Spaces:
Running
Running
File size: 8,685 Bytes
caf6ee7 906fcb9 caf6ee7 37d4614 caf6ee7 37d4614 906fcb9 caf6ee7 a4ef78c caf6ee7 a4ef78c caf6ee7 a4ef78c 906fcb9 caf6ee7 1baebae 906fcb9 1baebae 906fcb9 caf6ee7 1baebae 906fcb9 1baebae 906fcb9 1baebae 906fcb9 caf6ee7 906fcb9 1baebae caf6ee7 906fcb9 1baebae 906fcb9 caf6ee7 906fcb9 caf6ee7 906fcb9 1baebae 906fcb9 a4ef78c caf6ee7 1baebae caf6ee7 1baebae a4ef78c 1baebae a4ef78c caf6ee7 a4ef78c 1baebae caf6ee7 1baebae a4ef78c 8c2b158 1baebae a4ef78c 37d4614 7efd22b caf6ee7 7efd22b 37d4614 7efd22b caf6ee7 7efd22b caf6ee7 7efd22b 37d4614 7efd22b 37d4614 7efd22b a4ef78c 7efd22b 37d4614 7efd22b 37d4614 7efd22b a4ef78c 37d4614 caf6ee7 7efd22b 37d4614 7efd22b 37d4614 7efd22b a4ef78c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import argparse
import logging
import os
import sys
from pathlib import Path
from typing import Any, Union
import cv2
import matplotlib.patches as patches
import matplotlib.pyplot as plt
import numpy as np
import torch
from monai.data import Dataset
from monai.transforms import (
Compose,
EnsureTyped,
LoadImaged,
ToTensord,
)
from .data.custom_transforms import ClipMaskIntensityPercentilesd, NormalizeIntensity_customd
def save_pirads_checkpoint(
model: torch.nn.Module,
epoch: int,
args: argparse.Namespace,
filename: str = "model.pth",
best_acc: float = 0,
) -> None:
"""Save checkpoint for the PI-RADS model"""
state_dict = model.state_dict()
save_dict = {"epoch": epoch, "best_acc": best_acc, "state_dict": state_dict}
filename = os.path.join(args.logdir, filename)
torch.save(save_dict, filename)
logging.info(f"Saving checkpoint {filename}")
def save_cspca_checkpoint(
model: torch.nn.Module,
val_metric: dict[str, Any],
model_dir: str,
) -> None:
"""Save checkpoint for the csPCa model"""
state_dict = model.state_dict()
save_dict = {
"epoch": val_metric["epoch"],
"loss": val_metric["loss"],
"auc": val_metric["auc"],
"sensitivity": val_metric["sensitivity"],
"specificity": val_metric["specificity"],
"state_dict": state_dict,
}
torch.save(save_dict, os.path.join(model_dir, "cspca_model.pth"))
logging.info(f"Saving model with auc: {val_metric['auc']}")
def get_metrics(metric_dict: dict) -> None:
for metric_name, metric_list in metric_dict.items():
metric_list = np.array(metric_list)
lower = np.percentile(metric_list, 2.5)
upper = np.percentile(metric_list, 97.5)
mean_metric = np.mean(metric_list)
logging.info(f"Mean {metric_name}: {mean_metric:.3f}")
logging.info(f"95% CI: ({lower:.3f}, {upper:.3f})")
def setup_logging(log_file: Union[str, Path]) -> None:
log_file = Path(log_file)
log_file.parent.mkdir(parents=True, exist_ok=True)
if log_file.exists():
log_file.write_text("") # overwrite with empty string
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s | %(levelname)s | %(message)s",
handlers=[
logging.FileHandler(log_file),
],
)
def validate_steps(steps):
requires = {
"get_segmentation_mask": ["register_and_crop"],
"histogram_match": ["get_segmentation_mask", "register_and_crop"],
"get_heatmap": ["get_segmentation_mask", "histogram_match", "register_and_crop"],
}
for i, step in enumerate(steps):
required = requires.get(step, [])
for req in required:
if req not in steps[:i]:
logging.error(
f"Step '{step}' requires '{req}' to be executed before it. Given order: {steps}"
)
sys.exit(1)
def get_patch_coordinate(
patches_top_5: list[np.ndarray],
parent_image: np.ndarray,
) -> list[tuple[int, int, int]]:
"""
Locate the coordinates of top-5 patches within a parent image.
This function searches for the spatial location of the first slice (j=0) of each
top-5 patch within the parent 3D image volume. It returns the top-left corner
coordinates (row, column) and the slice index where each patch is found.
Args:
patches_top_5 (list): List of top-5 patches as np arrays, each with shape (C, H, W)
where C is channels, H is height, W is width.
parent_image (np.ndarray): 3D image volume with shape (height, width, slices)
to search within.
args: Configuration arguments (currently unused in the function).
Returns:
list: List of tuples (row, col, slice_idx) representing the top-left corner
coordinates of each found patch in the parent image. Returns empty list
if no patches are found.
Note:
- Only searches for the first slice (j=0) of each patch.
- Uses exhaustive 2D spatial matching within each slice of the parent image.
- Returns coordinates of the first match found for each patch.
"""
sample = np.array([i.transpose(1, 2, 0) for i in patches_top_5])
coords = []
rows, h, w, slices = sample.shape
for i in range(rows):
template = sample[i, :, :, 0].astype(np.float32)
found = False
for k in list(range(parent_image.shape[2])):
img_slice = parent_image[:, :, k].astype(np.float32)
res = cv2.matchTemplate(img_slice, template, cv2.TM_CCOEFF_NORMED)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
if max_val >= 0.99:
x, y = max_loc # OpenCV returns (col, row) -> (x, y)
# 2. Verification Step: Check if it's actually the correct patch
# This mimics your original np.array_equal strictness
candidate_patch = img_slice[y : y + h, x : x + w]
if np.allclose(candidate_patch, template, atol=1e-5):
coords.append((y, x, k)) # Original code stored (row, col, slice)
found = True
break
if not found:
print("Patch not found")
return coords
def get_parent_image(temp_data_list, args: argparse.Namespace) -> np.ndarray:
transform_image = Compose(
[
LoadImaged(
keys=["image", "mask"],
reader="ITKReader",
ensure_channel_first=True,
dtype=np.float32,
),
ClipMaskIntensityPercentilesd(keys=["image"], lower=0, upper=99.5, mask_key="mask"),
NormalizeIntensity_customd(keys=["image"], mask_key="mask", channel_wise=True),
EnsureTyped(keys=["label"], dtype=torch.float32),
ToTensord(keys=["image", "label"]),
]
)
dataset_image = Dataset(data=temp_data_list, transform=transform_image)
return dataset_image[0]["image"][0].numpy()
def visualise_patches(coords, image, tile_size=64, depth=3):
"""
Visualize 3D image patches with their locations marked by bounding rectangles.
This function creates a grid of subplot visualizations where each row represents
a patch and each column represents a slice along the z-axis. Each patch location
is highlighted with a red rectangle on the corresponding image slice.
Args:
coords (list): List of patch coordinates, where each coordinate is a tuple/list
of (y, x, z) representing the top-left corner position of the patch.
image (ndarray): 3D image array of shape (height, width, slices) containing the
image data to visualize.
tile_size (int, optional): Size of the square patch in pixels. Defaults to 64.
depth (int, optional): Number of consecutive z-slices to display for each patch.
Defaults to 3.
Returns:
None: Displays the visualization using plt.show(). The slice id is displayed on th etop left corner of the image.
Raises:
None
Example:
>>> coords = [(10, 20, 5), (50, 60, 10)]
>>> image = np.random.rand(256, 256, 50)
>>> visualise_patches(coords, image, tile_size=64, depth=3)
"""
rows, _, _, slices = (len(coords), tile_size, tile_size, depth)
fig, axes = plt.subplots(
nrows=rows, ncols=slices, figsize=(slices * 3, rows * 3), squeeze=False
)
for i, x in enumerate(coords):
for j in range(slices):
ax = axes[i, j]
slice_id = x[2] + j
ax.imshow(image[:, :, slice_id], cmap="gray")
rect = patches.Rectangle(
(x[1], x[0]), tile_size, tile_size, linewidth=2, edgecolor="red", facecolor="none"
)
ax.add_patch(rect)
# ---- slice ID text (every image) ----
ax.text(
0.02,
0.98,
f"z={slice_id}",
transform=ax.transAxes,
fontsize=10,
color="white",
va="top",
ha="left",
bbox=dict(facecolor="black", alpha=0.4, pad=2),
)
ax.axis("off")
# Row label
axes[i, 0].text(
-0.08,
0.5,
f"Patch {i + 1}",
transform=axes[i, 0].transAxes,
fontsize=12,
va="center",
ha="right",
)
plt.subplots_adjust(left=0.06)
plt.tight_layout()
plt.show()
|