id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
13,900
persephone-tools/persephone
persephone/datasets/na.py
get_story_prefixes
def get_story_prefixes(label_type, label_dir=LABEL_DIR): """ Gets the Na text prefixes. """ prefixes = [prefix for prefix in os.listdir(os.path.join(label_dir, "TEXT")) if prefix.endswith(".%s" % label_type)] prefixes = [os.path.splitext(os.path.join("TEXT", prefix))[0] for prefix in prefixes] return prefixes
python
def get_story_prefixes(label_type, label_dir=LABEL_DIR): """ Gets the Na text prefixes. """ prefixes = [prefix for prefix in os.listdir(os.path.join(label_dir, "TEXT")) if prefix.endswith(".%s" % label_type)] prefixes = [os.path.splitext(os.path.join("TEXT", prefix))[0] for prefix in prefixes] return prefixes
[ "def", "get_story_prefixes", "(", "label_type", ",", "label_dir", "=", "LABEL_DIR", ")", ":", "prefixes", "=", "[", "prefix", "for", "prefix", "in", "os", ".", "listdir", "(", "os", ".", "path", ".", "join", "(", "label_dir", ",", "\"TEXT\"", ")", ")", "if", "prefix", ".", "endswith", "(", "\".%s\"", "%", "label_type", ")", "]", "prefixes", "=", "[", "os", ".", "path", ".", "splitext", "(", "os", ".", "path", ".", "join", "(", "\"TEXT\"", ",", "prefix", ")", ")", "[", "0", "]", "for", "prefix", "in", "prefixes", "]", "return", "prefixes" ]
Gets the Na text prefixes.
[ "Gets", "the", "Na", "text", "prefixes", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/datasets/na.py#L404-L410
13,901
persephone-tools/persephone
persephone/datasets/na.py
get_stories
def get_stories(label_type): """ Returns a list of the stories in the Na corpus. """ prefixes = get_story_prefixes(label_type) texts = list(set([prefix.split(".")[0].split("/")[1] for prefix in prefixes])) return texts
python
def get_stories(label_type): """ Returns a list of the stories in the Na corpus. """ prefixes = get_story_prefixes(label_type) texts = list(set([prefix.split(".")[0].split("/")[1] for prefix in prefixes])) return texts
[ "def", "get_stories", "(", "label_type", ")", ":", "prefixes", "=", "get_story_prefixes", "(", "label_type", ")", "texts", "=", "list", "(", "set", "(", "[", "prefix", ".", "split", "(", "\".\"", ")", "[", "0", "]", ".", "split", "(", "\"/\"", ")", "[", "1", "]", "for", "prefix", "in", "prefixes", "]", ")", ")", "return", "texts" ]
Returns a list of the stories in the Na corpus.
[ "Returns", "a", "list", "of", "the", "stories", "in", "the", "Na", "corpus", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/datasets/na.py#L456-L461
13,902
persephone-tools/persephone
persephone/datasets/na.py
Corpus.make_data_splits
def make_data_splits(self, max_samples, valid_story=None, test_story=None): """Split data into train, valid and test groups""" # TODO Make this also work with wordlists. if valid_story or test_story: if not (valid_story and test_story): raise PersephoneException( "We need a valid story if we specify a test story " "and vice versa. This shouldn't be required but for " "now it is.") train, valid, test = make_story_splits(valid_story, test_story, max_samples, self.label_type, tgt_dir=str(self.tgt_dir)) else: train, valid, test = make_data_splits(self.label_type, train_rec_type=self.train_rec_type, max_samples=max_samples, tgt_dir=str(self.tgt_dir)) self.train_prefixes = train self.valid_prefixes = valid self.test_prefixes = test
python
def make_data_splits(self, max_samples, valid_story=None, test_story=None): """Split data into train, valid and test groups""" # TODO Make this also work with wordlists. if valid_story or test_story: if not (valid_story and test_story): raise PersephoneException( "We need a valid story if we specify a test story " "and vice versa. This shouldn't be required but for " "now it is.") train, valid, test = make_story_splits(valid_story, test_story, max_samples, self.label_type, tgt_dir=str(self.tgt_dir)) else: train, valid, test = make_data_splits(self.label_type, train_rec_type=self.train_rec_type, max_samples=max_samples, tgt_dir=str(self.tgt_dir)) self.train_prefixes = train self.valid_prefixes = valid self.test_prefixes = test
[ "def", "make_data_splits", "(", "self", ",", "max_samples", ",", "valid_story", "=", "None", ",", "test_story", "=", "None", ")", ":", "# TODO Make this also work with wordlists.", "if", "valid_story", "or", "test_story", ":", "if", "not", "(", "valid_story", "and", "test_story", ")", ":", "raise", "PersephoneException", "(", "\"We need a valid story if we specify a test story \"", "\"and vice versa. This shouldn't be required but for \"", "\"now it is.\"", ")", "train", ",", "valid", ",", "test", "=", "make_story_splits", "(", "valid_story", ",", "test_story", ",", "max_samples", ",", "self", ".", "label_type", ",", "tgt_dir", "=", "str", "(", "self", ".", "tgt_dir", ")", ")", "else", ":", "train", ",", "valid", ",", "test", "=", "make_data_splits", "(", "self", ".", "label_type", ",", "train_rec_type", "=", "self", ".", "train_rec_type", ",", "max_samples", "=", "max_samples", ",", "tgt_dir", "=", "str", "(", "self", ".", "tgt_dir", ")", ")", "self", ".", "train_prefixes", "=", "train", "self", ".", "valid_prefixes", "=", "valid", "self", ".", "test_prefixes", "=", "test" ]
Split data into train, valid and test groups
[ "Split", "data", "into", "train", "valid", "and", "test", "groups" ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/datasets/na.py#L537-L558
13,903
persephone-tools/persephone
persephone/datasets/na.py
Corpus.output_story_prefixes
def output_story_prefixes(self): """ Writes the set of prefixes to a file this is useful for pretty printing in results.latex_output. """ if not self.test_story: raise NotImplementedError( "I want to write the prefixes to a file" "called <test_story>_prefixes.txt, but there's no test_story.") fn = os.path.join(TGT_DIR, "%s_prefixes.txt" % self.test_story) with open(fn, "w") as f: for utter_id in self.test_prefixes: print(utter_id.split("/")[1], file=f)
python
def output_story_prefixes(self): """ Writes the set of prefixes to a file this is useful for pretty printing in results.latex_output. """ if not self.test_story: raise NotImplementedError( "I want to write the prefixes to a file" "called <test_story>_prefixes.txt, but there's no test_story.") fn = os.path.join(TGT_DIR, "%s_prefixes.txt" % self.test_story) with open(fn, "w") as f: for utter_id in self.test_prefixes: print(utter_id.split("/")[1], file=f)
[ "def", "output_story_prefixes", "(", "self", ")", ":", "if", "not", "self", ".", "test_story", ":", "raise", "NotImplementedError", "(", "\"I want to write the prefixes to a file\"", "\"called <test_story>_prefixes.txt, but there's no test_story.\"", ")", "fn", "=", "os", ".", "path", ".", "join", "(", "TGT_DIR", ",", "\"%s_prefixes.txt\"", "%", "self", ".", "test_story", ")", "with", "open", "(", "fn", ",", "\"w\"", ")", "as", "f", ":", "for", "utter_id", "in", "self", ".", "test_prefixes", ":", "print", "(", "utter_id", ".", "split", "(", "\"/\"", ")", "[", "1", "]", ",", "file", "=", "f", ")" ]
Writes the set of prefixes to a file this is useful for pretty printing in results.latex_output.
[ "Writes", "the", "set", "of", "prefixes", "to", "a", "file", "this", "is", "useful", "for", "pretty", "printing", "in", "results", ".", "latex_output", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/datasets/na.py#L560-L572
13,904
KxSystems/pyq
setup.py
add_data_file
def add_data_file(data_files, target, source): """Add an entry to data_files""" for t, f in data_files: if t == target: break else: data_files.append((target, [])) f = data_files[-1][1] if source not in f: f.append(source)
python
def add_data_file(data_files, target, source): """Add an entry to data_files""" for t, f in data_files: if t == target: break else: data_files.append((target, [])) f = data_files[-1][1] if source not in f: f.append(source)
[ "def", "add_data_file", "(", "data_files", ",", "target", ",", "source", ")", ":", "for", "t", ",", "f", "in", "data_files", ":", "if", "t", "==", "target", ":", "break", "else", ":", "data_files", ".", "append", "(", "(", "target", ",", "[", "]", ")", ")", "f", "=", "data_files", "[", "-", "1", "]", "[", "1", "]", "if", "source", "not", "in", "f", ":", "f", ".", "append", "(", "source", ")" ]
Add an entry to data_files
[ "Add", "an", "entry", "to", "data_files" ]
ad7b807abde94615a7344aaa930bb01fb1552cc5
https://github.com/KxSystems/pyq/blob/ad7b807abde94615a7344aaa930bb01fb1552cc5/setup.py#L145-L154
13,905
KxSystems/pyq
setup.py
get_q_home
def get_q_home(env): """Derive q home from the environment""" q_home = env.get('QHOME') if q_home: return q_home for v in ['VIRTUAL_ENV', 'HOME']: prefix = env.get(v) if prefix: q_home = os.path.join(prefix, 'q') if os.path.isdir(q_home): return q_home if WINDOWS: q_home = os.path.join(env['SystemDrive'], r'\q') if os.path.isdir(q_home): return q_home raise RuntimeError('No suitable QHOME.')
python
def get_q_home(env): """Derive q home from the environment""" q_home = env.get('QHOME') if q_home: return q_home for v in ['VIRTUAL_ENV', 'HOME']: prefix = env.get(v) if prefix: q_home = os.path.join(prefix, 'q') if os.path.isdir(q_home): return q_home if WINDOWS: q_home = os.path.join(env['SystemDrive'], r'\q') if os.path.isdir(q_home): return q_home raise RuntimeError('No suitable QHOME.')
[ "def", "get_q_home", "(", "env", ")", ":", "q_home", "=", "env", ".", "get", "(", "'QHOME'", ")", "if", "q_home", ":", "return", "q_home", "for", "v", "in", "[", "'VIRTUAL_ENV'", ",", "'HOME'", "]", ":", "prefix", "=", "env", ".", "get", "(", "v", ")", "if", "prefix", ":", "q_home", "=", "os", ".", "path", ".", "join", "(", "prefix", ",", "'q'", ")", "if", "os", ".", "path", ".", "isdir", "(", "q_home", ")", ":", "return", "q_home", "if", "WINDOWS", ":", "q_home", "=", "os", ".", "path", ".", "join", "(", "env", "[", "'SystemDrive'", "]", ",", "r'\\q'", ")", "if", "os", ".", "path", ".", "isdir", "(", "q_home", ")", ":", "return", "q_home", "raise", "RuntimeError", "(", "'No suitable QHOME.'", ")" ]
Derive q home from the environment
[ "Derive", "q", "home", "from", "the", "environment" ]
ad7b807abde94615a7344aaa930bb01fb1552cc5
https://github.com/KxSystems/pyq/blob/ad7b807abde94615a7344aaa930bb01fb1552cc5/setup.py#L185-L200
13,906
KxSystems/pyq
setup.py
get_q_version
def get_q_version(q_home): """Return version of q installed at q_home""" with open(os.path.join(q_home, 'q.k')) as f: for line in f: if line.startswith('k:'): return line[2:5] return '2.2'
python
def get_q_version(q_home): """Return version of q installed at q_home""" with open(os.path.join(q_home, 'q.k')) as f: for line in f: if line.startswith('k:'): return line[2:5] return '2.2'
[ "def", "get_q_version", "(", "q_home", ")", ":", "with", "open", "(", "os", ".", "path", ".", "join", "(", "q_home", ",", "'q.k'", ")", ")", "as", "f", ":", "for", "line", "in", "f", ":", "if", "line", ".", "startswith", "(", "'k:'", ")", ":", "return", "line", "[", "2", ":", "5", "]", "return", "'2.2'" ]
Return version of q installed at q_home
[ "Return", "version", "of", "q", "installed", "at", "q_home" ]
ad7b807abde94615a7344aaa930bb01fb1552cc5
https://github.com/KxSystems/pyq/blob/ad7b807abde94615a7344aaa930bb01fb1552cc5/setup.py#L230-L236
13,907
KxSystems/pyq
src/pyq/cmd.py
Cmd.precmd
def precmd(self, line): """Support for help""" if line.startswith('help'): if not q("`help in key`.q"): try: q("\\l help.q") except kerr: return '-1"no help available - install help.q"' if line == 'help': line += "`" return line
python
def precmd(self, line): """Support for help""" if line.startswith('help'): if not q("`help in key`.q"): try: q("\\l help.q") except kerr: return '-1"no help available - install help.q"' if line == 'help': line += "`" return line
[ "def", "precmd", "(", "self", ",", "line", ")", ":", "if", "line", ".", "startswith", "(", "'help'", ")", ":", "if", "not", "q", "(", "\"`help in key`.q\"", ")", ":", "try", ":", "q", "(", "\"\\\\l help.q\"", ")", "except", "kerr", ":", "return", "'-1\"no help available - install help.q\"'", "if", "line", "==", "'help'", ":", "line", "+=", "\"`\"", "return", "line" ]
Support for help
[ "Support", "for", "help" ]
ad7b807abde94615a7344aaa930bb01fb1552cc5
https://github.com/KxSystems/pyq/blob/ad7b807abde94615a7344aaa930bb01fb1552cc5/src/pyq/cmd.py#L35-L45
13,908
KxSystems/pyq
src/pyq/cmd.py
Cmd.onecmd
def onecmd(self, line): """Interpret the line""" if line == '\\': return True elif line == 'EOF': print('\r', end='') return True else: try: v = q(line) except kerr as e: print("'%s" % e.args[0]) else: if v != q('::'): v.show() return False
python
def onecmd(self, line): """Interpret the line""" if line == '\\': return True elif line == 'EOF': print('\r', end='') return True else: try: v = q(line) except kerr as e: print("'%s" % e.args[0]) else: if v != q('::'): v.show() return False
[ "def", "onecmd", "(", "self", ",", "line", ")", ":", "if", "line", "==", "'\\\\'", ":", "return", "True", "elif", "line", "==", "'EOF'", ":", "print", "(", "'\\r'", ",", "end", "=", "''", ")", "return", "True", "else", ":", "try", ":", "v", "=", "q", "(", "line", ")", "except", "kerr", "as", "e", ":", "print", "(", "\"'%s\"", "%", "e", ".", "args", "[", "0", "]", ")", "else", ":", "if", "v", "!=", "q", "(", "'::'", ")", ":", "v", ".", "show", "(", ")", "return", "False" ]
Interpret the line
[ "Interpret", "the", "line" ]
ad7b807abde94615a7344aaa930bb01fb1552cc5
https://github.com/KxSystems/pyq/blob/ad7b807abde94615a7344aaa930bb01fb1552cc5/src/pyq/cmd.py#L47-L62
13,909
KxSystems/pyq
src/pyq/_pt_run.py
run
def run(q_prompt=False): """Run a prompt-toolkit based REPL""" lines, columns = console_size() q(r'\c %d %d' % (lines, columns)) if len(sys.argv) > 1: try: q(r'\l %s' % sys.argv[1]) except kerr as e: print(e) raise SystemExit(1) else: del sys.argv[1] if q_prompt: q() ptp.run()
python
def run(q_prompt=False): """Run a prompt-toolkit based REPL""" lines, columns = console_size() q(r'\c %d %d' % (lines, columns)) if len(sys.argv) > 1: try: q(r'\l %s' % sys.argv[1]) except kerr as e: print(e) raise SystemExit(1) else: del sys.argv[1] if q_prompt: q() ptp.run()
[ "def", "run", "(", "q_prompt", "=", "False", ")", ":", "lines", ",", "columns", "=", "console_size", "(", ")", "q", "(", "r'\\c %d %d'", "%", "(", "lines", ",", "columns", ")", ")", "if", "len", "(", "sys", ".", "argv", ")", ">", "1", ":", "try", ":", "q", "(", "r'\\l %s'", "%", "sys", ".", "argv", "[", "1", "]", ")", "except", "kerr", "as", "e", ":", "print", "(", "e", ")", "raise", "SystemExit", "(", "1", ")", "else", ":", "del", "sys", ".", "argv", "[", "1", "]", "if", "q_prompt", ":", "q", "(", ")", "ptp", ".", "run", "(", ")" ]
Run a prompt-toolkit based REPL
[ "Run", "a", "prompt", "-", "toolkit", "based", "REPL" ]
ad7b807abde94615a7344aaa930bb01fb1552cc5
https://github.com/KxSystems/pyq/blob/ad7b807abde94615a7344aaa930bb01fb1552cc5/src/pyq/_pt_run.py#L32-L46
13,910
KxSystems/pyq
src/pyq/_n.py
get_unit
def get_unit(a): """Extract the time unit from array's dtype""" typestr = a.dtype.str i = typestr.find('[') if i == -1: raise TypeError("Expected a datetime64 array, not %s", a.dtype) return typestr[i + 1: -1]
python
def get_unit(a): """Extract the time unit from array's dtype""" typestr = a.dtype.str i = typestr.find('[') if i == -1: raise TypeError("Expected a datetime64 array, not %s", a.dtype) return typestr[i + 1: -1]
[ "def", "get_unit", "(", "a", ")", ":", "typestr", "=", "a", ".", "dtype", ".", "str", "i", "=", "typestr", ".", "find", "(", "'['", ")", "if", "i", "==", "-", "1", ":", "raise", "TypeError", "(", "\"Expected a datetime64 array, not %s\"", ",", "a", ".", "dtype", ")", "return", "typestr", "[", "i", "+", "1", ":", "-", "1", "]" ]
Extract the time unit from array's dtype
[ "Extract", "the", "time", "unit", "from", "array", "s", "dtype" ]
ad7b807abde94615a7344aaa930bb01fb1552cc5
https://github.com/KxSystems/pyq/blob/ad7b807abde94615a7344aaa930bb01fb1552cc5/src/pyq/_n.py#L50-L56
13,911
KxSystems/pyq
src/pyq/_n.py
k2a
def k2a(a, x): """Rescale data from a K object x to array a. """ func, scale = None, 1 t = abs(x._t) # timestamp (12), month (13), date (14) or datetime (15) if 12 <= t <= 15: unit = get_unit(a) attr, shift, func, scale = _UNIT[unit] a[:] = getattr(x, attr).data a += shift # timespan (16), minute (17), second (18) or time (19) elif 16 <= t <= 19: unit = get_unit(a) func, scale = _SCALE[unit] a[:] = x.timespan.data else: a[:] = list(x) if func is not None: func = getattr(numpy, func) a[:] = func(a.view(dtype='i8'), scale) if a.dtype.char in 'mM': n = x.null if n.any: a[n] = None
python
def k2a(a, x): """Rescale data from a K object x to array a. """ func, scale = None, 1 t = abs(x._t) # timestamp (12), month (13), date (14) or datetime (15) if 12 <= t <= 15: unit = get_unit(a) attr, shift, func, scale = _UNIT[unit] a[:] = getattr(x, attr).data a += shift # timespan (16), minute (17), second (18) or time (19) elif 16 <= t <= 19: unit = get_unit(a) func, scale = _SCALE[unit] a[:] = x.timespan.data else: a[:] = list(x) if func is not None: func = getattr(numpy, func) a[:] = func(a.view(dtype='i8'), scale) if a.dtype.char in 'mM': n = x.null if n.any: a[n] = None
[ "def", "k2a", "(", "a", ",", "x", ")", ":", "func", ",", "scale", "=", "None", ",", "1", "t", "=", "abs", "(", "x", ".", "_t", ")", "# timestamp (12), month (13), date (14) or datetime (15)", "if", "12", "<=", "t", "<=", "15", ":", "unit", "=", "get_unit", "(", "a", ")", "attr", ",", "shift", ",", "func", ",", "scale", "=", "_UNIT", "[", "unit", "]", "a", "[", ":", "]", "=", "getattr", "(", "x", ",", "attr", ")", ".", "data", "a", "+=", "shift", "# timespan (16), minute (17), second (18) or time (19)", "elif", "16", "<=", "t", "<=", "19", ":", "unit", "=", "get_unit", "(", "a", ")", "func", ",", "scale", "=", "_SCALE", "[", "unit", "]", "a", "[", ":", "]", "=", "x", ".", "timespan", ".", "data", "else", ":", "a", "[", ":", "]", "=", "list", "(", "x", ")", "if", "func", "is", "not", "None", ":", "func", "=", "getattr", "(", "numpy", ",", "func", ")", "a", "[", ":", "]", "=", "func", "(", "a", ".", "view", "(", "dtype", "=", "'i8'", ")", ",", "scale", ")", "if", "a", ".", "dtype", ".", "char", "in", "'mM'", ":", "n", "=", "x", ".", "null", "if", "n", ".", "any", ":", "a", "[", "n", "]", "=", "None" ]
Rescale data from a K object x to array a.
[ "Rescale", "data", "from", "a", "K", "object", "x", "to", "array", "a", "." ]
ad7b807abde94615a7344aaa930bb01fb1552cc5
https://github.com/KxSystems/pyq/blob/ad7b807abde94615a7344aaa930bb01fb1552cc5/src/pyq/_n.py#L118-L145
13,912
KxSystems/pyq
src/pyq/__init__.py
K.show
def show(self, start=0, geometry=None, output=None): """pretty-print data to the console (similar to q.show, but uses python stdout by default) >>> x = q('([k:`x`y`z]a:1 2 3;b:10 20 30)') >>> x.show() # doctest: +NORMALIZE_WHITESPACE k| a b -| ---- x| 1 10 y| 2 20 z| 3 30 the first optional argument, 'start' specifies the first row to be printed (negative means from the end) >>> x.show(2) # doctest: +NORMALIZE_WHITESPACE k| a b -| ---- z| 3 30 >>> x.show(-2) # doctest: +NORMALIZE_WHITESPACE k| a b -| ---- y| 2 20 z| 3 30 the geometry is the height and width of the console >>> x.show(geometry=[4, 6]) k| a.. -| -.. x| 1.. .. """ if output is None: output = sys.stdout if geometry is None: geometry = q.value(kp("\\c")) else: geometry = self._I(geometry) if start < 0: start += q.count(self) # Make sure nil is not passed to a q function if self._id() != nil._id(): r = self._show(geometry, start) else: r = '::\n' if isinstance(output, type): return output(r) try: output.write(r) except TypeError: output.write(str(r))
python
def show(self, start=0, geometry=None, output=None): """pretty-print data to the console (similar to q.show, but uses python stdout by default) >>> x = q('([k:`x`y`z]a:1 2 3;b:10 20 30)') >>> x.show() # doctest: +NORMALIZE_WHITESPACE k| a b -| ---- x| 1 10 y| 2 20 z| 3 30 the first optional argument, 'start' specifies the first row to be printed (negative means from the end) >>> x.show(2) # doctest: +NORMALIZE_WHITESPACE k| a b -| ---- z| 3 30 >>> x.show(-2) # doctest: +NORMALIZE_WHITESPACE k| a b -| ---- y| 2 20 z| 3 30 the geometry is the height and width of the console >>> x.show(geometry=[4, 6]) k| a.. -| -.. x| 1.. .. """ if output is None: output = sys.stdout if geometry is None: geometry = q.value(kp("\\c")) else: geometry = self._I(geometry) if start < 0: start += q.count(self) # Make sure nil is not passed to a q function if self._id() != nil._id(): r = self._show(geometry, start) else: r = '::\n' if isinstance(output, type): return output(r) try: output.write(r) except TypeError: output.write(str(r))
[ "def", "show", "(", "self", ",", "start", "=", "0", ",", "geometry", "=", "None", ",", "output", "=", "None", ")", ":", "if", "output", "is", "None", ":", "output", "=", "sys", ".", "stdout", "if", "geometry", "is", "None", ":", "geometry", "=", "q", ".", "value", "(", "kp", "(", "\"\\\\c\"", ")", ")", "else", ":", "geometry", "=", "self", ".", "_I", "(", "geometry", ")", "if", "start", "<", "0", ":", "start", "+=", "q", ".", "count", "(", "self", ")", "# Make sure nil is not passed to a q function", "if", "self", ".", "_id", "(", ")", "!=", "nil", ".", "_id", "(", ")", ":", "r", "=", "self", ".", "_show", "(", "geometry", ",", "start", ")", "else", ":", "r", "=", "'::\\n'", "if", "isinstance", "(", "output", ",", "type", ")", ":", "return", "output", "(", "r", ")", "try", ":", "output", ".", "write", "(", "r", ")", "except", "TypeError", ":", "output", ".", "write", "(", "str", "(", "r", ")", ")" ]
pretty-print data to the console (similar to q.show, but uses python stdout by default) >>> x = q('([k:`x`y`z]a:1 2 3;b:10 20 30)') >>> x.show() # doctest: +NORMALIZE_WHITESPACE k| a b -| ---- x| 1 10 y| 2 20 z| 3 30 the first optional argument, 'start' specifies the first row to be printed (negative means from the end) >>> x.show(2) # doctest: +NORMALIZE_WHITESPACE k| a b -| ---- z| 3 30 >>> x.show(-2) # doctest: +NORMALIZE_WHITESPACE k| a b -| ---- y| 2 20 z| 3 30 the geometry is the height and width of the console >>> x.show(geometry=[4, 6]) k| a.. -| -.. x| 1.. ..
[ "pretty", "-", "print", "data", "to", "the", "console" ]
ad7b807abde94615a7344aaa930bb01fb1552cc5
https://github.com/KxSystems/pyq/blob/ad7b807abde94615a7344aaa930bb01fb1552cc5/src/pyq/__init__.py#L377-L435
13,913
KxSystems/pyq
src/pyq/__init__.py
K.select
def select(self, columns=(), by=(), where=(), **kwds): """select from self >>> t = q('([]a:1 2 3; b:10 20 30)') >>> t.select('a', where='b > 20').show() a - 3 """ return self._seu('select', columns, by, where, kwds)
python
def select(self, columns=(), by=(), where=(), **kwds): """select from self >>> t = q('([]a:1 2 3; b:10 20 30)') >>> t.select('a', where='b > 20').show() a - 3 """ return self._seu('select', columns, by, where, kwds)
[ "def", "select", "(", "self", ",", "columns", "=", "(", ")", ",", "by", "=", "(", ")", ",", "where", "=", "(", ")", ",", "*", "*", "kwds", ")", ":", "return", "self", ".", "_seu", "(", "'select'", ",", "columns", ",", "by", ",", "where", ",", "kwds", ")" ]
select from self >>> t = q('([]a:1 2 3; b:10 20 30)') >>> t.select('a', where='b > 20').show() a - 3
[ "select", "from", "self" ]
ad7b807abde94615a7344aaa930bb01fb1552cc5
https://github.com/KxSystems/pyq/blob/ad7b807abde94615a7344aaa930bb01fb1552cc5/src/pyq/__init__.py#L465-L474
13,914
KxSystems/pyq
src/pyq/__init__.py
K.exec_
def exec_(self, columns=(), by=(), where=(), **kwds): """exec from self >>> t = q('([]a:1 2 3; b:10 20 30)') >>> t.exec_('a', where='b > 10').show() 2 3 """ return self._seu('exec', columns, by, where, kwds)
python
def exec_(self, columns=(), by=(), where=(), **kwds): """exec from self >>> t = q('([]a:1 2 3; b:10 20 30)') >>> t.exec_('a', where='b > 10').show() 2 3 """ return self._seu('exec', columns, by, where, kwds)
[ "def", "exec_", "(", "self", ",", "columns", "=", "(", ")", ",", "by", "=", "(", ")", ",", "where", "=", "(", ")", ",", "*", "*", "kwds", ")", ":", "return", "self", ".", "_seu", "(", "'exec'", ",", "columns", ",", "by", ",", "where", ",", "kwds", ")" ]
exec from self >>> t = q('([]a:1 2 3; b:10 20 30)') >>> t.exec_('a', where='b > 10').show() 2 3
[ "exec", "from", "self" ]
ad7b807abde94615a7344aaa930bb01fb1552cc5
https://github.com/KxSystems/pyq/blob/ad7b807abde94615a7344aaa930bb01fb1552cc5/src/pyq/__init__.py#L476-L483
13,915
KxSystems/pyq
src/pyq/__init__.py
K.update
def update(self, columns=(), by=(), where=(), **kwds): """update from self >>> t = q('([]a:1 2 3; b:10 20 30)') >>> t.update('a*2', ... where='b > 20').show() # doctest: +NORMALIZE_WHITESPACE a b ---- 1 10 2 20 6 30 """ return self._seu('update', columns, by, where, kwds)
python
def update(self, columns=(), by=(), where=(), **kwds): """update from self >>> t = q('([]a:1 2 3; b:10 20 30)') >>> t.update('a*2', ... where='b > 20').show() # doctest: +NORMALIZE_WHITESPACE a b ---- 1 10 2 20 6 30 """ return self._seu('update', columns, by, where, kwds)
[ "def", "update", "(", "self", ",", "columns", "=", "(", ")", ",", "by", "=", "(", ")", ",", "where", "=", "(", ")", ",", "*", "*", "kwds", ")", ":", "return", "self", ".", "_seu", "(", "'update'", ",", "columns", ",", "by", ",", "where", ",", "kwds", ")" ]
update from self >>> t = q('([]a:1 2 3; b:10 20 30)') >>> t.update('a*2', ... where='b > 20').show() # doctest: +NORMALIZE_WHITESPACE a b ---- 1 10 2 20 6 30
[ "update", "from", "self" ]
ad7b807abde94615a7344aaa930bb01fb1552cc5
https://github.com/KxSystems/pyq/blob/ad7b807abde94615a7344aaa930bb01fb1552cc5/src/pyq/__init__.py#L485-L497
13,916
KxSystems/pyq
src/pyq/__init__.py
K.dict
def dict(cls, *args, **kwds): """Construct a q dictionary K.dict() -> new empty q dictionary (q('()!()') K.dict(mapping) -> new dictionary initialized from a mapping object's (key, value) pairs K.dict(iterable) -> new dictionary initialized from an iterable yielding (key, value) pairs K.dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: K.dict(one=1, two=2) """ if args: if len(args) > 1: raise TypeError("Too many positional arguments") x = args[0] keys = [] vals = [] try: x_keys = x.keys except AttributeError: for k, v in x: keys.append(k) vals.append(v) else: keys = x_keys() vals = [x[k] for k in keys] return q('!', keys, vals) else: if kwds: keys = [] vals = [] for k, v in kwds.items(): keys.append(k) vals.append(v) return q('!', keys, vals) else: return q('()!()')
python
def dict(cls, *args, **kwds): """Construct a q dictionary K.dict() -> new empty q dictionary (q('()!()') K.dict(mapping) -> new dictionary initialized from a mapping object's (key, value) pairs K.dict(iterable) -> new dictionary initialized from an iterable yielding (key, value) pairs K.dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: K.dict(one=1, two=2) """ if args: if len(args) > 1: raise TypeError("Too many positional arguments") x = args[0] keys = [] vals = [] try: x_keys = x.keys except AttributeError: for k, v in x: keys.append(k) vals.append(v) else: keys = x_keys() vals = [x[k] for k in keys] return q('!', keys, vals) else: if kwds: keys = [] vals = [] for k, v in kwds.items(): keys.append(k) vals.append(v) return q('!', keys, vals) else: return q('()!()')
[ "def", "dict", "(", "cls", ",", "*", "args", ",", "*", "*", "kwds", ")", ":", "if", "args", ":", "if", "len", "(", "args", ")", ">", "1", ":", "raise", "TypeError", "(", "\"Too many positional arguments\"", ")", "x", "=", "args", "[", "0", "]", "keys", "=", "[", "]", "vals", "=", "[", "]", "try", ":", "x_keys", "=", "x", ".", "keys", "except", "AttributeError", ":", "for", "k", ",", "v", "in", "x", ":", "keys", ".", "append", "(", "k", ")", "vals", ".", "append", "(", "v", ")", "else", ":", "keys", "=", "x_keys", "(", ")", "vals", "=", "[", "x", "[", "k", "]", "for", "k", "in", "keys", "]", "return", "q", "(", "'!'", ",", "keys", ",", "vals", ")", "else", ":", "if", "kwds", ":", "keys", "=", "[", "]", "vals", "=", "[", "]", "for", "k", ",", "v", "in", "kwds", ".", "items", "(", ")", ":", "keys", ".", "append", "(", "k", ")", "vals", ".", "append", "(", "v", ")", "return", "q", "(", "'!'", ",", "keys", ",", "vals", ")", "else", ":", "return", "q", "(", "'()!()'", ")" ]
Construct a q dictionary K.dict() -> new empty q dictionary (q('()!()') K.dict(mapping) -> new dictionary initialized from a mapping object's (key, value) pairs K.dict(iterable) -> new dictionary initialized from an iterable yielding (key, value) pairs K.dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: K.dict(one=1, two=2)
[ "Construct", "a", "q", "dictionary" ]
ad7b807abde94615a7344aaa930bb01fb1552cc5
https://github.com/KxSystems/pyq/blob/ad7b807abde94615a7344aaa930bb01fb1552cc5/src/pyq/__init__.py#L558-L595
13,917
KxSystems/pyq
src/pyq/magic.py
logical_lines
def logical_lines(lines): """Merge lines into chunks according to q rules""" if isinstance(lines, string_types): lines = StringIO(lines) buf = [] for line in lines: if buf and not line.startswith(' '): chunk = ''.join(buf).strip() if chunk: yield chunk buf[:] = [] buf.append(line) chunk = ''.join(buf).strip() if chunk: yield chunk
python
def logical_lines(lines): """Merge lines into chunks according to q rules""" if isinstance(lines, string_types): lines = StringIO(lines) buf = [] for line in lines: if buf and not line.startswith(' '): chunk = ''.join(buf).strip() if chunk: yield chunk buf[:] = [] buf.append(line) chunk = ''.join(buf).strip() if chunk: yield chunk
[ "def", "logical_lines", "(", "lines", ")", ":", "if", "isinstance", "(", "lines", ",", "string_types", ")", ":", "lines", "=", "StringIO", "(", "lines", ")", "buf", "=", "[", "]", "for", "line", "in", "lines", ":", "if", "buf", "and", "not", "line", ".", "startswith", "(", "' '", ")", ":", "chunk", "=", "''", ".", "join", "(", "buf", ")", ".", "strip", "(", ")", "if", "chunk", ":", "yield", "chunk", "buf", "[", ":", "]", "=", "[", "]", "buf", ".", "append", "(", "line", ")", "chunk", "=", "''", ".", "join", "(", "buf", ")", ".", "strip", "(", ")", "if", "chunk", ":", "yield", "chunk" ]
Merge lines into chunks according to q rules
[ "Merge", "lines", "into", "chunks", "according", "to", "q", "rules" ]
ad7b807abde94615a7344aaa930bb01fb1552cc5
https://github.com/KxSystems/pyq/blob/ad7b807abde94615a7344aaa930bb01fb1552cc5/src/pyq/magic.py#L23-L38
13,918
KxSystems/pyq
src/pyq/magic.py
q
def q(line, cell=None, _ns=None): """Run q code. Options: -l (dir|script) - pre-load database or script -h host:port - execute on the given host -o var - send output to a variable named var. -i var1,..,varN - input variables -1/-2 - redirect stdout/stderr """ if cell is None: return pyq.q(line) if _ns is None: _ns = vars(sys.modules['__main__']) input = output = None preload = [] outs = {} try: h = pyq.q('0i') if line: for opt, value in getopt(line.split(), "h:l:o:i:12")[0]: if opt == '-l': preload.append(value) elif opt == '-h': h = pyq.K(str(':' + value)) elif opt == '-o': output = str(value) # (see #673) elif opt == '-i': input = str(value).split(',') elif opt in ('-1', '-2'): outs[int(opt[1])] = None if outs: if int(h) != 0: raise ValueError("Cannot redirect remote std stream") for fd in outs: tmpfd, tmpfile = mkstemp() try: pyq.q(r'\%d %s' % (fd, tmpfile)) finally: os.unlink(tmpfile) os.close(tmpfd) r = None for script in preload: h(pyq.kp(r"\l " + script)) if input is not None: for chunk in logical_lines(cell): func = "{[%s]%s}" % (';'.join(input), chunk) args = tuple(_ns[i] for i in input) if r != Q_NONE: r.show() r = h((pyq.kp(func),) + args) if outs: _forward_outputs(outs) else: for chunk in logical_lines(cell): if r != Q_NONE: r.show() r = h(pyq.kp(chunk)) if outs: _forward_outputs(outs) except pyq.kerr as e: print("'%s" % e) else: if output is not None: if output.startswith('q.'): pyq.q('@[`.;;:;]', output[2:], r) else: _ns[output] = r else: if r != Q_NONE: return r
python
def q(line, cell=None, _ns=None): """Run q code. Options: -l (dir|script) - pre-load database or script -h host:port - execute on the given host -o var - send output to a variable named var. -i var1,..,varN - input variables -1/-2 - redirect stdout/stderr """ if cell is None: return pyq.q(line) if _ns is None: _ns = vars(sys.modules['__main__']) input = output = None preload = [] outs = {} try: h = pyq.q('0i') if line: for opt, value in getopt(line.split(), "h:l:o:i:12")[0]: if opt == '-l': preload.append(value) elif opt == '-h': h = pyq.K(str(':' + value)) elif opt == '-o': output = str(value) # (see #673) elif opt == '-i': input = str(value).split(',') elif opt in ('-1', '-2'): outs[int(opt[1])] = None if outs: if int(h) != 0: raise ValueError("Cannot redirect remote std stream") for fd in outs: tmpfd, tmpfile = mkstemp() try: pyq.q(r'\%d %s' % (fd, tmpfile)) finally: os.unlink(tmpfile) os.close(tmpfd) r = None for script in preload: h(pyq.kp(r"\l " + script)) if input is not None: for chunk in logical_lines(cell): func = "{[%s]%s}" % (';'.join(input), chunk) args = tuple(_ns[i] for i in input) if r != Q_NONE: r.show() r = h((pyq.kp(func),) + args) if outs: _forward_outputs(outs) else: for chunk in logical_lines(cell): if r != Q_NONE: r.show() r = h(pyq.kp(chunk)) if outs: _forward_outputs(outs) except pyq.kerr as e: print("'%s" % e) else: if output is not None: if output.startswith('q.'): pyq.q('@[`.;;:;]', output[2:], r) else: _ns[output] = r else: if r != Q_NONE: return r
[ "def", "q", "(", "line", ",", "cell", "=", "None", ",", "_ns", "=", "None", ")", ":", "if", "cell", "is", "None", ":", "return", "pyq", ".", "q", "(", "line", ")", "if", "_ns", "is", "None", ":", "_ns", "=", "vars", "(", "sys", ".", "modules", "[", "'__main__'", "]", ")", "input", "=", "output", "=", "None", "preload", "=", "[", "]", "outs", "=", "{", "}", "try", ":", "h", "=", "pyq", ".", "q", "(", "'0i'", ")", "if", "line", ":", "for", "opt", ",", "value", "in", "getopt", "(", "line", ".", "split", "(", ")", ",", "\"h:l:o:i:12\"", ")", "[", "0", "]", ":", "if", "opt", "==", "'-l'", ":", "preload", ".", "append", "(", "value", ")", "elif", "opt", "==", "'-h'", ":", "h", "=", "pyq", ".", "K", "(", "str", "(", "':'", "+", "value", ")", ")", "elif", "opt", "==", "'-o'", ":", "output", "=", "str", "(", "value", ")", "# (see #673)", "elif", "opt", "==", "'-i'", ":", "input", "=", "str", "(", "value", ")", ".", "split", "(", "','", ")", "elif", "opt", "in", "(", "'-1'", ",", "'-2'", ")", ":", "outs", "[", "int", "(", "opt", "[", "1", "]", ")", "]", "=", "None", "if", "outs", ":", "if", "int", "(", "h", ")", "!=", "0", ":", "raise", "ValueError", "(", "\"Cannot redirect remote std stream\"", ")", "for", "fd", "in", "outs", ":", "tmpfd", ",", "tmpfile", "=", "mkstemp", "(", ")", "try", ":", "pyq", ".", "q", "(", "r'\\%d %s'", "%", "(", "fd", ",", "tmpfile", ")", ")", "finally", ":", "os", ".", "unlink", "(", "tmpfile", ")", "os", ".", "close", "(", "tmpfd", ")", "r", "=", "None", "for", "script", "in", "preload", ":", "h", "(", "pyq", ".", "kp", "(", "r\"\\l \"", "+", "script", ")", ")", "if", "input", "is", "not", "None", ":", "for", "chunk", "in", "logical_lines", "(", "cell", ")", ":", "func", "=", "\"{[%s]%s}\"", "%", "(", "';'", ".", "join", "(", "input", ")", ",", "chunk", ")", "args", "=", "tuple", "(", "_ns", "[", "i", "]", "for", "i", "in", "input", ")", "if", "r", "!=", "Q_NONE", ":", "r", ".", "show", "(", ")", "r", "=", "h", "(", "(", "pyq", ".", "kp", "(", "func", ")", ",", ")", "+", "args", ")", "if", "outs", ":", "_forward_outputs", "(", "outs", ")", "else", ":", "for", "chunk", "in", "logical_lines", "(", "cell", ")", ":", "if", "r", "!=", "Q_NONE", ":", "r", ".", "show", "(", ")", "r", "=", "h", "(", "pyq", ".", "kp", "(", "chunk", ")", ")", "if", "outs", ":", "_forward_outputs", "(", "outs", ")", "except", "pyq", ".", "kerr", "as", "e", ":", "print", "(", "\"'%s\"", "%", "e", ")", "else", ":", "if", "output", "is", "not", "None", ":", "if", "output", ".", "startswith", "(", "'q.'", ")", ":", "pyq", ".", "q", "(", "'@[`.;;:;]'", ",", "output", "[", "2", ":", "]", ",", "r", ")", "else", ":", "_ns", "[", "output", "]", "=", "r", "else", ":", "if", "r", "!=", "Q_NONE", ":", "return", "r" ]
Run q code. Options: -l (dir|script) - pre-load database or script -h host:port - execute on the given host -o var - send output to a variable named var. -i var1,..,varN - input variables -1/-2 - redirect stdout/stderr
[ "Run", "q", "code", "." ]
ad7b807abde94615a7344aaa930bb01fb1552cc5
https://github.com/KxSystems/pyq/blob/ad7b807abde94615a7344aaa930bb01fb1552cc5/src/pyq/magic.py#L50-L121
13,919
KxSystems/pyq
src/pyq/magic.py
load_ipython_extension
def load_ipython_extension(ipython): """Register %q and %%q magics and pretty display for K objects""" ipython.register_magic_function(q, 'line_cell') fmr = ipython.display_formatter.formatters['text/plain'] fmr.for_type(pyq.K, _q_formatter)
python
def load_ipython_extension(ipython): """Register %q and %%q magics and pretty display for K objects""" ipython.register_magic_function(q, 'line_cell') fmr = ipython.display_formatter.formatters['text/plain'] fmr.for_type(pyq.K, _q_formatter)
[ "def", "load_ipython_extension", "(", "ipython", ")", ":", "ipython", ".", "register_magic_function", "(", "q", ",", "'line_cell'", ")", "fmr", "=", "ipython", ".", "display_formatter", ".", "formatters", "[", "'text/plain'", "]", "fmr", ".", "for_type", "(", "pyq", ".", "K", ",", "_q_formatter", ")" ]
Register %q and %%q magics and pretty display for K objects
[ "Register", "%q", "and", "%%q", "magics", "and", "pretty", "display", "for", "K", "objects" ]
ad7b807abde94615a7344aaa930bb01fb1552cc5
https://github.com/KxSystems/pyq/blob/ad7b807abde94615a7344aaa930bb01fb1552cc5/src/pyq/magic.py#L129-L133
13,920
KxSystems/pyq
src/pyq/ptk.py
get_prompt_tokens
def get_prompt_tokens(_): """Return a list of tokens for the prompt""" namespace = q(r'\d') if namespace == '.': namespace = '' return [(Token.Generic.Prompt, 'q%s)' % namespace)]
python
def get_prompt_tokens(_): """Return a list of tokens for the prompt""" namespace = q(r'\d') if namespace == '.': namespace = '' return [(Token.Generic.Prompt, 'q%s)' % namespace)]
[ "def", "get_prompt_tokens", "(", "_", ")", ":", "namespace", "=", "q", "(", "r'\\d'", ")", "if", "namespace", "==", "'.'", ":", "namespace", "=", "''", "return", "[", "(", "Token", ".", "Generic", ".", "Prompt", ",", "'q%s)'", "%", "namespace", ")", "]" ]
Return a list of tokens for the prompt
[ "Return", "a", "list", "of", "tokens", "for", "the", "prompt" ]
ad7b807abde94615a7344aaa930bb01fb1552cc5
https://github.com/KxSystems/pyq/blob/ad7b807abde94615a7344aaa930bb01fb1552cc5/src/pyq/ptk.py#L48-L53
13,921
KxSystems/pyq
src/pyq/ptk.py
cmdloop
def cmdloop(self, intro=None): """A Cmd.cmdloop implementation""" style = style_from_pygments(BasicStyle, style_dict) self.preloop() stop = None while not stop: line = prompt(get_prompt_tokens=get_prompt_tokens, lexer=lexer, get_bottom_toolbar_tokens=get_bottom_toolbar_tokens, history=history, style=style, true_color=True, on_exit='return-none', on_abort='return-none', completer=QCompleter()) if line is None or line.strip() == r'\\': raise SystemExit else: line = self.precmd(line) stop = self.onecmd(line) stop = self.postcmd(stop, line) self.postloop()
python
def cmdloop(self, intro=None): """A Cmd.cmdloop implementation""" style = style_from_pygments(BasicStyle, style_dict) self.preloop() stop = None while not stop: line = prompt(get_prompt_tokens=get_prompt_tokens, lexer=lexer, get_bottom_toolbar_tokens=get_bottom_toolbar_tokens, history=history, style=style, true_color=True, on_exit='return-none', on_abort='return-none', completer=QCompleter()) if line is None or line.strip() == r'\\': raise SystemExit else: line = self.precmd(line) stop = self.onecmd(line) stop = self.postcmd(stop, line) self.postloop()
[ "def", "cmdloop", "(", "self", ",", "intro", "=", "None", ")", ":", "style", "=", "style_from_pygments", "(", "BasicStyle", ",", "style_dict", ")", "self", ".", "preloop", "(", ")", "stop", "=", "None", "while", "not", "stop", ":", "line", "=", "prompt", "(", "get_prompt_tokens", "=", "get_prompt_tokens", ",", "lexer", "=", "lexer", ",", "get_bottom_toolbar_tokens", "=", "get_bottom_toolbar_tokens", ",", "history", "=", "history", ",", "style", "=", "style", ",", "true_color", "=", "True", ",", "on_exit", "=", "'return-none'", ",", "on_abort", "=", "'return-none'", ",", "completer", "=", "QCompleter", "(", ")", ")", "if", "line", "is", "None", "or", "line", ".", "strip", "(", ")", "==", "r'\\\\'", ":", "raise", "SystemExit", "else", ":", "line", "=", "self", ".", "precmd", "(", "line", ")", "stop", "=", "self", ".", "onecmd", "(", "line", ")", "stop", "=", "self", ".", "postcmd", "(", "stop", ",", "line", ")", "self", ".", "postloop", "(", ")" ]
A Cmd.cmdloop implementation
[ "A", "Cmd", ".", "cmdloop", "implementation" ]
ad7b807abde94615a7344aaa930bb01fb1552cc5
https://github.com/KxSystems/pyq/blob/ad7b807abde94615a7344aaa930bb01fb1552cc5/src/pyq/ptk.py#L90-L107
13,922
mapbox/snuggs
snuggs/__init__.py
eval
def eval(source, kwd_dict=None, **kwds): """Evaluate a snuggs expression. Parameters ---------- source : str Expression source. kwd_dict : dict A dict of items that form the evaluation context. Deprecated. kwds : dict A dict of items that form the valuation context. Returns ------- object """ kwd_dict = kwd_dict or kwds with ctx(kwd_dict): return handleLine(source)
python
def eval(source, kwd_dict=None, **kwds): """Evaluate a snuggs expression. Parameters ---------- source : str Expression source. kwd_dict : dict A dict of items that form the evaluation context. Deprecated. kwds : dict A dict of items that form the valuation context. Returns ------- object """ kwd_dict = kwd_dict or kwds with ctx(kwd_dict): return handleLine(source)
[ "def", "eval", "(", "source", ",", "kwd_dict", "=", "None", ",", "*", "*", "kwds", ")", ":", "kwd_dict", "=", "kwd_dict", "or", "kwds", "with", "ctx", "(", "kwd_dict", ")", ":", "return", "handleLine", "(", "source", ")" ]
Evaluate a snuggs expression. Parameters ---------- source : str Expression source. kwd_dict : dict A dict of items that form the evaluation context. Deprecated. kwds : dict A dict of items that form the valuation context. Returns ------- object
[ "Evaluate", "a", "snuggs", "expression", "." ]
7517839178accf78ae9624b7186d03b77f837e02
https://github.com/mapbox/snuggs/blob/7517839178accf78ae9624b7186d03b77f837e02/snuggs/__init__.py#L208-L227
13,923
josiahcarlson/parse-crontab
crontab/_crontab.py
CronTab._make_matchers
def _make_matchers(self, crontab): ''' This constructs the full matcher struct. ''' crontab = _aliases.get(crontab, crontab) ct = crontab.split() if len(ct) == 5: ct.insert(0, '0') ct.append('*') elif len(ct) == 6: ct.insert(0, '0') _assert(len(ct) == 7, "improper number of cron entries specified; got %i need 5 to 7"%(len(ct,))) matchers = [_Matcher(which, entry) for which, entry in enumerate(ct)] return Matcher(*matchers)
python
def _make_matchers(self, crontab): ''' This constructs the full matcher struct. ''' crontab = _aliases.get(crontab, crontab) ct = crontab.split() if len(ct) == 5: ct.insert(0, '0') ct.append('*') elif len(ct) == 6: ct.insert(0, '0') _assert(len(ct) == 7, "improper number of cron entries specified; got %i need 5 to 7"%(len(ct,))) matchers = [_Matcher(which, entry) for which, entry in enumerate(ct)] return Matcher(*matchers)
[ "def", "_make_matchers", "(", "self", ",", "crontab", ")", ":", "crontab", "=", "_aliases", ".", "get", "(", "crontab", ",", "crontab", ")", "ct", "=", "crontab", ".", "split", "(", ")", "if", "len", "(", "ct", ")", "==", "5", ":", "ct", ".", "insert", "(", "0", ",", "'0'", ")", "ct", ".", "append", "(", "'*'", ")", "elif", "len", "(", "ct", ")", "==", "6", ":", "ct", ".", "insert", "(", "0", ",", "'0'", ")", "_assert", "(", "len", "(", "ct", ")", "==", "7", ",", "\"improper number of cron entries specified; got %i need 5 to 7\"", "%", "(", "len", "(", "ct", ",", ")", ")", ")", "matchers", "=", "[", "_Matcher", "(", "which", ",", "entry", ")", "for", "which", ",", "entry", "in", "enumerate", "(", "ct", ")", "]", "return", "Matcher", "(", "*", "matchers", ")" ]
This constructs the full matcher struct.
[ "This", "constructs", "the", "full", "matcher", "struct", "." ]
b2bd254cf14e8c83e502615851b0d4b62f73ab15
https://github.com/josiahcarlson/parse-crontab/blob/b2bd254cf14e8c83e502615851b0d4b62f73ab15/crontab/_crontab.py#L361-L377
13,924
josiahcarlson/parse-crontab
crontab/_crontab.py
CronTab.next
def next(self, now=None, increments=_increments, delta=True, default_utc=WARN_CHANGE): ''' How long to wait in seconds before this crontab entry can next be executed. ''' if default_utc is WARN_CHANGE and (isinstance(now, _number_types) or (now and not now.tzinfo) or now is None): warnings.warn(WARNING_CHANGE_MESSAGE, FutureWarning, 2) default_utc = False now = now or (datetime.utcnow() if default_utc and default_utc is not WARN_CHANGE else datetime.now()) if isinstance(now, _number_types): now = datetime.utcfromtimestamp(now) if default_utc else datetime.fromtimestamp(now) # handle timezones if the datetime object has a timezone and get a # reasonable future/past start time onow, now = now, now.replace(tzinfo=None) tz = onow.tzinfo future = now.replace(microsecond=0) + increments[0]() if future < now: # we are going backwards... _test = lambda: future.year < self.matchers.year if now.microsecond: future = now.replace(microsecond=0) else: # we are going forwards _test = lambda: self.matchers.year < future.year # Start from the year and work our way down. Any time we increment a # higher-magnitude value, we reset all lower-magnitude values. This # gets us performance without sacrificing correctness. Still more # complicated than a brute-force approach, but also orders of # magnitude faster in basically all cases. to_test = ENTRIES - 1 while to_test >= 0: if not self._test_match(to_test, future): inc = increments[to_test](future, self.matchers) future += inc for i in xrange(0, to_test): future = increments[ENTRIES+i](future, inc) try: if _test(): return None except: print(future, type(future), type(inc)) raise to_test = ENTRIES-1 continue to_test -= 1 # verify the match match = [self._test_match(i, future) for i in xrange(ENTRIES)] _assert(all(match), "\nYou have discovered a bug with crontab, please notify the\n" \ "author with the following information:\n" \ "crontab: %r\n" \ "now: %r", ' '.join(m.input for m in self.matchers), now) if not delta: onow = now = datetime(1970, 1, 1) delay = future - now if tz: delay += _fix_none(onow.utcoffset()) if hasattr(tz, 'localize'): delay -= _fix_none(tz.localize(future).utcoffset()) else: delay -= _fix_none(future.replace(tzinfo=tz).utcoffset()) return delay.days * 86400 + delay.seconds + delay.microseconds / 1000000.
python
def next(self, now=None, increments=_increments, delta=True, default_utc=WARN_CHANGE): ''' How long to wait in seconds before this crontab entry can next be executed. ''' if default_utc is WARN_CHANGE and (isinstance(now, _number_types) or (now and not now.tzinfo) or now is None): warnings.warn(WARNING_CHANGE_MESSAGE, FutureWarning, 2) default_utc = False now = now or (datetime.utcnow() if default_utc and default_utc is not WARN_CHANGE else datetime.now()) if isinstance(now, _number_types): now = datetime.utcfromtimestamp(now) if default_utc else datetime.fromtimestamp(now) # handle timezones if the datetime object has a timezone and get a # reasonable future/past start time onow, now = now, now.replace(tzinfo=None) tz = onow.tzinfo future = now.replace(microsecond=0) + increments[0]() if future < now: # we are going backwards... _test = lambda: future.year < self.matchers.year if now.microsecond: future = now.replace(microsecond=0) else: # we are going forwards _test = lambda: self.matchers.year < future.year # Start from the year and work our way down. Any time we increment a # higher-magnitude value, we reset all lower-magnitude values. This # gets us performance without sacrificing correctness. Still more # complicated than a brute-force approach, but also orders of # magnitude faster in basically all cases. to_test = ENTRIES - 1 while to_test >= 0: if not self._test_match(to_test, future): inc = increments[to_test](future, self.matchers) future += inc for i in xrange(0, to_test): future = increments[ENTRIES+i](future, inc) try: if _test(): return None except: print(future, type(future), type(inc)) raise to_test = ENTRIES-1 continue to_test -= 1 # verify the match match = [self._test_match(i, future) for i in xrange(ENTRIES)] _assert(all(match), "\nYou have discovered a bug with crontab, please notify the\n" \ "author with the following information:\n" \ "crontab: %r\n" \ "now: %r", ' '.join(m.input for m in self.matchers), now) if not delta: onow = now = datetime(1970, 1, 1) delay = future - now if tz: delay += _fix_none(onow.utcoffset()) if hasattr(tz, 'localize'): delay -= _fix_none(tz.localize(future).utcoffset()) else: delay -= _fix_none(future.replace(tzinfo=tz).utcoffset()) return delay.days * 86400 + delay.seconds + delay.microseconds / 1000000.
[ "def", "next", "(", "self", ",", "now", "=", "None", ",", "increments", "=", "_increments", ",", "delta", "=", "True", ",", "default_utc", "=", "WARN_CHANGE", ")", ":", "if", "default_utc", "is", "WARN_CHANGE", "and", "(", "isinstance", "(", "now", ",", "_number_types", ")", "or", "(", "now", "and", "not", "now", ".", "tzinfo", ")", "or", "now", "is", "None", ")", ":", "warnings", ".", "warn", "(", "WARNING_CHANGE_MESSAGE", ",", "FutureWarning", ",", "2", ")", "default_utc", "=", "False", "now", "=", "now", "or", "(", "datetime", ".", "utcnow", "(", ")", "if", "default_utc", "and", "default_utc", "is", "not", "WARN_CHANGE", "else", "datetime", ".", "now", "(", ")", ")", "if", "isinstance", "(", "now", ",", "_number_types", ")", ":", "now", "=", "datetime", ".", "utcfromtimestamp", "(", "now", ")", "if", "default_utc", "else", "datetime", ".", "fromtimestamp", "(", "now", ")", "# handle timezones if the datetime object has a timezone and get a", "# reasonable future/past start time", "onow", ",", "now", "=", "now", ",", "now", ".", "replace", "(", "tzinfo", "=", "None", ")", "tz", "=", "onow", ".", "tzinfo", "future", "=", "now", ".", "replace", "(", "microsecond", "=", "0", ")", "+", "increments", "[", "0", "]", "(", ")", "if", "future", "<", "now", ":", "# we are going backwards...", "_test", "=", "lambda", ":", "future", ".", "year", "<", "self", ".", "matchers", ".", "year", "if", "now", ".", "microsecond", ":", "future", "=", "now", ".", "replace", "(", "microsecond", "=", "0", ")", "else", ":", "# we are going forwards", "_test", "=", "lambda", ":", "self", ".", "matchers", ".", "year", "<", "future", ".", "year", "# Start from the year and work our way down. Any time we increment a", "# higher-magnitude value, we reset all lower-magnitude values. This", "# gets us performance without sacrificing correctness. Still more", "# complicated than a brute-force approach, but also orders of", "# magnitude faster in basically all cases.", "to_test", "=", "ENTRIES", "-", "1", "while", "to_test", ">=", "0", ":", "if", "not", "self", ".", "_test_match", "(", "to_test", ",", "future", ")", ":", "inc", "=", "increments", "[", "to_test", "]", "(", "future", ",", "self", ".", "matchers", ")", "future", "+=", "inc", "for", "i", "in", "xrange", "(", "0", ",", "to_test", ")", ":", "future", "=", "increments", "[", "ENTRIES", "+", "i", "]", "(", "future", ",", "inc", ")", "try", ":", "if", "_test", "(", ")", ":", "return", "None", "except", ":", "print", "(", "future", ",", "type", "(", "future", ")", ",", "type", "(", "inc", ")", ")", "raise", "to_test", "=", "ENTRIES", "-", "1", "continue", "to_test", "-=", "1", "# verify the match", "match", "=", "[", "self", ".", "_test_match", "(", "i", ",", "future", ")", "for", "i", "in", "xrange", "(", "ENTRIES", ")", "]", "_assert", "(", "all", "(", "match", ")", ",", "\"\\nYou have discovered a bug with crontab, please notify the\\n\"", "\"author with the following information:\\n\"", "\"crontab: %r\\n\"", "\"now: %r\"", ",", "' '", ".", "join", "(", "m", ".", "input", "for", "m", "in", "self", ".", "matchers", ")", ",", "now", ")", "if", "not", "delta", ":", "onow", "=", "now", "=", "datetime", "(", "1970", ",", "1", ",", "1", ")", "delay", "=", "future", "-", "now", "if", "tz", ":", "delay", "+=", "_fix_none", "(", "onow", ".", "utcoffset", "(", ")", ")", "if", "hasattr", "(", "tz", ",", "'localize'", ")", ":", "delay", "-=", "_fix_none", "(", "tz", ".", "localize", "(", "future", ")", ".", "utcoffset", "(", ")", ")", "else", ":", "delay", "-=", "_fix_none", "(", "future", ".", "replace", "(", "tzinfo", "=", "tz", ")", ".", "utcoffset", "(", ")", ")", "return", "delay", ".", "days", "*", "86400", "+", "delay", ".", "seconds", "+", "delay", ".", "microseconds", "/", "1000000." ]
How long to wait in seconds before this crontab entry can next be executed.
[ "How", "long", "to", "wait", "in", "seconds", "before", "this", "crontab", "entry", "can", "next", "be", "executed", "." ]
b2bd254cf14e8c83e502615851b0d4b62f73ab15
https://github.com/josiahcarlson/parse-crontab/blob/b2bd254cf14e8c83e502615851b0d4b62f73ab15/crontab/_crontab.py#L390-L458
13,925
sanand0/xmljson
xmljson/__init__.py
XMLData._tostring
def _tostring(value): '''Convert value to XML compatible string''' if value is True: value = 'true' elif value is False: value = 'false' elif value is None: value = '' return unicode(value)
python
def _tostring(value): '''Convert value to XML compatible string''' if value is True: value = 'true' elif value is False: value = 'false' elif value is None: value = '' return unicode(value)
[ "def", "_tostring", "(", "value", ")", ":", "if", "value", "is", "True", ":", "value", "=", "'true'", "elif", "value", "is", "False", ":", "value", "=", "'false'", "elif", "value", "is", "None", ":", "value", "=", "''", "return", "unicode", "(", "value", ")" ]
Convert value to XML compatible string
[ "Convert", "value", "to", "XML", "compatible", "string" ]
2ecc2065fe7c87b3d282d362289927f13ce7f8b0
https://github.com/sanand0/xmljson/blob/2ecc2065fe7c87b3d282d362289927f13ce7f8b0/xmljson/__init__.py#L61-L69
13,926
sanand0/xmljson
xmljson/__init__.py
XMLData._fromstring
def _fromstring(value): '''Convert XML string value to None, boolean, int or float''' # NOTE: Is this even possible ? if value is None: return None # FIXME: In XML, booleans are either 0/false or 1/true (lower-case !) if value.lower() == 'true': return True elif value.lower() == 'false': return False # FIXME: Using int() or float() is eating whitespaces unintendedly here try: return int(value) except ValueError: pass try: # Test for infinity and NaN values if float('-inf') < float(value) < float('inf'): return float(value) except ValueError: pass return value
python
def _fromstring(value): '''Convert XML string value to None, boolean, int or float''' # NOTE: Is this even possible ? if value is None: return None # FIXME: In XML, booleans are either 0/false or 1/true (lower-case !) if value.lower() == 'true': return True elif value.lower() == 'false': return False # FIXME: Using int() or float() is eating whitespaces unintendedly here try: return int(value) except ValueError: pass try: # Test for infinity and NaN values if float('-inf') < float(value) < float('inf'): return float(value) except ValueError: pass return value
[ "def", "_fromstring", "(", "value", ")", ":", "# NOTE: Is this even possible ?", "if", "value", "is", "None", ":", "return", "None", "# FIXME: In XML, booleans are either 0/false or 1/true (lower-case !)", "if", "value", ".", "lower", "(", ")", "==", "'true'", ":", "return", "True", "elif", "value", ".", "lower", "(", ")", "==", "'false'", ":", "return", "False", "# FIXME: Using int() or float() is eating whitespaces unintendedly here", "try", ":", "return", "int", "(", "value", ")", "except", "ValueError", ":", "pass", "try", ":", "# Test for infinity and NaN values", "if", "float", "(", "'-inf'", ")", "<", "float", "(", "value", ")", "<", "float", "(", "'inf'", ")", ":", "return", "float", "(", "value", ")", "except", "ValueError", ":", "pass", "return", "value" ]
Convert XML string value to None, boolean, int or float
[ "Convert", "XML", "string", "value", "to", "None", "boolean", "int", "or", "float" ]
2ecc2065fe7c87b3d282d362289927f13ce7f8b0
https://github.com/sanand0/xmljson/blob/2ecc2065fe7c87b3d282d362289927f13ce7f8b0/xmljson/__init__.py#L72-L97
13,927
pysal/esda
esda/join_counts.py
Join_Counts.by_col
def by_col(cls, df, cols, w=None, inplace=False, pvalue='sim', outvals=None, **stat_kws): """ Function to compute a Join_Count statistic on a dataframe Arguments --------- df : pandas.DataFrame a pandas dataframe with a geometry column cols : string or list of string name or list of names of columns to use to compute the statistic w : pysal weights object a weights object aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata inplace : bool a boolean denoting whether to operate on the dataframe inplace or to return a series contaning the results of the computation. If operating inplace, the derived columns will be named 'column_join_count' pvalue : string a string denoting which pvalue should be returned. Refer to the the Join_Count statistic's documentation for available p-values outvals : list of strings list of arbitrary attributes to return as columns from the Join_Count statistic **stat_kws : keyword arguments options to pass to the underlying statistic. For this, see the documentation for the Join_Count statistic. Returns -------- If inplace, None, and operation is conducted on dataframe in memory. Otherwise, returns a copy of the dataframe with the relevant columns attached. See Also --------- For further documentation, refer to the Join_Count class in pysal.esda """ if outvals is None: outvals = [] outvals.extend(['bb', 'p_sim_bw', 'p_sim_bb']) pvalue = '' return _univariate_handler(df, cols, w=w, inplace=inplace, pvalue=pvalue, outvals=outvals, stat=cls, swapname='bw', **stat_kws)
python
def by_col(cls, df, cols, w=None, inplace=False, pvalue='sim', outvals=None, **stat_kws): """ Function to compute a Join_Count statistic on a dataframe Arguments --------- df : pandas.DataFrame a pandas dataframe with a geometry column cols : string or list of string name or list of names of columns to use to compute the statistic w : pysal weights object a weights object aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata inplace : bool a boolean denoting whether to operate on the dataframe inplace or to return a series contaning the results of the computation. If operating inplace, the derived columns will be named 'column_join_count' pvalue : string a string denoting which pvalue should be returned. Refer to the the Join_Count statistic's documentation for available p-values outvals : list of strings list of arbitrary attributes to return as columns from the Join_Count statistic **stat_kws : keyword arguments options to pass to the underlying statistic. For this, see the documentation for the Join_Count statistic. Returns -------- If inplace, None, and operation is conducted on dataframe in memory. Otherwise, returns a copy of the dataframe with the relevant columns attached. See Also --------- For further documentation, refer to the Join_Count class in pysal.esda """ if outvals is None: outvals = [] outvals.extend(['bb', 'p_sim_bw', 'p_sim_bb']) pvalue = '' return _univariate_handler(df, cols, w=w, inplace=inplace, pvalue=pvalue, outvals=outvals, stat=cls, swapname='bw', **stat_kws)
[ "def", "by_col", "(", "cls", ",", "df", ",", "cols", ",", "w", "=", "None", ",", "inplace", "=", "False", ",", "pvalue", "=", "'sim'", ",", "outvals", "=", "None", ",", "*", "*", "stat_kws", ")", ":", "if", "outvals", "is", "None", ":", "outvals", "=", "[", "]", "outvals", ".", "extend", "(", "[", "'bb'", ",", "'p_sim_bw'", ",", "'p_sim_bb'", "]", ")", "pvalue", "=", "''", "return", "_univariate_handler", "(", "df", ",", "cols", ",", "w", "=", "w", ",", "inplace", "=", "inplace", ",", "pvalue", "=", "pvalue", ",", "outvals", "=", "outvals", ",", "stat", "=", "cls", ",", "swapname", "=", "'bw'", ",", "*", "*", "stat_kws", ")" ]
Function to compute a Join_Count statistic on a dataframe Arguments --------- df : pandas.DataFrame a pandas dataframe with a geometry column cols : string or list of string name or list of names of columns to use to compute the statistic w : pysal weights object a weights object aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata inplace : bool a boolean denoting whether to operate on the dataframe inplace or to return a series contaning the results of the computation. If operating inplace, the derived columns will be named 'column_join_count' pvalue : string a string denoting which pvalue should be returned. Refer to the the Join_Count statistic's documentation for available p-values outvals : list of strings list of arbitrary attributes to return as columns from the Join_Count statistic **stat_kws : keyword arguments options to pass to the underlying statistic. For this, see the documentation for the Join_Count statistic. Returns -------- If inplace, None, and operation is conducted on dataframe in memory. Otherwise, returns a copy of the dataframe with the relevant columns attached. See Also --------- For further documentation, refer to the Join_Count class in pysal.esda
[ "Function", "to", "compute", "a", "Join_Count", "statistic", "on", "a", "dataframe" ]
2fafc6ec505e153152a86601d3e0fba080610c20
https://github.com/pysal/esda/blob/2fafc6ec505e153152a86601d3e0fba080610c20/esda/join_counts.py#L171-L214
13,928
pysal/esda
esda/moran.py
Moran_BV_matrix
def Moran_BV_matrix(variables, w, permutations=0, varnames=None): """ Bivariate Moran Matrix Calculates bivariate Moran between all pairs of a set of variables. Parameters ---------- variables : array or pandas.DataFrame sequence of variables to be assessed w : W a spatial weights object permutations : int number of permutations varnames : list, optional if variables is an array Strings for variable names. Will add an attribute to `Moran_BV` objects in results needed for plotting in `splot` or `.plot()`. Default =None. Note: If variables is a `pandas.DataFrame` varnames will automatically be generated Returns ------- results : dictionary (i, j) is the key for the pair of variables, values are the Moran_BV objects. Examples -------- open dbf >>> import libpysal >>> f = libpysal.io.open(libpysal.examples.get_path("sids2.dbf")) pull of selected variables from dbf and create numpy arrays for each >>> varnames = ['SIDR74', 'SIDR79', 'NWR74', 'NWR79'] >>> vars = [np.array(f.by_col[var]) for var in varnames] create a contiguity matrix from an external gal file >>> w = libpysal.io.open(libpysal.examples.get_path("sids2.gal")).read() create an instance of Moran_BV_matrix >>> from esda.moran import Moran_BV_matrix >>> res = Moran_BV_matrix(vars, w, varnames = varnames) check values >>> round(res[(0, 1)].I,7) 0.1936261 >>> round(res[(3, 0)].I,7) 0.3770138 """ try: # check if pandas is installed import pandas if isinstance(variables, pandas.DataFrame): # if yes use variables as df and convert to numpy_array varnames = pandas.Index.tolist(variables.columns) variables_n = [] for var in varnames: variables_n.append(variables[str(var)].values) else: variables_n = variables except ImportError: variables_n = variables results = _Moran_BV_Matrix_array(variables=variables_n, w=w, permutations=permutations, varnames=varnames) return results
python
def Moran_BV_matrix(variables, w, permutations=0, varnames=None): """ Bivariate Moran Matrix Calculates bivariate Moran between all pairs of a set of variables. Parameters ---------- variables : array or pandas.DataFrame sequence of variables to be assessed w : W a spatial weights object permutations : int number of permutations varnames : list, optional if variables is an array Strings for variable names. Will add an attribute to `Moran_BV` objects in results needed for plotting in `splot` or `.plot()`. Default =None. Note: If variables is a `pandas.DataFrame` varnames will automatically be generated Returns ------- results : dictionary (i, j) is the key for the pair of variables, values are the Moran_BV objects. Examples -------- open dbf >>> import libpysal >>> f = libpysal.io.open(libpysal.examples.get_path("sids2.dbf")) pull of selected variables from dbf and create numpy arrays for each >>> varnames = ['SIDR74', 'SIDR79', 'NWR74', 'NWR79'] >>> vars = [np.array(f.by_col[var]) for var in varnames] create a contiguity matrix from an external gal file >>> w = libpysal.io.open(libpysal.examples.get_path("sids2.gal")).read() create an instance of Moran_BV_matrix >>> from esda.moran import Moran_BV_matrix >>> res = Moran_BV_matrix(vars, w, varnames = varnames) check values >>> round(res[(0, 1)].I,7) 0.1936261 >>> round(res[(3, 0)].I,7) 0.3770138 """ try: # check if pandas is installed import pandas if isinstance(variables, pandas.DataFrame): # if yes use variables as df and convert to numpy_array varnames = pandas.Index.tolist(variables.columns) variables_n = [] for var in varnames: variables_n.append(variables[str(var)].values) else: variables_n = variables except ImportError: variables_n = variables results = _Moran_BV_Matrix_array(variables=variables_n, w=w, permutations=permutations, varnames=varnames) return results
[ "def", "Moran_BV_matrix", "(", "variables", ",", "w", ",", "permutations", "=", "0", ",", "varnames", "=", "None", ")", ":", "try", ":", "# check if pandas is installed", "import", "pandas", "if", "isinstance", "(", "variables", ",", "pandas", ".", "DataFrame", ")", ":", "# if yes use variables as df and convert to numpy_array", "varnames", "=", "pandas", ".", "Index", ".", "tolist", "(", "variables", ".", "columns", ")", "variables_n", "=", "[", "]", "for", "var", "in", "varnames", ":", "variables_n", ".", "append", "(", "variables", "[", "str", "(", "var", ")", "]", ".", "values", ")", "else", ":", "variables_n", "=", "variables", "except", "ImportError", ":", "variables_n", "=", "variables", "results", "=", "_Moran_BV_Matrix_array", "(", "variables", "=", "variables_n", ",", "w", "=", "w", ",", "permutations", "=", "permutations", ",", "varnames", "=", "varnames", ")", "return", "results" ]
Bivariate Moran Matrix Calculates bivariate Moran between all pairs of a set of variables. Parameters ---------- variables : array or pandas.DataFrame sequence of variables to be assessed w : W a spatial weights object permutations : int number of permutations varnames : list, optional if variables is an array Strings for variable names. Will add an attribute to `Moran_BV` objects in results needed for plotting in `splot` or `.plot()`. Default =None. Note: If variables is a `pandas.DataFrame` varnames will automatically be generated Returns ------- results : dictionary (i, j) is the key for the pair of variables, values are the Moran_BV objects. Examples -------- open dbf >>> import libpysal >>> f = libpysal.io.open(libpysal.examples.get_path("sids2.dbf")) pull of selected variables from dbf and create numpy arrays for each >>> varnames = ['SIDR74', 'SIDR79', 'NWR74', 'NWR79'] >>> vars = [np.array(f.by_col[var]) for var in varnames] create a contiguity matrix from an external gal file >>> w = libpysal.io.open(libpysal.examples.get_path("sids2.gal")).read() create an instance of Moran_BV_matrix >>> from esda.moran import Moran_BV_matrix >>> res = Moran_BV_matrix(vars, w, varnames = varnames) check values >>> round(res[(0, 1)].I,7) 0.1936261 >>> round(res[(3, 0)].I,7) 0.3770138
[ "Bivariate", "Moran", "Matrix" ]
2fafc6ec505e153152a86601d3e0fba080610c20
https://github.com/pysal/esda/blob/2fafc6ec505e153152a86601d3e0fba080610c20/esda/moran.py#L464-L537
13,929
pysal/esda
esda/moran.py
_Moran_BV_Matrix_array
def _Moran_BV_Matrix_array(variables, w, permutations=0, varnames=None): """ Base calculation for MORAN_BV_Matrix """ if varnames is None: varnames = ['x{}'.format(i) for i in range(k)] k = len(variables) rk = list(range(0, k - 1)) results = {} for i in rk: for j in range(i + 1, k): y1 = variables[i] y2 = variables[j] results[i, j] = Moran_BV(y1, y2, w, permutations=permutations) results[j, i] = Moran_BV(y2, y1, w, permutations=permutations) results[i, j].varnames = {'x': varnames[i], 'y': varnames[j]} results[j, i].varnames = {'x': varnames[j], 'y': varnames[i]} return results
python
def _Moran_BV_Matrix_array(variables, w, permutations=0, varnames=None): """ Base calculation for MORAN_BV_Matrix """ if varnames is None: varnames = ['x{}'.format(i) for i in range(k)] k = len(variables) rk = list(range(0, k - 1)) results = {} for i in rk: for j in range(i + 1, k): y1 = variables[i] y2 = variables[j] results[i, j] = Moran_BV(y1, y2, w, permutations=permutations) results[j, i] = Moran_BV(y2, y1, w, permutations=permutations) results[i, j].varnames = {'x': varnames[i], 'y': varnames[j]} results[j, i].varnames = {'x': varnames[j], 'y': varnames[i]} return results
[ "def", "_Moran_BV_Matrix_array", "(", "variables", ",", "w", ",", "permutations", "=", "0", ",", "varnames", "=", "None", ")", ":", "if", "varnames", "is", "None", ":", "varnames", "=", "[", "'x{}'", ".", "format", "(", "i", ")", "for", "i", "in", "range", "(", "k", ")", "]", "k", "=", "len", "(", "variables", ")", "rk", "=", "list", "(", "range", "(", "0", ",", "k", "-", "1", ")", ")", "results", "=", "{", "}", "for", "i", "in", "rk", ":", "for", "j", "in", "range", "(", "i", "+", "1", ",", "k", ")", ":", "y1", "=", "variables", "[", "i", "]", "y2", "=", "variables", "[", "j", "]", "results", "[", "i", ",", "j", "]", "=", "Moran_BV", "(", "y1", ",", "y2", ",", "w", ",", "permutations", "=", "permutations", ")", "results", "[", "j", ",", "i", "]", "=", "Moran_BV", "(", "y2", ",", "y1", ",", "w", ",", "permutations", "=", "permutations", ")", "results", "[", "i", ",", "j", "]", ".", "varnames", "=", "{", "'x'", ":", "varnames", "[", "i", "]", ",", "'y'", ":", "varnames", "[", "j", "]", "}", "results", "[", "j", ",", "i", "]", ".", "varnames", "=", "{", "'x'", ":", "varnames", "[", "j", "]", ",", "'y'", ":", "varnames", "[", "i", "]", "}", "return", "results" ]
Base calculation for MORAN_BV_Matrix
[ "Base", "calculation", "for", "MORAN_BV_Matrix" ]
2fafc6ec505e153152a86601d3e0fba080610c20
https://github.com/pysal/esda/blob/2fafc6ec505e153152a86601d3e0fba080610c20/esda/moran.py#L540-L558
13,930
pysal/esda
esda/moran.py
Moran_BV.by_col
def by_col(cls, df, x, y=None, w=None, inplace=False, pvalue='sim', outvals=None, **stat_kws): """ Function to compute a Moran_BV statistic on a dataframe Arguments --------- df : pandas.DataFrame a pandas dataframe with a geometry column X : list of strings column name or list of column names to use as X values to compute the bivariate statistic. If no Y is provided, pairwise comparisons among these variates are used instead. Y : list of strings column name or list of column names to use as Y values to compute the bivariate statistic. if no Y is provided, pariwise comparisons among the X variates are used instead. w : pysal weights object a weights object aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata inplace : bool a boolean denoting whether to operate on the dataframe inplace or to return a series contaning the results of the computation. If operating inplace, the derived columns will be named 'column_moran_local' pvalue : string a string denoting which pvalue should be returned. Refer to the the Moran_BV statistic's documentation for available p-values outvals : list of strings list of arbitrary attributes to return as columns from the Moran_BV statistic **stat_kws : keyword arguments options to pass to the underlying statistic. For this, see the documentation for the Moran_BV statistic. Returns -------- If inplace, None, and operation is conducted on dataframe in memory. Otherwise, returns a copy of the dataframe with the relevant columns attached. See Also --------- For further documentation, refer to the Moran_BV class in pysal.esda """ return _bivariate_handler(df, x, y=y, w=w, inplace=inplace, pvalue = pvalue, outvals = outvals, swapname=cls.__name__.lower(), stat=cls,**stat_kws)
python
def by_col(cls, df, x, y=None, w=None, inplace=False, pvalue='sim', outvals=None, **stat_kws): """ Function to compute a Moran_BV statistic on a dataframe Arguments --------- df : pandas.DataFrame a pandas dataframe with a geometry column X : list of strings column name or list of column names to use as X values to compute the bivariate statistic. If no Y is provided, pairwise comparisons among these variates are used instead. Y : list of strings column name or list of column names to use as Y values to compute the bivariate statistic. if no Y is provided, pariwise comparisons among the X variates are used instead. w : pysal weights object a weights object aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata inplace : bool a boolean denoting whether to operate on the dataframe inplace or to return a series contaning the results of the computation. If operating inplace, the derived columns will be named 'column_moran_local' pvalue : string a string denoting which pvalue should be returned. Refer to the the Moran_BV statistic's documentation for available p-values outvals : list of strings list of arbitrary attributes to return as columns from the Moran_BV statistic **stat_kws : keyword arguments options to pass to the underlying statistic. For this, see the documentation for the Moran_BV statistic. Returns -------- If inplace, None, and operation is conducted on dataframe in memory. Otherwise, returns a copy of the dataframe with the relevant columns attached. See Also --------- For further documentation, refer to the Moran_BV class in pysal.esda """ return _bivariate_handler(df, x, y=y, w=w, inplace=inplace, pvalue = pvalue, outvals = outvals, swapname=cls.__name__.lower(), stat=cls,**stat_kws)
[ "def", "by_col", "(", "cls", ",", "df", ",", "x", ",", "y", "=", "None", ",", "w", "=", "None", ",", "inplace", "=", "False", ",", "pvalue", "=", "'sim'", ",", "outvals", "=", "None", ",", "*", "*", "stat_kws", ")", ":", "return", "_bivariate_handler", "(", "df", ",", "x", ",", "y", "=", "y", ",", "w", "=", "w", ",", "inplace", "=", "inplace", ",", "pvalue", "=", "pvalue", ",", "outvals", "=", "outvals", ",", "swapname", "=", "cls", ".", "__name__", ".", "lower", "(", ")", ",", "stat", "=", "cls", ",", "*", "*", "stat_kws", ")" ]
Function to compute a Moran_BV statistic on a dataframe Arguments --------- df : pandas.DataFrame a pandas dataframe with a geometry column X : list of strings column name or list of column names to use as X values to compute the bivariate statistic. If no Y is provided, pairwise comparisons among these variates are used instead. Y : list of strings column name or list of column names to use as Y values to compute the bivariate statistic. if no Y is provided, pariwise comparisons among the X variates are used instead. w : pysal weights object a weights object aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata inplace : bool a boolean denoting whether to operate on the dataframe inplace or to return a series contaning the results of the computation. If operating inplace, the derived columns will be named 'column_moran_local' pvalue : string a string denoting which pvalue should be returned. Refer to the the Moran_BV statistic's documentation for available p-values outvals : list of strings list of arbitrary attributes to return as columns from the Moran_BV statistic **stat_kws : keyword arguments options to pass to the underlying statistic. For this, see the documentation for the Moran_BV statistic. Returns -------- If inplace, None, and operation is conducted on dataframe in memory. Otherwise, returns a copy of the dataframe with the relevant columns attached. See Also --------- For further documentation, refer to the Moran_BV class in pysal.esda
[ "Function", "to", "compute", "a", "Moran_BV", "statistic", "on", "a", "dataframe" ]
2fafc6ec505e153152a86601d3e0fba080610c20
https://github.com/pysal/esda/blob/2fafc6ec505e153152a86601d3e0fba080610c20/esda/moran.py#L415-L461
13,931
pysal/esda
esda/moran.py
Moran_Rate.by_col
def by_col(cls, df, events, populations, w=None, inplace=False, pvalue='sim', outvals=None, swapname='', **stat_kws): """ Function to compute a Moran_Rate statistic on a dataframe Arguments --------- df : pandas.DataFrame a pandas dataframe with a geometry column events : string or list of strings one or more names where events are stored populations : string or list of strings one or more names where the populations corresponding to the events are stored. If one population column is provided, it is used for all event columns. If more than one population column is provided but there is not a population for every event column, an exception will be raised. w : pysal weights object a weights object aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata inplace : bool a boolean denoting whether to operate on the dataframe inplace or to return a series contaning the results of the computation. If operating inplace, the derived columns will be named 'column_moran_rate' pvalue : string a string denoting which pvalue should be returned. Refer to the the Moran_Rate statistic's documentation for available p-values outvals : list of strings list of arbitrary attributes to return as columns from the Moran_Rate statistic **stat_kws : keyword arguments options to pass to the underlying statistic. For this, see the documentation for the Moran_Rate statistic. Returns -------- If inplace, None, and operation is conducted on dataframe in memory. Otherwise, returns a copy of the dataframe with the relevant columns attached. See Also --------- For further documentation, refer to the Moran_Rate class in pysal.esda """ if not inplace: new = df.copy() cls.by_col(new, events, populations, w=w, inplace=True, pvalue=pvalue, outvals=outvals, swapname=swapname, **stat_kws) return new if isinstance(events, str): events = [events] if isinstance(populations, str): populations = [populations] if len(populations) < len(events): populations = populations * len(events) if len(events) != len(populations): raise ValueError('There is not a one-to-one matching between events and ' 'populations!\nEvents: {}\n\nPopulations:' ' {}'.format(events, populations)) adjusted = stat_kws.pop('adjusted', True) if isinstance(adjusted, bool): adjusted = [adjusted] * len(events) if swapname is '': swapname = cls.__name__.lower() rates = [assuncao_rate(df[e], df[pop]) if adj else df[e].astype(float) / df[pop] for e,pop,adj in zip(events, populations, adjusted)] names = ['-'.join((e,p)) for e,p in zip(events, populations)] out_df = df.copy() rate_df = out_df.from_items(list(zip(names, rates))) #trick to avoid importing pandas stat_df = _univariate_handler(rate_df, names, w=w, inplace=False, pvalue = pvalue, outvals = outvals, swapname=swapname, stat=Moran, #how would this get done w/super? **stat_kws) for col in stat_df.columns: df[col] = stat_df[col]
python
def by_col(cls, df, events, populations, w=None, inplace=False, pvalue='sim', outvals=None, swapname='', **stat_kws): """ Function to compute a Moran_Rate statistic on a dataframe Arguments --------- df : pandas.DataFrame a pandas dataframe with a geometry column events : string or list of strings one or more names where events are stored populations : string or list of strings one or more names where the populations corresponding to the events are stored. If one population column is provided, it is used for all event columns. If more than one population column is provided but there is not a population for every event column, an exception will be raised. w : pysal weights object a weights object aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata inplace : bool a boolean denoting whether to operate on the dataframe inplace or to return a series contaning the results of the computation. If operating inplace, the derived columns will be named 'column_moran_rate' pvalue : string a string denoting which pvalue should be returned. Refer to the the Moran_Rate statistic's documentation for available p-values outvals : list of strings list of arbitrary attributes to return as columns from the Moran_Rate statistic **stat_kws : keyword arguments options to pass to the underlying statistic. For this, see the documentation for the Moran_Rate statistic. Returns -------- If inplace, None, and operation is conducted on dataframe in memory. Otherwise, returns a copy of the dataframe with the relevant columns attached. See Also --------- For further documentation, refer to the Moran_Rate class in pysal.esda """ if not inplace: new = df.copy() cls.by_col(new, events, populations, w=w, inplace=True, pvalue=pvalue, outvals=outvals, swapname=swapname, **stat_kws) return new if isinstance(events, str): events = [events] if isinstance(populations, str): populations = [populations] if len(populations) < len(events): populations = populations * len(events) if len(events) != len(populations): raise ValueError('There is not a one-to-one matching between events and ' 'populations!\nEvents: {}\n\nPopulations:' ' {}'.format(events, populations)) adjusted = stat_kws.pop('adjusted', True) if isinstance(adjusted, bool): adjusted = [adjusted] * len(events) if swapname is '': swapname = cls.__name__.lower() rates = [assuncao_rate(df[e], df[pop]) if adj else df[e].astype(float) / df[pop] for e,pop,adj in zip(events, populations, adjusted)] names = ['-'.join((e,p)) for e,p in zip(events, populations)] out_df = df.copy() rate_df = out_df.from_items(list(zip(names, rates))) #trick to avoid importing pandas stat_df = _univariate_handler(rate_df, names, w=w, inplace=False, pvalue = pvalue, outvals = outvals, swapname=swapname, stat=Moran, #how would this get done w/super? **stat_kws) for col in stat_df.columns: df[col] = stat_df[col]
[ "def", "by_col", "(", "cls", ",", "df", ",", "events", ",", "populations", ",", "w", "=", "None", ",", "inplace", "=", "False", ",", "pvalue", "=", "'sim'", ",", "outvals", "=", "None", ",", "swapname", "=", "''", ",", "*", "*", "stat_kws", ")", ":", "if", "not", "inplace", ":", "new", "=", "df", ".", "copy", "(", ")", "cls", ".", "by_col", "(", "new", ",", "events", ",", "populations", ",", "w", "=", "w", ",", "inplace", "=", "True", ",", "pvalue", "=", "pvalue", ",", "outvals", "=", "outvals", ",", "swapname", "=", "swapname", ",", "*", "*", "stat_kws", ")", "return", "new", "if", "isinstance", "(", "events", ",", "str", ")", ":", "events", "=", "[", "events", "]", "if", "isinstance", "(", "populations", ",", "str", ")", ":", "populations", "=", "[", "populations", "]", "if", "len", "(", "populations", ")", "<", "len", "(", "events", ")", ":", "populations", "=", "populations", "*", "len", "(", "events", ")", "if", "len", "(", "events", ")", "!=", "len", "(", "populations", ")", ":", "raise", "ValueError", "(", "'There is not a one-to-one matching between events and '", "'populations!\\nEvents: {}\\n\\nPopulations:'", "' {}'", ".", "format", "(", "events", ",", "populations", ")", ")", "adjusted", "=", "stat_kws", ".", "pop", "(", "'adjusted'", ",", "True", ")", "if", "isinstance", "(", "adjusted", ",", "bool", ")", ":", "adjusted", "=", "[", "adjusted", "]", "*", "len", "(", "events", ")", "if", "swapname", "is", "''", ":", "swapname", "=", "cls", ".", "__name__", ".", "lower", "(", ")", "rates", "=", "[", "assuncao_rate", "(", "df", "[", "e", "]", ",", "df", "[", "pop", "]", ")", "if", "adj", "else", "df", "[", "e", "]", ".", "astype", "(", "float", ")", "/", "df", "[", "pop", "]", "for", "e", ",", "pop", ",", "adj", "in", "zip", "(", "events", ",", "populations", ",", "adjusted", ")", "]", "names", "=", "[", "'-'", ".", "join", "(", "(", "e", ",", "p", ")", ")", "for", "e", ",", "p", "in", "zip", "(", "events", ",", "populations", ")", "]", "out_df", "=", "df", ".", "copy", "(", ")", "rate_df", "=", "out_df", ".", "from_items", "(", "list", "(", "zip", "(", "names", ",", "rates", ")", ")", ")", "#trick to avoid importing pandas", "stat_df", "=", "_univariate_handler", "(", "rate_df", ",", "names", ",", "w", "=", "w", ",", "inplace", "=", "False", ",", "pvalue", "=", "pvalue", ",", "outvals", "=", "outvals", ",", "swapname", "=", "swapname", ",", "stat", "=", "Moran", ",", "#how would this get done w/super?", "*", "*", "stat_kws", ")", "for", "col", "in", "stat_df", ".", "columns", ":", "df", "[", "col", "]", "=", "stat_df", "[", "col", "]" ]
Function to compute a Moran_Rate statistic on a dataframe Arguments --------- df : pandas.DataFrame a pandas dataframe with a geometry column events : string or list of strings one or more names where events are stored populations : string or list of strings one or more names where the populations corresponding to the events are stored. If one population column is provided, it is used for all event columns. If more than one population column is provided but there is not a population for every event column, an exception will be raised. w : pysal weights object a weights object aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata inplace : bool a boolean denoting whether to operate on the dataframe inplace or to return a series contaning the results of the computation. If operating inplace, the derived columns will be named 'column_moran_rate' pvalue : string a string denoting which pvalue should be returned. Refer to the the Moran_Rate statistic's documentation for available p-values outvals : list of strings list of arbitrary attributes to return as columns from the Moran_Rate statistic **stat_kws : keyword arguments options to pass to the underlying statistic. For this, see the documentation for the Moran_Rate statistic. Returns -------- If inplace, None, and operation is conducted on dataframe in memory. Otherwise, returns a copy of the dataframe with the relevant columns attached. See Also --------- For further documentation, refer to the Moran_Rate class in pysal.esda
[ "Function", "to", "compute", "a", "Moran_Rate", "statistic", "on", "a", "dataframe" ]
2fafc6ec505e153152a86601d3e0fba080610c20
https://github.com/pysal/esda/blob/2fafc6ec505e153152a86601d3e0fba080610c20/esda/moran.py#L679-L758
13,932
pysal/esda
esda/smoothing.py
flatten
def flatten(l, unique=True): """flatten a list of lists Parameters ---------- l : list of lists unique : boolean whether or not only unique items are wanted (default=True) Returns ------- list of single items Examples -------- Creating a sample list whose elements are lists of integers >>> l = [[1, 2], [3, 4, ], [5, 6]] Applying flatten function >>> flatten(l) [1, 2, 3, 4, 5, 6] """ l = reduce(lambda x, y: x + y, l) if not unique: return list(l) return list(set(l))
python
def flatten(l, unique=True): """flatten a list of lists Parameters ---------- l : list of lists unique : boolean whether or not only unique items are wanted (default=True) Returns ------- list of single items Examples -------- Creating a sample list whose elements are lists of integers >>> l = [[1, 2], [3, 4, ], [5, 6]] Applying flatten function >>> flatten(l) [1, 2, 3, 4, 5, 6] """ l = reduce(lambda x, y: x + y, l) if not unique: return list(l) return list(set(l))
[ "def", "flatten", "(", "l", ",", "unique", "=", "True", ")", ":", "l", "=", "reduce", "(", "lambda", "x", ",", "y", ":", "x", "+", "y", ",", "l", ")", "if", "not", "unique", ":", "return", "list", "(", "l", ")", "return", "list", "(", "set", "(", "l", ")", ")" ]
flatten a list of lists Parameters ---------- l : list of lists unique : boolean whether or not only unique items are wanted (default=True) Returns ------- list of single items Examples -------- Creating a sample list whose elements are lists of integers >>> l = [[1, 2], [3, 4, ], [5, 6]] Applying flatten function >>> flatten(l) [1, 2, 3, 4, 5, 6]
[ "flatten", "a", "list", "of", "lists" ]
2fafc6ec505e153152a86601d3e0fba080610c20
https://github.com/pysal/esda/blob/2fafc6ec505e153152a86601d3e0fba080610c20/esda/smoothing.py#L32-L63
13,933
pysal/esda
esda/smoothing.py
weighted_median
def weighted_median(d, w): """A utility function to find a median of d based on w Parameters ---------- d : array (n, 1), variable for which median will be found w : array (n, 1), variable on which d's median will be decided Notes ----- d and w are arranged in the same order Returns ------- float median of d Examples -------- Creating an array including five integers. We will get the median of these integers. >>> d = np.array([5,4,3,1,2]) Creating another array including weight values for the above integers. The median of d will be decided with a consideration to these weight values. >>> w = np.array([10, 22, 9, 2, 5]) Applying weighted_median function >>> weighted_median(d, w) 4 """ dtype = [('w', '%s' % w.dtype), ('v', '%s' % d.dtype)] d_w = np.array(list(zip(w, d)), dtype=dtype) d_w.sort(order='v') reordered_w = d_w['w'].cumsum() cumsum_threshold = reordered_w[-1] * 1.0 / 2 median_inx = (reordered_w >= cumsum_threshold).nonzero()[0][0] if reordered_w[median_inx] == cumsum_threshold and len(d) - 1 > median_inx: return np.sort(d)[median_inx:median_inx + 2].mean() return np.sort(d)[median_inx]
python
def weighted_median(d, w): """A utility function to find a median of d based on w Parameters ---------- d : array (n, 1), variable for which median will be found w : array (n, 1), variable on which d's median will be decided Notes ----- d and w are arranged in the same order Returns ------- float median of d Examples -------- Creating an array including five integers. We will get the median of these integers. >>> d = np.array([5,4,3,1,2]) Creating another array including weight values for the above integers. The median of d will be decided with a consideration to these weight values. >>> w = np.array([10, 22, 9, 2, 5]) Applying weighted_median function >>> weighted_median(d, w) 4 """ dtype = [('w', '%s' % w.dtype), ('v', '%s' % d.dtype)] d_w = np.array(list(zip(w, d)), dtype=dtype) d_w.sort(order='v') reordered_w = d_w['w'].cumsum() cumsum_threshold = reordered_w[-1] * 1.0 / 2 median_inx = (reordered_w >= cumsum_threshold).nonzero()[0][0] if reordered_w[median_inx] == cumsum_threshold and len(d) - 1 > median_inx: return np.sort(d)[median_inx:median_inx + 2].mean() return np.sort(d)[median_inx]
[ "def", "weighted_median", "(", "d", ",", "w", ")", ":", "dtype", "=", "[", "(", "'w'", ",", "'%s'", "%", "w", ".", "dtype", ")", ",", "(", "'v'", ",", "'%s'", "%", "d", ".", "dtype", ")", "]", "d_w", "=", "np", ".", "array", "(", "list", "(", "zip", "(", "w", ",", "d", ")", ")", ",", "dtype", "=", "dtype", ")", "d_w", ".", "sort", "(", "order", "=", "'v'", ")", "reordered_w", "=", "d_w", "[", "'w'", "]", ".", "cumsum", "(", ")", "cumsum_threshold", "=", "reordered_w", "[", "-", "1", "]", "*", "1.0", "/", "2", "median_inx", "=", "(", "reordered_w", ">=", "cumsum_threshold", ")", ".", "nonzero", "(", ")", "[", "0", "]", "[", "0", "]", "if", "reordered_w", "[", "median_inx", "]", "==", "cumsum_threshold", "and", "len", "(", "d", ")", "-", "1", ">", "median_inx", ":", "return", "np", ".", "sort", "(", "d", ")", "[", "median_inx", ":", "median_inx", "+", "2", "]", ".", "mean", "(", ")", "return", "np", ".", "sort", "(", "d", ")", "[", "median_inx", "]" ]
A utility function to find a median of d based on w Parameters ---------- d : array (n, 1), variable for which median will be found w : array (n, 1), variable on which d's median will be decided Notes ----- d and w are arranged in the same order Returns ------- float median of d Examples -------- Creating an array including five integers. We will get the median of these integers. >>> d = np.array([5,4,3,1,2]) Creating another array including weight values for the above integers. The median of d will be decided with a consideration to these weight values. >>> w = np.array([10, 22, 9, 2, 5]) Applying weighted_median function >>> weighted_median(d, w) 4
[ "A", "utility", "function", "to", "find", "a", "median", "of", "d", "based", "on", "w" ]
2fafc6ec505e153152a86601d3e0fba080610c20
https://github.com/pysal/esda/blob/2fafc6ec505e153152a86601d3e0fba080610c20/esda/smoothing.py#L66-L113
13,934
pysal/esda
esda/smoothing.py
sum_by_n
def sum_by_n(d, w, n): """A utility function to summarize a data array into n values after weighting the array with another weight array w Parameters ---------- d : array (t, 1), numerical values w : array (t, 1), numerical values for weighting n : integer the number of groups t = c*n (c is a constant) Returns ------- : array (n, 1), an array with summarized values Examples -------- Creating an array including four integers. We will compute weighted means for every two elements. >>> d = np.array([10, 9, 20, 30]) Here is another array with the weight values for d's elements. >>> w = np.array([0.5, 0.1, 0.3, 0.8]) We specify the number of groups for which the weighted mean is computed. >>> n = 2 Applying sum_by_n function >>> sum_by_n(d, w, n) array([ 5.9, 30. ]) """ t = len(d) h = t // n #must be floor! d = d * w return np.array([sum(d[i: i + h]) for i in range(0, t, h)])
python
def sum_by_n(d, w, n): """A utility function to summarize a data array into n values after weighting the array with another weight array w Parameters ---------- d : array (t, 1), numerical values w : array (t, 1), numerical values for weighting n : integer the number of groups t = c*n (c is a constant) Returns ------- : array (n, 1), an array with summarized values Examples -------- Creating an array including four integers. We will compute weighted means for every two elements. >>> d = np.array([10, 9, 20, 30]) Here is another array with the weight values for d's elements. >>> w = np.array([0.5, 0.1, 0.3, 0.8]) We specify the number of groups for which the weighted mean is computed. >>> n = 2 Applying sum_by_n function >>> sum_by_n(d, w, n) array([ 5.9, 30. ]) """ t = len(d) h = t // n #must be floor! d = d * w return np.array([sum(d[i: i + h]) for i in range(0, t, h)])
[ "def", "sum_by_n", "(", "d", ",", "w", ",", "n", ")", ":", "t", "=", "len", "(", "d", ")", "h", "=", "t", "//", "n", "#must be floor!", "d", "=", "d", "*", "w", "return", "np", ".", "array", "(", "[", "sum", "(", "d", "[", "i", ":", "i", "+", "h", "]", ")", "for", "i", "in", "range", "(", "0", ",", "t", ",", "h", ")", "]", ")" ]
A utility function to summarize a data array into n values after weighting the array with another weight array w Parameters ---------- d : array (t, 1), numerical values w : array (t, 1), numerical values for weighting n : integer the number of groups t = c*n (c is a constant) Returns ------- : array (n, 1), an array with summarized values Examples -------- Creating an array including four integers. We will compute weighted means for every two elements. >>> d = np.array([10, 9, 20, 30]) Here is another array with the weight values for d's elements. >>> w = np.array([0.5, 0.1, 0.3, 0.8]) We specify the number of groups for which the weighted mean is computed. >>> n = 2 Applying sum_by_n function >>> sum_by_n(d, w, n) array([ 5.9, 30. ])
[ "A", "utility", "function", "to", "summarize", "a", "data", "array", "into", "n", "values", "after", "weighting", "the", "array", "with", "another", "weight", "array", "w" ]
2fafc6ec505e153152a86601d3e0fba080610c20
https://github.com/pysal/esda/blob/2fafc6ec505e153152a86601d3e0fba080610c20/esda/smoothing.py#L116-L160
13,935
pysal/esda
esda/smoothing.py
crude_age_standardization
def crude_age_standardization(e, b, n): """A utility function to compute rate through crude age standardization Parameters ---------- e : array (n*h, 1), event variable measured for each age group across n spatial units b : array (n*h, 1), population at risk variable measured for each age group across n spatial units n : integer the number of spatial units Notes ----- e and b are arranged in the same order Returns ------- : array (n, 1), age standardized rate Examples -------- Creating an array of an event variable (e.g., the number of cancer patients) for 2 regions in each of which 4 age groups are available. The first 4 values are event values for 4 age groups in the region 1, and the next 4 values are for 4 age groups in the region 2. >>> e = np.array([30, 25, 25, 15, 33, 21, 30, 20]) Creating another array of a population-at-risk variable (e.g., total population) for the same two regions. The order for entering values is the same as the case of e. >>> b = np.array([100, 100, 110, 90, 100, 90, 110, 90]) Specifying the number of regions. >>> n = 2 Applying crude_age_standardization function to e and b >>> crude_age_standardization(e, b, n) array([0.2375 , 0.26666667]) """ r = e * 1.0 / b b_by_n = sum_by_n(b, 1.0, n) age_weight = b * 1.0 / b_by_n.repeat(len(e) // n) return sum_by_n(r, age_weight, n)
python
def crude_age_standardization(e, b, n): """A utility function to compute rate through crude age standardization Parameters ---------- e : array (n*h, 1), event variable measured for each age group across n spatial units b : array (n*h, 1), population at risk variable measured for each age group across n spatial units n : integer the number of spatial units Notes ----- e and b are arranged in the same order Returns ------- : array (n, 1), age standardized rate Examples -------- Creating an array of an event variable (e.g., the number of cancer patients) for 2 regions in each of which 4 age groups are available. The first 4 values are event values for 4 age groups in the region 1, and the next 4 values are for 4 age groups in the region 2. >>> e = np.array([30, 25, 25, 15, 33, 21, 30, 20]) Creating another array of a population-at-risk variable (e.g., total population) for the same two regions. The order for entering values is the same as the case of e. >>> b = np.array([100, 100, 110, 90, 100, 90, 110, 90]) Specifying the number of regions. >>> n = 2 Applying crude_age_standardization function to e and b >>> crude_age_standardization(e, b, n) array([0.2375 , 0.26666667]) """ r = e * 1.0 / b b_by_n = sum_by_n(b, 1.0, n) age_weight = b * 1.0 / b_by_n.repeat(len(e) // n) return sum_by_n(r, age_weight, n)
[ "def", "crude_age_standardization", "(", "e", ",", "b", ",", "n", ")", ":", "r", "=", "e", "*", "1.0", "/", "b", "b_by_n", "=", "sum_by_n", "(", "b", ",", "1.0", ",", "n", ")", "age_weight", "=", "b", "*", "1.0", "/", "b_by_n", ".", "repeat", "(", "len", "(", "e", ")", "//", "n", ")", "return", "sum_by_n", "(", "r", ",", "age_weight", ",", "n", ")" ]
A utility function to compute rate through crude age standardization Parameters ---------- e : array (n*h, 1), event variable measured for each age group across n spatial units b : array (n*h, 1), population at risk variable measured for each age group across n spatial units n : integer the number of spatial units Notes ----- e and b are arranged in the same order Returns ------- : array (n, 1), age standardized rate Examples -------- Creating an array of an event variable (e.g., the number of cancer patients) for 2 regions in each of which 4 age groups are available. The first 4 values are event values for 4 age groups in the region 1, and the next 4 values are for 4 age groups in the region 2. >>> e = np.array([30, 25, 25, 15, 33, 21, 30, 20]) Creating another array of a population-at-risk variable (e.g., total population) for the same two regions. The order for entering values is the same as the case of e. >>> b = np.array([100, 100, 110, 90, 100, 90, 110, 90]) Specifying the number of regions. >>> n = 2 Applying crude_age_standardization function to e and b >>> crude_age_standardization(e, b, n) array([0.2375 , 0.26666667])
[ "A", "utility", "function", "to", "compute", "rate", "through", "crude", "age", "standardization" ]
2fafc6ec505e153152a86601d3e0fba080610c20
https://github.com/pysal/esda/blob/2fafc6ec505e153152a86601d3e0fba080610c20/esda/smoothing.py#L163-L213
13,936
pysal/esda
esda/smoothing.py
direct_age_standardization
def direct_age_standardization(e, b, s, n, alpha=0.05): """A utility function to compute rate through direct age standardization Parameters ---------- e : array (n*h, 1), event variable measured for each age group across n spatial units b : array (n*h, 1), population at risk variable measured for each age group across n spatial units s : array (n*h, 1), standard population for each age group across n spatial units n : integer the number of spatial units alpha : float significance level for confidence interval Notes ----- e, b, and s are arranged in the same order Returns ------- list a list of n tuples; a tuple has a rate and its lower and upper limits age standardized rates and confidence intervals Examples -------- Creating an array of an event variable (e.g., the number of cancer patients) for 2 regions in each of which 4 age groups are available. The first 4 values are event values for 4 age groups in the region 1, and the next 4 values are for 4 age groups in the region 2. >>> e = np.array([30, 25, 25, 15, 33, 21, 30, 20]) Creating another array of a population-at-risk variable (e.g., total population) for the same two regions. The order for entering values is the same as the case of e. >>> b = np.array([1000, 1000, 1100, 900, 1000, 900, 1100, 900]) For direct age standardization, we also need the data for standard population. Standard population is a reference population-at-risk (e.g., population distribution for the U.S.) whose age distribution can be used as a benchmarking point for comparing age distributions across regions (e.g., population distribution for Arizona and California). Another array including standard population is created. >>> s = np.array([1000, 900, 1000, 900, 1000, 900, 1000, 900]) Specifying the number of regions. >>> n = 2 Applying direct_age_standardization function to e and b >>> a, b = [i[0] for i in direct_age_standardization(e, b, s, n)] >>> round(a, 4) 0.0237 >>> round(b, 4) 0.0267 """ age_weight = (1.0 / b) * (s * 1.0 / sum_by_n(s, 1.0, n).repeat(len(s) // n)) adjusted_r = sum_by_n(e, age_weight, n) var_estimate = sum_by_n(e, np.square(age_weight), n) g_a = np.square(adjusted_r) / var_estimate g_b = var_estimate / adjusted_r k = [age_weight[i:i + len(b) // n].max() for i in range(0, len(b), len(b) // n)] g_a_k = np.square(adjusted_r + k) / (var_estimate + np.square(k)) g_b_k = (var_estimate + np.square(k)) / (adjusted_r + k) summed_b = sum_by_n(b, 1.0, n) res = [] for i in range(len(adjusted_r)): if adjusted_r[i] == 0: upper = 0.5 * chi2.ppf(1 - 0.5 * alpha) lower = 0.0 else: lower = gamma.ppf(0.5 * alpha, g_a[i], scale=g_b[i]) upper = gamma.ppf(1 - 0.5 * alpha, g_a_k[i], scale=g_b_k[i]) res.append((adjusted_r[i], lower, upper)) return res
python
def direct_age_standardization(e, b, s, n, alpha=0.05): """A utility function to compute rate through direct age standardization Parameters ---------- e : array (n*h, 1), event variable measured for each age group across n spatial units b : array (n*h, 1), population at risk variable measured for each age group across n spatial units s : array (n*h, 1), standard population for each age group across n spatial units n : integer the number of spatial units alpha : float significance level for confidence interval Notes ----- e, b, and s are arranged in the same order Returns ------- list a list of n tuples; a tuple has a rate and its lower and upper limits age standardized rates and confidence intervals Examples -------- Creating an array of an event variable (e.g., the number of cancer patients) for 2 regions in each of which 4 age groups are available. The first 4 values are event values for 4 age groups in the region 1, and the next 4 values are for 4 age groups in the region 2. >>> e = np.array([30, 25, 25, 15, 33, 21, 30, 20]) Creating another array of a population-at-risk variable (e.g., total population) for the same two regions. The order for entering values is the same as the case of e. >>> b = np.array([1000, 1000, 1100, 900, 1000, 900, 1100, 900]) For direct age standardization, we also need the data for standard population. Standard population is a reference population-at-risk (e.g., population distribution for the U.S.) whose age distribution can be used as a benchmarking point for comparing age distributions across regions (e.g., population distribution for Arizona and California). Another array including standard population is created. >>> s = np.array([1000, 900, 1000, 900, 1000, 900, 1000, 900]) Specifying the number of regions. >>> n = 2 Applying direct_age_standardization function to e and b >>> a, b = [i[0] for i in direct_age_standardization(e, b, s, n)] >>> round(a, 4) 0.0237 >>> round(b, 4) 0.0267 """ age_weight = (1.0 / b) * (s * 1.0 / sum_by_n(s, 1.0, n).repeat(len(s) // n)) adjusted_r = sum_by_n(e, age_weight, n) var_estimate = sum_by_n(e, np.square(age_weight), n) g_a = np.square(adjusted_r) / var_estimate g_b = var_estimate / adjusted_r k = [age_weight[i:i + len(b) // n].max() for i in range(0, len(b), len(b) // n)] g_a_k = np.square(adjusted_r + k) / (var_estimate + np.square(k)) g_b_k = (var_estimate + np.square(k)) / (adjusted_r + k) summed_b = sum_by_n(b, 1.0, n) res = [] for i in range(len(adjusted_r)): if adjusted_r[i] == 0: upper = 0.5 * chi2.ppf(1 - 0.5 * alpha) lower = 0.0 else: lower = gamma.ppf(0.5 * alpha, g_a[i], scale=g_b[i]) upper = gamma.ppf(1 - 0.5 * alpha, g_a_k[i], scale=g_b_k[i]) res.append((adjusted_r[i], lower, upper)) return res
[ "def", "direct_age_standardization", "(", "e", ",", "b", ",", "s", ",", "n", ",", "alpha", "=", "0.05", ")", ":", "age_weight", "=", "(", "1.0", "/", "b", ")", "*", "(", "s", "*", "1.0", "/", "sum_by_n", "(", "s", ",", "1.0", ",", "n", ")", ".", "repeat", "(", "len", "(", "s", ")", "//", "n", ")", ")", "adjusted_r", "=", "sum_by_n", "(", "e", ",", "age_weight", ",", "n", ")", "var_estimate", "=", "sum_by_n", "(", "e", ",", "np", ".", "square", "(", "age_weight", ")", ",", "n", ")", "g_a", "=", "np", ".", "square", "(", "adjusted_r", ")", "/", "var_estimate", "g_b", "=", "var_estimate", "/", "adjusted_r", "k", "=", "[", "age_weight", "[", "i", ":", "i", "+", "len", "(", "b", ")", "//", "n", "]", ".", "max", "(", ")", "for", "i", "in", "range", "(", "0", ",", "len", "(", "b", ")", ",", "len", "(", "b", ")", "//", "n", ")", "]", "g_a_k", "=", "np", ".", "square", "(", "adjusted_r", "+", "k", ")", "/", "(", "var_estimate", "+", "np", ".", "square", "(", "k", ")", ")", "g_b_k", "=", "(", "var_estimate", "+", "np", ".", "square", "(", "k", ")", ")", "/", "(", "adjusted_r", "+", "k", ")", "summed_b", "=", "sum_by_n", "(", "b", ",", "1.0", ",", "n", ")", "res", "=", "[", "]", "for", "i", "in", "range", "(", "len", "(", "adjusted_r", ")", ")", ":", "if", "adjusted_r", "[", "i", "]", "==", "0", ":", "upper", "=", "0.5", "*", "chi2", ".", "ppf", "(", "1", "-", "0.5", "*", "alpha", ")", "lower", "=", "0.0", "else", ":", "lower", "=", "gamma", ".", "ppf", "(", "0.5", "*", "alpha", ",", "g_a", "[", "i", "]", ",", "scale", "=", "g_b", "[", "i", "]", ")", "upper", "=", "gamma", ".", "ppf", "(", "1", "-", "0.5", "*", "alpha", ",", "g_a_k", "[", "i", "]", ",", "scale", "=", "g_b_k", "[", "i", "]", ")", "res", ".", "append", "(", "(", "adjusted_r", "[", "i", "]", ",", "lower", ",", "upper", ")", ")", "return", "res" ]
A utility function to compute rate through direct age standardization Parameters ---------- e : array (n*h, 1), event variable measured for each age group across n spatial units b : array (n*h, 1), population at risk variable measured for each age group across n spatial units s : array (n*h, 1), standard population for each age group across n spatial units n : integer the number of spatial units alpha : float significance level for confidence interval Notes ----- e, b, and s are arranged in the same order Returns ------- list a list of n tuples; a tuple has a rate and its lower and upper limits age standardized rates and confidence intervals Examples -------- Creating an array of an event variable (e.g., the number of cancer patients) for 2 regions in each of which 4 age groups are available. The first 4 values are event values for 4 age groups in the region 1, and the next 4 values are for 4 age groups in the region 2. >>> e = np.array([30, 25, 25, 15, 33, 21, 30, 20]) Creating another array of a population-at-risk variable (e.g., total population) for the same two regions. The order for entering values is the same as the case of e. >>> b = np.array([1000, 1000, 1100, 900, 1000, 900, 1100, 900]) For direct age standardization, we also need the data for standard population. Standard population is a reference population-at-risk (e.g., population distribution for the U.S.) whose age distribution can be used as a benchmarking point for comparing age distributions across regions (e.g., population distribution for Arizona and California). Another array including standard population is created. >>> s = np.array([1000, 900, 1000, 900, 1000, 900, 1000, 900]) Specifying the number of regions. >>> n = 2 Applying direct_age_standardization function to e and b >>> a, b = [i[0] for i in direct_age_standardization(e, b, s, n)] >>> round(a, 4) 0.0237 >>> round(b, 4) 0.0267
[ "A", "utility", "function", "to", "compute", "rate", "through", "direct", "age", "standardization" ]
2fafc6ec505e153152a86601d3e0fba080610c20
https://github.com/pysal/esda/blob/2fafc6ec505e153152a86601d3e0fba080610c20/esda/smoothing.py#L216-L298
13,937
pysal/esda
esda/smoothing.py
indirect_age_standardization
def indirect_age_standardization(e, b, s_e, s_b, n, alpha=0.05): """A utility function to compute rate through indirect age standardization Parameters ---------- e : array (n*h, 1), event variable measured for each age group across n spatial units b : array (n*h, 1), population at risk variable measured for each age group across n spatial units s_e : array (n*h, 1), event variable measured for each age group across n spatial units in a standard population s_b : array (n*h, 1), population variable measured for each age group across n spatial units in a standard population n : integer the number of spatial units alpha : float significance level for confidence interval Notes ----- e, b, s_e, and s_b are arranged in the same order Returns ------- list a list of n tuples; a tuple has a rate and its lower and upper limits age standardized rate Examples -------- Creating an array of an event variable (e.g., the number of cancer patients) for 2 regions in each of which 4 age groups are available. The first 4 values are event values for 4 age groups in the region 1, and the next 4 values are for 4 age groups in the region 2. >>> e = np.array([30, 25, 25, 15, 33, 21, 30, 20]) Creating another array of a population-at-risk variable (e.g., total population) for the same two regions. The order for entering values is the same as the case of e. >>> b = np.array([100, 100, 110, 90, 100, 90, 110, 90]) For indirect age standardization, we also need the data for standard population and event. Standard population is a reference population-at-risk (e.g., population distribution for the U.S.) whose age distribution can be used as a benchmarking point for comparing age distributions across regions (e.g., popoulation distribution for Arizona and California). When the same concept is applied to the event variable, we call it standard event (e.g., the number of cancer patients in the U.S.). Two additional arrays including standard population and event are created. >>> s_e = np.array([100, 45, 120, 100, 50, 30, 200, 80]) >>> s_b = np.array([1000, 900, 1000, 900, 1000, 900, 1000, 900]) Specifying the number of regions. >>> n = 2 Applying indirect_age_standardization function to e and b >>> [i[0] for i in indirect_age_standardization(e, b, s_e, s_b, n)] [0.23723821989528798, 0.2610803324099723] """ smr = standardized_mortality_ratio(e, b, s_e, s_b, n) s_r_all = sum(s_e * 1.0) / sum(s_b * 1.0) adjusted_r = s_r_all * smr e_by_n = sum_by_n(e, 1.0, n) log_smr = np.log(smr) log_smr_sd = 1.0 / np.sqrt(e_by_n) norm_thres = norm.ppf(1 - 0.5 * alpha) log_smr_lower = log_smr - norm_thres * log_smr_sd log_smr_upper = log_smr + norm_thres * log_smr_sd smr_lower = np.exp(log_smr_lower) * s_r_all smr_upper = np.exp(log_smr_upper) * s_r_all res = list(zip(adjusted_r, smr_lower, smr_upper)) return res
python
def indirect_age_standardization(e, b, s_e, s_b, n, alpha=0.05): """A utility function to compute rate through indirect age standardization Parameters ---------- e : array (n*h, 1), event variable measured for each age group across n spatial units b : array (n*h, 1), population at risk variable measured for each age group across n spatial units s_e : array (n*h, 1), event variable measured for each age group across n spatial units in a standard population s_b : array (n*h, 1), population variable measured for each age group across n spatial units in a standard population n : integer the number of spatial units alpha : float significance level for confidence interval Notes ----- e, b, s_e, and s_b are arranged in the same order Returns ------- list a list of n tuples; a tuple has a rate and its lower and upper limits age standardized rate Examples -------- Creating an array of an event variable (e.g., the number of cancer patients) for 2 regions in each of which 4 age groups are available. The first 4 values are event values for 4 age groups in the region 1, and the next 4 values are for 4 age groups in the region 2. >>> e = np.array([30, 25, 25, 15, 33, 21, 30, 20]) Creating another array of a population-at-risk variable (e.g., total population) for the same two regions. The order for entering values is the same as the case of e. >>> b = np.array([100, 100, 110, 90, 100, 90, 110, 90]) For indirect age standardization, we also need the data for standard population and event. Standard population is a reference population-at-risk (e.g., population distribution for the U.S.) whose age distribution can be used as a benchmarking point for comparing age distributions across regions (e.g., popoulation distribution for Arizona and California). When the same concept is applied to the event variable, we call it standard event (e.g., the number of cancer patients in the U.S.). Two additional arrays including standard population and event are created. >>> s_e = np.array([100, 45, 120, 100, 50, 30, 200, 80]) >>> s_b = np.array([1000, 900, 1000, 900, 1000, 900, 1000, 900]) Specifying the number of regions. >>> n = 2 Applying indirect_age_standardization function to e and b >>> [i[0] for i in indirect_age_standardization(e, b, s_e, s_b, n)] [0.23723821989528798, 0.2610803324099723] """ smr = standardized_mortality_ratio(e, b, s_e, s_b, n) s_r_all = sum(s_e * 1.0) / sum(s_b * 1.0) adjusted_r = s_r_all * smr e_by_n = sum_by_n(e, 1.0, n) log_smr = np.log(smr) log_smr_sd = 1.0 / np.sqrt(e_by_n) norm_thres = norm.ppf(1 - 0.5 * alpha) log_smr_lower = log_smr - norm_thres * log_smr_sd log_smr_upper = log_smr + norm_thres * log_smr_sd smr_lower = np.exp(log_smr_lower) * s_r_all smr_upper = np.exp(log_smr_upper) * s_r_all res = list(zip(adjusted_r, smr_lower, smr_upper)) return res
[ "def", "indirect_age_standardization", "(", "e", ",", "b", ",", "s_e", ",", "s_b", ",", "n", ",", "alpha", "=", "0.05", ")", ":", "smr", "=", "standardized_mortality_ratio", "(", "e", ",", "b", ",", "s_e", ",", "s_b", ",", "n", ")", "s_r_all", "=", "sum", "(", "s_e", "*", "1.0", ")", "/", "sum", "(", "s_b", "*", "1.0", ")", "adjusted_r", "=", "s_r_all", "*", "smr", "e_by_n", "=", "sum_by_n", "(", "e", ",", "1.0", ",", "n", ")", "log_smr", "=", "np", ".", "log", "(", "smr", ")", "log_smr_sd", "=", "1.0", "/", "np", ".", "sqrt", "(", "e_by_n", ")", "norm_thres", "=", "norm", ".", "ppf", "(", "1", "-", "0.5", "*", "alpha", ")", "log_smr_lower", "=", "log_smr", "-", "norm_thres", "*", "log_smr_sd", "log_smr_upper", "=", "log_smr", "+", "norm_thres", "*", "log_smr_sd", "smr_lower", "=", "np", ".", "exp", "(", "log_smr_lower", ")", "*", "s_r_all", "smr_upper", "=", "np", ".", "exp", "(", "log_smr_upper", ")", "*", "s_r_all", "res", "=", "list", "(", "zip", "(", "adjusted_r", ",", "smr_lower", ",", "smr_upper", ")", ")", "return", "res" ]
A utility function to compute rate through indirect age standardization Parameters ---------- e : array (n*h, 1), event variable measured for each age group across n spatial units b : array (n*h, 1), population at risk variable measured for each age group across n spatial units s_e : array (n*h, 1), event variable measured for each age group across n spatial units in a standard population s_b : array (n*h, 1), population variable measured for each age group across n spatial units in a standard population n : integer the number of spatial units alpha : float significance level for confidence interval Notes ----- e, b, s_e, and s_b are arranged in the same order Returns ------- list a list of n tuples; a tuple has a rate and its lower and upper limits age standardized rate Examples -------- Creating an array of an event variable (e.g., the number of cancer patients) for 2 regions in each of which 4 age groups are available. The first 4 values are event values for 4 age groups in the region 1, and the next 4 values are for 4 age groups in the region 2. >>> e = np.array([30, 25, 25, 15, 33, 21, 30, 20]) Creating another array of a population-at-risk variable (e.g., total population) for the same two regions. The order for entering values is the same as the case of e. >>> b = np.array([100, 100, 110, 90, 100, 90, 110, 90]) For indirect age standardization, we also need the data for standard population and event. Standard population is a reference population-at-risk (e.g., population distribution for the U.S.) whose age distribution can be used as a benchmarking point for comparing age distributions across regions (e.g., popoulation distribution for Arizona and California). When the same concept is applied to the event variable, we call it standard event (e.g., the number of cancer patients in the U.S.). Two additional arrays including standard population and event are created. >>> s_e = np.array([100, 45, 120, 100, 50, 30, 200, 80]) >>> s_b = np.array([1000, 900, 1000, 900, 1000, 900, 1000, 900]) Specifying the number of regions. >>> n = 2 Applying indirect_age_standardization function to e and b >>> [i[0] for i in indirect_age_standardization(e, b, s_e, s_b, n)] [0.23723821989528798, 0.2610803324099723]
[ "A", "utility", "function", "to", "compute", "rate", "through", "indirect", "age", "standardization" ]
2fafc6ec505e153152a86601d3e0fba080610c20
https://github.com/pysal/esda/blob/2fafc6ec505e153152a86601d3e0fba080610c20/esda/smoothing.py#L301-L379
13,938
pysal/esda
esda/tabular.py
_univariate_handler
def _univariate_handler(df, cols, stat=None, w=None, inplace=True, pvalue = 'sim', outvals = None, swapname='', **kwargs): """ Compute a univariate descriptive statistic `stat` over columns `cols` in `df`. Parameters ---------- df : pandas.DataFrame the dataframe containing columns to compute the descriptive statistics cols : string or list of strings one or more names of columns in `df` to use to compute exploratory descriptive statistics. stat : callable a function that takes data as a first argument and any number of configuration keyword arguments and returns an object encapsulating the exploratory statistic results w : pysal.weights.W the spatial weights object corresponding to the dataframe inplace : bool a flag denoting whether to add the statistic to the dataframe in memory, or to construct a copy of the dataframe and append the results to the copy pvalue : string the name of the pvalue on the results object wanted outvals : list of strings names of attributes of the dataframe to attempt to flatten into a column swapname : string suffix to replace generic identifier with. Each caller of this function should set this to a unique column suffix **kwargs : optional keyword arguments options that are passed directly to the statistic """ ### Preprocess if not inplace: new_df = df.copy() _univariate_handler(new_df, cols, stat=stat, w=w, pvalue=pvalue, inplace=True, outvals=outvals, swapname=swapname, **kwargs) return new_df if w is None: for name in df._metadata: this_obj = df.__dict__.get(name) if isinstance(this_obj, W): w = this_obj if w is None: raise Exception('Weights not provided and no weights attached to frame!' ' Please provide a weight or attach a weight to the' ' dataframe') ### Prep indexes if outvals is None: outvals = [] outvals.insert(0,'_statistic') if pvalue.lower() in ['all', 'both', '*']: raise NotImplementedError("If you want more than one type of PValue,add" " the targeted pvalue type to outvals. For example:" " Geary(df, cols=['HOVAL'], w=w, outvals=['p_z_sim', " "'p_rand']") # this is nontrivial, since we # can't know which p_value types are on the object without computing it. # This is because we don't flag them with @properties, so they're just # arbitrarily assigned post-facto. One solution might be to post-process the # objects, determine which pvalue types are available, and then grab them # all if needed. if pvalue is not '': outvals.append('p_'+pvalue.lower()) if isinstance(cols, str): cols = [cols] ### Make closure around weights & apply columnwise def column_stat(column): return stat(column.values, w=w, **kwargs) stat_objs = df[cols].apply(column_stat) ### Assign into dataframe for col in cols: stat_obj = stat_objs[col] y = kwargs.get('y') if y is not None: col += '-' + y.name outcols = ['_'.join((col, val)) for val in outvals] for colname, attname in zip(outcols, outvals): df[colname] = stat_obj.__getattribute__(attname) if swapname is not '': df.columns = [_swap_ending(col, swapname) if col.endswith('_statistic') else col for col in df.columns]
python
def _univariate_handler(df, cols, stat=None, w=None, inplace=True, pvalue = 'sim', outvals = None, swapname='', **kwargs): """ Compute a univariate descriptive statistic `stat` over columns `cols` in `df`. Parameters ---------- df : pandas.DataFrame the dataframe containing columns to compute the descriptive statistics cols : string or list of strings one or more names of columns in `df` to use to compute exploratory descriptive statistics. stat : callable a function that takes data as a first argument and any number of configuration keyword arguments and returns an object encapsulating the exploratory statistic results w : pysal.weights.W the spatial weights object corresponding to the dataframe inplace : bool a flag denoting whether to add the statistic to the dataframe in memory, or to construct a copy of the dataframe and append the results to the copy pvalue : string the name of the pvalue on the results object wanted outvals : list of strings names of attributes of the dataframe to attempt to flatten into a column swapname : string suffix to replace generic identifier with. Each caller of this function should set this to a unique column suffix **kwargs : optional keyword arguments options that are passed directly to the statistic """ ### Preprocess if not inplace: new_df = df.copy() _univariate_handler(new_df, cols, stat=stat, w=w, pvalue=pvalue, inplace=True, outvals=outvals, swapname=swapname, **kwargs) return new_df if w is None: for name in df._metadata: this_obj = df.__dict__.get(name) if isinstance(this_obj, W): w = this_obj if w is None: raise Exception('Weights not provided and no weights attached to frame!' ' Please provide a weight or attach a weight to the' ' dataframe') ### Prep indexes if outvals is None: outvals = [] outvals.insert(0,'_statistic') if pvalue.lower() in ['all', 'both', '*']: raise NotImplementedError("If you want more than one type of PValue,add" " the targeted pvalue type to outvals. For example:" " Geary(df, cols=['HOVAL'], w=w, outvals=['p_z_sim', " "'p_rand']") # this is nontrivial, since we # can't know which p_value types are on the object without computing it. # This is because we don't flag them with @properties, so they're just # arbitrarily assigned post-facto. One solution might be to post-process the # objects, determine which pvalue types are available, and then grab them # all if needed. if pvalue is not '': outvals.append('p_'+pvalue.lower()) if isinstance(cols, str): cols = [cols] ### Make closure around weights & apply columnwise def column_stat(column): return stat(column.values, w=w, **kwargs) stat_objs = df[cols].apply(column_stat) ### Assign into dataframe for col in cols: stat_obj = stat_objs[col] y = kwargs.get('y') if y is not None: col += '-' + y.name outcols = ['_'.join((col, val)) for val in outvals] for colname, attname in zip(outcols, outvals): df[colname] = stat_obj.__getattribute__(attname) if swapname is not '': df.columns = [_swap_ending(col, swapname) if col.endswith('_statistic') else col for col in df.columns]
[ "def", "_univariate_handler", "(", "df", ",", "cols", ",", "stat", "=", "None", ",", "w", "=", "None", ",", "inplace", "=", "True", ",", "pvalue", "=", "'sim'", ",", "outvals", "=", "None", ",", "swapname", "=", "''", ",", "*", "*", "kwargs", ")", ":", "### Preprocess", "if", "not", "inplace", ":", "new_df", "=", "df", ".", "copy", "(", ")", "_univariate_handler", "(", "new_df", ",", "cols", ",", "stat", "=", "stat", ",", "w", "=", "w", ",", "pvalue", "=", "pvalue", ",", "inplace", "=", "True", ",", "outvals", "=", "outvals", ",", "swapname", "=", "swapname", ",", "*", "*", "kwargs", ")", "return", "new_df", "if", "w", "is", "None", ":", "for", "name", "in", "df", ".", "_metadata", ":", "this_obj", "=", "df", ".", "__dict__", ".", "get", "(", "name", ")", "if", "isinstance", "(", "this_obj", ",", "W", ")", ":", "w", "=", "this_obj", "if", "w", "is", "None", ":", "raise", "Exception", "(", "'Weights not provided and no weights attached to frame!'", "' Please provide a weight or attach a weight to the'", "' dataframe'", ")", "### Prep indexes", "if", "outvals", "is", "None", ":", "outvals", "=", "[", "]", "outvals", ".", "insert", "(", "0", ",", "'_statistic'", ")", "if", "pvalue", ".", "lower", "(", ")", "in", "[", "'all'", ",", "'both'", ",", "'*'", "]", ":", "raise", "NotImplementedError", "(", "\"If you want more than one type of PValue,add\"", "\" the targeted pvalue type to outvals. For example:\"", "\" Geary(df, cols=['HOVAL'], w=w, outvals=['p_z_sim', \"", "\"'p_rand']\"", ")", "# this is nontrivial, since we", "# can't know which p_value types are on the object without computing it.", "# This is because we don't flag them with @properties, so they're just", "# arbitrarily assigned post-facto. One solution might be to post-process the", "# objects, determine which pvalue types are available, and then grab them", "# all if needed.", "if", "pvalue", "is", "not", "''", ":", "outvals", ".", "append", "(", "'p_'", "+", "pvalue", ".", "lower", "(", ")", ")", "if", "isinstance", "(", "cols", ",", "str", ")", ":", "cols", "=", "[", "cols", "]", "### Make closure around weights & apply columnwise", "def", "column_stat", "(", "column", ")", ":", "return", "stat", "(", "column", ".", "values", ",", "w", "=", "w", ",", "*", "*", "kwargs", ")", "stat_objs", "=", "df", "[", "cols", "]", ".", "apply", "(", "column_stat", ")", "### Assign into dataframe", "for", "col", "in", "cols", ":", "stat_obj", "=", "stat_objs", "[", "col", "]", "y", "=", "kwargs", ".", "get", "(", "'y'", ")", "if", "y", "is", "not", "None", ":", "col", "+=", "'-'", "+", "y", ".", "name", "outcols", "=", "[", "'_'", ".", "join", "(", "(", "col", ",", "val", ")", ")", "for", "val", "in", "outvals", "]", "for", "colname", ",", "attname", "in", "zip", "(", "outcols", ",", "outvals", ")", ":", "df", "[", "colname", "]", "=", "stat_obj", ".", "__getattribute__", "(", "attname", ")", "if", "swapname", "is", "not", "''", ":", "df", ".", "columns", "=", "[", "_swap_ending", "(", "col", ",", "swapname", ")", "if", "col", ".", "endswith", "(", "'_statistic'", ")", "else", "col", "for", "col", "in", "df", ".", "columns", "]" ]
Compute a univariate descriptive statistic `stat` over columns `cols` in `df`. Parameters ---------- df : pandas.DataFrame the dataframe containing columns to compute the descriptive statistics cols : string or list of strings one or more names of columns in `df` to use to compute exploratory descriptive statistics. stat : callable a function that takes data as a first argument and any number of configuration keyword arguments and returns an object encapsulating the exploratory statistic results w : pysal.weights.W the spatial weights object corresponding to the dataframe inplace : bool a flag denoting whether to add the statistic to the dataframe in memory, or to construct a copy of the dataframe and append the results to the copy pvalue : string the name of the pvalue on the results object wanted outvals : list of strings names of attributes of the dataframe to attempt to flatten into a column swapname : string suffix to replace generic identifier with. Each caller of this function should set this to a unique column suffix **kwargs : optional keyword arguments options that are passed directly to the statistic
[ "Compute", "a", "univariate", "descriptive", "statistic", "stat", "over", "columns", "cols", "in", "df", "." ]
2fafc6ec505e153152a86601d3e0fba080610c20
https://github.com/pysal/esda/blob/2fafc6ec505e153152a86601d3e0fba080610c20/esda/tabular.py#L10-L98
13,939
pysal/esda
esda/tabular.py
_bivariate_handler
def _bivariate_handler(df, x, y=None, w=None, inplace=True, pvalue='sim', outvals=None, **kwargs): """ Compute a descriptive bivariate statistic over two sets of columns, `x` and `y`, contained in `df`. Parameters ---------- df : pandas.DataFrame dataframe in which columns `x` and `y` are contained x : string or list of strings one or more column names to use as variates in the bivariate statistics y : string or list of strings one or more column names to use as variates in the bivariate statistics w : pysal.weights.W spatial weights object corresponding to the dataframe `df` inplace : bool a flag denoting whether to add the statistic to the dataframe in memory, or to construct a copy of the dataframe and append the results to the copy pvalue : string the name of the pvalue on the results object wanted outvals : list of strings names of attributes of the dataframe to attempt to flatten into a column swapname : string suffix to replace generic identifier with. Each caller of this function should set this to a unique column suffix **kwargs : optional keyword arguments options that are passed directly to the statistic """ real_swapname = kwargs.pop('swapname', '') if isinstance(y, str): y = [y] if isinstance(x, str): x = [x] if not inplace: new_df = df.copy() _bivariate_handler(new_df, x, y=y, w=w, inplace=True, swapname=real_swapname, pvalue=pvalue, outvals=outvals, **kwargs) return new_df if y is None: y = x for xi,yi in _it.product(x,y): if xi == yi: continue _univariate_handler(df, cols=xi, w=w, y=df[yi], inplace=True, pvalue=pvalue, outvals=outvals, swapname='', **kwargs) if real_swapname is not '': df.columns = [_swap_ending(col, real_swapname) if col.endswith('_statistic') else col for col in df.columns]
python
def _bivariate_handler(df, x, y=None, w=None, inplace=True, pvalue='sim', outvals=None, **kwargs): """ Compute a descriptive bivariate statistic over two sets of columns, `x` and `y`, contained in `df`. Parameters ---------- df : pandas.DataFrame dataframe in which columns `x` and `y` are contained x : string or list of strings one or more column names to use as variates in the bivariate statistics y : string or list of strings one or more column names to use as variates in the bivariate statistics w : pysal.weights.W spatial weights object corresponding to the dataframe `df` inplace : bool a flag denoting whether to add the statistic to the dataframe in memory, or to construct a copy of the dataframe and append the results to the copy pvalue : string the name of the pvalue on the results object wanted outvals : list of strings names of attributes of the dataframe to attempt to flatten into a column swapname : string suffix to replace generic identifier with. Each caller of this function should set this to a unique column suffix **kwargs : optional keyword arguments options that are passed directly to the statistic """ real_swapname = kwargs.pop('swapname', '') if isinstance(y, str): y = [y] if isinstance(x, str): x = [x] if not inplace: new_df = df.copy() _bivariate_handler(new_df, x, y=y, w=w, inplace=True, swapname=real_swapname, pvalue=pvalue, outvals=outvals, **kwargs) return new_df if y is None: y = x for xi,yi in _it.product(x,y): if xi == yi: continue _univariate_handler(df, cols=xi, w=w, y=df[yi], inplace=True, pvalue=pvalue, outvals=outvals, swapname='', **kwargs) if real_swapname is not '': df.columns = [_swap_ending(col, real_swapname) if col.endswith('_statistic') else col for col in df.columns]
[ "def", "_bivariate_handler", "(", "df", ",", "x", ",", "y", "=", "None", ",", "w", "=", "None", ",", "inplace", "=", "True", ",", "pvalue", "=", "'sim'", ",", "outvals", "=", "None", ",", "*", "*", "kwargs", ")", ":", "real_swapname", "=", "kwargs", ".", "pop", "(", "'swapname'", ",", "''", ")", "if", "isinstance", "(", "y", ",", "str", ")", ":", "y", "=", "[", "y", "]", "if", "isinstance", "(", "x", ",", "str", ")", ":", "x", "=", "[", "x", "]", "if", "not", "inplace", ":", "new_df", "=", "df", ".", "copy", "(", ")", "_bivariate_handler", "(", "new_df", ",", "x", ",", "y", "=", "y", ",", "w", "=", "w", ",", "inplace", "=", "True", ",", "swapname", "=", "real_swapname", ",", "pvalue", "=", "pvalue", ",", "outvals", "=", "outvals", ",", "*", "*", "kwargs", ")", "return", "new_df", "if", "y", "is", "None", ":", "y", "=", "x", "for", "xi", ",", "yi", "in", "_it", ".", "product", "(", "x", ",", "y", ")", ":", "if", "xi", "==", "yi", ":", "continue", "_univariate_handler", "(", "df", ",", "cols", "=", "xi", ",", "w", "=", "w", ",", "y", "=", "df", "[", "yi", "]", ",", "inplace", "=", "True", ",", "pvalue", "=", "pvalue", ",", "outvals", "=", "outvals", ",", "swapname", "=", "''", ",", "*", "*", "kwargs", ")", "if", "real_swapname", "is", "not", "''", ":", "df", ".", "columns", "=", "[", "_swap_ending", "(", "col", ",", "real_swapname", ")", "if", "col", ".", "endswith", "(", "'_statistic'", ")", "else", "col", "for", "col", "in", "df", ".", "columns", "]" ]
Compute a descriptive bivariate statistic over two sets of columns, `x` and `y`, contained in `df`. Parameters ---------- df : pandas.DataFrame dataframe in which columns `x` and `y` are contained x : string or list of strings one or more column names to use as variates in the bivariate statistics y : string or list of strings one or more column names to use as variates in the bivariate statistics w : pysal.weights.W spatial weights object corresponding to the dataframe `df` inplace : bool a flag denoting whether to add the statistic to the dataframe in memory, or to construct a copy of the dataframe and append the results to the copy pvalue : string the name of the pvalue on the results object wanted outvals : list of strings names of attributes of the dataframe to attempt to flatten into a column swapname : string suffix to replace generic identifier with. Each caller of this function should set this to a unique column suffix **kwargs : optional keyword arguments options that are passed directly to the statistic
[ "Compute", "a", "descriptive", "bivariate", "statistic", "over", "two", "sets", "of", "columns", "x", "and", "y", "contained", "in", "df", "." ]
2fafc6ec505e153152a86601d3e0fba080610c20
https://github.com/pysal/esda/blob/2fafc6ec505e153152a86601d3e0fba080610c20/esda/tabular.py#L100-L154
13,940
pysal/esda
esda/tabular.py
_swap_ending
def _swap_ending(s, ending, delim='_'): """ Replace the ending of a string, delimited into an arbitrary number of chunks by `delim`, with the ending provided Parameters ---------- s : string string to replace endings ending : string string used to replace ending of `s` delim : string string that splits s into one or more parts Returns ------- new string where the final chunk of `s`, delimited by `delim`, is replaced with `ending`. """ parts = [x for x in s.split(delim)[:-1] if x != ''] parts.append(ending) return delim.join(parts)
python
def _swap_ending(s, ending, delim='_'): """ Replace the ending of a string, delimited into an arbitrary number of chunks by `delim`, with the ending provided Parameters ---------- s : string string to replace endings ending : string string used to replace ending of `s` delim : string string that splits s into one or more parts Returns ------- new string where the final chunk of `s`, delimited by `delim`, is replaced with `ending`. """ parts = [x for x in s.split(delim)[:-1] if x != ''] parts.append(ending) return delim.join(parts)
[ "def", "_swap_ending", "(", "s", ",", "ending", ",", "delim", "=", "'_'", ")", ":", "parts", "=", "[", "x", "for", "x", "in", "s", ".", "split", "(", "delim", ")", "[", ":", "-", "1", "]", "if", "x", "!=", "''", "]", "parts", ".", "append", "(", "ending", ")", "return", "delim", ".", "join", "(", "parts", ")" ]
Replace the ending of a string, delimited into an arbitrary number of chunks by `delim`, with the ending provided Parameters ---------- s : string string to replace endings ending : string string used to replace ending of `s` delim : string string that splits s into one or more parts Returns ------- new string where the final chunk of `s`, delimited by `delim`, is replaced with `ending`.
[ "Replace", "the", "ending", "of", "a", "string", "delimited", "into", "an", "arbitrary", "number", "of", "chunks", "by", "delim", "with", "the", "ending", "provided" ]
2fafc6ec505e153152a86601d3e0fba080610c20
https://github.com/pysal/esda/blob/2fafc6ec505e153152a86601d3e0fba080610c20/esda/tabular.py#L156-L177
13,941
symengine/symengine.py
symengine/compatibility.py
is_sequence
def is_sequence(i, include=None): """ Return a boolean indicating whether ``i`` is a sequence in the SymPy sense. If anything that fails the test below should be included as being a sequence for your application, set 'include' to that object's type; multiple types should be passed as a tuple of types. Note: although generators can generate a sequence, they often need special handling to make sure their elements are captured before the generator is exhausted, so these are not included by default in the definition of a sequence. See also: iterable Examples ======== >>> from sympy.utilities.iterables import is_sequence >>> from types import GeneratorType >>> is_sequence([]) True >>> is_sequence(set()) False >>> is_sequence('abc') False >>> is_sequence('abc', include=str) True >>> generator = (c for c in 'abc') >>> is_sequence(generator) False >>> is_sequence(generator, include=(str, GeneratorType)) True """ return (hasattr(i, '__getitem__') and iterable(i) or bool(include) and isinstance(i, include))
python
def is_sequence(i, include=None): """ Return a boolean indicating whether ``i`` is a sequence in the SymPy sense. If anything that fails the test below should be included as being a sequence for your application, set 'include' to that object's type; multiple types should be passed as a tuple of types. Note: although generators can generate a sequence, they often need special handling to make sure their elements are captured before the generator is exhausted, so these are not included by default in the definition of a sequence. See also: iterable Examples ======== >>> from sympy.utilities.iterables import is_sequence >>> from types import GeneratorType >>> is_sequence([]) True >>> is_sequence(set()) False >>> is_sequence('abc') False >>> is_sequence('abc', include=str) True >>> generator = (c for c in 'abc') >>> is_sequence(generator) False >>> is_sequence(generator, include=(str, GeneratorType)) True """ return (hasattr(i, '__getitem__') and iterable(i) or bool(include) and isinstance(i, include))
[ "def", "is_sequence", "(", "i", ",", "include", "=", "None", ")", ":", "return", "(", "hasattr", "(", "i", ",", "'__getitem__'", ")", "and", "iterable", "(", "i", ")", "or", "bool", "(", "include", ")", "and", "isinstance", "(", "i", ",", "include", ")", ")" ]
Return a boolean indicating whether ``i`` is a sequence in the SymPy sense. If anything that fails the test below should be included as being a sequence for your application, set 'include' to that object's type; multiple types should be passed as a tuple of types. Note: although generators can generate a sequence, they often need special handling to make sure their elements are captured before the generator is exhausted, so these are not included by default in the definition of a sequence. See also: iterable Examples ======== >>> from sympy.utilities.iterables import is_sequence >>> from types import GeneratorType >>> is_sequence([]) True >>> is_sequence(set()) False >>> is_sequence('abc') False >>> is_sequence('abc', include=str) True >>> generator = (c for c in 'abc') >>> is_sequence(generator) False >>> is_sequence(generator, include=(str, GeneratorType)) True
[ "Return", "a", "boolean", "indicating", "whether", "i", "is", "a", "sequence", "in", "the", "SymPy", "sense", ".", "If", "anything", "that", "fails", "the", "test", "below", "should", "be", "included", "as", "being", "a", "sequence", "for", "your", "application", "set", "include", "to", "that", "object", "s", "type", ";", "multiple", "types", "should", "be", "passed", "as", "a", "tuple", "of", "types", "." ]
1366cf98ceaade339c5dd24ae3381a0e63ea9dad
https://github.com/symengine/symengine.py/blob/1366cf98ceaade339c5dd24ae3381a0e63ea9dad/symengine/compatibility.py#L245-L282
13,942
symengine/symengine.py
symengine/compatibility.py
as_int
def as_int(n): """ Convert the argument to a builtin integer. The return value is guaranteed to be equal to the input. ValueError is raised if the input has a non-integral value. Examples ======== >>> from sympy.core.compatibility import as_int >>> from sympy import sqrt >>> 3.0 3.0 >>> as_int(3.0) # convert to int and test for equality 3 >>> int(sqrt(10)) 3 >>> as_int(sqrt(10)) Traceback (most recent call last): ... ValueError: ... is not an integer """ try: result = int(n) if result != n: raise TypeError except TypeError: raise ValueError('%s is not an integer' % n) return result
python
def as_int(n): """ Convert the argument to a builtin integer. The return value is guaranteed to be equal to the input. ValueError is raised if the input has a non-integral value. Examples ======== >>> from sympy.core.compatibility import as_int >>> from sympy import sqrt >>> 3.0 3.0 >>> as_int(3.0) # convert to int and test for equality 3 >>> int(sqrt(10)) 3 >>> as_int(sqrt(10)) Traceback (most recent call last): ... ValueError: ... is not an integer """ try: result = int(n) if result != n: raise TypeError except TypeError: raise ValueError('%s is not an integer' % n) return result
[ "def", "as_int", "(", "n", ")", ":", "try", ":", "result", "=", "int", "(", "n", ")", "if", "result", "!=", "n", ":", "raise", "TypeError", "except", "TypeError", ":", "raise", "ValueError", "(", "'%s is not an integer'", "%", "n", ")", "return", "result" ]
Convert the argument to a builtin integer. The return value is guaranteed to be equal to the input. ValueError is raised if the input has a non-integral value. Examples ======== >>> from sympy.core.compatibility import as_int >>> from sympy import sqrt >>> 3.0 3.0 >>> as_int(3.0) # convert to int and test for equality 3 >>> int(sqrt(10)) 3 >>> as_int(sqrt(10)) Traceback (most recent call last): ... ValueError: ... is not an integer
[ "Convert", "the", "argument", "to", "a", "builtin", "integer", "." ]
1366cf98ceaade339c5dd24ae3381a0e63ea9dad
https://github.com/symengine/symengine.py/blob/1366cf98ceaade339c5dd24ae3381a0e63ea9dad/symengine/compatibility.py#L359-L389
13,943
symengine/symengine.py
symengine/compatibility.py
default_sort_key
def default_sort_key(item, order=None): """Return a key that can be used for sorting. The key has the structure: (class_key, (len(args), args), exponent.sort_key(), coefficient) This key is supplied by the sort_key routine of Basic objects when ``item`` is a Basic object or an object (other than a string) that sympifies to a Basic object. Otherwise, this function produces the key. The ``order`` argument is passed along to the sort_key routine and is used to determine how the terms *within* an expression are ordered. (See examples below) ``order`` options are: 'lex', 'grlex', 'grevlex', and reversed values of the same (e.g. 'rev-lex'). The default order value is None (which translates to 'lex'). Examples ======== >>> from sympy import S, I, default_sort_key >>> from sympy.core.function import UndefinedFunction >>> from sympy.abc import x The following are equivalent ways of getting the key for an object: >>> x.sort_key() == default_sort_key(x) True Here are some examples of the key that is produced: >>> default_sort_key(UndefinedFunction('f')) ((0, 0, 'UndefinedFunction'), (1, ('f',)), ((1, 0, 'Number'), (0, ()), (), 1), 1) >>> default_sort_key('1') ((0, 0, 'str'), (1, ('1',)), ((1, 0, 'Number'), (0, ()), (), 1), 1) >>> default_sort_key(S.One) ((1, 0, 'Number'), (0, ()), (), 1) >>> default_sort_key(2) ((1, 0, 'Number'), (0, ()), (), 2) While sort_key is a method only defined for SymPy objects, default_sort_key will accept anything as an argument so it is more robust as a sorting key. For the following, using key= lambda i: i.sort_key() would fail because 2 doesn't have a sort_key method; that's why default_sort_key is used. Note, that it also handles sympification of non-string items likes ints: >>> a = [2, I, -I] >>> sorted(a, key=default_sort_key) [2, -I, I] The returned key can be used anywhere that a key can be specified for a function, e.g. sort, min, max, etc...: >>> a.sort(key=default_sort_key); a[0] 2 >>> min(a, key=default_sort_key) 2 Note ---- The key returned is useful for getting items into a canonical order that will be the same across platforms. It is not directly useful for sorting lists of expressions: >>> a, b = x, 1/x Since ``a`` has only 1 term, its value of sort_key is unaffected by ``order``: >>> a.sort_key() == a.sort_key('rev-lex') True If ``a`` and ``b`` are combined then the key will differ because there are terms that can be ordered: >>> eq = a + b >>> eq.sort_key() == eq.sort_key('rev-lex') False >>> eq.as_ordered_terms() [x, 1/x] >>> eq.as_ordered_terms('rev-lex') [1/x, x] But since the keys for each of these terms are independent of ``order``'s value, they don't sort differently when they appear separately in a list: >>> sorted(eq.args, key=default_sort_key) [1/x, x] >>> sorted(eq.args, key=lambda i: default_sort_key(i, order='rev-lex')) [1/x, x] The order of terms obtained when using these keys is the order that would be obtained if those terms were *factors* in a product. See Also ======== sympy.core.expr.as_ordered_factors, sympy.core.expr.as_ordered_terms """ from sympy.core import S, Basic from sympy.core.sympify import sympify, SympifyError from sympy.core.compatibility import iterable if isinstance(item, Basic): return item.sort_key(order=order) if iterable(item, exclude=string_types): if isinstance(item, dict): args = item.items() unordered = True elif isinstance(item, set): args = item unordered = True else: # e.g. tuple, list args = list(item) unordered = False args = [default_sort_key(arg, order=order) for arg in args] if unordered: # e.g. dict, set args = sorted(args) cls_index, args = 10, (len(args), tuple(args)) else: if not isinstance(item, string_types): try: item = sympify(item) except SympifyError: # e.g. lambda x: x pass else: if isinstance(item, Basic): # e.g int -> Integer return default_sort_key(item) # e.g. UndefinedFunction # e.g. str cls_index, args = 0, (1, (str(item),)) return (cls_index, 0, item.__class__.__name__ ), args, S.One.sort_key(), S.One
python
def default_sort_key(item, order=None): """Return a key that can be used for sorting. The key has the structure: (class_key, (len(args), args), exponent.sort_key(), coefficient) This key is supplied by the sort_key routine of Basic objects when ``item`` is a Basic object or an object (other than a string) that sympifies to a Basic object. Otherwise, this function produces the key. The ``order`` argument is passed along to the sort_key routine and is used to determine how the terms *within* an expression are ordered. (See examples below) ``order`` options are: 'lex', 'grlex', 'grevlex', and reversed values of the same (e.g. 'rev-lex'). The default order value is None (which translates to 'lex'). Examples ======== >>> from sympy import S, I, default_sort_key >>> from sympy.core.function import UndefinedFunction >>> from sympy.abc import x The following are equivalent ways of getting the key for an object: >>> x.sort_key() == default_sort_key(x) True Here are some examples of the key that is produced: >>> default_sort_key(UndefinedFunction('f')) ((0, 0, 'UndefinedFunction'), (1, ('f',)), ((1, 0, 'Number'), (0, ()), (), 1), 1) >>> default_sort_key('1') ((0, 0, 'str'), (1, ('1',)), ((1, 0, 'Number'), (0, ()), (), 1), 1) >>> default_sort_key(S.One) ((1, 0, 'Number'), (0, ()), (), 1) >>> default_sort_key(2) ((1, 0, 'Number'), (0, ()), (), 2) While sort_key is a method only defined for SymPy objects, default_sort_key will accept anything as an argument so it is more robust as a sorting key. For the following, using key= lambda i: i.sort_key() would fail because 2 doesn't have a sort_key method; that's why default_sort_key is used. Note, that it also handles sympification of non-string items likes ints: >>> a = [2, I, -I] >>> sorted(a, key=default_sort_key) [2, -I, I] The returned key can be used anywhere that a key can be specified for a function, e.g. sort, min, max, etc...: >>> a.sort(key=default_sort_key); a[0] 2 >>> min(a, key=default_sort_key) 2 Note ---- The key returned is useful for getting items into a canonical order that will be the same across platforms. It is not directly useful for sorting lists of expressions: >>> a, b = x, 1/x Since ``a`` has only 1 term, its value of sort_key is unaffected by ``order``: >>> a.sort_key() == a.sort_key('rev-lex') True If ``a`` and ``b`` are combined then the key will differ because there are terms that can be ordered: >>> eq = a + b >>> eq.sort_key() == eq.sort_key('rev-lex') False >>> eq.as_ordered_terms() [x, 1/x] >>> eq.as_ordered_terms('rev-lex') [1/x, x] But since the keys for each of these terms are independent of ``order``'s value, they don't sort differently when they appear separately in a list: >>> sorted(eq.args, key=default_sort_key) [1/x, x] >>> sorted(eq.args, key=lambda i: default_sort_key(i, order='rev-lex')) [1/x, x] The order of terms obtained when using these keys is the order that would be obtained if those terms were *factors* in a product. See Also ======== sympy.core.expr.as_ordered_factors, sympy.core.expr.as_ordered_terms """ from sympy.core import S, Basic from sympy.core.sympify import sympify, SympifyError from sympy.core.compatibility import iterable if isinstance(item, Basic): return item.sort_key(order=order) if iterable(item, exclude=string_types): if isinstance(item, dict): args = item.items() unordered = True elif isinstance(item, set): args = item unordered = True else: # e.g. tuple, list args = list(item) unordered = False args = [default_sort_key(arg, order=order) for arg in args] if unordered: # e.g. dict, set args = sorted(args) cls_index, args = 10, (len(args), tuple(args)) else: if not isinstance(item, string_types): try: item = sympify(item) except SympifyError: # e.g. lambda x: x pass else: if isinstance(item, Basic): # e.g int -> Integer return default_sort_key(item) # e.g. UndefinedFunction # e.g. str cls_index, args = 0, (1, (str(item),)) return (cls_index, 0, item.__class__.__name__ ), args, S.One.sort_key(), S.One
[ "def", "default_sort_key", "(", "item", ",", "order", "=", "None", ")", ":", "from", "sympy", ".", "core", "import", "S", ",", "Basic", "from", "sympy", ".", "core", ".", "sympify", "import", "sympify", ",", "SympifyError", "from", "sympy", ".", "core", ".", "compatibility", "import", "iterable", "if", "isinstance", "(", "item", ",", "Basic", ")", ":", "return", "item", ".", "sort_key", "(", "order", "=", "order", ")", "if", "iterable", "(", "item", ",", "exclude", "=", "string_types", ")", ":", "if", "isinstance", "(", "item", ",", "dict", ")", ":", "args", "=", "item", ".", "items", "(", ")", "unordered", "=", "True", "elif", "isinstance", "(", "item", ",", "set", ")", ":", "args", "=", "item", "unordered", "=", "True", "else", ":", "# e.g. tuple, list", "args", "=", "list", "(", "item", ")", "unordered", "=", "False", "args", "=", "[", "default_sort_key", "(", "arg", ",", "order", "=", "order", ")", "for", "arg", "in", "args", "]", "if", "unordered", ":", "# e.g. dict, set", "args", "=", "sorted", "(", "args", ")", "cls_index", ",", "args", "=", "10", ",", "(", "len", "(", "args", ")", ",", "tuple", "(", "args", ")", ")", "else", ":", "if", "not", "isinstance", "(", "item", ",", "string_types", ")", ":", "try", ":", "item", "=", "sympify", "(", "item", ")", "except", "SympifyError", ":", "# e.g. lambda x: x", "pass", "else", ":", "if", "isinstance", "(", "item", ",", "Basic", ")", ":", "# e.g int -> Integer", "return", "default_sort_key", "(", "item", ")", "# e.g. UndefinedFunction", "# e.g. str", "cls_index", ",", "args", "=", "0", ",", "(", "1", ",", "(", "str", "(", "item", ")", ",", ")", ")", "return", "(", "cls_index", ",", "0", ",", "item", ".", "__class__", ".", "__name__", ")", ",", "args", ",", "S", ".", "One", ".", "sort_key", "(", ")", ",", "S", ".", "One" ]
Return a key that can be used for sorting. The key has the structure: (class_key, (len(args), args), exponent.sort_key(), coefficient) This key is supplied by the sort_key routine of Basic objects when ``item`` is a Basic object or an object (other than a string) that sympifies to a Basic object. Otherwise, this function produces the key. The ``order`` argument is passed along to the sort_key routine and is used to determine how the terms *within* an expression are ordered. (See examples below) ``order`` options are: 'lex', 'grlex', 'grevlex', and reversed values of the same (e.g. 'rev-lex'). The default order value is None (which translates to 'lex'). Examples ======== >>> from sympy import S, I, default_sort_key >>> from sympy.core.function import UndefinedFunction >>> from sympy.abc import x The following are equivalent ways of getting the key for an object: >>> x.sort_key() == default_sort_key(x) True Here are some examples of the key that is produced: >>> default_sort_key(UndefinedFunction('f')) ((0, 0, 'UndefinedFunction'), (1, ('f',)), ((1, 0, 'Number'), (0, ()), (), 1), 1) >>> default_sort_key('1') ((0, 0, 'str'), (1, ('1',)), ((1, 0, 'Number'), (0, ()), (), 1), 1) >>> default_sort_key(S.One) ((1, 0, 'Number'), (0, ()), (), 1) >>> default_sort_key(2) ((1, 0, 'Number'), (0, ()), (), 2) While sort_key is a method only defined for SymPy objects, default_sort_key will accept anything as an argument so it is more robust as a sorting key. For the following, using key= lambda i: i.sort_key() would fail because 2 doesn't have a sort_key method; that's why default_sort_key is used. Note, that it also handles sympification of non-string items likes ints: >>> a = [2, I, -I] >>> sorted(a, key=default_sort_key) [2, -I, I] The returned key can be used anywhere that a key can be specified for a function, e.g. sort, min, max, etc...: >>> a.sort(key=default_sort_key); a[0] 2 >>> min(a, key=default_sort_key) 2 Note ---- The key returned is useful for getting items into a canonical order that will be the same across platforms. It is not directly useful for sorting lists of expressions: >>> a, b = x, 1/x Since ``a`` has only 1 term, its value of sort_key is unaffected by ``order``: >>> a.sort_key() == a.sort_key('rev-lex') True If ``a`` and ``b`` are combined then the key will differ because there are terms that can be ordered: >>> eq = a + b >>> eq.sort_key() == eq.sort_key('rev-lex') False >>> eq.as_ordered_terms() [x, 1/x] >>> eq.as_ordered_terms('rev-lex') [1/x, x] But since the keys for each of these terms are independent of ``order``'s value, they don't sort differently when they appear separately in a list: >>> sorted(eq.args, key=default_sort_key) [1/x, x] >>> sorted(eq.args, key=lambda i: default_sort_key(i, order='rev-lex')) [1/x, x] The order of terms obtained when using these keys is the order that would be obtained if those terms were *factors* in a product. See Also ======== sympy.core.expr.as_ordered_factors, sympy.core.expr.as_ordered_terms
[ "Return", "a", "key", "that", "can", "be", "used", "for", "sorting", "." ]
1366cf98ceaade339c5dd24ae3381a0e63ea9dad
https://github.com/symengine/symengine.py/blob/1366cf98ceaade339c5dd24ae3381a0e63ea9dad/symengine/compatibility.py#L392-L541
13,944
symengine/symengine.py
symengine/utilities.py
var
def var(names, **args): """ Create symbols and inject them into the global namespace. INPUT: - s -- a string, either a single variable name, or - a space separated list of variable names, or - a list of variable names. This calls :func:`symbols` with the same arguments and puts the results into the *global* namespace. It's recommended not to use :func:`var` in library code, where :func:`symbols` has to be used:: Examples ======== >>> from symengine import var >>> var('x') x >>> x x >>> var('a,ab,abc') (a, ab, abc) >>> abc abc See :func:`symbols` documentation for more details on what kinds of arguments can be passed to :func:`var`. """ def traverse(symbols, frame): """Recursively inject symbols to the global namespace. """ for symbol in symbols: if isinstance(symbol, Basic): frame.f_globals[symbol.__str__()] = symbol # Once we hace an undefined function class # implemented, put a check for function here else: traverse(symbol, frame) from inspect import currentframe frame = currentframe().f_back try: syms = symbols(names, **args) if syms is not None: if isinstance(syms, Basic): frame.f_globals[syms.__str__()] = syms # Once we hace an undefined function class # implemented, put a check for function here else: traverse(syms, frame) finally: del frame # break cyclic dependencies as stated in inspect docs return syms
python
def var(names, **args): """ Create symbols and inject them into the global namespace. INPUT: - s -- a string, either a single variable name, or - a space separated list of variable names, or - a list of variable names. This calls :func:`symbols` with the same arguments and puts the results into the *global* namespace. It's recommended not to use :func:`var` in library code, where :func:`symbols` has to be used:: Examples ======== >>> from symengine import var >>> var('x') x >>> x x >>> var('a,ab,abc') (a, ab, abc) >>> abc abc See :func:`symbols` documentation for more details on what kinds of arguments can be passed to :func:`var`. """ def traverse(symbols, frame): """Recursively inject symbols to the global namespace. """ for symbol in symbols: if isinstance(symbol, Basic): frame.f_globals[symbol.__str__()] = symbol # Once we hace an undefined function class # implemented, put a check for function here else: traverse(symbol, frame) from inspect import currentframe frame = currentframe().f_back try: syms = symbols(names, **args) if syms is not None: if isinstance(syms, Basic): frame.f_globals[syms.__str__()] = syms # Once we hace an undefined function class # implemented, put a check for function here else: traverse(syms, frame) finally: del frame # break cyclic dependencies as stated in inspect docs return syms
[ "def", "var", "(", "names", ",", "*", "*", "args", ")", ":", "def", "traverse", "(", "symbols", ",", "frame", ")", ":", "\"\"\"Recursively inject symbols to the global namespace. \"\"\"", "for", "symbol", "in", "symbols", ":", "if", "isinstance", "(", "symbol", ",", "Basic", ")", ":", "frame", ".", "f_globals", "[", "symbol", ".", "__str__", "(", ")", "]", "=", "symbol", "# Once we hace an undefined function class", "# implemented, put a check for function here", "else", ":", "traverse", "(", "symbol", ",", "frame", ")", "from", "inspect", "import", "currentframe", "frame", "=", "currentframe", "(", ")", ".", "f_back", "try", ":", "syms", "=", "symbols", "(", "names", ",", "*", "*", "args", ")", "if", "syms", "is", "not", "None", ":", "if", "isinstance", "(", "syms", ",", "Basic", ")", ":", "frame", ".", "f_globals", "[", "syms", ".", "__str__", "(", ")", "]", "=", "syms", "# Once we hace an undefined function class", "# implemented, put a check for function here", "else", ":", "traverse", "(", "syms", ",", "frame", ")", "finally", ":", "del", "frame", "# break cyclic dependencies as stated in inspect docs", "return", "syms" ]
Create symbols and inject them into the global namespace. INPUT: - s -- a string, either a single variable name, or - a space separated list of variable names, or - a list of variable names. This calls :func:`symbols` with the same arguments and puts the results into the *global* namespace. It's recommended not to use :func:`var` in library code, where :func:`symbols` has to be used:: Examples ======== >>> from symengine import var >>> var('x') x >>> x x >>> var('a,ab,abc') (a, ab, abc) >>> abc abc See :func:`symbols` documentation for more details on what kinds of arguments can be passed to :func:`var`.
[ "Create", "symbols", "and", "inject", "them", "into", "the", "global", "namespace", "." ]
1366cf98ceaade339c5dd24ae3381a0e63ea9dad
https://github.com/symengine/symengine.py/blob/1366cf98ceaade339c5dd24ae3381a0e63ea9dad/symengine/utilities.py#L184-L242
13,945
Murali-group/halp
halp/undirected_hypergraph.py
UndirectedHypergraph._combine_attribute_arguments
def _combine_attribute_arguments(self, attr_dict, attr): # Note: Code & comments unchanged from DirectedHypergraph """Combines attr_dict and attr dictionaries, by updating attr_dict with attr. :param attr_dict: dictionary of attributes of the node. :param attr: keyword arguments of attributes of the node; attr's values will override attr_dict's values if both are provided. :returns: dict -- single dictionary of [combined] attributes. :raises: AttributeError -- attr_dict argument must be a dictionary. """ # If no attribute dict was passed, treat the keyword # arguments as the dict if attr_dict is None: attr_dict = attr # Otherwise, combine the passed attribute dict with # the keyword arguments else: try: attr_dict.update(attr) except AttributeError: raise AttributeError("attr_dict argument \ must be a dictionary.") return attr_dict
python
def _combine_attribute_arguments(self, attr_dict, attr): # Note: Code & comments unchanged from DirectedHypergraph """Combines attr_dict and attr dictionaries, by updating attr_dict with attr. :param attr_dict: dictionary of attributes of the node. :param attr: keyword arguments of attributes of the node; attr's values will override attr_dict's values if both are provided. :returns: dict -- single dictionary of [combined] attributes. :raises: AttributeError -- attr_dict argument must be a dictionary. """ # If no attribute dict was passed, treat the keyword # arguments as the dict if attr_dict is None: attr_dict = attr # Otherwise, combine the passed attribute dict with # the keyword arguments else: try: attr_dict.update(attr) except AttributeError: raise AttributeError("attr_dict argument \ must be a dictionary.") return attr_dict
[ "def", "_combine_attribute_arguments", "(", "self", ",", "attr_dict", ",", "attr", ")", ":", "# Note: Code & comments unchanged from DirectedHypergraph", "# If no attribute dict was passed, treat the keyword", "# arguments as the dict", "if", "attr_dict", "is", "None", ":", "attr_dict", "=", "attr", "# Otherwise, combine the passed attribute dict with", "# the keyword arguments", "else", ":", "try", ":", "attr_dict", ".", "update", "(", "attr", ")", "except", "AttributeError", ":", "raise", "AttributeError", "(", "\"attr_dict argument \\\n must be a dictionary.\"", ")", "return", "attr_dict" ]
Combines attr_dict and attr dictionaries, by updating attr_dict with attr. :param attr_dict: dictionary of attributes of the node. :param attr: keyword arguments of attributes of the node; attr's values will override attr_dict's values if both are provided. :returns: dict -- single dictionary of [combined] attributes. :raises: AttributeError -- attr_dict argument must be a dictionary.
[ "Combines", "attr_dict", "and", "attr", "dictionaries", "by", "updating", "attr_dict", "with", "attr", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/undirected_hypergraph.py#L137-L162
13,946
Murali-group/halp
halp/undirected_hypergraph.py
UndirectedHypergraph.remove_node
def remove_node(self, node): """Removes a node and its attributes from the hypergraph. Removes every hyperedge that contains this node. :param node: reference to the node being added. :raises: ValueError -- No such node exists. Examples: :: >>> H = UndirectedHypergraph() >>> H.add_node("A", label="positive") >>> H.remove_node("A") """ if not self.has_node(node): raise ValueError("No such node exists.") # Loop over every hyperedge in the star of the node; # i.e., over every hyperedge that contains the node for hyperedge_id in self._star[node]: frozen_nodes = \ self._hyperedge_attributes[hyperedge_id]["__frozen_nodes"] # Remove the node set composing the hyperedge del self._node_set_to_hyperedge[frozen_nodes] # Remove this hyperedge's attributes del self._hyperedge_attributes[hyperedge_id] # Remove node's star del self._star[node] # Remove node's attributes dictionary del self._node_attributes[node]
python
def remove_node(self, node): """Removes a node and its attributes from the hypergraph. Removes every hyperedge that contains this node. :param node: reference to the node being added. :raises: ValueError -- No such node exists. Examples: :: >>> H = UndirectedHypergraph() >>> H.add_node("A", label="positive") >>> H.remove_node("A") """ if not self.has_node(node): raise ValueError("No such node exists.") # Loop over every hyperedge in the star of the node; # i.e., over every hyperedge that contains the node for hyperedge_id in self._star[node]: frozen_nodes = \ self._hyperedge_attributes[hyperedge_id]["__frozen_nodes"] # Remove the node set composing the hyperedge del self._node_set_to_hyperedge[frozen_nodes] # Remove this hyperedge's attributes del self._hyperedge_attributes[hyperedge_id] # Remove node's star del self._star[node] # Remove node's attributes dictionary del self._node_attributes[node]
[ "def", "remove_node", "(", "self", ",", "node", ")", ":", "if", "not", "self", ".", "has_node", "(", "node", ")", ":", "raise", "ValueError", "(", "\"No such node exists.\"", ")", "# Loop over every hyperedge in the star of the node;", "# i.e., over every hyperedge that contains the node", "for", "hyperedge_id", "in", "self", ".", "_star", "[", "node", "]", ":", "frozen_nodes", "=", "self", ".", "_hyperedge_attributes", "[", "hyperedge_id", "]", "[", "\"__frozen_nodes\"", "]", "# Remove the node set composing the hyperedge", "del", "self", ".", "_node_set_to_hyperedge", "[", "frozen_nodes", "]", "# Remove this hyperedge's attributes", "del", "self", ".", "_hyperedge_attributes", "[", "hyperedge_id", "]", "# Remove node's star", "del", "self", ".", "_star", "[", "node", "]", "# Remove node's attributes dictionary", "del", "self", ".", "_node_attributes", "[", "node", "]" ]
Removes a node and its attributes from the hypergraph. Removes every hyperedge that contains this node. :param node: reference to the node being added. :raises: ValueError -- No such node exists. Examples: :: >>> H = UndirectedHypergraph() >>> H.add_node("A", label="positive") >>> H.remove_node("A")
[ "Removes", "a", "node", "and", "its", "attributes", "from", "the", "hypergraph", ".", "Removes", "every", "hyperedge", "that", "contains", "this", "node", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/undirected_hypergraph.py#L256-L288
13,947
Murali-group/halp
halp/undirected_hypergraph.py
UndirectedHypergraph.add_hyperedge
def add_hyperedge(self, nodes, attr_dict=None, **attr): """Adds a hyperedge to the hypergraph, along with any related attributes of the hyperedge. This method will automatically add any node from the node set that was not in the hypergraph. A hyperedge without a "weight" attribute specified will be assigned the default value of 1. :param nodes: iterable container of references to nodes in the hyperedge to be added. :param attr_dict: dictionary of attributes of the hyperedge being added. :param attr: keyword arguments of attributes of the hyperedge; attr's values will override attr_dict's values if both are provided. :returns: str -- the ID of the hyperedge that was added. :raises: ValueError -- nodes arguments cannot be empty. Examples: :: >>> H = UndirectedHypergraph() >>> x = H.add_hyperedge(["A", "B", "C"]) >>> y = H.add_hyperedge(("A", "D"), weight=2) >>> z = H.add_hyperedge(set(["B", "D"]), {color: "red"}) """ attr_dict = self._combine_attribute_arguments(attr_dict, attr) # Don't allow empty node set (invalid hyperedge) if not nodes: raise ValueError("nodes argument cannot be empty.") # Use frozensets for node sets to allow for hashable keys frozen_nodes = frozenset(nodes) is_new_hyperedge = not self.has_hyperedge(frozen_nodes) if is_new_hyperedge: # Add nodes to graph (if not already present) self.add_nodes(frozen_nodes) # Create new hyperedge name to use as reference for that hyperedge hyperedge_id = self._assign_next_hyperedge_id() # For each node in the node set, add hyperedge to the node's star for node in frozen_nodes: self._star[node].add(hyperedge_id) # Add the hyperedge ID as the hyperedge that the node set composes self._node_set_to_hyperedge[frozen_nodes] = hyperedge_id # Assign some special attributes to this hyperedge. We assign # a default weight of 1 to the hyperedge. We also store the # original node set in order to return them exactly as the # user passed them into add_hyperedge. self._hyperedge_attributes[hyperedge_id] = \ {"nodes": nodes, "__frozen_nodes": frozen_nodes, "weight": 1} else: # If its not a new hyperedge, just get its ID to update attributes hyperedge_id = self._node_set_to_hyperedge[frozen_nodes] # Set attributes and return hyperedge ID self._hyperedge_attributes[hyperedge_id].update(attr_dict) return hyperedge_id
python
def add_hyperedge(self, nodes, attr_dict=None, **attr): """Adds a hyperedge to the hypergraph, along with any related attributes of the hyperedge. This method will automatically add any node from the node set that was not in the hypergraph. A hyperedge without a "weight" attribute specified will be assigned the default value of 1. :param nodes: iterable container of references to nodes in the hyperedge to be added. :param attr_dict: dictionary of attributes of the hyperedge being added. :param attr: keyword arguments of attributes of the hyperedge; attr's values will override attr_dict's values if both are provided. :returns: str -- the ID of the hyperedge that was added. :raises: ValueError -- nodes arguments cannot be empty. Examples: :: >>> H = UndirectedHypergraph() >>> x = H.add_hyperedge(["A", "B", "C"]) >>> y = H.add_hyperedge(("A", "D"), weight=2) >>> z = H.add_hyperedge(set(["B", "D"]), {color: "red"}) """ attr_dict = self._combine_attribute_arguments(attr_dict, attr) # Don't allow empty node set (invalid hyperedge) if not nodes: raise ValueError("nodes argument cannot be empty.") # Use frozensets for node sets to allow for hashable keys frozen_nodes = frozenset(nodes) is_new_hyperedge = not self.has_hyperedge(frozen_nodes) if is_new_hyperedge: # Add nodes to graph (if not already present) self.add_nodes(frozen_nodes) # Create new hyperedge name to use as reference for that hyperedge hyperedge_id = self._assign_next_hyperedge_id() # For each node in the node set, add hyperedge to the node's star for node in frozen_nodes: self._star[node].add(hyperedge_id) # Add the hyperedge ID as the hyperedge that the node set composes self._node_set_to_hyperedge[frozen_nodes] = hyperedge_id # Assign some special attributes to this hyperedge. We assign # a default weight of 1 to the hyperedge. We also store the # original node set in order to return them exactly as the # user passed them into add_hyperedge. self._hyperedge_attributes[hyperedge_id] = \ {"nodes": nodes, "__frozen_nodes": frozen_nodes, "weight": 1} else: # If its not a new hyperedge, just get its ID to update attributes hyperedge_id = self._node_set_to_hyperedge[frozen_nodes] # Set attributes and return hyperedge ID self._hyperedge_attributes[hyperedge_id].update(attr_dict) return hyperedge_id
[ "def", "add_hyperedge", "(", "self", ",", "nodes", ",", "attr_dict", "=", "None", ",", "*", "*", "attr", ")", ":", "attr_dict", "=", "self", ".", "_combine_attribute_arguments", "(", "attr_dict", ",", "attr", ")", "# Don't allow empty node set (invalid hyperedge)", "if", "not", "nodes", ":", "raise", "ValueError", "(", "\"nodes argument cannot be empty.\"", ")", "# Use frozensets for node sets to allow for hashable keys", "frozen_nodes", "=", "frozenset", "(", "nodes", ")", "is_new_hyperedge", "=", "not", "self", ".", "has_hyperedge", "(", "frozen_nodes", ")", "if", "is_new_hyperedge", ":", "# Add nodes to graph (if not already present)", "self", ".", "add_nodes", "(", "frozen_nodes", ")", "# Create new hyperedge name to use as reference for that hyperedge", "hyperedge_id", "=", "self", ".", "_assign_next_hyperedge_id", "(", ")", "# For each node in the node set, add hyperedge to the node's star", "for", "node", "in", "frozen_nodes", ":", "self", ".", "_star", "[", "node", "]", ".", "add", "(", "hyperedge_id", ")", "# Add the hyperedge ID as the hyperedge that the node set composes", "self", ".", "_node_set_to_hyperedge", "[", "frozen_nodes", "]", "=", "hyperedge_id", "# Assign some special attributes to this hyperedge. We assign", "# a default weight of 1 to the hyperedge. We also store the", "# original node set in order to return them exactly as the", "# user passed them into add_hyperedge.", "self", ".", "_hyperedge_attributes", "[", "hyperedge_id", "]", "=", "{", "\"nodes\"", ":", "nodes", ",", "\"__frozen_nodes\"", ":", "frozen_nodes", ",", "\"weight\"", ":", "1", "}", "else", ":", "# If its not a new hyperedge, just get its ID to update attributes", "hyperedge_id", "=", "self", ".", "_node_set_to_hyperedge", "[", "frozen_nodes", "]", "# Set attributes and return hyperedge ID", "self", ".", "_hyperedge_attributes", "[", "hyperedge_id", "]", ".", "update", "(", "attr_dict", ")", "return", "hyperedge_id" ]
Adds a hyperedge to the hypergraph, along with any related attributes of the hyperedge. This method will automatically add any node from the node set that was not in the hypergraph. A hyperedge without a "weight" attribute specified will be assigned the default value of 1. :param nodes: iterable container of references to nodes in the hyperedge to be added. :param attr_dict: dictionary of attributes of the hyperedge being added. :param attr: keyword arguments of attributes of the hyperedge; attr's values will override attr_dict's values if both are provided. :returns: str -- the ID of the hyperedge that was added. :raises: ValueError -- nodes arguments cannot be empty. Examples: :: >>> H = UndirectedHypergraph() >>> x = H.add_hyperedge(["A", "B", "C"]) >>> y = H.add_hyperedge(("A", "D"), weight=2) >>> z = H.add_hyperedge(set(["B", "D"]), {color: "red"})
[ "Adds", "a", "hyperedge", "to", "the", "hypergraph", "along", "with", "any", "related", "attributes", "of", "the", "hyperedge", ".", "This", "method", "will", "automatically", "add", "any", "node", "from", "the", "node", "set", "that", "was", "not", "in", "the", "hypergraph", ".", "A", "hyperedge", "without", "a", "weight", "attribute", "specified", "will", "be", "assigned", "the", "default", "value", "of", "1", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/undirected_hypergraph.py#L384-L447
13,948
Murali-group/halp
halp/undirected_hypergraph.py
UndirectedHypergraph.add_hyperedges
def add_hyperedges(self, hyperedges, attr_dict=None, **attr): """Adds multiple hyperedges to the graph, along with any related attributes of the hyperedges. If any node of a hyperedge has not previously been added to the hypergraph, it will automatically be added here. Hyperedges without a "weight" attribute specified will be assigned the default value of 1. :param hyperedges: iterable container to references of the node sets :param attr_dict: dictionary of attributes shared by all the hyperedges being added. :param attr: keyword arguments of attributes of the hyperedges; attr's values will override attr_dict's values if both are provided. :returns: list -- the IDs of the hyperedges added in the order specified by the hyperedges container's iterator. See also: add_hyperedge Examples: :: >>> H = UndirectedHypergraph() >>> hyperedge_list = (["A", "B", "C"], ("A", "D"), set(["B", "D"])) >>> hyperedge_ids = H.add_hyperedges(hyperedge_list) """ attr_dict = self._combine_attribute_arguments(attr_dict, attr) hyperedge_ids = [] for nodes in hyperedges: hyperedge_id = self.add_hyperedge(nodes, attr_dict.copy()) hyperedge_ids.append(hyperedge_id) return hyperedge_ids
python
def add_hyperedges(self, hyperedges, attr_dict=None, **attr): """Adds multiple hyperedges to the graph, along with any related attributes of the hyperedges. If any node of a hyperedge has not previously been added to the hypergraph, it will automatically be added here. Hyperedges without a "weight" attribute specified will be assigned the default value of 1. :param hyperedges: iterable container to references of the node sets :param attr_dict: dictionary of attributes shared by all the hyperedges being added. :param attr: keyword arguments of attributes of the hyperedges; attr's values will override attr_dict's values if both are provided. :returns: list -- the IDs of the hyperedges added in the order specified by the hyperedges container's iterator. See also: add_hyperedge Examples: :: >>> H = UndirectedHypergraph() >>> hyperedge_list = (["A", "B", "C"], ("A", "D"), set(["B", "D"])) >>> hyperedge_ids = H.add_hyperedges(hyperedge_list) """ attr_dict = self._combine_attribute_arguments(attr_dict, attr) hyperedge_ids = [] for nodes in hyperedges: hyperedge_id = self.add_hyperedge(nodes, attr_dict.copy()) hyperedge_ids.append(hyperedge_id) return hyperedge_ids
[ "def", "add_hyperedges", "(", "self", ",", "hyperedges", ",", "attr_dict", "=", "None", ",", "*", "*", "attr", ")", ":", "attr_dict", "=", "self", ".", "_combine_attribute_arguments", "(", "attr_dict", ",", "attr", ")", "hyperedge_ids", "=", "[", "]", "for", "nodes", "in", "hyperedges", ":", "hyperedge_id", "=", "self", ".", "add_hyperedge", "(", "nodes", ",", "attr_dict", ".", "copy", "(", ")", ")", "hyperedge_ids", ".", "append", "(", "hyperedge_id", ")", "return", "hyperedge_ids" ]
Adds multiple hyperedges to the graph, along with any related attributes of the hyperedges. If any node of a hyperedge has not previously been added to the hypergraph, it will automatically be added here. Hyperedges without a "weight" attribute specified will be assigned the default value of 1. :param hyperedges: iterable container to references of the node sets :param attr_dict: dictionary of attributes shared by all the hyperedges being added. :param attr: keyword arguments of attributes of the hyperedges; attr's values will override attr_dict's values if both are provided. :returns: list -- the IDs of the hyperedges added in the order specified by the hyperedges container's iterator. See also: add_hyperedge Examples: :: >>> H = UndirectedHypergraph() >>> hyperedge_list = (["A", "B", "C"], ("A", "D"), set(["B", "D"])) >>> hyperedge_ids = H.add_hyperedges(hyperedge_list)
[ "Adds", "multiple", "hyperedges", "to", "the", "graph", "along", "with", "any", "related", "attributes", "of", "the", "hyperedges", ".", "If", "any", "node", "of", "a", "hyperedge", "has", "not", "previously", "been", "added", "to", "the", "hypergraph", "it", "will", "automatically", "be", "added", "here", ".", "Hyperedges", "without", "a", "weight", "attribute", "specified", "will", "be", "assigned", "the", "default", "value", "of", "1", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/undirected_hypergraph.py#L449-L487
13,949
Murali-group/halp
halp/undirected_hypergraph.py
UndirectedHypergraph.get_hyperedge_id
def get_hyperedge_id(self, nodes): """From a set of nodes, returns the ID of the hyperedge that this set comprises. :param nodes: iterable container of references to nodes in the the hyperedge to be added :returns: str -- ID of the hyperedge that has that the specified node set comprises. :raises: ValueError -- No such hyperedge exists. Examples: :: >>> H = UndirectedHypergraph() >>> hyperedge_list = (["A", "B", "C"], ("A", "D"), set(["B", "D"])) >>> hyperedge_ids = H.add_hyperedges(hyperedge_list) >>> x = H.get_hyperedge_id(["A", "B", "C"]) """ frozen_nodes = frozenset(nodes) if not self.has_hyperedge(frozen_nodes): raise ValueError("No such hyperedge exists.") return self._node_set_to_hyperedge[frozen_nodes]
python
def get_hyperedge_id(self, nodes): """From a set of nodes, returns the ID of the hyperedge that this set comprises. :param nodes: iterable container of references to nodes in the the hyperedge to be added :returns: str -- ID of the hyperedge that has that the specified node set comprises. :raises: ValueError -- No such hyperedge exists. Examples: :: >>> H = UndirectedHypergraph() >>> hyperedge_list = (["A", "B", "C"], ("A", "D"), set(["B", "D"])) >>> hyperedge_ids = H.add_hyperedges(hyperedge_list) >>> x = H.get_hyperedge_id(["A", "B", "C"]) """ frozen_nodes = frozenset(nodes) if not self.has_hyperedge(frozen_nodes): raise ValueError("No such hyperedge exists.") return self._node_set_to_hyperedge[frozen_nodes]
[ "def", "get_hyperedge_id", "(", "self", ",", "nodes", ")", ":", "frozen_nodes", "=", "frozenset", "(", "nodes", ")", "if", "not", "self", ".", "has_hyperedge", "(", "frozen_nodes", ")", ":", "raise", "ValueError", "(", "\"No such hyperedge exists.\"", ")", "return", "self", ".", "_node_set_to_hyperedge", "[", "frozen_nodes", "]" ]
From a set of nodes, returns the ID of the hyperedge that this set comprises. :param nodes: iterable container of references to nodes in the the hyperedge to be added :returns: str -- ID of the hyperedge that has that the specified node set comprises. :raises: ValueError -- No such hyperedge exists. Examples: :: >>> H = UndirectedHypergraph() >>> hyperedge_list = (["A", "B", "C"], ("A", "D"), set(["B", "D"])) >>> hyperedge_ids = H.add_hyperedges(hyperedge_list) >>> x = H.get_hyperedge_id(["A", "B", "C"])
[ "From", "a", "set", "of", "nodes", "returns", "the", "ID", "of", "the", "hyperedge", "that", "this", "set", "comprises", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/undirected_hypergraph.py#L592-L618
13,950
Murali-group/halp
halp/undirected_hypergraph.py
UndirectedHypergraph.get_hyperedge_attribute
def get_hyperedge_attribute(self, hyperedge_id, attribute_name): # Note: Code unchanged from DirectedHypergraph """Given a hyperedge ID and the name of an attribute, get a copy of that hyperedge's attribute. :param hyperedge_id: ID of the hyperedge to retrieve the attribute of. :param attribute_name: name of the attribute to retrieve. :returns: attribute value of the attribute_name key for the specified hyperedge. :raises: ValueError -- No such hyperedge exists. :raises: ValueError -- No such attribute exists. Examples: :: >>> H = UndirectedHypergraph() >>> hyperedge_list = (["A", "B", "C"], ("A", "D"), set(["B", "D"])) >>> hyperedge_ids = H.add_hyperedges(hyperedge_list) >>> attribute = H.get_hyperedge_attribute(hyperedge_ids[0]) """ if not self.has_hyperedge_id(hyperedge_id): raise ValueError("No such hyperedge exists.") elif attribute_name not in self._hyperedge_attributes[hyperedge_id]: raise ValueError("No such attribute exists.") else: return copy.\ copy(self._hyperedge_attributes[hyperedge_id][attribute_name])
python
def get_hyperedge_attribute(self, hyperedge_id, attribute_name): # Note: Code unchanged from DirectedHypergraph """Given a hyperedge ID and the name of an attribute, get a copy of that hyperedge's attribute. :param hyperedge_id: ID of the hyperedge to retrieve the attribute of. :param attribute_name: name of the attribute to retrieve. :returns: attribute value of the attribute_name key for the specified hyperedge. :raises: ValueError -- No such hyperedge exists. :raises: ValueError -- No such attribute exists. Examples: :: >>> H = UndirectedHypergraph() >>> hyperedge_list = (["A", "B", "C"], ("A", "D"), set(["B", "D"])) >>> hyperedge_ids = H.add_hyperedges(hyperedge_list) >>> attribute = H.get_hyperedge_attribute(hyperedge_ids[0]) """ if not self.has_hyperedge_id(hyperedge_id): raise ValueError("No such hyperedge exists.") elif attribute_name not in self._hyperedge_attributes[hyperedge_id]: raise ValueError("No such attribute exists.") else: return copy.\ copy(self._hyperedge_attributes[hyperedge_id][attribute_name])
[ "def", "get_hyperedge_attribute", "(", "self", ",", "hyperedge_id", ",", "attribute_name", ")", ":", "# Note: Code unchanged from DirectedHypergraph", "if", "not", "self", ".", "has_hyperedge_id", "(", "hyperedge_id", ")", ":", "raise", "ValueError", "(", "\"No such hyperedge exists.\"", ")", "elif", "attribute_name", "not", "in", "self", ".", "_hyperedge_attributes", "[", "hyperedge_id", "]", ":", "raise", "ValueError", "(", "\"No such attribute exists.\"", ")", "else", ":", "return", "copy", ".", "copy", "(", "self", ".", "_hyperedge_attributes", "[", "hyperedge_id", "]", "[", "attribute_name", "]", ")" ]
Given a hyperedge ID and the name of an attribute, get a copy of that hyperedge's attribute. :param hyperedge_id: ID of the hyperedge to retrieve the attribute of. :param attribute_name: name of the attribute to retrieve. :returns: attribute value of the attribute_name key for the specified hyperedge. :raises: ValueError -- No such hyperedge exists. :raises: ValueError -- No such attribute exists. Examples: :: >>> H = UndirectedHypergraph() >>> hyperedge_list = (["A", "B", "C"], ("A", "D"), set(["B", "D"])) >>> hyperedge_ids = H.add_hyperedges(hyperedge_list) >>> attribute = H.get_hyperedge_attribute(hyperedge_ids[0])
[ "Given", "a", "hyperedge", "ID", "and", "the", "name", "of", "an", "attribute", "get", "a", "copy", "of", "that", "hyperedge", "s", "attribute", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/undirected_hypergraph.py#L620-L649
13,951
Murali-group/halp
halp/undirected_hypergraph.py
UndirectedHypergraph.get_hyperedge_attributes
def get_hyperedge_attributes(self, hyperedge_id): """Given a hyperedge ID, get a dictionary of copies of that hyperedge's attributes. :param hyperedge_id: ID of the hyperedge to retrieve the attributes of. :returns: dict -- copy of each attribute of the specified hyperedge_id (except the private __frozen_nodes entry). :raises: ValueError -- No such hyperedge exists. """ if not self.has_hyperedge_id(hyperedge_id): raise ValueError("No such hyperedge exists.") dict_to_copy = self._hyperedge_attributes[hyperedge_id].items() attributes = {} for attr_name, attr_value in dict_to_copy: if attr_name != "__frozen_nodes": attributes[attr_name] = copy.copy(attr_value) return attributes
python
def get_hyperedge_attributes(self, hyperedge_id): """Given a hyperedge ID, get a dictionary of copies of that hyperedge's attributes. :param hyperedge_id: ID of the hyperedge to retrieve the attributes of. :returns: dict -- copy of each attribute of the specified hyperedge_id (except the private __frozen_nodes entry). :raises: ValueError -- No such hyperedge exists. """ if not self.has_hyperedge_id(hyperedge_id): raise ValueError("No such hyperedge exists.") dict_to_copy = self._hyperedge_attributes[hyperedge_id].items() attributes = {} for attr_name, attr_value in dict_to_copy: if attr_name != "__frozen_nodes": attributes[attr_name] = copy.copy(attr_value) return attributes
[ "def", "get_hyperedge_attributes", "(", "self", ",", "hyperedge_id", ")", ":", "if", "not", "self", ".", "has_hyperedge_id", "(", "hyperedge_id", ")", ":", "raise", "ValueError", "(", "\"No such hyperedge exists.\"", ")", "dict_to_copy", "=", "self", ".", "_hyperedge_attributes", "[", "hyperedge_id", "]", ".", "items", "(", ")", "attributes", "=", "{", "}", "for", "attr_name", ",", "attr_value", "in", "dict_to_copy", ":", "if", "attr_name", "!=", "\"__frozen_nodes\"", ":", "attributes", "[", "attr_name", "]", "=", "copy", ".", "copy", "(", "attr_value", ")", "return", "attributes" ]
Given a hyperedge ID, get a dictionary of copies of that hyperedge's attributes. :param hyperedge_id: ID of the hyperedge to retrieve the attributes of. :returns: dict -- copy of each attribute of the specified hyperedge_id (except the private __frozen_nodes entry). :raises: ValueError -- No such hyperedge exists.
[ "Given", "a", "hyperedge", "ID", "get", "a", "dictionary", "of", "copies", "of", "that", "hyperedge", "s", "attributes", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/undirected_hypergraph.py#L651-L668
13,952
Murali-group/halp
halp/undirected_hypergraph.py
UndirectedHypergraph.get_star
def get_star(self, node): """Given a node, get a copy of that node's star, that is, the set of hyperedges that the node belongs to. :param node: node to retrieve the star of. :returns: set -- set of hyperedge_ids for the hyperedges in the node's star. :raises: ValueError -- No such node exists. """ if node not in self._node_attributes: raise ValueError("No such node exists.") return self._star[node].copy()
python
def get_star(self, node): """Given a node, get a copy of that node's star, that is, the set of hyperedges that the node belongs to. :param node: node to retrieve the star of. :returns: set -- set of hyperedge_ids for the hyperedges in the node's star. :raises: ValueError -- No such node exists. """ if node not in self._node_attributes: raise ValueError("No such node exists.") return self._star[node].copy()
[ "def", "get_star", "(", "self", ",", "node", ")", ":", "if", "node", "not", "in", "self", ".", "_node_attributes", ":", "raise", "ValueError", "(", "\"No such node exists.\"", ")", "return", "self", ".", "_star", "[", "node", "]", ".", "copy", "(", ")" ]
Given a node, get a copy of that node's star, that is, the set of hyperedges that the node belongs to. :param node: node to retrieve the star of. :returns: set -- set of hyperedge_ids for the hyperedges in the node's star. :raises: ValueError -- No such node exists.
[ "Given", "a", "node", "get", "a", "copy", "of", "that", "node", "s", "star", "that", "is", "the", "set", "of", "hyperedges", "that", "the", "node", "belongs", "to", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/undirected_hypergraph.py#L691-L703
13,953
Murali-group/halp
halp/utilities/directed_statistics.py
_F_outdegree
def _F_outdegree(H, F): """Returns the result of a function F applied to the set of outdegrees in in the hypergraph. :param H: the hypergraph whose outdegrees will be operated on. :param F: function to execute on the list of outdegrees in the hypergraph. :returns: result of the given function F. :raises: TypeError -- Algorithm only applicable to directed hypergraphs """ if not isinstance(H, DirectedHypergraph): raise TypeError("Algorithm only applicable to directed hypergraphs") return F([len(H.get_forward_star(node)) for node in H.get_node_set()])
python
def _F_outdegree(H, F): """Returns the result of a function F applied to the set of outdegrees in in the hypergraph. :param H: the hypergraph whose outdegrees will be operated on. :param F: function to execute on the list of outdegrees in the hypergraph. :returns: result of the given function F. :raises: TypeError -- Algorithm only applicable to directed hypergraphs """ if not isinstance(H, DirectedHypergraph): raise TypeError("Algorithm only applicable to directed hypergraphs") return F([len(H.get_forward_star(node)) for node in H.get_node_set()])
[ "def", "_F_outdegree", "(", "H", ",", "F", ")", ":", "if", "not", "isinstance", "(", "H", ",", "DirectedHypergraph", ")", ":", "raise", "TypeError", "(", "\"Algorithm only applicable to directed hypergraphs\"", ")", "return", "F", "(", "[", "len", "(", "H", ".", "get_forward_star", "(", "node", ")", ")", "for", "node", "in", "H", ".", "get_node_set", "(", ")", "]", ")" ]
Returns the result of a function F applied to the set of outdegrees in in the hypergraph. :param H: the hypergraph whose outdegrees will be operated on. :param F: function to execute on the list of outdegrees in the hypergraph. :returns: result of the given function F. :raises: TypeError -- Algorithm only applicable to directed hypergraphs
[ "Returns", "the", "result", "of", "a", "function", "F", "applied", "to", "the", "set", "of", "outdegrees", "in", "in", "the", "hypergraph", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/utilities/directed_statistics.py#L40-L54
13,954
Murali-group/halp
halp/utilities/directed_statistics.py
_F_indegree
def _F_indegree(H, F): """Returns the result of a function F applied to the list of indegrees in in the hypergraph. :param H: the hypergraph whose indegrees will be operated on. :param F: function to execute on the list of indegrees in the hypergraph. :returns: result of the given function F. :raises: TypeError -- Algorithm only applicable to directed hypergraphs """ if not isinstance(H, DirectedHypergraph): raise TypeError("Algorithm only applicable to directed hypergraphs") return F([len(H.get_backward_star(node)) for node in H.get_node_set()])
python
def _F_indegree(H, F): """Returns the result of a function F applied to the list of indegrees in in the hypergraph. :param H: the hypergraph whose indegrees will be operated on. :param F: function to execute on the list of indegrees in the hypergraph. :returns: result of the given function F. :raises: TypeError -- Algorithm only applicable to directed hypergraphs """ if not isinstance(H, DirectedHypergraph): raise TypeError("Algorithm only applicable to directed hypergraphs") return F([len(H.get_backward_star(node)) for node in H.get_node_set()])
[ "def", "_F_indegree", "(", "H", ",", "F", ")", ":", "if", "not", "isinstance", "(", "H", ",", "DirectedHypergraph", ")", ":", "raise", "TypeError", "(", "\"Algorithm only applicable to directed hypergraphs\"", ")", "return", "F", "(", "[", "len", "(", "H", ".", "get_backward_star", "(", "node", ")", ")", "for", "node", "in", "H", ".", "get_node_set", "(", ")", "]", ")" ]
Returns the result of a function F applied to the list of indegrees in in the hypergraph. :param H: the hypergraph whose indegrees will be operated on. :param F: function to execute on the list of indegrees in the hypergraph. :returns: result of the given function F. :raises: TypeError -- Algorithm only applicable to directed hypergraphs
[ "Returns", "the", "result", "of", "a", "function", "F", "applied", "to", "the", "list", "of", "indegrees", "in", "in", "the", "hypergraph", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/utilities/directed_statistics.py#L105-L119
13,955
Murali-group/halp
halp/utilities/directed_statistics.py
_F_hyperedge_tail_cardinality
def _F_hyperedge_tail_cardinality(H, F): """Returns the result of a function F applied to the set of cardinalities of hyperedge tails in the hypergraph. :param H: the hypergraph whose tail cardinalities will be operated on. :param F: function to execute on the set of cardinalities in the hypergraph. :returns: result of the given function F. :raises: TypeError -- Algorithm only applicable to directed hypergraphs """ if not isinstance(H, DirectedHypergraph): raise TypeError("Algorithm only applicable to directed hypergraphs") return F([len(H.get_hyperedge_tail(hyperedge_id)) for hyperedge_id in H.get_hyperedge_id_set()])
python
def _F_hyperedge_tail_cardinality(H, F): """Returns the result of a function F applied to the set of cardinalities of hyperedge tails in the hypergraph. :param H: the hypergraph whose tail cardinalities will be operated on. :param F: function to execute on the set of cardinalities in the hypergraph. :returns: result of the given function F. :raises: TypeError -- Algorithm only applicable to directed hypergraphs """ if not isinstance(H, DirectedHypergraph): raise TypeError("Algorithm only applicable to directed hypergraphs") return F([len(H.get_hyperedge_tail(hyperedge_id)) for hyperedge_id in H.get_hyperedge_id_set()])
[ "def", "_F_hyperedge_tail_cardinality", "(", "H", ",", "F", ")", ":", "if", "not", "isinstance", "(", "H", ",", "DirectedHypergraph", ")", ":", "raise", "TypeError", "(", "\"Algorithm only applicable to directed hypergraphs\"", ")", "return", "F", "(", "[", "len", "(", "H", ".", "get_hyperedge_tail", "(", "hyperedge_id", ")", ")", "for", "hyperedge_id", "in", "H", ".", "get_hyperedge_id_set", "(", ")", "]", ")" ]
Returns the result of a function F applied to the set of cardinalities of hyperedge tails in the hypergraph. :param H: the hypergraph whose tail cardinalities will be operated on. :param F: function to execute on the set of cardinalities in the hypergraph. :returns: result of the given function F. :raises: TypeError -- Algorithm only applicable to directed hypergraphs
[ "Returns", "the", "result", "of", "a", "function", "F", "applied", "to", "the", "set", "of", "cardinalities", "of", "hyperedge", "tails", "in", "the", "hypergraph", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/utilities/directed_statistics.py#L170-L186
13,956
Murali-group/halp
halp/utilities/directed_statistics.py
_F_hyperedge_head_cardinality
def _F_hyperedge_head_cardinality(H, F): """Returns the result of a function F applied to the set of cardinalities of hyperedge heads in the hypergraph. :param H: the hypergraph whose head cardinalities will be operated on. :param F: function to execute on the set of cardinalities in the hypergraph. :returns: result of the given function F. :raises: TypeError -- Algorithm only applicable to directed hypergraphs """ if not isinstance(H, DirectedHypergraph): raise TypeError("Algorithm only applicable to directed hypergraphs") return F([len(H.get_hyperedge_head(hyperedge_id)) for hyperedge_id in H.get_hyperedge_id_set()])
python
def _F_hyperedge_head_cardinality(H, F): """Returns the result of a function F applied to the set of cardinalities of hyperedge heads in the hypergraph. :param H: the hypergraph whose head cardinalities will be operated on. :param F: function to execute on the set of cardinalities in the hypergraph. :returns: result of the given function F. :raises: TypeError -- Algorithm only applicable to directed hypergraphs """ if not isinstance(H, DirectedHypergraph): raise TypeError("Algorithm only applicable to directed hypergraphs") return F([len(H.get_hyperedge_head(hyperedge_id)) for hyperedge_id in H.get_hyperedge_id_set()])
[ "def", "_F_hyperedge_head_cardinality", "(", "H", ",", "F", ")", ":", "if", "not", "isinstance", "(", "H", ",", "DirectedHypergraph", ")", ":", "raise", "TypeError", "(", "\"Algorithm only applicable to directed hypergraphs\"", ")", "return", "F", "(", "[", "len", "(", "H", ".", "get_hyperedge_head", "(", "hyperedge_id", ")", ")", "for", "hyperedge_id", "in", "H", ".", "get_hyperedge_id_set", "(", ")", "]", ")" ]
Returns the result of a function F applied to the set of cardinalities of hyperedge heads in the hypergraph. :param H: the hypergraph whose head cardinalities will be operated on. :param F: function to execute on the set of cardinalities in the hypergraph. :returns: result of the given function F. :raises: TypeError -- Algorithm only applicable to directed hypergraphs
[ "Returns", "the", "result", "of", "a", "function", "F", "applied", "to", "the", "set", "of", "cardinalities", "of", "hyperedge", "heads", "in", "the", "hypergraph", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/utilities/directed_statistics.py#L240-L256
13,957
Murali-group/halp
halp/utilities/undirected_matrices.py
get_hyperedge_weight_matrix
def get_hyperedge_weight_matrix(H, hyperedge_ids_to_indices): """Creates the diagonal matrix W of hyperedge weights as a sparse matrix. :param H: the hypergraph to find the weights. :param hyperedge_weights: the mapping from the indices of hyperedge IDs to the corresponding hyperedge weights. :returns: sparse.csc_matrix -- the diagonal edge weight matrix as a sparse matrix. """ # Combined 2 methods into 1; this could be written better hyperedge_weights = {} for hyperedge_id in H.hyperedge_id_iterator(): hyperedge_weights.update({hyperedge_ids_to_indices[hyperedge_id]: H.get_hyperedge_weight(hyperedge_id)}) hyperedge_weight_vector = [] for i in range(len(hyperedge_weights.keys())): hyperedge_weight_vector.append(hyperedge_weights.get(i)) return sparse.diags([hyperedge_weight_vector], [0])
python
def get_hyperedge_weight_matrix(H, hyperedge_ids_to_indices): """Creates the diagonal matrix W of hyperedge weights as a sparse matrix. :param H: the hypergraph to find the weights. :param hyperedge_weights: the mapping from the indices of hyperedge IDs to the corresponding hyperedge weights. :returns: sparse.csc_matrix -- the diagonal edge weight matrix as a sparse matrix. """ # Combined 2 methods into 1; this could be written better hyperedge_weights = {} for hyperedge_id in H.hyperedge_id_iterator(): hyperedge_weights.update({hyperedge_ids_to_indices[hyperedge_id]: H.get_hyperedge_weight(hyperedge_id)}) hyperedge_weight_vector = [] for i in range(len(hyperedge_weights.keys())): hyperedge_weight_vector.append(hyperedge_weights.get(i)) return sparse.diags([hyperedge_weight_vector], [0])
[ "def", "get_hyperedge_weight_matrix", "(", "H", ",", "hyperedge_ids_to_indices", ")", ":", "# Combined 2 methods into 1; this could be written better", "hyperedge_weights", "=", "{", "}", "for", "hyperedge_id", "in", "H", ".", "hyperedge_id_iterator", "(", ")", ":", "hyperedge_weights", ".", "update", "(", "{", "hyperedge_ids_to_indices", "[", "hyperedge_id", "]", ":", "H", ".", "get_hyperedge_weight", "(", "hyperedge_id", ")", "}", ")", "hyperedge_weight_vector", "=", "[", "]", "for", "i", "in", "range", "(", "len", "(", "hyperedge_weights", ".", "keys", "(", ")", ")", ")", ":", "hyperedge_weight_vector", ".", "append", "(", "hyperedge_weights", ".", "get", "(", "i", ")", ")", "return", "sparse", ".", "diags", "(", "[", "hyperedge_weight_vector", "]", ",", "[", "0", "]", ")" ]
Creates the diagonal matrix W of hyperedge weights as a sparse matrix. :param H: the hypergraph to find the weights. :param hyperedge_weights: the mapping from the indices of hyperedge IDs to the corresponding hyperedge weights. :returns: sparse.csc_matrix -- the diagonal edge weight matrix as a sparse matrix.
[ "Creates", "the", "diagonal", "matrix", "W", "of", "hyperedge", "weights", "as", "a", "sparse", "matrix", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/utilities/undirected_matrices.py#L103-L123
13,958
Murali-group/halp
halp/utilities/undirected_matrices.py
get_hyperedge_degree_matrix
def get_hyperedge_degree_matrix(M): """Creates the diagonal matrix of hyperedge degrees D_e as a sparse matrix, where a hyperedge degree is the cardinality of the hyperedge. :param M: the incidence matrix of the hypergraph to find the D_e matrix on. :returns: sparse.csc_matrix -- the diagonal hyperedge degree matrix as a sparse matrix. """ degrees = M.sum(0).transpose() new_degree = [] for degree in degrees: new_degree.append(int(degree[0:])) return sparse.diags([new_degree], [0])
python
def get_hyperedge_degree_matrix(M): """Creates the diagonal matrix of hyperedge degrees D_e as a sparse matrix, where a hyperedge degree is the cardinality of the hyperedge. :param M: the incidence matrix of the hypergraph to find the D_e matrix on. :returns: sparse.csc_matrix -- the diagonal hyperedge degree matrix as a sparse matrix. """ degrees = M.sum(0).transpose() new_degree = [] for degree in degrees: new_degree.append(int(degree[0:])) return sparse.diags([new_degree], [0])
[ "def", "get_hyperedge_degree_matrix", "(", "M", ")", ":", "degrees", "=", "M", ".", "sum", "(", "0", ")", ".", "transpose", "(", ")", "new_degree", "=", "[", "]", "for", "degree", "in", "degrees", ":", "new_degree", ".", "append", "(", "int", "(", "degree", "[", "0", ":", "]", ")", ")", "return", "sparse", ".", "diags", "(", "[", "new_degree", "]", ",", "[", "0", "]", ")" ]
Creates the diagonal matrix of hyperedge degrees D_e as a sparse matrix, where a hyperedge degree is the cardinality of the hyperedge. :param M: the incidence matrix of the hypergraph to find the D_e matrix on. :returns: sparse.csc_matrix -- the diagonal hyperedge degree matrix as a sparse matrix.
[ "Creates", "the", "diagonal", "matrix", "of", "hyperedge", "degrees", "D_e", "as", "a", "sparse", "matrix", "where", "a", "hyperedge", "degree", "is", "the", "cardinality", "of", "the", "hyperedge", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/utilities/undirected_matrices.py#L126-L140
13,959
Murali-group/halp
halp/utilities/undirected_matrices.py
fast_inverse
def fast_inverse(M): """Computes the inverse of a diagonal matrix. :param H: the diagonal matrix to find the inverse of. :returns: sparse.csc_matrix -- the inverse of the input matrix as a sparse matrix. """ diags = M.diagonal() new_diag = [] for value in diags: new_diag.append(1.0/value) return sparse.diags([new_diag], [0])
python
def fast_inverse(M): """Computes the inverse of a diagonal matrix. :param H: the diagonal matrix to find the inverse of. :returns: sparse.csc_matrix -- the inverse of the input matrix as a sparse matrix. """ diags = M.diagonal() new_diag = [] for value in diags: new_diag.append(1.0/value) return sparse.diags([new_diag], [0])
[ "def", "fast_inverse", "(", "M", ")", ":", "diags", "=", "M", ".", "diagonal", "(", ")", "new_diag", "=", "[", "]", "for", "value", "in", "diags", ":", "new_diag", ".", "append", "(", "1.0", "/", "value", ")", "return", "sparse", ".", "diags", "(", "[", "new_diag", "]", ",", "[", "0", "]", ")" ]
Computes the inverse of a diagonal matrix. :param H: the diagonal matrix to find the inverse of. :returns: sparse.csc_matrix -- the inverse of the input matrix as a sparse matrix.
[ "Computes", "the", "inverse", "of", "a", "diagonal", "matrix", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/utilities/undirected_matrices.py#L143-L156
13,960
Murali-group/halp
halp/signaling_hypergraph.py
node_iterator
def node_iterator(self): """Provides an iterator over the nodes. """ return iter(self._node_attributes) def has_hypernode(self, hypernode): """Determines if a specific hypernode is present in the hypergraph. :param node: reference to hypernode whose presence is being checked. :returns: bool -- true iff the node exists in the hypergraph. """ return hypernode in self._hypernode_attributes
python
def node_iterator(self): """Provides an iterator over the nodes. """ return iter(self._node_attributes) def has_hypernode(self, hypernode): """Determines if a specific hypernode is present in the hypergraph. :param node: reference to hypernode whose presence is being checked. :returns: bool -- true iff the node exists in the hypergraph. """ return hypernode in self._hypernode_attributes
[ "def", "node_iterator", "(", "self", ")", ":", "return", "iter", "(", "self", ".", "_node_attributes", ")", "def", "has_hypernode", "(", "self", ",", "hypernode", ")", ":", "\"\"\"Determines if a specific hypernode is present in the hypergraph.\n\n :param node: reference to hypernode whose presence is being checked.\n :returns: bool -- true iff the node exists in the hypergraph.\n\n \"\"\"", "return", "hypernode", "in", "self", ".", "_hypernode_attributes" ]
Provides an iterator over the nodes.
[ "Provides", "an", "iterator", "over", "the", "nodes", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/signaling_hypergraph.py#L243-L256
13,961
Murali-group/halp
halp/signaling_hypergraph.py
add_hypernode
def add_hypernode(self, hypernode, composing_nodes=set(), attr_dict=None, **attr): """Adds a hypernode to the graph, along with any related attributes of the hypernode. :param hypernode: reference to the hypernode being added. :param nodes: reference to the set of nodes that compose the hypernode. :param in_hypernodes: set of references to the hypernodes that the node being added is a member of. :param attr_dict: dictionary of attributes of the node. :param attr: keyword arguments of attributes of the node; attr's values will override attr_dict's values if both are provided. """ attr_dict = self._combine_attribute_arguments(attr_dict, attr) # If the hypernode hasn't previously been added, add it along # with its attributes if not self.has_hypernode(hypernode): attr_dict["__composing_nodes"] = composing_nodes added_nodes = composing_nodes removed_nodes = set() self._hypernode_attributes[hypernode] = attr_dict # Otherwise, just update the hypernode's attributes else: self._hypernode_attributes[hypernode].update(attr_dict) added_nodes = composing_nodes - self._hypernode_attributes\ [hypernode]["__composing_nodes"] removed_nodes = self._hypernode_attributes\ [hypernode]["__composing_nodes"] - composing_nodes # For every "composing node" added to this hypernode, update # those nodes attributes to be members of this hypernode for node in added_nodes: _add_hypernode_membership(node, hypernode) # For every "composing node" added to this hypernode, update # those nodes attributes to no longer be members of this hypernode for node in remove_nodes: _remove_hypernode_membership(node, hypernode)
python
def add_hypernode(self, hypernode, composing_nodes=set(), attr_dict=None, **attr): """Adds a hypernode to the graph, along with any related attributes of the hypernode. :param hypernode: reference to the hypernode being added. :param nodes: reference to the set of nodes that compose the hypernode. :param in_hypernodes: set of references to the hypernodes that the node being added is a member of. :param attr_dict: dictionary of attributes of the node. :param attr: keyword arguments of attributes of the node; attr's values will override attr_dict's values if both are provided. """ attr_dict = self._combine_attribute_arguments(attr_dict, attr) # If the hypernode hasn't previously been added, add it along # with its attributes if not self.has_hypernode(hypernode): attr_dict["__composing_nodes"] = composing_nodes added_nodes = composing_nodes removed_nodes = set() self._hypernode_attributes[hypernode] = attr_dict # Otherwise, just update the hypernode's attributes else: self._hypernode_attributes[hypernode].update(attr_dict) added_nodes = composing_nodes - self._hypernode_attributes\ [hypernode]["__composing_nodes"] removed_nodes = self._hypernode_attributes\ [hypernode]["__composing_nodes"] - composing_nodes # For every "composing node" added to this hypernode, update # those nodes attributes to be members of this hypernode for node in added_nodes: _add_hypernode_membership(node, hypernode) # For every "composing node" added to this hypernode, update # those nodes attributes to no longer be members of this hypernode for node in remove_nodes: _remove_hypernode_membership(node, hypernode)
[ "def", "add_hypernode", "(", "self", ",", "hypernode", ",", "composing_nodes", "=", "set", "(", ")", ",", "attr_dict", "=", "None", ",", "*", "*", "attr", ")", ":", "attr_dict", "=", "self", ".", "_combine_attribute_arguments", "(", "attr_dict", ",", "attr", ")", "# If the hypernode hasn't previously been added, add it along", "# with its attributes", "if", "not", "self", ".", "has_hypernode", "(", "hypernode", ")", ":", "attr_dict", "[", "\"__composing_nodes\"", "]", "=", "composing_nodes", "added_nodes", "=", "composing_nodes", "removed_nodes", "=", "set", "(", ")", "self", ".", "_hypernode_attributes", "[", "hypernode", "]", "=", "attr_dict", "# Otherwise, just update the hypernode's attributes", "else", ":", "self", ".", "_hypernode_attributes", "[", "hypernode", "]", ".", "update", "(", "attr_dict", ")", "added_nodes", "=", "composing_nodes", "-", "self", ".", "_hypernode_attributes", "[", "hypernode", "]", "[", "\"__composing_nodes\"", "]", "removed_nodes", "=", "self", ".", "_hypernode_attributes", "[", "hypernode", "]", "[", "\"__composing_nodes\"", "]", "-", "composing_nodes", "# For every \"composing node\" added to this hypernode, update", "# those nodes attributes to be members of this hypernode", "for", "node", "in", "added_nodes", ":", "_add_hypernode_membership", "(", "node", ",", "hypernode", ")", "# For every \"composing node\" added to this hypernode, update", "# those nodes attributes to no longer be members of this hypernode", "for", "node", "in", "remove_nodes", ":", "_remove_hypernode_membership", "(", "node", ",", "hypernode", ")" ]
Adds a hypernode to the graph, along with any related attributes of the hypernode. :param hypernode: reference to the hypernode being added. :param nodes: reference to the set of nodes that compose the hypernode. :param in_hypernodes: set of references to the hypernodes that the node being added is a member of. :param attr_dict: dictionary of attributes of the node. :param attr: keyword arguments of attributes of the node; attr's values will override attr_dict's values if both are provided.
[ "Adds", "a", "hypernode", "to", "the", "graph", "along", "with", "any", "related", "attributes", "of", "the", "hypernode", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/signaling_hypergraph.py#L305-L344
13,962
Murali-group/halp
halp/algorithms/undirected_partitioning.py
_create_random_starter
def _create_random_starter(node_count): """Creates the random starter for the random walk. :param node_count: number of nodes to create the random vector. :returns: list -- list of starting probabilities for each node. """ pi = np.zeros(node_count, dtype=float) for i in range(node_count): pi[i] = random.random() summation = np.sum(pi) for i in range(node_count): pi[i] = pi[i] / summation return pi
python
def _create_random_starter(node_count): """Creates the random starter for the random walk. :param node_count: number of nodes to create the random vector. :returns: list -- list of starting probabilities for each node. """ pi = np.zeros(node_count, dtype=float) for i in range(node_count): pi[i] = random.random() summation = np.sum(pi) for i in range(node_count): pi[i] = pi[i] / summation return pi
[ "def", "_create_random_starter", "(", "node_count", ")", ":", "pi", "=", "np", ".", "zeros", "(", "node_count", ",", "dtype", "=", "float", ")", "for", "i", "in", "range", "(", "node_count", ")", ":", "pi", "[", "i", "]", "=", "random", ".", "random", "(", ")", "summation", "=", "np", ".", "sum", "(", "pi", ")", "for", "i", "in", "range", "(", "node_count", ")", ":", "pi", "[", "i", "]", "=", "pi", "[", "i", "]", "/", "summation", "return", "pi" ]
Creates the random starter for the random walk. :param node_count: number of nodes to create the random vector. :returns: list -- list of starting probabilities for each node.
[ "Creates", "the", "random", "starter", "for", "the", "random", "walk", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/algorithms/undirected_partitioning.py#L188-L202
13,963
Murali-group/halp
halp/algorithms/undirected_partitioning.py
_has_converged
def _has_converged(pi_star, pi): """Checks if the random walk has converged. :param pi_star: the new vector :param pi: the old vector :returns: bool-- True iff pi has converged. """ node_count = pi.shape[0] EPS = 10e-6 for i in range(node_count): if pi[i] - pi_star[i] > EPS: return False return True
python
def _has_converged(pi_star, pi): """Checks if the random walk has converged. :param pi_star: the new vector :param pi: the old vector :returns: bool-- True iff pi has converged. """ node_count = pi.shape[0] EPS = 10e-6 for i in range(node_count): if pi[i] - pi_star[i] > EPS: return False return True
[ "def", "_has_converged", "(", "pi_star", ",", "pi", ")", ":", "node_count", "=", "pi", ".", "shape", "[", "0", "]", "EPS", "=", "10e-6", "for", "i", "in", "range", "(", "node_count", ")", ":", "if", "pi", "[", "i", "]", "-", "pi_star", "[", "i", "]", ">", "EPS", ":", "return", "False", "return", "True" ]
Checks if the random walk has converged. :param pi_star: the new vector :param pi: the old vector :returns: bool-- True iff pi has converged.
[ "Checks", "if", "the", "random", "walk", "has", "converged", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/algorithms/undirected_partitioning.py#L205-L219
13,964
Murali-group/halp
halp/utilities/priority_queue.py
PriorityQueue.add_element
def add_element(self, priority, element, count=None): """Adds an element with a specific priority. :param priority: priority of the element. :param element: element to add. """ if count is None: count = next(self.counter) entry = [priority, count, element] self.element_finder[element] = entry heapq.heappush(self.pq, entry)
python
def add_element(self, priority, element, count=None): """Adds an element with a specific priority. :param priority: priority of the element. :param element: element to add. """ if count is None: count = next(self.counter) entry = [priority, count, element] self.element_finder[element] = entry heapq.heappush(self.pq, entry)
[ "def", "add_element", "(", "self", ",", "priority", ",", "element", ",", "count", "=", "None", ")", ":", "if", "count", "is", "None", ":", "count", "=", "next", "(", "self", ".", "counter", ")", "entry", "=", "[", "priority", ",", "count", ",", "element", "]", "self", ".", "element_finder", "[", "element", "]", "=", "entry", "heapq", ".", "heappush", "(", "self", ".", "pq", ",", "entry", ")" ]
Adds an element with a specific priority. :param priority: priority of the element. :param element: element to add.
[ "Adds", "an", "element", "with", "a", "specific", "priority", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/utilities/priority_queue.py#L41-L52
13,965
Murali-group/halp
halp/utilities/priority_queue.py
PriorityQueue.reprioritize
def reprioritize(self, priority, element): """Updates the priority of an element. :raises: ValueError -- No such element in the priority queue. """ if element not in self.element_finder: raise ValueError("No such element in the priority queue.") entry = self.element_finder[element] self.add_element(priority, element, entry[1]) entry[1] = self.INVALID
python
def reprioritize(self, priority, element): """Updates the priority of an element. :raises: ValueError -- No such element in the priority queue. """ if element not in self.element_finder: raise ValueError("No such element in the priority queue.") entry = self.element_finder[element] self.add_element(priority, element, entry[1]) entry[1] = self.INVALID
[ "def", "reprioritize", "(", "self", ",", "priority", ",", "element", ")", ":", "if", "element", "not", "in", "self", ".", "element_finder", ":", "raise", "ValueError", "(", "\"No such element in the priority queue.\"", ")", "entry", "=", "self", ".", "element_finder", "[", "element", "]", "self", ".", "add_element", "(", "priority", ",", "element", ",", "entry", "[", "1", "]", ")", "entry", "[", "1", "]", "=", "self", ".", "INVALID" ]
Updates the priority of an element. :raises: ValueError -- No such element in the priority queue.
[ "Updates", "the", "priority", "of", "an", "element", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/utilities/priority_queue.py#L79-L89
13,966
Murali-group/halp
halp/utilities/priority_queue.py
PriorityQueue.contains_element
def contains_element(self, element): """Determines if an element is contained in the priority queue." :returns: bool -- true iff element is in the priority queue. """ return (element in self.element_finder) and \ (self.element_finder[element][1] != self.INVALID)
python
def contains_element(self, element): """Determines if an element is contained in the priority queue." :returns: bool -- true iff element is in the priority queue. """ return (element in self.element_finder) and \ (self.element_finder[element][1] != self.INVALID)
[ "def", "contains_element", "(", "self", ",", "element", ")", ":", "return", "(", "element", "in", "self", ".", "element_finder", ")", "and", "(", "self", ".", "element_finder", "[", "element", "]", "[", "1", "]", "!=", "self", ".", "INVALID", ")" ]
Determines if an element is contained in the priority queue." :returns: bool -- true iff element is in the priority queue.
[ "Determines", "if", "an", "element", "is", "contained", "in", "the", "priority", "queue", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/utilities/priority_queue.py#L102-L109
13,967
Murali-group/halp
halp/utilities/priority_queue.py
PriorityQueue.is_empty
def is_empty(self): """Determines if the priority queue has any elements. Performs removal of any elements that were "marked-as-invalid". :returns: true iff the priority queue has no elements. """ while self.pq: if self.pq[0][1] != self.INVALID: return False else: _, _, element = heapq.heappop(self.pq) if element in self.element_finder: del self.element_finder[element] return True
python
def is_empty(self): """Determines if the priority queue has any elements. Performs removal of any elements that were "marked-as-invalid". :returns: true iff the priority queue has no elements. """ while self.pq: if self.pq[0][1] != self.INVALID: return False else: _, _, element = heapq.heappop(self.pq) if element in self.element_finder: del self.element_finder[element] return True
[ "def", "is_empty", "(", "self", ")", ":", "while", "self", ".", "pq", ":", "if", "self", ".", "pq", "[", "0", "]", "[", "1", "]", "!=", "self", ".", "INVALID", ":", "return", "False", "else", ":", "_", ",", "_", ",", "element", "=", "heapq", ".", "heappop", "(", "self", ".", "pq", ")", "if", "element", "in", "self", ".", "element_finder", ":", "del", "self", ".", "element_finder", "[", "element", "]", "return", "True" ]
Determines if the priority queue has any elements. Performs removal of any elements that were "marked-as-invalid". :returns: true iff the priority queue has no elements.
[ "Determines", "if", "the", "priority", "queue", "has", "any", "elements", ".", "Performs", "removal", "of", "any", "elements", "that", "were", "marked", "-", "as", "-", "invalid", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/utilities/priority_queue.py#L111-L125
13,968
Murali-group/halp
halp/algorithms/directed_paths.py
is_connected
def is_connected(H, source_node, target_node): """Checks if a target node is connected to a source node. That is, this method determines if a target node can be visited from the source node in the sense of the 'Visit' algorithm. Refer to 'visit's documentation for more details. :param H: the hypergraph to check connectedness on. :param source_node: the node to check connectedness to. :param target_node: the node to check connectedness of. :returns: bool -- whether target_node can be visited from source_node. """ visited_nodes, Pv, Pe = visit(H, source_node) return target_node in visited_nodes
python
def is_connected(H, source_node, target_node): """Checks if a target node is connected to a source node. That is, this method determines if a target node can be visited from the source node in the sense of the 'Visit' algorithm. Refer to 'visit's documentation for more details. :param H: the hypergraph to check connectedness on. :param source_node: the node to check connectedness to. :param target_node: the node to check connectedness of. :returns: bool -- whether target_node can be visited from source_node. """ visited_nodes, Pv, Pe = visit(H, source_node) return target_node in visited_nodes
[ "def", "is_connected", "(", "H", ",", "source_node", ",", "target_node", ")", ":", "visited_nodes", ",", "Pv", ",", "Pe", "=", "visit", "(", "H", ",", "source_node", ")", "return", "target_node", "in", "visited_nodes" ]
Checks if a target node is connected to a source node. That is, this method determines if a target node can be visited from the source node in the sense of the 'Visit' algorithm. Refer to 'visit's documentation for more details. :param H: the hypergraph to check connectedness on. :param source_node: the node to check connectedness to. :param target_node: the node to check connectedness of. :returns: bool -- whether target_node can be visited from source_node.
[ "Checks", "if", "a", "target", "node", "is", "connected", "to", "a", "source", "node", ".", "That", "is", "this", "method", "determines", "if", "a", "target", "node", "can", "be", "visited", "from", "the", "source", "node", "in", "the", "sense", "of", "the", "Visit", "algorithm", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/algorithms/directed_paths.py#L84-L98
13,969
Murali-group/halp
halp/algorithms/directed_paths.py
is_b_connected
def is_b_connected(H, source_node, target_node): """Checks if a target node is B-connected to a source node. A node t is B-connected to a node s iff: - t is s, or - there exists an edge in the backward star of t such that all nodes in the tail of that edge are B-connected to s In other words, this method determines if a target node can be B-visited from the source node in the sense of the 'B-Visit' algorithm. Refer to 'b_visit's documentation for more details. :param H: the hypergraph to check B-connectedness on. :param source_node: the node to check B-connectedness to. :param target_node: the node to check B-connectedness of. :returns: bool -- whether target_node can be visited from source_node. """ b_visited_nodes, Pv, Pe, v = b_visit(H, source_node) return target_node in b_visited_nodes
python
def is_b_connected(H, source_node, target_node): """Checks if a target node is B-connected to a source node. A node t is B-connected to a node s iff: - t is s, or - there exists an edge in the backward star of t such that all nodes in the tail of that edge are B-connected to s In other words, this method determines if a target node can be B-visited from the source node in the sense of the 'B-Visit' algorithm. Refer to 'b_visit's documentation for more details. :param H: the hypergraph to check B-connectedness on. :param source_node: the node to check B-connectedness to. :param target_node: the node to check B-connectedness of. :returns: bool -- whether target_node can be visited from source_node. """ b_visited_nodes, Pv, Pe, v = b_visit(H, source_node) return target_node in b_visited_nodes
[ "def", "is_b_connected", "(", "H", ",", "source_node", ",", "target_node", ")", ":", "b_visited_nodes", ",", "Pv", ",", "Pe", ",", "v", "=", "b_visit", "(", "H", ",", "source_node", ")", "return", "target_node", "in", "b_visited_nodes" ]
Checks if a target node is B-connected to a source node. A node t is B-connected to a node s iff: - t is s, or - there exists an edge in the backward star of t such that all nodes in the tail of that edge are B-connected to s In other words, this method determines if a target node can be B-visited from the source node in the sense of the 'B-Visit' algorithm. Refer to 'b_visit's documentation for more details. :param H: the hypergraph to check B-connectedness on. :param source_node: the node to check B-connectedness to. :param target_node: the node to check B-connectedness of. :returns: bool -- whether target_node can be visited from source_node.
[ "Checks", "if", "a", "target", "node", "is", "B", "-", "connected", "to", "a", "source", "node", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/algorithms/directed_paths.py#L215-L234
13,970
Murali-group/halp
halp/algorithms/directed_paths.py
is_f_connected
def is_f_connected(H, source_node, target_node): """Checks if a target node is F-connected to a source node. A node t is F-connected to a node s iff s if B-connected to t. Refer to 'f_visit's or 'is_b_connected's documentation for more details. :param H: the hypergraph to check F-connectedness on. :param source_node: the node to check F-connectedness to. :param target_node: the node to check F-connectedness of. :returns: bool -- whether target_node can be visited from source_node. """ f_visited_nodes, Pv, Pe, v = f_visit(H, source_node) return target_node in f_visited_nodes
python
def is_f_connected(H, source_node, target_node): """Checks if a target node is F-connected to a source node. A node t is F-connected to a node s iff s if B-connected to t. Refer to 'f_visit's or 'is_b_connected's documentation for more details. :param H: the hypergraph to check F-connectedness on. :param source_node: the node to check F-connectedness to. :param target_node: the node to check F-connectedness of. :returns: bool -- whether target_node can be visited from source_node. """ f_visited_nodes, Pv, Pe, v = f_visit(H, source_node) return target_node in f_visited_nodes
[ "def", "is_f_connected", "(", "H", ",", "source_node", ",", "target_node", ")", ":", "f_visited_nodes", ",", "Pv", ",", "Pe", ",", "v", "=", "f_visit", "(", "H", ",", "source_node", ")", "return", "target_node", "in", "f_visited_nodes" ]
Checks if a target node is F-connected to a source node. A node t is F-connected to a node s iff s if B-connected to t. Refer to 'f_visit's or 'is_b_connected's documentation for more details. :param H: the hypergraph to check F-connectedness on. :param source_node: the node to check F-connectedness to. :param target_node: the node to check F-connectedness of. :returns: bool -- whether target_node can be visited from source_node.
[ "Checks", "if", "a", "target", "node", "is", "F", "-", "connected", "to", "a", "source", "node", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/algorithms/directed_paths.py#L263-L276
13,971
Murali-group/halp
halp/utilities/undirected_graph_transformations.py
from_networkx_graph
def from_networkx_graph(nx_graph): """Returns an UndirectedHypergraph object that is the graph equivalent of the given NetworkX Graph object. :param nx_graph: the NetworkX undirected graph object to transform. :returns: UndirectedHypergraph -- H object equivalent to the NetworkX undirected graph. :raises: TypeError -- Transformation only applicable to undirected NetworkX graphs """ import networkx as nx if not isinstance(nx_graph, nx.Graph): raise TypeError("Transformation only applicable to undirected \ NetworkX graphs") G = UndirectedHypergraph() for node in nx_graph.nodes_iter(): G.add_node(node, copy.copy(nx_graph.node[node])) for edge in nx_graph.edges_iter(): G.add_hyperedge([edge[0], edge[1]], copy.copy(nx_graph[edge[0]][edge[1]])) return G
python
def from_networkx_graph(nx_graph): """Returns an UndirectedHypergraph object that is the graph equivalent of the given NetworkX Graph object. :param nx_graph: the NetworkX undirected graph object to transform. :returns: UndirectedHypergraph -- H object equivalent to the NetworkX undirected graph. :raises: TypeError -- Transformation only applicable to undirected NetworkX graphs """ import networkx as nx if not isinstance(nx_graph, nx.Graph): raise TypeError("Transformation only applicable to undirected \ NetworkX graphs") G = UndirectedHypergraph() for node in nx_graph.nodes_iter(): G.add_node(node, copy.copy(nx_graph.node[node])) for edge in nx_graph.edges_iter(): G.add_hyperedge([edge[0], edge[1]], copy.copy(nx_graph[edge[0]][edge[1]])) return G
[ "def", "from_networkx_graph", "(", "nx_graph", ")", ":", "import", "networkx", "as", "nx", "if", "not", "isinstance", "(", "nx_graph", ",", "nx", ".", "Graph", ")", ":", "raise", "TypeError", "(", "\"Transformation only applicable to undirected \\\n NetworkX graphs\"", ")", "G", "=", "UndirectedHypergraph", "(", ")", "for", "node", "in", "nx_graph", ".", "nodes_iter", "(", ")", ":", "G", ".", "add_node", "(", "node", ",", "copy", ".", "copy", "(", "nx_graph", ".", "node", "[", "node", "]", ")", ")", "for", "edge", "in", "nx_graph", ".", "edges_iter", "(", ")", ":", "G", ".", "add_hyperedge", "(", "[", "edge", "[", "0", "]", ",", "edge", "[", "1", "]", "]", ",", "copy", ".", "copy", "(", "nx_graph", "[", "edge", "[", "0", "]", "]", "[", "edge", "[", "1", "]", "]", ")", ")", "return", "G" ]
Returns an UndirectedHypergraph object that is the graph equivalent of the given NetworkX Graph object. :param nx_graph: the NetworkX undirected graph object to transform. :returns: UndirectedHypergraph -- H object equivalent to the NetworkX undirected graph. :raises: TypeError -- Transformation only applicable to undirected NetworkX graphs
[ "Returns", "an", "UndirectedHypergraph", "object", "that", "is", "the", "graph", "equivalent", "of", "the", "given", "NetworkX", "Graph", "object", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/utilities/undirected_graph_transformations.py#L81-L107
13,972
Murali-group/halp
halp/utilities/directed_graph_transformations.py
from_networkx_digraph
def from_networkx_digraph(nx_digraph): """Returns a DirectedHypergraph object that is the graph equivalent of the given NetworkX DiGraph object. :param nx_digraph: the NetworkX directed graph object to transform. :returns: DirectedHypergraph -- hypergraph object equivalent to the NetworkX directed graph. :raises: TypeError -- Transformation only applicable to directed NetworkX graphs """ import networkx as nx if not isinstance(nx_digraph, nx.DiGraph): raise TypeError("Transformation only applicable to directed \ NetworkX graphs") G = DirectedHypergraph() for node in nx_digraph.nodes_iter(): G.add_node(node, copy.copy(nx_digraph.node[node])) for edge in nx_digraph.edges_iter(): tail_node = edge[0] head_node = edge[1] G.add_hyperedge(tail_node, head_node, copy.copy(nx_digraph[tail_node][head_node])) return G
python
def from_networkx_digraph(nx_digraph): """Returns a DirectedHypergraph object that is the graph equivalent of the given NetworkX DiGraph object. :param nx_digraph: the NetworkX directed graph object to transform. :returns: DirectedHypergraph -- hypergraph object equivalent to the NetworkX directed graph. :raises: TypeError -- Transformation only applicable to directed NetworkX graphs """ import networkx as nx if not isinstance(nx_digraph, nx.DiGraph): raise TypeError("Transformation only applicable to directed \ NetworkX graphs") G = DirectedHypergraph() for node in nx_digraph.nodes_iter(): G.add_node(node, copy.copy(nx_digraph.node[node])) for edge in nx_digraph.edges_iter(): tail_node = edge[0] head_node = edge[1] G.add_hyperedge(tail_node, head_node, copy.copy(nx_digraph[tail_node][head_node])) return G
[ "def", "from_networkx_digraph", "(", "nx_digraph", ")", ":", "import", "networkx", "as", "nx", "if", "not", "isinstance", "(", "nx_digraph", ",", "nx", ".", "DiGraph", ")", ":", "raise", "TypeError", "(", "\"Transformation only applicable to directed \\\n NetworkX graphs\"", ")", "G", "=", "DirectedHypergraph", "(", ")", "for", "node", "in", "nx_digraph", ".", "nodes_iter", "(", ")", ":", "G", ".", "add_node", "(", "node", ",", "copy", ".", "copy", "(", "nx_digraph", ".", "node", "[", "node", "]", ")", ")", "for", "edge", "in", "nx_digraph", ".", "edges_iter", "(", ")", ":", "tail_node", "=", "edge", "[", "0", "]", "head_node", "=", "edge", "[", "1", "]", "G", ".", "add_hyperedge", "(", "tail_node", ",", "head_node", ",", "copy", ".", "copy", "(", "nx_digraph", "[", "tail_node", "]", "[", "head_node", "]", ")", ")", "return", "G" ]
Returns a DirectedHypergraph object that is the graph equivalent of the given NetworkX DiGraph object. :param nx_digraph: the NetworkX directed graph object to transform. :returns: DirectedHypergraph -- hypergraph object equivalent to the NetworkX directed graph. :raises: TypeError -- Transformation only applicable to directed NetworkX graphs
[ "Returns", "a", "DirectedHypergraph", "object", "that", "is", "the", "graph", "equivalent", "of", "the", "given", "NetworkX", "DiGraph", "object", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/utilities/directed_graph_transformations.py#L81-L110
13,973
Murali-group/halp
halp/utilities/directed_matrices.py
get_tail_incidence_matrix
def get_tail_incidence_matrix(H, nodes_to_indices, hyperedge_ids_to_indices): """Creates the incidence matrix of the tail nodes of the given hypergraph as a sparse matrix. :param H: the hypergraph for which to create the incidence matrix of. :param nodes_to_indices: for each node, maps the node to its corresponding integer index. :param hyperedge_ids_to_indices: for each hyperedge ID, maps the hyperedge ID to its corresponding integer index. :returns: sparse.csc_matrix -- the incidence matrix as a sparse matrix. :raises: TypeError -- Algorithm only applicable to directed hypergraphs """ if not isinstance(H, DirectedHypergraph): raise TypeError("Algorithm only applicable to directed hypergraphs") rows, cols = [], [] for hyperedge_id, hyperedge_index in hyperedge_ids_to_indices.items(): for node in H.get_hyperedge_tail(hyperedge_id): # get the mapping between the node and its ID rows.append(nodes_to_indices.get(node)) cols.append(hyperedge_index) values = np.ones(len(rows), dtype=int) node_count = len(H.get_node_set()) hyperedge_count = len(H.get_hyperedge_id_set()) return sparse.csc_matrix((values, (rows, cols)), shape=(node_count, hyperedge_count))
python
def get_tail_incidence_matrix(H, nodes_to_indices, hyperedge_ids_to_indices): """Creates the incidence matrix of the tail nodes of the given hypergraph as a sparse matrix. :param H: the hypergraph for which to create the incidence matrix of. :param nodes_to_indices: for each node, maps the node to its corresponding integer index. :param hyperedge_ids_to_indices: for each hyperedge ID, maps the hyperedge ID to its corresponding integer index. :returns: sparse.csc_matrix -- the incidence matrix as a sparse matrix. :raises: TypeError -- Algorithm only applicable to directed hypergraphs """ if not isinstance(H, DirectedHypergraph): raise TypeError("Algorithm only applicable to directed hypergraphs") rows, cols = [], [] for hyperedge_id, hyperedge_index in hyperedge_ids_to_indices.items(): for node in H.get_hyperedge_tail(hyperedge_id): # get the mapping between the node and its ID rows.append(nodes_to_indices.get(node)) cols.append(hyperedge_index) values = np.ones(len(rows), dtype=int) node_count = len(H.get_node_set()) hyperedge_count = len(H.get_hyperedge_id_set()) return sparse.csc_matrix((values, (rows, cols)), shape=(node_count, hyperedge_count))
[ "def", "get_tail_incidence_matrix", "(", "H", ",", "nodes_to_indices", ",", "hyperedge_ids_to_indices", ")", ":", "if", "not", "isinstance", "(", "H", ",", "DirectedHypergraph", ")", ":", "raise", "TypeError", "(", "\"Algorithm only applicable to directed hypergraphs\"", ")", "rows", ",", "cols", "=", "[", "]", ",", "[", "]", "for", "hyperedge_id", ",", "hyperedge_index", "in", "hyperedge_ids_to_indices", ".", "items", "(", ")", ":", "for", "node", "in", "H", ".", "get_hyperedge_tail", "(", "hyperedge_id", ")", ":", "# get the mapping between the node and its ID", "rows", ".", "append", "(", "nodes_to_indices", ".", "get", "(", "node", ")", ")", "cols", ".", "append", "(", "hyperedge_index", ")", "values", "=", "np", ".", "ones", "(", "len", "(", "rows", ")", ",", "dtype", "=", "int", ")", "node_count", "=", "len", "(", "H", ".", "get_node_set", "(", ")", ")", "hyperedge_count", "=", "len", "(", "H", ".", "get_hyperedge_id_set", "(", ")", ")", "return", "sparse", ".", "csc_matrix", "(", "(", "values", ",", "(", "rows", ",", "cols", ")", ")", ",", "shape", "=", "(", "node_count", ",", "hyperedge_count", ")", ")" ]
Creates the incidence matrix of the tail nodes of the given hypergraph as a sparse matrix. :param H: the hypergraph for which to create the incidence matrix of. :param nodes_to_indices: for each node, maps the node to its corresponding integer index. :param hyperedge_ids_to_indices: for each hyperedge ID, maps the hyperedge ID to its corresponding integer index. :returns: sparse.csc_matrix -- the incidence matrix as a sparse matrix. :raises: TypeError -- Algorithm only applicable to directed hypergraphs
[ "Creates", "the", "incidence", "matrix", "of", "the", "tail", "nodes", "of", "the", "given", "hypergraph", "as", "a", "sparse", "matrix", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/utilities/directed_matrices.py#L59-L87
13,974
Murali-group/halp
halp/directed_hypergraph.py
DirectedHypergraph.add_node
def add_node(self, node, attr_dict=None, **attr): """Adds a node to the graph, along with any related attributes of the node. :param node: reference to the node being added. :param attr_dict: dictionary of attributes of the node. :param attr: keyword arguments of attributes of the node; attr's values will override attr_dict's values if both are provided. Examples: :: >>> H = DirectedHypergraph() >>> attributes = {label: "positive"} >>> H.add_node("A", attributes) >>> H.add_node("B", label="negative") >>> H.add_node("C", attributes, root=True) """ attr_dict = self._combine_attribute_arguments(attr_dict, attr) # If the node hasn't previously been added, add it along # with its attributes if not self.has_node(node): self._node_attributes[node] = attr_dict self._forward_star[node] = set() self._backward_star[node] = set() # Otherwise, just update the node's attributes else: self._node_attributes[node].update(attr_dict)
python
def add_node(self, node, attr_dict=None, **attr): """Adds a node to the graph, along with any related attributes of the node. :param node: reference to the node being added. :param attr_dict: dictionary of attributes of the node. :param attr: keyword arguments of attributes of the node; attr's values will override attr_dict's values if both are provided. Examples: :: >>> H = DirectedHypergraph() >>> attributes = {label: "positive"} >>> H.add_node("A", attributes) >>> H.add_node("B", label="negative") >>> H.add_node("C", attributes, root=True) """ attr_dict = self._combine_attribute_arguments(attr_dict, attr) # If the node hasn't previously been added, add it along # with its attributes if not self.has_node(node): self._node_attributes[node] = attr_dict self._forward_star[node] = set() self._backward_star[node] = set() # Otherwise, just update the node's attributes else: self._node_attributes[node].update(attr_dict)
[ "def", "add_node", "(", "self", ",", "node", ",", "attr_dict", "=", "None", ",", "*", "*", "attr", ")", ":", "attr_dict", "=", "self", ".", "_combine_attribute_arguments", "(", "attr_dict", ",", "attr", ")", "# If the node hasn't previously been added, add it along", "# with its attributes", "if", "not", "self", ".", "has_node", "(", "node", ")", ":", "self", ".", "_node_attributes", "[", "node", "]", "=", "attr_dict", "self", ".", "_forward_star", "[", "node", "]", "=", "set", "(", ")", "self", ".", "_backward_star", "[", "node", "]", "=", "set", "(", ")", "# Otherwise, just update the node's attributes", "else", ":", "self", ".", "_node_attributes", "[", "node", "]", ".", "update", "(", "attr_dict", ")" ]
Adds a node to the graph, along with any related attributes of the node. :param node: reference to the node being added. :param attr_dict: dictionary of attributes of the node. :param attr: keyword arguments of attributes of the node; attr's values will override attr_dict's values if both are provided. Examples: :: >>> H = DirectedHypergraph() >>> attributes = {label: "positive"} >>> H.add_node("A", attributes) >>> H.add_node("B", label="negative") >>> H.add_node("C", attributes, root=True)
[ "Adds", "a", "node", "to", "the", "graph", "along", "with", "any", "related", "attributes", "of", "the", "node", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/directed_hypergraph.py#L204-L234
13,975
Murali-group/halp
halp/directed_hypergraph.py
DirectedHypergraph.add_nodes
def add_nodes(self, nodes, attr_dict=None, **attr): """Adds multiple nodes to the graph, along with any related attributes of the nodes. :param nodes: iterable container to either references of the nodes OR tuples of (node reference, attribute dictionary); if an attribute dictionary is provided in the tuple, its values will override both attr_dict's and attr's values. :param attr_dict: dictionary of attributes shared by all the nodes. :param attr: keyword arguments of attributes of the node; attr's values will override attr_dict's values if both are provided. See also: add_node Examples: :: >>> H = DirectedHypergraph() >>> attributes = {label: "positive"} >>> node_list = ["A", ("B", {label="negative"}), ("C", {root=True})] >>> H.add_nodes(node_list, attributes) """ attr_dict = self._combine_attribute_arguments(attr_dict, attr) for node in nodes: # Note: This won't behave properly if the node is actually a tuple if type(node) is tuple: # See ("B", {label="negative"}) in the documentation example new_node, node_attr_dict = node # Create a new dictionary and load it with node_attr_dict and # attr_dict, with the former (node_attr_dict) taking precedence new_dict = attr_dict.copy() new_dict.update(node_attr_dict) self.add_node(new_node, new_dict) else: # See "A" in the documentation example self.add_node(node, attr_dict.copy())
python
def add_nodes(self, nodes, attr_dict=None, **attr): """Adds multiple nodes to the graph, along with any related attributes of the nodes. :param nodes: iterable container to either references of the nodes OR tuples of (node reference, attribute dictionary); if an attribute dictionary is provided in the tuple, its values will override both attr_dict's and attr's values. :param attr_dict: dictionary of attributes shared by all the nodes. :param attr: keyword arguments of attributes of the node; attr's values will override attr_dict's values if both are provided. See also: add_node Examples: :: >>> H = DirectedHypergraph() >>> attributes = {label: "positive"} >>> node_list = ["A", ("B", {label="negative"}), ("C", {root=True})] >>> H.add_nodes(node_list, attributes) """ attr_dict = self._combine_attribute_arguments(attr_dict, attr) for node in nodes: # Note: This won't behave properly if the node is actually a tuple if type(node) is tuple: # See ("B", {label="negative"}) in the documentation example new_node, node_attr_dict = node # Create a new dictionary and load it with node_attr_dict and # attr_dict, with the former (node_attr_dict) taking precedence new_dict = attr_dict.copy() new_dict.update(node_attr_dict) self.add_node(new_node, new_dict) else: # See "A" in the documentation example self.add_node(node, attr_dict.copy())
[ "def", "add_nodes", "(", "self", ",", "nodes", ",", "attr_dict", "=", "None", ",", "*", "*", "attr", ")", ":", "attr_dict", "=", "self", ".", "_combine_attribute_arguments", "(", "attr_dict", ",", "attr", ")", "for", "node", "in", "nodes", ":", "# Note: This won't behave properly if the node is actually a tuple", "if", "type", "(", "node", ")", "is", "tuple", ":", "# See (\"B\", {label=\"negative\"}) in the documentation example", "new_node", ",", "node_attr_dict", "=", "node", "# Create a new dictionary and load it with node_attr_dict and", "# attr_dict, with the former (node_attr_dict) taking precedence", "new_dict", "=", "attr_dict", ".", "copy", "(", ")", "new_dict", ".", "update", "(", "node_attr_dict", ")", "self", ".", "add_node", "(", "new_node", ",", "new_dict", ")", "else", ":", "# See \"A\" in the documentation example", "self", ".", "add_node", "(", "node", ",", "attr_dict", ".", "copy", "(", ")", ")" ]
Adds multiple nodes to the graph, along with any related attributes of the nodes. :param nodes: iterable container to either references of the nodes OR tuples of (node reference, attribute dictionary); if an attribute dictionary is provided in the tuple, its values will override both attr_dict's and attr's values. :param attr_dict: dictionary of attributes shared by all the nodes. :param attr: keyword arguments of attributes of the node; attr's values will override attr_dict's values if both are provided. See also: add_node Examples: :: >>> H = DirectedHypergraph() >>> attributes = {label: "positive"} >>> node_list = ["A", ("B", {label="negative"}), ("C", {root=True})] >>> H.add_nodes(node_list, attributes)
[ "Adds", "multiple", "nodes", "to", "the", "graph", "along", "with", "any", "related", "attributes", "of", "the", "nodes", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/directed_hypergraph.py#L236-L278
13,976
Murali-group/halp
halp/directed_hypergraph.py
DirectedHypergraph.remove_node
def remove_node(self, node): """Removes a node and its attributes from the hypergraph. Removes every hyperedge that contains this node in either the head or the tail. :param node: reference to the node being added. :raises: ValueError -- No such node exists. Examples: :: >>> H = DirectedHypergraph() >>> H.add_node("A", label="positive") >>> H.remove_node("A") """ if not self.has_node(node): raise ValueError("No such node exists.") # Remove every hyperedge which is in the forward star of the node forward_star = self.get_forward_star(node) for hyperedge_id in forward_star: self.remove_hyperedge(hyperedge_id) # Remove every hyperedge which is in the backward star of the node # but that is not also in the forward start of the node (to handle # overlapping hyperedges) backward_star = self.get_backward_star(node) for hyperedge_id in backward_star - forward_star: self.remove_hyperedge(hyperedge_id) # Remove node's forward and backward star del self._forward_star[node] del self._backward_star[node] # Remove node's attributes dictionary del self._node_attributes[node]
python
def remove_node(self, node): """Removes a node and its attributes from the hypergraph. Removes every hyperedge that contains this node in either the head or the tail. :param node: reference to the node being added. :raises: ValueError -- No such node exists. Examples: :: >>> H = DirectedHypergraph() >>> H.add_node("A", label="positive") >>> H.remove_node("A") """ if not self.has_node(node): raise ValueError("No such node exists.") # Remove every hyperedge which is in the forward star of the node forward_star = self.get_forward_star(node) for hyperedge_id in forward_star: self.remove_hyperedge(hyperedge_id) # Remove every hyperedge which is in the backward star of the node # but that is not also in the forward start of the node (to handle # overlapping hyperedges) backward_star = self.get_backward_star(node) for hyperedge_id in backward_star - forward_star: self.remove_hyperedge(hyperedge_id) # Remove node's forward and backward star del self._forward_star[node] del self._backward_star[node] # Remove node's attributes dictionary del self._node_attributes[node]
[ "def", "remove_node", "(", "self", ",", "node", ")", ":", "if", "not", "self", ".", "has_node", "(", "node", ")", ":", "raise", "ValueError", "(", "\"No such node exists.\"", ")", "# Remove every hyperedge which is in the forward star of the node", "forward_star", "=", "self", ".", "get_forward_star", "(", "node", ")", "for", "hyperedge_id", "in", "forward_star", ":", "self", ".", "remove_hyperedge", "(", "hyperedge_id", ")", "# Remove every hyperedge which is in the backward star of the node", "# but that is not also in the forward start of the node (to handle", "# overlapping hyperedges)", "backward_star", "=", "self", ".", "get_backward_star", "(", "node", ")", "for", "hyperedge_id", "in", "backward_star", "-", "forward_star", ":", "self", ".", "remove_hyperedge", "(", "hyperedge_id", ")", "# Remove node's forward and backward star", "del", "self", ".", "_forward_star", "[", "node", "]", "del", "self", ".", "_backward_star", "[", "node", "]", "# Remove node's attributes dictionary", "del", "self", ".", "_node_attributes", "[", "node", "]" ]
Removes a node and its attributes from the hypergraph. Removes every hyperedge that contains this node in either the head or the tail. :param node: reference to the node being added. :raises: ValueError -- No such node exists. Examples: :: >>> H = DirectedHypergraph() >>> H.add_node("A", label="positive") >>> H.remove_node("A")
[ "Removes", "a", "node", "and", "its", "attributes", "from", "the", "hypergraph", ".", "Removes", "every", "hyperedge", "that", "contains", "this", "node", "in", "either", "the", "head", "or", "the", "tail", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/directed_hypergraph.py#L280-L315
13,977
Murali-group/halp
halp/directed_hypergraph.py
DirectedHypergraph.get_node_attribute
def get_node_attribute(self, node, attribute_name): """Given a node and the name of an attribute, get a copy of that node's attribute. :param node: reference to the node to retrieve the attribute of. :param attribute_name: name of the attribute to retrieve. :returns: attribute value of the attribute_name key for the specified node. :raises: ValueError -- No such node exists. :raises: ValueError -- No such attribute exists. """ if not self.has_node(node): raise ValueError("No such node exists.") elif attribute_name not in self._node_attributes[node]: raise ValueError("No such attribute exists.") else: return copy.\ copy(self._node_attributes[node][attribute_name])
python
def get_node_attribute(self, node, attribute_name): """Given a node and the name of an attribute, get a copy of that node's attribute. :param node: reference to the node to retrieve the attribute of. :param attribute_name: name of the attribute to retrieve. :returns: attribute value of the attribute_name key for the specified node. :raises: ValueError -- No such node exists. :raises: ValueError -- No such attribute exists. """ if not self.has_node(node): raise ValueError("No such node exists.") elif attribute_name not in self._node_attributes[node]: raise ValueError("No such attribute exists.") else: return copy.\ copy(self._node_attributes[node][attribute_name])
[ "def", "get_node_attribute", "(", "self", ",", "node", ",", "attribute_name", ")", ":", "if", "not", "self", ".", "has_node", "(", "node", ")", ":", "raise", "ValueError", "(", "\"No such node exists.\"", ")", "elif", "attribute_name", "not", "in", "self", ".", "_node_attributes", "[", "node", "]", ":", "raise", "ValueError", "(", "\"No such attribute exists.\"", ")", "else", ":", "return", "copy", ".", "copy", "(", "self", ".", "_node_attributes", "[", "node", "]", "[", "attribute_name", "]", ")" ]
Given a node and the name of an attribute, get a copy of that node's attribute. :param node: reference to the node to retrieve the attribute of. :param attribute_name: name of the attribute to retrieve. :returns: attribute value of the attribute_name key for the specified node. :raises: ValueError -- No such node exists. :raises: ValueError -- No such attribute exists.
[ "Given", "a", "node", "and", "the", "name", "of", "an", "attribute", "get", "a", "copy", "of", "that", "node", "s", "attribute", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/directed_hypergraph.py#L420-L438
13,978
Murali-group/halp
halp/directed_hypergraph.py
DirectedHypergraph.get_node_attributes
def get_node_attributes(self, node): """Given a node, get a dictionary with copies of that node's attributes. :param node: reference to the node to retrieve the attributes of. :returns: dict -- copy of each attribute of the specified node. :raises: ValueError -- No such node exists. """ if not self.has_node(node): raise ValueError("No such node exists.") attributes = {} for attr_name, attr_value in self._node_attributes[node].items(): attributes[attr_name] = copy.copy(attr_value) return attributes
python
def get_node_attributes(self, node): """Given a node, get a dictionary with copies of that node's attributes. :param node: reference to the node to retrieve the attributes of. :returns: dict -- copy of each attribute of the specified node. :raises: ValueError -- No such node exists. """ if not self.has_node(node): raise ValueError("No such node exists.") attributes = {} for attr_name, attr_value in self._node_attributes[node].items(): attributes[attr_name] = copy.copy(attr_value) return attributes
[ "def", "get_node_attributes", "(", "self", ",", "node", ")", ":", "if", "not", "self", ".", "has_node", "(", "node", ")", ":", "raise", "ValueError", "(", "\"No such node exists.\"", ")", "attributes", "=", "{", "}", "for", "attr_name", ",", "attr_value", "in", "self", ".", "_node_attributes", "[", "node", "]", ".", "items", "(", ")", ":", "attributes", "[", "attr_name", "]", "=", "copy", ".", "copy", "(", "attr_value", ")", "return", "attributes" ]
Given a node, get a dictionary with copies of that node's attributes. :param node: reference to the node to retrieve the attributes of. :returns: dict -- copy of each attribute of the specified node. :raises: ValueError -- No such node exists.
[ "Given", "a", "node", "get", "a", "dictionary", "with", "copies", "of", "that", "node", "s", "attributes", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/directed_hypergraph.py#L440-L454
13,979
Murali-group/halp
halp/directed_hypergraph.py
DirectedHypergraph.add_hyperedge
def add_hyperedge(self, tail, head, attr_dict=None, **attr): """Adds a hyperedge to the hypergraph, along with any related attributes of the hyperedge. This method will automatically add any node from the tail and head that was not in the hypergraph. A hyperedge without a "weight" attribute specified will be assigned the default value of 1. :param tail: iterable container of references to nodes in the tail of the hyperedge to be added. :param head: iterable container of references to nodes in the head of the hyperedge to be added. :param attr_dict: dictionary of attributes shared by all the hyperedges. :param attr: keyword arguments of attributes of the hyperedge; attr's values will override attr_dict's values if both are provided. :returns: str -- the ID of the hyperedge that was added. :raises: ValueError -- tail and head arguments cannot both be empty. Examples: :: >>> H = DirectedHypergraph() >>> x = H.add_hyperedge(["A", "B"], ["C", "D"]) >>> y = H.add_hyperedge(("A", "C"), ("B"), 'weight'=2) >>> z = H.add_hyperedge(set(["D"]), set(["A", "C"]), {color: "red"}) """ attr_dict = self._combine_attribute_arguments(attr_dict, attr) # Don't allow both empty tail and head containers (invalid hyperedge) if not tail and not head: raise ValueError("tail and head arguments \ cannot both be empty.") # Use frozensets for tail and head sets to allow for hashable keys frozen_tail = frozenset(tail) frozen_head = frozenset(head) # Initialize a successor dictionary for the tail and head, respectively if frozen_tail not in self._successors: self._successors[frozen_tail] = {} if frozen_head not in self._predecessors: self._predecessors[frozen_head] = {} is_new_hyperedge = not self.has_hyperedge(frozen_tail, frozen_head) if is_new_hyperedge: # Add tail and head nodes to graph (if not already present) self.add_nodes(frozen_head) self.add_nodes(frozen_tail) # Create new hyperedge name to use as reference for that hyperedge hyperedge_id = self._assign_next_hyperedge_id() # Add hyperedge to the forward-star and to the backward-star # for each node in the tail and head sets, respectively for node in frozen_tail: self._forward_star[node].add(hyperedge_id) for node in frozen_head: self._backward_star[node].add(hyperedge_id) # Add the hyperedge as the successors and predecessors # of the tail set and head set, respectively self._successors[frozen_tail][frozen_head] = hyperedge_id self._predecessors[frozen_head][frozen_tail] = hyperedge_id # Assign some special attributes to this hyperedge. We assign # a default weight of 1 to the hyperedge. We also store the # original tail and head sets in order to return them exactly # as the user passed them into add_hyperedge. self._hyperedge_attributes[hyperedge_id] = \ {"tail": tail, "__frozen_tail": frozen_tail, "head": head, "__frozen_head": frozen_head, "weight": 1} else: # If its not a new hyperedge, just get its ID to update attributes hyperedge_id = self._successors[frozen_tail][frozen_head] # Set attributes and return hyperedge ID self._hyperedge_attributes[hyperedge_id].update(attr_dict) return hyperedge_id
python
def add_hyperedge(self, tail, head, attr_dict=None, **attr): """Adds a hyperedge to the hypergraph, along with any related attributes of the hyperedge. This method will automatically add any node from the tail and head that was not in the hypergraph. A hyperedge without a "weight" attribute specified will be assigned the default value of 1. :param tail: iterable container of references to nodes in the tail of the hyperedge to be added. :param head: iterable container of references to nodes in the head of the hyperedge to be added. :param attr_dict: dictionary of attributes shared by all the hyperedges. :param attr: keyword arguments of attributes of the hyperedge; attr's values will override attr_dict's values if both are provided. :returns: str -- the ID of the hyperedge that was added. :raises: ValueError -- tail and head arguments cannot both be empty. Examples: :: >>> H = DirectedHypergraph() >>> x = H.add_hyperedge(["A", "B"], ["C", "D"]) >>> y = H.add_hyperedge(("A", "C"), ("B"), 'weight'=2) >>> z = H.add_hyperedge(set(["D"]), set(["A", "C"]), {color: "red"}) """ attr_dict = self._combine_attribute_arguments(attr_dict, attr) # Don't allow both empty tail and head containers (invalid hyperedge) if not tail and not head: raise ValueError("tail and head arguments \ cannot both be empty.") # Use frozensets for tail and head sets to allow for hashable keys frozen_tail = frozenset(tail) frozen_head = frozenset(head) # Initialize a successor dictionary for the tail and head, respectively if frozen_tail not in self._successors: self._successors[frozen_tail] = {} if frozen_head not in self._predecessors: self._predecessors[frozen_head] = {} is_new_hyperedge = not self.has_hyperedge(frozen_tail, frozen_head) if is_new_hyperedge: # Add tail and head nodes to graph (if not already present) self.add_nodes(frozen_head) self.add_nodes(frozen_tail) # Create new hyperedge name to use as reference for that hyperedge hyperedge_id = self._assign_next_hyperedge_id() # Add hyperedge to the forward-star and to the backward-star # for each node in the tail and head sets, respectively for node in frozen_tail: self._forward_star[node].add(hyperedge_id) for node in frozen_head: self._backward_star[node].add(hyperedge_id) # Add the hyperedge as the successors and predecessors # of the tail set and head set, respectively self._successors[frozen_tail][frozen_head] = hyperedge_id self._predecessors[frozen_head][frozen_tail] = hyperedge_id # Assign some special attributes to this hyperedge. We assign # a default weight of 1 to the hyperedge. We also store the # original tail and head sets in order to return them exactly # as the user passed them into add_hyperedge. self._hyperedge_attributes[hyperedge_id] = \ {"tail": tail, "__frozen_tail": frozen_tail, "head": head, "__frozen_head": frozen_head, "weight": 1} else: # If its not a new hyperedge, just get its ID to update attributes hyperedge_id = self._successors[frozen_tail][frozen_head] # Set attributes and return hyperedge ID self._hyperedge_attributes[hyperedge_id].update(attr_dict) return hyperedge_id
[ "def", "add_hyperedge", "(", "self", ",", "tail", ",", "head", ",", "attr_dict", "=", "None", ",", "*", "*", "attr", ")", ":", "attr_dict", "=", "self", ".", "_combine_attribute_arguments", "(", "attr_dict", ",", "attr", ")", "# Don't allow both empty tail and head containers (invalid hyperedge)", "if", "not", "tail", "and", "not", "head", ":", "raise", "ValueError", "(", "\"tail and head arguments \\\n cannot both be empty.\"", ")", "# Use frozensets for tail and head sets to allow for hashable keys", "frozen_tail", "=", "frozenset", "(", "tail", ")", "frozen_head", "=", "frozenset", "(", "head", ")", "# Initialize a successor dictionary for the tail and head, respectively", "if", "frozen_tail", "not", "in", "self", ".", "_successors", ":", "self", ".", "_successors", "[", "frozen_tail", "]", "=", "{", "}", "if", "frozen_head", "not", "in", "self", ".", "_predecessors", ":", "self", ".", "_predecessors", "[", "frozen_head", "]", "=", "{", "}", "is_new_hyperedge", "=", "not", "self", ".", "has_hyperedge", "(", "frozen_tail", ",", "frozen_head", ")", "if", "is_new_hyperedge", ":", "# Add tail and head nodes to graph (if not already present)", "self", ".", "add_nodes", "(", "frozen_head", ")", "self", ".", "add_nodes", "(", "frozen_tail", ")", "# Create new hyperedge name to use as reference for that hyperedge", "hyperedge_id", "=", "self", ".", "_assign_next_hyperedge_id", "(", ")", "# Add hyperedge to the forward-star and to the backward-star", "# for each node in the tail and head sets, respectively", "for", "node", "in", "frozen_tail", ":", "self", ".", "_forward_star", "[", "node", "]", ".", "add", "(", "hyperedge_id", ")", "for", "node", "in", "frozen_head", ":", "self", ".", "_backward_star", "[", "node", "]", ".", "add", "(", "hyperedge_id", ")", "# Add the hyperedge as the successors and predecessors", "# of the tail set and head set, respectively", "self", ".", "_successors", "[", "frozen_tail", "]", "[", "frozen_head", "]", "=", "hyperedge_id", "self", ".", "_predecessors", "[", "frozen_head", "]", "[", "frozen_tail", "]", "=", "hyperedge_id", "# Assign some special attributes to this hyperedge. We assign", "# a default weight of 1 to the hyperedge. We also store the", "# original tail and head sets in order to return them exactly", "# as the user passed them into add_hyperedge.", "self", ".", "_hyperedge_attributes", "[", "hyperedge_id", "]", "=", "{", "\"tail\"", ":", "tail", ",", "\"__frozen_tail\"", ":", "frozen_tail", ",", "\"head\"", ":", "head", ",", "\"__frozen_head\"", ":", "frozen_head", ",", "\"weight\"", ":", "1", "}", "else", ":", "# If its not a new hyperedge, just get its ID to update attributes", "hyperedge_id", "=", "self", ".", "_successors", "[", "frozen_tail", "]", "[", "frozen_head", "]", "# Set attributes and return hyperedge ID", "self", ".", "_hyperedge_attributes", "[", "hyperedge_id", "]", ".", "update", "(", "attr_dict", ")", "return", "hyperedge_id" ]
Adds a hyperedge to the hypergraph, along with any related attributes of the hyperedge. This method will automatically add any node from the tail and head that was not in the hypergraph. A hyperedge without a "weight" attribute specified will be assigned the default value of 1. :param tail: iterable container of references to nodes in the tail of the hyperedge to be added. :param head: iterable container of references to nodes in the head of the hyperedge to be added. :param attr_dict: dictionary of attributes shared by all the hyperedges. :param attr: keyword arguments of attributes of the hyperedge; attr's values will override attr_dict's values if both are provided. :returns: str -- the ID of the hyperedge that was added. :raises: ValueError -- tail and head arguments cannot both be empty. Examples: :: >>> H = DirectedHypergraph() >>> x = H.add_hyperedge(["A", "B"], ["C", "D"]) >>> y = H.add_hyperedge(("A", "C"), ("B"), 'weight'=2) >>> z = H.add_hyperedge(set(["D"]), set(["A", "C"]), {color: "red"})
[ "Adds", "a", "hyperedge", "to", "the", "hypergraph", "along", "with", "any", "related", "attributes", "of", "the", "hyperedge", ".", "This", "method", "will", "automatically", "add", "any", "node", "from", "the", "tail", "and", "head", "that", "was", "not", "in", "the", "hypergraph", ".", "A", "hyperedge", "without", "a", "weight", "attribute", "specified", "will", "be", "assigned", "the", "default", "value", "of", "1", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/directed_hypergraph.py#L465-L548
13,980
Murali-group/halp
halp/directed_hypergraph.py
DirectedHypergraph.add_hyperedges
def add_hyperedges(self, hyperedges, attr_dict=None, **attr): """Adds multiple hyperedges to the graph, along with any related attributes of the hyperedges. If any node in the tail or head of any hyperedge has not previously been added to the hypergraph, it will automatically be added here. Hyperedges without a "weight" attribute specified will be assigned the default value of 1. :param hyperedges: iterable container to either tuples of (tail reference, head reference) OR tuples of (tail reference, head reference, attribute dictionary); if an attribute dictionary is provided in the tuple, its values will override both attr_dict's and attr's values. :param attr_dict: dictionary of attributes shared by all the hyperedges. :param attr: keyword arguments of attributes of the hyperedges; attr's values will override attr_dict's values if both are provided. :returns: list -- the IDs of the hyperedges added in the order specified by the hyperedges container's iterator. See also: add_hyperedge Examples: :: >>> H = DirectedHypergraph() >>> xyz = hyperedge_list = ((["A", "B"], ["C", "D"]), (("A", "C"), ("B"), {'weight': 2}), (set(["D"]), set(["A", "C"]))) >>> H.add_hyperedges(hyperedge_list) """ attr_dict = self._combine_attribute_arguments(attr_dict, attr) hyperedge_ids = [] for hyperedge in hyperedges: if len(hyperedge) == 3: # See ("A", "C"), ("B"), {weight: 2}) in the # documentation example tail, head, hyperedge_attr_dict = hyperedge # Create a new dictionary and load it with node_attr_dict and # attr_dict, with the former (node_attr_dict) taking precedence new_dict = attr_dict.copy() new_dict.update(hyperedge_attr_dict) hyperedge_id = self.add_hyperedge(tail, head, new_dict) else: # See (["A", "B"], ["C", "D"]) in the documentation example tail, head = hyperedge hyperedge_id = \ self.add_hyperedge(tail, head, attr_dict.copy()) hyperedge_ids.append(hyperedge_id) return hyperedge_ids
python
def add_hyperedges(self, hyperedges, attr_dict=None, **attr): """Adds multiple hyperedges to the graph, along with any related attributes of the hyperedges. If any node in the tail or head of any hyperedge has not previously been added to the hypergraph, it will automatically be added here. Hyperedges without a "weight" attribute specified will be assigned the default value of 1. :param hyperedges: iterable container to either tuples of (tail reference, head reference) OR tuples of (tail reference, head reference, attribute dictionary); if an attribute dictionary is provided in the tuple, its values will override both attr_dict's and attr's values. :param attr_dict: dictionary of attributes shared by all the hyperedges. :param attr: keyword arguments of attributes of the hyperedges; attr's values will override attr_dict's values if both are provided. :returns: list -- the IDs of the hyperedges added in the order specified by the hyperedges container's iterator. See also: add_hyperedge Examples: :: >>> H = DirectedHypergraph() >>> xyz = hyperedge_list = ((["A", "B"], ["C", "D"]), (("A", "C"), ("B"), {'weight': 2}), (set(["D"]), set(["A", "C"]))) >>> H.add_hyperedges(hyperedge_list) """ attr_dict = self._combine_attribute_arguments(attr_dict, attr) hyperedge_ids = [] for hyperedge in hyperedges: if len(hyperedge) == 3: # See ("A", "C"), ("B"), {weight: 2}) in the # documentation example tail, head, hyperedge_attr_dict = hyperedge # Create a new dictionary and load it with node_attr_dict and # attr_dict, with the former (node_attr_dict) taking precedence new_dict = attr_dict.copy() new_dict.update(hyperedge_attr_dict) hyperedge_id = self.add_hyperedge(tail, head, new_dict) else: # See (["A", "B"], ["C", "D"]) in the documentation example tail, head = hyperedge hyperedge_id = \ self.add_hyperedge(tail, head, attr_dict.copy()) hyperedge_ids.append(hyperedge_id) return hyperedge_ids
[ "def", "add_hyperedges", "(", "self", ",", "hyperedges", ",", "attr_dict", "=", "None", ",", "*", "*", "attr", ")", ":", "attr_dict", "=", "self", ".", "_combine_attribute_arguments", "(", "attr_dict", ",", "attr", ")", "hyperedge_ids", "=", "[", "]", "for", "hyperedge", "in", "hyperedges", ":", "if", "len", "(", "hyperedge", ")", "==", "3", ":", "# See (\"A\", \"C\"), (\"B\"), {weight: 2}) in the", "# documentation example", "tail", ",", "head", ",", "hyperedge_attr_dict", "=", "hyperedge", "# Create a new dictionary and load it with node_attr_dict and", "# attr_dict, with the former (node_attr_dict) taking precedence", "new_dict", "=", "attr_dict", ".", "copy", "(", ")", "new_dict", ".", "update", "(", "hyperedge_attr_dict", ")", "hyperedge_id", "=", "self", ".", "add_hyperedge", "(", "tail", ",", "head", ",", "new_dict", ")", "else", ":", "# See ([\"A\", \"B\"], [\"C\", \"D\"]) in the documentation example", "tail", ",", "head", "=", "hyperedge", "hyperedge_id", "=", "self", ".", "add_hyperedge", "(", "tail", ",", "head", ",", "attr_dict", ".", "copy", "(", ")", ")", "hyperedge_ids", ".", "append", "(", "hyperedge_id", ")", "return", "hyperedge_ids" ]
Adds multiple hyperedges to the graph, along with any related attributes of the hyperedges. If any node in the tail or head of any hyperedge has not previously been added to the hypergraph, it will automatically be added here. Hyperedges without a "weight" attribute specified will be assigned the default value of 1. :param hyperedges: iterable container to either tuples of (tail reference, head reference) OR tuples of (tail reference, head reference, attribute dictionary); if an attribute dictionary is provided in the tuple, its values will override both attr_dict's and attr's values. :param attr_dict: dictionary of attributes shared by all the hyperedges. :param attr: keyword arguments of attributes of the hyperedges; attr's values will override attr_dict's values if both are provided. :returns: list -- the IDs of the hyperedges added in the order specified by the hyperedges container's iterator. See also: add_hyperedge Examples: :: >>> H = DirectedHypergraph() >>> xyz = hyperedge_list = ((["A", "B"], ["C", "D"]), (("A", "C"), ("B"), {'weight': 2}), (set(["D"]), set(["A", "C"]))) >>> H.add_hyperedges(hyperedge_list)
[ "Adds", "multiple", "hyperedges", "to", "the", "graph", "along", "with", "any", "related", "attributes", "of", "the", "hyperedges", ".", "If", "any", "node", "in", "the", "tail", "or", "head", "of", "any", "hyperedge", "has", "not", "previously", "been", "added", "to", "the", "hypergraph", "it", "will", "automatically", "be", "added", "here", ".", "Hyperedges", "without", "a", "weight", "attribute", "specified", "will", "be", "assigned", "the", "default", "value", "of", "1", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/directed_hypergraph.py#L550-L606
13,981
Murali-group/halp
halp/directed_hypergraph.py
DirectedHypergraph.get_hyperedge_id
def get_hyperedge_id(self, tail, head): """From a tail and head set of nodes, returns the ID of the hyperedge that these sets comprise. :param tail: iterable container of references to nodes in the tail of the hyperedge to be added :param head: iterable container of references to nodes in the head of the hyperedge to be added :returns: str -- ID of the hyperedge that has that the specified tail and head sets comprise. :raises: ValueError -- No such hyperedge exists. Examples: :: >>> H = DirectedHypergraph() >>> hyperedge_list = (["A"], ["B", "C"]), (("A", "B"), ("C"), {weight: 2}), (set(["B"]), set(["A", "C"]))) >>> hyperedge_ids = H.add_hyperedges(hyperedge_list) >>> x = H.get_hyperedge_id(["A"], ["B", "C"]) """ frozen_tail = frozenset(tail) frozen_head = frozenset(head) if not self.has_hyperedge(frozen_tail, frozen_head): raise ValueError("No such hyperedge exists.") return self._successors[frozen_tail][frozen_head]
python
def get_hyperedge_id(self, tail, head): """From a tail and head set of nodes, returns the ID of the hyperedge that these sets comprise. :param tail: iterable container of references to nodes in the tail of the hyperedge to be added :param head: iterable container of references to nodes in the head of the hyperedge to be added :returns: str -- ID of the hyperedge that has that the specified tail and head sets comprise. :raises: ValueError -- No such hyperedge exists. Examples: :: >>> H = DirectedHypergraph() >>> hyperedge_list = (["A"], ["B", "C"]), (("A", "B"), ("C"), {weight: 2}), (set(["B"]), set(["A", "C"]))) >>> hyperedge_ids = H.add_hyperedges(hyperedge_list) >>> x = H.get_hyperedge_id(["A"], ["B", "C"]) """ frozen_tail = frozenset(tail) frozen_head = frozenset(head) if not self.has_hyperedge(frozen_tail, frozen_head): raise ValueError("No such hyperedge exists.") return self._successors[frozen_tail][frozen_head]
[ "def", "get_hyperedge_id", "(", "self", ",", "tail", ",", "head", ")", ":", "frozen_tail", "=", "frozenset", "(", "tail", ")", "frozen_head", "=", "frozenset", "(", "head", ")", "if", "not", "self", ".", "has_hyperedge", "(", "frozen_tail", ",", "frozen_head", ")", ":", "raise", "ValueError", "(", "\"No such hyperedge exists.\"", ")", "return", "self", ".", "_successors", "[", "frozen_tail", "]", "[", "frozen_head", "]" ]
From a tail and head set of nodes, returns the ID of the hyperedge that these sets comprise. :param tail: iterable container of references to nodes in the tail of the hyperedge to be added :param head: iterable container of references to nodes in the head of the hyperedge to be added :returns: str -- ID of the hyperedge that has that the specified tail and head sets comprise. :raises: ValueError -- No such hyperedge exists. Examples: :: >>> H = DirectedHypergraph() >>> hyperedge_list = (["A"], ["B", "C"]), (("A", "B"), ("C"), {weight: 2}), (set(["B"]), set(["A", "C"]))) >>> hyperedge_ids = H.add_hyperedges(hyperedge_list) >>> x = H.get_hyperedge_id(["A"], ["B", "C"])
[ "From", "a", "tail", "and", "head", "set", "of", "nodes", "returns", "the", "ID", "of", "the", "hyperedge", "that", "these", "sets", "comprise", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/directed_hypergraph.py#L724-L753
13,982
Murali-group/halp
halp/directed_hypergraph.py
DirectedHypergraph.get_forward_star
def get_forward_star(self, node): """Given a node, get a copy of that node's forward star. :param node: node to retrieve the forward-star of. :returns: set -- set of hyperedge_ids for the hyperedges in the node's forward star. :raises: ValueError -- No such node exists. """ if node not in self._node_attributes: raise ValueError("No such node exists.") return self._forward_star[node].copy()
python
def get_forward_star(self, node): """Given a node, get a copy of that node's forward star. :param node: node to retrieve the forward-star of. :returns: set -- set of hyperedge_ids for the hyperedges in the node's forward star. :raises: ValueError -- No such node exists. """ if node not in self._node_attributes: raise ValueError("No such node exists.") return self._forward_star[node].copy()
[ "def", "get_forward_star", "(", "self", ",", "node", ")", ":", "if", "node", "not", "in", "self", ".", "_node_attributes", ":", "raise", "ValueError", "(", "\"No such node exists.\"", ")", "return", "self", ".", "_forward_star", "[", "node", "]", ".", "copy", "(", ")" ]
Given a node, get a copy of that node's forward star. :param node: node to retrieve the forward-star of. :returns: set -- set of hyperedge_ids for the hyperedges in the node's forward star. :raises: ValueError -- No such node exists.
[ "Given", "a", "node", "get", "a", "copy", "of", "that", "node", "s", "forward", "star", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/directed_hypergraph.py#L833-L844
13,983
Murali-group/halp
halp/directed_hypergraph.py
DirectedHypergraph.get_backward_star
def get_backward_star(self, node): """Given a node, get a copy of that node's backward star. :param node: node to retrieve the backward-star of. :returns: set -- set of hyperedge_ids for the hyperedges in the node's backward star. :raises: ValueError -- No such node exists. """ if node not in self._node_attributes: raise ValueError("No such node exists.") return self._backward_star[node].copy()
python
def get_backward_star(self, node): """Given a node, get a copy of that node's backward star. :param node: node to retrieve the backward-star of. :returns: set -- set of hyperedge_ids for the hyperedges in the node's backward star. :raises: ValueError -- No such node exists. """ if node not in self._node_attributes: raise ValueError("No such node exists.") return self._backward_star[node].copy()
[ "def", "get_backward_star", "(", "self", ",", "node", ")", ":", "if", "node", "not", "in", "self", ".", "_node_attributes", ":", "raise", "ValueError", "(", "\"No such node exists.\"", ")", "return", "self", ".", "_backward_star", "[", "node", "]", ".", "copy", "(", ")" ]
Given a node, get a copy of that node's backward star. :param node: node to retrieve the backward-star of. :returns: set -- set of hyperedge_ids for the hyperedges in the node's backward star. :raises: ValueError -- No such node exists.
[ "Given", "a", "node", "get", "a", "copy", "of", "that", "node", "s", "backward", "star", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/directed_hypergraph.py#L846-L857
13,984
Murali-group/halp
halp/directed_hypergraph.py
DirectedHypergraph.get_successors
def get_successors(self, tail): """Given a tail set of nodes, get a list of edges of which the node set is the tail of each edge. :param tail: set of nodes that correspond to the tails of some (possibly empty) set of edges. :returns: set -- hyperedge_ids of the hyperedges that have tail in the tail. """ frozen_tail = frozenset(tail) # If this node set isn't any tail in the hypergraph, then it has # no successors; thus, return an empty list if frozen_tail not in self._successors: return set() return set(self._successors[frozen_tail].values())
python
def get_successors(self, tail): """Given a tail set of nodes, get a list of edges of which the node set is the tail of each edge. :param tail: set of nodes that correspond to the tails of some (possibly empty) set of edges. :returns: set -- hyperedge_ids of the hyperedges that have tail in the tail. """ frozen_tail = frozenset(tail) # If this node set isn't any tail in the hypergraph, then it has # no successors; thus, return an empty list if frozen_tail not in self._successors: return set() return set(self._successors[frozen_tail].values())
[ "def", "get_successors", "(", "self", ",", "tail", ")", ":", "frozen_tail", "=", "frozenset", "(", "tail", ")", "# If this node set isn't any tail in the hypergraph, then it has", "# no successors; thus, return an empty list", "if", "frozen_tail", "not", "in", "self", ".", "_successors", ":", "return", "set", "(", ")", "return", "set", "(", "self", ".", "_successors", "[", "frozen_tail", "]", ".", "values", "(", ")", ")" ]
Given a tail set of nodes, get a list of edges of which the node set is the tail of each edge. :param tail: set of nodes that correspond to the tails of some (possibly empty) set of edges. :returns: set -- hyperedge_ids of the hyperedges that have tail in the tail.
[ "Given", "a", "tail", "set", "of", "nodes", "get", "a", "list", "of", "edges", "of", "which", "the", "node", "set", "is", "the", "tail", "of", "each", "edge", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/directed_hypergraph.py#L859-L875
13,985
Murali-group/halp
halp/directed_hypergraph.py
DirectedHypergraph.get_predecessors
def get_predecessors(self, head): """Given a head set of nodes, get a list of edges of which the node set is the head of each edge. :param head: set of nodes that correspond to the heads of some (possibly empty) set of edges. :returns: set -- hyperedge_ids of the hyperedges that have head in the head. """ frozen_head = frozenset(head) # If this node set isn't any head in the hypergraph, then it has # no predecessors; thus, return an empty list if frozen_head not in self._predecessors: return set() return set(self._predecessors[frozen_head].values())
python
def get_predecessors(self, head): """Given a head set of nodes, get a list of edges of which the node set is the head of each edge. :param head: set of nodes that correspond to the heads of some (possibly empty) set of edges. :returns: set -- hyperedge_ids of the hyperedges that have head in the head. """ frozen_head = frozenset(head) # If this node set isn't any head in the hypergraph, then it has # no predecessors; thus, return an empty list if frozen_head not in self._predecessors: return set() return set(self._predecessors[frozen_head].values())
[ "def", "get_predecessors", "(", "self", ",", "head", ")", ":", "frozen_head", "=", "frozenset", "(", "head", ")", "# If this node set isn't any head in the hypergraph, then it has", "# no predecessors; thus, return an empty list", "if", "frozen_head", "not", "in", "self", ".", "_predecessors", ":", "return", "set", "(", ")", "return", "set", "(", "self", ".", "_predecessors", "[", "frozen_head", "]", ".", "values", "(", ")", ")" ]
Given a head set of nodes, get a list of edges of which the node set is the head of each edge. :param head: set of nodes that correspond to the heads of some (possibly empty) set of edges. :returns: set -- hyperedge_ids of the hyperedges that have head in the head.
[ "Given", "a", "head", "set", "of", "nodes", "get", "a", "list", "of", "edges", "of", "which", "the", "node", "set", "is", "the", "head", "of", "each", "edge", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/directed_hypergraph.py#L877-L892
13,986
Murali-group/halp
halp/directed_hypergraph.py
DirectedHypergraph.is_BF_hypergraph
def is_BF_hypergraph(self): """Indicates whether the hypergraph is a BF-hypergraph. A BF-hypergraph consists of only B-hyperedges and F-hyperedges. See "is_B_hypergraph" or "is_F_hypergraph" for more details. :returns: bool -- True iff the hypergraph is an F-hypergraph. """ for hyperedge_id in self._hyperedge_attributes: tail = self.get_hyperedge_tail(hyperedge_id) head = self.get_hyperedge_head(hyperedge_id) if len(tail) > 1 and len(head) > 1: return False return True
python
def is_BF_hypergraph(self): """Indicates whether the hypergraph is a BF-hypergraph. A BF-hypergraph consists of only B-hyperedges and F-hyperedges. See "is_B_hypergraph" or "is_F_hypergraph" for more details. :returns: bool -- True iff the hypergraph is an F-hypergraph. """ for hyperedge_id in self._hyperedge_attributes: tail = self.get_hyperedge_tail(hyperedge_id) head = self.get_hyperedge_head(hyperedge_id) if len(tail) > 1 and len(head) > 1: return False return True
[ "def", "is_BF_hypergraph", "(", "self", ")", ":", "for", "hyperedge_id", "in", "self", ".", "_hyperedge_attributes", ":", "tail", "=", "self", ".", "get_hyperedge_tail", "(", "hyperedge_id", ")", "head", "=", "self", ".", "get_hyperedge_head", "(", "hyperedge_id", ")", "if", "len", "(", "tail", ")", ">", "1", "and", "len", "(", "head", ")", ">", "1", ":", "return", "False", "return", "True" ]
Indicates whether the hypergraph is a BF-hypergraph. A BF-hypergraph consists of only B-hyperedges and F-hyperedges. See "is_B_hypergraph" or "is_F_hypergraph" for more details. :returns: bool -- True iff the hypergraph is an F-hypergraph.
[ "Indicates", "whether", "the", "hypergraph", "is", "a", "BF", "-", "hypergraph", ".", "A", "BF", "-", "hypergraph", "consists", "of", "only", "B", "-", "hyperedges", "and", "F", "-", "hyperedges", ".", "See", "is_B_hypergraph", "or", "is_F_hypergraph", "for", "more", "details", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/directed_hypergraph.py#L928-L941
13,987
Murali-group/halp
halp/directed_hypergraph.py
DirectedHypergraph.get_induced_subhypergraph
def get_induced_subhypergraph(self, nodes): """Gives a new hypergraph that is the subhypergraph of the current hypergraph induced by the provided set of nodes. That is, the induced subhypergraph's node set corresponds precisely to the nodes provided, and the coressponding hyperedges in the subhypergraph are only those from the original graph consist of tail and head sets that are subsets of the provided nodes. :param nodes: the set of nodes to find the induced subhypergraph of. :returns: DirectedHypergraph -- the subhypergraph induced on the provided nodes. """ sub_H = self.copy() sub_H.remove_nodes(sub_H.get_node_set() - set(nodes)) return sub_H
python
def get_induced_subhypergraph(self, nodes): """Gives a new hypergraph that is the subhypergraph of the current hypergraph induced by the provided set of nodes. That is, the induced subhypergraph's node set corresponds precisely to the nodes provided, and the coressponding hyperedges in the subhypergraph are only those from the original graph consist of tail and head sets that are subsets of the provided nodes. :param nodes: the set of nodes to find the induced subhypergraph of. :returns: DirectedHypergraph -- the subhypergraph induced on the provided nodes. """ sub_H = self.copy() sub_H.remove_nodes(sub_H.get_node_set() - set(nodes)) return sub_H
[ "def", "get_induced_subhypergraph", "(", "self", ",", "nodes", ")", ":", "sub_H", "=", "self", ".", "copy", "(", ")", "sub_H", ".", "remove_nodes", "(", "sub_H", ".", "get_node_set", "(", ")", "-", "set", "(", "nodes", ")", ")", "return", "sub_H" ]
Gives a new hypergraph that is the subhypergraph of the current hypergraph induced by the provided set of nodes. That is, the induced subhypergraph's node set corresponds precisely to the nodes provided, and the coressponding hyperedges in the subhypergraph are only those from the original graph consist of tail and head sets that are subsets of the provided nodes. :param nodes: the set of nodes to find the induced subhypergraph of. :returns: DirectedHypergraph -- the subhypergraph induced on the provided nodes.
[ "Gives", "a", "new", "hypergraph", "that", "is", "the", "subhypergraph", "of", "the", "current", "hypergraph", "induced", "by", "the", "provided", "set", "of", "nodes", ".", "That", "is", "the", "induced", "subhypergraph", "s", "node", "set", "corresponds", "precisely", "to", "the", "nodes", "provided", "and", "the", "coressponding", "hyperedges", "in", "the", "subhypergraph", "are", "only", "those", "from", "the", "original", "graph", "consist", "of", "tail", "and", "head", "sets", "that", "are", "subsets", "of", "the", "provided", "nodes", "." ]
6eb27466ba84e2281e18f93b62aae5efb21ef8b3
https://github.com/Murali-group/halp/blob/6eb27466ba84e2281e18f93b62aae5efb21ef8b3/halp/directed_hypergraph.py#L1046-L1061
13,988
aio-libs/multidict
multidict/_multidict_py.py
_Base.getall
def getall(self, key, default=_marker): """Return a list of all values matching the key.""" identity = self._title(key) res = [v for i, k, v in self._impl._items if i == identity] if res: return res if not res and default is not _marker: return default raise KeyError('Key not found: %r' % key)
python
def getall(self, key, default=_marker): """Return a list of all values matching the key.""" identity = self._title(key) res = [v for i, k, v in self._impl._items if i == identity] if res: return res if not res and default is not _marker: return default raise KeyError('Key not found: %r' % key)
[ "def", "getall", "(", "self", ",", "key", ",", "default", "=", "_marker", ")", ":", "identity", "=", "self", ".", "_title", "(", "key", ")", "res", "=", "[", "v", "for", "i", ",", "k", ",", "v", "in", "self", ".", "_impl", ".", "_items", "if", "i", "==", "identity", "]", "if", "res", ":", "return", "res", "if", "not", "res", "and", "default", "is", "not", "_marker", ":", "return", "default", "raise", "KeyError", "(", "'Key not found: %r'", "%", "key", ")" ]
Return a list of all values matching the key.
[ "Return", "a", "list", "of", "all", "values", "matching", "the", "key", "." ]
1ecfa942cf6ae79727711a109e1f46ed24fae07f
https://github.com/aio-libs/multidict/blob/1ecfa942cf6ae79727711a109e1f46ed24fae07f/multidict/_multidict_py.py#L64-L72
13,989
aio-libs/multidict
multidict/_multidict_py.py
MultiDict.extend
def extend(self, *args, **kwargs): """Extend current MultiDict with more values. This method must be used instead of update. """ self._extend(args, kwargs, 'extend', self._extend_items)
python
def extend(self, *args, **kwargs): """Extend current MultiDict with more values. This method must be used instead of update. """ self._extend(args, kwargs, 'extend', self._extend_items)
[ "def", "extend", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "self", ".", "_extend", "(", "args", ",", "kwargs", ",", "'extend'", ",", "self", ".", "_extend_items", ")" ]
Extend current MultiDict with more values. This method must be used instead of update.
[ "Extend", "current", "MultiDict", "with", "more", "values", "." ]
1ecfa942cf6ae79727711a109e1f46ed24fae07f
https://github.com/aio-libs/multidict/blob/1ecfa942cf6ae79727711a109e1f46ed24fae07f/multidict/_multidict_py.py#L218-L223
13,990
aio-libs/multidict
multidict/_multidict_py.py
MultiDict.setdefault
def setdefault(self, key, default=None): """Return value for key, set value to default if key is not present.""" identity = self._title(key) for i, k, v in self._impl._items: if i == identity: return v self.add(key, default) return default
python
def setdefault(self, key, default=None): """Return value for key, set value to default if key is not present.""" identity = self._title(key) for i, k, v in self._impl._items: if i == identity: return v self.add(key, default) return default
[ "def", "setdefault", "(", "self", ",", "key", ",", "default", "=", "None", ")", ":", "identity", "=", "self", ".", "_title", "(", "key", ")", "for", "i", ",", "k", ",", "v", "in", "self", ".", "_impl", ".", "_items", ":", "if", "i", "==", "identity", ":", "return", "v", "self", ".", "add", "(", "key", ",", "default", ")", "return", "default" ]
Return value for key, set value to default if key is not present.
[ "Return", "value", "for", "key", "set", "value", "to", "default", "if", "key", "is", "not", "present", "." ]
1ecfa942cf6ae79727711a109e1f46ed24fae07f
https://github.com/aio-libs/multidict/blob/1ecfa942cf6ae79727711a109e1f46ed24fae07f/multidict/_multidict_py.py#L281-L288
13,991
aio-libs/multidict
multidict/_multidict_py.py
MultiDict.popall
def popall(self, key, default=_marker): """Remove all occurrences of key and return the list of corresponding values. If key is not found, default is returned if given, otherwise KeyError is raised. """ found = False identity = self._title(key) ret = [] for i in range(len(self._impl._items)-1, -1, -1): item = self._impl._items[i] if item[0] == identity: ret.append(item[2]) del self._impl._items[i] self._impl.incr_version() found = True if not found: if default is _marker: raise KeyError(key) else: return default else: ret.reverse() return ret
python
def popall(self, key, default=_marker): """Remove all occurrences of key and return the list of corresponding values. If key is not found, default is returned if given, otherwise KeyError is raised. """ found = False identity = self._title(key) ret = [] for i in range(len(self._impl._items)-1, -1, -1): item = self._impl._items[i] if item[0] == identity: ret.append(item[2]) del self._impl._items[i] self._impl.incr_version() found = True if not found: if default is _marker: raise KeyError(key) else: return default else: ret.reverse() return ret
[ "def", "popall", "(", "self", ",", "key", ",", "default", "=", "_marker", ")", ":", "found", "=", "False", "identity", "=", "self", ".", "_title", "(", "key", ")", "ret", "=", "[", "]", "for", "i", "in", "range", "(", "len", "(", "self", ".", "_impl", ".", "_items", ")", "-", "1", ",", "-", "1", ",", "-", "1", ")", ":", "item", "=", "self", ".", "_impl", ".", "_items", "[", "i", "]", "if", "item", "[", "0", "]", "==", "identity", ":", "ret", ".", "append", "(", "item", "[", "2", "]", ")", "del", "self", ".", "_impl", ".", "_items", "[", "i", "]", "self", ".", "_impl", ".", "incr_version", "(", ")", "found", "=", "True", "if", "not", "found", ":", "if", "default", "is", "_marker", ":", "raise", "KeyError", "(", "key", ")", "else", ":", "return", "default", "else", ":", "ret", ".", "reverse", "(", ")", "return", "ret" ]
Remove all occurrences of key and return the list of corresponding values. If key is not found, default is returned if given, otherwise KeyError is raised.
[ "Remove", "all", "occurrences", "of", "key", "and", "return", "the", "list", "of", "corresponding", "values", "." ]
1ecfa942cf6ae79727711a109e1f46ed24fae07f
https://github.com/aio-libs/multidict/blob/1ecfa942cf6ae79727711a109e1f46ed24fae07f/multidict/_multidict_py.py#L311-L336
13,992
rootpy/rootpy
rootpy/stats/histfactory/histfactory.py
Data.total
def total(self, xbin1=1, xbin2=-2): """ Return the total yield and its associated statistical uncertainty. """ return self.hist.integral(xbin1=xbin1, xbin2=xbin2, error=True)
python
def total(self, xbin1=1, xbin2=-2): """ Return the total yield and its associated statistical uncertainty. """ return self.hist.integral(xbin1=xbin1, xbin2=xbin2, error=True)
[ "def", "total", "(", "self", ",", "xbin1", "=", "1", ",", "xbin2", "=", "-", "2", ")", ":", "return", "self", ".", "hist", ".", "integral", "(", "xbin1", "=", "xbin1", ",", "xbin2", "=", "xbin2", ",", "error", "=", "True", ")" ]
Return the total yield and its associated statistical uncertainty.
[ "Return", "the", "total", "yield", "and", "its", "associated", "statistical", "uncertainty", "." ]
3926935e1f2100d8ba68070c2ab44055d4800f73
https://github.com/rootpy/rootpy/blob/3926935e1f2100d8ba68070c2ab44055d4800f73/rootpy/stats/histfactory/histfactory.py#L133-L137
13,993
rootpy/rootpy
rootpy/stats/histfactory/histfactory.py
Sample.iter_sys
def iter_sys(self): """ Iterate over sys_name, overall_sys, histo_sys. overall_sys or histo_sys may be None for any given sys_name. """ names = self.sys_names() for name in names: osys = self.GetOverallSys(name) hsys = self.GetHistoSys(name) yield name, osys, hsys
python
def iter_sys(self): """ Iterate over sys_name, overall_sys, histo_sys. overall_sys or histo_sys may be None for any given sys_name. """ names = self.sys_names() for name in names: osys = self.GetOverallSys(name) hsys = self.GetHistoSys(name) yield name, osys, hsys
[ "def", "iter_sys", "(", "self", ")", ":", "names", "=", "self", ".", "sys_names", "(", ")", "for", "name", "in", "names", ":", "osys", "=", "self", ".", "GetOverallSys", "(", "name", ")", "hsys", "=", "self", ".", "GetHistoSys", "(", "name", ")", "yield", "name", ",", "osys", ",", "hsys" ]
Iterate over sys_name, overall_sys, histo_sys. overall_sys or histo_sys may be None for any given sys_name.
[ "Iterate", "over", "sys_name", "overall_sys", "histo_sys", ".", "overall_sys", "or", "histo_sys", "may", "be", "None", "for", "any", "given", "sys_name", "." ]
3926935e1f2100d8ba68070c2ab44055d4800f73
https://github.com/rootpy/rootpy/blob/3926935e1f2100d8ba68070c2ab44055d4800f73/rootpy/stats/histfactory/histfactory.py#L260-L269
13,994
rootpy/rootpy
rootpy/stats/histfactory/histfactory.py
Sample.sys_hist
def sys_hist(self, name=None): """ Return the effective low and high histogram for a given systematic. If this sample does not contain the named systematic then return the nominal histogram for both low and high variations. """ if name is None: low = self.hist.Clone(shallow=True) high = self.hist.Clone(shallow=True) return low, high osys = self.GetOverallSys(name) hsys = self.GetHistoSys(name) if osys is None: osys_high, osys_low = 1., 1. else: osys_high, osys_low = osys.high, osys.low if hsys is None: hsys_high = self.hist.Clone(shallow=True) hsys_low = self.hist.Clone(shallow=True) else: hsys_high = hsys.high.Clone(shallow=True) hsys_low = hsys.low.Clone(shallow=True) return hsys_low * osys_low, hsys_high * osys_high
python
def sys_hist(self, name=None): """ Return the effective low and high histogram for a given systematic. If this sample does not contain the named systematic then return the nominal histogram for both low and high variations. """ if name is None: low = self.hist.Clone(shallow=True) high = self.hist.Clone(shallow=True) return low, high osys = self.GetOverallSys(name) hsys = self.GetHistoSys(name) if osys is None: osys_high, osys_low = 1., 1. else: osys_high, osys_low = osys.high, osys.low if hsys is None: hsys_high = self.hist.Clone(shallow=True) hsys_low = self.hist.Clone(shallow=True) else: hsys_high = hsys.high.Clone(shallow=True) hsys_low = hsys.low.Clone(shallow=True) return hsys_low * osys_low, hsys_high * osys_high
[ "def", "sys_hist", "(", "self", ",", "name", "=", "None", ")", ":", "if", "name", "is", "None", ":", "low", "=", "self", ".", "hist", ".", "Clone", "(", "shallow", "=", "True", ")", "high", "=", "self", ".", "hist", ".", "Clone", "(", "shallow", "=", "True", ")", "return", "low", ",", "high", "osys", "=", "self", ".", "GetOverallSys", "(", "name", ")", "hsys", "=", "self", ".", "GetHistoSys", "(", "name", ")", "if", "osys", "is", "None", ":", "osys_high", ",", "osys_low", "=", "1.", ",", "1.", "else", ":", "osys_high", ",", "osys_low", "=", "osys", ".", "high", ",", "osys", ".", "low", "if", "hsys", "is", "None", ":", "hsys_high", "=", "self", ".", "hist", ".", "Clone", "(", "shallow", "=", "True", ")", "hsys_low", "=", "self", ".", "hist", ".", "Clone", "(", "shallow", "=", "True", ")", "else", ":", "hsys_high", "=", "hsys", ".", "high", ".", "Clone", "(", "shallow", "=", "True", ")", "hsys_low", "=", "hsys", ".", "low", ".", "Clone", "(", "shallow", "=", "True", ")", "return", "hsys_low", "*", "osys_low", ",", "hsys_high", "*", "osys_high" ]
Return the effective low and high histogram for a given systematic. If this sample does not contain the named systematic then return the nominal histogram for both low and high variations.
[ "Return", "the", "effective", "low", "and", "high", "histogram", "for", "a", "given", "systematic", ".", "If", "this", "sample", "does", "not", "contain", "the", "named", "systematic", "then", "return", "the", "nominal", "histogram", "for", "both", "low", "and", "high", "variations", "." ]
3926935e1f2100d8ba68070c2ab44055d4800f73
https://github.com/rootpy/rootpy/blob/3926935e1f2100d8ba68070c2ab44055d4800f73/rootpy/stats/histfactory/histfactory.py#L271-L293
13,995
rootpy/rootpy
rootpy/stats/histfactory/histfactory.py
Channel.sys_hist
def sys_hist(self, name=None, where=None): """ Return the effective total low and high histogram for a given systematic over samples in this channel. If a sample does not contain the named systematic then its nominal histogram is used for both low and high variations. Parameters ---------- name : string, optional (default=None) The systematic name otherwise nominal if None where : callable, optional (default=None) A callable taking one argument: the sample, and returns True if this sample should be included in the total. Returns ------- total_low, total_high : histograms The total low and high histograms for this systematic """ total_low, total_high = None, None for sample in self.samples: if where is not None and not where(sample): continue low, high = sample.sys_hist(name) if total_low is None: total_low = low.Clone(shallow=True) else: total_low += low if total_high is None: total_high = high.Clone(shallow=True) else: total_high += high return total_low, total_high
python
def sys_hist(self, name=None, where=None): """ Return the effective total low and high histogram for a given systematic over samples in this channel. If a sample does not contain the named systematic then its nominal histogram is used for both low and high variations. Parameters ---------- name : string, optional (default=None) The systematic name otherwise nominal if None where : callable, optional (default=None) A callable taking one argument: the sample, and returns True if this sample should be included in the total. Returns ------- total_low, total_high : histograms The total low and high histograms for this systematic """ total_low, total_high = None, None for sample in self.samples: if where is not None and not where(sample): continue low, high = sample.sys_hist(name) if total_low is None: total_low = low.Clone(shallow=True) else: total_low += low if total_high is None: total_high = high.Clone(shallow=True) else: total_high += high return total_low, total_high
[ "def", "sys_hist", "(", "self", ",", "name", "=", "None", ",", "where", "=", "None", ")", ":", "total_low", ",", "total_high", "=", "None", ",", "None", "for", "sample", "in", "self", ".", "samples", ":", "if", "where", "is", "not", "None", "and", "not", "where", "(", "sample", ")", ":", "continue", "low", ",", "high", "=", "sample", ".", "sys_hist", "(", "name", ")", "if", "total_low", "is", "None", ":", "total_low", "=", "low", ".", "Clone", "(", "shallow", "=", "True", ")", "else", ":", "total_low", "+=", "low", "if", "total_high", "is", "None", ":", "total_high", "=", "high", ".", "Clone", "(", "shallow", "=", "True", ")", "else", ":", "total_high", "+=", "high", "return", "total_low", ",", "total_high" ]
Return the effective total low and high histogram for a given systematic over samples in this channel. If a sample does not contain the named systematic then its nominal histogram is used for both low and high variations. Parameters ---------- name : string, optional (default=None) The systematic name otherwise nominal if None where : callable, optional (default=None) A callable taking one argument: the sample, and returns True if this sample should be included in the total. Returns ------- total_low, total_high : histograms The total low and high histograms for this systematic
[ "Return", "the", "effective", "total", "low", "and", "high", "histogram", "for", "a", "given", "systematic", "over", "samples", "in", "this", "channel", ".", "If", "a", "sample", "does", "not", "contain", "the", "named", "systematic", "then", "its", "nominal", "histogram", "is", "used", "for", "both", "low", "and", "high", "variations", "." ]
3926935e1f2100d8ba68070c2ab44055d4800f73
https://github.com/rootpy/rootpy/blob/3926935e1f2100d8ba68070c2ab44055d4800f73/rootpy/stats/histfactory/histfactory.py#L894-L931
13,996
rootpy/rootpy
rootpy/stats/histfactory/histfactory.py
Channel.apply_snapshot
def apply_snapshot(self, argset): """ Create a clone of this Channel where histograms are modified according to the values of the nuisance parameters in the snapshot. This is useful when creating post-fit distribution plots. Parameters ---------- argset : RooArtSet A RooArgSet of RooRealVar nuisance parameters Returns ------- channel : Channel The modified channel """ clone = self.Clone() args = [var for var in argset if not ( var.name.startswith('binWidth_obs_x_') or var.name.startswith('gamma_stat') or var.name.startswith('nom_'))] # handle NormFactors first nargs = [] for var in args: is_norm = False name = var.name.replace('alpha_', '') for sample in clone.samples: if sample.GetNormFactor(name) is not None: log.info("applying snapshot of {0} on sample {1}".format( name, sample.name)) is_norm = True # scale the entire sample sample *= var.value # add an OverallSys for the error osys = OverallSys(name, low=1. - var.error / var.value, high=1. + var.error / var.value) sample.AddOverallSys(osys) # remove the NormFactor sample.RemoveNormFactor(name) if not is_norm: nargs.append(var) # modify the nominal shape and systematics for sample in clone.samples: # check that hist is not NULL if sample.hist is None: raise RuntimeError( "sample {0} does not have a " "nominal histogram".format(sample.name)) nominal = sample.hist.Clone(shallow=True) for var in nargs: name = var.name.replace('alpha_', '') if not sample.has_sys(name): continue log.info("applying snapshot of {0} on sample {1}".format( name, sample.name)) low, high = sample.sys_hist(name) # modify nominal val = var.value if val > 0: sample.hist += (high - nominal) * val elif val < 0: sample.hist += (nominal - low) * val # TODO: # modify OverallSys # modify HistoSys return clone
python
def apply_snapshot(self, argset): """ Create a clone of this Channel where histograms are modified according to the values of the nuisance parameters in the snapshot. This is useful when creating post-fit distribution plots. Parameters ---------- argset : RooArtSet A RooArgSet of RooRealVar nuisance parameters Returns ------- channel : Channel The modified channel """ clone = self.Clone() args = [var for var in argset if not ( var.name.startswith('binWidth_obs_x_') or var.name.startswith('gamma_stat') or var.name.startswith('nom_'))] # handle NormFactors first nargs = [] for var in args: is_norm = False name = var.name.replace('alpha_', '') for sample in clone.samples: if sample.GetNormFactor(name) is not None: log.info("applying snapshot of {0} on sample {1}".format( name, sample.name)) is_norm = True # scale the entire sample sample *= var.value # add an OverallSys for the error osys = OverallSys(name, low=1. - var.error / var.value, high=1. + var.error / var.value) sample.AddOverallSys(osys) # remove the NormFactor sample.RemoveNormFactor(name) if not is_norm: nargs.append(var) # modify the nominal shape and systematics for sample in clone.samples: # check that hist is not NULL if sample.hist is None: raise RuntimeError( "sample {0} does not have a " "nominal histogram".format(sample.name)) nominal = sample.hist.Clone(shallow=True) for var in nargs: name = var.name.replace('alpha_', '') if not sample.has_sys(name): continue log.info("applying snapshot of {0} on sample {1}".format( name, sample.name)) low, high = sample.sys_hist(name) # modify nominal val = var.value if val > 0: sample.hist += (high - nominal) * val elif val < 0: sample.hist += (nominal - low) * val # TODO: # modify OverallSys # modify HistoSys return clone
[ "def", "apply_snapshot", "(", "self", ",", "argset", ")", ":", "clone", "=", "self", ".", "Clone", "(", ")", "args", "=", "[", "var", "for", "var", "in", "argset", "if", "not", "(", "var", ".", "name", ".", "startswith", "(", "'binWidth_obs_x_'", ")", "or", "var", ".", "name", ".", "startswith", "(", "'gamma_stat'", ")", "or", "var", ".", "name", ".", "startswith", "(", "'nom_'", ")", ")", "]", "# handle NormFactors first", "nargs", "=", "[", "]", "for", "var", "in", "args", ":", "is_norm", "=", "False", "name", "=", "var", ".", "name", ".", "replace", "(", "'alpha_'", ",", "''", ")", "for", "sample", "in", "clone", ".", "samples", ":", "if", "sample", ".", "GetNormFactor", "(", "name", ")", "is", "not", "None", ":", "log", ".", "info", "(", "\"applying snapshot of {0} on sample {1}\"", ".", "format", "(", "name", ",", "sample", ".", "name", ")", ")", "is_norm", "=", "True", "# scale the entire sample", "sample", "*=", "var", ".", "value", "# add an OverallSys for the error", "osys", "=", "OverallSys", "(", "name", ",", "low", "=", "1.", "-", "var", ".", "error", "/", "var", ".", "value", ",", "high", "=", "1.", "+", "var", ".", "error", "/", "var", ".", "value", ")", "sample", ".", "AddOverallSys", "(", "osys", ")", "# remove the NormFactor", "sample", ".", "RemoveNormFactor", "(", "name", ")", "if", "not", "is_norm", ":", "nargs", ".", "append", "(", "var", ")", "# modify the nominal shape and systematics", "for", "sample", "in", "clone", ".", "samples", ":", "# check that hist is not NULL", "if", "sample", ".", "hist", "is", "None", ":", "raise", "RuntimeError", "(", "\"sample {0} does not have a \"", "\"nominal histogram\"", ".", "format", "(", "sample", ".", "name", ")", ")", "nominal", "=", "sample", ".", "hist", ".", "Clone", "(", "shallow", "=", "True", ")", "for", "var", "in", "nargs", ":", "name", "=", "var", ".", "name", ".", "replace", "(", "'alpha_'", ",", "''", ")", "if", "not", "sample", ".", "has_sys", "(", "name", ")", ":", "continue", "log", ".", "info", "(", "\"applying snapshot of {0} on sample {1}\"", ".", "format", "(", "name", ",", "sample", ".", "name", ")", ")", "low", ",", "high", "=", "sample", ".", "sys_hist", "(", "name", ")", "# modify nominal", "val", "=", "var", ".", "value", "if", "val", ">", "0", ":", "sample", ".", "hist", "+=", "(", "high", "-", "nominal", ")", "*", "val", "elif", "val", "<", "0", ":", "sample", ".", "hist", "+=", "(", "nominal", "-", "low", ")", "*", "val", "# TODO:", "# modify OverallSys", "# modify HistoSys", "return", "clone" ]
Create a clone of this Channel where histograms are modified according to the values of the nuisance parameters in the snapshot. This is useful when creating post-fit distribution plots. Parameters ---------- argset : RooArtSet A RooArgSet of RooRealVar nuisance parameters Returns ------- channel : Channel The modified channel
[ "Create", "a", "clone", "of", "this", "Channel", "where", "histograms", "are", "modified", "according", "to", "the", "values", "of", "the", "nuisance", "parameters", "in", "the", "snapshot", ".", "This", "is", "useful", "when", "creating", "post", "-", "fit", "distribution", "plots", "." ]
3926935e1f2100d8ba68070c2ab44055d4800f73
https://github.com/rootpy/rootpy/blob/3926935e1f2100d8ba68070c2ab44055d4800f73/rootpy/stats/histfactory/histfactory.py#L1040-L1109
13,997
rootpy/rootpy
rootpy/extern/byteplay2/__init__.py
printcodelist
def printcodelist(codelist, to=sys.stdout): """Get a code list. Print it nicely.""" labeldict = {} pendinglabels = [] for i, (op, arg) in enumerate(codelist): if isinstance(op, Label): pendinglabels.append(op) elif op is SetLineno: pass else: while pendinglabels: labeldict[pendinglabels.pop()] = i lineno = None islabel = False for i, (op, arg) in enumerate(codelist): if op is SetLineno: lineno = arg print >> to continue if isinstance(op, Label): islabel = True continue if lineno is None: linenostr = '' else: linenostr = str(lineno) lineno = None if islabel: islabelstr = '>>' islabel = False else: islabelstr = '' if op in hasconst: argstr = repr(arg) elif op in hasjump: try: argstr = 'to ' + str(labeldict[arg]) except KeyError: argstr = repr(arg) elif op in hasarg: argstr = str(arg) else: argstr = '' print >> to, '%3s %2s %4d %-20s %s' % ( linenostr, islabelstr, i, op, argstr)
python
def printcodelist(codelist, to=sys.stdout): """Get a code list. Print it nicely.""" labeldict = {} pendinglabels = [] for i, (op, arg) in enumerate(codelist): if isinstance(op, Label): pendinglabels.append(op) elif op is SetLineno: pass else: while pendinglabels: labeldict[pendinglabels.pop()] = i lineno = None islabel = False for i, (op, arg) in enumerate(codelist): if op is SetLineno: lineno = arg print >> to continue if isinstance(op, Label): islabel = True continue if lineno is None: linenostr = '' else: linenostr = str(lineno) lineno = None if islabel: islabelstr = '>>' islabel = False else: islabelstr = '' if op in hasconst: argstr = repr(arg) elif op in hasjump: try: argstr = 'to ' + str(labeldict[arg]) except KeyError: argstr = repr(arg) elif op in hasarg: argstr = str(arg) else: argstr = '' print >> to, '%3s %2s %4d %-20s %s' % ( linenostr, islabelstr, i, op, argstr)
[ "def", "printcodelist", "(", "codelist", ",", "to", "=", "sys", ".", "stdout", ")", ":", "labeldict", "=", "{", "}", "pendinglabels", "=", "[", "]", "for", "i", ",", "(", "op", ",", "arg", ")", "in", "enumerate", "(", "codelist", ")", ":", "if", "isinstance", "(", "op", ",", "Label", ")", ":", "pendinglabels", ".", "append", "(", "op", ")", "elif", "op", "is", "SetLineno", ":", "pass", "else", ":", "while", "pendinglabels", ":", "labeldict", "[", "pendinglabels", ".", "pop", "(", ")", "]", "=", "i", "lineno", "=", "None", "islabel", "=", "False", "for", "i", ",", "(", "op", ",", "arg", ")", "in", "enumerate", "(", "codelist", ")", ":", "if", "op", "is", "SetLineno", ":", "lineno", "=", "arg", "print", ">>", "to", "continue", "if", "isinstance", "(", "op", ",", "Label", ")", ":", "islabel", "=", "True", "continue", "if", "lineno", "is", "None", ":", "linenostr", "=", "''", "else", ":", "linenostr", "=", "str", "(", "lineno", ")", "lineno", "=", "None", "if", "islabel", ":", "islabelstr", "=", "'>>'", "islabel", "=", "False", "else", ":", "islabelstr", "=", "''", "if", "op", "in", "hasconst", ":", "argstr", "=", "repr", "(", "arg", ")", "elif", "op", "in", "hasjump", ":", "try", ":", "argstr", "=", "'to '", "+", "str", "(", "labeldict", "[", "arg", "]", ")", "except", "KeyError", ":", "argstr", "=", "repr", "(", "arg", ")", "elif", "op", "in", "hasarg", ":", "argstr", "=", "str", "(", "arg", ")", "else", ":", "argstr", "=", "''", "print", ">>", "to", ",", "'%3s %2s %4d %-20s %s'", "%", "(", "linenostr", ",", "islabelstr", ",", "i", ",", "op", ",", "argstr", ")" ]
Get a code list. Print it nicely.
[ "Get", "a", "code", "list", ".", "Print", "it", "nicely", "." ]
3926935e1f2100d8ba68070c2ab44055d4800f73
https://github.com/rootpy/rootpy/blob/3926935e1f2100d8ba68070c2ab44055d4800f73/rootpy/extern/byteplay2/__init__.py#L785-L840
13,998
rootpy/rootpy
rootpy/extern/byteplay2/__init__.py
recompile
def recompile(filename): """Create a .pyc by disassembling the file and assembling it again, printing a message that the reassembled file was loaded.""" # Most of the code here based on the compile.py module. import os import imp import marshal import struct f = open(filename, 'U') try: timestamp = long(os.fstat(f.fileno()).st_mtime) except AttributeError: timestamp = long(os.stat(filename).st_mtime) codestring = f.read() f.close() if codestring and codestring[-1] != '\n': codestring = codestring + '\n' try: codeobject = compile(codestring, filename, 'exec') except SyntaxError: print >> sys.stderr, "Skipping %s - syntax error." % filename return cod = Code.from_code(codeobject) message = "reassembled %r imported.\n" % filename cod.code[:0] = [ # __import__('sys').stderr.write(message) (LOAD_GLOBAL, '__import__'), (LOAD_CONST, 'sys'), (CALL_FUNCTION, 1), (LOAD_ATTR, 'stderr'), (LOAD_ATTR, 'write'), (LOAD_CONST, message), (CALL_FUNCTION, 1), (POP_TOP, None), ] codeobject2 = cod.to_code() fc = open(filename+'c', 'wb') fc.write('\0\0\0\0') fc.write(struct.pack('<l', timestamp)) marshal.dump(codeobject2, fc) fc.flush() fc.seek(0, 0) fc.write(imp.get_magic()) fc.close()
python
def recompile(filename): """Create a .pyc by disassembling the file and assembling it again, printing a message that the reassembled file was loaded.""" # Most of the code here based on the compile.py module. import os import imp import marshal import struct f = open(filename, 'U') try: timestamp = long(os.fstat(f.fileno()).st_mtime) except AttributeError: timestamp = long(os.stat(filename).st_mtime) codestring = f.read() f.close() if codestring and codestring[-1] != '\n': codestring = codestring + '\n' try: codeobject = compile(codestring, filename, 'exec') except SyntaxError: print >> sys.stderr, "Skipping %s - syntax error." % filename return cod = Code.from_code(codeobject) message = "reassembled %r imported.\n" % filename cod.code[:0] = [ # __import__('sys').stderr.write(message) (LOAD_GLOBAL, '__import__'), (LOAD_CONST, 'sys'), (CALL_FUNCTION, 1), (LOAD_ATTR, 'stderr'), (LOAD_ATTR, 'write'), (LOAD_CONST, message), (CALL_FUNCTION, 1), (POP_TOP, None), ] codeobject2 = cod.to_code() fc = open(filename+'c', 'wb') fc.write('\0\0\0\0') fc.write(struct.pack('<l', timestamp)) marshal.dump(codeobject2, fc) fc.flush() fc.seek(0, 0) fc.write(imp.get_magic()) fc.close()
[ "def", "recompile", "(", "filename", ")", ":", "# Most of the code here based on the compile.py module.", "import", "os", "import", "imp", "import", "marshal", "import", "struct", "f", "=", "open", "(", "filename", ",", "'U'", ")", "try", ":", "timestamp", "=", "long", "(", "os", ".", "fstat", "(", "f", ".", "fileno", "(", ")", ")", ".", "st_mtime", ")", "except", "AttributeError", ":", "timestamp", "=", "long", "(", "os", ".", "stat", "(", "filename", ")", ".", "st_mtime", ")", "codestring", "=", "f", ".", "read", "(", ")", "f", ".", "close", "(", ")", "if", "codestring", "and", "codestring", "[", "-", "1", "]", "!=", "'\\n'", ":", "codestring", "=", "codestring", "+", "'\\n'", "try", ":", "codeobject", "=", "compile", "(", "codestring", ",", "filename", ",", "'exec'", ")", "except", "SyntaxError", ":", "print", ">>", "sys", ".", "stderr", ",", "\"Skipping %s - syntax error.\"", "%", "filename", "return", "cod", "=", "Code", ".", "from_code", "(", "codeobject", ")", "message", "=", "\"reassembled %r imported.\\n\"", "%", "filename", "cod", ".", "code", "[", ":", "0", "]", "=", "[", "# __import__('sys').stderr.write(message)", "(", "LOAD_GLOBAL", ",", "'__import__'", ")", ",", "(", "LOAD_CONST", ",", "'sys'", ")", ",", "(", "CALL_FUNCTION", ",", "1", ")", ",", "(", "LOAD_ATTR", ",", "'stderr'", ")", ",", "(", "LOAD_ATTR", ",", "'write'", ")", ",", "(", "LOAD_CONST", ",", "message", ")", ",", "(", "CALL_FUNCTION", ",", "1", ")", ",", "(", "POP_TOP", ",", "None", ")", ",", "]", "codeobject2", "=", "cod", ".", "to_code", "(", ")", "fc", "=", "open", "(", "filename", "+", "'c'", ",", "'wb'", ")", "fc", ".", "write", "(", "'\\0\\0\\0\\0'", ")", "fc", ".", "write", "(", "struct", ".", "pack", "(", "'<l'", ",", "timestamp", ")", ")", "marshal", ".", "dump", "(", "codeobject2", ",", "fc", ")", "fc", ".", "flush", "(", ")", "fc", ".", "seek", "(", "0", ",", "0", ")", "fc", ".", "write", "(", "imp", ".", "get_magic", "(", ")", ")", "fc", ".", "close", "(", ")" ]
Create a .pyc by disassembling the file and assembling it again, printing a message that the reassembled file was loaded.
[ "Create", "a", ".", "pyc", "by", "disassembling", "the", "file", "and", "assembling", "it", "again", "printing", "a", "message", "that", "the", "reassembled", "file", "was", "loaded", "." ]
3926935e1f2100d8ba68070c2ab44055d4800f73
https://github.com/rootpy/rootpy/blob/3926935e1f2100d8ba68070c2ab44055d4800f73/rootpy/extern/byteplay2/__init__.py#L842-L885
13,999
rootpy/rootpy
rootpy/extern/byteplay2/__init__.py
recompile_all
def recompile_all(path): """recursively recompile all .py files in the directory""" import os if os.path.isdir(path): for root, dirs, files in os.walk(path): for name in files: if name.endswith('.py'): filename = os.path.abspath(os.path.join(root, name)) print >> sys.stderr, filename recompile(filename) else: filename = os.path.abspath(path) recompile(filename)
python
def recompile_all(path): """recursively recompile all .py files in the directory""" import os if os.path.isdir(path): for root, dirs, files in os.walk(path): for name in files: if name.endswith('.py'): filename = os.path.abspath(os.path.join(root, name)) print >> sys.stderr, filename recompile(filename) else: filename = os.path.abspath(path) recompile(filename)
[ "def", "recompile_all", "(", "path", ")", ":", "import", "os", "if", "os", ".", "path", ".", "isdir", "(", "path", ")", ":", "for", "root", ",", "dirs", ",", "files", "in", "os", ".", "walk", "(", "path", ")", ":", "for", "name", "in", "files", ":", "if", "name", ".", "endswith", "(", "'.py'", ")", ":", "filename", "=", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "join", "(", "root", ",", "name", ")", ")", "print", ">>", "sys", ".", "stderr", ",", "filename", "recompile", "(", "filename", ")", "else", ":", "filename", "=", "os", ".", "path", ".", "abspath", "(", "path", ")", "recompile", "(", "filename", ")" ]
recursively recompile all .py files in the directory
[ "recursively", "recompile", "all", ".", "py", "files", "in", "the", "directory" ]
3926935e1f2100d8ba68070c2ab44055d4800f73
https://github.com/rootpy/rootpy/blob/3926935e1f2100d8ba68070c2ab44055d4800f73/rootpy/extern/byteplay2/__init__.py#L887-L899