File size: 13,220 Bytes
d520909 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
"""
Chart Extraction Model Interface
Abstract interface for chart/graph understanding models.
Extracts data points, axes, legends, and interprets visualizations.
"""
from abc import abstractmethod
from dataclasses import dataclass, field
from enum import Enum
from typing import Any, Dict, List, Optional, Tuple, Union
from ..chunks.models import BoundingBox, ChartChunk, ChartDataPoint
from .base import (
BaseModel,
BatchableModel,
ImageInput,
ModelCapability,
ModelConfig,
)
class ChartType(str, Enum):
"""Types of charts that can be detected."""
# Common charts
BAR = "bar"
LINE = "line"
PIE = "pie"
SCATTER = "scatter"
AREA = "area"
# Advanced charts
HISTOGRAM = "histogram"
BOX_PLOT = "box_plot"
HEATMAP = "heatmap"
TREEMAP = "treemap"
RADAR = "radar"
BUBBLE = "bubble"
WATERFALL = "waterfall"
FUNNEL = "funnel"
GANTT = "gantt"
# Composite
STACKED_BAR = "stacked_bar"
GROUPED_BAR = "grouped_bar"
MULTI_LINE = "multi_line"
COMBO = "combo" # Mixed chart types
# Other
DIAGRAM = "diagram" # Flowcharts, org charts, etc.
UNKNOWN = "unknown"
@dataclass
class ChartConfig(ModelConfig):
"""Configuration for chart extraction models."""
min_confidence: float = 0.5
extract_data_points: bool = True
extract_trends: bool = True
max_data_points: int = 1000
detect_chart_type: bool = True
def __post_init__(self):
super().__post_init__()
if not self.name:
self.name = "chart_extractor"
@dataclass
class AxisInfo:
"""Information about a chart axis."""
label: str = ""
unit: str = ""
min_value: Optional[float] = None
max_value: Optional[float] = None
scale: str = "linear" # "linear", "log", "categorical"
tick_labels: List[str] = field(default_factory=list)
tick_values: List[float] = field(default_factory=list)
is_datetime: bool = False
orientation: str = "horizontal" # "horizontal" or "vertical"
@dataclass
class LegendItem:
"""A single legend entry."""
label: str
color: Optional[str] = None # Hex color if detected
series_index: int = 0
@dataclass
class DataSeries:
"""A data series in a chart."""
name: str
data_points: List[ChartDataPoint] = field(default_factory=list)
color: Optional[str] = None
series_type: Optional[ChartType] = None # For combo charts
@property
def x_values(self) -> List[Any]:
return [p.x for p in self.data_points]
@property
def y_values(self) -> List[Any]:
return [p.y for p in self.data_points]
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary."""
return {
"name": self.name,
"color": self.color,
"series_type": self.series_type.value if self.series_type else None,
"data_points": [
{"x": p.x, "y": p.y, "label": p.label, "value": p.value}
for p in self.data_points
]
}
@dataclass
class TrendInfo:
"""Detected trend in the data."""
description: str # e.g., "Increasing trend from Q1 to Q4"
direction: str = "neutral" # "increasing", "decreasing", "stable", "fluctuating"
start_point: Optional[ChartDataPoint] = None
end_point: Optional[ChartDataPoint] = None
change_percent: Optional[float] = None
confidence: float = 0.0
@dataclass
class ChartStructure:
"""
Complete extracted chart structure.
Contains all detected elements of a chart including
type, axes, data series, legends, and interpretations.
"""
bbox: BoundingBox
chart_type: ChartType = ChartType.UNKNOWN
confidence: float = 0.0
# Title and labels
title: str = ""
subtitle: str = ""
# Axes
x_axis: Optional[AxisInfo] = None
y_axis: Optional[AxisInfo] = None
secondary_y_axis: Optional[AxisInfo] = None
# Data
series: List[DataSeries] = field(default_factory=list)
legend_items: List[LegendItem] = field(default_factory=list)
# Interpretation
key_values: Dict[str, Any] = field(default_factory=dict) # Notable values
trends: List[TrendInfo] = field(default_factory=list)
summary: str = "" # Text description of the chart
# Metadata
chart_id: str = ""
source_text: str = "" # Any text extracted from the chart
def __post_init__(self):
if not self.chart_id:
import hashlib
content = f"chart_{self.chart_type.value}_{self.bbox.xyxy}"
self.chart_id = hashlib.md5(content.encode()).hexdigest()[:12]
@property
def total_data_points(self) -> int:
return sum(len(s.data_points) for s in self.series)
@property
def all_data_points(self) -> List[ChartDataPoint]:
"""Get all data points from all series."""
points = []
for series in self.series:
points.extend(series.data_points)
return points
def get_series_by_name(self, name: str) -> Optional[DataSeries]:
"""Find a series by name."""
for series in self.series:
if series.name.lower() == name.lower():
return series
return None
def to_text_description(self) -> str:
"""Generate a text description of the chart."""
parts = []
if self.title:
parts.append(f"Chart: {self.title}")
else:
parts.append(f"Chart Type: {self.chart_type.value}")
if self.x_axis and self.x_axis.label:
parts.append(f"X-Axis: {self.x_axis.label}")
if self.y_axis and self.y_axis.label:
parts.append(f"Y-Axis: {self.y_axis.label}")
if self.series:
parts.append(f"Series: {', '.join(s.name for s in self.series if s.name)}")
if self.key_values:
kv_str = ", ".join(f"{k}: {v}" for k, v in self.key_values.items())
parts.append(f"Key Values: {kv_str}")
if self.trends:
trend_strs = [t.description for t in self.trends if t.description]
if trend_strs:
parts.append(f"Trends: {'; '.join(trend_strs)}")
return "\n".join(parts)
def to_dict(self) -> Dict[str, Any]:
"""Convert to structured dictionary."""
return {
"chart_type": self.chart_type.value,
"title": self.title,
"x_axis": {
"label": self.x_axis.label if self.x_axis else "",
"unit": self.x_axis.unit if self.x_axis else "",
},
"y_axis": {
"label": self.y_axis.label if self.y_axis else "",
"unit": self.y_axis.unit if self.y_axis else "",
},
"series": [s.to_dict() for s in self.series],
"key_values": self.key_values,
"trends": [
{"description": t.description, "direction": t.direction}
for t in self.trends
],
"summary": self.summary
}
def to_chart_chunk(
self,
doc_id: str,
page: int,
sequence_index: int
) -> ChartChunk:
"""Convert to ChartChunk for the chunks module."""
# Flatten all data points
all_points = self.all_data_points
return ChartChunk(
chunk_id=ChartChunk.generate_chunk_id(
doc_id=doc_id,
page=page,
bbox=self.bbox,
chunk_type_str="chart"
),
doc_id=doc_id,
text=self.to_text_description(),
page=page,
bbox=self.bbox,
confidence=self.confidence,
sequence_index=sequence_index,
chart_type=self.chart_type.value,
title=self.title,
x_axis_label=self.x_axis.label if self.x_axis else None,
y_axis_label=self.y_axis.label if self.y_axis else None,
data_points=all_points,
key_values=self.key_values,
trends=[t.description for t in self.trends]
)
@dataclass
class ChartExtractionResult:
"""Result of chart extraction from a page."""
charts: List[ChartStructure] = field(default_factory=list)
processing_time_ms: float = 0.0
model_metadata: Dict[str, Any] = field(default_factory=dict)
@property
def chart_count(self) -> int:
return len(self.charts)
class ChartModel(BatchableModel):
"""
Abstract base class for chart extraction models.
Implementations should handle:
- Chart type classification
- Axis detection and labeling
- Data point extraction
- Legend parsing
- Trend detection
"""
def __init__(self, config: Optional[ChartConfig] = None):
super().__init__(config or ChartConfig(name="chart"))
self.config: ChartConfig = self.config
def get_capabilities(self) -> List[ModelCapability]:
return [ModelCapability.CHART_EXTRACTION]
@abstractmethod
def extract_chart(
self,
image: ImageInput,
chart_region: Optional[BoundingBox] = None,
**kwargs
) -> ChartStructure:
"""
Extract chart structure from an image.
Args:
image: Input image containing a chart
chart_region: Optional bounding box of the chart
**kwargs: Additional parameters
Returns:
ChartStructure with extracted data
"""
pass
def extract_all_charts(
self,
image: ImageInput,
chart_regions: Optional[List[BoundingBox]] = None,
**kwargs
) -> ChartExtractionResult:
"""
Extract all charts from an image.
Args:
image: Input document image
chart_regions: Optional list of chart bounding boxes
**kwargs: Additional parameters
Returns:
ChartExtractionResult with all detected charts
"""
import time
start_time = time.time()
charts = []
if chart_regions:
for region in chart_regions:
try:
chart = self.extract_chart(image, region, **kwargs)
if chart.chart_type != ChartType.UNKNOWN:
charts.append(chart)
except Exception:
continue
else:
chart = self.extract_chart(image, **kwargs)
if chart.chart_type != ChartType.UNKNOWN:
charts.append(chart)
processing_time = (time.time() - start_time) * 1000
return ChartExtractionResult(
charts=charts,
processing_time_ms=processing_time
)
def process_batch(
self,
inputs: List[ImageInput],
**kwargs
) -> List[ChartExtractionResult]:
"""Process multiple images."""
return [self.extract_all_charts(img, **kwargs) for img in inputs]
@abstractmethod
def classify_chart_type(
self,
image: ImageInput,
chart_region: Optional[BoundingBox] = None,
**kwargs
) -> Tuple[ChartType, float]:
"""
Classify the type of chart in an image.
Args:
image: Input image
chart_region: Optional bounding box
**kwargs: Additional parameters
Returns:
Tuple of (ChartType, confidence)
"""
pass
def detect_trends(
self,
chart: ChartStructure,
**kwargs
) -> List[TrendInfo]:
"""
Analyze chart data for trends.
Default implementation provides basic trend detection.
Override for more sophisticated analysis.
"""
trends = []
for series in chart.series:
if len(series.data_points) < 2:
continue
# Get numeric y-values
y_values = []
for dp in series.data_points:
if dp.y is not None:
try:
y_values.append(float(dp.y))
except (ValueError, TypeError):
continue
if len(y_values) < 2:
continue
# Simple trend detection
first_half_avg = sum(y_values[:len(y_values)//2]) / (len(y_values)//2)
second_half_avg = sum(y_values[len(y_values)//2:]) / (len(y_values) - len(y_values)//2)
if second_half_avg > first_half_avg * 1.1:
direction = "increasing"
elif second_half_avg < first_half_avg * 0.9:
direction = "decreasing"
else:
direction = "stable"
change_pct = ((second_half_avg - first_half_avg) / first_half_avg * 100
if first_half_avg != 0 else 0)
trend = TrendInfo(
description=f"{series.name}: {direction} trend ({change_pct:+.1f}%)",
direction=direction,
start_point=series.data_points[0],
end_point=series.data_points[-1],
change_percent=change_pct,
confidence=0.7
)
trends.append(trend)
return trends
|