YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Step-Audio-EditX

โ€‚ โ€‚ โ€‚ โ€‚ โ€‚

๐Ÿ”ฅ๐Ÿ”ฅ๐Ÿ”ฅ News!!๏ผ

  • Jan 23, 2026: ๐ŸŒŸ Training and inference for vLLM are now supported. Thanks to the vLLM team!
  • Jan 23, 2026: ๐Ÿ’ป We release the GRPO training code.
  • Jan 23, 2026: ๐Ÿงฉ New Model Release: Now supporting more paralinguistic tags.
  • Nov 28, 2025: ๐Ÿš€ New Model Release: Now supporting Japanese and Korean languages.
  • Nov 23, 2025: ๐Ÿ“Š Step-Audio-Edit-Benchmark Released!
  • Nov 19, 2025: โš™๏ธ We release a new version of our model, which supports polyphonic pronunciation control and improves the performance of emotion, speaking style, and paralinguistic editing.
  • Nov 12, 2025: ๐Ÿ“ฆ We release the optimized inference code and model weights of Step-Audio-EditX (HuggingFace; ModelScope) and Step-Audio-Tokenizer(HuggingFace; ModelScope)
  • Nov 07, 2025: โœจ Demo Page ; ๐ŸŽฎ HF Space Playground
  • Nov 06, 2025: ๐Ÿ‘‹ We release the technical report of Step-Audio-EditX.

Introduction

We are open-sourcing Step-Audio-EditX, a powerful 3B-parameter LLM-based Reinforcement Learning audio model specialized in expressive and iterative audio editing. It excels at editing emotion, speaking style, and paralinguistics, and also features robust zero-shot text-to-speech (TTS) capabilities.

๐Ÿ“‘ Open-source Plan

  • Inference Code
  • Online demo (Gradio)
  • Step-Audio-Edit-Benchmark
  • Model Checkpoints
    • Step-Audio-Tokenizer
    • Step-Audio-EditX
    • Step-Audio-EditX-Int4
  • Training Code
    • GRPO training
    • SFT training
    • PPO training
  • โณ Feature Support Plan
    • Editing
      • Polyphone pronunciation control
      • More paralinguistic tags ([Cough, Crying, Stress, etc.])
      • Filler word removal
    • Other Languages
      • Japanese, Korean
      • Arabic, French, Russian, Spanish, etc.

Features

  • Zero-Shot TTS

    • Excellent zero-shot TTS cloning for Mandarin, English, Sichuanese, and Cantonese.
    • To use dialect or other languages, just add a [Sichuanese] / [Cantonese] / [Japanese] / [Korean] tag before your text.
    • ๐Ÿ”ฅ Polyphone pronunciation control, all you need to do is replace the polyphonic characters with pinyin.
      • [ๆˆ‘ไนŸๆƒณ่ฟ‡่ฟ‡่ฟ‡ๅ„ฟ่ฟ‡่ฟ‡็š„็”Ÿๆดป] -> [ๆˆ‘ไนŸๆƒณguo4guo4guo1ๅ„ฟguo4guo4็š„็”Ÿๆดป]
  • Emotion and Speaking Style Editing

    • Remarkably effective iterative control over emotions and styles, supporting dozens of options for editing.
      • Emotion Editing : [ Angry, Happy, Sad, Excited, Fearful, Surprised, Disgusted, etc. ]
      • Speaking Style Editing: [ Act_coy, Older, Child, Whisper, Serious, Generous, Exaggerated, etc.]
      • Editing with more emotion and more speaking styles is on the way. Get Ready! ๐Ÿš€
  • Paralinguistic Editing

    • Precise control over 10 types of paralinguistic features for more natural, human-like, and expressive synthetic audio.
    • Supporting Tags:
      • [ Breathing, Laughter, Surprise-oh, Confirmation-en, Uhm, Surprise-ah, Surprise-wa, Sigh, Question-ei, Dissatisfaction-hnn ]
  • Available Tags

    emotion happy Expressing happiness angry Expressing anger
    sad Expressing sadness fear Expressing fear
    surprised Expressing surprise confusion Expressing confusion
    empathy Expressing empathy and understanding embarrass Expressing embarrassment
    excited Expressing excitement and enthusiasm depressed Expressing a depressed or discouraged mood
    admiration Expressing admiration or respect coldness Expressing coldness and indifference
    disgusted Expressing disgust or aversion humour Expressing humor or playfulness
    speaking style serious Speaking in a serious or solemn manner arrogant Speaking in an arrogant manner
    child Speaking in a childlike manner older Speaking in an elderly-sounding manner
    girl Speaking in a light, youthful feminine manner pure Speaking in a pure, innocent manner
    sister Speaking in a mature, confident feminine manner sweet Speaking in a sweet, lovely manner
    exaggerated Speaking in an exaggerated, dramatic manner ethereal Speaking in a soft, airy, dreamy manner
    whisper Speaking in a whispering, very soft manner generous Speaking in a hearty, outgoing, and straight-talking manner
    recite Speaking in a clear, well-paced, poetry-reading manner act_coy Speaking in a sweet, playful, and endearing manner
    warm Speaking in a warm, friendly manner shy Speaking in a shy, timid manner
    comfort Speaking in a comforting, reassuring manner authority Speaking in an authoritative, commanding manner
    chat Speaking in a casual, conversational manner radio Speaking in a radio-broadcast manner
    soulful Speaking in a heartfelt, deeply emotional manner gentle Speaking in a gentle, soft manner
    story Speaking in a narrative, audiobook-style manner vivid Speaking in a lively, expressive manner
    program Speaking in a show-host/presenter manner news Speaking in a news broadcasting manner
    advertising Speaking in a polished, high-end commercial voiceover manner roar Speaking in a loud, deep, roaring manner
    murmur Speaking in a quiet, low manner shout Speaking in a loud, sharp, shouting manner
    deeply Speaking in a deep and low-pitched tone loudly Speaking in a loud and high-pitched tone
    paralinguistic [sigh] Sighing sound [inhale] Inhaling sound
    [laugh] Laughter sound [chuckle] Chuckling sound
    [exhale] Exhaling sound [clears throat] Throat clearing sound
    [snort] Snorting sound [giggle] Giggling sound
    [cough] Coughing sound [breath] Breathing sound
    [uhm] Hesitation sound: "Uhm" [Confirmation-en] Confirming: "En"
    [Surprise-oh] Expressing surprise: "Oh" [Surprise-ah] Expressing surprise: "Ah"
    [Surprise-wa] Expressing surprise: "Wa" [Surprise-yo] Expressing surprise: "Yo"
    [Dissatisfaction-hnn] Dissatisfied sound: "Hnn" [Question-ei] Questioning: "Ei"
    [Question-ah] Questioning: "Ah" [Question-en] Questioning: "En"
    [Question-yi] Questioning: "Yi" [Question-oh] Questioning: "Oh"

    Feature Requests & Wishlist

    ๐Ÿ’ก We welcome all ideas for new features! If you'd like to see a feature added to the project, please start a discussion in our Discussions section.

    We'll be collecting community feedback here and will incorporate popular suggestions into our future development plans. Thank you for your contribution!

    Demos

    Task Text Source Edited
    Emotion-Fear ๆˆ‘ๆ€ป่ง‰ๅพ—๏ผŒๆœ‰ไบบๅœจ่ทŸ็€ๆˆ‘๏ผŒๆˆ‘่ƒฝๅฌๅˆฐๅฅ‡ๆ€ช็š„่„šๆญฅๅฃฐใ€‚

    fear_zh_female_prompt.webm

    fear_zh_female_output.webm

    Style-Whisper ๆฏ”ๅฆ‚ๅœจๅทฅไฝœ้—ด้š™๏ผŒๅšไธ€ไบ›็ฎ€ๅ•็š„ไผธๅฑ•่ฟๅŠจ๏ผŒๆ”พๆพไธ€ไธ‹่บซไฝ“๏ผŒ่ฟ™ๆ ท๏ผŒไผš่ฎฉไฝ ๆ›ดๆœ‰็ฒพๅŠ›ใ€‚

    whisper_prompt.webm

    whisper_output.webm

    Style-Act_coy ๆˆ‘ไปŠๅคฉๆƒณๅ–ๅฅถ่Œถ๏ผŒๅฏๆ˜ฏไธ็Ÿฅ้“ๅ–ไป€ไนˆๅฃๅ‘ณ๏ผŒไฝ ๅธฎๆˆ‘้€‰ไธ€ไธ‹ๅ˜›๏ผŒไฝ ้€‰็š„้ƒฝๅฅฝๅ–๏ฝž

    act_coy_prompt.webm

    act_coy_output.webm

    Paralinguistics ไฝ ่ฟ™ๆฌกๅˆๅฟ˜่ฎฐๅธฆ้’ฅๅŒ™ไบ† [Dissatisfaction-hnn]๏ผŒ็œŸๆ˜ฏๆ‹ฟไฝ ๆฒกๅŠžๆณ•ใ€‚

    paralingustic_prompt.webm

    paralingustic_output.webm

    Denoising Such legislation was clarified and extended from time to time thereafter. No, the man was not drunk, he wondered how we got tied up with this stranger. Suddenly, my reflexes had gone. It's healthier to cook without sugar.

    denoising_prompt.webm

    denoising_output.webm

    Speed-Faster ไธŠๆฌกไฝ ่ฏด้ž‹ๅญๆœ‰็‚น็ฃจ่„š๏ผŒๆˆ‘็ป™ไฝ ไนฐไบ†ไธ€ๅŒ่ฝฏ่ฝฏ็š„้ž‹ๅžซใ€‚

    speed_faster_prompt.webm

    speed_faster_output.webm

    For more examples, see demo page.

    Model Download

    Model Usage

    ๐Ÿ“œ Requirements

    The following table shows the requirements for running Step-Audio-EditX model (batch size = 1):

    Model Parameters Setting
    (sample frequency)
    GPU Optimal Memory
    Step-Audio-EditX 3B 41.6Hz 12 GB
    • An NVIDIA GPU with CUDA support is required.
      • The model is tested on a single L40S GPU.
      • 12GB is just a critical value, and 16GB GPU memory shoule be safer.
    • Tested operating system: Linux

    ๐Ÿ”ง Dependencies and Installation

    git clone https://github.com/stepfun-ai/Step-Audio-EditX.git
    
    cd Step-Audio-EditX
    uv sync --refresh
    source .venv/bin/activate
    
    git lfs install
    git clone https://huggingface.co/stepfun-ai/Step-Audio-Tokenizer
    git clone https://huggingface.co/stepfun-ai/Step-Audio-EditX
    git clone https://huggingface.co/stepfun-ai/Step-Audio-EditX-AWQ-4bit/
    

    After downloading the models, where_you_download_dir should have the following structure:

    where_you_download_dir
    โ”œโ”€โ”€ Step-Audio-Tokenizer
    โ”œโ”€โ”€ Step-Audio-EditX
    

    Run with Docker

    You can set up the environment required for running Step-Audio-EditX using the provided Dockerfile.

    # build docker
    docker build . -t step-audio-editx
    
    # run docker
    docker run --rm --gpus all \
        -v /your/code/path:/app \
        -v /your/model/path:/model \
        -p 7860:7860 \
        step-audio-editx
    

    Local Inference Demo

    For optimal performance, keep audio under 30 seconds per inference.

    # zero-shot cloning
    # The path of the generated audio file is output/fear_zh_female_prompt_cloned.wav
    python3 tts_infer.py \
        --model-path where_you_download_dir \
        --tokenizer-path where_you_download_dir \
        --prompt-text "ๆˆ‘ๆ€ป่ง‰ๅพ—๏ผŒๆœ‰ไบบๅœจ่ทŸ็€ๆˆ‘๏ผŒๆˆ‘่ƒฝๅฌๅˆฐๅฅ‡ๆ€ช็š„่„šๆญฅๅฃฐใ€‚" \
        --prompt-audio "examples/fear_zh_female_prompt.wav" \
        --generated-text "ๅฏๆƒœๆฒกๆœ‰ๅฆ‚ๆžœ๏ผŒๅทฒ็ปๅ‘็”Ÿ็š„ไบ‹ๆƒ…็ปˆ็ฉถๆ˜ฏๅ‘็”Ÿไบ†ใ€‚" \
        --edit-type "clone" \
        --output-dir ./output 
    
    python3 tts_infer.py \
        --model-path where_you_download_dir \
        --tokenizer-path where_you_download_dir \
        --prompt-text "His political stance was conservative, and he was particularly close to margaret thatcher." \
        --prompt-audio "examples/zero_shot_en_prompt.wav" \
        --generated-text "Underneath the courtyard is a large underground exhibition room which connects the two buildings.	" \
        --edit-type "clone" \
        --output-dir ./output 
    
    # edit
    # There will be one or multiple wave files corresponding to each edit iteration, for example: output/fear_zh_female_prompt_edited_iter1.wav, output/fear_zh_female_prompt_edited_iter2.wav, ...
    # emotion; fear
    python3 tts_infer.py \
        --model-path where_you_download_dir \
        --tokenizer-path where_you_download_dir \
        --prompt-text "ๆˆ‘ๆ€ป่ง‰ๅพ—๏ผŒๆœ‰ไบบๅœจ่ทŸ็€ๆˆ‘๏ผŒๆˆ‘่ƒฝๅฌๅˆฐๅฅ‡ๆ€ช็š„่„šๆญฅๅฃฐใ€‚" \
        --prompt-audio "examples/fear_zh_female_prompt.wav" \
        --edit-type "emotion" \
        --edit-info "fear" \
        --output-dir ./output 
    
    # emotion; happy
    python3 tts_infer.py \
        --model-path where_you_download_dir \
        --tokenizer-path where_you_download_dir \
        --prompt-text "You know, I just finished that big project and feel so relieved. Everything seems easier and more colorful, what a wonderful feeling!" \
        --prompt-audio "examples/en_happy_prompt.wav" \
        --edit-type "emotion" \
        --edit-info "happy" \
        --output-dir ./output 
    
    # style; whisper
    # for style whisper, the edit iteration num should be set bigger than 1 to get better results.
    python3 tts_infer.py \
        --model-path where_you_download_dir \
        --tokenizer-path where_you_download_dir \
        --prompt-text "ๆฏ”ๅฆ‚ๅœจๅทฅไฝœ้—ด้š™๏ผŒๅšไธ€ไบ›็ฎ€ๅ•็š„ไผธๅฑ•่ฟๅŠจ๏ผŒๆ”พๆพไธ€ไธ‹่บซไฝ“๏ผŒ่ฟ™ๆ ท๏ผŒไผš่ฎฉไฝ ๆ›ดๆœ‰็ฒพๅŠ›." \
        --prompt-audio "examples/whisper_prompt.wav" \
        --edit-type "style" \
        --edit-info "whisper" \
        --output-dir ./output 
    
    # paraliguistic 
    # supported tags, Breathing, Laughter, Surprise-oh, Confirmation-en, Uhm, Surprise-ah, Surprise-wa, Sigh, Question-ei, Dissatisfaction-hnn
    python3 tts_infer.py \
        --model-path where_you_download_dir \
        --tokenizer-path where_you_download_dir \
        --prompt-text "ๆˆ‘่ง‰ๅพ—่ฟ™ไธช่ฎกๅˆ’ๅคงๆฆ‚ๆ˜ฏๅฏ่กŒ็š„๏ผŒไธ่ฟ‡่ฟ˜้œ€่ฆๅ†ไป”็ป†่€ƒ่™‘ไธ€ไธ‹ใ€‚" \
        --prompt-audio "examples/paralingustic_prompt.wav" \
        --generated-text "ๆˆ‘่ง‰ๅพ—่ฟ™ไธช่ฎกๅˆ’ๅคงๆฆ‚ๆ˜ฏๅฏ่กŒ็š„๏ผŒ[Uhm]ไธ่ฟ‡่ฟ˜้œ€่ฆๅ†ไป”็ป†่€ƒ่™‘ไธ€ไธ‹ใ€‚" \
        --edit-type "paralinguistic" \
        --output-dir ./output 
    
    # denoise
    # Prompt text is not needed.
    python3 tts_infer.py \
        --model-path where_you_download_dir \
        --tokenizer-path where_you_download_dir \
        --prompt-audio "examples/denoise_prompt.wav"\
        --edit-type "denoise" \
        --output-dir ./output 
    
    # vad 
    # Prompt text is not needed.
    python3 tts_infer.py \
        --model-path where_you_download_dir \
        --tokenizer-path where_you_download_dir \
        --prompt-audio "examples/vad_prompt.wav" \
        --edit-type "vad" \
        --output-dir ./output 
    
    # speed
    # supported edit-info: faster, slower, more faster, more slower
    python3 tts_infer.py \
        --model-path where_you_download_dir \
        --tokenizer-path where_you_download_dir \
        --prompt-text "ไธŠๆฌกไฝ ่ฏด้ž‹ๅญๆœ‰็‚น็ฃจ่„š๏ผŒๆˆ‘็ป™ไฝ ไนฐไบ†ไธ€ๅŒ่ฝฏ่ฝฏ็š„้ž‹ๅžซใ€‚" \
        --prompt-audio "examples/speed_prompt.wav" \
        --edit-type "speed" \
        --edit-info "more faster" \
        --output-dir ./output 
    

    Launch Web Demo

    Start a local server for online inference. Assume you have one GPU with at least 12GB memory available and have already downloaded all the models.

    # Standard launch
    python app.py --model-path where_you_download_dir --tokenizer-path where_you_download_dir --model-source local
    
    # Using pre-quantized AWQ 4-bit models, memory-efficient mode (for limited GPU memory, ~6-8GB usage)
    python app.py \
        --model-path path/to/quantized/model \
        --tokenizer-path where_you_download_dir \
        --model-source local \
        --gpu-memory-utilization 0.1 \
        --enforce-eager \
        --max-num-seqs 1 \
        --cosyvoice-dtype bfloat16 \
        --no-cosyvoice-cuda-graph
    
    Available Parameters
    Parameter Default Description
    --model-path (required) Path to the model directory
    --model-source auto Model source: auto, local, modelscope, huggingface
    --gpu-memory-utilization 0.5 GPU memory ratio for vLLM KV cache (0.0-1.0)
    --max-model-len 3072 Maximum sequence length, affects KV cache size
    --enforce-eager True Disable vLLM CUDA Graphs (saves ~0.5GB memory)
    --max-num-seqs 1 Maximum concurrent sequences (vLLM default: 256, lower = less memory)
    --dtype bfloat16 Model dtype: float16, bfloat16
    --quantization None Quantization method: awq, gptq, fp8
    --cosyvoice-dtype bfloat16 CosyVoice vocoder dtype: float32, bfloat16, float16
    --no-cosyvoice-cuda-graph False Disable CosyVoice CUDA Graphs (saves memory)
    --enable-auto-transcribe False Enable automatic audio transcription
    Memory Usage Guide
    Configuration Estimated GPU Memory Use Case
    Standard (defaults) ~12-15 GB Best quality and speed
    Memory-efficient ~6-8 GB Limited GPU memory, some quality trade-off
    AWQ 4-bit quantized ~8-10 GB Good balance of quality and memory

    Training

    Please refer to script/ReadMe.md

    ๐Ÿ”„ Model Quantization (Optional)

    For users with limited GPU memory, you can create quantized versions of the model to reduce memory requirements:

    # Create an AWQ 4-bit quantized model
    python quantization/awq_quantize.py --model_path path/to/Step-Audio-EditX
    
    # Advanced quantization options
    python quantization/awq_quantize.py
    

    For detailed quantization options and parameters, see quantization/README.md.

    Technical Details

    Step-Audio-EditX comprises three primary components:
    • A dual-codebook audio tokenizer, which converts reference or input audio into discrete tokens.
    • An audio LLM that generates dual-codebook token sequences.
    • An audio decoder, which converts the dual-codebook token sequences predicted by the audio LLM back into audio waveforms using a flow matching approach.

    Audio-Edit enables iterative control over emotion and speaking style across all voices, leveraging large-margin data during SFT and PPO training.

    Evaluation

    Comparison between Step-Audio-EditX and Closed-Source models.

    • Step-Audio-EditX demonstrates superior performance over Minimax and Doubao in both zero-shot cloning and emotion control.
    • Emotion editing of Step-Audio-EditX significantly improves the emotion-controlled audio outputs of all three models after just one iteration. With further iterations, their overall performance continues to improve.

    Generalization on Closed-Source Models.

    • For emotion and speaking style editing, the built-in voices of leading closed-source systems possess considerable in-context capabilities, allowing them to partially convey the emotions in the text. After a single editing round with Step-Audio-EditX, the emotion and style accuracy across all voice models exhibited significant improvement. Further enhancement was observed over the next two iterations, robustly demonstrating our model's strong generalization.

    • For paralinguistic editing, after editing with Step-Audio-EditX, the performance of paralinguistic reproduction is comparable to that achieved by the built-in voices of closed-source models when synthesizing native paralinguistic content directly. (sub means replacement of paralinguistic tags with native words)

    Table: Generalization of Emotion, Speaking Style, and Paralinguistic Editing on Closed-Source Models.
    Language Model Emotion โ†‘ Speaking Style โ†‘ Paralinguistic โ†‘
    Iter0 Iter1 Iter2 Iter3 Iter0 Iter1 Iter2 Iter3 Iter0 sub Iter1
    Chinese MiniMax-2.6-hd 71.6 78.6 81.2 83.4 36.7 58.8 63.1 67.3 1.73 2.80 2.90
    Doubao-Seed-TTS-2.0 67.4 77.8 80.6 82.8 38.2 60.2 65.0 64.9 1.67 2.81 2.90
    GPT-4o-mini-TTS 62.6 76.0 77.0 81.8 45.9 64.0 65.7 69.7 1.71 2.88 2.93
    ElevenLabs-v2 60.4 74.6 77.4 79.2 43.8 63.3 69.7 70.8 1.70 2.71 2.92
    English MiniMax-2.6-hd 55.0 64.0 64.2 66.4 51.9 60.3 62.3 64.3 1.72 2.87 2.88
    Doubao-Seed-TTS-2.0 53.8 65.8 65.8 66.2 47.0 62.0 62.7 62.3 1.72 2.75 2.92
    GPT-4o-mini-TTS 56.8 61.4 64.8 65.2 52.3 62.3 62.4 63.4 1.90 2.90 2.88
    ElevenLabs-v2 51.0 61.2 64.0 65.2 51.0 62.1 62.6 64.0 1.93 2.87 2.88
    Average MiniMax-2.6-hd 63.3 71.3 72.7 74.9 44.2 59.6 62.7 65.8 1.73 2.84 2.89
    Doubao-Seed-TTS-2.0 60.6 71.8 73.2 74.5 42.6 61.1 63.9 63.6 1.70 2.78 2.91
    GPT-4o-mini-TTS 59.7 68.7 70.9 73.5 49.1 63.2 64.1 66.6 1.81 2.89 2.90
    ElevenLabs-v2 55.7 67.9 70.7 72.2 47.4 62.7 66.1 67.4 1.82 2.79 2.90

    Acknowledgements

    Part of the code and data for this project comes from:

    Thank you to all the open-source projects for their contributions to this project!

    License Agreement

    • The code in this open-source repository is licensed under the Apache 2.0 License.

    Citation

    @misc{yan2025stepaudioeditxtechnicalreport,
          title={Step-Audio-EditX Technical Report}, 
          author={Chao Yan and Boyong Wu and Peng Yang and Pengfei Tan and Guoqiang Hu and Yuxin Zhang and Xiangyu and Zhang and Fei Tian and Xuerui Yang and Xiangyu Zhang and Daxin Jiang and Gang Yu},
          year={2025},
          eprint={2511.03601},
          archivePrefix={arXiv},
          primaryClass={cs.CL},
          url={https://arxiv.org/abs/2511.03601}, 
    }
    

    โš ๏ธ Usage Disclaimer

    • Do not use this model for any unauthorized activities, including but not limited to:
      • Voice cloning without permission
      • Identity impersonation
      • Fraud
      • Deepfakes or any other illegal purposes
    • Ensure compliance with local laws and regulations, and adhere to ethical guidelines when using this model.
    • The model developers are not responsible for any misuse or abuse of this technology.

    We advocate for responsible generative AI research and urge the community to uphold safety and ethical standards in AI development and application. If you have any concerns regarding the use of this model, please feel free to contact us.

    Star History

    Star History Chart

Downloads last month
4,217
Safetensors
Model size
4B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ 2 Ask for provider support

Space using stepfun-ai/Step-Audio-EditX 1

Collection including stepfun-ai/Step-Audio-EditX

Paper for stepfun-ai/Step-Audio-EditX