MHamdan's picture
Initial commit: SPARKNET framework
d520909
"""
Chart Extraction Model Interface
Abstract interface for chart/graph understanding models.
Extracts data points, axes, legends, and interprets visualizations.
"""
from abc import abstractmethod
from dataclasses import dataclass, field
from enum import Enum
from typing import Any, Dict, List, Optional, Tuple, Union
from ..chunks.models import BoundingBox, ChartChunk, ChartDataPoint
from .base import (
BaseModel,
BatchableModel,
ImageInput,
ModelCapability,
ModelConfig,
)
class ChartType(str, Enum):
"""Types of charts that can be detected."""
# Common charts
BAR = "bar"
LINE = "line"
PIE = "pie"
SCATTER = "scatter"
AREA = "area"
# Advanced charts
HISTOGRAM = "histogram"
BOX_PLOT = "box_plot"
HEATMAP = "heatmap"
TREEMAP = "treemap"
RADAR = "radar"
BUBBLE = "bubble"
WATERFALL = "waterfall"
FUNNEL = "funnel"
GANTT = "gantt"
# Composite
STACKED_BAR = "stacked_bar"
GROUPED_BAR = "grouped_bar"
MULTI_LINE = "multi_line"
COMBO = "combo" # Mixed chart types
# Other
DIAGRAM = "diagram" # Flowcharts, org charts, etc.
UNKNOWN = "unknown"
@dataclass
class ChartConfig(ModelConfig):
"""Configuration for chart extraction models."""
min_confidence: float = 0.5
extract_data_points: bool = True
extract_trends: bool = True
max_data_points: int = 1000
detect_chart_type: bool = True
def __post_init__(self):
super().__post_init__()
if not self.name:
self.name = "chart_extractor"
@dataclass
class AxisInfo:
"""Information about a chart axis."""
label: str = ""
unit: str = ""
min_value: Optional[float] = None
max_value: Optional[float] = None
scale: str = "linear" # "linear", "log", "categorical"
tick_labels: List[str] = field(default_factory=list)
tick_values: List[float] = field(default_factory=list)
is_datetime: bool = False
orientation: str = "horizontal" # "horizontal" or "vertical"
@dataclass
class LegendItem:
"""A single legend entry."""
label: str
color: Optional[str] = None # Hex color if detected
series_index: int = 0
@dataclass
class DataSeries:
"""A data series in a chart."""
name: str
data_points: List[ChartDataPoint] = field(default_factory=list)
color: Optional[str] = None
series_type: Optional[ChartType] = None # For combo charts
@property
def x_values(self) -> List[Any]:
return [p.x for p in self.data_points]
@property
def y_values(self) -> List[Any]:
return [p.y for p in self.data_points]
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary."""
return {
"name": self.name,
"color": self.color,
"series_type": self.series_type.value if self.series_type else None,
"data_points": [
{"x": p.x, "y": p.y, "label": p.label, "value": p.value}
for p in self.data_points
]
}
@dataclass
class TrendInfo:
"""Detected trend in the data."""
description: str # e.g., "Increasing trend from Q1 to Q4"
direction: str = "neutral" # "increasing", "decreasing", "stable", "fluctuating"
start_point: Optional[ChartDataPoint] = None
end_point: Optional[ChartDataPoint] = None
change_percent: Optional[float] = None
confidence: float = 0.0
@dataclass
class ChartStructure:
"""
Complete extracted chart structure.
Contains all detected elements of a chart including
type, axes, data series, legends, and interpretations.
"""
bbox: BoundingBox
chart_type: ChartType = ChartType.UNKNOWN
confidence: float = 0.0
# Title and labels
title: str = ""
subtitle: str = ""
# Axes
x_axis: Optional[AxisInfo] = None
y_axis: Optional[AxisInfo] = None
secondary_y_axis: Optional[AxisInfo] = None
# Data
series: List[DataSeries] = field(default_factory=list)
legend_items: List[LegendItem] = field(default_factory=list)
# Interpretation
key_values: Dict[str, Any] = field(default_factory=dict) # Notable values
trends: List[TrendInfo] = field(default_factory=list)
summary: str = "" # Text description of the chart
# Metadata
chart_id: str = ""
source_text: str = "" # Any text extracted from the chart
def __post_init__(self):
if not self.chart_id:
import hashlib
content = f"chart_{self.chart_type.value}_{self.bbox.xyxy}"
self.chart_id = hashlib.md5(content.encode()).hexdigest()[:12]
@property
def total_data_points(self) -> int:
return sum(len(s.data_points) for s in self.series)
@property
def all_data_points(self) -> List[ChartDataPoint]:
"""Get all data points from all series."""
points = []
for series in self.series:
points.extend(series.data_points)
return points
def get_series_by_name(self, name: str) -> Optional[DataSeries]:
"""Find a series by name."""
for series in self.series:
if series.name.lower() == name.lower():
return series
return None
def to_text_description(self) -> str:
"""Generate a text description of the chart."""
parts = []
if self.title:
parts.append(f"Chart: {self.title}")
else:
parts.append(f"Chart Type: {self.chart_type.value}")
if self.x_axis and self.x_axis.label:
parts.append(f"X-Axis: {self.x_axis.label}")
if self.y_axis and self.y_axis.label:
parts.append(f"Y-Axis: {self.y_axis.label}")
if self.series:
parts.append(f"Series: {', '.join(s.name for s in self.series if s.name)}")
if self.key_values:
kv_str = ", ".join(f"{k}: {v}" for k, v in self.key_values.items())
parts.append(f"Key Values: {kv_str}")
if self.trends:
trend_strs = [t.description for t in self.trends if t.description]
if trend_strs:
parts.append(f"Trends: {'; '.join(trend_strs)}")
return "\n".join(parts)
def to_dict(self) -> Dict[str, Any]:
"""Convert to structured dictionary."""
return {
"chart_type": self.chart_type.value,
"title": self.title,
"x_axis": {
"label": self.x_axis.label if self.x_axis else "",
"unit": self.x_axis.unit if self.x_axis else "",
},
"y_axis": {
"label": self.y_axis.label if self.y_axis else "",
"unit": self.y_axis.unit if self.y_axis else "",
},
"series": [s.to_dict() for s in self.series],
"key_values": self.key_values,
"trends": [
{"description": t.description, "direction": t.direction}
for t in self.trends
],
"summary": self.summary
}
def to_chart_chunk(
self,
doc_id: str,
page: int,
sequence_index: int
) -> ChartChunk:
"""Convert to ChartChunk for the chunks module."""
# Flatten all data points
all_points = self.all_data_points
return ChartChunk(
chunk_id=ChartChunk.generate_chunk_id(
doc_id=doc_id,
page=page,
bbox=self.bbox,
chunk_type_str="chart"
),
doc_id=doc_id,
text=self.to_text_description(),
page=page,
bbox=self.bbox,
confidence=self.confidence,
sequence_index=sequence_index,
chart_type=self.chart_type.value,
title=self.title,
x_axis_label=self.x_axis.label if self.x_axis else None,
y_axis_label=self.y_axis.label if self.y_axis else None,
data_points=all_points,
key_values=self.key_values,
trends=[t.description for t in self.trends]
)
@dataclass
class ChartExtractionResult:
"""Result of chart extraction from a page."""
charts: List[ChartStructure] = field(default_factory=list)
processing_time_ms: float = 0.0
model_metadata: Dict[str, Any] = field(default_factory=dict)
@property
def chart_count(self) -> int:
return len(self.charts)
class ChartModel(BatchableModel):
"""
Abstract base class for chart extraction models.
Implementations should handle:
- Chart type classification
- Axis detection and labeling
- Data point extraction
- Legend parsing
- Trend detection
"""
def __init__(self, config: Optional[ChartConfig] = None):
super().__init__(config or ChartConfig(name="chart"))
self.config: ChartConfig = self.config
def get_capabilities(self) -> List[ModelCapability]:
return [ModelCapability.CHART_EXTRACTION]
@abstractmethod
def extract_chart(
self,
image: ImageInput,
chart_region: Optional[BoundingBox] = None,
**kwargs
) -> ChartStructure:
"""
Extract chart structure from an image.
Args:
image: Input image containing a chart
chart_region: Optional bounding box of the chart
**kwargs: Additional parameters
Returns:
ChartStructure with extracted data
"""
pass
def extract_all_charts(
self,
image: ImageInput,
chart_regions: Optional[List[BoundingBox]] = None,
**kwargs
) -> ChartExtractionResult:
"""
Extract all charts from an image.
Args:
image: Input document image
chart_regions: Optional list of chart bounding boxes
**kwargs: Additional parameters
Returns:
ChartExtractionResult with all detected charts
"""
import time
start_time = time.time()
charts = []
if chart_regions:
for region in chart_regions:
try:
chart = self.extract_chart(image, region, **kwargs)
if chart.chart_type != ChartType.UNKNOWN:
charts.append(chart)
except Exception:
continue
else:
chart = self.extract_chart(image, **kwargs)
if chart.chart_type != ChartType.UNKNOWN:
charts.append(chart)
processing_time = (time.time() - start_time) * 1000
return ChartExtractionResult(
charts=charts,
processing_time_ms=processing_time
)
def process_batch(
self,
inputs: List[ImageInput],
**kwargs
) -> List[ChartExtractionResult]:
"""Process multiple images."""
return [self.extract_all_charts(img, **kwargs) for img in inputs]
@abstractmethod
def classify_chart_type(
self,
image: ImageInput,
chart_region: Optional[BoundingBox] = None,
**kwargs
) -> Tuple[ChartType, float]:
"""
Classify the type of chart in an image.
Args:
image: Input image
chart_region: Optional bounding box
**kwargs: Additional parameters
Returns:
Tuple of (ChartType, confidence)
"""
pass
def detect_trends(
self,
chart: ChartStructure,
**kwargs
) -> List[TrendInfo]:
"""
Analyze chart data for trends.
Default implementation provides basic trend detection.
Override for more sophisticated analysis.
"""
trends = []
for series in chart.series:
if len(series.data_points) < 2:
continue
# Get numeric y-values
y_values = []
for dp in series.data_points:
if dp.y is not None:
try:
y_values.append(float(dp.y))
except (ValueError, TypeError):
continue
if len(y_values) < 2:
continue
# Simple trend detection
first_half_avg = sum(y_values[:len(y_values)//2]) / (len(y_values)//2)
second_half_avg = sum(y_values[len(y_values)//2:]) / (len(y_values) - len(y_values)//2)
if second_half_avg > first_half_avg * 1.1:
direction = "increasing"
elif second_half_avg < first_half_avg * 0.9:
direction = "decreasing"
else:
direction = "stable"
change_pct = ((second_half_avg - first_half_avg) / first_half_avg * 100
if first_half_avg != 0 else 0)
trend = TrendInfo(
description=f"{series.name}: {direction} trend ({change_pct:+.1f}%)",
direction=direction,
start_point=series.data_points[0],
end_point=series.data_points[-1],
change_percent=change_pct,
confidence=0.7
)
trends.append(trend)
return trends