Spaces:
Configuration error
Configuration error
| import gradio as gr | |
| import numpy as np | |
| import pandas as pd | |
| from tensorflow.keras.models import load_model | |
| import joblib | |
| import yfinance as yf | |
| from datetime import datetime, timedelta | |
| import warnings | |
| warnings.filterwarnings('ignore') | |
| try: | |
| lstm_model = load_model('lstm_googl_stock_model.h5') | |
| scaler = joblib.load('scaler.pkl') | |
| except Exception as e: | |
| print(f"Error: {e}") | |
| def predict_stock_price(ticker, days_ahead=30): | |
| try: | |
| end_date = datetime.now() | |
| start_date = end_date - timedelta(days=365) | |
| df = yf.download(ticker, start=start_date, end=end_date, progress=False) | |
| if df.empty or len(df) < 60: | |
| return "Error: Insufficient data", None | |
| data = df[['Close']].values | |
| scaled_data = scaler.transform(data) | |
| lookback = 60 | |
| predictions = [] | |
| current_sequence = scaled_data[-lookback:].reshape(lookback, 1) | |
| for _ in range(days_ahead): | |
| pred_scaled = lstm_model.predict(current_sequence.reshape(1, lookback, 1), verbose=0) | |
| predictions.append(pred_scaled[0, 0]) | |
| current_sequence = np.append(current_sequence[1:], pred_scaled).reshape(lookback, 1) | |
| predictions_array = np.array(predictions).reshape(-1, 1) | |
| predictions_actual = scaler.inverse_transform(predictions_array) | |
| future_dates = pd.date_range(start=end_date + timedelta(days=1), periods=days_ahead) | |
| results = pd.DataFrame({'Date': future_dates.strftime('%Y-%m-%d'), 'Predicted Price': predictions_actual.flatten().round(2)}) | |
| last_price = data[-1][0] | |
| avg_prediction = predictions_actual.mean() | |
| change_pct = ((avg_prediction - last_price) / last_price * 100) | |
| summary = f"Stock: {ticker}\nCurrent: ${last_price:.2f}\nPredicted: ${avg_prediction:.2f}\nChange: {change_pct:+.2f}%" | |
| return summary, results | |
| except Exception as e: | |
| return f"Error: {e}", None | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Stock Price Forecasting") | |
| with gr.Row(): | |
| with gr.Column(): | |
| ticker_input = gr.Textbox(label="Stock Ticker", value="GOOGL") | |
| days_slider = gr.Slider(1, 90, 30, label="Days") | |
| predict_btn = gr.Button("Predict") | |
| with gr.Column(): | |
| summary_output = gr.Textbox(label="Summary", lines=5) | |
| table_output = gr.Dataframe(label="Predictions") | |
| predict_btn.click(predict_stock_price, [ticker_input, days_slider], [summary_output, table_output]) | |
| if __name__ == "__main__": | |
| demo.launch() | |