Anirudh Balaraman
fix ci
37d4614
import argparse
import logging
import os
import sys
from pathlib import Path
from typing import Any, Union
import cv2
import matplotlib.patches as patches
import matplotlib.pyplot as plt
import numpy as np
import torch
from monai.data import Dataset
from monai.transforms import (
Compose,
EnsureTyped,
LoadImaged,
ToTensord,
)
from .data.custom_transforms import ClipMaskIntensityPercentilesd, NormalizeIntensity_customd
def save_pirads_checkpoint(
model: torch.nn.Module,
epoch: int,
args: argparse.Namespace,
filename: str = "model.pth",
best_acc: float = 0,
) -> None:
"""Save checkpoint for the PI-RADS model"""
state_dict = model.state_dict()
save_dict = {"epoch": epoch, "best_acc": best_acc, "state_dict": state_dict}
filename = os.path.join(args.logdir, filename)
torch.save(save_dict, filename)
logging.info(f"Saving checkpoint {filename}")
def save_cspca_checkpoint(
model: torch.nn.Module,
val_metric: dict[str, Any],
model_dir: str,
) -> None:
"""Save checkpoint for the csPCa model"""
state_dict = model.state_dict()
save_dict = {
"epoch": val_metric["epoch"],
"loss": val_metric["loss"],
"auc": val_metric["auc"],
"sensitivity": val_metric["sensitivity"],
"specificity": val_metric["specificity"],
"state_dict": state_dict,
}
torch.save(save_dict, os.path.join(model_dir, "cspca_model.pth"))
logging.info(f"Saving model with auc: {val_metric['auc']}")
def get_metrics(metric_dict: dict) -> None:
for metric_name, metric_list in metric_dict.items():
metric_list = np.array(metric_list)
lower = np.percentile(metric_list, 2.5)
upper = np.percentile(metric_list, 97.5)
mean_metric = np.mean(metric_list)
logging.info(f"Mean {metric_name}: {mean_metric:.3f}")
logging.info(f"95% CI: ({lower:.3f}, {upper:.3f})")
def setup_logging(log_file: Union[str, Path]) -> None:
log_file = Path(log_file)
log_file.parent.mkdir(parents=True, exist_ok=True)
if log_file.exists():
log_file.write_text("") # overwrite with empty string
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s | %(levelname)s | %(message)s",
handlers=[
logging.FileHandler(log_file),
],
)
def validate_steps(steps):
requires = {
"get_segmentation_mask": ["register_and_crop"],
"histogram_match": ["get_segmentation_mask", "register_and_crop"],
"get_heatmap": ["get_segmentation_mask", "histogram_match", "register_and_crop"],
}
for i, step in enumerate(steps):
required = requires.get(step, [])
for req in required:
if req not in steps[:i]:
logging.error(
f"Step '{step}' requires '{req}' to be executed before it. Given order: {steps}"
)
sys.exit(1)
def get_patch_coordinate(
patches_top_5: list[np.ndarray],
parent_image: np.ndarray,
) -> list[tuple[int, int, int]]:
"""
Locate the coordinates of top-5 patches within a parent image.
This function searches for the spatial location of the first slice (j=0) of each
top-5 patch within the parent 3D image volume. It returns the top-left corner
coordinates (row, column) and the slice index where each patch is found.
Args:
patches_top_5 (list): List of top-5 patches as np arrays, each with shape (C, H, W)
where C is channels, H is height, W is width.
parent_image (np.ndarray): 3D image volume with shape (height, width, slices)
to search within.
args: Configuration arguments (currently unused in the function).
Returns:
list: List of tuples (row, col, slice_idx) representing the top-left corner
coordinates of each found patch in the parent image. Returns empty list
if no patches are found.
Note:
- Only searches for the first slice (j=0) of each patch.
- Uses exhaustive 2D spatial matching within each slice of the parent image.
- Returns coordinates of the first match found for each patch.
"""
sample = np.array([i.transpose(1, 2, 0) for i in patches_top_5])
coords = []
rows, h, w, slices = sample.shape
for i in range(rows):
template = sample[i, :, :, 0].astype(np.float32)
found = False
for k in list(range(parent_image.shape[2])):
img_slice = parent_image[:, :, k].astype(np.float32)
res = cv2.matchTemplate(img_slice, template, cv2.TM_CCOEFF_NORMED)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
if max_val >= 0.99:
x, y = max_loc # OpenCV returns (col, row) -> (x, y)
# 2. Verification Step: Check if it's actually the correct patch
# This mimics your original np.array_equal strictness
candidate_patch = img_slice[y : y + h, x : x + w]
if np.allclose(candidate_patch, template, atol=1e-5):
coords.append((y, x, k)) # Original code stored (row, col, slice)
found = True
break
if not found:
print("Patch not found")
return coords
def get_parent_image(temp_data_list, args: argparse.Namespace) -> np.ndarray:
transform_image = Compose(
[
LoadImaged(
keys=["image", "mask"],
reader="ITKReader",
ensure_channel_first=True,
dtype=np.float32,
),
ClipMaskIntensityPercentilesd(keys=["image"], lower=0, upper=99.5, mask_key="mask"),
NormalizeIntensity_customd(keys=["image"], mask_key="mask", channel_wise=True),
EnsureTyped(keys=["label"], dtype=torch.float32),
ToTensord(keys=["image", "label"]),
]
)
dataset_image = Dataset(data=temp_data_list, transform=transform_image)
return dataset_image[0]["image"][0].numpy()
def visualise_patches(coords, image, tile_size=64, depth=3):
"""
Visualize 3D image patches with their locations marked by bounding rectangles.
This function creates a grid of subplot visualizations where each row represents
a patch and each column represents a slice along the z-axis. Each patch location
is highlighted with a red rectangle on the corresponding image slice.
Args:
coords (list): List of patch coordinates, where each coordinate is a tuple/list
of (y, x, z) representing the top-left corner position of the patch.
image (ndarray): 3D image array of shape (height, width, slices) containing the
image data to visualize.
tile_size (int, optional): Size of the square patch in pixels. Defaults to 64.
depth (int, optional): Number of consecutive z-slices to display for each patch.
Defaults to 3.
Returns:
None: Displays the visualization using plt.show(). The slice id is displayed on th etop left corner of the image.
Raises:
None
Example:
>>> coords = [(10, 20, 5), (50, 60, 10)]
>>> image = np.random.rand(256, 256, 50)
>>> visualise_patches(coords, image, tile_size=64, depth=3)
"""
rows, _, _, slices = (len(coords), tile_size, tile_size, depth)
fig, axes = plt.subplots(
nrows=rows, ncols=slices, figsize=(slices * 3, rows * 3), squeeze=False
)
for i, x in enumerate(coords):
for j in range(slices):
ax = axes[i, j]
slice_id = x[2] + j
ax.imshow(image[:, :, slice_id], cmap="gray")
rect = patches.Rectangle(
(x[1], x[0]), tile_size, tile_size, linewidth=2, edgecolor="red", facecolor="none"
)
ax.add_patch(rect)
# ---- slice ID text (every image) ----
ax.text(
0.02,
0.98,
f"z={slice_id}",
transform=ax.transAxes,
fontsize=10,
color="white",
va="top",
ha="left",
bbox=dict(facecolor="black", alpha=0.4, pad=2),
)
ax.axis("off")
# Row label
axes[i, 0].text(
-0.08,
0.5,
f"Patch {i + 1}",
transform=axes[i, 0].transAxes,
fontsize=12,
va="center",
ha="right",
)
plt.subplots_adjust(left=0.06)
plt.tight_layout()
plt.show()