext._active_spark_context.appName callsite = SparkContext._active_spark_context._callsite # Raise error if there is already a running Spark context raise ValueError( "Cannot run multiple SparkContexts at once; " "existing SparkContext(app=%s, master=%s)" " created by %s at %s:%s " % (currentAppName, currentMaster, callsite.function, callsite.file, callsite.linenum)) else: SparkContext._active_spark_context = instance
python
def _ensure_initialized(cls, instance=None, gateway=None, conf=None): """ Checks whether a SparkContext is initialized or not. Throws error if a SparkContext is already running. """ with SparkContext._lock: if not SparkContext._gateway: SparkContext._gateway = gateway or launch_gateway(conf) SparkContext._jvm = SparkContext._gateway.jvm if instance: if (SparkContext._active_spark_context and SparkContext._active_spark_context != instance): currentMaster = SparkContext._active_spark_context.master currentAppName = SparkContext._active_spark_context.appName callsite = SparkContext._active_spark_context._callsite # Raise error if there is already a running Spark context raise ValueError( "Cannot run multiple SparkContexts at once; " "existing SparkContext(app=%s, master=%s)" " created by %s at %s:%s " % (currentAppName, currentMaster, callsite.function, callsite.file, callsite.linenum)) else: SparkContext._active_spark_context = instance
[ "def", "_ensure_initialized", "(", "cls", ",", "instance", "=", "None", ",", "gateway", "=", "None", ",", "conf", "=", "None", ")", ":", "with", "SparkContext", ".", "_lock", ":", "if", "not", "SparkContext", ".", "_gateway", ":", "SparkContext", ".", "_gateway", "=", "gateway", "or", "launch_gateway", "(", "conf", ")", "SparkContext", ".", "_jvm", "=", "SparkContext", ".", "_gateway", ".", "jvm", "if", "instance", ":", "if", "(", "SparkContext", ".", "_active_spark_context", "and", "SparkContext", ".", "_active_spark_context", "!=", "instance", ")", ":", "currentMaster", "=", "SparkContext", ".", "_active_spark_context", ".", "master", "currentAppName", "=", "SparkContext", ".", "_active_spark_context", ".", "appName", "callsite", "=", "SparkContext", ".", "_active_spark_context", ".", "_callsite", "# Raise error if there is already a running Spark context", "raise", "ValueError", "(", "\"Cannot run multiple SparkContexts at once; \"", "\"existing SparkContext(app=%s, master=%s)\"", "\" created by %s at %s:%s \"", "%", "(", "currentAppName", ",", "currentMaster", ",", "callsite", ".", "function", ",", "callsite", ".", "file", ",", "callsite", ".", "linenum", ")", ")", "else", ":", "SparkContext", ".", "_active_spark_context", "=", "instance" ]
Checks whether a SparkContext is initialized or not. Throws error if a SparkContext is already running.
[ "Checks", "whether", "a", "SparkContext", "is", "initialized", "or", "not", ".", "Throws", "error", "if", "a", "SparkContext", "is", "already", "running", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/context.py#L303-L328
19,283
apache/spark
python/pyspark/context.py
SparkContext.getOrCreate
def getOrCreate(cls, conf=None): """ Get or instantiate a SparkContext and register it as a singleton object. :param conf: SparkConf (optional) """ with SparkContext._lock: if SparkContext._active_spark_context is None: SparkContext(conf=conf or SparkConf()) return SparkContext._active_spark_context
python
def getOrCreate(cls, conf=None): """ Get or instantiate a SparkContext and register it as a singleton object. :param conf: SparkConf (optional) """ with SparkContext._lock: if SparkContext._active_spark_context is None: SparkContext(conf=conf or SparkConf()) return SparkContext._active_spark_context
[ "def", "getOrCreate", "(", "cls", ",", "conf", "=", "None", ")", ":", "with", "SparkContext", ".", "_lock", ":", "if", "SparkContext", ".", "_active_spark_context", "is", "None", ":", "SparkContext", "(", "conf", "=", "conf", "or", "SparkConf", "(", ")", ")", "return", "SparkContext", ".", "_active_spark_context" ]
Get or instantiate a SparkContext and register it as a singleton object. :param conf: SparkConf (optional)
[ "Get", "or", "instantiate", "a", "SparkContext", "and", "register", "it", "as", "a", "singleton", "object", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/context.py#L353-L362
19,284
apache/spark
python/pyspark/context.py
SparkContext.setSystemProperty
def setSystemProperty(cls, key, value): """ Set a Java system property, such as spark.executor.memory. This must must be invoked before instantiating SparkContext. """ SparkContext._ensure_initialized() SparkContext._jvm.java.lang.System.setProperty(key, value)
python
def setSystemProperty(cls, key, value): """ Set a Java system property, such as spark.executor.memory. This must must be invoked before instantiating SparkContext. """ SparkContext._ensure_initialized() SparkContext._jvm.java.lang.System.setProperty(key, value)
[ "def", "setSystemProperty", "(", "cls", ",", "key", ",", "value", ")", ":", "SparkContext", ".", "_ensure_initialized", "(", ")", "SparkContext", ".", "_jvm", ".", "java", ".", "lang", ".", "System", ".", "setProperty", "(", "key", ",", "value", ")" ]
Set a Java system property, such as spark.executor.memory. This must must be invoked before instantiating SparkContext.
[ "Set", "a", "Java", "system", "property", "such", "as", "spark", ".", "executor", ".", "memory", ".", "This", "must", "must", "be", "invoked", "before", "instantiating", "SparkContext", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/context.py#L372-L378
19,285
apache/spark
python/pyspark/context.py
SparkContext.stop
def stop(self): """ Shut down the SparkContext. """ if getattr(self, "_jsc", None): try: self._jsc.stop() except Py4JError: # Case: SPARK-18523 warnings.warn( 'Unable to cleanly shutdown Spark JVM process.' ' It is possible that the process has crashed,' ' been killed or may also be in a zombie state.', RuntimeWarning ) finally: self._jsc = None if getattr(self, "_accumulatorServer", None): self._accumulatorServer.shutdown() self._accumulatorServer = None with SparkContext._lock: SparkContext._active_spark_context = None
python
def stop(self): """ Shut down the SparkContext. """ if getattr(self, "_jsc", None): try: self._jsc.stop() except Py4JError: # Case: SPARK-18523 warnings.warn( 'Unable to cleanly shutdown Spark JVM process.' ' It is possible that the process has crashed,' ' been killed or may also be in a zombie state.', RuntimeWarning ) finally: self._jsc = None if getattr(self, "_accumulatorServer", None): self._accumulatorServer.shutdown() self._accumulatorServer = None with SparkContext._lock: SparkContext._active_spark_context = None
[ "def", "stop", "(", "self", ")", ":", "if", "getattr", "(", "self", ",", "\"_jsc\"", ",", "None", ")", ":", "try", ":", "self", ".", "_jsc", ".", "stop", "(", ")", "except", "Py4JError", ":", "# Case: SPARK-18523", "warnings", ".", "warn", "(", "'Unable to cleanly shutdown Spark JVM process.'", "' It is possible that the process has crashed,'", "' been killed or may also be in a zombie state.'", ",", "RuntimeWarning", ")", "finally", ":", "self", ".", "_jsc", "=", "None", "if", "getattr", "(", "self", ",", "\"_accumulatorServer\"", ",", "None", ")", ":", "self", ".", "_accumulatorServer", ".", "shutdown", "(", ")", "self", ".", "_accumulatorServer", "=", "None", "with", "SparkContext", ".", "_lock", ":", "SparkContext", ".", "_active_spark_context", "=", "None" ]
Shut down the SparkContext.
[ "Shut", "down", "the", "SparkContext", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/context.py#L427-L448
19,286
apache/spark
python/pyspark/context.py
SparkContext.parallelize
def parallelize(self, c, numSlices=None): """ Distribute a local Python collection to form an RDD. Using xrange is recommended if the input represents a range for performance. >>> sc.parallelize([0, 2, 3, 4, 6], 5).glom().collect() [[0], [2], [3], [4], [6]] >>> sc.parallelize(xrange(0, 6, 2), 5).glom().collect() [[], [0], [], [2], [4]] """ numSlices = int(numSlices) if numSlices is not None else self.defaultParallelism if isinstance(c, xrange): size = len(c) if size == 0: return self.parallelize([], numSlices) step = c[1] - c[0] if size > 1 else 1 start0 = c[0] def getStart(split): return start0 + int((split * size / numSlices)) * step def f(split, iterator): # it's an empty iterator here but we need this line for triggering the # logic of signal handling in FramedSerializer.load_stream, for instance, # SpecialLengths.END_OF_DATA_SECTION in _read_with_length. Since # FramedSerializer.load_stream produces a generator, the control should # at least be in that function once. Here we do it by explicitly converting # the empty iterator to a list, thus make sure worker reuse takes effect. # See more details in SPARK-26549. assert len(list(iterator)) == 0 return xrange(getStart(split), getStart(split + 1), step) return self.parallelize([], numSlices).mapPartitionsWithIndex(f) # Make sure we distribute data evenly if it's smaller than self.batchSize if "__len__" not in dir(c): c = list(c) # Make it a list so we can compute its length batchSize = max(1, min(len(c) // numSlices, self._batchSize or 1024)) serializer = BatchedSerializer(self._unbatched_serializer, batchSize) def reader_func(temp_filename): return self._jvm.PythonRDD.readRDDFromFile(self._jsc, temp_filename, numSlices) def createRDDServer(): return self._jvm.PythonParallelizeServer(self._jsc.sc(), numSlices) jrdd = self._serialize_to_jvm(c, serializer, reader_func, createRDDServer) return RDD(jrdd, self, serializer)
python
def parallelize(self, c, numSlices=None): """ Distribute a local Python collection to form an RDD. Using xrange is recommended if the input represents a range for performance. >>> sc.parallelize([0, 2, 3, 4, 6], 5).glom().collect() [[0], [2], [3], [4], [6]] >>> sc.parallelize(xrange(0, 6, 2), 5).glom().collect() [[], [0], [], [2], [4]] """ numSlices = int(numSlices) if numSlices is not None else self.defaultParallelism if isinstance(c, xrange): size = len(c) if size == 0: return self.parallelize([], numSlices) step = c[1] - c[0] if size > 1 else 1 start0 = c[0] def getStart(split): return start0 + int((split * size / numSlices)) * step def f(split, iterator): # it's an empty iterator here but we need this line for triggering the # logic of signal handling in FramedSerializer.load_stream, for instance, # SpecialLengths.END_OF_DATA_SECTION in _read_with_length. Since # FramedSerializer.load_stream produces a generator, the control should # at least be in that function once. Here we do it by explicitly converting # the empty iterator to a list, thus make sure worker reuse takes effect. # See more details in SPARK-26549. assert len(list(iterator)) == 0 return xrange(getStart(split), getStart(split + 1), step) return self.parallelize([], numSlices).mapPartitionsWithIndex(f) # Make sure we distribute data evenly if it's smaller than self.batchSize if "__len__" not in dir(c): c = list(c) # Make it a list so we can compute its length batchSize = max(1, min(len(c) // numSlices, self._batchSize or 1024)) serializer = BatchedSerializer(self._unbatched_serializer, batchSize) def reader_func(temp_filename): return self._jvm.PythonRDD.readRDDFromFile(self._jsc, temp_filename, numSlices) def createRDDServer(): return self._jvm.PythonParallelizeServer(self._jsc.sc(), numSlices) jrdd = self._serialize_to_jvm(c, serializer, reader_func, createRDDServer) return RDD(jrdd, self, serializer)
[ "def", "parallelize", "(", "self", ",", "c", ",", "numSlices", "=", "None", ")", ":", "numSlices", "=", "int", "(", "numSlices", ")", "if", "numSlices", "is", "not", "None", "else", "self", ".", "defaultParallelism", "if", "isinstance", "(", "c", ",", "xrange", ")", ":", "size", "=", "len", "(", "c", ")", "if", "size", "==", "0", ":", "return", "self", ".", "parallelize", "(", "[", "]", ",", "numSlices", ")", "step", "=", "c", "[", "1", "]", "-", "c", "[", "0", "]", "if", "size", ">", "1", "else", "1", "start0", "=", "c", "[", "0", "]", "def", "getStart", "(", "split", ")", ":", "return", "start0", "+", "int", "(", "(", "split", "*", "size", "/", "numSlices", ")", ")", "*", "step", "def", "f", "(", "split", ",", "iterator", ")", ":", "# it's an empty iterator here but we need this line for triggering the", "# logic of signal handling in FramedSerializer.load_stream, for instance,", "# SpecialLengths.END_OF_DATA_SECTION in _read_with_length. Since", "# FramedSerializer.load_stream produces a generator, the control should", "# at least be in that function once. Here we do it by explicitly converting", "# the empty iterator to a list, thus make sure worker reuse takes effect.", "# See more details in SPARK-26549.", "assert", "len", "(", "list", "(", "iterator", ")", ")", "==", "0", "return", "xrange", "(", "getStart", "(", "split", ")", ",", "getStart", "(", "split", "+", "1", ")", ",", "step", ")", "return", "self", ".", "parallelize", "(", "[", "]", ",", "numSlices", ")", ".", "mapPartitionsWithIndex", "(", "f", ")", "# Make sure we distribute data evenly if it's smaller than self.batchSize", "if", "\"__len__\"", "not", "in", "dir", "(", "c", ")", ":", "c", "=", "list", "(", "c", ")", "# Make it a list so we can compute its length", "batchSize", "=", "max", "(", "1", ",", "min", "(", "len", "(", "c", ")", "//", "numSlices", ",", "self", ".", "_batchSize", "or", "1024", ")", ")", "serializer", "=", "BatchedSerializer", "(", "self", ".", "_unbatched_serializer", ",", "batchSize", ")", "def", "reader_func", "(", "temp_filename", ")", ":", "return", "self", ".", "_jvm", ".", "PythonRDD", ".", "readRDDFromFile", "(", "self", ".", "_jsc", ",", "temp_filename", ",", "numSlices", ")", "def", "createRDDServer", "(", ")", ":", "return", "self", ".", "_jvm", ".", "PythonParallelizeServer", "(", "self", ".", "_jsc", ".", "sc", "(", ")", ",", "numSlices", ")", "jrdd", "=", "self", ".", "_serialize_to_jvm", "(", "c", ",", "serializer", ",", "reader_func", ",", "createRDDServer", ")", "return", "RDD", "(", "jrdd", ",", "self", ",", "serializer", ")" ]
Distribute a local Python collection to form an RDD. Using xrange is recommended if the input represents a range for performance. >>> sc.parallelize([0, 2, 3, 4, 6], 5).glom().collect() [[0], [2], [3], [4], [6]] >>> sc.parallelize(xrange(0, 6, 2), 5).glom().collect() [[], [0], [], [2], [4]]
[ "Distribute", "a", "local", "Python", "collection", "to", "form", "an", "RDD", ".", "Using", "xrange", "is", "recommended", "if", "the", "input", "represents", "a", "range", "for", "performance", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/context.py#L482-L529
19,287
apache/spark
python/pyspark/context.py
SparkContext.union
def union(self, rdds): """ Build the union of a list of RDDs. This supports unions() of RDDs with different serialized formats, although this forces them to be reserialized using the default serializer: >>> path = os.path.join(tempdir, "union-text.txt") >>> with open(path, "w") as testFile: ... _ = testFile.write("Hello") >>> textFile = sc.textFile(path) >>> textFile.collect() [u'Hello'] >>> parallelized = sc.parallelize(["World!"]) >>> sorted(sc.union([textFile, parallelized]).collect()) [u'Hello', 'World!'] """ first_jrdd_deserializer = rdds[0]._jrdd_deserializer if any(x._jrdd_deserializer != first_jrdd_deserializer for x in rdds): rdds = [x._reserialize() for x in rdds] cls = SparkContext._jvm.org.apache.spark.api.java.JavaRDD jrdds = SparkContext._gateway.new_array(cls, len(rdds)) for i in range(0, len(rdds)): jrdds[i] = rdds[i]._jrdd return RDD(self._jsc.union(jrdds), self, rdds[0]._jrdd_deserializer)
python
def union(self, rdds): """ Build the union of a list of RDDs. This supports unions() of RDDs with different serialized formats, although this forces them to be reserialized using the default serializer: >>> path = os.path.join(tempdir, "union-text.txt") >>> with open(path, "w") as testFile: ... _ = testFile.write("Hello") >>> textFile = sc.textFile(path) >>> textFile.collect() [u'Hello'] >>> parallelized = sc.parallelize(["World!"]) >>> sorted(sc.union([textFile, parallelized]).collect()) [u'Hello', 'World!'] """ first_jrdd_deserializer = rdds[0]._jrdd_deserializer if any(x._jrdd_deserializer != first_jrdd_deserializer for x in rdds): rdds = [x._reserialize() for x in rdds] cls = SparkContext._jvm.org.apache.spark.api.java.JavaRDD jrdds = SparkContext._gateway.new_array(cls, len(rdds)) for i in range(0, len(rdds)): jrdds[i] = rdds[i]._jrdd return RDD(self._jsc.union(jrdds), self, rdds[0]._jrdd_deserializer)
[ "def", "union", "(", "self", ",", "rdds", ")", ":", "first_jrdd_deserializer", "=", "rdds", "[", "0", "]", ".", "_jrdd_deserializer", "if", "any", "(", "x", ".", "_jrdd_deserializer", "!=", "first_jrdd_deserializer", "for", "x", "in", "rdds", ")", ":", "rdds", "=", "[", "x", ".", "_reserialize", "(", ")", "for", "x", "in", "rdds", "]", "cls", "=", "SparkContext", ".", "_jvm", ".", "org", ".", "apache", ".", "spark", ".", "api", ".", "java", ".", "JavaRDD", "jrdds", "=", "SparkContext", ".", "_gateway", ".", "new_array", "(", "cls", ",", "len", "(", "rdds", ")", ")", "for", "i", "in", "range", "(", "0", ",", "len", "(", "rdds", ")", ")", ":", "jrdds", "[", "i", "]", "=", "rdds", "[", "i", "]", ".", "_jrdd", "return", "RDD", "(", "self", ".", "_jsc", ".", "union", "(", "jrdds", ")", ",", "self", ",", "rdds", "[", "0", "]", ".", "_jrdd_deserializer", ")" ]
Build the union of a list of RDDs. This supports unions() of RDDs with different serialized formats, although this forces them to be reserialized using the default serializer: >>> path = os.path.join(tempdir, "union-text.txt") >>> with open(path, "w") as testFile: ... _ = testFile.write("Hello") >>> textFile = sc.textFile(path) >>> textFile.collect() [u'Hello'] >>> parallelized = sc.parallelize(["World!"]) >>> sorted(sc.union([textFile, parallelized]).collect()) [u'Hello', 'World!']
[ "Build", "the", "union", "of", "a", "list", "of", "RDDs", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/context.py#L837-L862
19,288
apache/spark
python/pyspark/context.py
SparkContext._getJavaStorageLevel
def _getJavaStorageLevel(self, storageLevel): """ Returns a Java StorageLevel based on a pyspark.StorageLevel. """ if not isinstance(storageLevel, StorageLevel): raise Exception("storageLevel must be of type pyspark.StorageLevel") newStorageLevel = self._jvm.org.apache.spark.storage.StorageLevel return newStorageLevel(storageLevel.useDisk, storageLevel.useMemory, storageLevel.useOffHeap, storageLevel.deserialized, storageLevel.replication)
python
def _getJavaStorageLevel(self, storageLevel): """ Returns a Java StorageLevel based on a pyspark.StorageLevel. """ if not isinstance(storageLevel, StorageLevel): raise Exception("storageLevel must be of type pyspark.StorageLevel") newStorageLevel = self._jvm.org.apache.spark.storage.StorageLevel return newStorageLevel(storageLevel.useDisk, storageLevel.useMemory, storageLevel.useOffHeap, storageLevel.deserialized, storageLevel.replication)
[ "def", "_getJavaStorageLevel", "(", "self", ",", "storageLevel", ")", ":", "if", "not", "isinstance", "(", "storageLevel", ",", "StorageLevel", ")", ":", "raise", "Exception", "(", "\"storageLevel must be of type pyspark.StorageLevel\"", ")", "newStorageLevel", "=", "self", ".", "_jvm", ".", "org", ".", "apache", ".", "spark", ".", "storage", ".", "StorageLevel", "return", "newStorageLevel", "(", "storageLevel", ".", "useDisk", ",", "storageLevel", ".", "useMemory", ",", "storageLevel", ".", "useOffHeap", ",", "storageLevel", ".", "deserialized", ",", "storageLevel", ".", "replication", ")" ]
Returns a Java StorageLevel based on a pyspark.StorageLevel.
[ "Returns", "a", "Java", "StorageLevel", "based", "on", "a", "pyspark", ".", "StorageLevel", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/context.py#L949-L961
19,289
apache/spark
python/pyspark/context.py
SparkContext.setJobGroup
def setJobGroup(self, groupId, description, interruptOnCancel=False): """ Assigns a group ID to all the jobs started by this thread until the group ID is set to a different value or cleared. Often, a unit of execution in an application consists of multiple Spark actions or jobs. Application programmers can use this method to group all those jobs together and give a group description. Once set, the Spark web UI will associate such jobs with this group. The application can use L{SparkContext.cancelJobGroup} to cancel all running jobs in this group. >>> import threading >>> from time import sleep >>> result = "Not Set" >>> lock = threading.Lock() >>> def map_func(x): ... sleep(100) ... raise Exception("Task should have been cancelled") >>> def start_job(x): ... global result ... try: ... sc.setJobGroup("job_to_cancel", "some description") ... result = sc.parallelize(range(x)).map(map_func).collect() ... except Exception as e: ... result = "Cancelled" ... lock.release() >>> def stop_job(): ... sleep(5) ... sc.cancelJobGroup("job_to_cancel") >>> suppress = lock.acquire() >>> suppress = threading.Thread(target=start_job, args=(10,)).start() >>> suppress = threading.Thread(target=stop_job).start() >>> suppress = lock.acquire() >>> print(result) Cancelled If interruptOnCancel is set to true for the job group, then job cancellation will result in Thread.interrupt() being called on the job's executor threads. This is useful to help ensure that the tasks are actually stopped in a timely manner, but is off by default due to HDFS-1208, where HDFS may respond to Thread.interrupt() by marking nodes as dead. """ self._jsc.setJobGroup(groupId, description, interruptOnCancel)
python
def setJobGroup(self, groupId, description, interruptOnCancel=False): """ Assigns a group ID to all the jobs started by this thread until the group ID is set to a different value or cleared. Often, a unit of execution in an application consists of multiple Spark actions or jobs. Application programmers can use this method to group all those jobs together and give a group description. Once set, the Spark web UI will associate such jobs with this group. The application can use L{SparkContext.cancelJobGroup} to cancel all running jobs in this group. >>> import threading >>> from time import sleep >>> result = "Not Set" >>> lock = threading.Lock() >>> def map_func(x): ... sleep(100) ... raise Exception("Task should have been cancelled") >>> def start_job(x): ... global result ... try: ... sc.setJobGroup("job_to_cancel", "some description") ... result = sc.parallelize(range(x)).map(map_func).collect() ... except Exception as e: ... result = "Cancelled" ... lock.release() >>> def stop_job(): ... sleep(5) ... sc.cancelJobGroup("job_to_cancel") >>> suppress = lock.acquire() >>> suppress = threading.Thread(target=start_job, args=(10,)).start() >>> suppress = threading.Thread(target=stop_job).start() >>> suppress = lock.acquire() >>> print(result) Cancelled If interruptOnCancel is set to true for the job group, then job cancellation will result in Thread.interrupt() being called on the job's executor threads. This is useful to help ensure that the tasks are actually stopped in a timely manner, but is off by default due to HDFS-1208, where HDFS may respond to Thread.interrupt() by marking nodes as dead. """ self._jsc.setJobGroup(groupId, description, interruptOnCancel)
[ "def", "setJobGroup", "(", "self", ",", "groupId", ",", "description", ",", "interruptOnCancel", "=", "False", ")", ":", "self", ".", "_jsc", ".", "setJobGroup", "(", "groupId", ",", "description", ",", "interruptOnCancel", ")" ]
Assigns a group ID to all the jobs started by this thread until the group ID is set to a different value or cleared. Often, a unit of execution in an application consists of multiple Spark actions or jobs. Application programmers can use this method to group all those jobs together and give a group description. Once set, the Spark web UI will associate such jobs with this group. The application can use L{SparkContext.cancelJobGroup} to cancel all running jobs in this group. >>> import threading >>> from time import sleep >>> result = "Not Set" >>> lock = threading.Lock() >>> def map_func(x): ... sleep(100) ... raise Exception("Task should have been cancelled") >>> def start_job(x): ... global result ... try: ... sc.setJobGroup("job_to_cancel", "some description") ... result = sc.parallelize(range(x)).map(map_func).collect() ... except Exception as e: ... result = "Cancelled" ... lock.release() >>> def stop_job(): ... sleep(5) ... sc.cancelJobGroup("job_to_cancel") >>> suppress = lock.acquire() >>> suppress = threading.Thread(target=start_job, args=(10,)).start() >>> suppress = threading.Thread(target=stop_job).start() >>> suppress = lock.acquire() >>> print(result) Cancelled If interruptOnCancel is set to true for the job group, then job cancellation will result in Thread.interrupt() being called on the job's executor threads. This is useful to help ensure that the tasks are actually stopped in a timely manner, but is off by default due to HDFS-1208, where HDFS may respond to Thread.interrupt() by marking nodes as dead.
[ "Assigns", "a", "group", "ID", "to", "all", "the", "jobs", "started", "by", "this", "thread", "until", "the", "group", "ID", "is", "set", "to", "a", "different", "value", "or", "cleared", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/context.py#L963-L1005
19,290
apache/spark
python/pyspark/context.py
SparkContext.runJob
def runJob(self, rdd, partitionFunc, partitions=None, allowLocal=False): """ Executes the given partitionFunc on the specified set of partitions, returning the result as an array of elements. If 'partitions' is not specified, this will run over all partitions. >>> myRDD = sc.parallelize(range(6), 3) >>> sc.runJob(myRDD, lambda part: [x * x for x in part]) [0, 1, 4, 9, 16, 25] >>> myRDD = sc.parallelize(range(6), 3) >>> sc.runJob(myRDD, lambda part: [x * x for x in part], [0, 2], True) [0, 1, 16, 25] """ if partitions is None: partitions = range(rdd._jrdd.partitions().size()) # Implementation note: This is implemented as a mapPartitions followed # by runJob() in order to avoid having to pass a Python lambda into # SparkContext#runJob. mappedRDD = rdd.mapPartitions(partitionFunc) sock_info = self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd, partitions) return list(_load_from_socket(sock_info, mappedRDD._jrdd_deserializer))
python
def runJob(self, rdd, partitionFunc, partitions=None, allowLocal=False): """ Executes the given partitionFunc on the specified set of partitions, returning the result as an array of elements. If 'partitions' is not specified, this will run over all partitions. >>> myRDD = sc.parallelize(range(6), 3) >>> sc.runJob(myRDD, lambda part: [x * x for x in part]) [0, 1, 4, 9, 16, 25] >>> myRDD = sc.parallelize(range(6), 3) >>> sc.runJob(myRDD, lambda part: [x * x for x in part], [0, 2], True) [0, 1, 16, 25] """ if partitions is None: partitions = range(rdd._jrdd.partitions().size()) # Implementation note: This is implemented as a mapPartitions followed # by runJob() in order to avoid having to pass a Python lambda into # SparkContext#runJob. mappedRDD = rdd.mapPartitions(partitionFunc) sock_info = self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd, partitions) return list(_load_from_socket(sock_info, mappedRDD._jrdd_deserializer))
[ "def", "runJob", "(", "self", ",", "rdd", ",", "partitionFunc", ",", "partitions", "=", "None", ",", "allowLocal", "=", "False", ")", ":", "if", "partitions", "is", "None", ":", "partitions", "=", "range", "(", "rdd", ".", "_jrdd", ".", "partitions", "(", ")", ".", "size", "(", ")", ")", "# Implementation note: This is implemented as a mapPartitions followed", "# by runJob() in order to avoid having to pass a Python lambda into", "# SparkContext#runJob.", "mappedRDD", "=", "rdd", ".", "mapPartitions", "(", "partitionFunc", ")", "sock_info", "=", "self", ".", "_jvm", ".", "PythonRDD", ".", "runJob", "(", "self", ".", "_jsc", ".", "sc", "(", ")", ",", "mappedRDD", ".", "_jrdd", ",", "partitions", ")", "return", "list", "(", "_load_from_socket", "(", "sock_info", ",", "mappedRDD", ".", "_jrdd_deserializer", ")", ")" ]
Executes the given partitionFunc on the specified set of partitions, returning the result as an array of elements. If 'partitions' is not specified, this will run over all partitions. >>> myRDD = sc.parallelize(range(6), 3) >>> sc.runJob(myRDD, lambda part: [x * x for x in part]) [0, 1, 4, 9, 16, 25] >>> myRDD = sc.parallelize(range(6), 3) >>> sc.runJob(myRDD, lambda part: [x * x for x in part], [0, 2], True) [0, 1, 16, 25]
[ "Executes", "the", "given", "partitionFunc", "on", "the", "specified", "set", "of", "partitions", "returning", "the", "result", "as", "an", "array", "of", "elements", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/context.py#L1052-L1075
19,291
apache/spark
python/pyspark/mllib/fpm.py
FPGrowth.train
def train(cls, data, minSupport=0.3, numPartitions=-1): """ Computes an FP-Growth model that contains frequent itemsets. :param data: The input data set, each element contains a transaction. :param minSupport: The minimal support level. (default: 0.3) :param numPartitions: The number of partitions used by parallel FP-growth. A value of -1 will use the same number as input data. (default: -1) """ model = callMLlibFunc("trainFPGrowthModel", data, float(minSupport), int(numPartitions)) return FPGrowthModel(model)
python
def train(cls, data, minSupport=0.3, numPartitions=-1): """ Computes an FP-Growth model that contains frequent itemsets. :param data: The input data set, each element contains a transaction. :param minSupport: The minimal support level. (default: 0.3) :param numPartitions: The number of partitions used by parallel FP-growth. A value of -1 will use the same number as input data. (default: -1) """ model = callMLlibFunc("trainFPGrowthModel", data, float(minSupport), int(numPartitions)) return FPGrowthModel(model)
[ "def", "train", "(", "cls", ",", "data", ",", "minSupport", "=", "0.3", ",", "numPartitions", "=", "-", "1", ")", ":", "model", "=", "callMLlibFunc", "(", "\"trainFPGrowthModel\"", ",", "data", ",", "float", "(", "minSupport", ")", ",", "int", "(", "numPartitions", ")", ")", "return", "FPGrowthModel", "(", "model", ")" ]
Computes an FP-Growth model that contains frequent itemsets. :param data: The input data set, each element contains a transaction. :param minSupport: The minimal support level. (default: 0.3) :param numPartitions: The number of partitions used by parallel FP-growth. A value of -1 will use the same number as input data. (default: -1)
[ "Computes", "an", "FP", "-", "Growth", "model", "that", "contains", "frequent", "itemsets", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/fpm.py#L78-L93
19,292
apache/spark
python/pyspark/mllib/fpm.py
PrefixSpan.train
def train(cls, data, minSupport=0.1, maxPatternLength=10, maxLocalProjDBSize=32000000): """ Finds the complete set of frequent sequential patterns in the input sequences of itemsets. :param data: The input data set, each element contains a sequence of itemsets. :param minSupport: The minimal support level of the sequential pattern, any pattern that appears more than (minSupport * size-of-the-dataset) times will be output. (default: 0.1) :param maxPatternLength: The maximal length of the sequential pattern, any pattern that appears less than maxPatternLength will be output. (default: 10) :param maxLocalProjDBSize: The maximum number of items (including delimiters used in the internal storage format) allowed in a projected database before local processing. If a projected database exceeds this size, another iteration of distributed prefix growth is run. (default: 32000000) """ model = callMLlibFunc("trainPrefixSpanModel", data, minSupport, maxPatternLength, maxLocalProjDBSize) return PrefixSpanModel(model)
python
def train(cls, data, minSupport=0.1, maxPatternLength=10, maxLocalProjDBSize=32000000): """ Finds the complete set of frequent sequential patterns in the input sequences of itemsets. :param data: The input data set, each element contains a sequence of itemsets. :param minSupport: The minimal support level of the sequential pattern, any pattern that appears more than (minSupport * size-of-the-dataset) times will be output. (default: 0.1) :param maxPatternLength: The maximal length of the sequential pattern, any pattern that appears less than maxPatternLength will be output. (default: 10) :param maxLocalProjDBSize: The maximum number of items (including delimiters used in the internal storage format) allowed in a projected database before local processing. If a projected database exceeds this size, another iteration of distributed prefix growth is run. (default: 32000000) """ model = callMLlibFunc("trainPrefixSpanModel", data, minSupport, maxPatternLength, maxLocalProjDBSize) return PrefixSpanModel(model)
[ "def", "train", "(", "cls", ",", "data", ",", "minSupport", "=", "0.1", ",", "maxPatternLength", "=", "10", ",", "maxLocalProjDBSize", "=", "32000000", ")", ":", "model", "=", "callMLlibFunc", "(", "\"trainPrefixSpanModel\"", ",", "data", ",", "minSupport", ",", "maxPatternLength", ",", "maxLocalProjDBSize", ")", "return", "PrefixSpanModel", "(", "model", ")" ]
Finds the complete set of frequent sequential patterns in the input sequences of itemsets. :param data: The input data set, each element contains a sequence of itemsets. :param minSupport: The minimal support level of the sequential pattern, any pattern that appears more than (minSupport * size-of-the-dataset) times will be output. (default: 0.1) :param maxPatternLength: The maximal length of the sequential pattern, any pattern that appears less than maxPatternLength will be output. (default: 10) :param maxLocalProjDBSize: The maximum number of items (including delimiters used in the internal storage format) allowed in a projected database before local processing. If a projected database exceeds this size, another iteration of distributed prefix growth is run. (default: 32000000)
[ "Finds", "the", "complete", "set", "of", "frequent", "sequential", "patterns", "in", "the", "input", "sequences", "of", "itemsets", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/fpm.py#L140-L166
19,293
apache/spark
python/pyspark/mllib/stat/KernelDensity.py
KernelDensity.setSample
def setSample(self, sample): """Set sample points from the population. Should be a RDD""" if not isinstance(sample, RDD): raise TypeError("samples should be a RDD, received %s" % type(sample)) self._sample = sample
python
def setSample(self, sample): """Set sample points from the population. Should be a RDD""" if not isinstance(sample, RDD): raise TypeError("samples should be a RDD, received %s" % type(sample)) self._sample = sample
[ "def", "setSample", "(", "self", ",", "sample", ")", ":", "if", "not", "isinstance", "(", "sample", ",", "RDD", ")", ":", "raise", "TypeError", "(", "\"samples should be a RDD, received %s\"", "%", "type", "(", "sample", ")", ")", "self", ".", "_sample", "=", "sample" ]
Set sample points from the population. Should be a RDD
[ "Set", "sample", "points", "from", "the", "population", ".", "Should", "be", "a", "RDD" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/stat/KernelDensity.py#L48-L52
19,294
apache/spark
python/pyspark/mllib/stat/KernelDensity.py
KernelDensity.estimate
def estimate(self, points): """Estimate the probability density at points""" points = list(points) densities = callMLlibFunc( "estimateKernelDensity", self._sample, self._bandwidth, points) return np.asarray(densities)
python
def estimate(self, points): """Estimate the probability density at points""" points = list(points) densities = callMLlibFunc( "estimateKernelDensity", self._sample, self._bandwidth, points) return np.asarray(densities)
[ "def", "estimate", "(", "self", ",", "points", ")", ":", "points", "=", "list", "(", "points", ")", "densities", "=", "callMLlibFunc", "(", "\"estimateKernelDensity\"", ",", "self", ".", "_sample", ",", "self", ".", "_bandwidth", ",", "points", ")", "return", "np", ".", "asarray", "(", "densities", ")" ]
Estimate the probability density at points
[ "Estimate", "the", "probability", "density", "at", "points" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/stat/KernelDensity.py#L54-L59
19,295
apache/spark
python/pyspark/accumulators.py
_start_update_server
def _start_update_server(auth_token): """Start a TCP server to receive accumulator updates in a daemon thread, and returns it""" server = AccumulatorServer(("localhost", 0), _UpdateRequestHandler, auth_token) thread = threading.Thread(target=server.serve_forever) thread.daemon = True thread.start() return server
python
def _start_update_server(auth_token): """Start a TCP server to receive accumulator updates in a daemon thread, and returns it""" server = AccumulatorServer(("localhost", 0), _UpdateRequestHandler, auth_token) thread = threading.Thread(target=server.serve_forever) thread.daemon = True thread.start() return server
[ "def", "_start_update_server", "(", "auth_token", ")", ":", "server", "=", "AccumulatorServer", "(", "(", "\"localhost\"", ",", "0", ")", ",", "_UpdateRequestHandler", ",", "auth_token", ")", "thread", "=", "threading", ".", "Thread", "(", "target", "=", "server", ".", "serve_forever", ")", "thread", ".", "daemon", "=", "True", "thread", ".", "start", "(", ")", "return", "server" ]
Start a TCP server to receive accumulator updates in a daemon thread, and returns it
[ "Start", "a", "TCP", "server", "to", "receive", "accumulator", "updates", "in", "a", "daemon", "thread", "and", "returns", "it" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/accumulators.py#L289-L295
19,296
apache/spark
python/pyspark/accumulators.py
Accumulator.add
def add(self, term): """Adds a term to this accumulator's value""" self._value = self.accum_param.addInPlace(self._value, term)
python
def add(self, term): """Adds a term to this accumulator's value""" self._value = self.accum_param.addInPlace(self._value, term)
[ "def", "add", "(", "self", ",", "term", ")", ":", "self", ".", "_value", "=", "self", ".", "accum_param", ".", "addInPlace", "(", "self", ".", "_value", ",", "term", ")" ]
Adds a term to this accumulator's value
[ "Adds", "a", "term", "to", "this", "accumulator", "s", "value" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/accumulators.py#L163-L165
19,297
apache/spark
python/pyspark/mllib/random.py
RandomRDDs.normalRDD
def normalRDD(sc, size, numPartitions=None, seed=None): """ Generates an RDD comprised of i.i.d. samples from the standard normal distribution. To transform the distribution in the generated RDD from standard normal to some other normal N(mean, sigma^2), use C{RandomRDDs.normal(sc, n, p, seed)\ .map(lambda v: mean + sigma * v)} :param sc: SparkContext used to create the RDD. :param size: Size of the RDD. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of float comprised of i.i.d. samples ~ N(0.0, 1.0). >>> x = RandomRDDs.normalRDD(sc, 1000, seed=1) >>> stats = x.stats() >>> stats.count() 1000 >>> abs(stats.mean() - 0.0) < 0.1 True >>> abs(stats.stdev() - 1.0) < 0.1 True """ return callMLlibFunc("normalRDD", sc._jsc, size, numPartitions, seed)
python
def normalRDD(sc, size, numPartitions=None, seed=None): """ Generates an RDD comprised of i.i.d. samples from the standard normal distribution. To transform the distribution in the generated RDD from standard normal to some other normal N(mean, sigma^2), use C{RandomRDDs.normal(sc, n, p, seed)\ .map(lambda v: mean + sigma * v)} :param sc: SparkContext used to create the RDD. :param size: Size of the RDD. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of float comprised of i.i.d. samples ~ N(0.0, 1.0). >>> x = RandomRDDs.normalRDD(sc, 1000, seed=1) >>> stats = x.stats() >>> stats.count() 1000 >>> abs(stats.mean() - 0.0) < 0.1 True >>> abs(stats.stdev() - 1.0) < 0.1 True """ return callMLlibFunc("normalRDD", sc._jsc, size, numPartitions, seed)
[ "def", "normalRDD", "(", "sc", ",", "size", ",", "numPartitions", "=", "None", ",", "seed", "=", "None", ")", ":", "return", "callMLlibFunc", "(", "\"normalRDD\"", ",", "sc", ".", "_jsc", ",", "size", ",", "numPartitions", ",", "seed", ")" ]
Generates an RDD comprised of i.i.d. samples from the standard normal distribution. To transform the distribution in the generated RDD from standard normal to some other normal N(mean, sigma^2), use C{RandomRDDs.normal(sc, n, p, seed)\ .map(lambda v: mean + sigma * v)} :param sc: SparkContext used to create the RDD. :param size: Size of the RDD. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of float comprised of i.i.d. samples ~ N(0.0, 1.0). >>> x = RandomRDDs.normalRDD(sc, 1000, seed=1) >>> stats = x.stats() >>> stats.count() 1000 >>> abs(stats.mean() - 0.0) < 0.1 True >>> abs(stats.stdev() - 1.0) < 0.1 True
[ "Generates", "an", "RDD", "comprised", "of", "i", ".", "i", ".", "d", ".", "samples", "from", "the", "standard", "normal", "distribution", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/random.py#L81-L106
19,298
apache/spark
python/pyspark/mllib/random.py
RandomRDDs.logNormalRDD
def logNormalRDD(sc, mean, std, size, numPartitions=None, seed=None): """ Generates an RDD comprised of i.i.d. samples from the log normal distribution with the input mean and standard distribution. :param sc: SparkContext used to create the RDD. :param mean: mean for the log Normal distribution :param std: std for the log Normal distribution :param size: Size of the RDD. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of float comprised of i.i.d. samples ~ log N(mean, std). >>> from math import sqrt, exp >>> mean = 0.0 >>> std = 1.0 >>> expMean = exp(mean + 0.5 * std * std) >>> expStd = sqrt((exp(std * std) - 1.0) * exp(2.0 * mean + std * std)) >>> x = RandomRDDs.logNormalRDD(sc, mean, std, 1000, seed=2) >>> stats = x.stats() >>> stats.count() 1000 >>> abs(stats.mean() - expMean) < 0.5 True >>> from math import sqrt >>> abs(stats.stdev() - expStd) < 0.5 True """ return callMLlibFunc("logNormalRDD", sc._jsc, float(mean), float(std), size, numPartitions, seed)
python
def logNormalRDD(sc, mean, std, size, numPartitions=None, seed=None): """ Generates an RDD comprised of i.i.d. samples from the log normal distribution with the input mean and standard distribution. :param sc: SparkContext used to create the RDD. :param mean: mean for the log Normal distribution :param std: std for the log Normal distribution :param size: Size of the RDD. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of float comprised of i.i.d. samples ~ log N(mean, std). >>> from math import sqrt, exp >>> mean = 0.0 >>> std = 1.0 >>> expMean = exp(mean + 0.5 * std * std) >>> expStd = sqrt((exp(std * std) - 1.0) * exp(2.0 * mean + std * std)) >>> x = RandomRDDs.logNormalRDD(sc, mean, std, 1000, seed=2) >>> stats = x.stats() >>> stats.count() 1000 >>> abs(stats.mean() - expMean) < 0.5 True >>> from math import sqrt >>> abs(stats.stdev() - expStd) < 0.5 True """ return callMLlibFunc("logNormalRDD", sc._jsc, float(mean), float(std), size, numPartitions, seed)
[ "def", "logNormalRDD", "(", "sc", ",", "mean", ",", "std", ",", "size", ",", "numPartitions", "=", "None", ",", "seed", "=", "None", ")", ":", "return", "callMLlibFunc", "(", "\"logNormalRDD\"", ",", "sc", ".", "_jsc", ",", "float", "(", "mean", ")", ",", "float", "(", "std", ")", ",", "size", ",", "numPartitions", ",", "seed", ")" ]
Generates an RDD comprised of i.i.d. samples from the log normal distribution with the input mean and standard distribution. :param sc: SparkContext used to create the RDD. :param mean: mean for the log Normal distribution :param std: std for the log Normal distribution :param size: Size of the RDD. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of float comprised of i.i.d. samples ~ log N(mean, std). >>> from math import sqrt, exp >>> mean = 0.0 >>> std = 1.0 >>> expMean = exp(mean + 0.5 * std * std) >>> expStd = sqrt((exp(std * std) - 1.0) * exp(2.0 * mean + std * std)) >>> x = RandomRDDs.logNormalRDD(sc, mean, std, 1000, seed=2) >>> stats = x.stats() >>> stats.count() 1000 >>> abs(stats.mean() - expMean) < 0.5 True >>> from math import sqrt >>> abs(stats.stdev() - expStd) < 0.5 True
[ "Generates", "an", "RDD", "comprised", "of", "i", ".", "i", ".", "d", ".", "samples", "from", "the", "log", "normal", "distribution", "with", "the", "input", "mean", "and", "standard", "distribution", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/random.py#L110-L139
19,299
apache/spark
python/pyspark/mllib/random.py
RandomRDDs.exponentialRDD
def exponentialRDD(sc, mean, size, numPartitions=None, seed=None): """ Generates an RDD comprised of i.i.d. samples from the Exponential distribution with the input mean. :param sc: SparkContext used to create the RDD. :param mean: Mean, or 1 / lambda, for the Exponential distribution. :param size: Size of the RDD. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of float comprised of i.i.d. samples ~ Exp(mean). >>> mean = 2.0 >>> x = RandomRDDs.exponentialRDD(sc, mean, 1000, seed=2) >>> stats = x.stats() >>> stats.count() 1000 >>> abs(stats.mean() - mean) < 0.5 True >>> from math import sqrt >>> abs(stats.stdev() - sqrt(mean)) < 0.5 True """ return callMLlibFunc("exponentialRDD", sc._jsc, float(mean), size, numPartitions, seed)
python
def exponentialRDD(sc, mean, size, numPartitions=None, seed=None): """ Generates an RDD comprised of i.i.d. samples from the Exponential distribution with the input mean. :param sc: SparkContext used to create the RDD. :param mean: Mean, or 1 / lambda, for the Exponential distribution. :param size: Size of the RDD. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of float comprised of i.i.d. samples ~ Exp(mean). >>> mean = 2.0 >>> x = RandomRDDs.exponentialRDD(sc, mean, 1000, seed=2) >>> stats = x.stats() >>> stats.count() 1000 >>> abs(stats.mean() - mean) < 0.5 True >>> from math import sqrt >>> abs(stats.stdev() - sqrt(mean)) < 0.5 True """ return callMLlibFunc("exponentialRDD", sc._jsc, float(mean), size, numPartitions, seed)
[ "def", "exponentialRDD", "(", "sc", ",", "mean", ",", "size", ",", "numPartitions", "=", "None", ",", "seed", "=", "None", ")", ":", "return", "callMLlibFunc", "(", "\"exponentialRDD\"", ",", "sc", ".", "_jsc", ",", "float", "(", "mean", ")", ",", "size", ",", "numPartitions", ",", "seed", ")" ]
Generates an RDD comprised of i.i.d. samples from the Exponential distribution with the input mean. :param sc: SparkContext used to create the RDD. :param mean: Mean, or 1 / lambda, for the Exponential distribution. :param size: Size of the RDD. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of float comprised of i.i.d. samples ~ Exp(mean). >>> mean = 2.0 >>> x = RandomRDDs.exponentialRDD(sc, mean, 1000, seed=2) >>> stats = x.stats() >>> stats.count() 1000 >>> abs(stats.mean() - mean) < 0.5 True >>> from math import sqrt >>> abs(stats.stdev() - sqrt(mean)) < 0.5 True
[ "Generates", "an", "RDD", "comprised", "of", "i", ".", "i", ".", "d", ".", "samples", "from", "the", "Exponential", "distribution", "with", "the", "input", "mean", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/random.py#L170-L193