import gradio as gr import numpy as np import pandas as pd from tensorflow.keras.models import load_model import joblib import yfinance as yf from datetime import datetime, timedelta import warnings warnings.filterwarnings('ignore') try: lstm_model = load_model('lstm_googl_stock_model.h5') scaler = joblib.load('scaler.pkl') except Exception as e: print(f"Error: {e}") def predict_stock_price(ticker, days_ahead=30): try: end_date = datetime.now() start_date = end_date - timedelta(days=365) df = yf.download(ticker, start=start_date, end=end_date, progress=False) if df.empty or len(df) < 60: return "Error: Insufficient data", None data = df[['Close']].values scaled_data = scaler.transform(data) lookback = 60 predictions = [] current_sequence = scaled_data[-lookback:].reshape(lookback, 1) for _ in range(days_ahead): pred_scaled = lstm_model.predict(current_sequence.reshape(1, lookback, 1), verbose=0) predictions.append(pred_scaled[0, 0]) current_sequence = np.append(current_sequence[1:], pred_scaled).reshape(lookback, 1) predictions_array = np.array(predictions).reshape(-1, 1) predictions_actual = scaler.inverse_transform(predictions_array) future_dates = pd.date_range(start=end_date + timedelta(days=1), periods=days_ahead) results = pd.DataFrame({'Date': future_dates.strftime('%Y-%m-%d'), 'Predicted Price': predictions_actual.flatten().round(2)}) last_price = data[-1][0] avg_prediction = predictions_actual.mean() change_pct = ((avg_prediction - last_price) / last_price * 100) summary = f"Stock: {ticker}\nCurrent: ${last_price:.2f}\nPredicted: ${avg_prediction:.2f}\nChange: {change_pct:+.2f}%" return summary, results except Exception as e: return f"Error: {e}", None with gr.Blocks() as demo: gr.Markdown("# Stock Price Forecasting") with gr.Row(): with gr.Column(): ticker_input = gr.Textbox(label="Stock Ticker", value="GOOGL") days_slider = gr.Slider(1, 90, 30, label="Days") predict_btn = gr.Button("Predict") with gr.Column(): summary_output = gr.Textbox(label="Summary", lines=5) table_output = gr.Dataframe(label="Predictions") predict_btn.click(predict_stock_price, [ticker_input, days_slider], [summary_output, table_output]) if __name__ == "__main__": demo.launch()