Quantum Neural Networks
Collection
Quantum-Classical Model & Quantum Neural Network
β’
4 items
β’
Updated
96-qubit Quantum Convolutional Neural Network (QCNN)
Trained end-to-end on real IBM Quantum Heron r2/r3 hardware
(backend: ibm_fez/ibm_kingston) on February 4, 2026.
Binary classification of parity of random Pauli-X excitations in 1D cluster state
(0 β even number β trivial state, 1 β odd number β non-trivial).
MSE loss starts at ~0.268, dips to ~0.243 around evaluation 1.0, then rises again due to noise accumulation.
| Run | Qubits | Samples | Shots | Iterations | Final Loss | QPU Time |
|---|---|---|---|---|---|---|
| 1 | 96 | 16 | 256 | 8 | 0.29 | ~2 min |
| 2 | 96 | 24 | 384 | 12 | 0.2704 | ~7 min |
Nighthawk.npy β trained parameters (72 values)qcnn.qasm β QASM3 description of the ansatz (parameter-free)results.csv β final training metricstraining_log.txt β full log of loss evaluations and transpilationrequirements.txt β dependencies for reproductionfrom qiskit import qasm3
import numpy as np
# Load model
theta = np.load("Nighthawk.npy")
qcnn = qasm3.loads(open("qcnn.qasm").read())
qcnn.assign_parameters(theta)
print("Model loaded. Number of parameters:", len(theta))
# Next: compose with preparation circuit + run via Sampler
Pro Mundi Vita