File size: 8,685 Bytes
caf6ee7
 
906fcb9
 
caf6ee7
 
37d4614
caf6ee7
37d4614
 
906fcb9
 
caf6ee7
a4ef78c
 
caf6ee7
a4ef78c
 
 
caf6ee7
a4ef78c
906fcb9
 
caf6ee7
 
 
 
 
 
 
1baebae
906fcb9
 
 
 
 
1baebae
 
906fcb9
caf6ee7
 
 
 
 
1baebae
 
906fcb9
 
1baebae
 
 
 
 
 
906fcb9
1baebae
 
 
906fcb9
caf6ee7
906fcb9
 
 
 
 
 
 
 
1baebae
caf6ee7
906fcb9
 
 
 
 
 
 
 
 
 
 
 
1baebae
906fcb9
caf6ee7
906fcb9
 
 
 
 
caf6ee7
906fcb9
 
 
1baebae
906fcb9
a4ef78c
 
 
caf6ee7
 
 
 
1baebae
 
 
 
 
 
 
 
caf6ee7
1baebae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4ef78c
 
 
 
1baebae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4ef78c
 
 
 
caf6ee7
a4ef78c
 
1baebae
 
caf6ee7
1baebae
 
 
a4ef78c
 
 
 
 
 
8c2b158
1baebae
 
a4ef78c
37d4614
7efd22b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caf6ee7
7efd22b
 
37d4614
7efd22b
caf6ee7
7efd22b
 
 
caf6ee7
7efd22b
37d4614
7efd22b
 
37d4614
7efd22b
 
a4ef78c
7efd22b
 
37d4614
 
7efd22b
 
 
37d4614
 
 
 
7efd22b
a4ef78c
37d4614
caf6ee7
7efd22b
 
37d4614
 
 
7efd22b
 
37d4614
 
7efd22b
 
 
a4ef78c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import argparse
import logging
import os
import sys
from pathlib import Path
from typing import Any, Union

import cv2
import matplotlib.patches as patches
import matplotlib.pyplot as plt
import numpy as np
import torch
from monai.data import Dataset
from monai.transforms import (
    Compose,
    EnsureTyped,
    LoadImaged,
    ToTensord,
)

from .data.custom_transforms import ClipMaskIntensityPercentilesd, NormalizeIntensity_customd


def save_pirads_checkpoint(
    model: torch.nn.Module,
    epoch: int,
    args: argparse.Namespace,
    filename: str = "model.pth",
    best_acc: float = 0,
) -> None:
    """Save checkpoint for the PI-RADS model"""

    state_dict = model.state_dict()
    save_dict = {"epoch": epoch, "best_acc": best_acc, "state_dict": state_dict}
    filename = os.path.join(args.logdir, filename)
    torch.save(save_dict, filename)
    logging.info(f"Saving checkpoint {filename}")


def save_cspca_checkpoint(
    model: torch.nn.Module,
    val_metric: dict[str, Any],
    model_dir: str,
) -> None:
    """Save checkpoint for the csPCa model"""

    state_dict = model.state_dict()
    save_dict = {
        "epoch": val_metric["epoch"],
        "loss": val_metric["loss"],
        "auc": val_metric["auc"],
        "sensitivity": val_metric["sensitivity"],
        "specificity": val_metric["specificity"],
        "state_dict": state_dict,
    }
    torch.save(save_dict, os.path.join(model_dir, "cspca_model.pth"))
    logging.info(f"Saving model with auc: {val_metric['auc']}")


def get_metrics(metric_dict: dict) -> None:
    for metric_name, metric_list in metric_dict.items():
        metric_list = np.array(metric_list)
        lower = np.percentile(metric_list, 2.5)
        upper = np.percentile(metric_list, 97.5)
        mean_metric = np.mean(metric_list)
        logging.info(f"Mean {metric_name}: {mean_metric:.3f}")
        logging.info(f"95% CI: ({lower:.3f}, {upper:.3f})")


def setup_logging(log_file: Union[str, Path]) -> None:
    log_file = Path(log_file)
    log_file.parent.mkdir(parents=True, exist_ok=True)
    if log_file.exists():
        log_file.write_text("")  # overwrite with empty string
    logging.basicConfig(
        level=logging.INFO,
        format="%(asctime)s | %(levelname)s | %(message)s",
        handlers=[
            logging.FileHandler(log_file),
        ],
    )


def validate_steps(steps):
    requires = {
        "get_segmentation_mask": ["register_and_crop"],
        "histogram_match": ["get_segmentation_mask", "register_and_crop"],
        "get_heatmap": ["get_segmentation_mask", "histogram_match", "register_and_crop"],
    }
    for i, step in enumerate(steps):
        required = requires.get(step, [])
        for req in required:
            if req not in steps[:i]:
                logging.error(
                    f"Step '{step}' requires '{req}' to be executed before it. Given order: {steps}"
                )
                sys.exit(1)


def get_patch_coordinate(
    patches_top_5: list[np.ndarray],
    parent_image: np.ndarray,
) -> list[tuple[int, int, int]]:
    """
    Locate the coordinates of top-5 patches within a parent image.

    This function searches for the spatial location of the first slice (j=0) of each
    top-5 patch within the parent 3D image volume. It returns the top-left corner
    coordinates (row, column) and the slice index where each patch is found.

    Args:
        patches_top_5 (list): List of top-5 patches as np arrays, each with shape (C, H, W)
                             where C is channels, H is height, W is width.
        parent_image (np.ndarray): 3D image volume with shape (height, width, slices)
                                   to search within.
        args: Configuration arguments (currently unused in the function).

    Returns:
        list: List of tuples (row, col, slice_idx) representing the top-left corner
              coordinates of each found patch in the parent image. Returns empty list
              if no patches are found.

    Note:
        - Only searches for the first slice (j=0) of each patch.
        - Uses exhaustive 2D spatial matching within each slice of the parent image.
        - Returns coordinates of the first match found for each patch.
    """

    sample = np.array([i.transpose(1, 2, 0) for i in patches_top_5])
    coords = []
    rows, h, w, slices = sample.shape

    for i in range(rows):
        template = sample[i, :, :, 0].astype(np.float32)
        found = False
        for k in list(range(parent_image.shape[2])):
            img_slice = parent_image[:, :, k].astype(np.float32)
            res = cv2.matchTemplate(img_slice, template, cv2.TM_CCOEFF_NORMED)
            min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

            if max_val >= 0.99:
                x, y = max_loc  # OpenCV returns (col, row) -> (x, y)

                # 2. Verification Step: Check if it's actually the correct patch
                # This mimics your original np.array_equal strictness
                candidate_patch = img_slice[y : y + h, x : x + w]

                if np.allclose(candidate_patch, template, atol=1e-5):
                    coords.append((y, x, k))  # Original code stored (row, col, slice)
                    found = True
                    break

        if not found:
            print("Patch not found")

    return coords


def get_parent_image(temp_data_list, args: argparse.Namespace) -> np.ndarray:
    transform_image = Compose(
        [
            LoadImaged(
                keys=["image", "mask"],
                reader="ITKReader",
                ensure_channel_first=True,
                dtype=np.float32,
            ),
            ClipMaskIntensityPercentilesd(keys=["image"], lower=0, upper=99.5, mask_key="mask"),
            NormalizeIntensity_customd(keys=["image"], mask_key="mask", channel_wise=True),
            EnsureTyped(keys=["label"], dtype=torch.float32),
            ToTensord(keys=["image", "label"]),
        ]
    )
    dataset_image = Dataset(data=temp_data_list, transform=transform_image)
    return dataset_image[0]["image"][0].numpy()


def visualise_patches(coords, image, tile_size=64, depth=3):
    """
    Visualize 3D image patches with their locations marked by bounding rectangles.
    This function creates a grid of subplot visualizations where each row represents
    a patch and each column represents a slice along the z-axis. Each patch location
    is highlighted with a red rectangle on the corresponding image slice.
    Args:
        coords (list): List of patch coordinates, where each coordinate is a tuple/list
                      of (y, x, z) representing the top-left corner position of the patch.
        image (ndarray): 3D image array of shape (height, width, slices) containing the
                        image data to visualize.
        tile_size (int, optional): Size of the square patch in pixels. Defaults to 64.
        depth (int, optional): Number of consecutive z-slices to display for each patch.
                              Defaults to 3.
    Returns:
        None: Displays the visualization using plt.show(). The slice id is displayed on th etop left corner of the image.
    Raises:
        None
    Example:
        >>> coords = [(10, 20, 5), (50, 60, 10)]
        >>> image = np.random.rand(256, 256, 50)
        >>> visualise_patches(coords, image, tile_size=64, depth=3)
    """

    rows, _, _, slices = (len(coords), tile_size, tile_size, depth)
    fig, axes = plt.subplots(
        nrows=rows, ncols=slices, figsize=(slices * 3, rows * 3), squeeze=False
    )

    for i, x in enumerate(coords):
        for j in range(slices):
            ax = axes[i, j]

            slice_id = x[2] + j
            ax.imshow(image[:, :, slice_id], cmap="gray")

            rect = patches.Rectangle(
                (x[1], x[0]), tile_size, tile_size, linewidth=2, edgecolor="red", facecolor="none"
            )
            ax.add_patch(rect)

            # ---- slice ID text (every image) ----
            ax.text(
                0.02,
                0.98,
                f"z={slice_id}",
                transform=ax.transAxes,
                fontsize=10,
                color="white",
                va="top",
                ha="left",
                bbox=dict(facecolor="black", alpha=0.4, pad=2),
            )

            ax.axis("off")

        # Row label
        axes[i, 0].text(
            -0.08,
            0.5,
            f"Patch {i + 1}",
            transform=axes[i, 0].transAxes,
            fontsize=12,
            va="center",
            ha="right",
        )

    plt.subplots_adjust(left=0.06)
    plt.tight_layout()
    plt.show()