id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
13,800
pysal/mapclassify
mapclassify/classifiers.py
Max_P_Classifier._ss
def _ss(self, class_def): """calculates sum of squares for a class""" yc = self.y[class_def] css = yc - yc.mean() css *= css return sum(css)
python
def _ss(self, class_def): """calculates sum of squares for a class""" yc = self.y[class_def] css = yc - yc.mean() css *= css return sum(css)
[ "def", "_ss", "(", "self", ",", "class_def", ")", ":", "yc", "=", "self", ".", "y", "[", "class_def", "]", "css", "=", "yc", "-", "yc", ".", "mean", "(", ")", "css", "*=", "css", "return", "sum", "(", "css", ")" ]
calculates sum of squares for a class
[ "calculates", "sum", "of", "squares", "for", "a", "class" ]
5b22ec33f5802becf40557614d90cd38efa1676e
https://github.com/pysal/mapclassify/blob/5b22ec33f5802becf40557614d90cd38efa1676e/mapclassify/classifiers.py#L2178-L2183
13,801
pysal/mapclassify
mapclassify/classifiers.py
Max_P_Classifier._swap
def _swap(self, class1, class2, a): """evaluate cost of moving a from class1 to class2""" ss1 = self._ss(class1) ss2 = self._ss(class2) tss1 = ss1 + ss2 class1c = copy.copy(class1) class2c = copy.copy(class2) class1c.remove(a) class2c.append(a) ss1 = self._ss(class1c) ss2 = self._ss(class2c) tss2 = ss1 + ss2 if tss1 < tss2: return False else: return True
python
def _swap(self, class1, class2, a): """evaluate cost of moving a from class1 to class2""" ss1 = self._ss(class1) ss2 = self._ss(class2) tss1 = ss1 + ss2 class1c = copy.copy(class1) class2c = copy.copy(class2) class1c.remove(a) class2c.append(a) ss1 = self._ss(class1c) ss2 = self._ss(class2c) tss2 = ss1 + ss2 if tss1 < tss2: return False else: return True
[ "def", "_swap", "(", "self", ",", "class1", ",", "class2", ",", "a", ")", ":", "ss1", "=", "self", ".", "_ss", "(", "class1", ")", "ss2", "=", "self", ".", "_ss", "(", "class2", ")", "tss1", "=", "ss1", "+", "ss2", "class1c", "=", "copy", ".", "copy", "(", "class1", ")", "class2c", "=", "copy", ".", "copy", "(", "class2", ")", "class1c", ".", "remove", "(", "a", ")", "class2c", ".", "append", "(", "a", ")", "ss1", "=", "self", ".", "_ss", "(", "class1c", ")", "ss2", "=", "self", ".", "_ss", "(", "class2c", ")", "tss2", "=", "ss1", "+", "ss2", "if", "tss1", "<", "tss2", ":", "return", "False", "else", ":", "return", "True" ]
evaluate cost of moving a from class1 to class2
[ "evaluate", "cost", "of", "moving", "a", "from", "class1", "to", "class2" ]
5b22ec33f5802becf40557614d90cd38efa1676e
https://github.com/pysal/mapclassify/blob/5b22ec33f5802becf40557614d90cd38efa1676e/mapclassify/classifiers.py#L2185-L2200
13,802
abarker/pdfCropMargins
src/pdfCropMargins/calculate_bounding_boxes.py
get_bounding_box_list_render_image
def get_bounding_box_list_render_image(pdf_file_name, input_doc): """Calculate the bounding box list by directly rendering each page of the PDF as an image file. The MediaBox and CropBox values in input_doc should have already been set to the chosen page size before the rendering.""" program_to_use = "pdftoppm" # default to pdftoppm if args.gsRender: program_to_use = "Ghostscript" # Threshold value set in range 0-255, where 0 is black, with 191 default. if not args.threshold: args.threshold = 191 threshold = args.threshold if not args.numSmooths: args.numSmooths = 0 if not args.numBlurs: args.numBlurs = 0 temp_dir = ex.program_temp_directory # use the program default; don't delete dir! temp_image_file_root = os.path.join(temp_dir, ex.temp_file_prefix + "PageImage") if args.verbose: print("\nRendering the PDF to images using the " + program_to_use + " program," "\nthis may take a while...") # Do the rendering of all the files. render_pdf_file_to_image_files(pdf_file_name, temp_image_file_root, program_to_use) # Currently assuming that sorting the output will always put them in correct order. outfiles = sorted(glob.glob(temp_image_file_root + "*")) if args.verbose: print("\nAnalyzing the page images with PIL to find bounding boxes," "\nusing the threshold " + str(args.threshold) + "." " Finding the bounding box for page:\n") bounding_box_list = [] for page_num, tmp_image_file_name in enumerate(outfiles): curr_page = input_doc.getPage(page_num) # Open the image in PIL. Retry a few times on fail in case race conditions. max_num_tries = 3 time_between_tries = 1 curr_num_tries = 0 while True: try: # PIL for some reason fails in Python 3.4 if you open the image # from a file you opened yourself. Works in Python 2 and earlier # Python 3. So original code is commented out, and path passed. # # tmpImageFile = open(tmpImageFileName) # im = Image.open(tmpImageFile) im = Image.open(tmp_image_file_name) break except (IOError, UnicodeDecodeError) as e: curr_num_tries += 1 if args.verbose: print("Warning: Exception opening image", tmp_image_file_name, "on try", curr_num_tries, "\nError is", e, file=sys.stderr) # tmpImageFile.close() # see above comment if curr_num_tries > max_num_tries: raise # re-raise exception time.sleep(time_between_tries) # Apply any blur or smooth operations specified by the user. for i in range(args.numBlurs): im = im.filter(ImageFilter.BLUR) for i in range(args.numSmooths): im = im.filter(ImageFilter.SMOOTH_MORE) # Convert the image to black and white, according to a threshold. # Make a negative image, because that works with the PIL getbbox routine. if args.verbose: print(page_num+1, end=" ") # page num numbering from 1 # Note that the point method calls the function on each pixel, replacing it. #im = im.point(lambda p: p > threshold and 255) # create a positive image #im = im.point(lambda p: p < threshold and 255) # create a negative image # Below code is easier to understand than tricky use of "and" in evaluation. im = im.point(lambda p: 255 if p < threshold else 0) # create a negative image if args.showImages: im.show() # usually for debugging or param-setting # Calculate the bounding box of the negative image, and append to list. bounding_box = calculate_bounding_box_from_image(im, curr_page) bounding_box_list.append(bounding_box) # Clean up the image files after they are no longer needed. # tmpImageFile.close() # see above comment os.remove(tmp_image_file_name) if args.verbose: print() return bounding_box_list
python
def get_bounding_box_list_render_image(pdf_file_name, input_doc): """Calculate the bounding box list by directly rendering each page of the PDF as an image file. The MediaBox and CropBox values in input_doc should have already been set to the chosen page size before the rendering.""" program_to_use = "pdftoppm" # default to pdftoppm if args.gsRender: program_to_use = "Ghostscript" # Threshold value set in range 0-255, where 0 is black, with 191 default. if not args.threshold: args.threshold = 191 threshold = args.threshold if not args.numSmooths: args.numSmooths = 0 if not args.numBlurs: args.numBlurs = 0 temp_dir = ex.program_temp_directory # use the program default; don't delete dir! temp_image_file_root = os.path.join(temp_dir, ex.temp_file_prefix + "PageImage") if args.verbose: print("\nRendering the PDF to images using the " + program_to_use + " program," "\nthis may take a while...") # Do the rendering of all the files. render_pdf_file_to_image_files(pdf_file_name, temp_image_file_root, program_to_use) # Currently assuming that sorting the output will always put them in correct order. outfiles = sorted(glob.glob(temp_image_file_root + "*")) if args.verbose: print("\nAnalyzing the page images with PIL to find bounding boxes," "\nusing the threshold " + str(args.threshold) + "." " Finding the bounding box for page:\n") bounding_box_list = [] for page_num, tmp_image_file_name in enumerate(outfiles): curr_page = input_doc.getPage(page_num) # Open the image in PIL. Retry a few times on fail in case race conditions. max_num_tries = 3 time_between_tries = 1 curr_num_tries = 0 while True: try: # PIL for some reason fails in Python 3.4 if you open the image # from a file you opened yourself. Works in Python 2 and earlier # Python 3. So original code is commented out, and path passed. # # tmpImageFile = open(tmpImageFileName) # im = Image.open(tmpImageFile) im = Image.open(tmp_image_file_name) break except (IOError, UnicodeDecodeError) as e: curr_num_tries += 1 if args.verbose: print("Warning: Exception opening image", tmp_image_file_name, "on try", curr_num_tries, "\nError is", e, file=sys.stderr) # tmpImageFile.close() # see above comment if curr_num_tries > max_num_tries: raise # re-raise exception time.sleep(time_between_tries) # Apply any blur or smooth operations specified by the user. for i in range(args.numBlurs): im = im.filter(ImageFilter.BLUR) for i in range(args.numSmooths): im = im.filter(ImageFilter.SMOOTH_MORE) # Convert the image to black and white, according to a threshold. # Make a negative image, because that works with the PIL getbbox routine. if args.verbose: print(page_num+1, end=" ") # page num numbering from 1 # Note that the point method calls the function on each pixel, replacing it. #im = im.point(lambda p: p > threshold and 255) # create a positive image #im = im.point(lambda p: p < threshold and 255) # create a negative image # Below code is easier to understand than tricky use of "and" in evaluation. im = im.point(lambda p: 255 if p < threshold else 0) # create a negative image if args.showImages: im.show() # usually for debugging or param-setting # Calculate the bounding box of the negative image, and append to list. bounding_box = calculate_bounding_box_from_image(im, curr_page) bounding_box_list.append(bounding_box) # Clean up the image files after they are no longer needed. # tmpImageFile.close() # see above comment os.remove(tmp_image_file_name) if args.verbose: print() return bounding_box_list
[ "def", "get_bounding_box_list_render_image", "(", "pdf_file_name", ",", "input_doc", ")", ":", "program_to_use", "=", "\"pdftoppm\"", "# default to pdftoppm", "if", "args", ".", "gsRender", ":", "program_to_use", "=", "\"Ghostscript\"", "# Threshold value set in range 0-255, where 0 is black, with 191 default.", "if", "not", "args", ".", "threshold", ":", "args", ".", "threshold", "=", "191", "threshold", "=", "args", ".", "threshold", "if", "not", "args", ".", "numSmooths", ":", "args", ".", "numSmooths", "=", "0", "if", "not", "args", ".", "numBlurs", ":", "args", ".", "numBlurs", "=", "0", "temp_dir", "=", "ex", ".", "program_temp_directory", "# use the program default; don't delete dir!", "temp_image_file_root", "=", "os", ".", "path", ".", "join", "(", "temp_dir", ",", "ex", ".", "temp_file_prefix", "+", "\"PageImage\"", ")", "if", "args", ".", "verbose", ":", "print", "(", "\"\\nRendering the PDF to images using the \"", "+", "program_to_use", "+", "\" program,\"", "\"\\nthis may take a while...\"", ")", "# Do the rendering of all the files.", "render_pdf_file_to_image_files", "(", "pdf_file_name", ",", "temp_image_file_root", ",", "program_to_use", ")", "# Currently assuming that sorting the output will always put them in correct order.", "outfiles", "=", "sorted", "(", "glob", ".", "glob", "(", "temp_image_file_root", "+", "\"*\"", ")", ")", "if", "args", ".", "verbose", ":", "print", "(", "\"\\nAnalyzing the page images with PIL to find bounding boxes,\"", "\"\\nusing the threshold \"", "+", "str", "(", "args", ".", "threshold", ")", "+", "\".\"", "\" Finding the bounding box for page:\\n\"", ")", "bounding_box_list", "=", "[", "]", "for", "page_num", ",", "tmp_image_file_name", "in", "enumerate", "(", "outfiles", ")", ":", "curr_page", "=", "input_doc", ".", "getPage", "(", "page_num", ")", "# Open the image in PIL. Retry a few times on fail in case race conditions.", "max_num_tries", "=", "3", "time_between_tries", "=", "1", "curr_num_tries", "=", "0", "while", "True", ":", "try", ":", "# PIL for some reason fails in Python 3.4 if you open the image", "# from a file you opened yourself. Works in Python 2 and earlier", "# Python 3. So original code is commented out, and path passed.", "#", "# tmpImageFile = open(tmpImageFileName)", "# im = Image.open(tmpImageFile)", "im", "=", "Image", ".", "open", "(", "tmp_image_file_name", ")", "break", "except", "(", "IOError", ",", "UnicodeDecodeError", ")", "as", "e", ":", "curr_num_tries", "+=", "1", "if", "args", ".", "verbose", ":", "print", "(", "\"Warning: Exception opening image\"", ",", "tmp_image_file_name", ",", "\"on try\"", ",", "curr_num_tries", ",", "\"\\nError is\"", ",", "e", ",", "file", "=", "sys", ".", "stderr", ")", "# tmpImageFile.close() # see above comment", "if", "curr_num_tries", ">", "max_num_tries", ":", "raise", "# re-raise exception", "time", ".", "sleep", "(", "time_between_tries", ")", "# Apply any blur or smooth operations specified by the user.", "for", "i", "in", "range", "(", "args", ".", "numBlurs", ")", ":", "im", "=", "im", ".", "filter", "(", "ImageFilter", ".", "BLUR", ")", "for", "i", "in", "range", "(", "args", ".", "numSmooths", ")", ":", "im", "=", "im", ".", "filter", "(", "ImageFilter", ".", "SMOOTH_MORE", ")", "# Convert the image to black and white, according to a threshold.", "# Make a negative image, because that works with the PIL getbbox routine.", "if", "args", ".", "verbose", ":", "print", "(", "page_num", "+", "1", ",", "end", "=", "\" \"", ")", "# page num numbering from 1", "# Note that the point method calls the function on each pixel, replacing it.", "#im = im.point(lambda p: p > threshold and 255) # create a positive image", "#im = im.point(lambda p: p < threshold and 255) # create a negative image", "# Below code is easier to understand than tricky use of \"and\" in evaluation.", "im", "=", "im", ".", "point", "(", "lambda", "p", ":", "255", "if", "p", "<", "threshold", "else", "0", ")", "# create a negative image", "if", "args", ".", "showImages", ":", "im", ".", "show", "(", ")", "# usually for debugging or param-setting", "# Calculate the bounding box of the negative image, and append to list.", "bounding_box", "=", "calculate_bounding_box_from_image", "(", "im", ",", "curr_page", ")", "bounding_box_list", ".", "append", "(", "bounding_box", ")", "# Clean up the image files after they are no longer needed.", "# tmpImageFile.close() # see above comment", "os", ".", "remove", "(", "tmp_image_file_name", ")", "if", "args", ".", "verbose", ":", "print", "(", ")", "return", "bounding_box_list" ]
Calculate the bounding box list by directly rendering each page of the PDF as an image file. The MediaBox and CropBox values in input_doc should have already been set to the chosen page size before the rendering.
[ "Calculate", "the", "bounding", "box", "list", "by", "directly", "rendering", "each", "page", "of", "the", "PDF", "as", "an", "image", "file", ".", "The", "MediaBox", "and", "CropBox", "values", "in", "input_doc", "should", "have", "already", "been", "set", "to", "the", "chosen", "page", "size", "before", "the", "rendering", "." ]
55aca874613750ebf4ae69fd8851bdbb7696d6ac
https://github.com/abarker/pdfCropMargins/blob/55aca874613750ebf4ae69fd8851bdbb7696d6ac/src/pdfCropMargins/calculate_bounding_boxes.py#L116-L206
13,803
abarker/pdfCropMargins
src/pdfCropMargins/calculate_bounding_boxes.py
render_pdf_file_to_image_files
def render_pdf_file_to_image_files(pdf_file_name, output_filename_root, program_to_use): """Render all the pages of the PDF file at pdf_file_name to image files with path and filename prefix given by output_filename_root. Any directories must have already been created, and the calling program is responsible for deleting any directories or image files. The program program_to_use, currently either the string "pdftoppm" or the string "Ghostscript", will be called externally. The image type that the PDF is converted into must to be directly openable by PIL.""" res_x = str(args.resX) res_y = str(args.resY) if program_to_use == "Ghostscript": if ex.system_os == "Windows": # Windows PIL is more likely to know BMP ex.render_pdf_file_to_image_files__ghostscript_bmp( pdf_file_name, output_filename_root, res_x, res_y) else: # Linux and Cygwin should be fine with PNG ex.render_pdf_file_to_image_files__ghostscript_png( pdf_file_name, output_filename_root, res_x, res_y) elif program_to_use == "pdftoppm": use_gray = False # this is currently hardcoded, but can be changed to use pgm if use_gray: ex.render_pdf_file_to_image_files_pdftoppm_pgm( pdf_file_name, output_filename_root, res_x, res_y) else: ex.render_pdf_file_to_image_files_pdftoppm_ppm( pdf_file_name, output_filename_root, res_x, res_y) else: print("Error in renderPdfFileToImageFile: Unrecognized external program.", file=sys.stderr) ex.cleanup_and_exit(1)
python
def render_pdf_file_to_image_files(pdf_file_name, output_filename_root, program_to_use): """Render all the pages of the PDF file at pdf_file_name to image files with path and filename prefix given by output_filename_root. Any directories must have already been created, and the calling program is responsible for deleting any directories or image files. The program program_to_use, currently either the string "pdftoppm" or the string "Ghostscript", will be called externally. The image type that the PDF is converted into must to be directly openable by PIL.""" res_x = str(args.resX) res_y = str(args.resY) if program_to_use == "Ghostscript": if ex.system_os == "Windows": # Windows PIL is more likely to know BMP ex.render_pdf_file_to_image_files__ghostscript_bmp( pdf_file_name, output_filename_root, res_x, res_y) else: # Linux and Cygwin should be fine with PNG ex.render_pdf_file_to_image_files__ghostscript_png( pdf_file_name, output_filename_root, res_x, res_y) elif program_to_use == "pdftoppm": use_gray = False # this is currently hardcoded, but can be changed to use pgm if use_gray: ex.render_pdf_file_to_image_files_pdftoppm_pgm( pdf_file_name, output_filename_root, res_x, res_y) else: ex.render_pdf_file_to_image_files_pdftoppm_ppm( pdf_file_name, output_filename_root, res_x, res_y) else: print("Error in renderPdfFileToImageFile: Unrecognized external program.", file=sys.stderr) ex.cleanup_and_exit(1)
[ "def", "render_pdf_file_to_image_files", "(", "pdf_file_name", ",", "output_filename_root", ",", "program_to_use", ")", ":", "res_x", "=", "str", "(", "args", ".", "resX", ")", "res_y", "=", "str", "(", "args", ".", "resY", ")", "if", "program_to_use", "==", "\"Ghostscript\"", ":", "if", "ex", ".", "system_os", "==", "\"Windows\"", ":", "# Windows PIL is more likely to know BMP", "ex", ".", "render_pdf_file_to_image_files__ghostscript_bmp", "(", "pdf_file_name", ",", "output_filename_root", ",", "res_x", ",", "res_y", ")", "else", ":", "# Linux and Cygwin should be fine with PNG", "ex", ".", "render_pdf_file_to_image_files__ghostscript_png", "(", "pdf_file_name", ",", "output_filename_root", ",", "res_x", ",", "res_y", ")", "elif", "program_to_use", "==", "\"pdftoppm\"", ":", "use_gray", "=", "False", "# this is currently hardcoded, but can be changed to use pgm", "if", "use_gray", ":", "ex", ".", "render_pdf_file_to_image_files_pdftoppm_pgm", "(", "pdf_file_name", ",", "output_filename_root", ",", "res_x", ",", "res_y", ")", "else", ":", "ex", ".", "render_pdf_file_to_image_files_pdftoppm_ppm", "(", "pdf_file_name", ",", "output_filename_root", ",", "res_x", ",", "res_y", ")", "else", ":", "print", "(", "\"Error in renderPdfFileToImageFile: Unrecognized external program.\"", ",", "file", "=", "sys", ".", "stderr", ")", "ex", ".", "cleanup_and_exit", "(", "1", ")" ]
Render all the pages of the PDF file at pdf_file_name to image files with path and filename prefix given by output_filename_root. Any directories must have already been created, and the calling program is responsible for deleting any directories or image files. The program program_to_use, currently either the string "pdftoppm" or the string "Ghostscript", will be called externally. The image type that the PDF is converted into must to be directly openable by PIL.
[ "Render", "all", "the", "pages", "of", "the", "PDF", "file", "at", "pdf_file_name", "to", "image", "files", "with", "path", "and", "filename", "prefix", "given", "by", "output_filename_root", ".", "Any", "directories", "must", "have", "already", "been", "created", "and", "the", "calling", "program", "is", "responsible", "for", "deleting", "any", "directories", "or", "image", "files", ".", "The", "program", "program_to_use", "currently", "either", "the", "string", "pdftoppm", "or", "the", "string", "Ghostscript", "will", "be", "called", "externally", ".", "The", "image", "type", "that", "the", "PDF", "is", "converted", "into", "must", "to", "be", "directly", "openable", "by", "PIL", "." ]
55aca874613750ebf4ae69fd8851bdbb7696d6ac
https://github.com/abarker/pdfCropMargins/blob/55aca874613750ebf4ae69fd8851bdbb7696d6ac/src/pdfCropMargins/calculate_bounding_boxes.py#L208-L237
13,804
abarker/pdfCropMargins
src/pdfCropMargins/calculate_bounding_boxes.py
calculate_bounding_box_from_image
def calculate_bounding_box_from_image(im, curr_page): """This function uses a PIL routine to get the bounding box of the rendered image.""" xMax, y_max = im.size bounding_box = im.getbbox() # note this uses ltrb convention if not bounding_box: #print("\nWarning: could not calculate a bounding box for this page." # "\nAn empty page is assumed.", file=sys.stderr) bounding_box = (xMax/2, y_max/2, xMax/2, y_max/2) bounding_box = list(bounding_box) # make temporarily mutable # Compensate for reversal of the image y convention versus PDF. bounding_box[1] = y_max - bounding_box[1] bounding_box[3] = y_max - bounding_box[3] full_page_box = curr_page.mediaBox # should have been set already to chosen box # Convert pixel units to PDF's bp units. convert_x = float(full_page_box.getUpperRight_x() - full_page_box.getLowerLeft_x()) / xMax convert_y = float(full_page_box.getUpperRight_y() - full_page_box.getLowerLeft_y()) / y_max # Get final box; note conversion to lower-left point, upper-right point format. final_box = [ bounding_box[0] * convert_x, bounding_box[3] * convert_y, bounding_box[2] * convert_x, bounding_box[1] * convert_y] return final_box
python
def calculate_bounding_box_from_image(im, curr_page): """This function uses a PIL routine to get the bounding box of the rendered image.""" xMax, y_max = im.size bounding_box = im.getbbox() # note this uses ltrb convention if not bounding_box: #print("\nWarning: could not calculate a bounding box for this page." # "\nAn empty page is assumed.", file=sys.stderr) bounding_box = (xMax/2, y_max/2, xMax/2, y_max/2) bounding_box = list(bounding_box) # make temporarily mutable # Compensate for reversal of the image y convention versus PDF. bounding_box[1] = y_max - bounding_box[1] bounding_box[3] = y_max - bounding_box[3] full_page_box = curr_page.mediaBox # should have been set already to chosen box # Convert pixel units to PDF's bp units. convert_x = float(full_page_box.getUpperRight_x() - full_page_box.getLowerLeft_x()) / xMax convert_y = float(full_page_box.getUpperRight_y() - full_page_box.getLowerLeft_y()) / y_max # Get final box; note conversion to lower-left point, upper-right point format. final_box = [ bounding_box[0] * convert_x, bounding_box[3] * convert_y, bounding_box[2] * convert_x, bounding_box[1] * convert_y] return final_box
[ "def", "calculate_bounding_box_from_image", "(", "im", ",", "curr_page", ")", ":", "xMax", ",", "y_max", "=", "im", ".", "size", "bounding_box", "=", "im", ".", "getbbox", "(", ")", "# note this uses ltrb convention", "if", "not", "bounding_box", ":", "#print(\"\\nWarning: could not calculate a bounding box for this page.\"", "# \"\\nAn empty page is assumed.\", file=sys.stderr)", "bounding_box", "=", "(", "xMax", "/", "2", ",", "y_max", "/", "2", ",", "xMax", "/", "2", ",", "y_max", "/", "2", ")", "bounding_box", "=", "list", "(", "bounding_box", ")", "# make temporarily mutable", "# Compensate for reversal of the image y convention versus PDF.", "bounding_box", "[", "1", "]", "=", "y_max", "-", "bounding_box", "[", "1", "]", "bounding_box", "[", "3", "]", "=", "y_max", "-", "bounding_box", "[", "3", "]", "full_page_box", "=", "curr_page", ".", "mediaBox", "# should have been set already to chosen box", "# Convert pixel units to PDF's bp units.", "convert_x", "=", "float", "(", "full_page_box", ".", "getUpperRight_x", "(", ")", "-", "full_page_box", ".", "getLowerLeft_x", "(", ")", ")", "/", "xMax", "convert_y", "=", "float", "(", "full_page_box", ".", "getUpperRight_y", "(", ")", "-", "full_page_box", ".", "getLowerLeft_y", "(", ")", ")", "/", "y_max", "# Get final box; note conversion to lower-left point, upper-right point format.", "final_box", "=", "[", "bounding_box", "[", "0", "]", "*", "convert_x", ",", "bounding_box", "[", "3", "]", "*", "convert_y", ",", "bounding_box", "[", "2", "]", "*", "convert_x", ",", "bounding_box", "[", "1", "]", "*", "convert_y", "]", "return", "final_box" ]
This function uses a PIL routine to get the bounding box of the rendered image.
[ "This", "function", "uses", "a", "PIL", "routine", "to", "get", "the", "bounding", "box", "of", "the", "rendered", "image", "." ]
55aca874613750ebf4ae69fd8851bdbb7696d6ac
https://github.com/abarker/pdfCropMargins/blob/55aca874613750ebf4ae69fd8851bdbb7696d6ac/src/pdfCropMargins/calculate_bounding_boxes.py#L239-L270
13,805
abarker/pdfCropMargins
src/pdfCropMargins/external_program_calls.py
samefile
def samefile(path1, path2): """Test if paths refer to the same file or directory.""" if system_os == "Linux" or system_os == "Cygwin": return os.path.samefile(path1, path2) return (get_canonical_absolute_expanded_path(path1) == get_canonical_absolute_expanded_path(path2))
python
def samefile(path1, path2): """Test if paths refer to the same file or directory.""" if system_os == "Linux" or system_os == "Cygwin": return os.path.samefile(path1, path2) return (get_canonical_absolute_expanded_path(path1) == get_canonical_absolute_expanded_path(path2))
[ "def", "samefile", "(", "path1", ",", "path2", ")", ":", "if", "system_os", "==", "\"Linux\"", "or", "system_os", "==", "\"Cygwin\"", ":", "return", "os", ".", "path", ".", "samefile", "(", "path1", ",", "path2", ")", "return", "(", "get_canonical_absolute_expanded_path", "(", "path1", ")", "==", "get_canonical_absolute_expanded_path", "(", "path2", ")", ")" ]
Test if paths refer to the same file or directory.
[ "Test", "if", "paths", "refer", "to", "the", "same", "file", "or", "directory", "." ]
55aca874613750ebf4ae69fd8851bdbb7696d6ac
https://github.com/abarker/pdfCropMargins/blob/55aca874613750ebf4ae69fd8851bdbb7696d6ac/src/pdfCropMargins/external_program_calls.py#L135-L140
13,806
abarker/pdfCropMargins
src/pdfCropMargins/external_program_calls.py
convert_windows_path_to_cygwin
def convert_windows_path_to_cygwin(path): """Convert a Windows path to a Cygwin path. Just handles the basic case.""" if len(path) > 2 and path[1] == ":" and path[2] == "\\": newpath = cygwin_full_path_prefix + "/" + path[0] if len(path) > 3: newpath += "/" + path[3:] path = newpath path = path.replace("\\", "/") return path
python
def convert_windows_path_to_cygwin(path): """Convert a Windows path to a Cygwin path. Just handles the basic case.""" if len(path) > 2 and path[1] == ":" and path[2] == "\\": newpath = cygwin_full_path_prefix + "/" + path[0] if len(path) > 3: newpath += "/" + path[3:] path = newpath path = path.replace("\\", "/") return path
[ "def", "convert_windows_path_to_cygwin", "(", "path", ")", ":", "if", "len", "(", "path", ")", ">", "2", "and", "path", "[", "1", "]", "==", "\":\"", "and", "path", "[", "2", "]", "==", "\"\\\\\"", ":", "newpath", "=", "cygwin_full_path_prefix", "+", "\"/\"", "+", "path", "[", "0", "]", "if", "len", "(", "path", ")", ">", "3", ":", "newpath", "+=", "\"/\"", "+", "path", "[", "3", ":", "]", "path", "=", "newpath", "path", "=", "path", ".", "replace", "(", "\"\\\\\"", ",", "\"/\"", ")", "return", "path" ]
Convert a Windows path to a Cygwin path. Just handles the basic case.
[ "Convert", "a", "Windows", "path", "to", "a", "Cygwin", "path", ".", "Just", "handles", "the", "basic", "case", "." ]
55aca874613750ebf4ae69fd8851bdbb7696d6ac
https://github.com/abarker/pdfCropMargins/blob/55aca874613750ebf4ae69fd8851bdbb7696d6ac/src/pdfCropMargins/external_program_calls.py#L167-L174
13,807
abarker/pdfCropMargins
src/pdfCropMargins/external_program_calls.py
remove_program_temp_directory
def remove_program_temp_directory(): """Remove the global temp directory and all its contents.""" if os.path.exists(program_temp_directory): max_retries = 3 curr_retries = 0 time_between_retries = 1 while True: try: shutil.rmtree(program_temp_directory) break except IOError: curr_retries += 1 if curr_retries > max_retries: raise # re-raise the exception time.sleep(time_between_retries) except: print("Cleaning up temp dir...", file=sys.stderr) raise
python
def remove_program_temp_directory(): """Remove the global temp directory and all its contents.""" if os.path.exists(program_temp_directory): max_retries = 3 curr_retries = 0 time_between_retries = 1 while True: try: shutil.rmtree(program_temp_directory) break except IOError: curr_retries += 1 if curr_retries > max_retries: raise # re-raise the exception time.sleep(time_between_retries) except: print("Cleaning up temp dir...", file=sys.stderr) raise
[ "def", "remove_program_temp_directory", "(", ")", ":", "if", "os", ".", "path", ".", "exists", "(", "program_temp_directory", ")", ":", "max_retries", "=", "3", "curr_retries", "=", "0", "time_between_retries", "=", "1", "while", "True", ":", "try", ":", "shutil", ".", "rmtree", "(", "program_temp_directory", ")", "break", "except", "IOError", ":", "curr_retries", "+=", "1", "if", "curr_retries", ">", "max_retries", ":", "raise", "# re-raise the exception", "time", ".", "sleep", "(", "time_between_retries", ")", "except", ":", "print", "(", "\"Cleaning up temp dir...\"", ",", "file", "=", "sys", ".", "stderr", ")", "raise" ]
Remove the global temp directory and all its contents.
[ "Remove", "the", "global", "temp", "directory", "and", "all", "its", "contents", "." ]
55aca874613750ebf4ae69fd8851bdbb7696d6ac
https://github.com/abarker/pdfCropMargins/blob/55aca874613750ebf4ae69fd8851bdbb7696d6ac/src/pdfCropMargins/external_program_calls.py#L191-L208
13,808
abarker/pdfCropMargins
src/pdfCropMargins/external_program_calls.py
call_external_subprocess
def call_external_subprocess(command_list, stdin_filename=None, stdout_filename=None, stderr_filename=None, env=None): """Run the command and arguments in the command_list. Will search the system PATH for commands to execute, but no shell is started. Redirects any selected outputs to the given filename. Waits for command completion.""" if stdin_filename: stdin = open(stdin_filename, "r") else: stdin = None if stdout_filename: stdout = open(stdout_filename, "w") else: stdout = None if stderr_filename: stderr = open(stderr_filename, "w") else: stderr = None subprocess.check_call(command_list, stdin=stdin, stdout=stdout, stderr=stderr, env=env) if stdin_filename: stdin.close() if stdout_filename: stdout.close() if stderr_filename: stderr.close() # The older way to do the above with os.system is below, just for reference. # command = " ".join(command_list) # if stdin_filename: command += " < " + stdin_filename # if stdout_filename: command += " > " + stdout_filename # if stderr_filename: command += " 2> " + stderr_filename # os.system(command) return
python
def call_external_subprocess(command_list, stdin_filename=None, stdout_filename=None, stderr_filename=None, env=None): """Run the command and arguments in the command_list. Will search the system PATH for commands to execute, but no shell is started. Redirects any selected outputs to the given filename. Waits for command completion.""" if stdin_filename: stdin = open(stdin_filename, "r") else: stdin = None if stdout_filename: stdout = open(stdout_filename, "w") else: stdout = None if stderr_filename: stderr = open(stderr_filename, "w") else: stderr = None subprocess.check_call(command_list, stdin=stdin, stdout=stdout, stderr=stderr, env=env) if stdin_filename: stdin.close() if stdout_filename: stdout.close() if stderr_filename: stderr.close() # The older way to do the above with os.system is below, just for reference. # command = " ".join(command_list) # if stdin_filename: command += " < " + stdin_filename # if stdout_filename: command += " > " + stdout_filename # if stderr_filename: command += " 2> " + stderr_filename # os.system(command) return
[ "def", "call_external_subprocess", "(", "command_list", ",", "stdin_filename", "=", "None", ",", "stdout_filename", "=", "None", ",", "stderr_filename", "=", "None", ",", "env", "=", "None", ")", ":", "if", "stdin_filename", ":", "stdin", "=", "open", "(", "stdin_filename", ",", "\"r\"", ")", "else", ":", "stdin", "=", "None", "if", "stdout_filename", ":", "stdout", "=", "open", "(", "stdout_filename", ",", "\"w\"", ")", "else", ":", "stdout", "=", "None", "if", "stderr_filename", ":", "stderr", "=", "open", "(", "stderr_filename", ",", "\"w\"", ")", "else", ":", "stderr", "=", "None", "subprocess", ".", "check_call", "(", "command_list", ",", "stdin", "=", "stdin", ",", "stdout", "=", "stdout", ",", "stderr", "=", "stderr", ",", "env", "=", "env", ")", "if", "stdin_filename", ":", "stdin", ".", "close", "(", ")", "if", "stdout_filename", ":", "stdout", ".", "close", "(", ")", "if", "stderr_filename", ":", "stderr", ".", "close", "(", ")", "# The older way to do the above with os.system is below, just for reference.", "# command = \" \".join(command_list)", "# if stdin_filename: command += \" < \" + stdin_filename", "# if stdout_filename: command += \" > \" + stdout_filename", "# if stderr_filename: command += \" 2> \" + stderr_filename", "# os.system(command)", "return" ]
Run the command and arguments in the command_list. Will search the system PATH for commands to execute, but no shell is started. Redirects any selected outputs to the given filename. Waits for command completion.
[ "Run", "the", "command", "and", "arguments", "in", "the", "command_list", ".", "Will", "search", "the", "system", "PATH", "for", "commands", "to", "execute", "but", "no", "shell", "is", "started", ".", "Redirects", "any", "selected", "outputs", "to", "the", "given", "filename", ".", "Waits", "for", "command", "completion", "." ]
55aca874613750ebf4ae69fd8851bdbb7696d6ac
https://github.com/abarker/pdfCropMargins/blob/55aca874613750ebf4ae69fd8851bdbb7696d6ac/src/pdfCropMargins/external_program_calls.py#L279-L306
13,809
abarker/pdfCropMargins
src/pdfCropMargins/external_program_calls.py
run_external_subprocess_in_background
def run_external_subprocess_in_background(command_list, env=None): """Runs the command and arguments in the list as a background process.""" if system_os == "Windows": DETACHED_PROCESS = 0x00000008 p = subprocess.Popen(command_list, shell=False, stdin=None, stdout=None, stderr=None, close_fds=True, creationflags=DETACHED_PROCESS, env=env) else: p = subprocess.Popen(command_list, shell=False, stdin=None, stdout=None, stderr=None, close_fds=True, env=env) return p
python
def run_external_subprocess_in_background(command_list, env=None): """Runs the command and arguments in the list as a background process.""" if system_os == "Windows": DETACHED_PROCESS = 0x00000008 p = subprocess.Popen(command_list, shell=False, stdin=None, stdout=None, stderr=None, close_fds=True, creationflags=DETACHED_PROCESS, env=env) else: p = subprocess.Popen(command_list, shell=False, stdin=None, stdout=None, stderr=None, close_fds=True, env=env) return p
[ "def", "run_external_subprocess_in_background", "(", "command_list", ",", "env", "=", "None", ")", ":", "if", "system_os", "==", "\"Windows\"", ":", "DETACHED_PROCESS", "=", "0x00000008", "p", "=", "subprocess", ".", "Popen", "(", "command_list", ",", "shell", "=", "False", ",", "stdin", "=", "None", ",", "stdout", "=", "None", ",", "stderr", "=", "None", ",", "close_fds", "=", "True", ",", "creationflags", "=", "DETACHED_PROCESS", ",", "env", "=", "env", ")", "else", ":", "p", "=", "subprocess", ".", "Popen", "(", "command_list", ",", "shell", "=", "False", ",", "stdin", "=", "None", ",", "stdout", "=", "None", ",", "stderr", "=", "None", ",", "close_fds", "=", "True", ",", "env", "=", "env", ")", "return", "p" ]
Runs the command and arguments in the list as a background process.
[ "Runs", "the", "command", "and", "arguments", "in", "the", "list", "as", "a", "background", "process", "." ]
55aca874613750ebf4ae69fd8851bdbb7696d6ac
https://github.com/abarker/pdfCropMargins/blob/55aca874613750ebf4ae69fd8851bdbb7696d6ac/src/pdfCropMargins/external_program_calls.py#L308-L317
13,810
abarker/pdfCropMargins
src/pdfCropMargins/external_program_calls.py
function_call_with_timeout
def function_call_with_timeout(fun_name, fun_args, secs=5): """Run a Python function with a timeout. No interprocess communication or return values are handled. Setting secs to 0 gives infinite timeout.""" from multiprocessing import Process, Queue p = Process(target=fun_name, args=tuple(fun_args)) p.start() curr_secs = 0 no_timeout = False if secs == 0: no_timeout = True else: timeout = secs while p.is_alive() and not no_timeout: if curr_secs > timeout: print("Process time has exceeded timeout, terminating it.") p.terminate() return False time.sleep(0.1) curr_secs += 0.1 p.join() # Blocks if process hasn't terminated. return True
python
def function_call_with_timeout(fun_name, fun_args, secs=5): """Run a Python function with a timeout. No interprocess communication or return values are handled. Setting secs to 0 gives infinite timeout.""" from multiprocessing import Process, Queue p = Process(target=fun_name, args=tuple(fun_args)) p.start() curr_secs = 0 no_timeout = False if secs == 0: no_timeout = True else: timeout = secs while p.is_alive() and not no_timeout: if curr_secs > timeout: print("Process time has exceeded timeout, terminating it.") p.terminate() return False time.sleep(0.1) curr_secs += 0.1 p.join() # Blocks if process hasn't terminated. return True
[ "def", "function_call_with_timeout", "(", "fun_name", ",", "fun_args", ",", "secs", "=", "5", ")", ":", "from", "multiprocessing", "import", "Process", ",", "Queue", "p", "=", "Process", "(", "target", "=", "fun_name", ",", "args", "=", "tuple", "(", "fun_args", ")", ")", "p", ".", "start", "(", ")", "curr_secs", "=", "0", "no_timeout", "=", "False", "if", "secs", "==", "0", ":", "no_timeout", "=", "True", "else", ":", "timeout", "=", "secs", "while", "p", ".", "is_alive", "(", ")", "and", "not", "no_timeout", ":", "if", "curr_secs", ">", "timeout", ":", "print", "(", "\"Process time has exceeded timeout, terminating it.\"", ")", "p", ".", "terminate", "(", ")", "return", "False", "time", ".", "sleep", "(", "0.1", ")", "curr_secs", "+=", "0.1", "p", ".", "join", "(", ")", "# Blocks if process hasn't terminated.", "return", "True" ]
Run a Python function with a timeout. No interprocess communication or return values are handled. Setting secs to 0 gives infinite timeout.
[ "Run", "a", "Python", "function", "with", "a", "timeout", ".", "No", "interprocess", "communication", "or", "return", "values", "are", "handled", ".", "Setting", "secs", "to", "0", "gives", "infinite", "timeout", "." ]
55aca874613750ebf4ae69fd8851bdbb7696d6ac
https://github.com/abarker/pdfCropMargins/blob/55aca874613750ebf4ae69fd8851bdbb7696d6ac/src/pdfCropMargins/external_program_calls.py#L331-L349
13,811
abarker/pdfCropMargins
src/pdfCropMargins/external_program_calls.py
fix_pdf_with_ghostscript_to_tmp_file
def fix_pdf_with_ghostscript_to_tmp_file(input_doc_fname): """Attempt to fix a bad PDF file with a Ghostscript command, writing the output PDF to a temporary file and returning the filename. Caller is responsible for deleting the file.""" if not gs_executable: init_and_test_gs_executable(exit_on_fail=True) temp_file_name = get_temporary_filename(extension=".pdf") gs_run_command = [gs_executable, "-dSAFER", "-o", temp_file_name, "-dPDFSETTINGS=/prepress", "-sDEVICE=pdfwrite", input_doc_fname] try: gs_output = get_external_subprocess_output(gs_run_command, print_output=True, indent_string=" ", env=gs_environment) except subprocess.CalledProcessError: print("\nError in pdfCropMargins: Ghostscript returned a non-zero exit" "\nstatus when attempting to fix the file:\n ", input_doc_fname, file=sys.stderr) cleanup_and_exit(1) except UnicodeDecodeError: print("\nWarning in pdfCropMargins: In attempting to repair the PDF file" "\nGhostscript produced a message containing characters which cannot" "\nbe decoded by the 'utf-8' codec. Ignoring and hoping for the best.", file=sys.stderr) return temp_file_name
python
def fix_pdf_with_ghostscript_to_tmp_file(input_doc_fname): """Attempt to fix a bad PDF file with a Ghostscript command, writing the output PDF to a temporary file and returning the filename. Caller is responsible for deleting the file.""" if not gs_executable: init_and_test_gs_executable(exit_on_fail=True) temp_file_name = get_temporary_filename(extension=".pdf") gs_run_command = [gs_executable, "-dSAFER", "-o", temp_file_name, "-dPDFSETTINGS=/prepress", "-sDEVICE=pdfwrite", input_doc_fname] try: gs_output = get_external_subprocess_output(gs_run_command, print_output=True, indent_string=" ", env=gs_environment) except subprocess.CalledProcessError: print("\nError in pdfCropMargins: Ghostscript returned a non-zero exit" "\nstatus when attempting to fix the file:\n ", input_doc_fname, file=sys.stderr) cleanup_and_exit(1) except UnicodeDecodeError: print("\nWarning in pdfCropMargins: In attempting to repair the PDF file" "\nGhostscript produced a message containing characters which cannot" "\nbe decoded by the 'utf-8' codec. Ignoring and hoping for the best.", file=sys.stderr) return temp_file_name
[ "def", "fix_pdf_with_ghostscript_to_tmp_file", "(", "input_doc_fname", ")", ":", "if", "not", "gs_executable", ":", "init_and_test_gs_executable", "(", "exit_on_fail", "=", "True", ")", "temp_file_name", "=", "get_temporary_filename", "(", "extension", "=", "\".pdf\"", ")", "gs_run_command", "=", "[", "gs_executable", ",", "\"-dSAFER\"", ",", "\"-o\"", ",", "temp_file_name", ",", "\"-dPDFSETTINGS=/prepress\"", ",", "\"-sDEVICE=pdfwrite\"", ",", "input_doc_fname", "]", "try", ":", "gs_output", "=", "get_external_subprocess_output", "(", "gs_run_command", ",", "print_output", "=", "True", ",", "indent_string", "=", "\" \"", ",", "env", "=", "gs_environment", ")", "except", "subprocess", ".", "CalledProcessError", ":", "print", "(", "\"\\nError in pdfCropMargins: Ghostscript returned a non-zero exit\"", "\"\\nstatus when attempting to fix the file:\\n \"", ",", "input_doc_fname", ",", "file", "=", "sys", ".", "stderr", ")", "cleanup_and_exit", "(", "1", ")", "except", "UnicodeDecodeError", ":", "print", "(", "\"\\nWarning in pdfCropMargins: In attempting to repair the PDF file\"", "\"\\nGhostscript produced a message containing characters which cannot\"", "\"\\nbe decoded by the 'utf-8' codec. Ignoring and hoping for the best.\"", ",", "file", "=", "sys", ".", "stderr", ")", "return", "temp_file_name" ]
Attempt to fix a bad PDF file with a Ghostscript command, writing the output PDF to a temporary file and returning the filename. Caller is responsible for deleting the file.
[ "Attempt", "to", "fix", "a", "bad", "PDF", "file", "with", "a", "Ghostscript", "command", "writing", "the", "output", "PDF", "to", "a", "temporary", "file", "and", "returning", "the", "filename", ".", "Caller", "is", "responsible", "for", "deleting", "the", "file", "." ]
55aca874613750ebf4ae69fd8851bdbb7696d6ac
https://github.com/abarker/pdfCropMargins/blob/55aca874613750ebf4ae69fd8851bdbb7696d6ac/src/pdfCropMargins/external_program_calls.py#L532-L554
13,812
abarker/pdfCropMargins
src/pdfCropMargins/external_program_calls.py
get_bounding_box_list_ghostscript
def get_bounding_box_list_ghostscript(input_doc_fname, res_x, res_y, full_page_box): """Call Ghostscript to get the bounding box list. Cannot set a threshold with this method.""" if not gs_executable: init_and_test_gs_executable(exit_on_fail=True) res = str(res_x) + "x" + str(res_y) box_arg = "-dUseMediaBox" # should be default, but set anyway if "c" in full_page_box: box_arg = "-dUseCropBox" if "t" in full_page_box: box_arg = "-dUseTrimBox" if "a" in full_page_box: box_arg = "-dUseArtBox" if "b" in full_page_box: box_arg = "-dUseBleedBox" # may not be defined in gs gs_run_command = [gs_executable, "-dSAFER", "-dNOPAUSE", "-dBATCH", "-sDEVICE=bbox", box_arg, "-r"+res, input_doc_fname] # Set printOutput to True for debugging or extra-verbose with Ghostscript's output. # Note Ghostscript writes the data to stderr, so the command below must capture it. try: gs_output = get_external_subprocess_output(gs_run_command, print_output=False, indent_string=" ", env=gs_environment) except UnicodeDecodeError: print("\nError in pdfCropMargins: In attempting to get the bounding boxes" "\nGhostscript encountered characters which cannot be decoded by the" "\n'utf-8' codec.", file=sys.stderr) cleanup_and_exit(1) bounding_box_list = [] for line in gs_output: split_line = line.split() if split_line and split_line[0] == r"%%HiResBoundingBox:": del split_line[0] if len(split_line) != 4: print("\nWarning from pdfCropMargins: Ignoring this unparsable line" "\nwhen finding the bounding boxes with Ghostscript:", line, "\n", file=sys.stderr) continue # Note gs reports values in order left, bottom, right, top, # i.e., lower left point followed by top right point. bounding_box_list.append([float(split_line[0]), float(split_line[1]), float(split_line[2]), float(split_line[3])]) if not bounding_box_list: print("\nError in pdfCropMargins: Ghostscript failed to find any bounding" "\nboxes in the document.", file=sys.stderr) cleanup_and_exit(1) return bounding_box_list
python
def get_bounding_box_list_ghostscript(input_doc_fname, res_x, res_y, full_page_box): """Call Ghostscript to get the bounding box list. Cannot set a threshold with this method.""" if not gs_executable: init_and_test_gs_executable(exit_on_fail=True) res = str(res_x) + "x" + str(res_y) box_arg = "-dUseMediaBox" # should be default, but set anyway if "c" in full_page_box: box_arg = "-dUseCropBox" if "t" in full_page_box: box_arg = "-dUseTrimBox" if "a" in full_page_box: box_arg = "-dUseArtBox" if "b" in full_page_box: box_arg = "-dUseBleedBox" # may not be defined in gs gs_run_command = [gs_executable, "-dSAFER", "-dNOPAUSE", "-dBATCH", "-sDEVICE=bbox", box_arg, "-r"+res, input_doc_fname] # Set printOutput to True for debugging or extra-verbose with Ghostscript's output. # Note Ghostscript writes the data to stderr, so the command below must capture it. try: gs_output = get_external_subprocess_output(gs_run_command, print_output=False, indent_string=" ", env=gs_environment) except UnicodeDecodeError: print("\nError in pdfCropMargins: In attempting to get the bounding boxes" "\nGhostscript encountered characters which cannot be decoded by the" "\n'utf-8' codec.", file=sys.stderr) cleanup_and_exit(1) bounding_box_list = [] for line in gs_output: split_line = line.split() if split_line and split_line[0] == r"%%HiResBoundingBox:": del split_line[0] if len(split_line) != 4: print("\nWarning from pdfCropMargins: Ignoring this unparsable line" "\nwhen finding the bounding boxes with Ghostscript:", line, "\n", file=sys.stderr) continue # Note gs reports values in order left, bottom, right, top, # i.e., lower left point followed by top right point. bounding_box_list.append([float(split_line[0]), float(split_line[1]), float(split_line[2]), float(split_line[3])]) if not bounding_box_list: print("\nError in pdfCropMargins: Ghostscript failed to find any bounding" "\nboxes in the document.", file=sys.stderr) cleanup_and_exit(1) return bounding_box_list
[ "def", "get_bounding_box_list_ghostscript", "(", "input_doc_fname", ",", "res_x", ",", "res_y", ",", "full_page_box", ")", ":", "if", "not", "gs_executable", ":", "init_and_test_gs_executable", "(", "exit_on_fail", "=", "True", ")", "res", "=", "str", "(", "res_x", ")", "+", "\"x\"", "+", "str", "(", "res_y", ")", "box_arg", "=", "\"-dUseMediaBox\"", "# should be default, but set anyway", "if", "\"c\"", "in", "full_page_box", ":", "box_arg", "=", "\"-dUseCropBox\"", "if", "\"t\"", "in", "full_page_box", ":", "box_arg", "=", "\"-dUseTrimBox\"", "if", "\"a\"", "in", "full_page_box", ":", "box_arg", "=", "\"-dUseArtBox\"", "if", "\"b\"", "in", "full_page_box", ":", "box_arg", "=", "\"-dUseBleedBox\"", "# may not be defined in gs", "gs_run_command", "=", "[", "gs_executable", ",", "\"-dSAFER\"", ",", "\"-dNOPAUSE\"", ",", "\"-dBATCH\"", ",", "\"-sDEVICE=bbox\"", ",", "box_arg", ",", "\"-r\"", "+", "res", ",", "input_doc_fname", "]", "# Set printOutput to True for debugging or extra-verbose with Ghostscript's output.", "# Note Ghostscript writes the data to stderr, so the command below must capture it.", "try", ":", "gs_output", "=", "get_external_subprocess_output", "(", "gs_run_command", ",", "print_output", "=", "False", ",", "indent_string", "=", "\" \"", ",", "env", "=", "gs_environment", ")", "except", "UnicodeDecodeError", ":", "print", "(", "\"\\nError in pdfCropMargins: In attempting to get the bounding boxes\"", "\"\\nGhostscript encountered characters which cannot be decoded by the\"", "\"\\n'utf-8' codec.\"", ",", "file", "=", "sys", ".", "stderr", ")", "cleanup_and_exit", "(", "1", ")", "bounding_box_list", "=", "[", "]", "for", "line", "in", "gs_output", ":", "split_line", "=", "line", ".", "split", "(", ")", "if", "split_line", "and", "split_line", "[", "0", "]", "==", "r\"%%HiResBoundingBox:\"", ":", "del", "split_line", "[", "0", "]", "if", "len", "(", "split_line", ")", "!=", "4", ":", "print", "(", "\"\\nWarning from pdfCropMargins: Ignoring this unparsable line\"", "\"\\nwhen finding the bounding boxes with Ghostscript:\"", ",", "line", ",", "\"\\n\"", ",", "file", "=", "sys", ".", "stderr", ")", "continue", "# Note gs reports values in order left, bottom, right, top,", "# i.e., lower left point followed by top right point.", "bounding_box_list", ".", "append", "(", "[", "float", "(", "split_line", "[", "0", "]", ")", ",", "float", "(", "split_line", "[", "1", "]", ")", ",", "float", "(", "split_line", "[", "2", "]", ")", ",", "float", "(", "split_line", "[", "3", "]", ")", "]", ")", "if", "not", "bounding_box_list", ":", "print", "(", "\"\\nError in pdfCropMargins: Ghostscript failed to find any bounding\"", "\"\\nboxes in the document.\"", ",", "file", "=", "sys", ".", "stderr", ")", "cleanup_and_exit", "(", "1", ")", "return", "bounding_box_list" ]
Call Ghostscript to get the bounding box list. Cannot set a threshold with this method.
[ "Call", "Ghostscript", "to", "get", "the", "bounding", "box", "list", ".", "Cannot", "set", "a", "threshold", "with", "this", "method", "." ]
55aca874613750ebf4ae69fd8851bdbb7696d6ac
https://github.com/abarker/pdfCropMargins/blob/55aca874613750ebf4ae69fd8851bdbb7696d6ac/src/pdfCropMargins/external_program_calls.py#L556-L602
13,813
abarker/pdfCropMargins
src/pdfCropMargins/external_program_calls.py
render_pdf_file_to_image_files_pdftoppm_ppm
def render_pdf_file_to_image_files_pdftoppm_ppm(pdf_file_name, root_output_file_path, res_x=150, res_y=150, extra_args=None): """Use the pdftoppm program to render a PDF file to .png images. The root_output_file_path is prepended to all the output files, which have numbers and extensions added. Extra arguments can be passed as a list in extra_args. Return the command output.""" if extra_args is None: extra_args = [] if not pdftoppm_executable: init_and_test_pdftoppm_executable(prefer_local=False, exit_on_fail=True) if old_pdftoppm_version: # We only have -r, not -rx and -ry. command = [pdftoppm_executable] + extra_args + ["-r", res_x, pdf_file_name, root_output_file_path] else: command = [pdftoppm_executable] + extra_args + ["-rx", res_x, "-ry", res_y, pdf_file_name, root_output_file_path] comm_output = get_external_subprocess_output(command) return comm_output
python
def render_pdf_file_to_image_files_pdftoppm_ppm(pdf_file_name, root_output_file_path, res_x=150, res_y=150, extra_args=None): """Use the pdftoppm program to render a PDF file to .png images. The root_output_file_path is prepended to all the output files, which have numbers and extensions added. Extra arguments can be passed as a list in extra_args. Return the command output.""" if extra_args is None: extra_args = [] if not pdftoppm_executable: init_and_test_pdftoppm_executable(prefer_local=False, exit_on_fail=True) if old_pdftoppm_version: # We only have -r, not -rx and -ry. command = [pdftoppm_executable] + extra_args + ["-r", res_x, pdf_file_name, root_output_file_path] else: command = [pdftoppm_executable] + extra_args + ["-rx", res_x, "-ry", res_y, pdf_file_name, root_output_file_path] comm_output = get_external_subprocess_output(command) return comm_output
[ "def", "render_pdf_file_to_image_files_pdftoppm_ppm", "(", "pdf_file_name", ",", "root_output_file_path", ",", "res_x", "=", "150", ",", "res_y", "=", "150", ",", "extra_args", "=", "None", ")", ":", "if", "extra_args", "is", "None", ":", "extra_args", "=", "[", "]", "if", "not", "pdftoppm_executable", ":", "init_and_test_pdftoppm_executable", "(", "prefer_local", "=", "False", ",", "exit_on_fail", "=", "True", ")", "if", "old_pdftoppm_version", ":", "# We only have -r, not -rx and -ry.", "command", "=", "[", "pdftoppm_executable", "]", "+", "extra_args", "+", "[", "\"-r\"", ",", "res_x", ",", "pdf_file_name", ",", "root_output_file_path", "]", "else", ":", "command", "=", "[", "pdftoppm_executable", "]", "+", "extra_args", "+", "[", "\"-rx\"", ",", "res_x", ",", "\"-ry\"", ",", "res_y", ",", "pdf_file_name", ",", "root_output_file_path", "]", "comm_output", "=", "get_external_subprocess_output", "(", "command", ")", "return", "comm_output" ]
Use the pdftoppm program to render a PDF file to .png images. The root_output_file_path is prepended to all the output files, which have numbers and extensions added. Extra arguments can be passed as a list in extra_args. Return the command output.
[ "Use", "the", "pdftoppm", "program", "to", "render", "a", "PDF", "file", "to", ".", "png", "images", ".", "The", "root_output_file_path", "is", "prepended", "to", "all", "the", "output", "files", "which", "have", "numbers", "and", "extensions", "added", ".", "Extra", "arguments", "can", "be", "passed", "as", "a", "list", "in", "extra_args", ".", "Return", "the", "command", "output", "." ]
55aca874613750ebf4ae69fd8851bdbb7696d6ac
https://github.com/abarker/pdfCropMargins/blob/55aca874613750ebf4ae69fd8851bdbb7696d6ac/src/pdfCropMargins/external_program_calls.py#L604-L624
13,814
abarker/pdfCropMargins
src/pdfCropMargins/external_program_calls.py
render_pdf_file_to_image_files_pdftoppm_pgm
def render_pdf_file_to_image_files_pdftoppm_pgm(pdf_file_name, root_output_file_path, res_x=150, res_y=150): """Same as renderPdfFileToImageFile_pdftoppm_ppm but with -gray option for pgm.""" comm_output = render_pdf_file_to_image_files_pdftoppm_ppm(pdf_file_name, root_output_file_path, res_x, res_y, ["-gray"]) return comm_output
python
def render_pdf_file_to_image_files_pdftoppm_pgm(pdf_file_name, root_output_file_path, res_x=150, res_y=150): """Same as renderPdfFileToImageFile_pdftoppm_ppm but with -gray option for pgm.""" comm_output = render_pdf_file_to_image_files_pdftoppm_ppm(pdf_file_name, root_output_file_path, res_x, res_y, ["-gray"]) return comm_output
[ "def", "render_pdf_file_to_image_files_pdftoppm_pgm", "(", "pdf_file_name", ",", "root_output_file_path", ",", "res_x", "=", "150", ",", "res_y", "=", "150", ")", ":", "comm_output", "=", "render_pdf_file_to_image_files_pdftoppm_ppm", "(", "pdf_file_name", ",", "root_output_file_path", ",", "res_x", ",", "res_y", ",", "[", "\"-gray\"", "]", ")", "return", "comm_output" ]
Same as renderPdfFileToImageFile_pdftoppm_ppm but with -gray option for pgm.
[ "Same", "as", "renderPdfFileToImageFile_pdftoppm_ppm", "but", "with", "-", "gray", "option", "for", "pgm", "." ]
55aca874613750ebf4ae69fd8851bdbb7696d6ac
https://github.com/abarker/pdfCropMargins/blob/55aca874613750ebf4ae69fd8851bdbb7696d6ac/src/pdfCropMargins/external_program_calls.py#L626-L632
13,815
abarker/pdfCropMargins
src/pdfCropMargins/external_program_calls.py
render_pdf_file_to_image_files__ghostscript_png
def render_pdf_file_to_image_files__ghostscript_png(pdf_file_name, root_output_file_path, res_x=150, res_y=150): """Use Ghostscript to render a PDF file to .png images. The root_output_file_path is prepended to all the output files, which have numbers and extensions added. Return the command output.""" # For gs commands see # http://ghostscript.com/doc/current/Devices.htm#File_formats # http://ghostscript.com/doc/current/Devices.htm#PNG if not gs_executable: init_and_test_gs_executable(exit_on_fail=True) command = [gs_executable, "-dBATCH", "-dNOPAUSE", "-sDEVICE=pnggray", "-r"+res_x+"x"+res_y, "-sOutputFile="+root_output_file_path+"-%06d.png", pdf_file_name] comm_output = get_external_subprocess_output(command, env=gs_environment) return comm_output
python
def render_pdf_file_to_image_files__ghostscript_png(pdf_file_name, root_output_file_path, res_x=150, res_y=150): """Use Ghostscript to render a PDF file to .png images. The root_output_file_path is prepended to all the output files, which have numbers and extensions added. Return the command output.""" # For gs commands see # http://ghostscript.com/doc/current/Devices.htm#File_formats # http://ghostscript.com/doc/current/Devices.htm#PNG if not gs_executable: init_and_test_gs_executable(exit_on_fail=True) command = [gs_executable, "-dBATCH", "-dNOPAUSE", "-sDEVICE=pnggray", "-r"+res_x+"x"+res_y, "-sOutputFile="+root_output_file_path+"-%06d.png", pdf_file_name] comm_output = get_external_subprocess_output(command, env=gs_environment) return comm_output
[ "def", "render_pdf_file_to_image_files__ghostscript_png", "(", "pdf_file_name", ",", "root_output_file_path", ",", "res_x", "=", "150", ",", "res_y", "=", "150", ")", ":", "# For gs commands see", "# http://ghostscript.com/doc/current/Devices.htm#File_formats", "# http://ghostscript.com/doc/current/Devices.htm#PNG", "if", "not", "gs_executable", ":", "init_and_test_gs_executable", "(", "exit_on_fail", "=", "True", ")", "command", "=", "[", "gs_executable", ",", "\"-dBATCH\"", ",", "\"-dNOPAUSE\"", ",", "\"-sDEVICE=pnggray\"", ",", "\"-r\"", "+", "res_x", "+", "\"x\"", "+", "res_y", ",", "\"-sOutputFile=\"", "+", "root_output_file_path", "+", "\"-%06d.png\"", ",", "pdf_file_name", "]", "comm_output", "=", "get_external_subprocess_output", "(", "command", ",", "env", "=", "gs_environment", ")", "return", "comm_output" ]
Use Ghostscript to render a PDF file to .png images. The root_output_file_path is prepended to all the output files, which have numbers and extensions added. Return the command output.
[ "Use", "Ghostscript", "to", "render", "a", "PDF", "file", "to", ".", "png", "images", ".", "The", "root_output_file_path", "is", "prepended", "to", "all", "the", "output", "files", "which", "have", "numbers", "and", "extensions", "added", ".", "Return", "the", "command", "output", "." ]
55aca874613750ebf4ae69fd8851bdbb7696d6ac
https://github.com/abarker/pdfCropMargins/blob/55aca874613750ebf4ae69fd8851bdbb7696d6ac/src/pdfCropMargins/external_program_calls.py#L634-L648
13,816
abarker/pdfCropMargins
src/pdfCropMargins/external_program_calls.py
show_preview
def show_preview(viewer_path, pdf_file_name): """Run the PDF viewer at the path viewer_path on the file pdf_file_name.""" try: cmd = [viewer_path, pdf_file_name] run_external_subprocess_in_background(cmd) except (subprocess.CalledProcessError, OSError, IOError) as e: print("\nWarning from pdfCropMargins: The argument to the '--viewer' option:" "\n ", viewer_path, "\nwas not found or failed to execute correctly.\n", file=sys.stderr) return
python
def show_preview(viewer_path, pdf_file_name): """Run the PDF viewer at the path viewer_path on the file pdf_file_name.""" try: cmd = [viewer_path, pdf_file_name] run_external_subprocess_in_background(cmd) except (subprocess.CalledProcessError, OSError, IOError) as e: print("\nWarning from pdfCropMargins: The argument to the '--viewer' option:" "\n ", viewer_path, "\nwas not found or failed to execute correctly.\n", file=sys.stderr) return
[ "def", "show_preview", "(", "viewer_path", ",", "pdf_file_name", ")", ":", "try", ":", "cmd", "=", "[", "viewer_path", ",", "pdf_file_name", "]", "run_external_subprocess_in_background", "(", "cmd", ")", "except", "(", "subprocess", ".", "CalledProcessError", ",", "OSError", ",", "IOError", ")", "as", "e", ":", "print", "(", "\"\\nWarning from pdfCropMargins: The argument to the '--viewer' option:\"", "\"\\n \"", ",", "viewer_path", ",", "\"\\nwas not found or failed to execute correctly.\\n\"", ",", "file", "=", "sys", ".", "stderr", ")", "return" ]
Run the PDF viewer at the path viewer_path on the file pdf_file_name.
[ "Run", "the", "PDF", "viewer", "at", "the", "path", "viewer_path", "on", "the", "file", "pdf_file_name", "." ]
55aca874613750ebf4ae69fd8851bdbb7696d6ac
https://github.com/abarker/pdfCropMargins/blob/55aca874613750ebf4ae69fd8851bdbb7696d6ac/src/pdfCropMargins/external_program_calls.py#L673-L682
13,817
abarker/pdfCropMargins
src/pdfCropMargins/pdfCropMargins.py
main
def main(): """Run main, catching any exceptions and cleaning up the temp directories.""" cleanup_and_exit = sys.exit # Function to do cleanup and exit before the import. exit_code = 0 # Imports are done here inside the try block so some ugly (and useless) # traceback info is avoided on user's ^C (KeyboardInterrupt, EOFError on Windows). try: from . import external_program_calls as ex # Creates tmp dir as side effect. cleanup_and_exit = ex.cleanup_and_exit # Switch to the real one, deletes temp dir. from . import main_pdfCropMargins # Imports external_program_calls, don't do first. main_pdfCropMargins.main_crop() # Run the actual program. except (KeyboardInterrupt, EOFError): # Windows raises EOFError on ^C. print("\nGot a KeyboardInterrupt, cleaning up and exiting...\n", file=sys.stderr) except SystemExit: exit_code = sys.exc_info()[1] print() except: # Echo back the unexpected error so the user can see it. print("\nCaught an unexpected exception in the pdfCropMargins program.", file=sys.stderr) print("Unexpected error: ", sys.exc_info()[0], file=sys.stderr) print("Error message : ", sys.exc_info()[1], file=sys.stderr) print() exit_code = 1 import traceback max_traceback_length = 30 traceback.print_tb(sys.exc_info()[2], limit=max_traceback_length) # raise # Re-raise the error. finally: # Some people like to hit multiple ^C chars, which kills cleanup. # Call cleanup again each time. for i in range(30): # Give up after 30 tries. try: cleanup_and_exit(exit_code) except (KeyboardInterrupt, EOFError): continue
python
def main(): """Run main, catching any exceptions and cleaning up the temp directories.""" cleanup_and_exit = sys.exit # Function to do cleanup and exit before the import. exit_code = 0 # Imports are done here inside the try block so some ugly (and useless) # traceback info is avoided on user's ^C (KeyboardInterrupt, EOFError on Windows). try: from . import external_program_calls as ex # Creates tmp dir as side effect. cleanup_and_exit = ex.cleanup_and_exit # Switch to the real one, deletes temp dir. from . import main_pdfCropMargins # Imports external_program_calls, don't do first. main_pdfCropMargins.main_crop() # Run the actual program. except (KeyboardInterrupt, EOFError): # Windows raises EOFError on ^C. print("\nGot a KeyboardInterrupt, cleaning up and exiting...\n", file=sys.stderr) except SystemExit: exit_code = sys.exc_info()[1] print() except: # Echo back the unexpected error so the user can see it. print("\nCaught an unexpected exception in the pdfCropMargins program.", file=sys.stderr) print("Unexpected error: ", sys.exc_info()[0], file=sys.stderr) print("Error message : ", sys.exc_info()[1], file=sys.stderr) print() exit_code = 1 import traceback max_traceback_length = 30 traceback.print_tb(sys.exc_info()[2], limit=max_traceback_length) # raise # Re-raise the error. finally: # Some people like to hit multiple ^C chars, which kills cleanup. # Call cleanup again each time. for i in range(30): # Give up after 30 tries. try: cleanup_and_exit(exit_code) except (KeyboardInterrupt, EOFError): continue
[ "def", "main", "(", ")", ":", "cleanup_and_exit", "=", "sys", ".", "exit", "# Function to do cleanup and exit before the import.", "exit_code", "=", "0", "# Imports are done here inside the try block so some ugly (and useless)", "# traceback info is avoided on user's ^C (KeyboardInterrupt, EOFError on Windows).", "try", ":", "from", ".", "import", "external_program_calls", "as", "ex", "# Creates tmp dir as side effect.", "cleanup_and_exit", "=", "ex", ".", "cleanup_and_exit", "# Switch to the real one, deletes temp dir.", "from", ".", "import", "main_pdfCropMargins", "# Imports external_program_calls, don't do first.", "main_pdfCropMargins", ".", "main_crop", "(", ")", "# Run the actual program.", "except", "(", "KeyboardInterrupt", ",", "EOFError", ")", ":", "# Windows raises EOFError on ^C.", "print", "(", "\"\\nGot a KeyboardInterrupt, cleaning up and exiting...\\n\"", ",", "file", "=", "sys", ".", "stderr", ")", "except", "SystemExit", ":", "exit_code", "=", "sys", ".", "exc_info", "(", ")", "[", "1", "]", "print", "(", ")", "except", ":", "# Echo back the unexpected error so the user can see it.", "print", "(", "\"\\nCaught an unexpected exception in the pdfCropMargins program.\"", ",", "file", "=", "sys", ".", "stderr", ")", "print", "(", "\"Unexpected error: \"", ",", "sys", ".", "exc_info", "(", ")", "[", "0", "]", ",", "file", "=", "sys", ".", "stderr", ")", "print", "(", "\"Error message : \"", ",", "sys", ".", "exc_info", "(", ")", "[", "1", "]", ",", "file", "=", "sys", ".", "stderr", ")", "print", "(", ")", "exit_code", "=", "1", "import", "traceback", "max_traceback_length", "=", "30", "traceback", ".", "print_tb", "(", "sys", ".", "exc_info", "(", ")", "[", "2", "]", ",", "limit", "=", "max_traceback_length", ")", "# raise # Re-raise the error.", "finally", ":", "# Some people like to hit multiple ^C chars, which kills cleanup.", "# Call cleanup again each time.", "for", "i", "in", "range", "(", "30", ")", ":", "# Give up after 30 tries.", "try", ":", "cleanup_and_exit", "(", "exit_code", ")", "except", "(", "KeyboardInterrupt", ",", "EOFError", ")", ":", "continue" ]
Run main, catching any exceptions and cleaning up the temp directories.
[ "Run", "main", "catching", "any", "exceptions", "and", "cleaning", "up", "the", "temp", "directories", "." ]
55aca874613750ebf4ae69fd8851bdbb7696d6ac
https://github.com/abarker/pdfCropMargins/blob/55aca874613750ebf4ae69fd8851bdbb7696d6ac/src/pdfCropMargins/pdfCropMargins.py#L70-L113
13,818
abarker/pdfCropMargins
src/pdfCropMargins/main_pdfCropMargins.py
get_full_page_box_list_assigning_media_and_crop
def get_full_page_box_list_assigning_media_and_crop(input_doc, quiet=False): """Get a list of all the full-page box values for each page. The argument input_doc should be a PdfFileReader object. The boxes on the list are in the simple 4-float list format used by this program, not RectangleObject format.""" full_page_box_list = [] rotation_list = [] if args.verbose and not quiet: print("\nOriginal full page sizes, in PDF format (lbrt):") for page_num in range(input_doc.getNumPages()): # Get the current page and find the full-page box. curr_page = input_doc.getPage(page_num) full_page_box = get_full_page_box_assigning_media_and_crop(curr_page) if args.verbose and not quiet: # want to display page num numbering from 1, so add one print("\t"+str(page_num+1), " rot =", curr_page.rotationAngle, "\t", full_page_box) # Convert the RectangleObject to floats in an ordinary list and append. ordinary_box = [float(b) for b in full_page_box] full_page_box_list.append(ordinary_box) # Append the rotation value to the rotation_list. rotation_list.append(curr_page.rotationAngle) return full_page_box_list, rotation_list
python
def get_full_page_box_list_assigning_media_and_crop(input_doc, quiet=False): """Get a list of all the full-page box values for each page. The argument input_doc should be a PdfFileReader object. The boxes on the list are in the simple 4-float list format used by this program, not RectangleObject format.""" full_page_box_list = [] rotation_list = [] if args.verbose and not quiet: print("\nOriginal full page sizes, in PDF format (lbrt):") for page_num in range(input_doc.getNumPages()): # Get the current page and find the full-page box. curr_page = input_doc.getPage(page_num) full_page_box = get_full_page_box_assigning_media_and_crop(curr_page) if args.verbose and not quiet: # want to display page num numbering from 1, so add one print("\t"+str(page_num+1), " rot =", curr_page.rotationAngle, "\t", full_page_box) # Convert the RectangleObject to floats in an ordinary list and append. ordinary_box = [float(b) for b in full_page_box] full_page_box_list.append(ordinary_box) # Append the rotation value to the rotation_list. rotation_list.append(curr_page.rotationAngle) return full_page_box_list, rotation_list
[ "def", "get_full_page_box_list_assigning_media_and_crop", "(", "input_doc", ",", "quiet", "=", "False", ")", ":", "full_page_box_list", "=", "[", "]", "rotation_list", "=", "[", "]", "if", "args", ".", "verbose", "and", "not", "quiet", ":", "print", "(", "\"\\nOriginal full page sizes, in PDF format (lbrt):\"", ")", "for", "page_num", "in", "range", "(", "input_doc", ".", "getNumPages", "(", ")", ")", ":", "# Get the current page and find the full-page box.", "curr_page", "=", "input_doc", ".", "getPage", "(", "page_num", ")", "full_page_box", "=", "get_full_page_box_assigning_media_and_crop", "(", "curr_page", ")", "if", "args", ".", "verbose", "and", "not", "quiet", ":", "# want to display page num numbering from 1, so add one", "print", "(", "\"\\t\"", "+", "str", "(", "page_num", "+", "1", ")", ",", "\" rot =\"", ",", "curr_page", ".", "rotationAngle", ",", "\"\\t\"", ",", "full_page_box", ")", "# Convert the RectangleObject to floats in an ordinary list and append.", "ordinary_box", "=", "[", "float", "(", "b", ")", "for", "b", "in", "full_page_box", "]", "full_page_box_list", ".", "append", "(", "ordinary_box", ")", "# Append the rotation value to the rotation_list.", "rotation_list", ".", "append", "(", "curr_page", ".", "rotationAngle", ")", "return", "full_page_box_list", ",", "rotation_list" ]
Get a list of all the full-page box values for each page. The argument input_doc should be a PdfFileReader object. The boxes on the list are in the simple 4-float list format used by this program, not RectangleObject format.
[ "Get", "a", "list", "of", "all", "the", "full", "-", "page", "box", "values", "for", "each", "page", ".", "The", "argument", "input_doc", "should", "be", "a", "PdfFileReader", "object", ".", "The", "boxes", "on", "the", "list", "are", "in", "the", "simple", "4", "-", "float", "list", "format", "used", "by", "this", "program", "not", "RectangleObject", "format", "." ]
55aca874613750ebf4ae69fd8851bdbb7696d6ac
https://github.com/abarker/pdfCropMargins/blob/55aca874613750ebf4ae69fd8851bdbb7696d6ac/src/pdfCropMargins/main_pdfCropMargins.py#L207-L236
13,819
abarker/pdfCropMargins
src/pdfCropMargins/main_pdfCropMargins.py
set_cropped_metadata
def set_cropped_metadata(input_doc, output_doc, metadata_info): """Set the metadata for the output document. Mostly just copied over, but "Producer" has a string appended to indicate that this program modified the file. That allows for the undo operation to make sure that this program cropped the file in the first place.""" # Setting metadata with pyPdf requires low-level pyPdf operations, see # http://stackoverflow.com/questions/2574676/change-metadata-of-pdf-file-with-pypdf if not metadata_info: # In case it's null, just set values to empty strings. This class just holds # data temporary in the same format; this is not sent into PyPDF2. class MetadataInfo(object): author = "" creator = "" producer = "" subject = "" title = "" metadata_info = MetadataInfo() output_info_dict = output_doc._info.getObject() # Check Producer metadata attribute to see if this program cropped document before. producer_mod = PRODUCER_MODIFIER already_cropped_by_this_program = False old_producer_string = metadata_info.producer if old_producer_string and old_producer_string.endswith(producer_mod): if args.verbose: print("\nThe document was already cropped at least once by this program.") already_cropped_by_this_program = True producer_mod = "" # No need to pile up suffixes each time on Producer. # Note that all None metadata attributes are currently set to the empty string # when passing along the metadata information. def st(item): if item is None: return "" else: return item output_info_dict.update({ NameObject("/Author"): createStringObject(st(metadata_info.author)), NameObject("/Creator"): createStringObject(st(metadata_info.creator)), NameObject("/Producer"): createStringObject(st(metadata_info.producer) + producer_mod), NameObject("/Subject"): createStringObject(st(metadata_info.subject)), NameObject("/Title"): createStringObject(st(metadata_info.title)) }) return already_cropped_by_this_program
python
def set_cropped_metadata(input_doc, output_doc, metadata_info): """Set the metadata for the output document. Mostly just copied over, but "Producer" has a string appended to indicate that this program modified the file. That allows for the undo operation to make sure that this program cropped the file in the first place.""" # Setting metadata with pyPdf requires low-level pyPdf operations, see # http://stackoverflow.com/questions/2574676/change-metadata-of-pdf-file-with-pypdf if not metadata_info: # In case it's null, just set values to empty strings. This class just holds # data temporary in the same format; this is not sent into PyPDF2. class MetadataInfo(object): author = "" creator = "" producer = "" subject = "" title = "" metadata_info = MetadataInfo() output_info_dict = output_doc._info.getObject() # Check Producer metadata attribute to see if this program cropped document before. producer_mod = PRODUCER_MODIFIER already_cropped_by_this_program = False old_producer_string = metadata_info.producer if old_producer_string and old_producer_string.endswith(producer_mod): if args.verbose: print("\nThe document was already cropped at least once by this program.") already_cropped_by_this_program = True producer_mod = "" # No need to pile up suffixes each time on Producer. # Note that all None metadata attributes are currently set to the empty string # when passing along the metadata information. def st(item): if item is None: return "" else: return item output_info_dict.update({ NameObject("/Author"): createStringObject(st(metadata_info.author)), NameObject("/Creator"): createStringObject(st(metadata_info.creator)), NameObject("/Producer"): createStringObject(st(metadata_info.producer) + producer_mod), NameObject("/Subject"): createStringObject(st(metadata_info.subject)), NameObject("/Title"): createStringObject(st(metadata_info.title)) }) return already_cropped_by_this_program
[ "def", "set_cropped_metadata", "(", "input_doc", ",", "output_doc", ",", "metadata_info", ")", ":", "# Setting metadata with pyPdf requires low-level pyPdf operations, see", "# http://stackoverflow.com/questions/2574676/change-metadata-of-pdf-file-with-pypdf", "if", "not", "metadata_info", ":", "# In case it's null, just set values to empty strings. This class just holds", "# data temporary in the same format; this is not sent into PyPDF2.", "class", "MetadataInfo", "(", "object", ")", ":", "author", "=", "\"\"", "creator", "=", "\"\"", "producer", "=", "\"\"", "subject", "=", "\"\"", "title", "=", "\"\"", "metadata_info", "=", "MetadataInfo", "(", ")", "output_info_dict", "=", "output_doc", ".", "_info", ".", "getObject", "(", ")", "# Check Producer metadata attribute to see if this program cropped document before.", "producer_mod", "=", "PRODUCER_MODIFIER", "already_cropped_by_this_program", "=", "False", "old_producer_string", "=", "metadata_info", ".", "producer", "if", "old_producer_string", "and", "old_producer_string", ".", "endswith", "(", "producer_mod", ")", ":", "if", "args", ".", "verbose", ":", "print", "(", "\"\\nThe document was already cropped at least once by this program.\"", ")", "already_cropped_by_this_program", "=", "True", "producer_mod", "=", "\"\"", "# No need to pile up suffixes each time on Producer.", "# Note that all None metadata attributes are currently set to the empty string", "# when passing along the metadata information.", "def", "st", "(", "item", ")", ":", "if", "item", "is", "None", ":", "return", "\"\"", "else", ":", "return", "item", "output_info_dict", ".", "update", "(", "{", "NameObject", "(", "\"/Author\"", ")", ":", "createStringObject", "(", "st", "(", "metadata_info", ".", "author", ")", ")", ",", "NameObject", "(", "\"/Creator\"", ")", ":", "createStringObject", "(", "st", "(", "metadata_info", ".", "creator", ")", ")", ",", "NameObject", "(", "\"/Producer\"", ")", ":", "createStringObject", "(", "st", "(", "metadata_info", ".", "producer", ")", "+", "producer_mod", ")", ",", "NameObject", "(", "\"/Subject\"", ")", ":", "createStringObject", "(", "st", "(", "metadata_info", ".", "subject", ")", ")", ",", "NameObject", "(", "\"/Title\"", ")", ":", "createStringObject", "(", "st", "(", "metadata_info", ".", "title", ")", ")", "}", ")", "return", "already_cropped_by_this_program" ]
Set the metadata for the output document. Mostly just copied over, but "Producer" has a string appended to indicate that this program modified the file. That allows for the undo operation to make sure that this program cropped the file in the first place.
[ "Set", "the", "metadata", "for", "the", "output", "document", ".", "Mostly", "just", "copied", "over", "but", "Producer", "has", "a", "string", "appended", "to", "indicate", "that", "this", "program", "modified", "the", "file", ".", "That", "allows", "for", "the", "undo", "operation", "to", "make", "sure", "that", "this", "program", "cropped", "the", "file", "in", "the", "first", "place", "." ]
55aca874613750ebf4ae69fd8851bdbb7696d6ac
https://github.com/abarker/pdfCropMargins/blob/55aca874613750ebf4ae69fd8851bdbb7696d6ac/src/pdfCropMargins/main_pdfCropMargins.py#L448-L494
13,820
abarker/pdfCropMargins
src/pdfCropMargins/main_pdfCropMargins.py
apply_crop_list
def apply_crop_list(crop_list, input_doc, page_nums_to_crop, already_cropped_by_this_program): """Apply the crop list to the pages of the input PdfFileReader object.""" if args.restore and not already_cropped_by_this_program: print("\nWarning from pdfCropMargins: The Producer string indicates that" "\neither this document was not previously cropped by pdfCropMargins" "\nor else it was modified by another program after that. Trying the" "\nundo anyway...", file=sys.stderr) if args.restore and args.verbose: print("\nRestoring the document to margins saved for each page in the ArtBox.") if args.verbose and not args.restore: print("\nNew full page sizes after cropping, in PDF format (lbrt):") # Copy over each page, after modifying the appropriate PDF boxes. for page_num in range(input_doc.getNumPages()): curr_page = input_doc.getPage(page_num) # Restore any rotation which was originally on the page. curr_page.rotateClockwise(curr_page.rotationAngle) # Only do the restore from ArtBox if '--restore' option was selected. if args.restore: if not curr_page.artBox: print("\nWarning from pdfCropMargins: Attempting to restore pages from" "\nthe ArtBox in each page, but page", page_num, "has no readable" "\nArtBox. Leaving that page unchanged.", file=sys.stderr) continue curr_page.mediaBox = curr_page.artBox curr_page.cropBox = curr_page.artBox continue # Do the save to ArtBox if that option is chosen and Producer is set. if not args.noundosave and not already_cropped_by_this_program: curr_page.artBox = intersect_boxes(curr_page.mediaBox, curr_page.cropBox) # Reset the CropBox and MediaBox to their saved original values # (which were set in getFullPageBox, in the curr_page object's namespace). curr_page.mediaBox = curr_page.originalMediaBox curr_page.cropBox = curr_page.originalCropBox # Copy the original page without further mods if it wasn't in the range # selected for cropping. if page_num not in page_nums_to_crop: continue # Convert the computed "box to crop to" into a RectangleObject (for pyPdf). new_cropped_box = RectangleObject(crop_list[page_num]) if args.verbose: print("\t"+str(page_num+1)+"\t", new_cropped_box) # page numbering from 1 if not args.boxesToSet: args.boxesToSet = ["m", "c"] # Now set any boxes which were selected to be set via the --boxesToSet option. if "m" in args.boxesToSet: curr_page.mediaBox = new_cropped_box if "c" in args.boxesToSet: curr_page.cropBox = new_cropped_box if "t" in args.boxesToSet: curr_page.trimBox = new_cropped_box if "a" in args.boxesToSet: curr_page.artBox = new_cropped_box if "b" in args.boxesToSet: curr_page.bleedBox = new_cropped_box return
python
def apply_crop_list(crop_list, input_doc, page_nums_to_crop, already_cropped_by_this_program): """Apply the crop list to the pages of the input PdfFileReader object.""" if args.restore and not already_cropped_by_this_program: print("\nWarning from pdfCropMargins: The Producer string indicates that" "\neither this document was not previously cropped by pdfCropMargins" "\nor else it was modified by another program after that. Trying the" "\nundo anyway...", file=sys.stderr) if args.restore and args.verbose: print("\nRestoring the document to margins saved for each page in the ArtBox.") if args.verbose and not args.restore: print("\nNew full page sizes after cropping, in PDF format (lbrt):") # Copy over each page, after modifying the appropriate PDF boxes. for page_num in range(input_doc.getNumPages()): curr_page = input_doc.getPage(page_num) # Restore any rotation which was originally on the page. curr_page.rotateClockwise(curr_page.rotationAngle) # Only do the restore from ArtBox if '--restore' option was selected. if args.restore: if not curr_page.artBox: print("\nWarning from pdfCropMargins: Attempting to restore pages from" "\nthe ArtBox in each page, but page", page_num, "has no readable" "\nArtBox. Leaving that page unchanged.", file=sys.stderr) continue curr_page.mediaBox = curr_page.artBox curr_page.cropBox = curr_page.artBox continue # Do the save to ArtBox if that option is chosen and Producer is set. if not args.noundosave and not already_cropped_by_this_program: curr_page.artBox = intersect_boxes(curr_page.mediaBox, curr_page.cropBox) # Reset the CropBox and MediaBox to their saved original values # (which were set in getFullPageBox, in the curr_page object's namespace). curr_page.mediaBox = curr_page.originalMediaBox curr_page.cropBox = curr_page.originalCropBox # Copy the original page without further mods if it wasn't in the range # selected for cropping. if page_num not in page_nums_to_crop: continue # Convert the computed "box to crop to" into a RectangleObject (for pyPdf). new_cropped_box = RectangleObject(crop_list[page_num]) if args.verbose: print("\t"+str(page_num+1)+"\t", new_cropped_box) # page numbering from 1 if not args.boxesToSet: args.boxesToSet = ["m", "c"] # Now set any boxes which were selected to be set via the --boxesToSet option. if "m" in args.boxesToSet: curr_page.mediaBox = new_cropped_box if "c" in args.boxesToSet: curr_page.cropBox = new_cropped_box if "t" in args.boxesToSet: curr_page.trimBox = new_cropped_box if "a" in args.boxesToSet: curr_page.artBox = new_cropped_box if "b" in args.boxesToSet: curr_page.bleedBox = new_cropped_box return
[ "def", "apply_crop_list", "(", "crop_list", ",", "input_doc", ",", "page_nums_to_crop", ",", "already_cropped_by_this_program", ")", ":", "if", "args", ".", "restore", "and", "not", "already_cropped_by_this_program", ":", "print", "(", "\"\\nWarning from pdfCropMargins: The Producer string indicates that\"", "\"\\neither this document was not previously cropped by pdfCropMargins\"", "\"\\nor else it was modified by another program after that. Trying the\"", "\"\\nundo anyway...\"", ",", "file", "=", "sys", ".", "stderr", ")", "if", "args", ".", "restore", "and", "args", ".", "verbose", ":", "print", "(", "\"\\nRestoring the document to margins saved for each page in the ArtBox.\"", ")", "if", "args", ".", "verbose", "and", "not", "args", ".", "restore", ":", "print", "(", "\"\\nNew full page sizes after cropping, in PDF format (lbrt):\"", ")", "# Copy over each page, after modifying the appropriate PDF boxes.", "for", "page_num", "in", "range", "(", "input_doc", ".", "getNumPages", "(", ")", ")", ":", "curr_page", "=", "input_doc", ".", "getPage", "(", "page_num", ")", "# Restore any rotation which was originally on the page.", "curr_page", ".", "rotateClockwise", "(", "curr_page", ".", "rotationAngle", ")", "# Only do the restore from ArtBox if '--restore' option was selected.", "if", "args", ".", "restore", ":", "if", "not", "curr_page", ".", "artBox", ":", "print", "(", "\"\\nWarning from pdfCropMargins: Attempting to restore pages from\"", "\"\\nthe ArtBox in each page, but page\"", ",", "page_num", ",", "\"has no readable\"", "\"\\nArtBox. Leaving that page unchanged.\"", ",", "file", "=", "sys", ".", "stderr", ")", "continue", "curr_page", ".", "mediaBox", "=", "curr_page", ".", "artBox", "curr_page", ".", "cropBox", "=", "curr_page", ".", "artBox", "continue", "# Do the save to ArtBox if that option is chosen and Producer is set.", "if", "not", "args", ".", "noundosave", "and", "not", "already_cropped_by_this_program", ":", "curr_page", ".", "artBox", "=", "intersect_boxes", "(", "curr_page", ".", "mediaBox", ",", "curr_page", ".", "cropBox", ")", "# Reset the CropBox and MediaBox to their saved original values", "# (which were set in getFullPageBox, in the curr_page object's namespace).", "curr_page", ".", "mediaBox", "=", "curr_page", ".", "originalMediaBox", "curr_page", ".", "cropBox", "=", "curr_page", ".", "originalCropBox", "# Copy the original page without further mods if it wasn't in the range", "# selected for cropping.", "if", "page_num", "not", "in", "page_nums_to_crop", ":", "continue", "# Convert the computed \"box to crop to\" into a RectangleObject (for pyPdf).", "new_cropped_box", "=", "RectangleObject", "(", "crop_list", "[", "page_num", "]", ")", "if", "args", ".", "verbose", ":", "print", "(", "\"\\t\"", "+", "str", "(", "page_num", "+", "1", ")", "+", "\"\\t\"", ",", "new_cropped_box", ")", "# page numbering from 1", "if", "not", "args", ".", "boxesToSet", ":", "args", ".", "boxesToSet", "=", "[", "\"m\"", ",", "\"c\"", "]", "# Now set any boxes which were selected to be set via the --boxesToSet option.", "if", "\"m\"", "in", "args", ".", "boxesToSet", ":", "curr_page", ".", "mediaBox", "=", "new_cropped_box", "if", "\"c\"", "in", "args", ".", "boxesToSet", ":", "curr_page", ".", "cropBox", "=", "new_cropped_box", "if", "\"t\"", "in", "args", ".", "boxesToSet", ":", "curr_page", ".", "trimBox", "=", "new_cropped_box", "if", "\"a\"", "in", "args", ".", "boxesToSet", ":", "curr_page", ".", "artBox", "=", "new_cropped_box", "if", "\"b\"", "in", "args", ".", "boxesToSet", ":", "curr_page", ".", "bleedBox", "=", "new_cropped_box", "return" ]
Apply the crop list to the pages of the input PdfFileReader object.
[ "Apply", "the", "crop", "list", "to", "the", "pages", "of", "the", "input", "PdfFileReader", "object", "." ]
55aca874613750ebf4ae69fd8851bdbb7696d6ac
https://github.com/abarker/pdfCropMargins/blob/55aca874613750ebf4ae69fd8851bdbb7696d6ac/src/pdfCropMargins/main_pdfCropMargins.py#L497-L562
13,821
abarker/pdfCropMargins
src/pdfCropMargins/main_pdfCropMargins.py
setup_output_document
def setup_output_document(input_doc, tmp_input_doc, metadata_info, copy_document_catalog=True): """Create the output `PdfFileWriter` objects and copy over the relevant info.""" # NOTE: Inserting pages from a PdfFileReader into multiple PdfFileWriters # seems to cause problems (writer can hang on write), so only one is used. # This is why the tmp_input_doc file was created earlier, to get copies of # the page objects which are independent of those in input_doc. An ugly # hack for a nasty bug to track down. # NOTE: You can get the _root_object attribute (dict for the document # catalog) from the output document after calling cloneReaderDocumentRoot # or else you can just directly get it from the input_doc.trailer dict, as # below (which is from the code for cloneReaderDocumentRoot), but you # CANNOT set the full _root_object to be the _root_object attribute for the # actual output_doc or else only blank pages show up in acroread (whether # or not there is any attempt to explicitly copy the pages over). The same # is true for using cloneDocumentFromReader (which just calls # cloneReaderDocumentRoot followed by appendPagesFromReader). At least the # '/Pages' key and value in _root_object cause problems, so they are # skipped in the partial copy. Probably a bug in PyPDF2. See the original # code for the routines on the github pages below. # # https://github.com/mstamy2/PyPDF2/blob/master/PyPDF2/pdf.py # https://github.com/mstamy2/PyPDF2/blob/master/PyPDF2/generic.py # # Files still can change zoom mode on clicking outline links, but that is # an Adobe implementation problem, and happens even in the uncropped files: # https://superuser.com/questions/278302/ output_doc = PdfFileWriter() def root_objects_not_indirect(input_doc, root_object): """This can expand some of the `IndirectObject` objects in a root object to see the actual values. Currently only used for debugging. May mess up the input doc and require a temporary one.""" if isinstance(root_object, dict): return {root_objects_not_indirect(input_doc, key): root_objects_not_indirect(input_doc, value) for key, value in root_object.items()} elif isinstance(root_object, list): return [root_objects_not_indirect(input_doc, item) for item in root_object] elif isinstance(root_object, IndirectObject): return input_doc.getObject(root_object) else: return root_object doc_cat_whitelist = args.docCatWhitelist.split() if "ALL" in doc_cat_whitelist: doc_cat_whitelist = ["ALL"] doc_cat_blacklist = args.docCatBlacklist.split() if "ALL" in doc_cat_blacklist: doc_cat_blacklist = ["ALL"] # Partially copy over document catalog data from input_doc to output_doc. if not copy_document_catalog or ( not doc_cat_whitelist and doc_cat_blacklist == ["ALL"]): # Check this first, to completely skip the possibly problematic code getting # document catalog items when possible. Does not print a skipped list, though. if args.verbose: print("\nNot copying any document catalog items to the cropped document.") else: try: root_object = input_doc.trailer["/Root"] copied_items = [] skipped_items = [] for key, value in root_object.items(): # Some possible keys can be: # # /Type -- required, must have value /Catalog # /Pages -- required, indirect ref to page tree; skip, will change # /PageMode -- set to /UseNone, /UseOutlines, /UseThumbs, /Fullscreen, # /UseOC, or /UseAttachments, with /UseNone default. # /OpenAction -- action to take when document is opened, like zooming # /PageLayout -- set to /SinglePage, /OneColumn, /TwoColumnLeft, # /TwoColumnRight, /TwoPageLeft, /TwoPageRight # /Names -- a name dictionary to avoid having to use object numbers # /Outlines -- indirect ref to document outline, i.e., bookmarks # /Dests -- a dict of destinations in the PDF # /ViewerPreferences -- a viewer preferences dict # /MetaData -- XMP metadata, as opposed to other metadata # /PageLabels -- alternate numbering for pages, only affect PDF viewers if key == "/Pages": skipped_items.append(key) continue if doc_cat_whitelist != ["ALL"] and key not in doc_cat_whitelist: if doc_cat_blacklist == ["ALL"] or key in doc_cat_blacklist: skipped_items.append(key) continue copied_items.append(key) output_doc._root_object[NameObject(key)] = value if args.verbose: print("\nCopied these items from the document catalog:\n ", end="") print(*copied_items) print("Skipped copy of these items from the document catalog:\n ", end="") print(*skipped_items) except (KeyboardInterrupt, EOFError): raise except: # Just catch any errors here; don't know which might be raised. # On exception just warn and get a new PdfFileWriter object, to be safe. print("\nWarning: The document catalog data could not be copied to the" "\nnew, cropped document. Try fixing the PDF document using" "\n'--gsFix' if you have Ghostscript installed.", file=sys.stderr) output_doc = PdfFileWriter() #output_doc.appendPagesFromReader(input_doc) # Works, but wait and test more. for page in [input_doc.getPage(i) for i in range(input_doc.getNumPages())]: output_doc.addPage(page) tmp_output_doc = PdfFileWriter() #tmp_output_doc.appendPagesFromReader(tmp_input_doc) # Works, but test more. for page in [tmp_input_doc.getPage(i) for i in range(tmp_input_doc.getNumPages())]: tmp_output_doc.addPage(page) ## ## Copy the metadata from input_doc to output_doc, modifying the Producer string ## if this program didn't already set it. Get bool for whether this program ## cropped the document already. ## already_cropped_by_this_program = set_cropped_metadata(input_doc, output_doc, metadata_info) return output_doc, tmp_output_doc, already_cropped_by_this_program
python
def setup_output_document(input_doc, tmp_input_doc, metadata_info, copy_document_catalog=True): """Create the output `PdfFileWriter` objects and copy over the relevant info.""" # NOTE: Inserting pages from a PdfFileReader into multiple PdfFileWriters # seems to cause problems (writer can hang on write), so only one is used. # This is why the tmp_input_doc file was created earlier, to get copies of # the page objects which are independent of those in input_doc. An ugly # hack for a nasty bug to track down. # NOTE: You can get the _root_object attribute (dict for the document # catalog) from the output document after calling cloneReaderDocumentRoot # or else you can just directly get it from the input_doc.trailer dict, as # below (which is from the code for cloneReaderDocumentRoot), but you # CANNOT set the full _root_object to be the _root_object attribute for the # actual output_doc or else only blank pages show up in acroread (whether # or not there is any attempt to explicitly copy the pages over). The same # is true for using cloneDocumentFromReader (which just calls # cloneReaderDocumentRoot followed by appendPagesFromReader). At least the # '/Pages' key and value in _root_object cause problems, so they are # skipped in the partial copy. Probably a bug in PyPDF2. See the original # code for the routines on the github pages below. # # https://github.com/mstamy2/PyPDF2/blob/master/PyPDF2/pdf.py # https://github.com/mstamy2/PyPDF2/blob/master/PyPDF2/generic.py # # Files still can change zoom mode on clicking outline links, but that is # an Adobe implementation problem, and happens even in the uncropped files: # https://superuser.com/questions/278302/ output_doc = PdfFileWriter() def root_objects_not_indirect(input_doc, root_object): """This can expand some of the `IndirectObject` objects in a root object to see the actual values. Currently only used for debugging. May mess up the input doc and require a temporary one.""" if isinstance(root_object, dict): return {root_objects_not_indirect(input_doc, key): root_objects_not_indirect(input_doc, value) for key, value in root_object.items()} elif isinstance(root_object, list): return [root_objects_not_indirect(input_doc, item) for item in root_object] elif isinstance(root_object, IndirectObject): return input_doc.getObject(root_object) else: return root_object doc_cat_whitelist = args.docCatWhitelist.split() if "ALL" in doc_cat_whitelist: doc_cat_whitelist = ["ALL"] doc_cat_blacklist = args.docCatBlacklist.split() if "ALL" in doc_cat_blacklist: doc_cat_blacklist = ["ALL"] # Partially copy over document catalog data from input_doc to output_doc. if not copy_document_catalog or ( not doc_cat_whitelist and doc_cat_blacklist == ["ALL"]): # Check this first, to completely skip the possibly problematic code getting # document catalog items when possible. Does not print a skipped list, though. if args.verbose: print("\nNot copying any document catalog items to the cropped document.") else: try: root_object = input_doc.trailer["/Root"] copied_items = [] skipped_items = [] for key, value in root_object.items(): # Some possible keys can be: # # /Type -- required, must have value /Catalog # /Pages -- required, indirect ref to page tree; skip, will change # /PageMode -- set to /UseNone, /UseOutlines, /UseThumbs, /Fullscreen, # /UseOC, or /UseAttachments, with /UseNone default. # /OpenAction -- action to take when document is opened, like zooming # /PageLayout -- set to /SinglePage, /OneColumn, /TwoColumnLeft, # /TwoColumnRight, /TwoPageLeft, /TwoPageRight # /Names -- a name dictionary to avoid having to use object numbers # /Outlines -- indirect ref to document outline, i.e., bookmarks # /Dests -- a dict of destinations in the PDF # /ViewerPreferences -- a viewer preferences dict # /MetaData -- XMP metadata, as opposed to other metadata # /PageLabels -- alternate numbering for pages, only affect PDF viewers if key == "/Pages": skipped_items.append(key) continue if doc_cat_whitelist != ["ALL"] and key not in doc_cat_whitelist: if doc_cat_blacklist == ["ALL"] or key in doc_cat_blacklist: skipped_items.append(key) continue copied_items.append(key) output_doc._root_object[NameObject(key)] = value if args.verbose: print("\nCopied these items from the document catalog:\n ", end="") print(*copied_items) print("Skipped copy of these items from the document catalog:\n ", end="") print(*skipped_items) except (KeyboardInterrupt, EOFError): raise except: # Just catch any errors here; don't know which might be raised. # On exception just warn and get a new PdfFileWriter object, to be safe. print("\nWarning: The document catalog data could not be copied to the" "\nnew, cropped document. Try fixing the PDF document using" "\n'--gsFix' if you have Ghostscript installed.", file=sys.stderr) output_doc = PdfFileWriter() #output_doc.appendPagesFromReader(input_doc) # Works, but wait and test more. for page in [input_doc.getPage(i) for i in range(input_doc.getNumPages())]: output_doc.addPage(page) tmp_output_doc = PdfFileWriter() #tmp_output_doc.appendPagesFromReader(tmp_input_doc) # Works, but test more. for page in [tmp_input_doc.getPage(i) for i in range(tmp_input_doc.getNumPages())]: tmp_output_doc.addPage(page) ## ## Copy the metadata from input_doc to output_doc, modifying the Producer string ## if this program didn't already set it. Get bool for whether this program ## cropped the document already. ## already_cropped_by_this_program = set_cropped_metadata(input_doc, output_doc, metadata_info) return output_doc, tmp_output_doc, already_cropped_by_this_program
[ "def", "setup_output_document", "(", "input_doc", ",", "tmp_input_doc", ",", "metadata_info", ",", "copy_document_catalog", "=", "True", ")", ":", "# NOTE: Inserting pages from a PdfFileReader into multiple PdfFileWriters", "# seems to cause problems (writer can hang on write), so only one is used.", "# This is why the tmp_input_doc file was created earlier, to get copies of", "# the page objects which are independent of those in input_doc. An ugly", "# hack for a nasty bug to track down.", "# NOTE: You can get the _root_object attribute (dict for the document", "# catalog) from the output document after calling cloneReaderDocumentRoot", "# or else you can just directly get it from the input_doc.trailer dict, as", "# below (which is from the code for cloneReaderDocumentRoot), but you", "# CANNOT set the full _root_object to be the _root_object attribute for the", "# actual output_doc or else only blank pages show up in acroread (whether", "# or not there is any attempt to explicitly copy the pages over). The same", "# is true for using cloneDocumentFromReader (which just calls", "# cloneReaderDocumentRoot followed by appendPagesFromReader). At least the", "# '/Pages' key and value in _root_object cause problems, so they are", "# skipped in the partial copy. Probably a bug in PyPDF2. See the original", "# code for the routines on the github pages below.", "#", "# https://github.com/mstamy2/PyPDF2/blob/master/PyPDF2/pdf.py", "# https://github.com/mstamy2/PyPDF2/blob/master/PyPDF2/generic.py", "#", "# Files still can change zoom mode on clicking outline links, but that is", "# an Adobe implementation problem, and happens even in the uncropped files:", "# https://superuser.com/questions/278302/", "output_doc", "=", "PdfFileWriter", "(", ")", "def", "root_objects_not_indirect", "(", "input_doc", ",", "root_object", ")", ":", "\"\"\"This can expand some of the `IndirectObject` objects in a root object to\n see the actual values. Currently only used for debugging. May mess up the\n input doc and require a temporary one.\"\"\"", "if", "isinstance", "(", "root_object", ",", "dict", ")", ":", "return", "{", "root_objects_not_indirect", "(", "input_doc", ",", "key", ")", ":", "root_objects_not_indirect", "(", "input_doc", ",", "value", ")", "for", "key", ",", "value", "in", "root_object", ".", "items", "(", ")", "}", "elif", "isinstance", "(", "root_object", ",", "list", ")", ":", "return", "[", "root_objects_not_indirect", "(", "input_doc", ",", "item", ")", "for", "item", "in", "root_object", "]", "elif", "isinstance", "(", "root_object", ",", "IndirectObject", ")", ":", "return", "input_doc", ".", "getObject", "(", "root_object", ")", "else", ":", "return", "root_object", "doc_cat_whitelist", "=", "args", ".", "docCatWhitelist", ".", "split", "(", ")", "if", "\"ALL\"", "in", "doc_cat_whitelist", ":", "doc_cat_whitelist", "=", "[", "\"ALL\"", "]", "doc_cat_blacklist", "=", "args", ".", "docCatBlacklist", ".", "split", "(", ")", "if", "\"ALL\"", "in", "doc_cat_blacklist", ":", "doc_cat_blacklist", "=", "[", "\"ALL\"", "]", "# Partially copy over document catalog data from input_doc to output_doc.", "if", "not", "copy_document_catalog", "or", "(", "not", "doc_cat_whitelist", "and", "doc_cat_blacklist", "==", "[", "\"ALL\"", "]", ")", ":", "# Check this first, to completely skip the possibly problematic code getting", "# document catalog items when possible. Does not print a skipped list, though.", "if", "args", ".", "verbose", ":", "print", "(", "\"\\nNot copying any document catalog items to the cropped document.\"", ")", "else", ":", "try", ":", "root_object", "=", "input_doc", ".", "trailer", "[", "\"/Root\"", "]", "copied_items", "=", "[", "]", "skipped_items", "=", "[", "]", "for", "key", ",", "value", "in", "root_object", ".", "items", "(", ")", ":", "# Some possible keys can be:", "#", "# /Type -- required, must have value /Catalog", "# /Pages -- required, indirect ref to page tree; skip, will change", "# /PageMode -- set to /UseNone, /UseOutlines, /UseThumbs, /Fullscreen,", "# /UseOC, or /UseAttachments, with /UseNone default.", "# /OpenAction -- action to take when document is opened, like zooming", "# /PageLayout -- set to /SinglePage, /OneColumn, /TwoColumnLeft,", "# /TwoColumnRight, /TwoPageLeft, /TwoPageRight", "# /Names -- a name dictionary to avoid having to use object numbers", "# /Outlines -- indirect ref to document outline, i.e., bookmarks", "# /Dests -- a dict of destinations in the PDF", "# /ViewerPreferences -- a viewer preferences dict", "# /MetaData -- XMP metadata, as opposed to other metadata", "# /PageLabels -- alternate numbering for pages, only affect PDF viewers", "if", "key", "==", "\"/Pages\"", ":", "skipped_items", ".", "append", "(", "key", ")", "continue", "if", "doc_cat_whitelist", "!=", "[", "\"ALL\"", "]", "and", "key", "not", "in", "doc_cat_whitelist", ":", "if", "doc_cat_blacklist", "==", "[", "\"ALL\"", "]", "or", "key", "in", "doc_cat_blacklist", ":", "skipped_items", ".", "append", "(", "key", ")", "continue", "copied_items", ".", "append", "(", "key", ")", "output_doc", ".", "_root_object", "[", "NameObject", "(", "key", ")", "]", "=", "value", "if", "args", ".", "verbose", ":", "print", "(", "\"\\nCopied these items from the document catalog:\\n \"", ",", "end", "=", "\"\"", ")", "print", "(", "*", "copied_items", ")", "print", "(", "\"Skipped copy of these items from the document catalog:\\n \"", ",", "end", "=", "\"\"", ")", "print", "(", "*", "skipped_items", ")", "except", "(", "KeyboardInterrupt", ",", "EOFError", ")", ":", "raise", "except", ":", "# Just catch any errors here; don't know which might be raised.", "# On exception just warn and get a new PdfFileWriter object, to be safe.", "print", "(", "\"\\nWarning: The document catalog data could not be copied to the\"", "\"\\nnew, cropped document. Try fixing the PDF document using\"", "\"\\n'--gsFix' if you have Ghostscript installed.\"", ",", "file", "=", "sys", ".", "stderr", ")", "output_doc", "=", "PdfFileWriter", "(", ")", "#output_doc.appendPagesFromReader(input_doc) # Works, but wait and test more.", "for", "page", "in", "[", "input_doc", ".", "getPage", "(", "i", ")", "for", "i", "in", "range", "(", "input_doc", ".", "getNumPages", "(", ")", ")", "]", ":", "output_doc", ".", "addPage", "(", "page", ")", "tmp_output_doc", "=", "PdfFileWriter", "(", ")", "#tmp_output_doc.appendPagesFromReader(tmp_input_doc) # Works, but test more.", "for", "page", "in", "[", "tmp_input_doc", ".", "getPage", "(", "i", ")", "for", "i", "in", "range", "(", "tmp_input_doc", ".", "getNumPages", "(", ")", ")", "]", ":", "tmp_output_doc", ".", "addPage", "(", "page", ")", "##", "## Copy the metadata from input_doc to output_doc, modifying the Producer string", "## if this program didn't already set it. Get bool for whether this program", "## cropped the document already.", "##", "already_cropped_by_this_program", "=", "set_cropped_metadata", "(", "input_doc", ",", "output_doc", ",", "metadata_info", ")", "return", "output_doc", ",", "tmp_output_doc", ",", "already_cropped_by_this_program" ]
Create the output `PdfFileWriter` objects and copy over the relevant info.
[ "Create", "the", "output", "PdfFileWriter", "objects", "and", "copy", "over", "the", "relevant", "info", "." ]
55aca874613750ebf4ae69fd8851bdbb7696d6ac
https://github.com/abarker/pdfCropMargins/blob/55aca874613750ebf4ae69fd8851bdbb7696d6ac/src/pdfCropMargins/main_pdfCropMargins.py#L564-L689
13,822
miracle2k/flask-assets
src/flask_assets.py
FlaskConfigStorage.setdefault
def setdefault(self, key, value): """We may not always be connected to an app, but we still need to provide a way to the base environment to set it's defaults. """ try: super(FlaskConfigStorage, self).setdefault(key, value) except RuntimeError: self._defaults.__setitem__(key, value)
python
def setdefault(self, key, value): """We may not always be connected to an app, but we still need to provide a way to the base environment to set it's defaults. """ try: super(FlaskConfigStorage, self).setdefault(key, value) except RuntimeError: self._defaults.__setitem__(key, value)
[ "def", "setdefault", "(", "self", ",", "key", ",", "value", ")", ":", "try", ":", "super", "(", "FlaskConfigStorage", ",", "self", ")", ".", "setdefault", "(", "key", ",", "value", ")", "except", "RuntimeError", ":", "self", ".", "_defaults", ".", "__setitem__", "(", "key", ",", "value", ")" ]
We may not always be connected to an app, but we still need to provide a way to the base environment to set it's defaults.
[ "We", "may", "not", "always", "be", "connected", "to", "an", "app", "but", "we", "still", "need", "to", "provide", "a", "way", "to", "the", "base", "environment", "to", "set", "it", "s", "defaults", "." ]
ea9ff985bc96b79edb12ad4bed69403173f75562
https://github.com/miracle2k/flask-assets/blob/ea9ff985bc96b79edb12ad4bed69403173f75562/src/flask_assets.py#L75-L82
13,823
miracle2k/flask-assets
src/flask_assets.py
Environment._app
def _app(self): """The application object to work with; this is either the app that we have been bound to, or the current application. """ if self.app is not None: return self.app ctx = _request_ctx_stack.top if ctx is not None: return ctx.app try: from flask import _app_ctx_stack app_ctx = _app_ctx_stack.top if app_ctx is not None: return app_ctx.app except ImportError: pass raise RuntimeError('assets instance not bound to an application, '+ 'and no application in current context')
python
def _app(self): """The application object to work with; this is either the app that we have been bound to, or the current application. """ if self.app is not None: return self.app ctx = _request_ctx_stack.top if ctx is not None: return ctx.app try: from flask import _app_ctx_stack app_ctx = _app_ctx_stack.top if app_ctx is not None: return app_ctx.app except ImportError: pass raise RuntimeError('assets instance not bound to an application, '+ 'and no application in current context')
[ "def", "_app", "(", "self", ")", ":", "if", "self", ".", "app", "is", "not", "None", ":", "return", "self", ".", "app", "ctx", "=", "_request_ctx_stack", ".", "top", "if", "ctx", "is", "not", "None", ":", "return", "ctx", ".", "app", "try", ":", "from", "flask", "import", "_app_ctx_stack", "app_ctx", "=", "_app_ctx_stack", ".", "top", "if", "app_ctx", "is", "not", "None", ":", "return", "app_ctx", ".", "app", "except", "ImportError", ":", "pass", "raise", "RuntimeError", "(", "'assets instance not bound to an application, '", "+", "'and no application in current context'", ")" ]
The application object to work with; this is either the app that we have been bound to, or the current application.
[ "The", "application", "object", "to", "work", "with", ";", "this", "is", "either", "the", "app", "that", "we", "have", "been", "bound", "to", "or", "the", "current", "application", "." ]
ea9ff985bc96b79edb12ad4bed69403173f75562
https://github.com/miracle2k/flask-assets/blob/ea9ff985bc96b79edb12ad4bed69403173f75562/src/flask_assets.py#L310-L330
13,824
miracle2k/flask-assets
src/flask_assets.py
Environment.from_yaml
def from_yaml(self, path): """Register bundles from a YAML configuration file""" bundles = YAMLLoader(path).load_bundles() for name in bundles: self.register(name, bundles[name])
python
def from_yaml(self, path): """Register bundles from a YAML configuration file""" bundles = YAMLLoader(path).load_bundles() for name in bundles: self.register(name, bundles[name])
[ "def", "from_yaml", "(", "self", ",", "path", ")", ":", "bundles", "=", "YAMLLoader", "(", "path", ")", ".", "load_bundles", "(", ")", "for", "name", "in", "bundles", ":", "self", ".", "register", "(", "name", ",", "bundles", "[", "name", "]", ")" ]
Register bundles from a YAML configuration file
[ "Register", "bundles", "from", "a", "YAML", "configuration", "file" ]
ea9ff985bc96b79edb12ad4bed69403173f75562
https://github.com/miracle2k/flask-assets/blob/ea9ff985bc96b79edb12ad4bed69403173f75562/src/flask_assets.py#L361-L365
13,825
miracle2k/flask-assets
src/flask_assets.py
Environment.from_module
def from_module(self, path): """Register bundles from a Python module""" bundles = PythonLoader(path).load_bundles() for name in bundles: self.register(name, bundles[name])
python
def from_module(self, path): """Register bundles from a Python module""" bundles = PythonLoader(path).load_bundles() for name in bundles: self.register(name, bundles[name])
[ "def", "from_module", "(", "self", ",", "path", ")", ":", "bundles", "=", "PythonLoader", "(", "path", ")", ".", "load_bundles", "(", ")", "for", "name", "in", "bundles", ":", "self", ".", "register", "(", "name", ",", "bundles", "[", "name", "]", ")" ]
Register bundles from a Python module
[ "Register", "bundles", "from", "a", "Python", "module" ]
ea9ff985bc96b79edb12ad4bed69403173f75562
https://github.com/miracle2k/flask-assets/blob/ea9ff985bc96b79edb12ad4bed69403173f75562/src/flask_assets.py#L367-L371
13,826
persephone-tools/persephone
persephone/__init__.py
handle_unhandled_exception
def handle_unhandled_exception(exc_type, exc_value, exc_traceback): """Handler for unhandled exceptions that will write to the logs""" if issubclass(exc_type, KeyboardInterrupt): # call the default excepthook saved at __excepthook__ sys.__excepthook__(exc_type, exc_value, exc_traceback) return logger = logging.getLogger(__name__) # type: ignore logger.critical("Unhandled exception", exc_info=(exc_type, exc_value, exc_traceback))
python
def handle_unhandled_exception(exc_type, exc_value, exc_traceback): """Handler for unhandled exceptions that will write to the logs""" if issubclass(exc_type, KeyboardInterrupt): # call the default excepthook saved at __excepthook__ sys.__excepthook__(exc_type, exc_value, exc_traceback) return logger = logging.getLogger(__name__) # type: ignore logger.critical("Unhandled exception", exc_info=(exc_type, exc_value, exc_traceback))
[ "def", "handle_unhandled_exception", "(", "exc_type", ",", "exc_value", ",", "exc_traceback", ")", ":", "if", "issubclass", "(", "exc_type", ",", "KeyboardInterrupt", ")", ":", "# call the default excepthook saved at __excepthook__", "sys", ".", "__excepthook__", "(", "exc_type", ",", "exc_value", ",", "exc_traceback", ")", "return", "logger", "=", "logging", ".", "getLogger", "(", "__name__", ")", "# type: ignore", "logger", ".", "critical", "(", "\"Unhandled exception\"", ",", "exc_info", "=", "(", "exc_type", ",", "exc_value", ",", "exc_traceback", ")", ")" ]
Handler for unhandled exceptions that will write to the logs
[ "Handler", "for", "unhandled", "exceptions", "that", "will", "write", "to", "the", "logs" ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/__init__.py#L6-L13
13,827
persephone-tools/persephone
persephone/utterance.py
write_transcriptions
def write_transcriptions(utterances: List[Utterance], tgt_dir: Path, ext: str, lazy: bool) -> None: """ Write the utterance transcriptions to files in the tgt_dir. Is lazy and checks if the file already exists. Args: utterances: A list of Utterance objects to be written. tgt_dir: The directory in which to write the text of the utterances, one file per utterance. ext: The file extension for the utterances. Typically something like "phonemes", or "phonemes_and_tones". """ tgt_dir.mkdir(parents=True, exist_ok=True) for utter in utterances: out_path = tgt_dir / "{}.{}".format(utter.prefix, ext) if lazy and out_path.is_file(): continue with out_path.open("w") as f: print(utter.text, file=f)
python
def write_transcriptions(utterances: List[Utterance], tgt_dir: Path, ext: str, lazy: bool) -> None: """ Write the utterance transcriptions to files in the tgt_dir. Is lazy and checks if the file already exists. Args: utterances: A list of Utterance objects to be written. tgt_dir: The directory in which to write the text of the utterances, one file per utterance. ext: The file extension for the utterances. Typically something like "phonemes", or "phonemes_and_tones". """ tgt_dir.mkdir(parents=True, exist_ok=True) for utter in utterances: out_path = tgt_dir / "{}.{}".format(utter.prefix, ext) if lazy and out_path.is_file(): continue with out_path.open("w") as f: print(utter.text, file=f)
[ "def", "write_transcriptions", "(", "utterances", ":", "List", "[", "Utterance", "]", ",", "tgt_dir", ":", "Path", ",", "ext", ":", "str", ",", "lazy", ":", "bool", ")", "->", "None", ":", "tgt_dir", ".", "mkdir", "(", "parents", "=", "True", ",", "exist_ok", "=", "True", ")", "for", "utter", "in", "utterances", ":", "out_path", "=", "tgt_dir", "/", "\"{}.{}\"", ".", "format", "(", "utter", ".", "prefix", ",", "ext", ")", "if", "lazy", "and", "out_path", ".", "is_file", "(", ")", ":", "continue", "with", "out_path", ".", "open", "(", "\"w\"", ")", "as", "f", ":", "print", "(", "utter", ".", "text", ",", "file", "=", "f", ")" ]
Write the utterance transcriptions to files in the tgt_dir. Is lazy and checks if the file already exists. Args: utterances: A list of Utterance objects to be written. tgt_dir: The directory in which to write the text of the utterances, one file per utterance. ext: The file extension for the utterances. Typically something like "phonemes", or "phonemes_and_tones".
[ "Write", "the", "utterance", "transcriptions", "to", "files", "in", "the", "tgt_dir", ".", "Is", "lazy", "and", "checks", "if", "the", "file", "already", "exists", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/utterance.py#L45-L65
13,828
persephone-tools/persephone
persephone/utterance.py
remove_duplicates
def remove_duplicates(utterances: List[Utterance]) -> List[Utterance]: """ Removes utterances with the same start_time, end_time and text. Other metadata isn't considered. """ filtered_utters = [] utter_set = set() # type: Set[Tuple[int, int, str]] for utter in utterances: if (utter.start_time, utter.end_time, utter.text) in utter_set: continue filtered_utters.append(utter) utter_set.add((utter.start_time, utter.end_time, utter.text)) return filtered_utters
python
def remove_duplicates(utterances: List[Utterance]) -> List[Utterance]: """ Removes utterances with the same start_time, end_time and text. Other metadata isn't considered. """ filtered_utters = [] utter_set = set() # type: Set[Tuple[int, int, str]] for utter in utterances: if (utter.start_time, utter.end_time, utter.text) in utter_set: continue filtered_utters.append(utter) utter_set.add((utter.start_time, utter.end_time, utter.text)) return filtered_utters
[ "def", "remove_duplicates", "(", "utterances", ":", "List", "[", "Utterance", "]", ")", "->", "List", "[", "Utterance", "]", ":", "filtered_utters", "=", "[", "]", "utter_set", "=", "set", "(", ")", "# type: Set[Tuple[int, int, str]]", "for", "utter", "in", "utterances", ":", "if", "(", "utter", ".", "start_time", ",", "utter", ".", "end_time", ",", "utter", ".", "text", ")", "in", "utter_set", ":", "continue", "filtered_utters", ".", "append", "(", "utter", ")", "utter_set", ".", "add", "(", "(", "utter", ".", "start_time", ",", "utter", ".", "end_time", ",", "utter", ".", "text", ")", ")", "return", "filtered_utters" ]
Removes utterances with the same start_time, end_time and text. Other metadata isn't considered.
[ "Removes", "utterances", "with", "the", "same", "start_time", "end_time", "and", "text", ".", "Other", "metadata", "isn", "t", "considered", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/utterance.py#L67-L80
13,829
persephone-tools/persephone
persephone/utterance.py
make_speaker_utters
def make_speaker_utters(utterances: List[Utterance]) -> Dict[str, List[Utterance]]: """ Creates a dictionary mapping from speakers to their utterances. """ speaker_utters = defaultdict(list) # type: DefaultDict[str, List[Utterance]] for utter in utterances: speaker_utters[utter.speaker].append(utter) return speaker_utters
python
def make_speaker_utters(utterances: List[Utterance]) -> Dict[str, List[Utterance]]: """ Creates a dictionary mapping from speakers to their utterances. """ speaker_utters = defaultdict(list) # type: DefaultDict[str, List[Utterance]] for utter in utterances: speaker_utters[utter.speaker].append(utter) return speaker_utters
[ "def", "make_speaker_utters", "(", "utterances", ":", "List", "[", "Utterance", "]", ")", "->", "Dict", "[", "str", ",", "List", "[", "Utterance", "]", "]", ":", "speaker_utters", "=", "defaultdict", "(", "list", ")", "# type: DefaultDict[str, List[Utterance]]", "for", "utter", "in", "utterances", ":", "speaker_utters", "[", "utter", ".", "speaker", "]", ".", "append", "(", "utter", ")", "return", "speaker_utters" ]
Creates a dictionary mapping from speakers to their utterances.
[ "Creates", "a", "dictionary", "mapping", "from", "speakers", "to", "their", "utterances", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/utterance.py#L106-L113
13,830
persephone-tools/persephone
persephone/utterance.py
remove_too_short
def remove_too_short(utterances: List[Utterance], _winlen=25, winstep=10) -> List[Utterance]: """ Removes utterances that will probably have issues with CTC because of the number of frames being less than the number of tokens in the transcription. Assuming char tokenization to minimize false negatives. """ def is_too_short(utterance: Utterance) -> bool: charlen = len(utterance.text) if (duration(utterance) / winstep) < charlen: return True else: return False return [utter for utter in utterances if not is_too_short(utter)]
python
def remove_too_short(utterances: List[Utterance], _winlen=25, winstep=10) -> List[Utterance]: """ Removes utterances that will probably have issues with CTC because of the number of frames being less than the number of tokens in the transcription. Assuming char tokenization to minimize false negatives. """ def is_too_short(utterance: Utterance) -> bool: charlen = len(utterance.text) if (duration(utterance) / winstep) < charlen: return True else: return False return [utter for utter in utterances if not is_too_short(utter)]
[ "def", "remove_too_short", "(", "utterances", ":", "List", "[", "Utterance", "]", ",", "_winlen", "=", "25", ",", "winstep", "=", "10", ")", "->", "List", "[", "Utterance", "]", ":", "def", "is_too_short", "(", "utterance", ":", "Utterance", ")", "->", "bool", ":", "charlen", "=", "len", "(", "utterance", ".", "text", ")", "if", "(", "duration", "(", "utterance", ")", "/", "winstep", ")", "<", "charlen", ":", "return", "True", "else", ":", "return", "False", "return", "[", "utter", "for", "utter", "in", "utterances", "if", "not", "is_too_short", "(", "utter", ")", "]" ]
Removes utterances that will probably have issues with CTC because of the number of frames being less than the number of tokens in the transcription. Assuming char tokenization to minimize false negatives.
[ "Removes", "utterances", "that", "will", "probably", "have", "issues", "with", "CTC", "because", "of", "the", "number", "of", "frames", "being", "less", "than", "the", "number", "of", "tokens", "in", "the", "transcription", ".", "Assuming", "char", "tokenization", "to", "minimize", "false", "negatives", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/utterance.py#L128-L141
13,831
persephone-tools/persephone
persephone/distance.py
min_edit_distance
def min_edit_distance( source: Sequence[T], target: Sequence[T], ins_cost: Callable[..., int] = lambda _x: 1, del_cost: Callable[..., int] = lambda _x: 1, sub_cost: Callable[..., int] = lambda x, y: 0 if x == y else 1) -> int: """Calculates the minimum edit distance between two sequences. Uses the Levenshtein weighting as a default, but offers keyword arguments to supply functions to measure the costs for editing with different elements. Args: ins_cost: A function describing the cost of inserting a given char del_cost: A function describing the cost of deleting a given char sub_cost: A function describing the cost of substituting one char for Returns: The edit distance between the two input sequences. """ # Initialize an m+1 by n+1 array. Note that the strings start from index 1, # with index 0 being used to denote the empty string. n = len(target) m = len(source) distance = np.zeros((m+1, n+1), dtype=np.int16) # Initialize the zeroth row and column to be the distance from the empty # string. for i in range(1, m+1): distance[i, 0] = distance[i-1, 0] + ins_cost(source[i-1]) for j in range(1, n+1): distance[0, j] = distance[0, j-1] + ins_cost(target[j-1]) # Do the dynamic programming to fill in the matrix with the edit distances. for j in range(1, n+1): for i in range(1, m+1): distance[i, j] = min( distance[i-1, j] + ins_cost(source[i-1]), distance[i-1, j-1] + sub_cost(source[i-1],target[j-1]), distance[i, j-1] + del_cost(target[j-1])) return int(distance[len(source), len(target)])
python
def min_edit_distance( source: Sequence[T], target: Sequence[T], ins_cost: Callable[..., int] = lambda _x: 1, del_cost: Callable[..., int] = lambda _x: 1, sub_cost: Callable[..., int] = lambda x, y: 0 if x == y else 1) -> int: """Calculates the minimum edit distance between two sequences. Uses the Levenshtein weighting as a default, but offers keyword arguments to supply functions to measure the costs for editing with different elements. Args: ins_cost: A function describing the cost of inserting a given char del_cost: A function describing the cost of deleting a given char sub_cost: A function describing the cost of substituting one char for Returns: The edit distance between the two input sequences. """ # Initialize an m+1 by n+1 array. Note that the strings start from index 1, # with index 0 being used to denote the empty string. n = len(target) m = len(source) distance = np.zeros((m+1, n+1), dtype=np.int16) # Initialize the zeroth row and column to be the distance from the empty # string. for i in range(1, m+1): distance[i, 0] = distance[i-1, 0] + ins_cost(source[i-1]) for j in range(1, n+1): distance[0, j] = distance[0, j-1] + ins_cost(target[j-1]) # Do the dynamic programming to fill in the matrix with the edit distances. for j in range(1, n+1): for i in range(1, m+1): distance[i, j] = min( distance[i-1, j] + ins_cost(source[i-1]), distance[i-1, j-1] + sub_cost(source[i-1],target[j-1]), distance[i, j-1] + del_cost(target[j-1])) return int(distance[len(source), len(target)])
[ "def", "min_edit_distance", "(", "source", ":", "Sequence", "[", "T", "]", ",", "target", ":", "Sequence", "[", "T", "]", ",", "ins_cost", ":", "Callable", "[", "...", ",", "int", "]", "=", "lambda", "_x", ":", "1", ",", "del_cost", ":", "Callable", "[", "...", ",", "int", "]", "=", "lambda", "_x", ":", "1", ",", "sub_cost", ":", "Callable", "[", "...", ",", "int", "]", "=", "lambda", "x", ",", "y", ":", "0", "if", "x", "==", "y", "else", "1", ")", "->", "int", ":", "# Initialize an m+1 by n+1 array. Note that the strings start from index 1,", "# with index 0 being used to denote the empty string.", "n", "=", "len", "(", "target", ")", "m", "=", "len", "(", "source", ")", "distance", "=", "np", ".", "zeros", "(", "(", "m", "+", "1", ",", "n", "+", "1", ")", ",", "dtype", "=", "np", ".", "int16", ")", "# Initialize the zeroth row and column to be the distance from the empty", "# string.", "for", "i", "in", "range", "(", "1", ",", "m", "+", "1", ")", ":", "distance", "[", "i", ",", "0", "]", "=", "distance", "[", "i", "-", "1", ",", "0", "]", "+", "ins_cost", "(", "source", "[", "i", "-", "1", "]", ")", "for", "j", "in", "range", "(", "1", ",", "n", "+", "1", ")", ":", "distance", "[", "0", ",", "j", "]", "=", "distance", "[", "0", ",", "j", "-", "1", "]", "+", "ins_cost", "(", "target", "[", "j", "-", "1", "]", ")", "# Do the dynamic programming to fill in the matrix with the edit distances.", "for", "j", "in", "range", "(", "1", ",", "n", "+", "1", ")", ":", "for", "i", "in", "range", "(", "1", ",", "m", "+", "1", ")", ":", "distance", "[", "i", ",", "j", "]", "=", "min", "(", "distance", "[", "i", "-", "1", ",", "j", "]", "+", "ins_cost", "(", "source", "[", "i", "-", "1", "]", ")", ",", "distance", "[", "i", "-", "1", ",", "j", "-", "1", "]", "+", "sub_cost", "(", "source", "[", "i", "-", "1", "]", ",", "target", "[", "j", "-", "1", "]", ")", ",", "distance", "[", "i", ",", "j", "-", "1", "]", "+", "del_cost", "(", "target", "[", "j", "-", "1", "]", ")", ")", "return", "int", "(", "distance", "[", "len", "(", "source", ")", ",", "len", "(", "target", ")", "]", ")" ]
Calculates the minimum edit distance between two sequences. Uses the Levenshtein weighting as a default, but offers keyword arguments to supply functions to measure the costs for editing with different elements. Args: ins_cost: A function describing the cost of inserting a given char del_cost: A function describing the cost of deleting a given char sub_cost: A function describing the cost of substituting one char for Returns: The edit distance between the two input sequences.
[ "Calculates", "the", "minimum", "edit", "distance", "between", "two", "sequences", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/distance.py#L9-L51
13,832
persephone-tools/persephone
persephone/distance.py
word_error_rate
def word_error_rate(ref: Sequence[T], hyp: Sequence[T]) -> float: """ Calculate the word error rate of a sequence against a reference. Args: ref: The gold-standard reference sequence hyp: The hypothesis to be evaluated against the reference. Returns: The word error rate of the supplied hypothesis with respect to the reference string. Raises: persephone.exceptions.EmptyReferenceException: If the length of the reference sequence is 0. """ if len(ref) == 0: raise EmptyReferenceException( "Cannot calculating word error rate against a length 0 "\ "reference sequence.") distance = min_edit_distance(ref, hyp) return 100 * float(distance) / len(ref)
python
def word_error_rate(ref: Sequence[T], hyp: Sequence[T]) -> float: """ Calculate the word error rate of a sequence against a reference. Args: ref: The gold-standard reference sequence hyp: The hypothesis to be evaluated against the reference. Returns: The word error rate of the supplied hypothesis with respect to the reference string. Raises: persephone.exceptions.EmptyReferenceException: If the length of the reference sequence is 0. """ if len(ref) == 0: raise EmptyReferenceException( "Cannot calculating word error rate against a length 0 "\ "reference sequence.") distance = min_edit_distance(ref, hyp) return 100 * float(distance) / len(ref)
[ "def", "word_error_rate", "(", "ref", ":", "Sequence", "[", "T", "]", ",", "hyp", ":", "Sequence", "[", "T", "]", ")", "->", "float", ":", "if", "len", "(", "ref", ")", "==", "0", ":", "raise", "EmptyReferenceException", "(", "\"Cannot calculating word error rate against a length 0 \"", "\"reference sequence.\"", ")", "distance", "=", "min_edit_distance", "(", "ref", ",", "hyp", ")", "return", "100", "*", "float", "(", "distance", ")", "/", "len", "(", "ref", ")" ]
Calculate the word error rate of a sequence against a reference. Args: ref: The gold-standard reference sequence hyp: The hypothesis to be evaluated against the reference. Returns: The word error rate of the supplied hypothesis with respect to the reference string. Raises: persephone.exceptions.EmptyReferenceException: If the length of the reference sequence is 0.
[ "Calculate", "the", "word", "error", "rate", "of", "a", "sequence", "against", "a", "reference", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/distance.py#L178-L200
13,833
persephone-tools/persephone
persephone/model.py
dense_to_human_readable
def dense_to_human_readable(dense_repr: Sequence[Sequence[int]], index_to_label: Dict[int, str]) -> List[List[str]]: """ Converts a dense representation of model decoded output into human readable, using a mapping from indices to labels. """ transcripts = [] for dense_r in dense_repr: non_empty_phonemes = [phn_i for phn_i in dense_r if phn_i != 0] transcript = [index_to_label[index] for index in non_empty_phonemes] transcripts.append(transcript) return transcripts
python
def dense_to_human_readable(dense_repr: Sequence[Sequence[int]], index_to_label: Dict[int, str]) -> List[List[str]]: """ Converts a dense representation of model decoded output into human readable, using a mapping from indices to labels. """ transcripts = [] for dense_r in dense_repr: non_empty_phonemes = [phn_i for phn_i in dense_r if phn_i != 0] transcript = [index_to_label[index] for index in non_empty_phonemes] transcripts.append(transcript) return transcripts
[ "def", "dense_to_human_readable", "(", "dense_repr", ":", "Sequence", "[", "Sequence", "[", "int", "]", "]", ",", "index_to_label", ":", "Dict", "[", "int", ",", "str", "]", ")", "->", "List", "[", "List", "[", "str", "]", "]", ":", "transcripts", "=", "[", "]", "for", "dense_r", "in", "dense_repr", ":", "non_empty_phonemes", "=", "[", "phn_i", "for", "phn_i", "in", "dense_r", "if", "phn_i", "!=", "0", "]", "transcript", "=", "[", "index_to_label", "[", "index", "]", "for", "index", "in", "non_empty_phonemes", "]", "transcripts", ".", "append", "(", "transcript", ")", "return", "transcripts" ]
Converts a dense representation of model decoded output into human readable, using a mapping from indices to labels.
[ "Converts", "a", "dense", "representation", "of", "model", "decoded", "output", "into", "human", "readable", "using", "a", "mapping", "from", "indices", "to", "labels", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/model.py#L36-L46
13,834
persephone-tools/persephone
persephone/model.py
decode
def decode(model_path_prefix: Union[str, Path], input_paths: Sequence[Path], label_set: Set[str], *, feature_type: str = "fbank", #TODO Make this None and infer feature_type from dimension of NN input layer. batch_size: int = 64, feat_dir: Optional[Path]=None, batch_x_name: str="batch_x:0", batch_x_lens_name: str="batch_x_lens:0", output_name: str="hyp_dense_decoded:0") -> List[List[str]]: """Use an existing tensorflow model that exists on disk to decode WAV files. Args: model_path_prefix: The path to the saved tensorflow model. This is the full prefix to the ".ckpt" file. input_paths: A sequence of `pathlib.Path`s to WAV files to put through the model provided. label_set: The set of all the labels this model uses. feature_type: The type of features this model uses. Note that this MUST match the type of features that the model was trained on initially. feat_dir: Any files that require preprocessing will be saved to the path specified by this. batch_x_name: The name of the tensorflow input for batch_x batch_x_lens_name: The name of the tensorflow input for batch_x_lens output_name: The name of the tensorflow output """ if not input_paths: raise PersephoneException("No untranscribed WAVs to transcribe.") model_path_prefix = str(model_path_prefix) for p in input_paths: if not p.exists(): raise PersephoneException( "The WAV file path {} does not exist".format(p) ) preprocessed_file_paths = [] for p in input_paths: prefix = p.stem # Check the "feat" directory as per the filesystem conventions of a Corpus feature_file_ext = ".{}.npy".format(feature_type) conventional_npy_location = p.parent.parent / "feat" / (Path(prefix + feature_file_ext)) if conventional_npy_location.exists(): # don't need to preprocess it preprocessed_file_paths.append(conventional_npy_location) else: if not feat_dir: feat_dir = p.parent.parent / "feat" if not feat_dir.is_dir(): os.makedirs(str(feat_dir)) mono16k_wav_path = feat_dir / "{}.wav".format(prefix) feat_path = feat_dir / "{}.{}.npy".format(prefix, feature_type) feat_extract.convert_wav(p, mono16k_wav_path) preprocessed_file_paths.append(feat_path) # preprocess the file that weren't found in the features directory # as per the filesystem conventions if feat_dir: feat_extract.from_dir(feat_dir, feature_type) fn_batches = utils.make_batches(preprocessed_file_paths, batch_size) # Load the model and perform decoding. metagraph = load_metagraph(model_path_prefix) with tf.Session() as sess: metagraph.restore(sess, model_path_prefix) for fn_batch in fn_batches: batch_x, batch_x_lens = utils.load_batch_x(fn_batch) # TODO These placeholder names should be a backup if names from a newer # naming scheme aren't present. Otherwise this won't generalize to # different architectures. feed_dict = {batch_x_name: batch_x, batch_x_lens_name: batch_x_lens} dense_decoded = sess.run(output_name, feed_dict=feed_dict) # Create a human-readable representation of the decoded. indices_to_labels = labels.make_indices_to_labels(label_set) human_readable = dense_to_human_readable(dense_decoded, indices_to_labels) return human_readable
python
def decode(model_path_prefix: Union[str, Path], input_paths: Sequence[Path], label_set: Set[str], *, feature_type: str = "fbank", #TODO Make this None and infer feature_type from dimension of NN input layer. batch_size: int = 64, feat_dir: Optional[Path]=None, batch_x_name: str="batch_x:0", batch_x_lens_name: str="batch_x_lens:0", output_name: str="hyp_dense_decoded:0") -> List[List[str]]: """Use an existing tensorflow model that exists on disk to decode WAV files. Args: model_path_prefix: The path to the saved tensorflow model. This is the full prefix to the ".ckpt" file. input_paths: A sequence of `pathlib.Path`s to WAV files to put through the model provided. label_set: The set of all the labels this model uses. feature_type: The type of features this model uses. Note that this MUST match the type of features that the model was trained on initially. feat_dir: Any files that require preprocessing will be saved to the path specified by this. batch_x_name: The name of the tensorflow input for batch_x batch_x_lens_name: The name of the tensorflow input for batch_x_lens output_name: The name of the tensorflow output """ if not input_paths: raise PersephoneException("No untranscribed WAVs to transcribe.") model_path_prefix = str(model_path_prefix) for p in input_paths: if not p.exists(): raise PersephoneException( "The WAV file path {} does not exist".format(p) ) preprocessed_file_paths = [] for p in input_paths: prefix = p.stem # Check the "feat" directory as per the filesystem conventions of a Corpus feature_file_ext = ".{}.npy".format(feature_type) conventional_npy_location = p.parent.parent / "feat" / (Path(prefix + feature_file_ext)) if conventional_npy_location.exists(): # don't need to preprocess it preprocessed_file_paths.append(conventional_npy_location) else: if not feat_dir: feat_dir = p.parent.parent / "feat" if not feat_dir.is_dir(): os.makedirs(str(feat_dir)) mono16k_wav_path = feat_dir / "{}.wav".format(prefix) feat_path = feat_dir / "{}.{}.npy".format(prefix, feature_type) feat_extract.convert_wav(p, mono16k_wav_path) preprocessed_file_paths.append(feat_path) # preprocess the file that weren't found in the features directory # as per the filesystem conventions if feat_dir: feat_extract.from_dir(feat_dir, feature_type) fn_batches = utils.make_batches(preprocessed_file_paths, batch_size) # Load the model and perform decoding. metagraph = load_metagraph(model_path_prefix) with tf.Session() as sess: metagraph.restore(sess, model_path_prefix) for fn_batch in fn_batches: batch_x, batch_x_lens = utils.load_batch_x(fn_batch) # TODO These placeholder names should be a backup if names from a newer # naming scheme aren't present. Otherwise this won't generalize to # different architectures. feed_dict = {batch_x_name: batch_x, batch_x_lens_name: batch_x_lens} dense_decoded = sess.run(output_name, feed_dict=feed_dict) # Create a human-readable representation of the decoded. indices_to_labels = labels.make_indices_to_labels(label_set) human_readable = dense_to_human_readable(dense_decoded, indices_to_labels) return human_readable
[ "def", "decode", "(", "model_path_prefix", ":", "Union", "[", "str", ",", "Path", "]", ",", "input_paths", ":", "Sequence", "[", "Path", "]", ",", "label_set", ":", "Set", "[", "str", "]", ",", "*", ",", "feature_type", ":", "str", "=", "\"fbank\"", ",", "#TODO Make this None and infer feature_type from dimension of NN input layer.", "batch_size", ":", "int", "=", "64", ",", "feat_dir", ":", "Optional", "[", "Path", "]", "=", "None", ",", "batch_x_name", ":", "str", "=", "\"batch_x:0\"", ",", "batch_x_lens_name", ":", "str", "=", "\"batch_x_lens:0\"", ",", "output_name", ":", "str", "=", "\"hyp_dense_decoded:0\"", ")", "->", "List", "[", "List", "[", "str", "]", "]", ":", "if", "not", "input_paths", ":", "raise", "PersephoneException", "(", "\"No untranscribed WAVs to transcribe.\"", ")", "model_path_prefix", "=", "str", "(", "model_path_prefix", ")", "for", "p", "in", "input_paths", ":", "if", "not", "p", ".", "exists", "(", ")", ":", "raise", "PersephoneException", "(", "\"The WAV file path {} does not exist\"", ".", "format", "(", "p", ")", ")", "preprocessed_file_paths", "=", "[", "]", "for", "p", "in", "input_paths", ":", "prefix", "=", "p", ".", "stem", "# Check the \"feat\" directory as per the filesystem conventions of a Corpus", "feature_file_ext", "=", "\".{}.npy\"", ".", "format", "(", "feature_type", ")", "conventional_npy_location", "=", "p", ".", "parent", ".", "parent", "/", "\"feat\"", "/", "(", "Path", "(", "prefix", "+", "feature_file_ext", ")", ")", "if", "conventional_npy_location", ".", "exists", "(", ")", ":", "# don't need to preprocess it", "preprocessed_file_paths", ".", "append", "(", "conventional_npy_location", ")", "else", ":", "if", "not", "feat_dir", ":", "feat_dir", "=", "p", ".", "parent", ".", "parent", "/", "\"feat\"", "if", "not", "feat_dir", ".", "is_dir", "(", ")", ":", "os", ".", "makedirs", "(", "str", "(", "feat_dir", ")", ")", "mono16k_wav_path", "=", "feat_dir", "/", "\"{}.wav\"", ".", "format", "(", "prefix", ")", "feat_path", "=", "feat_dir", "/", "\"{}.{}.npy\"", ".", "format", "(", "prefix", ",", "feature_type", ")", "feat_extract", ".", "convert_wav", "(", "p", ",", "mono16k_wav_path", ")", "preprocessed_file_paths", ".", "append", "(", "feat_path", ")", "# preprocess the file that weren't found in the features directory", "# as per the filesystem conventions", "if", "feat_dir", ":", "feat_extract", ".", "from_dir", "(", "feat_dir", ",", "feature_type", ")", "fn_batches", "=", "utils", ".", "make_batches", "(", "preprocessed_file_paths", ",", "batch_size", ")", "# Load the model and perform decoding.", "metagraph", "=", "load_metagraph", "(", "model_path_prefix", ")", "with", "tf", ".", "Session", "(", ")", "as", "sess", ":", "metagraph", ".", "restore", "(", "sess", ",", "model_path_prefix", ")", "for", "fn_batch", "in", "fn_batches", ":", "batch_x", ",", "batch_x_lens", "=", "utils", ".", "load_batch_x", "(", "fn_batch", ")", "# TODO These placeholder names should be a backup if names from a newer", "# naming scheme aren't present. Otherwise this won't generalize to", "# different architectures.", "feed_dict", "=", "{", "batch_x_name", ":", "batch_x", ",", "batch_x_lens_name", ":", "batch_x_lens", "}", "dense_decoded", "=", "sess", ".", "run", "(", "output_name", ",", "feed_dict", "=", "feed_dict", ")", "# Create a human-readable representation of the decoded.", "indices_to_labels", "=", "labels", ".", "make_indices_to_labels", "(", "label_set", ")", "human_readable", "=", "dense_to_human_readable", "(", "dense_decoded", ",", "indices_to_labels", ")", "return", "human_readable" ]
Use an existing tensorflow model that exists on disk to decode WAV files. Args: model_path_prefix: The path to the saved tensorflow model. This is the full prefix to the ".ckpt" file. input_paths: A sequence of `pathlib.Path`s to WAV files to put through the model provided. label_set: The set of all the labels this model uses. feature_type: The type of features this model uses. Note that this MUST match the type of features that the model was trained on initially. feat_dir: Any files that require preprocessing will be saved to the path specified by this. batch_x_name: The name of the tensorflow input for batch_x batch_x_lens_name: The name of the tensorflow input for batch_x_lens output_name: The name of the tensorflow output
[ "Use", "an", "existing", "tensorflow", "model", "that", "exists", "on", "disk", "to", "decode", "WAV", "files", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/model.py#L68-L153
13,835
persephone-tools/persephone
persephone/model.py
Model.eval
def eval(self, restore_model_path: Optional[str]=None) -> None: """ Evaluates the model on a test set.""" saver = tf.train.Saver() with tf.Session(config=allow_growth_config) as sess: if restore_model_path: logger.info("restoring model from %s", restore_model_path) saver.restore(sess, restore_model_path) else: assert self.saved_model_path, "{}".format(self.saved_model_path) logger.info("restoring model from %s", self.saved_model_path) saver.restore(sess, self.saved_model_path) test_x, test_x_lens, test_y = self.corpus_reader.test_batch() feed_dict = {self.batch_x: test_x, self.batch_x_lens: test_x_lens, self.batch_y: test_y} test_ler, dense_decoded, dense_ref = sess.run( [self.ler, self.dense_decoded, self.dense_ref], feed_dict=feed_dict) hyps, refs = self.corpus_reader.human_readable_hyp_ref( dense_decoded, dense_ref) # Log hypotheses hyps_dir = os.path.join(self.exp_dir, "test") if not os.path.isdir(hyps_dir): os.mkdir(hyps_dir) with open(os.path.join(hyps_dir, "hyps"), "w", encoding=ENCODING) as hyps_f: for hyp in hyps: print(" ".join(hyp), file=hyps_f) with open(os.path.join(hyps_dir, "refs"), "w", encoding=ENCODING) as refs_f: for ref in refs: print(" ".join(ref), file=refs_f) test_per = utils.batch_per(hyps, refs) assert test_per == test_ler with open(os.path.join(hyps_dir, "test_per"), "w", encoding=ENCODING) as per_f: print("LER: %f" % (test_ler), file=per_f)
python
def eval(self, restore_model_path: Optional[str]=None) -> None: """ Evaluates the model on a test set.""" saver = tf.train.Saver() with tf.Session(config=allow_growth_config) as sess: if restore_model_path: logger.info("restoring model from %s", restore_model_path) saver.restore(sess, restore_model_path) else: assert self.saved_model_path, "{}".format(self.saved_model_path) logger.info("restoring model from %s", self.saved_model_path) saver.restore(sess, self.saved_model_path) test_x, test_x_lens, test_y = self.corpus_reader.test_batch() feed_dict = {self.batch_x: test_x, self.batch_x_lens: test_x_lens, self.batch_y: test_y} test_ler, dense_decoded, dense_ref = sess.run( [self.ler, self.dense_decoded, self.dense_ref], feed_dict=feed_dict) hyps, refs = self.corpus_reader.human_readable_hyp_ref( dense_decoded, dense_ref) # Log hypotheses hyps_dir = os.path.join(self.exp_dir, "test") if not os.path.isdir(hyps_dir): os.mkdir(hyps_dir) with open(os.path.join(hyps_dir, "hyps"), "w", encoding=ENCODING) as hyps_f: for hyp in hyps: print(" ".join(hyp), file=hyps_f) with open(os.path.join(hyps_dir, "refs"), "w", encoding=ENCODING) as refs_f: for ref in refs: print(" ".join(ref), file=refs_f) test_per = utils.batch_per(hyps, refs) assert test_per == test_ler with open(os.path.join(hyps_dir, "test_per"), "w", encoding=ENCODING) as per_f: print("LER: %f" % (test_ler), file=per_f)
[ "def", "eval", "(", "self", ",", "restore_model_path", ":", "Optional", "[", "str", "]", "=", "None", ")", "->", "None", ":", "saver", "=", "tf", ".", "train", ".", "Saver", "(", ")", "with", "tf", ".", "Session", "(", "config", "=", "allow_growth_config", ")", "as", "sess", ":", "if", "restore_model_path", ":", "logger", ".", "info", "(", "\"restoring model from %s\"", ",", "restore_model_path", ")", "saver", ".", "restore", "(", "sess", ",", "restore_model_path", ")", "else", ":", "assert", "self", ".", "saved_model_path", ",", "\"{}\"", ".", "format", "(", "self", ".", "saved_model_path", ")", "logger", ".", "info", "(", "\"restoring model from %s\"", ",", "self", ".", "saved_model_path", ")", "saver", ".", "restore", "(", "sess", ",", "self", ".", "saved_model_path", ")", "test_x", ",", "test_x_lens", ",", "test_y", "=", "self", ".", "corpus_reader", ".", "test_batch", "(", ")", "feed_dict", "=", "{", "self", ".", "batch_x", ":", "test_x", ",", "self", ".", "batch_x_lens", ":", "test_x_lens", ",", "self", ".", "batch_y", ":", "test_y", "}", "test_ler", ",", "dense_decoded", ",", "dense_ref", "=", "sess", ".", "run", "(", "[", "self", ".", "ler", ",", "self", ".", "dense_decoded", ",", "self", ".", "dense_ref", "]", ",", "feed_dict", "=", "feed_dict", ")", "hyps", ",", "refs", "=", "self", ".", "corpus_reader", ".", "human_readable_hyp_ref", "(", "dense_decoded", ",", "dense_ref", ")", "# Log hypotheses", "hyps_dir", "=", "os", ".", "path", ".", "join", "(", "self", ".", "exp_dir", ",", "\"test\"", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "hyps_dir", ")", ":", "os", ".", "mkdir", "(", "hyps_dir", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "hyps_dir", ",", "\"hyps\"", ")", ",", "\"w\"", ",", "encoding", "=", "ENCODING", ")", "as", "hyps_f", ":", "for", "hyp", "in", "hyps", ":", "print", "(", "\" \"", ".", "join", "(", "hyp", ")", ",", "file", "=", "hyps_f", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "hyps_dir", ",", "\"refs\"", ")", ",", "\"w\"", ",", "encoding", "=", "ENCODING", ")", "as", "refs_f", ":", "for", "ref", "in", "refs", ":", "print", "(", "\" \"", ".", "join", "(", "ref", ")", ",", "file", "=", "refs_f", ")", "test_per", "=", "utils", ".", "batch_per", "(", "hyps", ",", "refs", ")", "assert", "test_per", "==", "test_ler", "with", "open", "(", "os", ".", "path", ".", "join", "(", "hyps_dir", ",", "\"test_per\"", ")", ",", "\"w\"", ",", "encoding", "=", "ENCODING", ")", "as", "per_f", ":", "print", "(", "\"LER: %f\"", "%", "(", "test_ler", ")", ",", "file", "=", "per_f", ")" ]
Evaluates the model on a test set.
[ "Evaluates", "the", "model", "on", "a", "test", "set", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/model.py#L258-L299
13,836
persephone-tools/persephone
persephone/model.py
Model.output_best_scores
def output_best_scores(self, best_epoch_str: str) -> None: """Output best scores to the filesystem""" BEST_SCORES_FILENAME = "best_scores.txt" with open(os.path.join(self.exp_dir, BEST_SCORES_FILENAME), "w", encoding=ENCODING) as best_f: print(best_epoch_str, file=best_f, flush=True)
python
def output_best_scores(self, best_epoch_str: str) -> None: """Output best scores to the filesystem""" BEST_SCORES_FILENAME = "best_scores.txt" with open(os.path.join(self.exp_dir, BEST_SCORES_FILENAME), "w", encoding=ENCODING) as best_f: print(best_epoch_str, file=best_f, flush=True)
[ "def", "output_best_scores", "(", "self", ",", "best_epoch_str", ":", "str", ")", "->", "None", ":", "BEST_SCORES_FILENAME", "=", "\"best_scores.txt\"", "with", "open", "(", "os", ".", "path", ".", "join", "(", "self", ".", "exp_dir", ",", "BEST_SCORES_FILENAME", ")", ",", "\"w\"", ",", "encoding", "=", "ENCODING", ")", "as", "best_f", ":", "print", "(", "best_epoch_str", ",", "file", "=", "best_f", ",", "flush", "=", "True", ")" ]
Output best scores to the filesystem
[ "Output", "best", "scores", "to", "the", "filesystem" ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/model.py#L301-L306
13,837
persephone-tools/persephone
persephone/corpus.py
ensure_no_set_overlap
def ensure_no_set_overlap(train: Sequence[str], valid: Sequence[str], test: Sequence[str]) -> None: """ Ensures no test set data has creeped into the training set.""" logger.debug("Ensuring that the training, validation and test data sets have no overlap") train_s = set(train) valid_s = set(valid) test_s = set(test) if train_s & valid_s: logger.warning("train and valid have overlapping items: {}".format(train_s & valid_s)) raise PersephoneException("train and valid have overlapping items: {}".format(train_s & valid_s)) if train_s & test_s: logger.warning("train and test have overlapping items: {}".format(train_s & test_s)) raise PersephoneException("train and test have overlapping items: {}".format(train_s & test_s)) if valid_s & test_s: logger.warning("valid and test have overlapping items: {}".format(valid_s & test_s)) raise PersephoneException("valid and test have overlapping items: {}".format(valid_s & test_s))
python
def ensure_no_set_overlap(train: Sequence[str], valid: Sequence[str], test: Sequence[str]) -> None: """ Ensures no test set data has creeped into the training set.""" logger.debug("Ensuring that the training, validation and test data sets have no overlap") train_s = set(train) valid_s = set(valid) test_s = set(test) if train_s & valid_s: logger.warning("train and valid have overlapping items: {}".format(train_s & valid_s)) raise PersephoneException("train and valid have overlapping items: {}".format(train_s & valid_s)) if train_s & test_s: logger.warning("train and test have overlapping items: {}".format(train_s & test_s)) raise PersephoneException("train and test have overlapping items: {}".format(train_s & test_s)) if valid_s & test_s: logger.warning("valid and test have overlapping items: {}".format(valid_s & test_s)) raise PersephoneException("valid and test have overlapping items: {}".format(valid_s & test_s))
[ "def", "ensure_no_set_overlap", "(", "train", ":", "Sequence", "[", "str", "]", ",", "valid", ":", "Sequence", "[", "str", "]", ",", "test", ":", "Sequence", "[", "str", "]", ")", "->", "None", ":", "logger", ".", "debug", "(", "\"Ensuring that the training, validation and test data sets have no overlap\"", ")", "train_s", "=", "set", "(", "train", ")", "valid_s", "=", "set", "(", "valid", ")", "test_s", "=", "set", "(", "test", ")", "if", "train_s", "&", "valid_s", ":", "logger", ".", "warning", "(", "\"train and valid have overlapping items: {}\"", ".", "format", "(", "train_s", "&", "valid_s", ")", ")", "raise", "PersephoneException", "(", "\"train and valid have overlapping items: {}\"", ".", "format", "(", "train_s", "&", "valid_s", ")", ")", "if", "train_s", "&", "test_s", ":", "logger", ".", "warning", "(", "\"train and test have overlapping items: {}\"", ".", "format", "(", "train_s", "&", "test_s", ")", ")", "raise", "PersephoneException", "(", "\"train and test have overlapping items: {}\"", ".", "format", "(", "train_s", "&", "test_s", ")", ")", "if", "valid_s", "&", "test_s", ":", "logger", ".", "warning", "(", "\"valid and test have overlapping items: {}\"", ".", "format", "(", "valid_s", "&", "test_s", ")", ")", "raise", "PersephoneException", "(", "\"valid and test have overlapping items: {}\"", ".", "format", "(", "valid_s", "&", "test_s", ")", ")" ]
Ensures no test set data has creeped into the training set.
[ "Ensures", "no", "test", "set", "data", "has", "creeped", "into", "the", "training", "set", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/corpus.py#L31-L47
13,838
persephone-tools/persephone
persephone/corpus.py
get_untranscribed_prefixes_from_file
def get_untranscribed_prefixes_from_file(target_directory: Path) -> List[str]: """ The file "untranscribed_prefixes.txt" will specify prefixes which do not have an associated transcription file if placed in the target directory. This will fetch those prefixes from that file and will return an empty list if that file does not exist. See find_untranscribed_wavs function for finding untranscribed prefixes in an experiment directory. Returns: A list of all untranscribed prefixes as specified in the file """ untranscribed_prefix_fn = target_directory / "untranscribed_prefixes.txt" if untranscribed_prefix_fn.exists(): with untranscribed_prefix_fn.open() as f: prefixes = f.readlines() return [prefix.strip() for prefix in prefixes] else: #logger.warning("Attempting to get untranscribed prefixes but the file ({})" # " that should specify these does not exist".format(untranscribed_prefix_fn)) pass return []
python
def get_untranscribed_prefixes_from_file(target_directory: Path) -> List[str]: """ The file "untranscribed_prefixes.txt" will specify prefixes which do not have an associated transcription file if placed in the target directory. This will fetch those prefixes from that file and will return an empty list if that file does not exist. See find_untranscribed_wavs function for finding untranscribed prefixes in an experiment directory. Returns: A list of all untranscribed prefixes as specified in the file """ untranscribed_prefix_fn = target_directory / "untranscribed_prefixes.txt" if untranscribed_prefix_fn.exists(): with untranscribed_prefix_fn.open() as f: prefixes = f.readlines() return [prefix.strip() for prefix in prefixes] else: #logger.warning("Attempting to get untranscribed prefixes but the file ({})" # " that should specify these does not exist".format(untranscribed_prefix_fn)) pass return []
[ "def", "get_untranscribed_prefixes_from_file", "(", "target_directory", ":", "Path", ")", "->", "List", "[", "str", "]", ":", "untranscribed_prefix_fn", "=", "target_directory", "/", "\"untranscribed_prefixes.txt\"", "if", "untranscribed_prefix_fn", ".", "exists", "(", ")", ":", "with", "untranscribed_prefix_fn", ".", "open", "(", ")", "as", "f", ":", "prefixes", "=", "f", ".", "readlines", "(", ")", "return", "[", "prefix", ".", "strip", "(", ")", "for", "prefix", "in", "prefixes", "]", "else", ":", "#logger.warning(\"Attempting to get untranscribed prefixes but the file ({})\"", "# \" that should specify these does not exist\".format(untranscribed_prefix_fn))", "pass", "return", "[", "]" ]
The file "untranscribed_prefixes.txt" will specify prefixes which do not have an associated transcription file if placed in the target directory. This will fetch those prefixes from that file and will return an empty list if that file does not exist. See find_untranscribed_wavs function for finding untranscribed prefixes in an experiment directory. Returns: A list of all untranscribed prefixes as specified in the file
[ "The", "file", "untranscribed_prefixes", ".", "txt", "will", "specify", "prefixes", "which", "do", "not", "have", "an", "associated", "transcription", "file", "if", "placed", "in", "the", "target", "directory", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/corpus.py#L69-L94
13,839
persephone-tools/persephone
persephone/corpus.py
determine_labels
def determine_labels(target_dir: Path, label_type: str) -> Set[str]: """ Returns a set of all phonemes found in the corpus. Assumes that WAV files and label files are split into utterances and segregated in a directory which contains a "wav" subdirectory and "label" subdirectory. Arguments: target_dir: A `Path` to the directory where the corpus data is found label_type: The type of label we are creating the label set from. For example "phonemes" would only search for labels for that type. """ logger.info("Finding phonemes of type %s in directory %s", label_type, target_dir) label_dir = target_dir / "label/" if not label_dir.is_dir(): raise FileNotFoundError( "The directory {} does not exist.".format(target_dir)) phonemes = set() # type: Set[str] for fn in os.listdir(str(label_dir)): if fn.endswith(str(label_type)): with (label_dir / fn).open("r", encoding=ENCODING) as f: try: line_phonemes = set(f.readline().split()) except UnicodeDecodeError: logger.error("Unicode decode error on file %s", fn) print("Unicode decode error on file {}".format(fn)) raise phonemes = phonemes.union(line_phonemes) return phonemes
python
def determine_labels(target_dir: Path, label_type: str) -> Set[str]: """ Returns a set of all phonemes found in the corpus. Assumes that WAV files and label files are split into utterances and segregated in a directory which contains a "wav" subdirectory and "label" subdirectory. Arguments: target_dir: A `Path` to the directory where the corpus data is found label_type: The type of label we are creating the label set from. For example "phonemes" would only search for labels for that type. """ logger.info("Finding phonemes of type %s in directory %s", label_type, target_dir) label_dir = target_dir / "label/" if not label_dir.is_dir(): raise FileNotFoundError( "The directory {} does not exist.".format(target_dir)) phonemes = set() # type: Set[str] for fn in os.listdir(str(label_dir)): if fn.endswith(str(label_type)): with (label_dir / fn).open("r", encoding=ENCODING) as f: try: line_phonemes = set(f.readline().split()) except UnicodeDecodeError: logger.error("Unicode decode error on file %s", fn) print("Unicode decode error on file {}".format(fn)) raise phonemes = phonemes.union(line_phonemes) return phonemes
[ "def", "determine_labels", "(", "target_dir", ":", "Path", ",", "label_type", ":", "str", ")", "->", "Set", "[", "str", "]", ":", "logger", ".", "info", "(", "\"Finding phonemes of type %s in directory %s\"", ",", "label_type", ",", "target_dir", ")", "label_dir", "=", "target_dir", "/", "\"label/\"", "if", "not", "label_dir", ".", "is_dir", "(", ")", ":", "raise", "FileNotFoundError", "(", "\"The directory {} does not exist.\"", ".", "format", "(", "target_dir", ")", ")", "phonemes", "=", "set", "(", ")", "# type: Set[str]", "for", "fn", "in", "os", ".", "listdir", "(", "str", "(", "label_dir", ")", ")", ":", "if", "fn", ".", "endswith", "(", "str", "(", "label_type", ")", ")", ":", "with", "(", "label_dir", "/", "fn", ")", ".", "open", "(", "\"r\"", ",", "encoding", "=", "ENCODING", ")", "as", "f", ":", "try", ":", "line_phonemes", "=", "set", "(", "f", ".", "readline", "(", ")", ".", "split", "(", ")", ")", "except", "UnicodeDecodeError", ":", "logger", ".", "error", "(", "\"Unicode decode error on file %s\"", ",", "fn", ")", "print", "(", "\"Unicode decode error on file {}\"", ".", "format", "(", "fn", ")", ")", "raise", "phonemes", "=", "phonemes", ".", "union", "(", "line_phonemes", ")", "return", "phonemes" ]
Returns a set of all phonemes found in the corpus. Assumes that WAV files and label files are split into utterances and segregated in a directory which contains a "wav" subdirectory and "label" subdirectory. Arguments: target_dir: A `Path` to the directory where the corpus data is found label_type: The type of label we are creating the label set from. For example "phonemes" would only search for labels for that type.
[ "Returns", "a", "set", "of", "all", "phonemes", "found", "in", "the", "corpus", ".", "Assumes", "that", "WAV", "files", "and", "label", "files", "are", "split", "into", "utterances", "and", "segregated", "in", "a", "directory", "which", "contains", "a", "wav", "subdirectory", "and", "label", "subdirectory", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/corpus.py#L617-L645
13,840
persephone-tools/persephone
persephone/corpus.py
Corpus.from_elan
def from_elan(cls: Type[CorpusT], org_dir: Path, tgt_dir: Path, feat_type: str = "fbank", label_type: str = "phonemes", utterance_filter: Callable[[Utterance], bool] = None, label_segmenter: Optional[LabelSegmenter] = None, speakers: List[str] = None, lazy: bool = True, tier_prefixes: Tuple[str, ...] = ("xv", "rf")) -> CorpusT: """ Construct a `Corpus` from ELAN files. Args: org_dir: A path to the directory containing the unpreprocessed data. tgt_dir: A path to the directory where the preprocessed data will be stored. feat_type: A string describing the input speech features. For example, "fbank" for log Mel filterbank features. label_type: A string describing the transcription labels. For example, "phonemes" or "tones". utterance_filter: A function that returns False if an utterance should not be included in the corpus and True otherwise. This can be used to remove undesirable utterances for training, such as codeswitched utterances. label_segmenter: An object that has an attribute `segment_labels`, which is creates new `Utterance` instances from old ones, by segmenting the tokens in their `text` attribute. Note, `LabelSegmenter` might be better as a function, the only issue is it needs to carry with it a list of labels. This could potentially be a function attribute. speakers: A list of speakers to filter for. If `None`, utterances from all speakers are included. tier_prefixes: A collection of strings that prefix ELAN tiers to filter for. For example, if this is `("xv", "rf")`, then tiers named "xv", "xv@Mark", "rf@Rose" would be extracted if they existed. """ # This currently bails out if label_segmenter is not provided if not label_segmenter: raise ValueError("A label segmenter must be provided via label_segmenter") # In case path is supplied as a string, make it a Path if isinstance(tgt_dir, str): tgt_dir = Path(tgt_dir) # Read utterances from org_dir. utterances = elan.utterances_from_dir(org_dir, tier_prefixes=tier_prefixes) # Filter utterances based on some criteria (such as codeswitching). if utterance_filter: utterances = [utter for utter in utterances if utterance_filter(utter)] utterances = utterance.remove_duplicates(utterances) # Segment the labels in the utterances appropriately if label_segmenter: utterances = [label_segmenter.segment_labels(utter) for utter in utterances] # Remove utterances without transcriptions. utterances = utterance.remove_empty_text(utterances) # Remove utterances with exceptionally short wav_files that are too # short for CTC to work. utterances = utterance.remove_too_short(utterances) tgt_dir.mkdir(parents=True, exist_ok=True) # TODO A lot of these methods aren't ELAN-specific. preprocess.elan was # only used to get the utterances. There could be another Corpus # factory method that takes Utterance objects. the fromElan and # fromPangloss constructors could call this. # Writes the transcriptions to the tgt_dir/label/ dir utterance.write_transcriptions(utterances, (tgt_dir / "label"), label_type, lazy=lazy) # Extracts utterance level WAV information from the input file. wav.extract_wavs(utterances, (tgt_dir / "wav"), lazy=lazy) corpus = cls(feat_type, label_type, tgt_dir, labels=label_segmenter.labels, speakers=speakers) corpus.utterances = utterances return corpus
python
def from_elan(cls: Type[CorpusT], org_dir: Path, tgt_dir: Path, feat_type: str = "fbank", label_type: str = "phonemes", utterance_filter: Callable[[Utterance], bool] = None, label_segmenter: Optional[LabelSegmenter] = None, speakers: List[str] = None, lazy: bool = True, tier_prefixes: Tuple[str, ...] = ("xv", "rf")) -> CorpusT: """ Construct a `Corpus` from ELAN files. Args: org_dir: A path to the directory containing the unpreprocessed data. tgt_dir: A path to the directory where the preprocessed data will be stored. feat_type: A string describing the input speech features. For example, "fbank" for log Mel filterbank features. label_type: A string describing the transcription labels. For example, "phonemes" or "tones". utterance_filter: A function that returns False if an utterance should not be included in the corpus and True otherwise. This can be used to remove undesirable utterances for training, such as codeswitched utterances. label_segmenter: An object that has an attribute `segment_labels`, which is creates new `Utterance` instances from old ones, by segmenting the tokens in their `text` attribute. Note, `LabelSegmenter` might be better as a function, the only issue is it needs to carry with it a list of labels. This could potentially be a function attribute. speakers: A list of speakers to filter for. If `None`, utterances from all speakers are included. tier_prefixes: A collection of strings that prefix ELAN tiers to filter for. For example, if this is `("xv", "rf")`, then tiers named "xv", "xv@Mark", "rf@Rose" would be extracted if they existed. """ # This currently bails out if label_segmenter is not provided if not label_segmenter: raise ValueError("A label segmenter must be provided via label_segmenter") # In case path is supplied as a string, make it a Path if isinstance(tgt_dir, str): tgt_dir = Path(tgt_dir) # Read utterances from org_dir. utterances = elan.utterances_from_dir(org_dir, tier_prefixes=tier_prefixes) # Filter utterances based on some criteria (such as codeswitching). if utterance_filter: utterances = [utter for utter in utterances if utterance_filter(utter)] utterances = utterance.remove_duplicates(utterances) # Segment the labels in the utterances appropriately if label_segmenter: utterances = [label_segmenter.segment_labels(utter) for utter in utterances] # Remove utterances without transcriptions. utterances = utterance.remove_empty_text(utterances) # Remove utterances with exceptionally short wav_files that are too # short for CTC to work. utterances = utterance.remove_too_short(utterances) tgt_dir.mkdir(parents=True, exist_ok=True) # TODO A lot of these methods aren't ELAN-specific. preprocess.elan was # only used to get the utterances. There could be another Corpus # factory method that takes Utterance objects. the fromElan and # fromPangloss constructors could call this. # Writes the transcriptions to the tgt_dir/label/ dir utterance.write_transcriptions(utterances, (tgt_dir / "label"), label_type, lazy=lazy) # Extracts utterance level WAV information from the input file. wav.extract_wavs(utterances, (tgt_dir / "wav"), lazy=lazy) corpus = cls(feat_type, label_type, tgt_dir, labels=label_segmenter.labels, speakers=speakers) corpus.utterances = utterances return corpus
[ "def", "from_elan", "(", "cls", ":", "Type", "[", "CorpusT", "]", ",", "org_dir", ":", "Path", ",", "tgt_dir", ":", "Path", ",", "feat_type", ":", "str", "=", "\"fbank\"", ",", "label_type", ":", "str", "=", "\"phonemes\"", ",", "utterance_filter", ":", "Callable", "[", "[", "Utterance", "]", ",", "bool", "]", "=", "None", ",", "label_segmenter", ":", "Optional", "[", "LabelSegmenter", "]", "=", "None", ",", "speakers", ":", "List", "[", "str", "]", "=", "None", ",", "lazy", ":", "bool", "=", "True", ",", "tier_prefixes", ":", "Tuple", "[", "str", ",", "...", "]", "=", "(", "\"xv\"", ",", "\"rf\"", ")", ")", "->", "CorpusT", ":", "# This currently bails out if label_segmenter is not provided", "if", "not", "label_segmenter", ":", "raise", "ValueError", "(", "\"A label segmenter must be provided via label_segmenter\"", ")", "# In case path is supplied as a string, make it a Path", "if", "isinstance", "(", "tgt_dir", ",", "str", ")", ":", "tgt_dir", "=", "Path", "(", "tgt_dir", ")", "# Read utterances from org_dir.", "utterances", "=", "elan", ".", "utterances_from_dir", "(", "org_dir", ",", "tier_prefixes", "=", "tier_prefixes", ")", "# Filter utterances based on some criteria (such as codeswitching).", "if", "utterance_filter", ":", "utterances", "=", "[", "utter", "for", "utter", "in", "utterances", "if", "utterance_filter", "(", "utter", ")", "]", "utterances", "=", "utterance", ".", "remove_duplicates", "(", "utterances", ")", "# Segment the labels in the utterances appropriately", "if", "label_segmenter", ":", "utterances", "=", "[", "label_segmenter", ".", "segment_labels", "(", "utter", ")", "for", "utter", "in", "utterances", "]", "# Remove utterances without transcriptions.", "utterances", "=", "utterance", ".", "remove_empty_text", "(", "utterances", ")", "# Remove utterances with exceptionally short wav_files that are too", "# short for CTC to work.", "utterances", "=", "utterance", ".", "remove_too_short", "(", "utterances", ")", "tgt_dir", ".", "mkdir", "(", "parents", "=", "True", ",", "exist_ok", "=", "True", ")", "# TODO A lot of these methods aren't ELAN-specific. preprocess.elan was", "# only used to get the utterances. There could be another Corpus", "# factory method that takes Utterance objects. the fromElan and", "# fromPangloss constructors could call this.", "# Writes the transcriptions to the tgt_dir/label/ dir", "utterance", ".", "write_transcriptions", "(", "utterances", ",", "(", "tgt_dir", "/", "\"label\"", ")", ",", "label_type", ",", "lazy", "=", "lazy", ")", "# Extracts utterance level WAV information from the input file.", "wav", ".", "extract_wavs", "(", "utterances", ",", "(", "tgt_dir", "/", "\"wav\"", ")", ",", "lazy", "=", "lazy", ")", "corpus", "=", "cls", "(", "feat_type", ",", "label_type", ",", "tgt_dir", ",", "labels", "=", "label_segmenter", ".", "labels", ",", "speakers", "=", "speakers", ")", "corpus", ".", "utterances", "=", "utterances", "return", "corpus" ]
Construct a `Corpus` from ELAN files. Args: org_dir: A path to the directory containing the unpreprocessed data. tgt_dir: A path to the directory where the preprocessed data will be stored. feat_type: A string describing the input speech features. For example, "fbank" for log Mel filterbank features. label_type: A string describing the transcription labels. For example, "phonemes" or "tones". utterance_filter: A function that returns False if an utterance should not be included in the corpus and True otherwise. This can be used to remove undesirable utterances for training, such as codeswitched utterances. label_segmenter: An object that has an attribute `segment_labels`, which is creates new `Utterance` instances from old ones, by segmenting the tokens in their `text` attribute. Note, `LabelSegmenter` might be better as a function, the only issue is it needs to carry with it a list of labels. This could potentially be a function attribute. speakers: A list of speakers to filter for. If `None`, utterances from all speakers are included. tier_prefixes: A collection of strings that prefix ELAN tiers to filter for. For example, if this is `("xv", "rf")`, then tiers named "xv", "xv@Mark", "rf@Rose" would be extracted if they existed.
[ "Construct", "a", "Corpus", "from", "ELAN", "files", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/corpus.py#L236-L315
13,841
persephone-tools/persephone
persephone/corpus.py
Corpus.set_and_check_directories
def set_and_check_directories(self, tgt_dir: Path) -> None: """ Make sure that the required directories exist in the target directory. set variables accordingly. """ logger.info("Setting up directories for corpus in %s", tgt_dir) # Check directories exist. if not tgt_dir.is_dir(): raise FileNotFoundError( "The directory {} does not exist.".format(tgt_dir)) if not self.wav_dir.is_dir(): raise PersephoneException( "The supplied path requires a 'wav' subdirectory.") self.feat_dir.mkdir(parents=True, exist_ok=True) if not self.label_dir.is_dir(): raise PersephoneException( "The supplied path requires a 'label' subdirectory.")
python
def set_and_check_directories(self, tgt_dir: Path) -> None: """ Make sure that the required directories exist in the target directory. set variables accordingly. """ logger.info("Setting up directories for corpus in %s", tgt_dir) # Check directories exist. if not tgt_dir.is_dir(): raise FileNotFoundError( "The directory {} does not exist.".format(tgt_dir)) if not self.wav_dir.is_dir(): raise PersephoneException( "The supplied path requires a 'wav' subdirectory.") self.feat_dir.mkdir(parents=True, exist_ok=True) if not self.label_dir.is_dir(): raise PersephoneException( "The supplied path requires a 'label' subdirectory.")
[ "def", "set_and_check_directories", "(", "self", ",", "tgt_dir", ":", "Path", ")", "->", "None", ":", "logger", ".", "info", "(", "\"Setting up directories for corpus in %s\"", ",", "tgt_dir", ")", "# Check directories exist.", "if", "not", "tgt_dir", ".", "is_dir", "(", ")", ":", "raise", "FileNotFoundError", "(", "\"The directory {} does not exist.\"", ".", "format", "(", "tgt_dir", ")", ")", "if", "not", "self", ".", "wav_dir", ".", "is_dir", "(", ")", ":", "raise", "PersephoneException", "(", "\"The supplied path requires a 'wav' subdirectory.\"", ")", "self", ".", "feat_dir", ".", "mkdir", "(", "parents", "=", "True", ",", "exist_ok", "=", "True", ")", "if", "not", "self", ".", "label_dir", ".", "is_dir", "(", ")", ":", "raise", "PersephoneException", "(", "\"The supplied path requires a 'label' subdirectory.\"", ")" ]
Make sure that the required directories exist in the target directory. set variables accordingly.
[ "Make", "sure", "that", "the", "required", "directories", "exist", "in", "the", "target", "directory", ".", "set", "variables", "accordingly", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/corpus.py#L338-L355
13,842
persephone-tools/persephone
persephone/corpus.py
Corpus.initialize_labels
def initialize_labels(self, labels: Set[str]) -> Tuple[dict, dict]: """Create mappings from label to index and index to label""" logger.debug("Creating mappings for labels") label_to_index = {label: index for index, label in enumerate( ["pad"] + sorted(list(labels)))} index_to_label = {index: phn for index, phn in enumerate( ["pad"] + sorted(list(labels)))} return label_to_index, index_to_label
python
def initialize_labels(self, labels: Set[str]) -> Tuple[dict, dict]: """Create mappings from label to index and index to label""" logger.debug("Creating mappings for labels") label_to_index = {label: index for index, label in enumerate( ["pad"] + sorted(list(labels)))} index_to_label = {index: phn for index, phn in enumerate( ["pad"] + sorted(list(labels)))} return label_to_index, index_to_label
[ "def", "initialize_labels", "(", "self", ",", "labels", ":", "Set", "[", "str", "]", ")", "->", "Tuple", "[", "dict", ",", "dict", "]", ":", "logger", ".", "debug", "(", "\"Creating mappings for labels\"", ")", "label_to_index", "=", "{", "label", ":", "index", "for", "index", ",", "label", "in", "enumerate", "(", "[", "\"pad\"", "]", "+", "sorted", "(", "list", "(", "labels", ")", ")", ")", "}", "index_to_label", "=", "{", "index", ":", "phn", "for", "index", ",", "phn", "in", "enumerate", "(", "[", "\"pad\"", "]", "+", "sorted", "(", "list", "(", "labels", ")", ")", ")", "}", "return", "label_to_index", ",", "index_to_label" ]
Create mappings from label to index and index to label
[ "Create", "mappings", "from", "label", "to", "index", "and", "index", "to", "label" ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/corpus.py#L357-L366
13,843
persephone-tools/persephone
persephone/corpus.py
Corpus.prepare_feats
def prepare_feats(self) -> None: """ Prepares input features""" logger.debug("Preparing input features") self.feat_dir.mkdir(parents=True, exist_ok=True) should_extract_feats = False for path in self.wav_dir.iterdir(): if not path.suffix == ".wav": logger.info("Non wav file found in wav directory: %s", path) continue prefix = os.path.basename(os.path.splitext(str(path))[0]) mono16k_wav_path = self.feat_dir / "{}.wav".format(prefix) feat_path = self.feat_dir / "{}.{}.npy".format(prefix, self.feat_type) if not feat_path.is_file(): # Then we should extract feats should_extract_feats = True if not mono16k_wav_path.is_file(): feat_extract.convert_wav(path, mono16k_wav_path) # TODO Should be extracting feats on a per-file basis. Right now we # check if any feats files don't exist and then do all the feature # extraction. if should_extract_feats: feat_extract.from_dir(self.feat_dir, self.feat_type)
python
def prepare_feats(self) -> None: """ Prepares input features""" logger.debug("Preparing input features") self.feat_dir.mkdir(parents=True, exist_ok=True) should_extract_feats = False for path in self.wav_dir.iterdir(): if not path.suffix == ".wav": logger.info("Non wav file found in wav directory: %s", path) continue prefix = os.path.basename(os.path.splitext(str(path))[0]) mono16k_wav_path = self.feat_dir / "{}.wav".format(prefix) feat_path = self.feat_dir / "{}.{}.npy".format(prefix, self.feat_type) if not feat_path.is_file(): # Then we should extract feats should_extract_feats = True if not mono16k_wav_path.is_file(): feat_extract.convert_wav(path, mono16k_wav_path) # TODO Should be extracting feats on a per-file basis. Right now we # check if any feats files don't exist and then do all the feature # extraction. if should_extract_feats: feat_extract.from_dir(self.feat_dir, self.feat_type)
[ "def", "prepare_feats", "(", "self", ")", "->", "None", ":", "logger", ".", "debug", "(", "\"Preparing input features\"", ")", "self", ".", "feat_dir", ".", "mkdir", "(", "parents", "=", "True", ",", "exist_ok", "=", "True", ")", "should_extract_feats", "=", "False", "for", "path", "in", "self", ".", "wav_dir", ".", "iterdir", "(", ")", ":", "if", "not", "path", ".", "suffix", "==", "\".wav\"", ":", "logger", ".", "info", "(", "\"Non wav file found in wav directory: %s\"", ",", "path", ")", "continue", "prefix", "=", "os", ".", "path", ".", "basename", "(", "os", ".", "path", ".", "splitext", "(", "str", "(", "path", ")", ")", "[", "0", "]", ")", "mono16k_wav_path", "=", "self", ".", "feat_dir", "/", "\"{}.wav\"", ".", "format", "(", "prefix", ")", "feat_path", "=", "self", ".", "feat_dir", "/", "\"{}.{}.npy\"", ".", "format", "(", "prefix", ",", "self", ".", "feat_type", ")", "if", "not", "feat_path", ".", "is_file", "(", ")", ":", "# Then we should extract feats", "should_extract_feats", "=", "True", "if", "not", "mono16k_wav_path", ".", "is_file", "(", ")", ":", "feat_extract", ".", "convert_wav", "(", "path", ",", "mono16k_wav_path", ")", "# TODO Should be extracting feats on a per-file basis. Right now we", "# check if any feats files don't exist and then do all the feature", "# extraction.", "if", "should_extract_feats", ":", "feat_extract", ".", "from_dir", "(", "self", ".", "feat_dir", ",", "self", ".", "feat_type", ")" ]
Prepares input features
[ "Prepares", "input", "features" ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/corpus.py#L368-L392
13,844
persephone-tools/persephone
persephone/corpus.py
Corpus.make_data_splits
def make_data_splits(self, max_samples: int) -> None: """ Splits the utterances into training, validation and test sets.""" train_f_exists = self.train_prefix_fn.is_file() valid_f_exists = self.valid_prefix_fn.is_file() test_f_exists = self.test_prefix_fn.is_file() if train_f_exists and valid_f_exists and test_f_exists: logger.debug("Split for training, validation and tests specified by files") self.train_prefixes = self.read_prefixes(self.train_prefix_fn) self.valid_prefixes = self.read_prefixes(self.valid_prefix_fn) self.test_prefixes = self.read_prefixes(self.test_prefix_fn) return # Otherwise we now need to load prefixes for other cases addressed # below prefixes = self.determine_prefixes() prefixes = utils.filter_by_size( self.feat_dir, prefixes, self.feat_type, max_samples) if not train_f_exists and not valid_f_exists and not test_f_exists: logger.debug("No files supplied to define the split for training, validation" " and tests. Using default.") train_prefixes, valid_prefixes, test_prefixes = self.divide_prefixes(prefixes) self.train_prefixes = train_prefixes self.valid_prefixes = valid_prefixes self.test_prefixes = test_prefixes self.write_prefixes(train_prefixes, self.train_prefix_fn) self.write_prefixes(valid_prefixes, self.valid_prefix_fn) self.write_prefixes(test_prefixes, self.test_prefix_fn) elif not train_f_exists and valid_f_exists and test_f_exists: # Then we just make all other prefixes training prefixes. self.valid_prefixes = self.read_prefixes(self.valid_prefix_fn) self.test_prefixes = self.read_prefixes(self.test_prefix_fn) train_prefixes = list( set(prefixes) - set(self.valid_prefixes)) self.train_prefixes = list( set(train_prefixes) - set(self.test_prefixes)) self.write_prefixes(self.train_prefixes, self.train_prefix_fn) else: raise NotImplementedError( "The following case has not been implemented:" + "{} exists - {}\n".format(self.train_prefix_fn, train_f_exists) + "{} exists - {}\n".format(self.valid_prefix_fn, valid_f_exists) + "{} exists - {}\n".format(self.test_prefix_fn, test_f_exists))
python
def make_data_splits(self, max_samples: int) -> None: """ Splits the utterances into training, validation and test sets.""" train_f_exists = self.train_prefix_fn.is_file() valid_f_exists = self.valid_prefix_fn.is_file() test_f_exists = self.test_prefix_fn.is_file() if train_f_exists and valid_f_exists and test_f_exists: logger.debug("Split for training, validation and tests specified by files") self.train_prefixes = self.read_prefixes(self.train_prefix_fn) self.valid_prefixes = self.read_prefixes(self.valid_prefix_fn) self.test_prefixes = self.read_prefixes(self.test_prefix_fn) return # Otherwise we now need to load prefixes for other cases addressed # below prefixes = self.determine_prefixes() prefixes = utils.filter_by_size( self.feat_dir, prefixes, self.feat_type, max_samples) if not train_f_exists and not valid_f_exists and not test_f_exists: logger.debug("No files supplied to define the split for training, validation" " and tests. Using default.") train_prefixes, valid_prefixes, test_prefixes = self.divide_prefixes(prefixes) self.train_prefixes = train_prefixes self.valid_prefixes = valid_prefixes self.test_prefixes = test_prefixes self.write_prefixes(train_prefixes, self.train_prefix_fn) self.write_prefixes(valid_prefixes, self.valid_prefix_fn) self.write_prefixes(test_prefixes, self.test_prefix_fn) elif not train_f_exists and valid_f_exists and test_f_exists: # Then we just make all other prefixes training prefixes. self.valid_prefixes = self.read_prefixes(self.valid_prefix_fn) self.test_prefixes = self.read_prefixes(self.test_prefix_fn) train_prefixes = list( set(prefixes) - set(self.valid_prefixes)) self.train_prefixes = list( set(train_prefixes) - set(self.test_prefixes)) self.write_prefixes(self.train_prefixes, self.train_prefix_fn) else: raise NotImplementedError( "The following case has not been implemented:" + "{} exists - {}\n".format(self.train_prefix_fn, train_f_exists) + "{} exists - {}\n".format(self.valid_prefix_fn, valid_f_exists) + "{} exists - {}\n".format(self.test_prefix_fn, test_f_exists))
[ "def", "make_data_splits", "(", "self", ",", "max_samples", ":", "int", ")", "->", "None", ":", "train_f_exists", "=", "self", ".", "train_prefix_fn", ".", "is_file", "(", ")", "valid_f_exists", "=", "self", ".", "valid_prefix_fn", ".", "is_file", "(", ")", "test_f_exists", "=", "self", ".", "test_prefix_fn", ".", "is_file", "(", ")", "if", "train_f_exists", "and", "valid_f_exists", "and", "test_f_exists", ":", "logger", ".", "debug", "(", "\"Split for training, validation and tests specified by files\"", ")", "self", ".", "train_prefixes", "=", "self", ".", "read_prefixes", "(", "self", ".", "train_prefix_fn", ")", "self", ".", "valid_prefixes", "=", "self", ".", "read_prefixes", "(", "self", ".", "valid_prefix_fn", ")", "self", ".", "test_prefixes", "=", "self", ".", "read_prefixes", "(", "self", ".", "test_prefix_fn", ")", "return", "# Otherwise we now need to load prefixes for other cases addressed", "# below", "prefixes", "=", "self", ".", "determine_prefixes", "(", ")", "prefixes", "=", "utils", ".", "filter_by_size", "(", "self", ".", "feat_dir", ",", "prefixes", ",", "self", ".", "feat_type", ",", "max_samples", ")", "if", "not", "train_f_exists", "and", "not", "valid_f_exists", "and", "not", "test_f_exists", ":", "logger", ".", "debug", "(", "\"No files supplied to define the split for training, validation\"", "\" and tests. Using default.\"", ")", "train_prefixes", ",", "valid_prefixes", ",", "test_prefixes", "=", "self", ".", "divide_prefixes", "(", "prefixes", ")", "self", ".", "train_prefixes", "=", "train_prefixes", "self", ".", "valid_prefixes", "=", "valid_prefixes", "self", ".", "test_prefixes", "=", "test_prefixes", "self", ".", "write_prefixes", "(", "train_prefixes", ",", "self", ".", "train_prefix_fn", ")", "self", ".", "write_prefixes", "(", "valid_prefixes", ",", "self", ".", "valid_prefix_fn", ")", "self", ".", "write_prefixes", "(", "test_prefixes", ",", "self", ".", "test_prefix_fn", ")", "elif", "not", "train_f_exists", "and", "valid_f_exists", "and", "test_f_exists", ":", "# Then we just make all other prefixes training prefixes.", "self", ".", "valid_prefixes", "=", "self", ".", "read_prefixes", "(", "self", ".", "valid_prefix_fn", ")", "self", ".", "test_prefixes", "=", "self", ".", "read_prefixes", "(", "self", ".", "test_prefix_fn", ")", "train_prefixes", "=", "list", "(", "set", "(", "prefixes", ")", "-", "set", "(", "self", ".", "valid_prefixes", ")", ")", "self", ".", "train_prefixes", "=", "list", "(", "set", "(", "train_prefixes", ")", "-", "set", "(", "self", ".", "test_prefixes", ")", ")", "self", ".", "write_prefixes", "(", "self", ".", "train_prefixes", ",", "self", ".", "train_prefix_fn", ")", "else", ":", "raise", "NotImplementedError", "(", "\"The following case has not been implemented:\"", "+", "\"{} exists - {}\\n\"", ".", "format", "(", "self", ".", "train_prefix_fn", ",", "train_f_exists", ")", "+", "\"{} exists - {}\\n\"", ".", "format", "(", "self", ".", "valid_prefix_fn", ",", "valid_f_exists", ")", "+", "\"{} exists - {}\\n\"", ".", "format", "(", "self", ".", "test_prefix_fn", ",", "test_f_exists", ")", ")" ]
Splits the utterances into training, validation and test sets.
[ "Splits", "the", "utterances", "into", "training", "validation", "and", "test", "sets", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/corpus.py#L394-L438
13,845
persephone-tools/persephone
persephone/corpus.py
Corpus.divide_prefixes
def divide_prefixes(prefixes: List[str], seed:int=0) -> Tuple[List[str], List[str], List[str]]: """Divide data into training, validation and test subsets""" if len(prefixes) < 3: raise PersephoneException( "{} cannot be split into 3 groups as it only has {} items".format(prefixes, len(prefixes)) ) Ratios = namedtuple("Ratios", ["train", "valid", "test"]) ratios=Ratios(.90, .05, .05) train_end = int(ratios.train*len(prefixes)) valid_end = int(train_end + ratios.valid*len(prefixes)) # We must make sure that at least one element exists in test if valid_end == len(prefixes): valid_end -= 1 # If train_end and valid_end are the same we end up with no valid_prefixes # so we must ensure at least one prefix is placed in this category if train_end == valid_end: train_end -= 1 random.seed(seed) random.shuffle(prefixes) train_prefixes = prefixes[:train_end] valid_prefixes = prefixes[train_end:valid_end] test_prefixes = prefixes[valid_end:] assert train_prefixes, "Got empty set for training data" assert valid_prefixes, "Got empty set for validation data" assert test_prefixes, "Got empty set for testing data" return train_prefixes, valid_prefixes, test_prefixes
python
def divide_prefixes(prefixes: List[str], seed:int=0) -> Tuple[List[str], List[str], List[str]]: """Divide data into training, validation and test subsets""" if len(prefixes) < 3: raise PersephoneException( "{} cannot be split into 3 groups as it only has {} items".format(prefixes, len(prefixes)) ) Ratios = namedtuple("Ratios", ["train", "valid", "test"]) ratios=Ratios(.90, .05, .05) train_end = int(ratios.train*len(prefixes)) valid_end = int(train_end + ratios.valid*len(prefixes)) # We must make sure that at least one element exists in test if valid_end == len(prefixes): valid_end -= 1 # If train_end and valid_end are the same we end up with no valid_prefixes # so we must ensure at least one prefix is placed in this category if train_end == valid_end: train_end -= 1 random.seed(seed) random.shuffle(prefixes) train_prefixes = prefixes[:train_end] valid_prefixes = prefixes[train_end:valid_end] test_prefixes = prefixes[valid_end:] assert train_prefixes, "Got empty set for training data" assert valid_prefixes, "Got empty set for validation data" assert test_prefixes, "Got empty set for testing data" return train_prefixes, valid_prefixes, test_prefixes
[ "def", "divide_prefixes", "(", "prefixes", ":", "List", "[", "str", "]", ",", "seed", ":", "int", "=", "0", ")", "->", "Tuple", "[", "List", "[", "str", "]", ",", "List", "[", "str", "]", ",", "List", "[", "str", "]", "]", ":", "if", "len", "(", "prefixes", ")", "<", "3", ":", "raise", "PersephoneException", "(", "\"{} cannot be split into 3 groups as it only has {} items\"", ".", "format", "(", "prefixes", ",", "len", "(", "prefixes", ")", ")", ")", "Ratios", "=", "namedtuple", "(", "\"Ratios\"", ",", "[", "\"train\"", ",", "\"valid\"", ",", "\"test\"", "]", ")", "ratios", "=", "Ratios", "(", ".90", ",", ".05", ",", ".05", ")", "train_end", "=", "int", "(", "ratios", ".", "train", "*", "len", "(", "prefixes", ")", ")", "valid_end", "=", "int", "(", "train_end", "+", "ratios", ".", "valid", "*", "len", "(", "prefixes", ")", ")", "# We must make sure that at least one element exists in test", "if", "valid_end", "==", "len", "(", "prefixes", ")", ":", "valid_end", "-=", "1", "# If train_end and valid_end are the same we end up with no valid_prefixes", "# so we must ensure at least one prefix is placed in this category", "if", "train_end", "==", "valid_end", ":", "train_end", "-=", "1", "random", ".", "seed", "(", "seed", ")", "random", ".", "shuffle", "(", "prefixes", ")", "train_prefixes", "=", "prefixes", "[", ":", "train_end", "]", "valid_prefixes", "=", "prefixes", "[", "train_end", ":", "valid_end", "]", "test_prefixes", "=", "prefixes", "[", "valid_end", ":", "]", "assert", "train_prefixes", ",", "\"Got empty set for training data\"", "assert", "valid_prefixes", ",", "\"Got empty set for validation data\"", "assert", "test_prefixes", ",", "\"Got empty set for testing data\"", "return", "train_prefixes", ",", "valid_prefixes", ",", "test_prefixes" ]
Divide data into training, validation and test subsets
[ "Divide", "data", "into", "training", "validation", "and", "test", "subsets" ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/corpus.py#L464-L495
13,846
persephone-tools/persephone
persephone/corpus.py
Corpus.indices_to_labels
def indices_to_labels(self, indices: Sequence[int]) -> List[str]: """ Converts a sequence of indices into their corresponding labels.""" return [(self.INDEX_TO_LABEL[index]) for index in indices]
python
def indices_to_labels(self, indices: Sequence[int]) -> List[str]: """ Converts a sequence of indices into their corresponding labels.""" return [(self.INDEX_TO_LABEL[index]) for index in indices]
[ "def", "indices_to_labels", "(", "self", ",", "indices", ":", "Sequence", "[", "int", "]", ")", "->", "List", "[", "str", "]", ":", "return", "[", "(", "self", ".", "INDEX_TO_LABEL", "[", "index", "]", ")", "for", "index", "in", "indices", "]" ]
Converts a sequence of indices into their corresponding labels.
[ "Converts", "a", "sequence", "of", "indices", "into", "their", "corresponding", "labels", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/corpus.py#L497-L500
13,847
persephone-tools/persephone
persephone/corpus.py
Corpus.labels_to_indices
def labels_to_indices(self, labels: Sequence[str]) -> List[int]: """ Converts a sequence of labels into their corresponding indices.""" return [self.LABEL_TO_INDEX[label] for label in labels]
python
def labels_to_indices(self, labels: Sequence[str]) -> List[int]: """ Converts a sequence of labels into their corresponding indices.""" return [self.LABEL_TO_INDEX[label] for label in labels]
[ "def", "labels_to_indices", "(", "self", ",", "labels", ":", "Sequence", "[", "str", "]", ")", "->", "List", "[", "int", "]", ":", "return", "[", "self", ".", "LABEL_TO_INDEX", "[", "label", "]", "for", "label", "in", "labels", "]" ]
Converts a sequence of labels into their corresponding indices.
[ "Converts", "a", "sequence", "of", "labels", "into", "their", "corresponding", "indices", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/corpus.py#L502-L505
13,848
persephone-tools/persephone
persephone/corpus.py
Corpus.num_feats
def num_feats(self): """ The number of features per time step in the corpus. """ if not self._num_feats: filename = self.get_train_fns()[0][0] feats = np.load(filename) # pylint: disable=maybe-no-member if len(feats.shape) == 3: # Then there are multiple channels of multiple feats self._num_feats = feats.shape[1] * feats.shape[2] elif len(feats.shape) == 2: # Otherwise it is just of shape time x feats self._num_feats = feats.shape[1] else: raise ValueError( "Feature matrix of shape %s unexpected" % str(feats.shape)) return self._num_feats
python
def num_feats(self): """ The number of features per time step in the corpus. """ if not self._num_feats: filename = self.get_train_fns()[0][0] feats = np.load(filename) # pylint: disable=maybe-no-member if len(feats.shape) == 3: # Then there are multiple channels of multiple feats self._num_feats = feats.shape[1] * feats.shape[2] elif len(feats.shape) == 2: # Otherwise it is just of shape time x feats self._num_feats = feats.shape[1] else: raise ValueError( "Feature matrix of shape %s unexpected" % str(feats.shape)) return self._num_feats
[ "def", "num_feats", "(", "self", ")", ":", "if", "not", "self", ".", "_num_feats", ":", "filename", "=", "self", ".", "get_train_fns", "(", ")", "[", "0", "]", "[", "0", "]", "feats", "=", "np", ".", "load", "(", "filename", ")", "# pylint: disable=maybe-no-member", "if", "len", "(", "feats", ".", "shape", ")", "==", "3", ":", "# Then there are multiple channels of multiple feats", "self", ".", "_num_feats", "=", "feats", ".", "shape", "[", "1", "]", "*", "feats", ".", "shape", "[", "2", "]", "elif", "len", "(", "feats", ".", "shape", ")", "==", "2", ":", "# Otherwise it is just of shape time x feats", "self", ".", "_num_feats", "=", "feats", ".", "shape", "[", "1", "]", "else", ":", "raise", "ValueError", "(", "\"Feature matrix of shape %s unexpected\"", "%", "str", "(", "feats", ".", "shape", ")", ")", "return", "self", ".", "_num_feats" ]
The number of features per time step in the corpus.
[ "The", "number", "of", "features", "per", "time", "step", "in", "the", "corpus", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/corpus.py#L508-L523
13,849
persephone-tools/persephone
persephone/corpus.py
Corpus.prefixes_to_fns
def prefixes_to_fns(self, prefixes: List[str]) -> Tuple[List[str], List[str]]: """ Fetches the file paths to the features files and labels files corresponding to the provided list of features""" # TODO Return pathlib.Paths feat_fns = [str(self.feat_dir / ("%s.%s.npy" % (prefix, self.feat_type))) for prefix in prefixes] label_fns = [str(self.label_dir / ("%s.%s" % (prefix, self.label_type))) for prefix in prefixes] return feat_fns, label_fns
python
def prefixes_to_fns(self, prefixes: List[str]) -> Tuple[List[str], List[str]]: """ Fetches the file paths to the features files and labels files corresponding to the provided list of features""" # TODO Return pathlib.Paths feat_fns = [str(self.feat_dir / ("%s.%s.npy" % (prefix, self.feat_type))) for prefix in prefixes] label_fns = [str(self.label_dir / ("%s.%s" % (prefix, self.label_type))) for prefix in prefixes] return feat_fns, label_fns
[ "def", "prefixes_to_fns", "(", "self", ",", "prefixes", ":", "List", "[", "str", "]", ")", "->", "Tuple", "[", "List", "[", "str", "]", ",", "List", "[", "str", "]", "]", ":", "# TODO Return pathlib.Paths", "feat_fns", "=", "[", "str", "(", "self", ".", "feat_dir", "/", "(", "\"%s.%s.npy\"", "%", "(", "prefix", ",", "self", ".", "feat_type", ")", ")", ")", "for", "prefix", "in", "prefixes", "]", "label_fns", "=", "[", "str", "(", "self", ".", "label_dir", "/", "(", "\"%s.%s\"", "%", "(", "prefix", ",", "self", ".", "label_type", ")", ")", ")", "for", "prefix", "in", "prefixes", "]", "return", "feat_fns", ",", "label_fns" ]
Fetches the file paths to the features files and labels files corresponding to the provided list of features
[ "Fetches", "the", "file", "paths", "to", "the", "features", "files", "and", "labels", "files", "corresponding", "to", "the", "provided", "list", "of", "features" ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/corpus.py#L525-L533
13,850
persephone-tools/persephone
persephone/corpus.py
Corpus.get_train_fns
def get_train_fns(self) -> Tuple[List[str], List[str]]: """ Fetches the training set of the corpus. Outputs a Tuple of size 2, where the first element is a list of paths to input features files, one per utterance. The second element is a list of paths to the transcriptions. """ return self.prefixes_to_fns(self.train_prefixes)
python
def get_train_fns(self) -> Tuple[List[str], List[str]]: """ Fetches the training set of the corpus. Outputs a Tuple of size 2, where the first element is a list of paths to input features files, one per utterance. The second element is a list of paths to the transcriptions. """ return self.prefixes_to_fns(self.train_prefixes)
[ "def", "get_train_fns", "(", "self", ")", "->", "Tuple", "[", "List", "[", "str", "]", ",", "List", "[", "str", "]", "]", ":", "return", "self", ".", "prefixes_to_fns", "(", "self", ".", "train_prefixes", ")" ]
Fetches the training set of the corpus. Outputs a Tuple of size 2, where the first element is a list of paths to input features files, one per utterance. The second element is a list of paths to the transcriptions.
[ "Fetches", "the", "training", "set", "of", "the", "corpus", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/corpus.py#L535-L542
13,851
persephone-tools/persephone
persephone/corpus.py
Corpus.get_valid_fns
def get_valid_fns(self) -> Tuple[List[str], List[str]]: """ Fetches the validation set of the corpus.""" return self.prefixes_to_fns(self.valid_prefixes)
python
def get_valid_fns(self) -> Tuple[List[str], List[str]]: """ Fetches the validation set of the corpus.""" return self.prefixes_to_fns(self.valid_prefixes)
[ "def", "get_valid_fns", "(", "self", ")", "->", "Tuple", "[", "List", "[", "str", "]", ",", "List", "[", "str", "]", "]", ":", "return", "self", ".", "prefixes_to_fns", "(", "self", ".", "valid_prefixes", ")" ]
Fetches the validation set of the corpus.
[ "Fetches", "the", "validation", "set", "of", "the", "corpus", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/corpus.py#L544-L546
13,852
persephone-tools/persephone
persephone/corpus.py
Corpus.review
def review(self) -> None: """ Used to play the WAV files and compare with the transcription. """ for prefix in self.determine_prefixes(): print("Utterance: {}".format(prefix)) wav_fn = self.feat_dir / "{}.wav".format(prefix) label_fn = self.label_dir / "{}.{}".format(prefix,self.label_type) with label_fn.open() as f: transcript = f.read().strip() print("Transcription: {}".format(transcript)) subprocess.run(["play", str(wav_fn)])
python
def review(self) -> None: """ Used to play the WAV files and compare with the transcription. """ for prefix in self.determine_prefixes(): print("Utterance: {}".format(prefix)) wav_fn = self.feat_dir / "{}.wav".format(prefix) label_fn = self.label_dir / "{}.{}".format(prefix,self.label_type) with label_fn.open() as f: transcript = f.read().strip() print("Transcription: {}".format(transcript)) subprocess.run(["play", str(wav_fn)])
[ "def", "review", "(", "self", ")", "->", "None", ":", "for", "prefix", "in", "self", ".", "determine_prefixes", "(", ")", ":", "print", "(", "\"Utterance: {}\"", ".", "format", "(", "prefix", ")", ")", "wav_fn", "=", "self", ".", "feat_dir", "/", "\"{}.wav\"", ".", "format", "(", "prefix", ")", "label_fn", "=", "self", ".", "label_dir", "/", "\"{}.{}\"", ".", "format", "(", "prefix", ",", "self", ".", "label_type", ")", "with", "label_fn", ".", "open", "(", ")", "as", "f", ":", "transcript", "=", "f", ".", "read", "(", ")", ".", "strip", "(", ")", "print", "(", "\"Transcription: {}\"", ".", "format", "(", "transcript", ")", ")", "subprocess", ".", "run", "(", "[", "\"play\"", ",", "str", "(", "wav_fn", ")", "]", ")" ]
Used to play the WAV files and compare with the transcription.
[ "Used", "to", "play", "the", "WAV", "files", "and", "compare", "with", "the", "transcription", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/corpus.py#L589-L599
13,853
persephone-tools/persephone
persephone/corpus.py
Corpus.pickle
def pickle(self) -> None: """ Pickles the Corpus object in a file in tgt_dir. """ pickle_path = self.tgt_dir / "corpus.p" logger.debug("pickling %r object and saving it to path %s", self, pickle_path) with pickle_path.open("wb") as f: pickle.dump(self, f)
python
def pickle(self) -> None: """ Pickles the Corpus object in a file in tgt_dir. """ pickle_path = self.tgt_dir / "corpus.p" logger.debug("pickling %r object and saving it to path %s", self, pickle_path) with pickle_path.open("wb") as f: pickle.dump(self, f)
[ "def", "pickle", "(", "self", ")", "->", "None", ":", "pickle_path", "=", "self", ".", "tgt_dir", "/", "\"corpus.p\"", "logger", ".", "debug", "(", "\"pickling %r object and saving it to path %s\"", ",", "self", ",", "pickle_path", ")", "with", "pickle_path", ".", "open", "(", "\"wb\"", ")", "as", "f", ":", "pickle", ".", "dump", "(", "self", ",", "f", ")" ]
Pickles the Corpus object in a file in tgt_dir.
[ "Pickles", "the", "Corpus", "object", "in", "a", "file", "in", "tgt_dir", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/corpus.py#L601-L607
13,854
persephone-tools/persephone
persephone/utils.py
zero_pad
def zero_pad(matrix, to_length): """ Zero pads along the 0th dimension to make sure the utterance array x is of length to_length.""" assert matrix.shape[0] <= to_length if not matrix.shape[0] <= to_length: logger.error("zero_pad cannot be performed on matrix with shape {}" " to length {}".format(matrix.shape[0], to_length)) raise ValueError result = np.zeros((to_length,) + matrix.shape[1:]) result[:matrix.shape[0]] = matrix return result
python
def zero_pad(matrix, to_length): """ Zero pads along the 0th dimension to make sure the utterance array x is of length to_length.""" assert matrix.shape[0] <= to_length if not matrix.shape[0] <= to_length: logger.error("zero_pad cannot be performed on matrix with shape {}" " to length {}".format(matrix.shape[0], to_length)) raise ValueError result = np.zeros((to_length,) + matrix.shape[1:]) result[:matrix.shape[0]] = matrix return result
[ "def", "zero_pad", "(", "matrix", ",", "to_length", ")", ":", "assert", "matrix", ".", "shape", "[", "0", "]", "<=", "to_length", "if", "not", "matrix", ".", "shape", "[", "0", "]", "<=", "to_length", ":", "logger", ".", "error", "(", "\"zero_pad cannot be performed on matrix with shape {}\"", "\" to length {}\"", ".", "format", "(", "matrix", ".", "shape", "[", "0", "]", ",", "to_length", ")", ")", "raise", "ValueError", "result", "=", "np", ".", "zeros", "(", "(", "to_length", ",", ")", "+", "matrix", ".", "shape", "[", "1", ":", "]", ")", "result", "[", ":", "matrix", ".", "shape", "[", "0", "]", "]", "=", "matrix", "return", "result" ]
Zero pads along the 0th dimension to make sure the utterance array x is of length to_length.
[ "Zero", "pads", "along", "the", "0th", "dimension", "to", "make", "sure", "the", "utterance", "array", "x", "is", "of", "length", "to_length", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/utils.py#L58-L69
13,855
persephone-tools/persephone
persephone/utils.py
load_batch_x
def load_batch_x(path_batch, flatten = False, time_major = False): """ Loads a batch of input features given a list of paths to numpy arrays in that batch.""" utterances = [np.load(str(path)) for path in path_batch] utter_lens = [utterance.shape[0] for utterance in utterances] max_len = max(utter_lens) batch_size = len(path_batch) shape = (batch_size, max_len) + tuple(utterances[0].shape[1:]) batch = np.zeros(shape) for i, utt in enumerate(utterances): batch[i] = zero_pad(utt, max_len) if flatten: batch = collapse(batch, time_major=time_major) return batch, np.array(utter_lens)
python
def load_batch_x(path_batch, flatten = False, time_major = False): """ Loads a batch of input features given a list of paths to numpy arrays in that batch.""" utterances = [np.load(str(path)) for path in path_batch] utter_lens = [utterance.shape[0] for utterance in utterances] max_len = max(utter_lens) batch_size = len(path_batch) shape = (batch_size, max_len) + tuple(utterances[0].shape[1:]) batch = np.zeros(shape) for i, utt in enumerate(utterances): batch[i] = zero_pad(utt, max_len) if flatten: batch = collapse(batch, time_major=time_major) return batch, np.array(utter_lens)
[ "def", "load_batch_x", "(", "path_batch", ",", "flatten", "=", "False", ",", "time_major", "=", "False", ")", ":", "utterances", "=", "[", "np", ".", "load", "(", "str", "(", "path", ")", ")", "for", "path", "in", "path_batch", "]", "utter_lens", "=", "[", "utterance", ".", "shape", "[", "0", "]", "for", "utterance", "in", "utterances", "]", "max_len", "=", "max", "(", "utter_lens", ")", "batch_size", "=", "len", "(", "path_batch", ")", "shape", "=", "(", "batch_size", ",", "max_len", ")", "+", "tuple", "(", "utterances", "[", "0", "]", ".", "shape", "[", "1", ":", "]", ")", "batch", "=", "np", ".", "zeros", "(", "shape", ")", "for", "i", ",", "utt", "in", "enumerate", "(", "utterances", ")", ":", "batch", "[", "i", "]", "=", "zero_pad", "(", "utt", ",", "max_len", ")", "if", "flatten", ":", "batch", "=", "collapse", "(", "batch", ",", "time_major", "=", "time_major", ")", "return", "batch", ",", "np", ".", "array", "(", "utter_lens", ")" ]
Loads a batch of input features given a list of paths to numpy arrays in that batch.
[ "Loads", "a", "batch", "of", "input", "features", "given", "a", "list", "of", "paths", "to", "numpy", "arrays", "in", "that", "batch", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/utils.py#L88-L104
13,856
persephone-tools/persephone
persephone/utils.py
batch_per
def batch_per(hyps: Sequence[Sequence[T]], refs: Sequence[Sequence[T]]) -> float: """ Calculates the phoneme error rate of a batch.""" macro_per = 0.0 for i in range(len(hyps)): ref = [phn_i for phn_i in refs[i] if phn_i != 0] hyp = [phn_i for phn_i in hyps[i] if phn_i != 0] macro_per += distance.edit_distance(ref, hyp)/len(ref) return macro_per/len(hyps)
python
def batch_per(hyps: Sequence[Sequence[T]], refs: Sequence[Sequence[T]]) -> float: """ Calculates the phoneme error rate of a batch.""" macro_per = 0.0 for i in range(len(hyps)): ref = [phn_i for phn_i in refs[i] if phn_i != 0] hyp = [phn_i for phn_i in hyps[i] if phn_i != 0] macro_per += distance.edit_distance(ref, hyp)/len(ref) return macro_per/len(hyps)
[ "def", "batch_per", "(", "hyps", ":", "Sequence", "[", "Sequence", "[", "T", "]", "]", ",", "refs", ":", "Sequence", "[", "Sequence", "[", "T", "]", "]", ")", "->", "float", ":", "macro_per", "=", "0.0", "for", "i", "in", "range", "(", "len", "(", "hyps", ")", ")", ":", "ref", "=", "[", "phn_i", "for", "phn_i", "in", "refs", "[", "i", "]", "if", "phn_i", "!=", "0", "]", "hyp", "=", "[", "phn_i", "for", "phn_i", "in", "hyps", "[", "i", "]", "if", "phn_i", "!=", "0", "]", "macro_per", "+=", "distance", ".", "edit_distance", "(", "ref", ",", "hyp", ")", "/", "len", "(", "ref", ")", "return", "macro_per", "/", "len", "(", "hyps", ")" ]
Calculates the phoneme error rate of a batch.
[ "Calculates", "the", "phoneme", "error", "rate", "of", "a", "batch", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/utils.py#L106-L115
13,857
persephone-tools/persephone
persephone/utils.py
filter_by_size
def filter_by_size(feat_dir: Path, prefixes: List[str], feat_type: str, max_samples: int) -> List[str]: """ Sorts the files by their length and returns those with less than or equal to max_samples length. Returns the filename prefixes of those files. The main job of the method is to filter, but the sorting may give better efficiency when doing dynamic batching unless it gets shuffled downstream. """ # TODO Tell the user what utterances we are removing. prefix_lens = get_prefix_lens(Path(feat_dir), prefixes, feat_type) prefixes = [prefix for prefix, length in prefix_lens if length <= max_samples] return prefixes
python
def filter_by_size(feat_dir: Path, prefixes: List[str], feat_type: str, max_samples: int) -> List[str]: """ Sorts the files by their length and returns those with less than or equal to max_samples length. Returns the filename prefixes of those files. The main job of the method is to filter, but the sorting may give better efficiency when doing dynamic batching unless it gets shuffled downstream. """ # TODO Tell the user what utterances we are removing. prefix_lens = get_prefix_lens(Path(feat_dir), prefixes, feat_type) prefixes = [prefix for prefix, length in prefix_lens if length <= max_samples] return prefixes
[ "def", "filter_by_size", "(", "feat_dir", ":", "Path", ",", "prefixes", ":", "List", "[", "str", "]", ",", "feat_type", ":", "str", ",", "max_samples", ":", "int", ")", "->", "List", "[", "str", "]", ":", "# TODO Tell the user what utterances we are removing.", "prefix_lens", "=", "get_prefix_lens", "(", "Path", "(", "feat_dir", ")", ",", "prefixes", ",", "feat_type", ")", "prefixes", "=", "[", "prefix", "for", "prefix", ",", "length", "in", "prefix_lens", "if", "length", "<=", "max_samples", "]", "return", "prefixes" ]
Sorts the files by their length and returns those with less than or equal to max_samples length. Returns the filename prefixes of those files. The main job of the method is to filter, but the sorting may give better efficiency when doing dynamic batching unless it gets shuffled downstream.
[ "Sorts", "the", "files", "by", "their", "length", "and", "returns", "those", "with", "less", "than", "or", "equal", "to", "max_samples", "length", ".", "Returns", "the", "filename", "prefixes", "of", "those", "files", ".", "The", "main", "job", "of", "the", "method", "is", "to", "filter", "but", "the", "sorting", "may", "give", "better", "efficiency", "when", "doing", "dynamic", "batching", "unless", "it", "gets", "shuffled", "downstream", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/utils.py#L141-L154
13,858
persephone-tools/persephone
persephone/utils.py
wav_length
def wav_length(fn: str) -> float: """ Returns the length of the WAV file in seconds.""" args = [config.SOX_PATH, fn, "-n", "stat"] p = subprocess.Popen( args, stdin=PIPE, stdout=PIPE, stderr=PIPE) length_line = str(p.communicate()[1]).split("\\n")[1].split() print(length_line) assert length_line[0] == "Length" return float(length_line[-1])
python
def wav_length(fn: str) -> float: """ Returns the length of the WAV file in seconds.""" args = [config.SOX_PATH, fn, "-n", "stat"] p = subprocess.Popen( args, stdin=PIPE, stdout=PIPE, stderr=PIPE) length_line = str(p.communicate()[1]).split("\\n")[1].split() print(length_line) assert length_line[0] == "Length" return float(length_line[-1])
[ "def", "wav_length", "(", "fn", ":", "str", ")", "->", "float", ":", "args", "=", "[", "config", ".", "SOX_PATH", ",", "fn", ",", "\"-n\"", ",", "\"stat\"", "]", "p", "=", "subprocess", ".", "Popen", "(", "args", ",", "stdin", "=", "PIPE", ",", "stdout", "=", "PIPE", ",", "stderr", "=", "PIPE", ")", "length_line", "=", "str", "(", "p", ".", "communicate", "(", ")", "[", "1", "]", ")", ".", "split", "(", "\"\\\\n\"", ")", "[", "1", "]", ".", "split", "(", ")", "print", "(", "length_line", ")", "assert", "length_line", "[", "0", "]", "==", "\"Length\"", "return", "float", "(", "length_line", "[", "-", "1", "]", ")" ]
Returns the length of the WAV file in seconds.
[ "Returns", "the", "length", "of", "the", "WAV", "file", "in", "seconds", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/utils.py#L170-L179
13,859
persephone-tools/persephone
persephone/datasets/bkw.py
pull_en_words
def pull_en_words() -> None: """ Fetches a repository containing English words. """ ENGLISH_WORDS_URL = "https://github.com/dwyl/english-words.git" en_words_path = Path(config.EN_WORDS_PATH) if not en_words_path.is_file(): subprocess.run(["git", "clone", ENGLISH_WORDS_URL, str(en_words_path.parent)])
python
def pull_en_words() -> None: """ Fetches a repository containing English words. """ ENGLISH_WORDS_URL = "https://github.com/dwyl/english-words.git" en_words_path = Path(config.EN_WORDS_PATH) if not en_words_path.is_file(): subprocess.run(["git", "clone", ENGLISH_WORDS_URL, str(en_words_path.parent)])
[ "def", "pull_en_words", "(", ")", "->", "None", ":", "ENGLISH_WORDS_URL", "=", "\"https://github.com/dwyl/english-words.git\"", "en_words_path", "=", "Path", "(", "config", ".", "EN_WORDS_PATH", ")", "if", "not", "en_words_path", ".", "is_file", "(", ")", ":", "subprocess", ".", "run", "(", "[", "\"git\"", ",", "\"clone\"", ",", "ENGLISH_WORDS_URL", ",", "str", "(", "en_words_path", ".", "parent", ")", "]", ")" ]
Fetches a repository containing English words.
[ "Fetches", "a", "repository", "containing", "English", "words", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/datasets/bkw.py#L27-L34
13,860
persephone-tools/persephone
persephone/datasets/bkw.py
get_en_words
def get_en_words() -> Set[str]: """ Returns a list of English words which can be used to filter out code-switched sentences. """ pull_en_words() with open(config.EN_WORDS_PATH) as words_f: raw_words = words_f.readlines() en_words = set([word.strip().lower() for word in raw_words]) NA_WORDS_IN_EN_DICT = set(["kore", "nani", "karri", "imi", "o", "yaw", "i", "bi", "aye", "imi", "ane", "kubba", "kab", "a-", "ad", "a", "mak", "selim", "ngai", "en", "yo", "wud", "mani", "yak", "manu", "ka-", "mong", "manga", "ka-", "mane", "kala", "name", "kayo", "kare", "laik", "bale", "ni", "rey", "bu", "re", "iman", "bom", "wam", "alu", "nan", "kure", "kuri", "wam", "ka", "ng", "yi", "na", "m", "arri", "e", "kele", "arri", "nga", "kakan", "ai", "ning", "mala", "ti", "wolk", "bo", "andi", "ken", "ba", "aa", "kun", "bini", "wo", "bim", "man", "bord", "al", "mah", "won", "ku", "ay", "belen", "wen", "yah", "muni", "bah", "di", "mm", "anu", "nane", "ma", "kum", "birri", "ray", "h", "kane", "mumu", "bi", "ah", "i-", "n", "mi", "bedman", "rud", "le", "babu", "da", "kakkak", "yun", "ande", "naw", "kam", "bolk", "woy", "u", "bi-", ]) EN_WORDS_NOT_IN_EN_DICT = set(["screenprinting"]) en_words = en_words.difference(NA_WORDS_IN_EN_DICT) en_words = en_words | EN_WORDS_NOT_IN_EN_DICT return en_words
python
def get_en_words() -> Set[str]: """ Returns a list of English words which can be used to filter out code-switched sentences. """ pull_en_words() with open(config.EN_WORDS_PATH) as words_f: raw_words = words_f.readlines() en_words = set([word.strip().lower() for word in raw_words]) NA_WORDS_IN_EN_DICT = set(["kore", "nani", "karri", "imi", "o", "yaw", "i", "bi", "aye", "imi", "ane", "kubba", "kab", "a-", "ad", "a", "mak", "selim", "ngai", "en", "yo", "wud", "mani", "yak", "manu", "ka-", "mong", "manga", "ka-", "mane", "kala", "name", "kayo", "kare", "laik", "bale", "ni", "rey", "bu", "re", "iman", "bom", "wam", "alu", "nan", "kure", "kuri", "wam", "ka", "ng", "yi", "na", "m", "arri", "e", "kele", "arri", "nga", "kakan", "ai", "ning", "mala", "ti", "wolk", "bo", "andi", "ken", "ba", "aa", "kun", "bini", "wo", "bim", "man", "bord", "al", "mah", "won", "ku", "ay", "belen", "wen", "yah", "muni", "bah", "di", "mm", "anu", "nane", "ma", "kum", "birri", "ray", "h", "kane", "mumu", "bi", "ah", "i-", "n", "mi", "bedman", "rud", "le", "babu", "da", "kakkak", "yun", "ande", "naw", "kam", "bolk", "woy", "u", "bi-", ]) EN_WORDS_NOT_IN_EN_DICT = set(["screenprinting"]) en_words = en_words.difference(NA_WORDS_IN_EN_DICT) en_words = en_words | EN_WORDS_NOT_IN_EN_DICT return en_words
[ "def", "get_en_words", "(", ")", "->", "Set", "[", "str", "]", ":", "pull_en_words", "(", ")", "with", "open", "(", "config", ".", "EN_WORDS_PATH", ")", "as", "words_f", ":", "raw_words", "=", "words_f", ".", "readlines", "(", ")", "en_words", "=", "set", "(", "[", "word", ".", "strip", "(", ")", ".", "lower", "(", ")", "for", "word", "in", "raw_words", "]", ")", "NA_WORDS_IN_EN_DICT", "=", "set", "(", "[", "\"kore\"", ",", "\"nani\"", ",", "\"karri\"", ",", "\"imi\"", ",", "\"o\"", ",", "\"yaw\"", ",", "\"i\"", ",", "\"bi\"", ",", "\"aye\"", ",", "\"imi\"", ",", "\"ane\"", ",", "\"kubba\"", ",", "\"kab\"", ",", "\"a-\"", ",", "\"ad\"", ",", "\"a\"", ",", "\"mak\"", ",", "\"selim\"", ",", "\"ngai\"", ",", "\"en\"", ",", "\"yo\"", ",", "\"wud\"", ",", "\"mani\"", ",", "\"yak\"", ",", "\"manu\"", ",", "\"ka-\"", ",", "\"mong\"", ",", "\"manga\"", ",", "\"ka-\"", ",", "\"mane\"", ",", "\"kala\"", ",", "\"name\"", ",", "\"kayo\"", ",", "\"kare\"", ",", "\"laik\"", ",", "\"bale\"", ",", "\"ni\"", ",", "\"rey\"", ",", "\"bu\"", ",", "\"re\"", ",", "\"iman\"", ",", "\"bom\"", ",", "\"wam\"", ",", "\"alu\"", ",", "\"nan\"", ",", "\"kure\"", ",", "\"kuri\"", ",", "\"wam\"", ",", "\"ka\"", ",", "\"ng\"", ",", "\"yi\"", ",", "\"na\"", ",", "\"m\"", ",", "\"arri\"", ",", "\"e\"", ",", "\"kele\"", ",", "\"arri\"", ",", "\"nga\"", ",", "\"kakan\"", ",", "\"ai\"", ",", "\"ning\"", ",", "\"mala\"", ",", "\"ti\"", ",", "\"wolk\"", ",", "\"bo\"", ",", "\"andi\"", ",", "\"ken\"", ",", "\"ba\"", ",", "\"aa\"", ",", "\"kun\"", ",", "\"bini\"", ",", "\"wo\"", ",", "\"bim\"", ",", "\"man\"", ",", "\"bord\"", ",", "\"al\"", ",", "\"mah\"", ",", "\"won\"", ",", "\"ku\"", ",", "\"ay\"", ",", "\"belen\"", ",", "\"wen\"", ",", "\"yah\"", ",", "\"muni\"", ",", "\"bah\"", ",", "\"di\"", ",", "\"mm\"", ",", "\"anu\"", ",", "\"nane\"", ",", "\"ma\"", ",", "\"kum\"", ",", "\"birri\"", ",", "\"ray\"", ",", "\"h\"", ",", "\"kane\"", ",", "\"mumu\"", ",", "\"bi\"", ",", "\"ah\"", ",", "\"i-\"", ",", "\"n\"", ",", "\"mi\"", ",", "\"bedman\"", ",", "\"rud\"", ",", "\"le\"", ",", "\"babu\"", ",", "\"da\"", ",", "\"kakkak\"", ",", "\"yun\"", ",", "\"ande\"", ",", "\"naw\"", ",", "\"kam\"", ",", "\"bolk\"", ",", "\"woy\"", ",", "\"u\"", ",", "\"bi-\"", ",", "]", ")", "EN_WORDS_NOT_IN_EN_DICT", "=", "set", "(", "[", "\"screenprinting\"", "]", ")", "en_words", "=", "en_words", ".", "difference", "(", "NA_WORDS_IN_EN_DICT", ")", "en_words", "=", "en_words", "|", "EN_WORDS_NOT_IN_EN_DICT", "return", "en_words" ]
Returns a list of English words which can be used to filter out code-switched sentences.
[ "Returns", "a", "list", "of", "English", "words", "which", "can", "be", "used", "to", "filter", "out", "code", "-", "switched", "sentences", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/datasets/bkw.py#L36-L69
13,861
persephone-tools/persephone
persephone/datasets/bkw.py
explore_elan_files
def explore_elan_files(elan_paths): """ A function to explore the tiers of ELAN files. """ for elan_path in elan_paths: print(elan_path) eafob = Eaf(elan_path) tier_names = eafob.get_tier_names() for tier in tier_names: print("\t", tier) try: for annotation in eafob.get_annotation_data_for_tier(tier): print("\t\t", annotation) except KeyError: continue input()
python
def explore_elan_files(elan_paths): """ A function to explore the tiers of ELAN files. """ for elan_path in elan_paths: print(elan_path) eafob = Eaf(elan_path) tier_names = eafob.get_tier_names() for tier in tier_names: print("\t", tier) try: for annotation in eafob.get_annotation_data_for_tier(tier): print("\t\t", annotation) except KeyError: continue input()
[ "def", "explore_elan_files", "(", "elan_paths", ")", ":", "for", "elan_path", "in", "elan_paths", ":", "print", "(", "elan_path", ")", "eafob", "=", "Eaf", "(", "elan_path", ")", "tier_names", "=", "eafob", ".", "get_tier_names", "(", ")", "for", "tier", "in", "tier_names", ":", "print", "(", "\"\\t\"", ",", "tier", ")", "try", ":", "for", "annotation", "in", "eafob", ".", "get_annotation_data_for_tier", "(", "tier", ")", ":", "print", "(", "\"\\t\\t\"", ",", "annotation", ")", "except", "KeyError", ":", "continue", "input", "(", ")" ]
A function to explore the tiers of ELAN files.
[ "A", "function", "to", "explore", "the", "tiers", "of", "ELAN", "files", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/datasets/bkw.py#L73-L90
13,862
persephone-tools/persephone
persephone/preprocess/elan.py
sort_annotations
def sort_annotations(annotations: List[Tuple[int, int, str]] ) -> List[Tuple[int, int, str]]: """ Sorts the annotations by their start_time. """ return sorted(annotations, key=lambda x: x[0])
python
def sort_annotations(annotations: List[Tuple[int, int, str]] ) -> List[Tuple[int, int, str]]: """ Sorts the annotations by their start_time. """ return sorted(annotations, key=lambda x: x[0])
[ "def", "sort_annotations", "(", "annotations", ":", "List", "[", "Tuple", "[", "int", ",", "int", ",", "str", "]", "]", ")", "->", "List", "[", "Tuple", "[", "int", ",", "int", ",", "str", "]", "]", ":", "return", "sorted", "(", "annotations", ",", "key", "=", "lambda", "x", ":", "x", "[", "0", "]", ")" ]
Sorts the annotations by their start_time.
[ "Sorts", "the", "annotations", "by", "their", "start_time", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/preprocess/elan.py#L62-L65
13,863
persephone-tools/persephone
persephone/preprocess/elan.py
utterances_from_tier
def utterances_from_tier(eafob: Eaf, tier_name: str) -> List[Utterance]: """ Returns utterances found in the given Eaf object in the given tier.""" try: speaker = eafob.tiers[tier_name][2]["PARTICIPANT"] except KeyError: speaker = None # We don't know the name of the speaker. tier_utterances = [] annotations = sort_annotations( list(eafob.get_annotation_data_for_tier(tier_name))) for i, annotation in enumerate(annotations): eaf_stem = eafob.eaf_path.stem utter_id = "{}.{}.{}".format(eaf_stem, tier_name, i) start_time = eafob.time_origin + annotation[0] end_time = eafob.time_origin + annotation[1] text = annotation[2] utterance = Utterance(eafob.media_path, eafob.eaf_path, utter_id, start_time, end_time, text, speaker) tier_utterances.append(utterance) return tier_utterances
python
def utterances_from_tier(eafob: Eaf, tier_name: str) -> List[Utterance]: """ Returns utterances found in the given Eaf object in the given tier.""" try: speaker = eafob.tiers[tier_name][2]["PARTICIPANT"] except KeyError: speaker = None # We don't know the name of the speaker. tier_utterances = [] annotations = sort_annotations( list(eafob.get_annotation_data_for_tier(tier_name))) for i, annotation in enumerate(annotations): eaf_stem = eafob.eaf_path.stem utter_id = "{}.{}.{}".format(eaf_stem, tier_name, i) start_time = eafob.time_origin + annotation[0] end_time = eafob.time_origin + annotation[1] text = annotation[2] utterance = Utterance(eafob.media_path, eafob.eaf_path, utter_id, start_time, end_time, text, speaker) tier_utterances.append(utterance) return tier_utterances
[ "def", "utterances_from_tier", "(", "eafob", ":", "Eaf", ",", "tier_name", ":", "str", ")", "->", "List", "[", "Utterance", "]", ":", "try", ":", "speaker", "=", "eafob", ".", "tiers", "[", "tier_name", "]", "[", "2", "]", "[", "\"PARTICIPANT\"", "]", "except", "KeyError", ":", "speaker", "=", "None", "# We don't know the name of the speaker.", "tier_utterances", "=", "[", "]", "annotations", "=", "sort_annotations", "(", "list", "(", "eafob", ".", "get_annotation_data_for_tier", "(", "tier_name", ")", ")", ")", "for", "i", ",", "annotation", "in", "enumerate", "(", "annotations", ")", ":", "eaf_stem", "=", "eafob", ".", "eaf_path", ".", "stem", "utter_id", "=", "\"{}.{}.{}\"", ".", "format", "(", "eaf_stem", ",", "tier_name", ",", "i", ")", "start_time", "=", "eafob", ".", "time_origin", "+", "annotation", "[", "0", "]", "end_time", "=", "eafob", ".", "time_origin", "+", "annotation", "[", "1", "]", "text", "=", "annotation", "[", "2", "]", "utterance", "=", "Utterance", "(", "eafob", ".", "media_path", ",", "eafob", ".", "eaf_path", ",", "utter_id", ",", "start_time", ",", "end_time", ",", "text", ",", "speaker", ")", "tier_utterances", ".", "append", "(", "utterance", ")", "return", "tier_utterances" ]
Returns utterances found in the given Eaf object in the given tier.
[ "Returns", "utterances", "found", "in", "the", "given", "Eaf", "object", "in", "the", "given", "tier", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/preprocess/elan.py#L68-L91
13,864
persephone-tools/persephone
persephone/preprocess/elan.py
utterances_from_eaf
def utterances_from_eaf(eaf_path: Path, tier_prefixes: Tuple[str, ...]) -> List[Utterance]: """ Extracts utterances in tiers that start with tier_prefixes found in the ELAN .eaf XML file at eaf_path. For example, if xv@Mark is a tier in the eaf file, and tier_prefixes = ["xv"], then utterances from that tier will be gathered. """ if not eaf_path.is_file(): raise FileNotFoundError("Cannot find {}".format(eaf_path)) eaf = Eaf(eaf_path) utterances = [] for tier_name in sorted(list(eaf.tiers)): # Sorting for determinism for tier_prefix in tier_prefixes: if tier_name.startswith(tier_prefix): utterances.extend(utterances_from_tier(eaf, tier_name)) break return utterances
python
def utterances_from_eaf(eaf_path: Path, tier_prefixes: Tuple[str, ...]) -> List[Utterance]: """ Extracts utterances in tiers that start with tier_prefixes found in the ELAN .eaf XML file at eaf_path. For example, if xv@Mark is a tier in the eaf file, and tier_prefixes = ["xv"], then utterances from that tier will be gathered. """ if not eaf_path.is_file(): raise FileNotFoundError("Cannot find {}".format(eaf_path)) eaf = Eaf(eaf_path) utterances = [] for tier_name in sorted(list(eaf.tiers)): # Sorting for determinism for tier_prefix in tier_prefixes: if tier_name.startswith(tier_prefix): utterances.extend(utterances_from_tier(eaf, tier_name)) break return utterances
[ "def", "utterances_from_eaf", "(", "eaf_path", ":", "Path", ",", "tier_prefixes", ":", "Tuple", "[", "str", ",", "...", "]", ")", "->", "List", "[", "Utterance", "]", ":", "if", "not", "eaf_path", ".", "is_file", "(", ")", ":", "raise", "FileNotFoundError", "(", "\"Cannot find {}\"", ".", "format", "(", "eaf_path", ")", ")", "eaf", "=", "Eaf", "(", "eaf_path", ")", "utterances", "=", "[", "]", "for", "tier_name", "in", "sorted", "(", "list", "(", "eaf", ".", "tiers", ")", ")", ":", "# Sorting for determinism", "for", "tier_prefix", "in", "tier_prefixes", ":", "if", "tier_name", ".", "startswith", "(", "tier_prefix", ")", ":", "utterances", ".", "extend", "(", "utterances_from_tier", "(", "eaf", ",", "tier_name", ")", ")", "break", "return", "utterances" ]
Extracts utterances in tiers that start with tier_prefixes found in the ELAN .eaf XML file at eaf_path. For example, if xv@Mark is a tier in the eaf file, and tier_prefixes = ["xv"], then utterances from that tier will be gathered.
[ "Extracts", "utterances", "in", "tiers", "that", "start", "with", "tier_prefixes", "found", "in", "the", "ELAN", ".", "eaf", "XML", "file", "at", "eaf_path", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/preprocess/elan.py#L94-L113
13,865
persephone-tools/persephone
persephone/preprocess/elan.py
utterances_from_dir
def utterances_from_dir(eaf_dir: Path, tier_prefixes: Tuple[str, ...]) -> List[Utterance]: """ Returns the utterances found in ELAN files in a directory. Recursively explores the directory, gathering ELAN files and extracting utterances from them for tiers that start with the specified prefixes. Args: eaf_dir: A path to the directory to be searched tier_prefixes: Stings matching the start of ELAN tier names that are to be extracted. For example, if you want to extract from tiers "xv-Jane" and "xv-Mark", then tier_prefixes = ["xv"] would do the job. Returns: A list of Utterance objects. """ logger.info( "EAF from directory: {}, searching with tier_prefixes {}".format( eaf_dir, tier_prefixes)) utterances = [] for eaf_path in eaf_dir.glob("**/*.eaf"): eaf_utterances = utterances_from_eaf(eaf_path, tier_prefixes) utterances.extend(eaf_utterances) return utterances
python
def utterances_from_dir(eaf_dir: Path, tier_prefixes: Tuple[str, ...]) -> List[Utterance]: """ Returns the utterances found in ELAN files in a directory. Recursively explores the directory, gathering ELAN files and extracting utterances from them for tiers that start with the specified prefixes. Args: eaf_dir: A path to the directory to be searched tier_prefixes: Stings matching the start of ELAN tier names that are to be extracted. For example, if you want to extract from tiers "xv-Jane" and "xv-Mark", then tier_prefixes = ["xv"] would do the job. Returns: A list of Utterance objects. """ logger.info( "EAF from directory: {}, searching with tier_prefixes {}".format( eaf_dir, tier_prefixes)) utterances = [] for eaf_path in eaf_dir.glob("**/*.eaf"): eaf_utterances = utterances_from_eaf(eaf_path, tier_prefixes) utterances.extend(eaf_utterances) return utterances
[ "def", "utterances_from_dir", "(", "eaf_dir", ":", "Path", ",", "tier_prefixes", ":", "Tuple", "[", "str", ",", "...", "]", ")", "->", "List", "[", "Utterance", "]", ":", "logger", ".", "info", "(", "\"EAF from directory: {}, searching with tier_prefixes {}\"", ".", "format", "(", "eaf_dir", ",", "tier_prefixes", ")", ")", "utterances", "=", "[", "]", "for", "eaf_path", "in", "eaf_dir", ".", "glob", "(", "\"**/*.eaf\"", ")", ":", "eaf_utterances", "=", "utterances_from_eaf", "(", "eaf_path", ",", "tier_prefixes", ")", "utterances", ".", "extend", "(", "eaf_utterances", ")", "return", "utterances" ]
Returns the utterances found in ELAN files in a directory. Recursively explores the directory, gathering ELAN files and extracting utterances from them for tiers that start with the specified prefixes. Args: eaf_dir: A path to the directory to be searched tier_prefixes: Stings matching the start of ELAN tier names that are to be extracted. For example, if you want to extract from tiers "xv-Jane" and "xv-Mark", then tier_prefixes = ["xv"] would do the job. Returns: A list of Utterance objects.
[ "Returns", "the", "utterances", "found", "in", "ELAN", "files", "in", "a", "directory", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/preprocess/elan.py#L116-L142
13,866
persephone-tools/persephone
persephone/corpus_reader.py
CorpusReader.load_batch
def load_batch(self, fn_batch): """ Loads a batch with the given prefixes. The prefixes is the full path to the training example minus the extension. """ # TODO Assumes targets are available, which is how its distinct from # utils.load_batch_x(). These functions need to change names to be # clearer. inverse = list(zip(*fn_batch)) feat_fn_batch = inverse[0] target_fn_batch = inverse[1] batch_inputs, batch_inputs_lens = utils.load_batch_x(feat_fn_batch, flatten=False) batch_targets_list = [] for targets_path in target_fn_batch: with open(targets_path, encoding=ENCODING) as targets_f: target_indices = self.corpus.labels_to_indices(targets_f.readline().split()) batch_targets_list.append(target_indices) batch_targets = utils.target_list_to_sparse_tensor(batch_targets_list) return batch_inputs, batch_inputs_lens, batch_targets
python
def load_batch(self, fn_batch): """ Loads a batch with the given prefixes. The prefixes is the full path to the training example minus the extension. """ # TODO Assumes targets are available, which is how its distinct from # utils.load_batch_x(). These functions need to change names to be # clearer. inverse = list(zip(*fn_batch)) feat_fn_batch = inverse[0] target_fn_batch = inverse[1] batch_inputs, batch_inputs_lens = utils.load_batch_x(feat_fn_batch, flatten=False) batch_targets_list = [] for targets_path in target_fn_batch: with open(targets_path, encoding=ENCODING) as targets_f: target_indices = self.corpus.labels_to_indices(targets_f.readline().split()) batch_targets_list.append(target_indices) batch_targets = utils.target_list_to_sparse_tensor(batch_targets_list) return batch_inputs, batch_inputs_lens, batch_targets
[ "def", "load_batch", "(", "self", ",", "fn_batch", ")", ":", "# TODO Assumes targets are available, which is how its distinct from", "# utils.load_batch_x(). These functions need to change names to be", "# clearer.", "inverse", "=", "list", "(", "zip", "(", "*", "fn_batch", ")", ")", "feat_fn_batch", "=", "inverse", "[", "0", "]", "target_fn_batch", "=", "inverse", "[", "1", "]", "batch_inputs", ",", "batch_inputs_lens", "=", "utils", ".", "load_batch_x", "(", "feat_fn_batch", ",", "flatten", "=", "False", ")", "batch_targets_list", "=", "[", "]", "for", "targets_path", "in", "target_fn_batch", ":", "with", "open", "(", "targets_path", ",", "encoding", "=", "ENCODING", ")", "as", "targets_f", ":", "target_indices", "=", "self", ".", "corpus", ".", "labels_to_indices", "(", "targets_f", ".", "readline", "(", ")", ".", "split", "(", ")", ")", "batch_targets_list", ".", "append", "(", "target_indices", ")", "batch_targets", "=", "utils", ".", "target_list_to_sparse_tensor", "(", "batch_targets_list", ")", "return", "batch_inputs", ",", "batch_inputs_lens", ",", "batch_targets" ]
Loads a batch with the given prefixes. The prefixes is the full path to the training example minus the extension.
[ "Loads", "a", "batch", "with", "the", "given", "prefixes", ".", "The", "prefixes", "is", "the", "full", "path", "to", "the", "training", "example", "minus", "the", "extension", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/corpus_reader.py#L95-L117
13,867
persephone-tools/persephone
persephone/corpus_reader.py
CorpusReader.train_batch_gen
def train_batch_gen(self) -> Iterator: """ Returns a generator that outputs batches in the training data.""" if len(self.train_fns) == 0: raise PersephoneException("""No training data available; cannot generate training batches.""") # Create batches of batch_size and shuffle them. fn_batches = self.make_batches(self.train_fns) if self.rand: random.shuffle(fn_batches) for fn_batch in fn_batches: logger.debug("Batch of training filenames: %s", pprint.pformat(fn_batch)) yield self.load_batch(fn_batch) else: raise StopIteration
python
def train_batch_gen(self) -> Iterator: """ Returns a generator that outputs batches in the training data.""" if len(self.train_fns) == 0: raise PersephoneException("""No training data available; cannot generate training batches.""") # Create batches of batch_size and shuffle them. fn_batches = self.make_batches(self.train_fns) if self.rand: random.shuffle(fn_batches) for fn_batch in fn_batches: logger.debug("Batch of training filenames: %s", pprint.pformat(fn_batch)) yield self.load_batch(fn_batch) else: raise StopIteration
[ "def", "train_batch_gen", "(", "self", ")", "->", "Iterator", ":", "if", "len", "(", "self", ".", "train_fns", ")", "==", "0", ":", "raise", "PersephoneException", "(", "\"\"\"No training data available; cannot\n generate training batches.\"\"\"", ")", "# Create batches of batch_size and shuffle them.", "fn_batches", "=", "self", ".", "make_batches", "(", "self", ".", "train_fns", ")", "if", "self", ".", "rand", ":", "random", ".", "shuffle", "(", "fn_batches", ")", "for", "fn_batch", "in", "fn_batches", ":", "logger", ".", "debug", "(", "\"Batch of training filenames: %s\"", ",", "pprint", ".", "pformat", "(", "fn_batch", ")", ")", "yield", "self", ".", "load_batch", "(", "fn_batch", ")", "else", ":", "raise", "StopIteration" ]
Returns a generator that outputs batches in the training data.
[ "Returns", "a", "generator", "that", "outputs", "batches", "in", "the", "training", "data", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/corpus_reader.py#L125-L144
13,868
persephone-tools/persephone
persephone/corpus_reader.py
CorpusReader.valid_batch
def valid_batch(self): """ Returns a single batch with all the validation cases.""" valid_fns = list(zip(*self.corpus.get_valid_fns())) return self.load_batch(valid_fns)
python
def valid_batch(self): """ Returns a single batch with all the validation cases.""" valid_fns = list(zip(*self.corpus.get_valid_fns())) return self.load_batch(valid_fns)
[ "def", "valid_batch", "(", "self", ")", ":", "valid_fns", "=", "list", "(", "zip", "(", "*", "self", ".", "corpus", ".", "get_valid_fns", "(", ")", ")", ")", "return", "self", ".", "load_batch", "(", "valid_fns", ")" ]
Returns a single batch with all the validation cases.
[ "Returns", "a", "single", "batch", "with", "all", "the", "validation", "cases", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/corpus_reader.py#L146-L150
13,869
persephone-tools/persephone
persephone/corpus_reader.py
CorpusReader.untranscribed_batch_gen
def untranscribed_batch_gen(self): """ A batch generator for all the untranscribed data. """ feat_fns = self.corpus.get_untranscribed_fns() fn_batches = self.make_batches(feat_fns) for fn_batch in fn_batches: batch_inputs, batch_inputs_lens = utils.load_batch_x(fn_batch, flatten=False) yield batch_inputs, batch_inputs_lens, fn_batch
python
def untranscribed_batch_gen(self): """ A batch generator for all the untranscribed data. """ feat_fns = self.corpus.get_untranscribed_fns() fn_batches = self.make_batches(feat_fns) for fn_batch in fn_batches: batch_inputs, batch_inputs_lens = utils.load_batch_x(fn_batch, flatten=False) yield batch_inputs, batch_inputs_lens, fn_batch
[ "def", "untranscribed_batch_gen", "(", "self", ")", ":", "feat_fns", "=", "self", ".", "corpus", ".", "get_untranscribed_fns", "(", ")", "fn_batches", "=", "self", ".", "make_batches", "(", "feat_fns", ")", "for", "fn_batch", "in", "fn_batches", ":", "batch_inputs", ",", "batch_inputs_lens", "=", "utils", ".", "load_batch_x", "(", "fn_batch", ",", "flatten", "=", "False", ")", "yield", "batch_inputs", ",", "batch_inputs_lens", ",", "fn_batch" ]
A batch generator for all the untranscribed data.
[ "A", "batch", "generator", "for", "all", "the", "untranscribed", "data", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/corpus_reader.py#L158-L167
13,870
persephone-tools/persephone
persephone/corpus_reader.py
CorpusReader.human_readable_hyp_ref
def human_readable_hyp_ref(self, dense_decoded, dense_y): """ Returns a human readable version of the hypothesis for manual inspection, along with the reference. """ hyps = [] refs = [] for i in range(len(dense_decoded)): ref = [phn_i for phn_i in dense_y[i] if phn_i != 0] hyp = [phn_i for phn_i in dense_decoded[i] if phn_i != 0] ref = self.corpus.indices_to_labels(ref) hyp = self.corpus.indices_to_labels(hyp) refs.append(ref) hyps.append(hyp) return hyps, refs
python
def human_readable_hyp_ref(self, dense_decoded, dense_y): """ Returns a human readable version of the hypothesis for manual inspection, along with the reference. """ hyps = [] refs = [] for i in range(len(dense_decoded)): ref = [phn_i for phn_i in dense_y[i] if phn_i != 0] hyp = [phn_i for phn_i in dense_decoded[i] if phn_i != 0] ref = self.corpus.indices_to_labels(ref) hyp = self.corpus.indices_to_labels(hyp) refs.append(ref) hyps.append(hyp) return hyps, refs
[ "def", "human_readable_hyp_ref", "(", "self", ",", "dense_decoded", ",", "dense_y", ")", ":", "hyps", "=", "[", "]", "refs", "=", "[", "]", "for", "i", "in", "range", "(", "len", "(", "dense_decoded", ")", ")", ":", "ref", "=", "[", "phn_i", "for", "phn_i", "in", "dense_y", "[", "i", "]", "if", "phn_i", "!=", "0", "]", "hyp", "=", "[", "phn_i", "for", "phn_i", "in", "dense_decoded", "[", "i", "]", "if", "phn_i", "!=", "0", "]", "ref", "=", "self", ".", "corpus", ".", "indices_to_labels", "(", "ref", ")", "hyp", "=", "self", ".", "corpus", ".", "indices_to_labels", "(", "hyp", ")", "refs", ".", "append", "(", "ref", ")", "hyps", ".", "append", "(", "hyp", ")", "return", "hyps", ",", "refs" ]
Returns a human readable version of the hypothesis for manual inspection, along with the reference.
[ "Returns", "a", "human", "readable", "version", "of", "the", "hypothesis", "for", "manual", "inspection", "along", "with", "the", "reference", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/corpus_reader.py#L169-L184
13,871
persephone-tools/persephone
persephone/corpus_reader.py
CorpusReader.human_readable
def human_readable(self, dense_repr: Sequence[Sequence[int]]) -> List[List[str]]: """ Returns a human readable version of a dense representation of either or reference to facilitate simple manual inspection. """ transcripts = [] for dense_r in dense_repr: non_empty_phonemes = [phn_i for phn_i in dense_r if phn_i != 0] transcript = self.corpus.indices_to_labels(non_empty_phonemes) transcripts.append(transcript) return transcripts
python
def human_readable(self, dense_repr: Sequence[Sequence[int]]) -> List[List[str]]: """ Returns a human readable version of a dense representation of either or reference to facilitate simple manual inspection. """ transcripts = [] for dense_r in dense_repr: non_empty_phonemes = [phn_i for phn_i in dense_r if phn_i != 0] transcript = self.corpus.indices_to_labels(non_empty_phonemes) transcripts.append(transcript) return transcripts
[ "def", "human_readable", "(", "self", ",", "dense_repr", ":", "Sequence", "[", "Sequence", "[", "int", "]", "]", ")", "->", "List", "[", "List", "[", "str", "]", "]", ":", "transcripts", "=", "[", "]", "for", "dense_r", "in", "dense_repr", ":", "non_empty_phonemes", "=", "[", "phn_i", "for", "phn_i", "in", "dense_r", "if", "phn_i", "!=", "0", "]", "transcript", "=", "self", ".", "corpus", ".", "indices_to_labels", "(", "non_empty_phonemes", ")", "transcripts", ".", "append", "(", "transcript", ")", "return", "transcripts" ]
Returns a human readable version of a dense representation of either or reference to facilitate simple manual inspection.
[ "Returns", "a", "human", "readable", "version", "of", "a", "dense", "representation", "of", "either", "or", "reference", "to", "facilitate", "simple", "manual", "inspection", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/corpus_reader.py#L186-L197
13,872
persephone-tools/persephone
persephone/corpus_reader.py
CorpusReader.calc_time
def calc_time(self) -> None: """ Prints statistics about the the total duration of recordings in the corpus. """ def get_number_of_frames(feat_fns): """ fns: A list of numpy files which contain a number of feature frames. """ total = 0 for feat_fn in feat_fns: num_frames = len(np.load(feat_fn)) total += num_frames return total def numframes_to_minutes(num_frames): # TODO Assumes 10ms strides for the frames. This should generalize to # different frame stride widths, as should feature preparation. minutes = ((num_frames*10)/1000)/60 return minutes total_frames = 0 train_fns = [train_fn[0] for train_fn in self.train_fns] num_train_frames = get_number_of_frames(train_fns) total_frames += num_train_frames num_valid_frames = get_number_of_frames(self.corpus.get_valid_fns()[0]) total_frames += num_valid_frames num_test_frames = get_number_of_frames(self.corpus.get_test_fns()[0]) total_frames += num_test_frames print("Train duration: %0.3f" % numframes_to_minutes(num_train_frames)) print("Validation duration: %0.3f" % numframes_to_minutes(num_valid_frames)) print("Test duration: %0.3f" % numframes_to_minutes(num_test_frames)) print("Total duration: %0.3f" % numframes_to_minutes(total_frames))
python
def calc_time(self) -> None: """ Prints statistics about the the total duration of recordings in the corpus. """ def get_number_of_frames(feat_fns): """ fns: A list of numpy files which contain a number of feature frames. """ total = 0 for feat_fn in feat_fns: num_frames = len(np.load(feat_fn)) total += num_frames return total def numframes_to_minutes(num_frames): # TODO Assumes 10ms strides for the frames. This should generalize to # different frame stride widths, as should feature preparation. minutes = ((num_frames*10)/1000)/60 return minutes total_frames = 0 train_fns = [train_fn[0] for train_fn in self.train_fns] num_train_frames = get_number_of_frames(train_fns) total_frames += num_train_frames num_valid_frames = get_number_of_frames(self.corpus.get_valid_fns()[0]) total_frames += num_valid_frames num_test_frames = get_number_of_frames(self.corpus.get_test_fns()[0]) total_frames += num_test_frames print("Train duration: %0.3f" % numframes_to_minutes(num_train_frames)) print("Validation duration: %0.3f" % numframes_to_minutes(num_valid_frames)) print("Test duration: %0.3f" % numframes_to_minutes(num_test_frames)) print("Total duration: %0.3f" % numframes_to_minutes(total_frames))
[ "def", "calc_time", "(", "self", ")", "->", "None", ":", "def", "get_number_of_frames", "(", "feat_fns", ")", ":", "\"\"\" fns: A list of numpy files which contain a number of feature\n frames. \"\"\"", "total", "=", "0", "for", "feat_fn", "in", "feat_fns", ":", "num_frames", "=", "len", "(", "np", ".", "load", "(", "feat_fn", ")", ")", "total", "+=", "num_frames", "return", "total", "def", "numframes_to_minutes", "(", "num_frames", ")", ":", "# TODO Assumes 10ms strides for the frames. This should generalize to", "# different frame stride widths, as should feature preparation.", "minutes", "=", "(", "(", "num_frames", "*", "10", ")", "/", "1000", ")", "/", "60", "return", "minutes", "total_frames", "=", "0", "train_fns", "=", "[", "train_fn", "[", "0", "]", "for", "train_fn", "in", "self", ".", "train_fns", "]", "num_train_frames", "=", "get_number_of_frames", "(", "train_fns", ")", "total_frames", "+=", "num_train_frames", "num_valid_frames", "=", "get_number_of_frames", "(", "self", ".", "corpus", ".", "get_valid_fns", "(", ")", "[", "0", "]", ")", "total_frames", "+=", "num_valid_frames", "num_test_frames", "=", "get_number_of_frames", "(", "self", ".", "corpus", ".", "get_test_fns", "(", ")", "[", "0", "]", ")", "total_frames", "+=", "num_test_frames", "print", "(", "\"Train duration: %0.3f\"", "%", "numframes_to_minutes", "(", "num_train_frames", ")", ")", "print", "(", "\"Validation duration: %0.3f\"", "%", "numframes_to_minutes", "(", "num_valid_frames", ")", ")", "print", "(", "\"Test duration: %0.3f\"", "%", "numframes_to_minutes", "(", "num_test_frames", ")", ")", "print", "(", "\"Total duration: %0.3f\"", "%", "numframes_to_minutes", "(", "total_frames", ")", ")" ]
Prints statistics about the the total duration of recordings in the corpus.
[ "Prints", "statistics", "about", "the", "the", "total", "duration", "of", "recordings", "in", "the", "corpus", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/corpus_reader.py#L205-L241
13,873
persephone-tools/persephone
persephone/rnn_ctc.py
lstm_cell
def lstm_cell(hidden_size): """ Wrapper function to create an LSTM cell. """ return tf.contrib.rnn.LSTMCell( hidden_size, use_peepholes=True, state_is_tuple=True)
python
def lstm_cell(hidden_size): """ Wrapper function to create an LSTM cell. """ return tf.contrib.rnn.LSTMCell( hidden_size, use_peepholes=True, state_is_tuple=True)
[ "def", "lstm_cell", "(", "hidden_size", ")", ":", "return", "tf", ".", "contrib", ".", "rnn", ".", "LSTMCell", "(", "hidden_size", ",", "use_peepholes", "=", "True", ",", "state_is_tuple", "=", "True", ")" ]
Wrapper function to create an LSTM cell.
[ "Wrapper", "function", "to", "create", "an", "LSTM", "cell", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/rnn_ctc.py#L12-L16
13,874
persephone-tools/persephone
persephone/rnn_ctc.py
Model.write_desc
def write_desc(self) -> None: """ Writes a description of the model to the exp_dir. """ path = os.path.join(self.exp_dir, "model_description.txt") with open(path, "w") as desc_f: for key, val in self.__dict__.items(): print("%s=%s" % (key, val), file=desc_f) import json json_path = os.path.join(self.exp_dir, "model_description.json") desc = { } #type: Dict[str, Any] # For use in decoding from a saved model desc["topology"] = { "batch_x_name" : self.batch_x.name, #type: ignore "batch_x_lens_name" : self.batch_x_lens.name, #type: ignore "dense_decoded_name" : self.dense_decoded.name #type: ignore } desc["model_type"] = str(self.__class__) for key, val in self.__dict__.items(): if isinstance(val, int): desc[str(key)] = val elif isinstance(val, tf.Tensor): desc[key] = { "type": "tf.Tensor", "name": val.name, #type: ignore "shape": str(val.shape), #type: ignore "dtype" : str(val.dtype), #type: ignore "value" : str(val), } elif isinstance(val, tf.SparseTensor): #type: ignore desc[key] = { "type": "tf.SparseTensor", "value": str(val), #type: ignore } else: desc[str(key)] = str(val) with open(json_path, "w") as json_desc_f: json.dump(desc, json_desc_f, skipkeys=True)
python
def write_desc(self) -> None: """ Writes a description of the model to the exp_dir. """ path = os.path.join(self.exp_dir, "model_description.txt") with open(path, "w") as desc_f: for key, val in self.__dict__.items(): print("%s=%s" % (key, val), file=desc_f) import json json_path = os.path.join(self.exp_dir, "model_description.json") desc = { } #type: Dict[str, Any] # For use in decoding from a saved model desc["topology"] = { "batch_x_name" : self.batch_x.name, #type: ignore "batch_x_lens_name" : self.batch_x_lens.name, #type: ignore "dense_decoded_name" : self.dense_decoded.name #type: ignore } desc["model_type"] = str(self.__class__) for key, val in self.__dict__.items(): if isinstance(val, int): desc[str(key)] = val elif isinstance(val, tf.Tensor): desc[key] = { "type": "tf.Tensor", "name": val.name, #type: ignore "shape": str(val.shape), #type: ignore "dtype" : str(val.dtype), #type: ignore "value" : str(val), } elif isinstance(val, tf.SparseTensor): #type: ignore desc[key] = { "type": "tf.SparseTensor", "value": str(val), #type: ignore } else: desc[str(key)] = str(val) with open(json_path, "w") as json_desc_f: json.dump(desc, json_desc_f, skipkeys=True)
[ "def", "write_desc", "(", "self", ")", "->", "None", ":", "path", "=", "os", ".", "path", ".", "join", "(", "self", ".", "exp_dir", ",", "\"model_description.txt\"", ")", "with", "open", "(", "path", ",", "\"w\"", ")", "as", "desc_f", ":", "for", "key", ",", "val", "in", "self", ".", "__dict__", ".", "items", "(", ")", ":", "print", "(", "\"%s=%s\"", "%", "(", "key", ",", "val", ")", ",", "file", "=", "desc_f", ")", "import", "json", "json_path", "=", "os", ".", "path", ".", "join", "(", "self", ".", "exp_dir", ",", "\"model_description.json\"", ")", "desc", "=", "{", "}", "#type: Dict[str, Any]", "# For use in decoding from a saved model", "desc", "[", "\"topology\"", "]", "=", "{", "\"batch_x_name\"", ":", "self", ".", "batch_x", ".", "name", ",", "#type: ignore", "\"batch_x_lens_name\"", ":", "self", ".", "batch_x_lens", ".", "name", ",", "#type: ignore", "\"dense_decoded_name\"", ":", "self", ".", "dense_decoded", ".", "name", "#type: ignore", "}", "desc", "[", "\"model_type\"", "]", "=", "str", "(", "self", ".", "__class__", ")", "for", "key", ",", "val", "in", "self", ".", "__dict__", ".", "items", "(", ")", ":", "if", "isinstance", "(", "val", ",", "int", ")", ":", "desc", "[", "str", "(", "key", ")", "]", "=", "val", "elif", "isinstance", "(", "val", ",", "tf", ".", "Tensor", ")", ":", "desc", "[", "key", "]", "=", "{", "\"type\"", ":", "\"tf.Tensor\"", ",", "\"name\"", ":", "val", ".", "name", ",", "#type: ignore", "\"shape\"", ":", "str", "(", "val", ".", "shape", ")", ",", "#type: ignore", "\"dtype\"", ":", "str", "(", "val", ".", "dtype", ")", ",", "#type: ignore", "\"value\"", ":", "str", "(", "val", ")", ",", "}", "elif", "isinstance", "(", "val", ",", "tf", ".", "SparseTensor", ")", ":", "#type: ignore", "desc", "[", "key", "]", "=", "{", "\"type\"", ":", "\"tf.SparseTensor\"", ",", "\"value\"", ":", "str", "(", "val", ")", ",", "#type: ignore", "}", "else", ":", "desc", "[", "str", "(", "key", ")", "]", "=", "str", "(", "val", ")", "with", "open", "(", "json_path", ",", "\"w\"", ")", "as", "json_desc_f", ":", "json", ".", "dump", "(", "desc", ",", "json_desc_f", ",", "skipkeys", "=", "True", ")" ]
Writes a description of the model to the exp_dir.
[ "Writes", "a", "description", "of", "the", "model", "to", "the", "exp_dir", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/rnn_ctc.py#L21-L58
13,875
persephone-tools/persephone
persephone/preprocess/feat_extract.py
empty_wav
def empty_wav(wav_path: Union[Path, str]) -> bool: """Check if a wav contains data""" with wave.open(str(wav_path), 'rb') as wav_f: return wav_f.getnframes() == 0
python
def empty_wav(wav_path: Union[Path, str]) -> bool: """Check if a wav contains data""" with wave.open(str(wav_path), 'rb') as wav_f: return wav_f.getnframes() == 0
[ "def", "empty_wav", "(", "wav_path", ":", "Union", "[", "Path", ",", "str", "]", ")", "->", "bool", ":", "with", "wave", ".", "open", "(", "str", "(", "wav_path", ")", ",", "'rb'", ")", "as", "wav_f", ":", "return", "wav_f", ".", "getnframes", "(", ")", "==", "0" ]
Check if a wav contains data
[ "Check", "if", "a", "wav", "contains", "data" ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/preprocess/feat_extract.py#L19-L22
13,876
persephone-tools/persephone
persephone/preprocess/feat_extract.py
extract_energy
def extract_energy(rate, sig): """ Extracts the energy of frames. """ mfcc = python_speech_features.mfcc(sig, rate, appendEnergy=True) energy_row_vec = mfcc[:, 0] energy_col_vec = energy_row_vec[:, np.newaxis] return energy_col_vec
python
def extract_energy(rate, sig): """ Extracts the energy of frames. """ mfcc = python_speech_features.mfcc(sig, rate, appendEnergy=True) energy_row_vec = mfcc[:, 0] energy_col_vec = energy_row_vec[:, np.newaxis] return energy_col_vec
[ "def", "extract_energy", "(", "rate", ",", "sig", ")", ":", "mfcc", "=", "python_speech_features", ".", "mfcc", "(", "sig", ",", "rate", ",", "appendEnergy", "=", "True", ")", "energy_row_vec", "=", "mfcc", "[", ":", ",", "0", "]", "energy_col_vec", "=", "energy_row_vec", "[", ":", ",", "np", ".", "newaxis", "]", "return", "energy_col_vec" ]
Extracts the energy of frames.
[ "Extracts", "the", "energy", "of", "frames", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/preprocess/feat_extract.py#L25-L31
13,877
persephone-tools/persephone
persephone/preprocess/feat_extract.py
fbank
def fbank(wav_path, flat=True): """ Currently grabs log Mel filterbank, deltas and double deltas.""" (rate, sig) = wav.read(wav_path) if len(sig) == 0: logger.warning("Empty wav: {}".format(wav_path)) fbank_feat = python_speech_features.logfbank(sig, rate, nfilt=40) energy = extract_energy(rate, sig) feat = np.hstack([energy, fbank_feat]) delta_feat = python_speech_features.delta(feat, 2) delta_delta_feat = python_speech_features.delta(delta_feat, 2) all_feats = [feat, delta_feat, delta_delta_feat] if not flat: all_feats = np.array(all_feats) # Make time the first dimension for easy length normalization padding # later. all_feats = np.swapaxes(all_feats, 0, 1) all_feats = np.swapaxes(all_feats, 1, 2) else: all_feats = np.concatenate(all_feats, axis=1) # Log Mel Filterbank, with delta, and double delta feat_fn = wav_path[:-3] + "fbank.npy" np.save(feat_fn, all_feats)
python
def fbank(wav_path, flat=True): """ Currently grabs log Mel filterbank, deltas and double deltas.""" (rate, sig) = wav.read(wav_path) if len(sig) == 0: logger.warning("Empty wav: {}".format(wav_path)) fbank_feat = python_speech_features.logfbank(sig, rate, nfilt=40) energy = extract_energy(rate, sig) feat = np.hstack([energy, fbank_feat]) delta_feat = python_speech_features.delta(feat, 2) delta_delta_feat = python_speech_features.delta(delta_feat, 2) all_feats = [feat, delta_feat, delta_delta_feat] if not flat: all_feats = np.array(all_feats) # Make time the first dimension for easy length normalization padding # later. all_feats = np.swapaxes(all_feats, 0, 1) all_feats = np.swapaxes(all_feats, 1, 2) else: all_feats = np.concatenate(all_feats, axis=1) # Log Mel Filterbank, with delta, and double delta feat_fn = wav_path[:-3] + "fbank.npy" np.save(feat_fn, all_feats)
[ "def", "fbank", "(", "wav_path", ",", "flat", "=", "True", ")", ":", "(", "rate", ",", "sig", ")", "=", "wav", ".", "read", "(", "wav_path", ")", "if", "len", "(", "sig", ")", "==", "0", ":", "logger", ".", "warning", "(", "\"Empty wav: {}\"", ".", "format", "(", "wav_path", ")", ")", "fbank_feat", "=", "python_speech_features", ".", "logfbank", "(", "sig", ",", "rate", ",", "nfilt", "=", "40", ")", "energy", "=", "extract_energy", "(", "rate", ",", "sig", ")", "feat", "=", "np", ".", "hstack", "(", "[", "energy", ",", "fbank_feat", "]", ")", "delta_feat", "=", "python_speech_features", ".", "delta", "(", "feat", ",", "2", ")", "delta_delta_feat", "=", "python_speech_features", ".", "delta", "(", "delta_feat", ",", "2", ")", "all_feats", "=", "[", "feat", ",", "delta_feat", ",", "delta_delta_feat", "]", "if", "not", "flat", ":", "all_feats", "=", "np", ".", "array", "(", "all_feats", ")", "# Make time the first dimension for easy length normalization padding", "# later.", "all_feats", "=", "np", ".", "swapaxes", "(", "all_feats", ",", "0", ",", "1", ")", "all_feats", "=", "np", ".", "swapaxes", "(", "all_feats", ",", "1", ",", "2", ")", "else", ":", "all_feats", "=", "np", ".", "concatenate", "(", "all_feats", ",", "axis", "=", "1", ")", "# Log Mel Filterbank, with delta, and double delta", "feat_fn", "=", "wav_path", "[", ":", "-", "3", "]", "+", "\"fbank.npy\"", "np", ".", "save", "(", "feat_fn", ",", "all_feats", ")" ]
Currently grabs log Mel filterbank, deltas and double deltas.
[ "Currently", "grabs", "log", "Mel", "filterbank", "deltas", "and", "double", "deltas", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/preprocess/feat_extract.py#L33-L56
13,878
persephone-tools/persephone
persephone/preprocess/feat_extract.py
mfcc
def mfcc(wav_path): """ Grabs MFCC features with energy and derivates. """ (rate, sig) = wav.read(wav_path) feat = python_speech_features.mfcc(sig, rate, appendEnergy=True) delta_feat = python_speech_features.delta(feat, 2) all_feats = [feat, delta_feat] all_feats = np.array(all_feats) # Make time the first dimension for easy length normalization padding later. all_feats = np.swapaxes(all_feats, 0, 1) all_feats = np.swapaxes(all_feats, 1, 2) feat_fn = wav_path[:-3] + "mfcc13_d.npy" np.save(feat_fn, all_feats)
python
def mfcc(wav_path): """ Grabs MFCC features with energy and derivates. """ (rate, sig) = wav.read(wav_path) feat = python_speech_features.mfcc(sig, rate, appendEnergy=True) delta_feat = python_speech_features.delta(feat, 2) all_feats = [feat, delta_feat] all_feats = np.array(all_feats) # Make time the first dimension for easy length normalization padding later. all_feats = np.swapaxes(all_feats, 0, 1) all_feats = np.swapaxes(all_feats, 1, 2) feat_fn = wav_path[:-3] + "mfcc13_d.npy" np.save(feat_fn, all_feats)
[ "def", "mfcc", "(", "wav_path", ")", ":", "(", "rate", ",", "sig", ")", "=", "wav", ".", "read", "(", "wav_path", ")", "feat", "=", "python_speech_features", ".", "mfcc", "(", "sig", ",", "rate", ",", "appendEnergy", "=", "True", ")", "delta_feat", "=", "python_speech_features", ".", "delta", "(", "feat", ",", "2", ")", "all_feats", "=", "[", "feat", ",", "delta_feat", "]", "all_feats", "=", "np", ".", "array", "(", "all_feats", ")", "# Make time the first dimension for easy length normalization padding later.", "all_feats", "=", "np", ".", "swapaxes", "(", "all_feats", ",", "0", ",", "1", ")", "all_feats", "=", "np", ".", "swapaxes", "(", "all_feats", ",", "1", ",", "2", ")", "feat_fn", "=", "wav_path", "[", ":", "-", "3", "]", "+", "\"mfcc13_d.npy\"", "np", ".", "save", "(", "feat_fn", ",", "all_feats", ")" ]
Grabs MFCC features with energy and derivates.
[ "Grabs", "MFCC", "features", "with", "energy", "and", "derivates", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/preprocess/feat_extract.py#L58-L71
13,879
persephone-tools/persephone
persephone/preprocess/feat_extract.py
from_dir
def from_dir(dirpath: Path, feat_type: str) -> None: """ Performs feature extraction from the WAV files in a directory. Args: dirpath: A `Path` to the directory where the WAV files reside. feat_type: The type of features that are being used. """ logger.info("Extracting features from directory {}".format(dirpath)) dirname = str(dirpath) def all_wavs_processed() -> bool: """ True if all wavs in the directory have corresponding numpy feature file; False otherwise. """ for fn in os.listdir(dirname): prefix, ext = os.path.splitext(fn) if ext == ".wav": if not os.path.exists( os.path.join(dirname, "%s.%s.npy" % (prefix, feat_type))): return False return True if all_wavs_processed(): # Then nothing needs to be done here logger.info("All WAV files already preprocessed") return # Otherwise, go on and process everything... # If pitch features are needed as part of this, extract them if feat_type == "pitch" or feat_type == "fbank_and_pitch": kaldi_pitch(dirname, dirname) # Then apply file-wise feature extraction for filename in os.listdir(dirname): logger.info("Preparing %s features for %s", feat_type, filename) path = os.path.join(dirname, filename) if path.endswith(".wav"): if empty_wav(path): raise PersephoneException("Can't extract features for {} since it is an empty WAV file. Remove it from the corpus.".format(path)) if feat_type == "fbank": fbank(path) elif feat_type == "fbank_and_pitch": fbank(path) prefix = os.path.splitext(filename)[0] combine_fbank_and_pitch(dirname, prefix) elif feat_type == "pitch": # Already extracted pitch at the start of this function. pass elif feat_type == "mfcc13_d": mfcc(path) else: logger.warning("Feature type not found: %s", feat_type) raise PersephoneException("Feature type not found: %s" % feat_type)
python
def from_dir(dirpath: Path, feat_type: str) -> None: """ Performs feature extraction from the WAV files in a directory. Args: dirpath: A `Path` to the directory where the WAV files reside. feat_type: The type of features that are being used. """ logger.info("Extracting features from directory {}".format(dirpath)) dirname = str(dirpath) def all_wavs_processed() -> bool: """ True if all wavs in the directory have corresponding numpy feature file; False otherwise. """ for fn in os.listdir(dirname): prefix, ext = os.path.splitext(fn) if ext == ".wav": if not os.path.exists( os.path.join(dirname, "%s.%s.npy" % (prefix, feat_type))): return False return True if all_wavs_processed(): # Then nothing needs to be done here logger.info("All WAV files already preprocessed") return # Otherwise, go on and process everything... # If pitch features are needed as part of this, extract them if feat_type == "pitch" or feat_type == "fbank_and_pitch": kaldi_pitch(dirname, dirname) # Then apply file-wise feature extraction for filename in os.listdir(dirname): logger.info("Preparing %s features for %s", feat_type, filename) path = os.path.join(dirname, filename) if path.endswith(".wav"): if empty_wav(path): raise PersephoneException("Can't extract features for {} since it is an empty WAV file. Remove it from the corpus.".format(path)) if feat_type == "fbank": fbank(path) elif feat_type == "fbank_and_pitch": fbank(path) prefix = os.path.splitext(filename)[0] combine_fbank_and_pitch(dirname, prefix) elif feat_type == "pitch": # Already extracted pitch at the start of this function. pass elif feat_type == "mfcc13_d": mfcc(path) else: logger.warning("Feature type not found: %s", feat_type) raise PersephoneException("Feature type not found: %s" % feat_type)
[ "def", "from_dir", "(", "dirpath", ":", "Path", ",", "feat_type", ":", "str", ")", "->", "None", ":", "logger", ".", "info", "(", "\"Extracting features from directory {}\"", ".", "format", "(", "dirpath", ")", ")", "dirname", "=", "str", "(", "dirpath", ")", "def", "all_wavs_processed", "(", ")", "->", "bool", ":", "\"\"\"\n True if all wavs in the directory have corresponding numpy feature\n file; False otherwise.\n \"\"\"", "for", "fn", "in", "os", ".", "listdir", "(", "dirname", ")", ":", "prefix", ",", "ext", "=", "os", ".", "path", ".", "splitext", "(", "fn", ")", "if", "ext", "==", "\".wav\"", ":", "if", "not", "os", ".", "path", ".", "exists", "(", "os", ".", "path", ".", "join", "(", "dirname", ",", "\"%s.%s.npy\"", "%", "(", "prefix", ",", "feat_type", ")", ")", ")", ":", "return", "False", "return", "True", "if", "all_wavs_processed", "(", ")", ":", "# Then nothing needs to be done here", "logger", ".", "info", "(", "\"All WAV files already preprocessed\"", ")", "return", "# Otherwise, go on and process everything...", "# If pitch features are needed as part of this, extract them", "if", "feat_type", "==", "\"pitch\"", "or", "feat_type", "==", "\"fbank_and_pitch\"", ":", "kaldi_pitch", "(", "dirname", ",", "dirname", ")", "# Then apply file-wise feature extraction", "for", "filename", "in", "os", ".", "listdir", "(", "dirname", ")", ":", "logger", ".", "info", "(", "\"Preparing %s features for %s\"", ",", "feat_type", ",", "filename", ")", "path", "=", "os", ".", "path", ".", "join", "(", "dirname", ",", "filename", ")", "if", "path", ".", "endswith", "(", "\".wav\"", ")", ":", "if", "empty_wav", "(", "path", ")", ":", "raise", "PersephoneException", "(", "\"Can't extract features for {} since it is an empty WAV file. Remove it from the corpus.\"", ".", "format", "(", "path", ")", ")", "if", "feat_type", "==", "\"fbank\"", ":", "fbank", "(", "path", ")", "elif", "feat_type", "==", "\"fbank_and_pitch\"", ":", "fbank", "(", "path", ")", "prefix", "=", "os", ".", "path", ".", "splitext", "(", "filename", ")", "[", "0", "]", "combine_fbank_and_pitch", "(", "dirname", ",", "prefix", ")", "elif", "feat_type", "==", "\"pitch\"", ":", "# Already extracted pitch at the start of this function.", "pass", "elif", "feat_type", "==", "\"mfcc13_d\"", ":", "mfcc", "(", "path", ")", "else", ":", "logger", ".", "warning", "(", "\"Feature type not found: %s\"", ",", "feat_type", ")", "raise", "PersephoneException", "(", "\"Feature type not found: %s\"", "%", "feat_type", ")" ]
Performs feature extraction from the WAV files in a directory. Args: dirpath: A `Path` to the directory where the WAV files reside. feat_type: The type of features that are being used.
[ "Performs", "feature", "extraction", "from", "the", "WAV", "files", "in", "a", "directory", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/preprocess/feat_extract.py#L117-L173
13,880
persephone-tools/persephone
persephone/preprocess/feat_extract.py
convert_wav
def convert_wav(org_wav_fn: Path, tgt_wav_fn: Path) -> None: """ Converts the wav into a 16bit mono 16000Hz wav. Args: org_wav_fn: A `Path` to the original wave file tgt_wav_fn: The `Path` to output the processed wave file """ if not org_wav_fn.exists(): raise FileNotFoundError args = [config.FFMPEG_PATH, "-i", str(org_wav_fn), "-ac", "1", "-ar", "16000", str(tgt_wav_fn)] subprocess.run(args)
python
def convert_wav(org_wav_fn: Path, tgt_wav_fn: Path) -> None: """ Converts the wav into a 16bit mono 16000Hz wav. Args: org_wav_fn: A `Path` to the original wave file tgt_wav_fn: The `Path` to output the processed wave file """ if not org_wav_fn.exists(): raise FileNotFoundError args = [config.FFMPEG_PATH, "-i", str(org_wav_fn), "-ac", "1", "-ar", "16000", str(tgt_wav_fn)] subprocess.run(args)
[ "def", "convert_wav", "(", "org_wav_fn", ":", "Path", ",", "tgt_wav_fn", ":", "Path", ")", "->", "None", ":", "if", "not", "org_wav_fn", ".", "exists", "(", ")", ":", "raise", "FileNotFoundError", "args", "=", "[", "config", ".", "FFMPEG_PATH", ",", "\"-i\"", ",", "str", "(", "org_wav_fn", ")", ",", "\"-ac\"", ",", "\"1\"", ",", "\"-ar\"", ",", "\"16000\"", ",", "str", "(", "tgt_wav_fn", ")", "]", "subprocess", ".", "run", "(", "args", ")" ]
Converts the wav into a 16bit mono 16000Hz wav. Args: org_wav_fn: A `Path` to the original wave file tgt_wav_fn: The `Path` to output the processed wave file
[ "Converts", "the", "wav", "into", "a", "16bit", "mono", "16000Hz", "wav", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/preprocess/feat_extract.py#L175-L186
13,881
persephone-tools/persephone
persephone/preprocess/feat_extract.py
kaldi_pitch
def kaldi_pitch(wav_dir: str, feat_dir: str) -> None: """ Extract Kaldi pitch features. Assumes 16k mono wav files.""" logger.debug("Make wav.scp and pitch.scp files") # Make wav.scp and pitch.scp files prefixes = [] for fn in os.listdir(wav_dir): prefix, ext = os.path.splitext(fn) if ext == ".wav": prefixes.append(prefix) wav_scp_path = os.path.join(feat_dir, "wavs.scp") with open(wav_scp_path, "w") as wav_scp: for prefix in prefixes: logger.info("Writing wav file: %s", os.path.join(wav_dir, prefix + ".wav")) print(prefix, os.path.join(wav_dir, prefix + ".wav"), file=wav_scp) pitch_scp_path = os.path.join(feat_dir, "pitch_feats.scp") with open(pitch_scp_path, "w") as pitch_scp: for prefix in prefixes: logger.info("Writing scp file: %s", os.path.join(feat_dir, prefix + ".pitch.txt")) print(prefix, os.path.join(feat_dir, prefix + ".pitch.txt"), file=pitch_scp) # Call Kaldi pitch feat extraction args = [os.path.join(config.KALDI_ROOT, "src/featbin/compute-kaldi-pitch-feats"), "scp:%s" % (wav_scp_path), "scp,t:%s" % pitch_scp_path] logger.info("Extracting pitch features from wavs listed in {}".format( wav_scp_path)) subprocess.run(args) # Convert the Kaldi pitch *.txt files to numpy arrays. for fn in os.listdir(feat_dir): if fn.endswith(".pitch.txt"): pitch_feats = [] with open(os.path.join(feat_dir, fn)) as f: for line in f: sp = line.split() if len(sp) > 1: pitch_feats.append([float(sp[0]), float(sp[1])]) prefix, _ = os.path.splitext(fn) out_fn = prefix + ".npy" a = np.array(pitch_feats) np.save(os.path.join(feat_dir, out_fn), a)
python
def kaldi_pitch(wav_dir: str, feat_dir: str) -> None: """ Extract Kaldi pitch features. Assumes 16k mono wav files.""" logger.debug("Make wav.scp and pitch.scp files") # Make wav.scp and pitch.scp files prefixes = [] for fn in os.listdir(wav_dir): prefix, ext = os.path.splitext(fn) if ext == ".wav": prefixes.append(prefix) wav_scp_path = os.path.join(feat_dir, "wavs.scp") with open(wav_scp_path, "w") as wav_scp: for prefix in prefixes: logger.info("Writing wav file: %s", os.path.join(wav_dir, prefix + ".wav")) print(prefix, os.path.join(wav_dir, prefix + ".wav"), file=wav_scp) pitch_scp_path = os.path.join(feat_dir, "pitch_feats.scp") with open(pitch_scp_path, "w") as pitch_scp: for prefix in prefixes: logger.info("Writing scp file: %s", os.path.join(feat_dir, prefix + ".pitch.txt")) print(prefix, os.path.join(feat_dir, prefix + ".pitch.txt"), file=pitch_scp) # Call Kaldi pitch feat extraction args = [os.path.join(config.KALDI_ROOT, "src/featbin/compute-kaldi-pitch-feats"), "scp:%s" % (wav_scp_path), "scp,t:%s" % pitch_scp_path] logger.info("Extracting pitch features from wavs listed in {}".format( wav_scp_path)) subprocess.run(args) # Convert the Kaldi pitch *.txt files to numpy arrays. for fn in os.listdir(feat_dir): if fn.endswith(".pitch.txt"): pitch_feats = [] with open(os.path.join(feat_dir, fn)) as f: for line in f: sp = line.split() if len(sp) > 1: pitch_feats.append([float(sp[0]), float(sp[1])]) prefix, _ = os.path.splitext(fn) out_fn = prefix + ".npy" a = np.array(pitch_feats) np.save(os.path.join(feat_dir, out_fn), a)
[ "def", "kaldi_pitch", "(", "wav_dir", ":", "str", ",", "feat_dir", ":", "str", ")", "->", "None", ":", "logger", ".", "debug", "(", "\"Make wav.scp and pitch.scp files\"", ")", "# Make wav.scp and pitch.scp files", "prefixes", "=", "[", "]", "for", "fn", "in", "os", ".", "listdir", "(", "wav_dir", ")", ":", "prefix", ",", "ext", "=", "os", ".", "path", ".", "splitext", "(", "fn", ")", "if", "ext", "==", "\".wav\"", ":", "prefixes", ".", "append", "(", "prefix", ")", "wav_scp_path", "=", "os", ".", "path", ".", "join", "(", "feat_dir", ",", "\"wavs.scp\"", ")", "with", "open", "(", "wav_scp_path", ",", "\"w\"", ")", "as", "wav_scp", ":", "for", "prefix", "in", "prefixes", ":", "logger", ".", "info", "(", "\"Writing wav file: %s\"", ",", "os", ".", "path", ".", "join", "(", "wav_dir", ",", "prefix", "+", "\".wav\"", ")", ")", "print", "(", "prefix", ",", "os", ".", "path", ".", "join", "(", "wav_dir", ",", "prefix", "+", "\".wav\"", ")", ",", "file", "=", "wav_scp", ")", "pitch_scp_path", "=", "os", ".", "path", ".", "join", "(", "feat_dir", ",", "\"pitch_feats.scp\"", ")", "with", "open", "(", "pitch_scp_path", ",", "\"w\"", ")", "as", "pitch_scp", ":", "for", "prefix", "in", "prefixes", ":", "logger", ".", "info", "(", "\"Writing scp file: %s\"", ",", "os", ".", "path", ".", "join", "(", "feat_dir", ",", "prefix", "+", "\".pitch.txt\"", ")", ")", "print", "(", "prefix", ",", "os", ".", "path", ".", "join", "(", "feat_dir", ",", "prefix", "+", "\".pitch.txt\"", ")", ",", "file", "=", "pitch_scp", ")", "# Call Kaldi pitch feat extraction", "args", "=", "[", "os", ".", "path", ".", "join", "(", "config", ".", "KALDI_ROOT", ",", "\"src/featbin/compute-kaldi-pitch-feats\"", ")", ",", "\"scp:%s\"", "%", "(", "wav_scp_path", ")", ",", "\"scp,t:%s\"", "%", "pitch_scp_path", "]", "logger", ".", "info", "(", "\"Extracting pitch features from wavs listed in {}\"", ".", "format", "(", "wav_scp_path", ")", ")", "subprocess", ".", "run", "(", "args", ")", "# Convert the Kaldi pitch *.txt files to numpy arrays.", "for", "fn", "in", "os", ".", "listdir", "(", "feat_dir", ")", ":", "if", "fn", ".", "endswith", "(", "\".pitch.txt\"", ")", ":", "pitch_feats", "=", "[", "]", "with", "open", "(", "os", ".", "path", ".", "join", "(", "feat_dir", ",", "fn", ")", ")", "as", "f", ":", "for", "line", "in", "f", ":", "sp", "=", "line", ".", "split", "(", ")", "if", "len", "(", "sp", ")", ">", "1", ":", "pitch_feats", ".", "append", "(", "[", "float", "(", "sp", "[", "0", "]", ")", ",", "float", "(", "sp", "[", "1", "]", ")", "]", ")", "prefix", ",", "_", "=", "os", ".", "path", ".", "splitext", "(", "fn", ")", "out_fn", "=", "prefix", "+", "\".npy\"", "a", "=", "np", ".", "array", "(", "pitch_feats", ")", "np", ".", "save", "(", "os", ".", "path", ".", "join", "(", "feat_dir", ",", "out_fn", ")", ",", "a", ")" ]
Extract Kaldi pitch features. Assumes 16k mono wav files.
[ "Extract", "Kaldi", "pitch", "features", ".", "Assumes", "16k", "mono", "wav", "files", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/preprocess/feat_extract.py#L188-L230
13,882
persephone-tools/persephone
persephone/experiment.py
get_exp_dir_num
def get_exp_dir_num(parent_dir: str) -> int: """ Gets the number of the current experiment directory.""" return max([int(fn.split(".")[0]) for fn in os.listdir(parent_dir) if fn.split(".")[0].isdigit()] + [-1])
python
def get_exp_dir_num(parent_dir: str) -> int: """ Gets the number of the current experiment directory.""" return max([int(fn.split(".")[0]) for fn in os.listdir(parent_dir) if fn.split(".")[0].isdigit()] + [-1])
[ "def", "get_exp_dir_num", "(", "parent_dir", ":", "str", ")", "->", "int", ":", "return", "max", "(", "[", "int", "(", "fn", ".", "split", "(", "\".\"", ")", "[", "0", "]", ")", "for", "fn", "in", "os", ".", "listdir", "(", "parent_dir", ")", "if", "fn", ".", "split", "(", "\".\"", ")", "[", "0", "]", ".", "isdigit", "(", ")", "]", "+", "[", "-", "1", "]", ")" ]
Gets the number of the current experiment directory.
[ "Gets", "the", "number", "of", "the", "current", "experiment", "directory", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/experiment.py#L18-L22
13,883
persephone-tools/persephone
persephone/experiment.py
transcribe
def transcribe(model_path, corpus): """ Applies a trained model to untranscribed data in a Corpus. """ exp_dir = prep_exp_dir() model = get_simple_model(exp_dir, corpus) model.transcribe(model_path)
python
def transcribe(model_path, corpus): """ Applies a trained model to untranscribed data in a Corpus. """ exp_dir = prep_exp_dir() model = get_simple_model(exp_dir, corpus) model.transcribe(model_path)
[ "def", "transcribe", "(", "model_path", ",", "corpus", ")", ":", "exp_dir", "=", "prep_exp_dir", "(", ")", "model", "=", "get_simple_model", "(", "exp_dir", ",", "corpus", ")", "model", ".", "transcribe", "(", "model_path", ")" ]
Applies a trained model to untranscribed data in a Corpus.
[ "Applies", "a", "trained", "model", "to", "untranscribed", "data", "in", "a", "Corpus", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/experiment.py#L106-L111
13,884
persephone-tools/persephone
persephone/preprocess/wav.py
trim_wav_ms
def trim_wav_ms(in_path: Path, out_path: Path, start_time: int, end_time: int) -> None: """ Extracts part of a WAV File. First attempts to call sox. If sox is unavailable, it backs off to pydub+ffmpeg. Args: in_path: A path to the source file to extract a portion of out_path: A path describing the to-be-created WAV file. start_time: The point in the source WAV file at which to begin extraction. end_time: The point in the source WAV file at which to end extraction. """ try: trim_wav_sox(in_path, out_path, start_time, end_time) except FileNotFoundError: # Then sox isn't installed, so use pydub/ffmpeg trim_wav_pydub(in_path, out_path, start_time, end_time) except subprocess.CalledProcessError: # Then there is an issue calling sox. Perhaps the input file is an mp4 # or some other filetype not supported out-of-the-box by sox. So we try # using pydub/ffmpeg. trim_wav_pydub(in_path, out_path, start_time, end_time)
python
def trim_wav_ms(in_path: Path, out_path: Path, start_time: int, end_time: int) -> None: """ Extracts part of a WAV File. First attempts to call sox. If sox is unavailable, it backs off to pydub+ffmpeg. Args: in_path: A path to the source file to extract a portion of out_path: A path describing the to-be-created WAV file. start_time: The point in the source WAV file at which to begin extraction. end_time: The point in the source WAV file at which to end extraction. """ try: trim_wav_sox(in_path, out_path, start_time, end_time) except FileNotFoundError: # Then sox isn't installed, so use pydub/ffmpeg trim_wav_pydub(in_path, out_path, start_time, end_time) except subprocess.CalledProcessError: # Then there is an issue calling sox. Perhaps the input file is an mp4 # or some other filetype not supported out-of-the-box by sox. So we try # using pydub/ffmpeg. trim_wav_pydub(in_path, out_path, start_time, end_time)
[ "def", "trim_wav_ms", "(", "in_path", ":", "Path", ",", "out_path", ":", "Path", ",", "start_time", ":", "int", ",", "end_time", ":", "int", ")", "->", "None", ":", "try", ":", "trim_wav_sox", "(", "in_path", ",", "out_path", ",", "start_time", ",", "end_time", ")", "except", "FileNotFoundError", ":", "# Then sox isn't installed, so use pydub/ffmpeg", "trim_wav_pydub", "(", "in_path", ",", "out_path", ",", "start_time", ",", "end_time", ")", "except", "subprocess", ".", "CalledProcessError", ":", "# Then there is an issue calling sox. Perhaps the input file is an mp4", "# or some other filetype not supported out-of-the-box by sox. So we try", "# using pydub/ffmpeg.", "trim_wav_pydub", "(", "in_path", ",", "out_path", ",", "start_time", ",", "end_time", ")" ]
Extracts part of a WAV File. First attempts to call sox. If sox is unavailable, it backs off to pydub+ffmpeg. Args: in_path: A path to the source file to extract a portion of out_path: A path describing the to-be-created WAV file. start_time: The point in the source WAV file at which to begin extraction. end_time: The point in the source WAV file at which to end extraction.
[ "Extracts", "part", "of", "a", "WAV", "File", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/preprocess/wav.py#L18-L43
13,885
persephone-tools/persephone
persephone/preprocess/wav.py
trim_wav_pydub
def trim_wav_pydub(in_path: Path, out_path: Path, start_time: int, end_time: int) -> None: """ Crops the wav file. """ logger.info( "Using pydub/ffmpeg to create {} from {}".format(out_path, in_path) + " using a start_time of {} and an end_time of {}".format(start_time, end_time)) if out_path.is_file(): return # TODO add logging here #print("in_fn: {}".format(in_fn)) #print("out_fn: {}".format(out_fn)) in_ext = in_path.suffix[1:] out_ext = out_path.suffix[1:] audio = AudioSegment.from_file(str(in_path), in_ext) trimmed = audio[start_time:end_time] # pydub evidently doesn't actually use the parameters when outputting wavs, # since it doesn't use FFMPEG to deal with outputtting WAVs. This is a bit # of a leaky abstraction. No warning is given, so normalization to 16Khz # mono wavs has to happen later. Leaving the parameters here in case it # changes trimmed.export(str(out_path), format=out_ext, parameters=["-ac", "1", "-ar", "16000"])
python
def trim_wav_pydub(in_path: Path, out_path: Path, start_time: int, end_time: int) -> None: """ Crops the wav file. """ logger.info( "Using pydub/ffmpeg to create {} from {}".format(out_path, in_path) + " using a start_time of {} and an end_time of {}".format(start_time, end_time)) if out_path.is_file(): return # TODO add logging here #print("in_fn: {}".format(in_fn)) #print("out_fn: {}".format(out_fn)) in_ext = in_path.suffix[1:] out_ext = out_path.suffix[1:] audio = AudioSegment.from_file(str(in_path), in_ext) trimmed = audio[start_time:end_time] # pydub evidently doesn't actually use the parameters when outputting wavs, # since it doesn't use FFMPEG to deal with outputtting WAVs. This is a bit # of a leaky abstraction. No warning is given, so normalization to 16Khz # mono wavs has to happen later. Leaving the parameters here in case it # changes trimmed.export(str(out_path), format=out_ext, parameters=["-ac", "1", "-ar", "16000"])
[ "def", "trim_wav_pydub", "(", "in_path", ":", "Path", ",", "out_path", ":", "Path", ",", "start_time", ":", "int", ",", "end_time", ":", "int", ")", "->", "None", ":", "logger", ".", "info", "(", "\"Using pydub/ffmpeg to create {} from {}\"", ".", "format", "(", "out_path", ",", "in_path", ")", "+", "\" using a start_time of {} and an end_time of {}\"", ".", "format", "(", "start_time", ",", "end_time", ")", ")", "if", "out_path", ".", "is_file", "(", ")", ":", "return", "# TODO add logging here", "#print(\"in_fn: {}\".format(in_fn))", "#print(\"out_fn: {}\".format(out_fn))", "in_ext", "=", "in_path", ".", "suffix", "[", "1", ":", "]", "out_ext", "=", "out_path", ".", "suffix", "[", "1", ":", "]", "audio", "=", "AudioSegment", ".", "from_file", "(", "str", "(", "in_path", ")", ",", "in_ext", ")", "trimmed", "=", "audio", "[", "start_time", ":", "end_time", "]", "# pydub evidently doesn't actually use the parameters when outputting wavs,", "# since it doesn't use FFMPEG to deal with outputtting WAVs. This is a bit", "# of a leaky abstraction. No warning is given, so normalization to 16Khz", "# mono wavs has to happen later. Leaving the parameters here in case it", "# changes", "trimmed", ".", "export", "(", "str", "(", "out_path", ")", ",", "format", "=", "out_ext", ",", "parameters", "=", "[", "\"-ac\"", ",", "\"1\"", ",", "\"-ar\"", ",", "\"16000\"", "]", ")" ]
Crops the wav file.
[ "Crops", "the", "wav", "file", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/preprocess/wav.py#L45-L70
13,886
persephone-tools/persephone
persephone/preprocess/wav.py
trim_wav_sox
def trim_wav_sox(in_path: Path, out_path: Path, start_time: int, end_time: int) -> None: """ Crops the wav file at in_fn so that the audio between start_time and end_time is output to out_fn. Measured in milliseconds. """ if out_path.is_file(): logger.info("Output path %s already exists, not trimming file", out_path) return start_time_secs = millisecs_to_secs(start_time) end_time_secs = millisecs_to_secs(end_time) args = [config.SOX_PATH, str(in_path), str(out_path), "trim", str(start_time_secs), "=" + str(end_time_secs)] logger.info("Cropping file %s, from start time %d (seconds) to end time %d (seconds), outputting to %s", in_path, start_time_secs, end_time_secs, out_path) subprocess.run(args, check=True)
python
def trim_wav_sox(in_path: Path, out_path: Path, start_time: int, end_time: int) -> None: """ Crops the wav file at in_fn so that the audio between start_time and end_time is output to out_fn. Measured in milliseconds. """ if out_path.is_file(): logger.info("Output path %s already exists, not trimming file", out_path) return start_time_secs = millisecs_to_secs(start_time) end_time_secs = millisecs_to_secs(end_time) args = [config.SOX_PATH, str(in_path), str(out_path), "trim", str(start_time_secs), "=" + str(end_time_secs)] logger.info("Cropping file %s, from start time %d (seconds) to end time %d (seconds), outputting to %s", in_path, start_time_secs, end_time_secs, out_path) subprocess.run(args, check=True)
[ "def", "trim_wav_sox", "(", "in_path", ":", "Path", ",", "out_path", ":", "Path", ",", "start_time", ":", "int", ",", "end_time", ":", "int", ")", "->", "None", ":", "if", "out_path", ".", "is_file", "(", ")", ":", "logger", ".", "info", "(", "\"Output path %s already exists, not trimming file\"", ",", "out_path", ")", "return", "start_time_secs", "=", "millisecs_to_secs", "(", "start_time", ")", "end_time_secs", "=", "millisecs_to_secs", "(", "end_time", ")", "args", "=", "[", "config", ".", "SOX_PATH", ",", "str", "(", "in_path", ")", ",", "str", "(", "out_path", ")", ",", "\"trim\"", ",", "str", "(", "start_time_secs", ")", ",", "\"=\"", "+", "str", "(", "end_time_secs", ")", "]", "logger", ".", "info", "(", "\"Cropping file %s, from start time %d (seconds) to end time %d (seconds), outputting to %s\"", ",", "in_path", ",", "start_time_secs", ",", "end_time_secs", ",", "out_path", ")", "subprocess", ".", "run", "(", "args", ",", "check", "=", "True", ")" ]
Crops the wav file at in_fn so that the audio between start_time and end_time is output to out_fn. Measured in milliseconds.
[ "Crops", "the", "wav", "file", "at", "in_fn", "so", "that", "the", "audio", "between", "start_time", "and", "end_time", "is", "output", "to", "out_fn", ".", "Measured", "in", "milliseconds", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/preprocess/wav.py#L72-L88
13,887
persephone-tools/persephone
persephone/preprocess/wav.py
extract_wavs
def extract_wavs(utterances: List[Utterance], tgt_dir: Path, lazy: bool) -> None: """ Extracts WAVs from the media files associated with a list of Utterance objects and stores it in a target directory. Args: utterances: A list of Utterance objects, which include information about the source media file, and the offset of the utterance in the media_file. tgt_dir: The directory in which to write the output WAVs. lazy: If True, then existing WAVs will not be overwritten if they have the same name """ tgt_dir.mkdir(parents=True, exist_ok=True) for utter in utterances: wav_fn = "{}.{}".format(utter.prefix, "wav") out_wav_path = tgt_dir / wav_fn if lazy and out_wav_path.is_file(): logger.info("File {} already exists and lazy == {}; not " \ "writing.".format(out_wav_path, lazy)) continue logger.info("File {} does not exist and lazy == {}; creating " \ "it.".format(out_wav_path, lazy)) trim_wav_ms(utter.org_media_path, out_wav_path, utter.start_time, utter.end_time)
python
def extract_wavs(utterances: List[Utterance], tgt_dir: Path, lazy: bool) -> None: """ Extracts WAVs from the media files associated with a list of Utterance objects and stores it in a target directory. Args: utterances: A list of Utterance objects, which include information about the source media file, and the offset of the utterance in the media_file. tgt_dir: The directory in which to write the output WAVs. lazy: If True, then existing WAVs will not be overwritten if they have the same name """ tgt_dir.mkdir(parents=True, exist_ok=True) for utter in utterances: wav_fn = "{}.{}".format(utter.prefix, "wav") out_wav_path = tgt_dir / wav_fn if lazy and out_wav_path.is_file(): logger.info("File {} already exists and lazy == {}; not " \ "writing.".format(out_wav_path, lazy)) continue logger.info("File {} does not exist and lazy == {}; creating " \ "it.".format(out_wav_path, lazy)) trim_wav_ms(utter.org_media_path, out_wav_path, utter.start_time, utter.end_time)
[ "def", "extract_wavs", "(", "utterances", ":", "List", "[", "Utterance", "]", ",", "tgt_dir", ":", "Path", ",", "lazy", ":", "bool", ")", "->", "None", ":", "tgt_dir", ".", "mkdir", "(", "parents", "=", "True", ",", "exist_ok", "=", "True", ")", "for", "utter", "in", "utterances", ":", "wav_fn", "=", "\"{}.{}\"", ".", "format", "(", "utter", ".", "prefix", ",", "\"wav\"", ")", "out_wav_path", "=", "tgt_dir", "/", "wav_fn", "if", "lazy", "and", "out_wav_path", ".", "is_file", "(", ")", ":", "logger", ".", "info", "(", "\"File {} already exists and lazy == {}; not \"", "\"writing.\"", ".", "format", "(", "out_wav_path", ",", "lazy", ")", ")", "continue", "logger", ".", "info", "(", "\"File {} does not exist and lazy == {}; creating \"", "\"it.\"", ".", "format", "(", "out_wav_path", ",", "lazy", ")", ")", "trim_wav_ms", "(", "utter", ".", "org_media_path", ",", "out_wav_path", ",", "utter", ".", "start_time", ",", "utter", ".", "end_time", ")" ]
Extracts WAVs from the media files associated with a list of Utterance objects and stores it in a target directory. Args: utterances: A list of Utterance objects, which include information about the source media file, and the offset of the utterance in the media_file. tgt_dir: The directory in which to write the output WAVs. lazy: If True, then existing WAVs will not be overwritten if they have the same name
[ "Extracts", "WAVs", "from", "the", "media", "files", "associated", "with", "a", "list", "of", "Utterance", "objects", "and", "stores", "it", "in", "a", "target", "directory", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/preprocess/wav.py#L90-L114
13,888
persephone-tools/persephone
persephone/results.py
filter_labels
def filter_labels(sent: Sequence[str], labels: Set[str] = None) -> List[str]: """ Returns only the tokens present in the sentence that are in labels.""" if labels: return [tok for tok in sent if tok in labels] return list(sent)
python
def filter_labels(sent: Sequence[str], labels: Set[str] = None) -> List[str]: """ Returns only the tokens present in the sentence that are in labels.""" if labels: return [tok for tok in sent if tok in labels] return list(sent)
[ "def", "filter_labels", "(", "sent", ":", "Sequence", "[", "str", "]", ",", "labels", ":", "Set", "[", "str", "]", "=", "None", ")", "->", "List", "[", "str", "]", ":", "if", "labels", ":", "return", "[", "tok", "for", "tok", "in", "sent", "if", "tok", "in", "labels", "]", "return", "list", "(", "sent", ")" ]
Returns only the tokens present in the sentence that are in labels.
[ "Returns", "only", "the", "tokens", "present", "in", "the", "sentence", "that", "are", "in", "labels", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/results.py#L11-L16
13,889
persephone-tools/persephone
persephone/results.py
filtered_error_rate
def filtered_error_rate(hyps_path: Union[str, Path], refs_path: Union[str, Path], labels: Set[str]) -> float: """ Returns the error rate of hypotheses in hyps_path against references in refs_path after filtering only for labels in labels. """ if isinstance(hyps_path, Path): hyps_path = str(hyps_path) if isinstance(refs_path, Path): refs_path = str(refs_path) with open(hyps_path) as hyps_f: lines = hyps_f.readlines() hyps = [filter_labels(line.split(), labels) for line in lines] with open(refs_path) as refs_f: lines = refs_f.readlines() refs = [filter_labels(line.split(), labels) for line in lines] # For the case where there are no tokens left after filtering. only_empty = True for entry in hyps: if entry is not []: only_empty = False break # found something so can move on immediately if only_empty: return -1 return utils.batch_per(hyps, refs)
python
def filtered_error_rate(hyps_path: Union[str, Path], refs_path: Union[str, Path], labels: Set[str]) -> float: """ Returns the error rate of hypotheses in hyps_path against references in refs_path after filtering only for labels in labels. """ if isinstance(hyps_path, Path): hyps_path = str(hyps_path) if isinstance(refs_path, Path): refs_path = str(refs_path) with open(hyps_path) as hyps_f: lines = hyps_f.readlines() hyps = [filter_labels(line.split(), labels) for line in lines] with open(refs_path) as refs_f: lines = refs_f.readlines() refs = [filter_labels(line.split(), labels) for line in lines] # For the case where there are no tokens left after filtering. only_empty = True for entry in hyps: if entry is not []: only_empty = False break # found something so can move on immediately if only_empty: return -1 return utils.batch_per(hyps, refs)
[ "def", "filtered_error_rate", "(", "hyps_path", ":", "Union", "[", "str", ",", "Path", "]", ",", "refs_path", ":", "Union", "[", "str", ",", "Path", "]", ",", "labels", ":", "Set", "[", "str", "]", ")", "->", "float", ":", "if", "isinstance", "(", "hyps_path", ",", "Path", ")", ":", "hyps_path", "=", "str", "(", "hyps_path", ")", "if", "isinstance", "(", "refs_path", ",", "Path", ")", ":", "refs_path", "=", "str", "(", "refs_path", ")", "with", "open", "(", "hyps_path", ")", "as", "hyps_f", ":", "lines", "=", "hyps_f", ".", "readlines", "(", ")", "hyps", "=", "[", "filter_labels", "(", "line", ".", "split", "(", ")", ",", "labels", ")", "for", "line", "in", "lines", "]", "with", "open", "(", "refs_path", ")", "as", "refs_f", ":", "lines", "=", "refs_f", ".", "readlines", "(", ")", "refs", "=", "[", "filter_labels", "(", "line", ".", "split", "(", ")", ",", "labels", ")", "for", "line", "in", "lines", "]", "# For the case where there are no tokens left after filtering.", "only_empty", "=", "True", "for", "entry", "in", "hyps", ":", "if", "entry", "is", "not", "[", "]", ":", "only_empty", "=", "False", "break", "# found something so can move on immediately", "if", "only_empty", ":", "return", "-", "1", "return", "utils", ".", "batch_per", "(", "hyps", ",", "refs", ")" ]
Returns the error rate of hypotheses in hyps_path against references in refs_path after filtering only for labels in labels.
[ "Returns", "the", "error", "rate", "of", "hypotheses", "in", "hyps_path", "against", "references", "in", "refs_path", "after", "filtering", "only", "for", "labels", "in", "labels", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/results.py#L18-L42
13,890
persephone-tools/persephone
persephone/results.py
fmt_latex_output
def fmt_latex_output(hyps: Sequence[Sequence[str]], refs: Sequence[Sequence[str]], prefixes: Sequence[str], out_fn: Path, ) -> None: """ Output the hypotheses and references to a LaTeX source file for pretty printing. """ alignments_ = [min_edit_distance_align(ref, hyp) for hyp, ref in zip(hyps, refs)] with out_fn.open("w") as out_f: print(latex_header(), file=out_f) print("\\begin{document}\n" "\\begin{longtable}{ll}", file=out_f) print(r"\toprule", file=out_f) for sent in zip(prefixes, alignments_): prefix = sent[0] alignments = sent[1:] print("Utterance ID: &", prefix.strip().replace(r"_", r"\_"), r"\\", file=out_f) for i, alignment in enumerate(alignments): ref_list = [] hyp_list = [] for arrow in alignment: if arrow[0] == arrow[1]: # Then don't highlight it; it's correct. ref_list.append(arrow[0]) hyp_list.append(arrow[1]) else: # Then highlight the errors. ref_list.append("\\hl{%s}" % arrow[0]) hyp_list.append("\\hl{%s}" % arrow[1]) print("Ref: &", "".join(ref_list), r"\\", file=out_f) print("Hyp: &", "".join(hyp_list), r"\\", file=out_f) print(r"\midrule", file=out_f) print(r"\end{longtable}", file=out_f) print(r"\end{document}", file=out_f)
python
def fmt_latex_output(hyps: Sequence[Sequence[str]], refs: Sequence[Sequence[str]], prefixes: Sequence[str], out_fn: Path, ) -> None: """ Output the hypotheses and references to a LaTeX source file for pretty printing. """ alignments_ = [min_edit_distance_align(ref, hyp) for hyp, ref in zip(hyps, refs)] with out_fn.open("w") as out_f: print(latex_header(), file=out_f) print("\\begin{document}\n" "\\begin{longtable}{ll}", file=out_f) print(r"\toprule", file=out_f) for sent in zip(prefixes, alignments_): prefix = sent[0] alignments = sent[1:] print("Utterance ID: &", prefix.strip().replace(r"_", r"\_"), r"\\", file=out_f) for i, alignment in enumerate(alignments): ref_list = [] hyp_list = [] for arrow in alignment: if arrow[0] == arrow[1]: # Then don't highlight it; it's correct. ref_list.append(arrow[0]) hyp_list.append(arrow[1]) else: # Then highlight the errors. ref_list.append("\\hl{%s}" % arrow[0]) hyp_list.append("\\hl{%s}" % arrow[1]) print("Ref: &", "".join(ref_list), r"\\", file=out_f) print("Hyp: &", "".join(hyp_list), r"\\", file=out_f) print(r"\midrule", file=out_f) print(r"\end{longtable}", file=out_f) print(r"\end{document}", file=out_f)
[ "def", "fmt_latex_output", "(", "hyps", ":", "Sequence", "[", "Sequence", "[", "str", "]", "]", ",", "refs", ":", "Sequence", "[", "Sequence", "[", "str", "]", "]", ",", "prefixes", ":", "Sequence", "[", "str", "]", ",", "out_fn", ":", "Path", ",", ")", "->", "None", ":", "alignments_", "=", "[", "min_edit_distance_align", "(", "ref", ",", "hyp", ")", "for", "hyp", ",", "ref", "in", "zip", "(", "hyps", ",", "refs", ")", "]", "with", "out_fn", ".", "open", "(", "\"w\"", ")", "as", "out_f", ":", "print", "(", "latex_header", "(", ")", ",", "file", "=", "out_f", ")", "print", "(", "\"\\\\begin{document}\\n\"", "\"\\\\begin{longtable}{ll}\"", ",", "file", "=", "out_f", ")", "print", "(", "r\"\\toprule\"", ",", "file", "=", "out_f", ")", "for", "sent", "in", "zip", "(", "prefixes", ",", "alignments_", ")", ":", "prefix", "=", "sent", "[", "0", "]", "alignments", "=", "sent", "[", "1", ":", "]", "print", "(", "\"Utterance ID: &\"", ",", "prefix", ".", "strip", "(", ")", ".", "replace", "(", "r\"_\"", ",", "r\"\\_\"", ")", ",", "r\"\\\\\"", ",", "file", "=", "out_f", ")", "for", "i", ",", "alignment", "in", "enumerate", "(", "alignments", ")", ":", "ref_list", "=", "[", "]", "hyp_list", "=", "[", "]", "for", "arrow", "in", "alignment", ":", "if", "arrow", "[", "0", "]", "==", "arrow", "[", "1", "]", ":", "# Then don't highlight it; it's correct.", "ref_list", ".", "append", "(", "arrow", "[", "0", "]", ")", "hyp_list", ".", "append", "(", "arrow", "[", "1", "]", ")", "else", ":", "# Then highlight the errors.", "ref_list", ".", "append", "(", "\"\\\\hl{%s}\"", "%", "arrow", "[", "0", "]", ")", "hyp_list", ".", "append", "(", "\"\\\\hl{%s}\"", "%", "arrow", "[", "1", "]", ")", "print", "(", "\"Ref: &\"", ",", "\"\"", ".", "join", "(", "ref_list", ")", ",", "r\"\\\\\"", ",", "file", "=", "out_f", ")", "print", "(", "\"Hyp: &\"", ",", "\"\"", ".", "join", "(", "hyp_list", ")", ",", "r\"\\\\\"", ",", "file", "=", "out_f", ")", "print", "(", "r\"\\midrule\"", ",", "file", "=", "out_f", ")", "print", "(", "r\"\\end{longtable}\"", ",", "file", "=", "out_f", ")", "print", "(", "r\"\\end{document}\"", ",", "file", "=", "out_f", ")" ]
Output the hypotheses and references to a LaTeX source file for pretty printing.
[ "Output", "the", "hypotheses", "and", "references", "to", "a", "LaTeX", "source", "file", "for", "pretty", "printing", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/results.py#L57-L96
13,891
persephone-tools/persephone
persephone/results.py
fmt_confusion_matrix
def fmt_confusion_matrix(hyps: Sequence[Sequence[str]], refs: Sequence[Sequence[str]], label_set: Set[str] = None, max_width: int = 25) -> str: """ Formats a confusion matrix over substitutions, ignoring insertions and deletions. """ if not label_set: # Then determine the label set by reading raise NotImplementedError() alignments = [min_edit_distance_align(ref, hyp) for hyp, ref in zip(hyps, refs)] arrow_counter = Counter() # type: Dict[Tuple[str, str], int] for alignment in alignments: arrow_counter.update(alignment) ref_total = Counter() # type: Dict[str, int] for alignment in alignments: ref_total.update([arrow[0] for arrow in alignment]) labels = [label for label, count in sorted(ref_total.items(), key=lambda x: x[1], reverse=True) if label != ""][:max_width] format_pieces = [] fmt = "{:3} "*(len(labels)+1) format_pieces.append(fmt.format(" ", *labels)) fmt = "{:3} " + ("{:<3} " * (len(labels))) for ref in labels: # TODO ref_results = [arrow_counter[(ref, hyp)] for hyp in labels] format_pieces.append(fmt.format(ref, *ref_results)) return "\n".join(format_pieces)
python
def fmt_confusion_matrix(hyps: Sequence[Sequence[str]], refs: Sequence[Sequence[str]], label_set: Set[str] = None, max_width: int = 25) -> str: """ Formats a confusion matrix over substitutions, ignoring insertions and deletions. """ if not label_set: # Then determine the label set by reading raise NotImplementedError() alignments = [min_edit_distance_align(ref, hyp) for hyp, ref in zip(hyps, refs)] arrow_counter = Counter() # type: Dict[Tuple[str, str], int] for alignment in alignments: arrow_counter.update(alignment) ref_total = Counter() # type: Dict[str, int] for alignment in alignments: ref_total.update([arrow[0] for arrow in alignment]) labels = [label for label, count in sorted(ref_total.items(), key=lambda x: x[1], reverse=True) if label != ""][:max_width] format_pieces = [] fmt = "{:3} "*(len(labels)+1) format_pieces.append(fmt.format(" ", *labels)) fmt = "{:3} " + ("{:<3} " * (len(labels))) for ref in labels: # TODO ref_results = [arrow_counter[(ref, hyp)] for hyp in labels] format_pieces.append(fmt.format(ref, *ref_results)) return "\n".join(format_pieces)
[ "def", "fmt_confusion_matrix", "(", "hyps", ":", "Sequence", "[", "Sequence", "[", "str", "]", "]", ",", "refs", ":", "Sequence", "[", "Sequence", "[", "str", "]", "]", ",", "label_set", ":", "Set", "[", "str", "]", "=", "None", ",", "max_width", ":", "int", "=", "25", ")", "->", "str", ":", "if", "not", "label_set", ":", "# Then determine the label set by reading", "raise", "NotImplementedError", "(", ")", "alignments", "=", "[", "min_edit_distance_align", "(", "ref", ",", "hyp", ")", "for", "hyp", ",", "ref", "in", "zip", "(", "hyps", ",", "refs", ")", "]", "arrow_counter", "=", "Counter", "(", ")", "# type: Dict[Tuple[str, str], int]", "for", "alignment", "in", "alignments", ":", "arrow_counter", ".", "update", "(", "alignment", ")", "ref_total", "=", "Counter", "(", ")", "# type: Dict[str, int]", "for", "alignment", "in", "alignments", ":", "ref_total", ".", "update", "(", "[", "arrow", "[", "0", "]", "for", "arrow", "in", "alignment", "]", ")", "labels", "=", "[", "label", "for", "label", ",", "count", "in", "sorted", "(", "ref_total", ".", "items", "(", ")", ",", "key", "=", "lambda", "x", ":", "x", "[", "1", "]", ",", "reverse", "=", "True", ")", "if", "label", "!=", "\"\"", "]", "[", ":", "max_width", "]", "format_pieces", "=", "[", "]", "fmt", "=", "\"{:3} \"", "*", "(", "len", "(", "labels", ")", "+", "1", ")", "format_pieces", ".", "append", "(", "fmt", ".", "format", "(", "\" \"", ",", "*", "labels", ")", ")", "fmt", "=", "\"{:3} \"", "+", "(", "\"{:<3} \"", "*", "(", "len", "(", "labels", ")", ")", ")", "for", "ref", "in", "labels", ":", "# TODO", "ref_results", "=", "[", "arrow_counter", "[", "(", "ref", ",", "hyp", ")", "]", "for", "hyp", "in", "labels", "]", "format_pieces", ".", "append", "(", "fmt", ".", "format", "(", "ref", ",", "*", "ref_results", ")", ")", "return", "\"\\n\"", ".", "join", "(", "format_pieces", ")" ]
Formats a confusion matrix over substitutions, ignoring insertions and deletions.
[ "Formats", "a", "confusion", "matrix", "over", "substitutions", "ignoring", "insertions", "and", "deletions", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/results.py#L132-L167
13,892
persephone-tools/persephone
persephone/results.py
fmt_latex_untranscribed
def fmt_latex_untranscribed(hyps: Sequence[Sequence[str]], prefixes: Sequence[str], out_fn: Path) -> None: """ Formats automatic hypotheses that have not previously been transcribed in LaTeX. """ hyps_prefixes = list(zip(hyps, prefixes)) def utter_id_key(hyp_prefix): hyp, prefix = hyp_prefix prefix_split = prefix.split(".") return (prefix_split[0], int(prefix_split[1])) hyps_prefixes.sort(key=utter_id_key) with out_fn.open("w") as out_f: print(latex_header(), file=out_f) print("\\begin{document}\n" "\\begin{longtable}{ll}", file=out_f) print(r"\toprule", file=out_f) for hyp, prefix in hyps_prefixes: print("Utterance ID: &", prefix.strip().replace(r"_", r"\_"), "\\\\", file=out_f) print("Hypothesis: &", hyp, r"\\", file=out_f) print("\\midrule", file=out_f) print(r"\end{longtable}", file=out_f) print(r"\end{document}", file=out_f)
python
def fmt_latex_untranscribed(hyps: Sequence[Sequence[str]], prefixes: Sequence[str], out_fn: Path) -> None: """ Formats automatic hypotheses that have not previously been transcribed in LaTeX. """ hyps_prefixes = list(zip(hyps, prefixes)) def utter_id_key(hyp_prefix): hyp, prefix = hyp_prefix prefix_split = prefix.split(".") return (prefix_split[0], int(prefix_split[1])) hyps_prefixes.sort(key=utter_id_key) with out_fn.open("w") as out_f: print(latex_header(), file=out_f) print("\\begin{document}\n" "\\begin{longtable}{ll}", file=out_f) print(r"\toprule", file=out_f) for hyp, prefix in hyps_prefixes: print("Utterance ID: &", prefix.strip().replace(r"_", r"\_"), "\\\\", file=out_f) print("Hypothesis: &", hyp, r"\\", file=out_f) print("\\midrule", file=out_f) print(r"\end{longtable}", file=out_f) print(r"\end{document}", file=out_f)
[ "def", "fmt_latex_untranscribed", "(", "hyps", ":", "Sequence", "[", "Sequence", "[", "str", "]", "]", ",", "prefixes", ":", "Sequence", "[", "str", "]", ",", "out_fn", ":", "Path", ")", "->", "None", ":", "hyps_prefixes", "=", "list", "(", "zip", "(", "hyps", ",", "prefixes", ")", ")", "def", "utter_id_key", "(", "hyp_prefix", ")", ":", "hyp", ",", "prefix", "=", "hyp_prefix", "prefix_split", "=", "prefix", ".", "split", "(", "\".\"", ")", "return", "(", "prefix_split", "[", "0", "]", ",", "int", "(", "prefix_split", "[", "1", "]", ")", ")", "hyps_prefixes", ".", "sort", "(", "key", "=", "utter_id_key", ")", "with", "out_fn", ".", "open", "(", "\"w\"", ")", "as", "out_f", ":", "print", "(", "latex_header", "(", ")", ",", "file", "=", "out_f", ")", "print", "(", "\"\\\\begin{document}\\n\"", "\"\\\\begin{longtable}{ll}\"", ",", "file", "=", "out_f", ")", "print", "(", "r\"\\toprule\"", ",", "file", "=", "out_f", ")", "for", "hyp", ",", "prefix", "in", "hyps_prefixes", ":", "print", "(", "\"Utterance ID: &\"", ",", "prefix", ".", "strip", "(", ")", ".", "replace", "(", "r\"_\"", ",", "r\"\\_\"", ")", ",", "\"\\\\\\\\\"", ",", "file", "=", "out_f", ")", "print", "(", "\"Hypothesis: &\"", ",", "hyp", ",", "r\"\\\\\"", ",", "file", "=", "out_f", ")", "print", "(", "\"\\\\midrule\"", ",", "file", "=", "out_f", ")", "print", "(", "r\"\\end{longtable}\"", ",", "file", "=", "out_f", ")", "print", "(", "r\"\\end{document}\"", ",", "file", "=", "out_f", ")" ]
Formats automatic hypotheses that have not previously been transcribed in LaTeX.
[ "Formats", "automatic", "hypotheses", "that", "have", "not", "previously", "been", "transcribed", "in", "LaTeX", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/results.py#L169-L192
13,893
persephone-tools/persephone
persephone/preprocess/labels.py
segment_into_chars
def segment_into_chars(utterance: str) -> str: """ Segments an utterance into space delimited characters. """ if not isinstance(utterance, str): raise TypeError("Input type must be a string. Got {}.".format(type(utterance))) utterance.strip() utterance = utterance.replace(" ", "") return " ".join(utterance)
python
def segment_into_chars(utterance: str) -> str: """ Segments an utterance into space delimited characters. """ if not isinstance(utterance, str): raise TypeError("Input type must be a string. Got {}.".format(type(utterance))) utterance.strip() utterance = utterance.replace(" ", "") return " ".join(utterance)
[ "def", "segment_into_chars", "(", "utterance", ":", "str", ")", "->", "str", ":", "if", "not", "isinstance", "(", "utterance", ",", "str", ")", ":", "raise", "TypeError", "(", "\"Input type must be a string. Got {}.\"", ".", "format", "(", "type", "(", "utterance", ")", ")", ")", "utterance", ".", "strip", "(", ")", "utterance", "=", "utterance", ".", "replace", "(", "\" \"", ",", "\"\"", ")", "return", "\" \"", ".", "join", "(", "utterance", ")" ]
Segments an utterance into space delimited characters.
[ "Segments", "an", "utterance", "into", "space", "delimited", "characters", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/preprocess/labels.py#L28-L36
13,894
persephone-tools/persephone
persephone/preprocess/labels.py
make_indices_to_labels
def make_indices_to_labels(labels: Set[str]) -> Dict[int, str]: """ Creates a mapping from indices to labels. """ return {index: label for index, label in enumerate(["pad"] + sorted(list(labels)))}
python
def make_indices_to_labels(labels: Set[str]) -> Dict[int, str]: """ Creates a mapping from indices to labels. """ return {index: label for index, label in enumerate(["pad"] + sorted(list(labels)))}
[ "def", "make_indices_to_labels", "(", "labels", ":", "Set", "[", "str", "]", ")", "->", "Dict", "[", "int", ",", "str", "]", ":", "return", "{", "index", ":", "label", "for", "index", ",", "label", "in", "enumerate", "(", "[", "\"pad\"", "]", "+", "sorted", "(", "list", "(", "labels", ")", ")", ")", "}" ]
Creates a mapping from indices to labels.
[ "Creates", "a", "mapping", "from", "indices", "to", "labels", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/preprocess/labels.py#L81-L85
13,895
persephone-tools/persephone
persephone/datasets/na.py
preprocess_french
def preprocess_french(trans, fr_nlp, remove_brackets_content=True): """ Takes a list of sentences in french and preprocesses them.""" if remove_brackets_content: trans = pangloss.remove_content_in_brackets(trans, "[]") # Not sure why I have to split and rejoin, but that fixes a Spacy token # error. trans = fr_nlp(" ".join(trans.split()[:])) #trans = fr_nlp(trans) trans = " ".join([token.lower_ for token in trans if not token.is_punct]) return trans
python
def preprocess_french(trans, fr_nlp, remove_brackets_content=True): """ Takes a list of sentences in french and preprocesses them.""" if remove_brackets_content: trans = pangloss.remove_content_in_brackets(trans, "[]") # Not sure why I have to split and rejoin, but that fixes a Spacy token # error. trans = fr_nlp(" ".join(trans.split()[:])) #trans = fr_nlp(trans) trans = " ".join([token.lower_ for token in trans if not token.is_punct]) return trans
[ "def", "preprocess_french", "(", "trans", ",", "fr_nlp", ",", "remove_brackets_content", "=", "True", ")", ":", "if", "remove_brackets_content", ":", "trans", "=", "pangloss", ".", "remove_content_in_brackets", "(", "trans", ",", "\"[]\"", ")", "# Not sure why I have to split and rejoin, but that fixes a Spacy token", "# error.", "trans", "=", "fr_nlp", "(", "\" \"", ".", "join", "(", "trans", ".", "split", "(", ")", "[", ":", "]", ")", ")", "#trans = fr_nlp(trans)", "trans", "=", "\" \"", ".", "join", "(", "[", "token", ".", "lower_", "for", "token", "in", "trans", "if", "not", "token", ".", "is_punct", "]", ")", "return", "trans" ]
Takes a list of sentences in french and preprocesses them.
[ "Takes", "a", "list", "of", "sentences", "in", "french", "and", "preprocesses", "them", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/datasets/na.py#L209-L220
13,896
persephone-tools/persephone
persephone/datasets/na.py
trim_wavs
def trim_wavs(org_wav_dir=ORG_WAV_DIR, tgt_wav_dir=TGT_WAV_DIR, org_xml_dir=ORG_XML_DIR): """ Extracts sentence-level transcriptions, translations and wavs from the Na Pangloss XML and WAV files. But otherwise doesn't preprocess them.""" logging.info("Trimming wavs...") if not os.path.exists(os.path.join(tgt_wav_dir, "TEXT")): os.makedirs(os.path.join(tgt_wav_dir, "TEXT")) if not os.path.exists(os.path.join(tgt_wav_dir, "WORDLIST")): os.makedirs(os.path.join(tgt_wav_dir, "WORDLIST")) for fn in os.listdir(org_xml_dir): path = os.path.join(org_xml_dir, fn) prefix, _ = os.path.splitext(fn) if os.path.isdir(path): continue if not path.endswith(".xml"): continue logging.info("Trimming wavs from {}".format(fn)) rec_type, _, times, _ = pangloss.get_sents_times_and_translations(path) # Extract the wavs given the times. for i, (start_time, end_time) in enumerate(times): if prefix.endswith("PLUSEGG"): in_wav_path = os.path.join(org_wav_dir, prefix.upper()[:-len("PLUSEGG")]) + ".wav" else: in_wav_path = os.path.join(org_wav_dir, prefix.upper()) + ".wav" headmic_path = os.path.join(org_wav_dir, prefix.upper()) + "_HEADMIC.wav" if os.path.isfile(headmic_path): in_wav_path = headmic_path out_wav_path = os.path.join(tgt_wav_dir, rec_type, "%s.%d.wav" % (prefix, i)) if not os.path.isfile(in_wav_path): raise PersephoneException("{} not a file.".format(in_wav_path)) start_time = start_time * ureg.seconds end_time = end_time * ureg.seconds wav.trim_wav_ms(Path(in_wav_path), Path(out_wav_path), start_time.to(ureg.milliseconds).magnitude, end_time.to(ureg.milliseconds).magnitude)
python
def trim_wavs(org_wav_dir=ORG_WAV_DIR, tgt_wav_dir=TGT_WAV_DIR, org_xml_dir=ORG_XML_DIR): """ Extracts sentence-level transcriptions, translations and wavs from the Na Pangloss XML and WAV files. But otherwise doesn't preprocess them.""" logging.info("Trimming wavs...") if not os.path.exists(os.path.join(tgt_wav_dir, "TEXT")): os.makedirs(os.path.join(tgt_wav_dir, "TEXT")) if not os.path.exists(os.path.join(tgt_wav_dir, "WORDLIST")): os.makedirs(os.path.join(tgt_wav_dir, "WORDLIST")) for fn in os.listdir(org_xml_dir): path = os.path.join(org_xml_dir, fn) prefix, _ = os.path.splitext(fn) if os.path.isdir(path): continue if not path.endswith(".xml"): continue logging.info("Trimming wavs from {}".format(fn)) rec_type, _, times, _ = pangloss.get_sents_times_and_translations(path) # Extract the wavs given the times. for i, (start_time, end_time) in enumerate(times): if prefix.endswith("PLUSEGG"): in_wav_path = os.path.join(org_wav_dir, prefix.upper()[:-len("PLUSEGG")]) + ".wav" else: in_wav_path = os.path.join(org_wav_dir, prefix.upper()) + ".wav" headmic_path = os.path.join(org_wav_dir, prefix.upper()) + "_HEADMIC.wav" if os.path.isfile(headmic_path): in_wav_path = headmic_path out_wav_path = os.path.join(tgt_wav_dir, rec_type, "%s.%d.wav" % (prefix, i)) if not os.path.isfile(in_wav_path): raise PersephoneException("{} not a file.".format(in_wav_path)) start_time = start_time * ureg.seconds end_time = end_time * ureg.seconds wav.trim_wav_ms(Path(in_wav_path), Path(out_wav_path), start_time.to(ureg.milliseconds).magnitude, end_time.to(ureg.milliseconds).magnitude)
[ "def", "trim_wavs", "(", "org_wav_dir", "=", "ORG_WAV_DIR", ",", "tgt_wav_dir", "=", "TGT_WAV_DIR", ",", "org_xml_dir", "=", "ORG_XML_DIR", ")", ":", "logging", ".", "info", "(", "\"Trimming wavs...\"", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "os", ".", "path", ".", "join", "(", "tgt_wav_dir", ",", "\"TEXT\"", ")", ")", ":", "os", ".", "makedirs", "(", "os", ".", "path", ".", "join", "(", "tgt_wav_dir", ",", "\"TEXT\"", ")", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "os", ".", "path", ".", "join", "(", "tgt_wav_dir", ",", "\"WORDLIST\"", ")", ")", ":", "os", ".", "makedirs", "(", "os", ".", "path", ".", "join", "(", "tgt_wav_dir", ",", "\"WORDLIST\"", ")", ")", "for", "fn", "in", "os", ".", "listdir", "(", "org_xml_dir", ")", ":", "path", "=", "os", ".", "path", ".", "join", "(", "org_xml_dir", ",", "fn", ")", "prefix", ",", "_", "=", "os", ".", "path", ".", "splitext", "(", "fn", ")", "if", "os", ".", "path", ".", "isdir", "(", "path", ")", ":", "continue", "if", "not", "path", ".", "endswith", "(", "\".xml\"", ")", ":", "continue", "logging", ".", "info", "(", "\"Trimming wavs from {}\"", ".", "format", "(", "fn", ")", ")", "rec_type", ",", "_", ",", "times", ",", "_", "=", "pangloss", ".", "get_sents_times_and_translations", "(", "path", ")", "# Extract the wavs given the times.", "for", "i", ",", "(", "start_time", ",", "end_time", ")", "in", "enumerate", "(", "times", ")", ":", "if", "prefix", ".", "endswith", "(", "\"PLUSEGG\"", ")", ":", "in_wav_path", "=", "os", ".", "path", ".", "join", "(", "org_wav_dir", ",", "prefix", ".", "upper", "(", ")", "[", ":", "-", "len", "(", "\"PLUSEGG\"", ")", "]", ")", "+", "\".wav\"", "else", ":", "in_wav_path", "=", "os", ".", "path", ".", "join", "(", "org_wav_dir", ",", "prefix", ".", "upper", "(", ")", ")", "+", "\".wav\"", "headmic_path", "=", "os", ".", "path", ".", "join", "(", "org_wav_dir", ",", "prefix", ".", "upper", "(", ")", ")", "+", "\"_HEADMIC.wav\"", "if", "os", ".", "path", ".", "isfile", "(", "headmic_path", ")", ":", "in_wav_path", "=", "headmic_path", "out_wav_path", "=", "os", ".", "path", ".", "join", "(", "tgt_wav_dir", ",", "rec_type", ",", "\"%s.%d.wav\"", "%", "(", "prefix", ",", "i", ")", ")", "if", "not", "os", ".", "path", ".", "isfile", "(", "in_wav_path", ")", ":", "raise", "PersephoneException", "(", "\"{} not a file.\"", ".", "format", "(", "in_wav_path", ")", ")", "start_time", "=", "start_time", "*", "ureg", ".", "seconds", "end_time", "=", "end_time", "*", "ureg", ".", "seconds", "wav", ".", "trim_wav_ms", "(", "Path", "(", "in_wav_path", ")", ",", "Path", "(", "out_wav_path", ")", ",", "start_time", ".", "to", "(", "ureg", ".", "milliseconds", ")", ".", "magnitude", ",", "end_time", ".", "to", "(", "ureg", ".", "milliseconds", ")", ".", "magnitude", ")" ]
Extracts sentence-level transcriptions, translations and wavs from the Na Pangloss XML and WAV files. But otherwise doesn't preprocess them.
[ "Extracts", "sentence", "-", "level", "transcriptions", "translations", "and", "wavs", "from", "the", "Na", "Pangloss", "XML", "and", "WAV", "files", ".", "But", "otherwise", "doesn", "t", "preprocess", "them", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/datasets/na.py#L222-L265
13,897
persephone-tools/persephone
persephone/datasets/na.py
prepare_labels
def prepare_labels(label_type, org_xml_dir=ORG_XML_DIR, label_dir=LABEL_DIR): """ Prepare the neural network output targets.""" if not os.path.exists(os.path.join(label_dir, "TEXT")): os.makedirs(os.path.join(label_dir, "TEXT")) if not os.path.exists(os.path.join(label_dir, "WORDLIST")): os.makedirs(os.path.join(label_dir, "WORDLIST")) for path in Path(org_xml_dir).glob("*.xml"): fn = path.name prefix, _ = os.path.splitext(fn) rec_type, sents, _, _ = pangloss.get_sents_times_and_translations(str(path)) # Write the sentence transcriptions to file sents = [preprocess_na(sent, label_type) for sent in sents] for i, sent in enumerate(sents): if sent.strip() == "": # Then there's no transcription, so ignore this. continue out_fn = "%s.%d.%s" % (prefix, i, label_type) sent_path = os.path.join(label_dir, rec_type, out_fn) with open(sent_path, "w") as sent_f: print(sent, file=sent_f)
python
def prepare_labels(label_type, org_xml_dir=ORG_XML_DIR, label_dir=LABEL_DIR): """ Prepare the neural network output targets.""" if not os.path.exists(os.path.join(label_dir, "TEXT")): os.makedirs(os.path.join(label_dir, "TEXT")) if not os.path.exists(os.path.join(label_dir, "WORDLIST")): os.makedirs(os.path.join(label_dir, "WORDLIST")) for path in Path(org_xml_dir).glob("*.xml"): fn = path.name prefix, _ = os.path.splitext(fn) rec_type, sents, _, _ = pangloss.get_sents_times_and_translations(str(path)) # Write the sentence transcriptions to file sents = [preprocess_na(sent, label_type) for sent in sents] for i, sent in enumerate(sents): if sent.strip() == "": # Then there's no transcription, so ignore this. continue out_fn = "%s.%d.%s" % (prefix, i, label_type) sent_path = os.path.join(label_dir, rec_type, out_fn) with open(sent_path, "w") as sent_f: print(sent, file=sent_f)
[ "def", "prepare_labels", "(", "label_type", ",", "org_xml_dir", "=", "ORG_XML_DIR", ",", "label_dir", "=", "LABEL_DIR", ")", ":", "if", "not", "os", ".", "path", ".", "exists", "(", "os", ".", "path", ".", "join", "(", "label_dir", ",", "\"TEXT\"", ")", ")", ":", "os", ".", "makedirs", "(", "os", ".", "path", ".", "join", "(", "label_dir", ",", "\"TEXT\"", ")", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "os", ".", "path", ".", "join", "(", "label_dir", ",", "\"WORDLIST\"", ")", ")", ":", "os", ".", "makedirs", "(", "os", ".", "path", ".", "join", "(", "label_dir", ",", "\"WORDLIST\"", ")", ")", "for", "path", "in", "Path", "(", "org_xml_dir", ")", ".", "glob", "(", "\"*.xml\"", ")", ":", "fn", "=", "path", ".", "name", "prefix", ",", "_", "=", "os", ".", "path", ".", "splitext", "(", "fn", ")", "rec_type", ",", "sents", ",", "_", ",", "_", "=", "pangloss", ".", "get_sents_times_and_translations", "(", "str", "(", "path", ")", ")", "# Write the sentence transcriptions to file", "sents", "=", "[", "preprocess_na", "(", "sent", ",", "label_type", ")", "for", "sent", "in", "sents", "]", "for", "i", ",", "sent", "in", "enumerate", "(", "sents", ")", ":", "if", "sent", ".", "strip", "(", ")", "==", "\"\"", ":", "# Then there's no transcription, so ignore this.", "continue", "out_fn", "=", "\"%s.%d.%s\"", "%", "(", "prefix", ",", "i", ",", "label_type", ")", "sent_path", "=", "os", ".", "path", ".", "join", "(", "label_dir", ",", "rec_type", ",", "out_fn", ")", "with", "open", "(", "sent_path", ",", "\"w\"", ")", "as", "sent_f", ":", "print", "(", "sent", ",", "file", "=", "sent_f", ")" ]
Prepare the neural network output targets.
[ "Prepare", "the", "neural", "network", "output", "targets", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/datasets/na.py#L267-L289
13,898
persephone-tools/persephone
persephone/datasets/na.py
prepare_untran
def prepare_untran(feat_type, tgt_dir, untran_dir): """ Preprocesses untranscribed audio.""" org_dir = str(untran_dir) wav_dir = os.path.join(str(tgt_dir), "wav", "untranscribed") feat_dir = os.path.join(str(tgt_dir), "feat", "untranscribed") if not os.path.isdir(wav_dir): os.makedirs(wav_dir) if not os.path.isdir(feat_dir): os.makedirs(feat_dir) # Standardize into wav files for fn in os.listdir(org_dir): in_path = os.path.join(org_dir, fn) prefix, _ = os.path.splitext(fn) mono16k_wav_path = os.path.join(wav_dir, "%s.wav" % prefix) if not os.path.isfile(mono16k_wav_path): feat_extract.convert_wav(Path(in_path), Path(mono16k_wav_path)) # Split up the wavs and write prefixes to prefix file. wav_fns = os.listdir(wav_dir) with (tgt_dir / "untranscribed_prefixes.txt").open("w") as prefix_f: for fn in wav_fns: in_fn = os.path.join(wav_dir, fn) prefix, _ = os.path.splitext(fn) # Split into sub-wavs and perform feat extraction. split_id = 0 start, end = 0, 10 #in seconds length = utils.wav_length(in_fn) while True: sub_wav_prefix = "{}.{}".format(prefix, split_id) print(sub_wav_prefix, file=prefix_f) out_fn = os.path.join(feat_dir, "{}.wav".format(sub_wav_prefix)) start_time = start * ureg.seconds end_time = end * ureg.seconds if not Path(out_fn).is_file(): wav.trim_wav_ms(Path(in_fn), Path(out_fn), start_time.to(ureg.milliseconds).magnitude, end_time.to(ureg.milliseconds).magnitude) if end > length: break start += 10 end += 10 split_id += 1 # Do feat extraction. feat_extract.from_dir(Path(os.path.join(feat_dir)), feat_type=feat_type)
python
def prepare_untran(feat_type, tgt_dir, untran_dir): """ Preprocesses untranscribed audio.""" org_dir = str(untran_dir) wav_dir = os.path.join(str(tgt_dir), "wav", "untranscribed") feat_dir = os.path.join(str(tgt_dir), "feat", "untranscribed") if not os.path.isdir(wav_dir): os.makedirs(wav_dir) if not os.path.isdir(feat_dir): os.makedirs(feat_dir) # Standardize into wav files for fn in os.listdir(org_dir): in_path = os.path.join(org_dir, fn) prefix, _ = os.path.splitext(fn) mono16k_wav_path = os.path.join(wav_dir, "%s.wav" % prefix) if not os.path.isfile(mono16k_wav_path): feat_extract.convert_wav(Path(in_path), Path(mono16k_wav_path)) # Split up the wavs and write prefixes to prefix file. wav_fns = os.listdir(wav_dir) with (tgt_dir / "untranscribed_prefixes.txt").open("w") as prefix_f: for fn in wav_fns: in_fn = os.path.join(wav_dir, fn) prefix, _ = os.path.splitext(fn) # Split into sub-wavs and perform feat extraction. split_id = 0 start, end = 0, 10 #in seconds length = utils.wav_length(in_fn) while True: sub_wav_prefix = "{}.{}".format(prefix, split_id) print(sub_wav_prefix, file=prefix_f) out_fn = os.path.join(feat_dir, "{}.wav".format(sub_wav_prefix)) start_time = start * ureg.seconds end_time = end * ureg.seconds if not Path(out_fn).is_file(): wav.trim_wav_ms(Path(in_fn), Path(out_fn), start_time.to(ureg.milliseconds).magnitude, end_time.to(ureg.milliseconds).magnitude) if end > length: break start += 10 end += 10 split_id += 1 # Do feat extraction. feat_extract.from_dir(Path(os.path.join(feat_dir)), feat_type=feat_type)
[ "def", "prepare_untran", "(", "feat_type", ",", "tgt_dir", ",", "untran_dir", ")", ":", "org_dir", "=", "str", "(", "untran_dir", ")", "wav_dir", "=", "os", ".", "path", ".", "join", "(", "str", "(", "tgt_dir", ")", ",", "\"wav\"", ",", "\"untranscribed\"", ")", "feat_dir", "=", "os", ".", "path", ".", "join", "(", "str", "(", "tgt_dir", ")", ",", "\"feat\"", ",", "\"untranscribed\"", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "wav_dir", ")", ":", "os", ".", "makedirs", "(", "wav_dir", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "feat_dir", ")", ":", "os", ".", "makedirs", "(", "feat_dir", ")", "# Standardize into wav files", "for", "fn", "in", "os", ".", "listdir", "(", "org_dir", ")", ":", "in_path", "=", "os", ".", "path", ".", "join", "(", "org_dir", ",", "fn", ")", "prefix", ",", "_", "=", "os", ".", "path", ".", "splitext", "(", "fn", ")", "mono16k_wav_path", "=", "os", ".", "path", ".", "join", "(", "wav_dir", ",", "\"%s.wav\"", "%", "prefix", ")", "if", "not", "os", ".", "path", ".", "isfile", "(", "mono16k_wav_path", ")", ":", "feat_extract", ".", "convert_wav", "(", "Path", "(", "in_path", ")", ",", "Path", "(", "mono16k_wav_path", ")", ")", "# Split up the wavs and write prefixes to prefix file.", "wav_fns", "=", "os", ".", "listdir", "(", "wav_dir", ")", "with", "(", "tgt_dir", "/", "\"untranscribed_prefixes.txt\"", ")", ".", "open", "(", "\"w\"", ")", "as", "prefix_f", ":", "for", "fn", "in", "wav_fns", ":", "in_fn", "=", "os", ".", "path", ".", "join", "(", "wav_dir", ",", "fn", ")", "prefix", ",", "_", "=", "os", ".", "path", ".", "splitext", "(", "fn", ")", "# Split into sub-wavs and perform feat extraction.", "split_id", "=", "0", "start", ",", "end", "=", "0", ",", "10", "#in seconds", "length", "=", "utils", ".", "wav_length", "(", "in_fn", ")", "while", "True", ":", "sub_wav_prefix", "=", "\"{}.{}\"", ".", "format", "(", "prefix", ",", "split_id", ")", "print", "(", "sub_wav_prefix", ",", "file", "=", "prefix_f", ")", "out_fn", "=", "os", ".", "path", ".", "join", "(", "feat_dir", ",", "\"{}.wav\"", ".", "format", "(", "sub_wav_prefix", ")", ")", "start_time", "=", "start", "*", "ureg", ".", "seconds", "end_time", "=", "end", "*", "ureg", ".", "seconds", "if", "not", "Path", "(", "out_fn", ")", ".", "is_file", "(", ")", ":", "wav", ".", "trim_wav_ms", "(", "Path", "(", "in_fn", ")", ",", "Path", "(", "out_fn", ")", ",", "start_time", ".", "to", "(", "ureg", ".", "milliseconds", ")", ".", "magnitude", ",", "end_time", ".", "to", "(", "ureg", ".", "milliseconds", ")", ".", "magnitude", ")", "if", "end", ">", "length", ":", "break", "start", "+=", "10", "end", "+=", "10", "split_id", "+=", "1", "# Do feat extraction.", "feat_extract", ".", "from_dir", "(", "Path", "(", "os", ".", "path", ".", "join", "(", "feat_dir", ")", ")", ",", "feat_type", "=", "feat_type", ")" ]
Preprocesses untranscribed audio.
[ "Preprocesses", "untranscribed", "audio", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/datasets/na.py#L292-L337
13,899
persephone-tools/persephone
persephone/datasets/na.py
prepare_feats
def prepare_feats(feat_type, org_wav_dir=ORG_WAV_DIR, feat_dir=FEAT_DIR, tgt_wav_dir=TGT_WAV_DIR, org_xml_dir=ORG_XML_DIR, label_dir=LABEL_DIR): """ Prepare the input features.""" if not os.path.isdir(TGT_DIR): os.makedirs(TGT_DIR) if not os.path.isdir(FEAT_DIR): os.makedirs(FEAT_DIR) if not os.path.isdir(os.path.join(feat_dir, "WORDLIST")): os.makedirs(os.path.join(feat_dir, "WORDLIST")) if not os.path.isdir(os.path.join(feat_dir, "TEXT")): os.makedirs(os.path.join(feat_dir, "TEXT")) # Extract utterances from WAVS. trim_wavs(org_wav_dir=org_wav_dir, tgt_wav_dir=tgt_wav_dir, org_xml_dir=org_xml_dir) # TODO Currently assumes that the wav trimming from XML has already been # done. prefixes = [] for fn in os.listdir(os.path.join(tgt_wav_dir, "WORDLIST")): if fn.endswith(".wav"): pre, _ = os.path.splitext(fn) prefixes.append(os.path.join("WORDLIST", pre)) for fn in os.listdir(os.path.join(tgt_wav_dir, "TEXT")): if fn.endswith(".wav"): pre, _ = os.path.splitext(fn) prefixes.append(os.path.join("TEXT", pre)) if feat_type=="phonemes_onehot": import numpy as np #prepare_labels("phonemes") for prefix in prefixes: label_fn = os.path.join(label_dir, "%s.phonemes" % prefix) out_fn = os.path.join(feat_dir, "%s.phonemes_onehot" % prefix) try: with open(label_fn) as label_f: labels = label_f.readlines()[0].split() except FileNotFoundError: continue indices = [PHONEMES_TO_INDICES[label] for label in labels] one_hots = [[0]*len(PHONEMES) for _ in labels] for i, index in enumerate(indices): one_hots[i][index] = 1 one_hots = np.array(one_hots) np.save(out_fn, one_hots) else: # Otherwise, for prefix in prefixes: # Convert the wave to 16k mono. wav_fn = os.path.join(tgt_wav_dir, "%s.wav" % prefix) mono16k_wav_fn = os.path.join(feat_dir, "%s.wav" % prefix) if not os.path.isfile(mono16k_wav_fn): logging.info("Normalizing wav {} to a 16k 16KHz mono {}".format( wav_fn, mono16k_wav_fn)) feat_extract.convert_wav(wav_fn, mono16k_wav_fn) # Extract features from the wavs. feat_extract.from_dir(Path(os.path.join(feat_dir, "WORDLIST")), feat_type=feat_type) feat_extract.from_dir(Path(os.path.join(feat_dir, "TEXT")), feat_type=feat_type)
python
def prepare_feats(feat_type, org_wav_dir=ORG_WAV_DIR, feat_dir=FEAT_DIR, tgt_wav_dir=TGT_WAV_DIR, org_xml_dir=ORG_XML_DIR, label_dir=LABEL_DIR): """ Prepare the input features.""" if not os.path.isdir(TGT_DIR): os.makedirs(TGT_DIR) if not os.path.isdir(FEAT_DIR): os.makedirs(FEAT_DIR) if not os.path.isdir(os.path.join(feat_dir, "WORDLIST")): os.makedirs(os.path.join(feat_dir, "WORDLIST")) if not os.path.isdir(os.path.join(feat_dir, "TEXT")): os.makedirs(os.path.join(feat_dir, "TEXT")) # Extract utterances from WAVS. trim_wavs(org_wav_dir=org_wav_dir, tgt_wav_dir=tgt_wav_dir, org_xml_dir=org_xml_dir) # TODO Currently assumes that the wav trimming from XML has already been # done. prefixes = [] for fn in os.listdir(os.path.join(tgt_wav_dir, "WORDLIST")): if fn.endswith(".wav"): pre, _ = os.path.splitext(fn) prefixes.append(os.path.join("WORDLIST", pre)) for fn in os.listdir(os.path.join(tgt_wav_dir, "TEXT")): if fn.endswith(".wav"): pre, _ = os.path.splitext(fn) prefixes.append(os.path.join("TEXT", pre)) if feat_type=="phonemes_onehot": import numpy as np #prepare_labels("phonemes") for prefix in prefixes: label_fn = os.path.join(label_dir, "%s.phonemes" % prefix) out_fn = os.path.join(feat_dir, "%s.phonemes_onehot" % prefix) try: with open(label_fn) as label_f: labels = label_f.readlines()[0].split() except FileNotFoundError: continue indices = [PHONEMES_TO_INDICES[label] for label in labels] one_hots = [[0]*len(PHONEMES) for _ in labels] for i, index in enumerate(indices): one_hots[i][index] = 1 one_hots = np.array(one_hots) np.save(out_fn, one_hots) else: # Otherwise, for prefix in prefixes: # Convert the wave to 16k mono. wav_fn = os.path.join(tgt_wav_dir, "%s.wav" % prefix) mono16k_wav_fn = os.path.join(feat_dir, "%s.wav" % prefix) if not os.path.isfile(mono16k_wav_fn): logging.info("Normalizing wav {} to a 16k 16KHz mono {}".format( wav_fn, mono16k_wav_fn)) feat_extract.convert_wav(wav_fn, mono16k_wav_fn) # Extract features from the wavs. feat_extract.from_dir(Path(os.path.join(feat_dir, "WORDLIST")), feat_type=feat_type) feat_extract.from_dir(Path(os.path.join(feat_dir, "TEXT")), feat_type=feat_type)
[ "def", "prepare_feats", "(", "feat_type", ",", "org_wav_dir", "=", "ORG_WAV_DIR", ",", "feat_dir", "=", "FEAT_DIR", ",", "tgt_wav_dir", "=", "TGT_WAV_DIR", ",", "org_xml_dir", "=", "ORG_XML_DIR", ",", "label_dir", "=", "LABEL_DIR", ")", ":", "if", "not", "os", ".", "path", ".", "isdir", "(", "TGT_DIR", ")", ":", "os", ".", "makedirs", "(", "TGT_DIR", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "FEAT_DIR", ")", ":", "os", ".", "makedirs", "(", "FEAT_DIR", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "feat_dir", ",", "\"WORDLIST\"", ")", ")", ":", "os", ".", "makedirs", "(", "os", ".", "path", ".", "join", "(", "feat_dir", ",", "\"WORDLIST\"", ")", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "feat_dir", ",", "\"TEXT\"", ")", ")", ":", "os", ".", "makedirs", "(", "os", ".", "path", ".", "join", "(", "feat_dir", ",", "\"TEXT\"", ")", ")", "# Extract utterances from WAVS.", "trim_wavs", "(", "org_wav_dir", "=", "org_wav_dir", ",", "tgt_wav_dir", "=", "tgt_wav_dir", ",", "org_xml_dir", "=", "org_xml_dir", ")", "# TODO Currently assumes that the wav trimming from XML has already been", "# done.", "prefixes", "=", "[", "]", "for", "fn", "in", "os", ".", "listdir", "(", "os", ".", "path", ".", "join", "(", "tgt_wav_dir", ",", "\"WORDLIST\"", ")", ")", ":", "if", "fn", ".", "endswith", "(", "\".wav\"", ")", ":", "pre", ",", "_", "=", "os", ".", "path", ".", "splitext", "(", "fn", ")", "prefixes", ".", "append", "(", "os", ".", "path", ".", "join", "(", "\"WORDLIST\"", ",", "pre", ")", ")", "for", "fn", "in", "os", ".", "listdir", "(", "os", ".", "path", ".", "join", "(", "tgt_wav_dir", ",", "\"TEXT\"", ")", ")", ":", "if", "fn", ".", "endswith", "(", "\".wav\"", ")", ":", "pre", ",", "_", "=", "os", ".", "path", ".", "splitext", "(", "fn", ")", "prefixes", ".", "append", "(", "os", ".", "path", ".", "join", "(", "\"TEXT\"", ",", "pre", ")", ")", "if", "feat_type", "==", "\"phonemes_onehot\"", ":", "import", "numpy", "as", "np", "#prepare_labels(\"phonemes\")", "for", "prefix", "in", "prefixes", ":", "label_fn", "=", "os", ".", "path", ".", "join", "(", "label_dir", ",", "\"%s.phonemes\"", "%", "prefix", ")", "out_fn", "=", "os", ".", "path", ".", "join", "(", "feat_dir", ",", "\"%s.phonemes_onehot\"", "%", "prefix", ")", "try", ":", "with", "open", "(", "label_fn", ")", "as", "label_f", ":", "labels", "=", "label_f", ".", "readlines", "(", ")", "[", "0", "]", ".", "split", "(", ")", "except", "FileNotFoundError", ":", "continue", "indices", "=", "[", "PHONEMES_TO_INDICES", "[", "label", "]", "for", "label", "in", "labels", "]", "one_hots", "=", "[", "[", "0", "]", "*", "len", "(", "PHONEMES", ")", "for", "_", "in", "labels", "]", "for", "i", ",", "index", "in", "enumerate", "(", "indices", ")", ":", "one_hots", "[", "i", "]", "[", "index", "]", "=", "1", "one_hots", "=", "np", ".", "array", "(", "one_hots", ")", "np", ".", "save", "(", "out_fn", ",", "one_hots", ")", "else", ":", "# Otherwise, ", "for", "prefix", "in", "prefixes", ":", "# Convert the wave to 16k mono.", "wav_fn", "=", "os", ".", "path", ".", "join", "(", "tgt_wav_dir", ",", "\"%s.wav\"", "%", "prefix", ")", "mono16k_wav_fn", "=", "os", ".", "path", ".", "join", "(", "feat_dir", ",", "\"%s.wav\"", "%", "prefix", ")", "if", "not", "os", ".", "path", ".", "isfile", "(", "mono16k_wav_fn", ")", ":", "logging", ".", "info", "(", "\"Normalizing wav {} to a 16k 16KHz mono {}\"", ".", "format", "(", "wav_fn", ",", "mono16k_wav_fn", ")", ")", "feat_extract", ".", "convert_wav", "(", "wav_fn", ",", "mono16k_wav_fn", ")", "# Extract features from the wavs.", "feat_extract", ".", "from_dir", "(", "Path", "(", "os", ".", "path", ".", "join", "(", "feat_dir", ",", "\"WORDLIST\"", ")", ")", ",", "feat_type", "=", "feat_type", ")", "feat_extract", ".", "from_dir", "(", "Path", "(", "os", ".", "path", ".", "join", "(", "feat_dir", ",", "\"TEXT\"", ")", ")", ",", "feat_type", "=", "feat_type", ")" ]
Prepare the input features.
[ "Prepare", "the", "input", "features", "." ]
f94c63e4d5fe719fb1deba449b177bb299d225fb
https://github.com/persephone-tools/persephone/blob/f94c63e4d5fe719fb1deba449b177bb299d225fb/persephone/datasets/na.py#L340-L402