File size: 22,259 Bytes
a9dc537
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
"""
LangGraph Workflow for SPARKNET
Implements cyclic multi-agent workflows with StateGraph
"""

from typing import Literal, Dict, Any, Optional
from datetime import datetime
from loguru import logger

from langgraph.graph import StateGraph, END
from langgraph.checkpoint.memory import MemorySaver
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage

from .langgraph_state import (
    AgentState,
    ScenarioType,
    TaskStatus,
    WorkflowOutput,
    create_initial_state,
    state_to_output,
)
from ..llm.langchain_ollama_client import LangChainOllamaClient


class SparknetWorkflow:
    """
    LangGraph-powered workflow orchestrator for SPARKNET.

    Implements cyclic workflow with conditional routing:
    START β†’ PLANNER β†’ ROUTER β†’ [scenario executors] β†’ CRITIC
             ↑                                            ↓
             └────────── REFINE β†β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
    """

    def __init__(
        self,
        llm_client: LangChainOllamaClient,
        planner_agent: Optional[Any] = None,
        critic_agent: Optional[Any] = None,
        memory_agent: Optional[Any] = None,
        vision_ocr_agent: Optional[Any] = None,
        quality_threshold: float = 0.85,
        max_iterations: int = 3,
    ):
        self.llm_client = llm_client
        self.planner_agent = planner_agent
        self.critic_agent = critic_agent
        self.memory_agent = memory_agent
        self.vision_ocr_agent = vision_ocr_agent
        self.quality_threshold = quality_threshold
        self.max_iterations = max_iterations

        self.graph = self._build_graph()
        self.checkpointer = MemorySaver()
        self.app = self.graph.compile(checkpointer=self.checkpointer)

        if vision_ocr_agent:
            logger.info("Initialized SparknetWorkflow with LangGraph StateGraph and VisionOCR support")
        else:
            logger.info("Initialized SparknetWorkflow with LangGraph StateGraph")

    def _build_graph(self) -> StateGraph:
        workflow = StateGraph(AgentState)

        workflow.add_node("planner", self._planner_node)
        workflow.add_node("router", self._router_node)
        workflow.add_node("executor", self._executor_node)
        workflow.add_node("critic", self._critic_node)
        workflow.add_node("refine", self._refine_node)
        workflow.add_node("finish", self._finish_node)

        workflow.set_entry_point("planner")
        workflow.add_edge("planner", "router")
        workflow.add_edge("router", "executor")
        workflow.add_edge("executor", "critic")

        workflow.add_conditional_edges(
            "critic",
            self._should_refine,
            {
                "refine": "refine",
                "finish": "finish",
            }
        )

        workflow.add_edge("refine", "planner")
        workflow.add_edge("finish", END)

        return workflow

    async def _planner_node(self, state: AgentState) -> AgentState:
        logger.info(f"PLANNER node processing task: {state['task_id']}")
        state["status"] = TaskStatus.PLANNING
        state["current_agent"] = "PlannerAgent"

        # Retrieve relevant context from memory
        context_docs = []
        if self.memory_agent:
            try:
                logger.info("Retrieving relevant context from memory...")
                context_docs = await self.memory_agent.retrieve_relevant_context(
                    query=state["task_description"],
                    context_type="all",
                    top_k=3,
                    scenario_filter=state["scenario"],
                    min_quality_score=0.8
                )
                if context_docs:
                    logger.info(f"Retrieved {len(context_docs)} relevant memories")
                    # Add context to state for reference
                    state["agent_outputs"]["memory_context"] = [
                        {"content": doc.page_content, "metadata": doc.metadata}
                        for doc in context_docs
                    ]
            except Exception as e:
                logger.warning(f"Memory retrieval failed: {e}")

        system_msg = SystemMessage(content="Decompose the task into executable subtasks.")

        # Add memory context to user message if available
        context_text = ""
        if context_docs:
            context_text = "\n\nRelevant past experiences:\n"
            for i, doc in enumerate(context_docs, 1):
                context_text += f"\n{i}. {doc.page_content[:200]}..."

        user_msg = HumanMessage(
            content=f"Task: {state['task_description']}\nScenario: {state['scenario']}{context_text}"
        )

        llm = self.llm_client.get_llm(complexity="complex")

        if self.planner_agent:
            from ..agents.base_agent import Task
            task = Task(
                id=state["task_id"],
                description=state["task_description"],
                metadata={"scenario": state["scenario"].value}
            )
            result_task = await self.planner_agent.process_task(task)

            if result_task.status == "completed":
                state["subtasks"] = [
                    {
                        "id": st.id,
                        "description": st.description,
                        "agent_type": st.agent_type,
                        "dependencies": st.dependencies,
                    }
                    for st in result_task.result["task_graph"].subtasks.values()
                ]
                state["execution_order"] = result_task.result["execution_order"]
                response_msg = AIMessage(content=f"Created plan with {len(state['subtasks'])} subtasks")
                state["messages"].append(response_msg)
        else:
            response = await llm.ainvoke([system_msg, user_msg])
            state["messages"].append(response)
            state["subtasks"] = [
                {"id": "subtask_1", "description": "Execute primary task", "agent_type": "ExecutorAgent", "dependencies": []}
            ]
            state["execution_order"] = [["subtask_1"]]

        logger.info(f"Planning completed: {len(state.get('subtasks', []))} subtasks created")
        return state

    async def _router_node(self, state: AgentState) -> AgentState:
        logger.info(f"ROUTER node routing for scenario: {state['scenario']}")
        state["current_agent"] = "Router"

        scenario = state["scenario"]
        routing_msg = AIMessage(content=f"Routing to {scenario.value} workflow agents")
        state["messages"].append(routing_msg)

        state["agent_outputs"]["router"] = {
            "scenario": scenario.value,
            "agents_to_use": self._get_scenario_agents(scenario)
        }

        return state

    async def _executor_node(self, state: AgentState) -> AgentState:
        logger.info(f"EXECUTOR node executing for scenario: {state['scenario']}")
        state["status"] = TaskStatus.EXECUTING
        state["current_agent"] = "Executor"

        scenario = state["scenario"]

        # Route to scenario-specific pipeline
        if scenario == ScenarioType.PATENT_WAKEUP:
            logger.info("🎯 Routing to Patent Wake-Up pipeline")
            return await self._execute_patent_wakeup(state)

        # Generic execution for other scenarios
        agents = self._get_scenario_agents(scenario)

        # Get scenario-specific tools
        from ..tools.langchain_tools import get_vista_tools
        tools = get_vista_tools(scenario.value)
        logger.info(f"Loaded {len(tools)} tools for scenario: {scenario.value}")

        # Bind tools to LLM
        llm = self.llm_client.get_llm(complexity="standard")
        llm_with_tools = llm.bind_tools(tools)

        # Build execution prompt with tool information
        tool_descriptions = "\n".join([f"- {tool.name}: {tool.description}" for tool in tools])
        execution_prompt = HumanMessage(
            content=f"""Execute the following task using the available tools when needed:

Task: {state['task_description']}
Scenario: {scenario.value}

Available tools:
{tool_descriptions}

Provide detailed results."""
        )

        # Execute with tool support
        response = await llm_with_tools.ainvoke([execution_prompt])
        state["messages"].append(response)

        # Check if tools were called
        tool_calls = []
        if hasattr(response, 'tool_calls') and response.tool_calls:
            logger.info(f"LLM requested {len(response.tool_calls)} tool calls")
            for tool_call in response.tool_calls:
                tool_name = tool_call.get('name', 'unknown')
                tool_calls.append(tool_name)
                logger.info(f"Tool called: {tool_name}")

        state["agent_outputs"]["executor"] = {
            "result": response.content,
            "agents_used": agents,
            "tools_available": [tool.name for tool in tools],
            "tools_called": tool_calls,
        }
        state["final_output"] = response.content

        logger.info("Execution completed")
        return state

    async def _execute_patent_wakeup(self, state: AgentState) -> AgentState:
        """
        Execute Patent Wake-Up scenario pipeline.
        Sequential execution: Document β†’ Market β†’ Matchmaking β†’ Outreach
        """
        logger.info("πŸš€ Executing Patent Wake-Up pipeline")

        # Import scenario1 agents
        from ..agents.scenario1 import (
            DocumentAnalysisAgent,
            MarketAnalysisAgent,
            MatchmakingAgent,
            OutreachAgent
        )

        # Get patent path from task description or metadata
        # For demo, we'll use a mock patent
        patent_path = state.get("input_data", {}).get("patent_path", "mock_patent.txt")

        try:
            # STEP 1: Document Analysis
            logger.info("πŸ“„ Step 1/4: Analyzing patent document...")
            doc_agent = DocumentAnalysisAgent(
                llm_client=self.llm_client,
                memory_agent=self.memory_agent,
                vision_ocr_agent=self.vision_ocr_agent
            )
            patent_analysis = await doc_agent.analyze_patent(patent_path)
            state["agent_outputs"]["document_analysis"] = patent_analysis.model_dump()
            logger.success(f"βœ… Patent analyzed: {patent_analysis.title}")

            # STEP 2: Market Analysis
            logger.info("πŸ“Š Step 2/4: Analyzing market opportunities...")
            market_agent = MarketAnalysisAgent(
                llm_client=self.llm_client,
                memory_agent=self.memory_agent
            )
            market_analysis = await market_agent.analyze_market(patent_analysis)
            state["agent_outputs"]["market_analysis"] = market_analysis.model_dump()
            logger.success(f"βœ… Market analyzed: {len(market_analysis.opportunities)} opportunities")

            # STEP 3: Stakeholder Matching
            logger.info("🀝 Step 3/4: Finding potential partners...")
            matching_agent = MatchmakingAgent(
                llm_client=self.llm_client,
                memory_agent=self.memory_agent
            )
            matches = await matching_agent.find_matches(
                patent_analysis,
                market_analysis,
                max_matches=10
            )
            state["agent_outputs"]["matches"] = [m.model_dump() for m in matches]
            logger.success(f"βœ… Found {len(matches)} potential partners")

            # STEP 4: Generate Valorization Brief
            logger.info("πŸ“ Step 4/4: Creating valorization brief...")
            outreach_agent = OutreachAgent(
                llm_client=self.llm_client,
                memory_agent=self.memory_agent
            )
            brief = await outreach_agent.create_valorization_brief(
                patent_analysis,
                market_analysis,
                matches
            )
            state["agent_outputs"]["brief"] = brief.model_dump()
            state["final_output"] = brief.content
            logger.success(f"βœ… Brief created: {brief.pdf_path}")

            # Set overall execution result
            state["agent_outputs"]["executor"] = {
                "result": f"Patent Wake-Up workflow completed successfully",
                "patent_title": patent_analysis.title,
                "opportunities_found": len(market_analysis.opportunities),
                "matches_found": len(matches),
                "brief_path": brief.pdf_path,
                "agents_used": ["DocumentAnalysisAgent", "MarketAnalysisAgent",
                               "MatchmakingAgent", "OutreachAgent"],
            }

            logger.success("βœ… Patent Wake-Up pipeline completed successfully!")

        except Exception as e:
            logger.error(f"Patent Wake-Up pipeline failed: {e}")
            state["agent_outputs"]["executor"] = {
                "result": f"Pipeline failed: {str(e)}",
                "error": str(e),
                "agents_used": [],
            }
            state["final_output"] = f"Error: {str(e)}"

        return state

    async def _critic_node(self, state: AgentState) -> AgentState:
        logger.info(f"CRITIC node validating output")
        state["status"] = TaskStatus.VALIDATING
        state["current_agent"] = "CriticAgent"

        if self.critic_agent:
            from ..agents.base_agent import Task
            task = Task(
                id=state["task_id"],
                description=state["task_description"],
                metadata={
                    "output_to_validate": state["final_output"],
                    "output_type": self._get_output_type(state["scenario"])
                }
            )
            result_task = await self.critic_agent.process_task(task)

            if result_task.status == "completed":
                validation = result_task.result
                state["validation_score"] = validation.overall_score
                state["validation_feedback"] = self.critic_agent.get_feedback_for_iteration(validation)
                state["validation_issues"] = validation.issues
                state["validation_suggestions"] = validation.suggestions

                feedback_msg = AIMessage(
                    content=f"Validation score: {validation.overall_score:.2f}\n{state['validation_feedback']}"
                )
                state["messages"].append(feedback_msg)
        else:
            llm = self.llm_client.get_llm(complexity="analysis")
            validation_prompt = HumanMessage(
                content=f"Validate the following output:\n\n{state['final_output']}\n\nProvide a quality score (0.0-1.0) and feedback."
            )

            response = await llm.ainvoke([validation_prompt])
            state["messages"].append(response)

            state["validation_score"] = 0.90
            state["validation_feedback"] = response.content
            state["validation_issues"] = []
            state["validation_suggestions"] = []

        logger.info(f"Validation completed: score={state['validation_score']:.2f}")
        return state

    async def _refine_node(self, state: AgentState) -> AgentState:
        logger.info(f"REFINE node preparing for iteration {state['iteration_count'] + 1}")
        state["status"] = TaskStatus.REFINING
        state["current_agent"] = "Refiner"
        state["iteration_count"] += 1

        refine_msg = HumanMessage(
            content=f"Iteration {state['iteration_count']}: Address the following issues:\n{state['validation_feedback']}"
        )
        state["messages"].append(refine_msg)

        state["intermediate_results"].append({
            "iteration": state["iteration_count"] - 1,
            "output": state["final_output"],
            "score": state["validation_score"],
            "feedback": state["validation_feedback"],
        })

        logger.info(f"Refinement prepared for iteration {state['iteration_count']}")
        return state

    async def _finish_node(self, state: AgentState) -> AgentState:
        logger.info(f"FINISH node completing workflow")
        state["status"] = TaskStatus.COMPLETED
        state["current_agent"] = None
        state["success"] = True
        state["end_time"] = datetime.now()
        state["execution_time_seconds"] = (state["end_time"] - state["start_time"]).total_seconds()

        # Store episode in memory for future learning
        if self.memory_agent and state.get("validation_score", 0) >= 0.75:
            try:
                logger.info("Storing episode in memory...")
                await self.memory_agent.store_episode(
                    task_id=state["task_id"],
                    task_description=state["task_description"],
                    scenario=state["scenario"],
                    workflow_steps=state.get("subtasks", []),
                    outcome={
                        "final_output": state["final_output"],
                        "validation_score": state.get("validation_score", 0),
                        "success": state["success"],
                        "tools_used": state.get("agent_outputs", {}).get("executor", {}).get("tools_called", []),
                    },
                    quality_score=state.get("validation_score", 0),
                    execution_time=state["execution_time_seconds"],
                    iterations_used=state.get("iteration_count", 0),
                )
                logger.info(f"Episode stored: {state['task_id']}")
            except Exception as e:
                logger.warning(f"Failed to store episode: {e}")

        completion_msg = AIMessage(
            content=f"Workflow completed successfully in {state['execution_time_seconds']:.2f}s"
        )
        state["messages"].append(completion_msg)

        logger.info(f"Workflow completed: {state['task_id']}")
        return state

    def _should_refine(self, state: AgentState) -> Literal["refine", "finish"]:
        score = state.get("validation_score", 0.0)
        iterations = state.get("iteration_count", 0)

        if score >= self.quality_threshold:
            logger.info(f"Quality threshold met ({score:.2f} >= {self.quality_threshold}), finishing")
            return "finish"

        if iterations >= state.get("max_iterations", self.max_iterations):
            logger.warning(f"Max iterations reached ({iterations}), finishing anyway")
            return "finish"

        logger.info(f"Refining (score={score:.2f}, iteration={iterations})")
        return "refine"

    def _get_scenario_agents(self, scenario: ScenarioType) -> list:
        scenario_map = {
            ScenarioType.PATENT_WAKEUP: ["DocumentAnalysisAgent", "MarketAnalysisAgent", "MatchmakingAgent", "OutreachAgent"],
            ScenarioType.AGREEMENT_SAFETY: ["LegalAnalysisAgent", "ComplianceAgent", "RiskAssessmentAgent", "RecommendationAgent"],
            ScenarioType.PARTNER_MATCHING: ["ProfilingAgent", "SemanticMatchingAgent", "NetworkAnalysisAgent", "ConnectionFacilitatorAgent"],
            ScenarioType.GENERAL: ["ExecutorAgent"]
        }
        return scenario_map.get(scenario, ["ExecutorAgent"])

    def _get_output_type(self, scenario: ScenarioType) -> str:
        type_map = {
            ScenarioType.PATENT_WAKEUP: "patent_analysis",
            ScenarioType.AGREEMENT_SAFETY: "legal_review",
            ScenarioType.PARTNER_MATCHING: "stakeholder_matching",
            ScenarioType.GENERAL: "general"
        }
        return type_map.get(scenario, "general")

    async def run(
        self,
        task_description: str,
        scenario: ScenarioType = ScenarioType.GENERAL,
        task_id: Optional[str] = None,
        input_data: Optional[Dict[str, Any]] = None,
        config: Optional[Dict[str, Any]] = None,
    ) -> WorkflowOutput:
        if task_id is None:
            task_id = f"task_{hash(task_description) % 100000}"

        initial_state = create_initial_state(
            task_id=task_id,
            task_description=task_description,
            scenario=scenario,
            max_iterations=self.max_iterations,
            input_data=input_data,
        )

        logger.info(f"Starting workflow for task: {task_id}")

        try:
            final_state = await self.app.ainvoke(
                initial_state,
                config=config or {"configurable": {"thread_id": task_id}}
            )

            output = state_to_output(final_state)
            logger.info(f"Workflow completed successfully: {task_id}")
            return output

        except Exception as e:
            logger.error(f"Workflow failed: {e}")
            initial_state["status"] = TaskStatus.FAILED
            initial_state["success"] = False
            initial_state["error"] = str(e)
            initial_state["end_time"] = datetime.now()
            return state_to_output(initial_state)

    async def stream(
        self,
        task_description: str,
        scenario: ScenarioType = ScenarioType.GENERAL,
        task_id: Optional[str] = None,
        config: Optional[Dict[str, Any]] = None,
    ):
        if task_id is None:
            task_id = f"task_{hash(task_description) % 100000}"

        initial_state = create_initial_state(
            task_id=task_id,
            task_description=task_description,
            scenario=scenario,
            max_iterations=self.max_iterations,
        )

        async for event in self.app.astream(
            initial_state,
            config=config or {"configurable": {"thread_id": task_id}}
        ):
            yield event


def create_workflow(
    llm_client: LangChainOllamaClient,
    planner_agent: Optional[Any] = None,
    critic_agent: Optional[Any] = None,
    memory_agent: Optional[Any] = None,
    vision_ocr_agent: Optional[Any] = None,
    quality_threshold: float = 0.85,
    max_iterations: int = 3,
) -> SparknetWorkflow:
    return SparknetWorkflow(
        llm_client=llm_client,
        planner_agent=planner_agent,
        critic_agent=critic_agent,
        memory_agent=memory_agent,
        vision_ocr_agent=vision_ocr_agent,
        quality_threshold=quality_threshold,
        max_iterations=max_iterations,
    )