SPARKNET / src /workflow /langgraph_workflow.py
MHamdan's picture
Initial commit: SPARKNET framework
a9dc537
"""
LangGraph Workflow for SPARKNET
Implements cyclic multi-agent workflows with StateGraph
"""
from typing import Literal, Dict, Any, Optional
from datetime import datetime
from loguru import logger
from langgraph.graph import StateGraph, END
from langgraph.checkpoint.memory import MemorySaver
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
from .langgraph_state import (
AgentState,
ScenarioType,
TaskStatus,
WorkflowOutput,
create_initial_state,
state_to_output,
)
from ..llm.langchain_ollama_client import LangChainOllamaClient
class SparknetWorkflow:
"""
LangGraph-powered workflow orchestrator for SPARKNET.
Implements cyclic workflow with conditional routing:
START → PLANNER → ROUTER → [scenario executors] → CRITIC
↑ ↓
└────────── REFINE ←──────────────────────┘
"""
def __init__(
self,
llm_client: LangChainOllamaClient,
planner_agent: Optional[Any] = None,
critic_agent: Optional[Any] = None,
memory_agent: Optional[Any] = None,
vision_ocr_agent: Optional[Any] = None,
quality_threshold: float = 0.85,
max_iterations: int = 3,
):
self.llm_client = llm_client
self.planner_agent = planner_agent
self.critic_agent = critic_agent
self.memory_agent = memory_agent
self.vision_ocr_agent = vision_ocr_agent
self.quality_threshold = quality_threshold
self.max_iterations = max_iterations
self.graph = self._build_graph()
self.checkpointer = MemorySaver()
self.app = self.graph.compile(checkpointer=self.checkpointer)
if vision_ocr_agent:
logger.info("Initialized SparknetWorkflow with LangGraph StateGraph and VisionOCR support")
else:
logger.info("Initialized SparknetWorkflow with LangGraph StateGraph")
def _build_graph(self) -> StateGraph:
workflow = StateGraph(AgentState)
workflow.add_node("planner", self._planner_node)
workflow.add_node("router", self._router_node)
workflow.add_node("executor", self._executor_node)
workflow.add_node("critic", self._critic_node)
workflow.add_node("refine", self._refine_node)
workflow.add_node("finish", self._finish_node)
workflow.set_entry_point("planner")
workflow.add_edge("planner", "router")
workflow.add_edge("router", "executor")
workflow.add_edge("executor", "critic")
workflow.add_conditional_edges(
"critic",
self._should_refine,
{
"refine": "refine",
"finish": "finish",
}
)
workflow.add_edge("refine", "planner")
workflow.add_edge("finish", END)
return workflow
async def _planner_node(self, state: AgentState) -> AgentState:
logger.info(f"PLANNER node processing task: {state['task_id']}")
state["status"] = TaskStatus.PLANNING
state["current_agent"] = "PlannerAgent"
# Retrieve relevant context from memory
context_docs = []
if self.memory_agent:
try:
logger.info("Retrieving relevant context from memory...")
context_docs = await self.memory_agent.retrieve_relevant_context(
query=state["task_description"],
context_type="all",
top_k=3,
scenario_filter=state["scenario"],
min_quality_score=0.8
)
if context_docs:
logger.info(f"Retrieved {len(context_docs)} relevant memories")
# Add context to state for reference
state["agent_outputs"]["memory_context"] = [
{"content": doc.page_content, "metadata": doc.metadata}
for doc in context_docs
]
except Exception as e:
logger.warning(f"Memory retrieval failed: {e}")
system_msg = SystemMessage(content="Decompose the task into executable subtasks.")
# Add memory context to user message if available
context_text = ""
if context_docs:
context_text = "\n\nRelevant past experiences:\n"
for i, doc in enumerate(context_docs, 1):
context_text += f"\n{i}. {doc.page_content[:200]}..."
user_msg = HumanMessage(
content=f"Task: {state['task_description']}\nScenario: {state['scenario']}{context_text}"
)
llm = self.llm_client.get_llm(complexity="complex")
if self.planner_agent:
from ..agents.base_agent import Task
task = Task(
id=state["task_id"],
description=state["task_description"],
metadata={"scenario": state["scenario"].value}
)
result_task = await self.planner_agent.process_task(task)
if result_task.status == "completed":
state["subtasks"] = [
{
"id": st.id,
"description": st.description,
"agent_type": st.agent_type,
"dependencies": st.dependencies,
}
for st in result_task.result["task_graph"].subtasks.values()
]
state["execution_order"] = result_task.result["execution_order"]
response_msg = AIMessage(content=f"Created plan with {len(state['subtasks'])} subtasks")
state["messages"].append(response_msg)
else:
response = await llm.ainvoke([system_msg, user_msg])
state["messages"].append(response)
state["subtasks"] = [
{"id": "subtask_1", "description": "Execute primary task", "agent_type": "ExecutorAgent", "dependencies": []}
]
state["execution_order"] = [["subtask_1"]]
logger.info(f"Planning completed: {len(state.get('subtasks', []))} subtasks created")
return state
async def _router_node(self, state: AgentState) -> AgentState:
logger.info(f"ROUTER node routing for scenario: {state['scenario']}")
state["current_agent"] = "Router"
scenario = state["scenario"]
routing_msg = AIMessage(content=f"Routing to {scenario.value} workflow agents")
state["messages"].append(routing_msg)
state["agent_outputs"]["router"] = {
"scenario": scenario.value,
"agents_to_use": self._get_scenario_agents(scenario)
}
return state
async def _executor_node(self, state: AgentState) -> AgentState:
logger.info(f"EXECUTOR node executing for scenario: {state['scenario']}")
state["status"] = TaskStatus.EXECUTING
state["current_agent"] = "Executor"
scenario = state["scenario"]
# Route to scenario-specific pipeline
if scenario == ScenarioType.PATENT_WAKEUP:
logger.info("🎯 Routing to Patent Wake-Up pipeline")
return await self._execute_patent_wakeup(state)
# Generic execution for other scenarios
agents = self._get_scenario_agents(scenario)
# Get scenario-specific tools
from ..tools.langchain_tools import get_vista_tools
tools = get_vista_tools(scenario.value)
logger.info(f"Loaded {len(tools)} tools for scenario: {scenario.value}")
# Bind tools to LLM
llm = self.llm_client.get_llm(complexity="standard")
llm_with_tools = llm.bind_tools(tools)
# Build execution prompt with tool information
tool_descriptions = "\n".join([f"- {tool.name}: {tool.description}" for tool in tools])
execution_prompt = HumanMessage(
content=f"""Execute the following task using the available tools when needed:
Task: {state['task_description']}
Scenario: {scenario.value}
Available tools:
{tool_descriptions}
Provide detailed results."""
)
# Execute with tool support
response = await llm_with_tools.ainvoke([execution_prompt])
state["messages"].append(response)
# Check if tools were called
tool_calls = []
if hasattr(response, 'tool_calls') and response.tool_calls:
logger.info(f"LLM requested {len(response.tool_calls)} tool calls")
for tool_call in response.tool_calls:
tool_name = tool_call.get('name', 'unknown')
tool_calls.append(tool_name)
logger.info(f"Tool called: {tool_name}")
state["agent_outputs"]["executor"] = {
"result": response.content,
"agents_used": agents,
"tools_available": [tool.name for tool in tools],
"tools_called": tool_calls,
}
state["final_output"] = response.content
logger.info("Execution completed")
return state
async def _execute_patent_wakeup(self, state: AgentState) -> AgentState:
"""
Execute Patent Wake-Up scenario pipeline.
Sequential execution: Document → Market → Matchmaking → Outreach
"""
logger.info("🚀 Executing Patent Wake-Up pipeline")
# Import scenario1 agents
from ..agents.scenario1 import (
DocumentAnalysisAgent,
MarketAnalysisAgent,
MatchmakingAgent,
OutreachAgent
)
# Get patent path from task description or metadata
# For demo, we'll use a mock patent
patent_path = state.get("input_data", {}).get("patent_path", "mock_patent.txt")
try:
# STEP 1: Document Analysis
logger.info("📄 Step 1/4: Analyzing patent document...")
doc_agent = DocumentAnalysisAgent(
llm_client=self.llm_client,
memory_agent=self.memory_agent,
vision_ocr_agent=self.vision_ocr_agent
)
patent_analysis = await doc_agent.analyze_patent(patent_path)
state["agent_outputs"]["document_analysis"] = patent_analysis.model_dump()
logger.success(f"✅ Patent analyzed: {patent_analysis.title}")
# STEP 2: Market Analysis
logger.info("📊 Step 2/4: Analyzing market opportunities...")
market_agent = MarketAnalysisAgent(
llm_client=self.llm_client,
memory_agent=self.memory_agent
)
market_analysis = await market_agent.analyze_market(patent_analysis)
state["agent_outputs"]["market_analysis"] = market_analysis.model_dump()
logger.success(f"✅ Market analyzed: {len(market_analysis.opportunities)} opportunities")
# STEP 3: Stakeholder Matching
logger.info("🤝 Step 3/4: Finding potential partners...")
matching_agent = MatchmakingAgent(
llm_client=self.llm_client,
memory_agent=self.memory_agent
)
matches = await matching_agent.find_matches(
patent_analysis,
market_analysis,
max_matches=10
)
state["agent_outputs"]["matches"] = [m.model_dump() for m in matches]
logger.success(f"✅ Found {len(matches)} potential partners")
# STEP 4: Generate Valorization Brief
logger.info("📝 Step 4/4: Creating valorization brief...")
outreach_agent = OutreachAgent(
llm_client=self.llm_client,
memory_agent=self.memory_agent
)
brief = await outreach_agent.create_valorization_brief(
patent_analysis,
market_analysis,
matches
)
state["agent_outputs"]["brief"] = brief.model_dump()
state["final_output"] = brief.content
logger.success(f"✅ Brief created: {brief.pdf_path}")
# Set overall execution result
state["agent_outputs"]["executor"] = {
"result": f"Patent Wake-Up workflow completed successfully",
"patent_title": patent_analysis.title,
"opportunities_found": len(market_analysis.opportunities),
"matches_found": len(matches),
"brief_path": brief.pdf_path,
"agents_used": ["DocumentAnalysisAgent", "MarketAnalysisAgent",
"MatchmakingAgent", "OutreachAgent"],
}
logger.success("✅ Patent Wake-Up pipeline completed successfully!")
except Exception as e:
logger.error(f"Patent Wake-Up pipeline failed: {e}")
state["agent_outputs"]["executor"] = {
"result": f"Pipeline failed: {str(e)}",
"error": str(e),
"agents_used": [],
}
state["final_output"] = f"Error: {str(e)}"
return state
async def _critic_node(self, state: AgentState) -> AgentState:
logger.info(f"CRITIC node validating output")
state["status"] = TaskStatus.VALIDATING
state["current_agent"] = "CriticAgent"
if self.critic_agent:
from ..agents.base_agent import Task
task = Task(
id=state["task_id"],
description=state["task_description"],
metadata={
"output_to_validate": state["final_output"],
"output_type": self._get_output_type(state["scenario"])
}
)
result_task = await self.critic_agent.process_task(task)
if result_task.status == "completed":
validation = result_task.result
state["validation_score"] = validation.overall_score
state["validation_feedback"] = self.critic_agent.get_feedback_for_iteration(validation)
state["validation_issues"] = validation.issues
state["validation_suggestions"] = validation.suggestions
feedback_msg = AIMessage(
content=f"Validation score: {validation.overall_score:.2f}\n{state['validation_feedback']}"
)
state["messages"].append(feedback_msg)
else:
llm = self.llm_client.get_llm(complexity="analysis")
validation_prompt = HumanMessage(
content=f"Validate the following output:\n\n{state['final_output']}\n\nProvide a quality score (0.0-1.0) and feedback."
)
response = await llm.ainvoke([validation_prompt])
state["messages"].append(response)
state["validation_score"] = 0.90
state["validation_feedback"] = response.content
state["validation_issues"] = []
state["validation_suggestions"] = []
logger.info(f"Validation completed: score={state['validation_score']:.2f}")
return state
async def _refine_node(self, state: AgentState) -> AgentState:
logger.info(f"REFINE node preparing for iteration {state['iteration_count'] + 1}")
state["status"] = TaskStatus.REFINING
state["current_agent"] = "Refiner"
state["iteration_count"] += 1
refine_msg = HumanMessage(
content=f"Iteration {state['iteration_count']}: Address the following issues:\n{state['validation_feedback']}"
)
state["messages"].append(refine_msg)
state["intermediate_results"].append({
"iteration": state["iteration_count"] - 1,
"output": state["final_output"],
"score": state["validation_score"],
"feedback": state["validation_feedback"],
})
logger.info(f"Refinement prepared for iteration {state['iteration_count']}")
return state
async def _finish_node(self, state: AgentState) -> AgentState:
logger.info(f"FINISH node completing workflow")
state["status"] = TaskStatus.COMPLETED
state["current_agent"] = None
state["success"] = True
state["end_time"] = datetime.now()
state["execution_time_seconds"] = (state["end_time"] - state["start_time"]).total_seconds()
# Store episode in memory for future learning
if self.memory_agent and state.get("validation_score", 0) >= 0.75:
try:
logger.info("Storing episode in memory...")
await self.memory_agent.store_episode(
task_id=state["task_id"],
task_description=state["task_description"],
scenario=state["scenario"],
workflow_steps=state.get("subtasks", []),
outcome={
"final_output": state["final_output"],
"validation_score": state.get("validation_score", 0),
"success": state["success"],
"tools_used": state.get("agent_outputs", {}).get("executor", {}).get("tools_called", []),
},
quality_score=state.get("validation_score", 0),
execution_time=state["execution_time_seconds"],
iterations_used=state.get("iteration_count", 0),
)
logger.info(f"Episode stored: {state['task_id']}")
except Exception as e:
logger.warning(f"Failed to store episode: {e}")
completion_msg = AIMessage(
content=f"Workflow completed successfully in {state['execution_time_seconds']:.2f}s"
)
state["messages"].append(completion_msg)
logger.info(f"Workflow completed: {state['task_id']}")
return state
def _should_refine(self, state: AgentState) -> Literal["refine", "finish"]:
score = state.get("validation_score", 0.0)
iterations = state.get("iteration_count", 0)
if score >= self.quality_threshold:
logger.info(f"Quality threshold met ({score:.2f} >= {self.quality_threshold}), finishing")
return "finish"
if iterations >= state.get("max_iterations", self.max_iterations):
logger.warning(f"Max iterations reached ({iterations}), finishing anyway")
return "finish"
logger.info(f"Refining (score={score:.2f}, iteration={iterations})")
return "refine"
def _get_scenario_agents(self, scenario: ScenarioType) -> list:
scenario_map = {
ScenarioType.PATENT_WAKEUP: ["DocumentAnalysisAgent", "MarketAnalysisAgent", "MatchmakingAgent", "OutreachAgent"],
ScenarioType.AGREEMENT_SAFETY: ["LegalAnalysisAgent", "ComplianceAgent", "RiskAssessmentAgent", "RecommendationAgent"],
ScenarioType.PARTNER_MATCHING: ["ProfilingAgent", "SemanticMatchingAgent", "NetworkAnalysisAgent", "ConnectionFacilitatorAgent"],
ScenarioType.GENERAL: ["ExecutorAgent"]
}
return scenario_map.get(scenario, ["ExecutorAgent"])
def _get_output_type(self, scenario: ScenarioType) -> str:
type_map = {
ScenarioType.PATENT_WAKEUP: "patent_analysis",
ScenarioType.AGREEMENT_SAFETY: "legal_review",
ScenarioType.PARTNER_MATCHING: "stakeholder_matching",
ScenarioType.GENERAL: "general"
}
return type_map.get(scenario, "general")
async def run(
self,
task_description: str,
scenario: ScenarioType = ScenarioType.GENERAL,
task_id: Optional[str] = None,
input_data: Optional[Dict[str, Any]] = None,
config: Optional[Dict[str, Any]] = None,
) -> WorkflowOutput:
if task_id is None:
task_id = f"task_{hash(task_description) % 100000}"
initial_state = create_initial_state(
task_id=task_id,
task_description=task_description,
scenario=scenario,
max_iterations=self.max_iterations,
input_data=input_data,
)
logger.info(f"Starting workflow for task: {task_id}")
try:
final_state = await self.app.ainvoke(
initial_state,
config=config or {"configurable": {"thread_id": task_id}}
)
output = state_to_output(final_state)
logger.info(f"Workflow completed successfully: {task_id}")
return output
except Exception as e:
logger.error(f"Workflow failed: {e}")
initial_state["status"] = TaskStatus.FAILED
initial_state["success"] = False
initial_state["error"] = str(e)
initial_state["end_time"] = datetime.now()
return state_to_output(initial_state)
async def stream(
self,
task_description: str,
scenario: ScenarioType = ScenarioType.GENERAL,
task_id: Optional[str] = None,
config: Optional[Dict[str, Any]] = None,
):
if task_id is None:
task_id = f"task_{hash(task_description) % 100000}"
initial_state = create_initial_state(
task_id=task_id,
task_description=task_description,
scenario=scenario,
max_iterations=self.max_iterations,
)
async for event in self.app.astream(
initial_state,
config=config or {"configurable": {"thread_id": task_id}}
):
yield event
def create_workflow(
llm_client: LangChainOllamaClient,
planner_agent: Optional[Any] = None,
critic_agent: Optional[Any] = None,
memory_agent: Optional[Any] = None,
vision_ocr_agent: Optional[Any] = None,
quality_threshold: float = 0.85,
max_iterations: int = 3,
) -> SparknetWorkflow:
return SparknetWorkflow(
llm_client=llm_client,
planner_agent=planner_agent,
critic_agent=critic_agent,
memory_agent=memory_agent,
vision_ocr_agent=vision_ocr_agent,
quality_threshold=quality_threshold,
max_iterations=max_iterations,
)