MHamdan's picture
Initial commit: SPARKNET framework
d520909
"""
Extraction Validation
Validates extracted data and provides confidence scoring.
"""
import logging
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Tuple
from ..chunks.models import (
ExtractionResult,
FieldExtraction,
ConfidenceLevel,
)
from .schema import ExtractionSchema, FieldSpec, FieldType
logger = logging.getLogger(__name__)
@dataclass
class ValidationIssue:
"""A validation issue found during extraction validation."""
field_name: str
issue_type: str # "missing", "invalid", "low_confidence", "type_mismatch"
message: str
severity: str = "warning" # "error", "warning", "info"
suggested_action: Optional[str] = None
@dataclass
class ValidationResult:
"""Result of extraction validation."""
is_valid: bool
issues: List[ValidationIssue] = field(default_factory=list)
confidence_score: float = 0.0
field_scores: Dict[str, float] = field(default_factory=dict)
recommendations: List[str] = field(default_factory=list)
@property
def error_count(self) -> int:
return sum(1 for i in self.issues if i.severity == "error")
@property
def warning_count(self) -> int:
return sum(1 for i in self.issues if i.severity == "warning")
def get_issues_for_field(self, field_name: str) -> List[ValidationIssue]:
"""Get all issues for a specific field."""
return [i for i in self.issues if i.field_name == field_name]
class ExtractionValidator:
"""
Validates extraction results against schemas.
Checks for:
- Required field presence
- Type correctness
- Value constraints
- Confidence thresholds
"""
def __init__(
self,
min_confidence: float = 0.5,
strict_mode: bool = False,
):
self.min_confidence = min_confidence
self.strict_mode = strict_mode
def validate(
self,
extraction: ExtractionResult,
schema: ExtractionSchema,
) -> ValidationResult:
"""
Validate extraction result against schema.
Args:
extraction: Extraction result to validate
schema: Schema defining expected fields
Returns:
ValidationResult with issues and scores
"""
issues: List[ValidationIssue] = []
field_scores: Dict[str, float] = {}
# Check each field
for field_spec in schema.fields:
field_issues, score = self._validate_field(
field_spec=field_spec,
extraction=extraction,
)
issues.extend(field_issues)
field_scores[field_spec.name] = score
# Check for unexpected fields
expected_fields = {f.name for f in schema.fields}
for field_name in extraction.data.keys():
if field_name not in expected_fields:
issues.append(ValidationIssue(
field_name=field_name,
issue_type="unexpected",
message=f"Unexpected field: {field_name}",
severity="info",
))
# Calculate overall score
if field_scores:
confidence_score = sum(field_scores.values()) / len(field_scores)
else:
confidence_score = 0.0
# Determine validity
is_valid = (
all(i.severity != "error" for i in issues) and
confidence_score >= schema.min_overall_confidence
)
# Generate recommendations
recommendations = self._generate_recommendations(issues, extraction)
return ValidationResult(
is_valid=is_valid,
issues=issues,
confidence_score=confidence_score,
field_scores=field_scores,
recommendations=recommendations,
)
def _validate_field(
self,
field_spec: FieldSpec,
extraction: ExtractionResult,
) -> Tuple[List[ValidationIssue], float]:
"""Validate a single field."""
issues: List[ValidationIssue] = []
score = 1.0
value = extraction.data.get(field_spec.name)
field_extraction = self._get_field_extraction(field_spec.name, extraction)
# Check presence
if value is None:
if field_spec.required:
issues.append(ValidationIssue(
field_name=field_spec.name,
issue_type="missing",
message=f"Required field '{field_spec.name}' is missing",
severity="error",
suggested_action="Manual review required",
))
return issues, 0.0
else:
return issues, 1.0 # Optional field, OK to be missing
# Check abstention
if field_spec.name in extraction.abstained_fields:
issues.append(ValidationIssue(
field_name=field_spec.name,
issue_type="abstained",
message=f"Field '{field_spec.name}' was abstained due to low confidence",
severity="warning",
suggested_action="Manual verification recommended",
))
score *= 0.5
# Check confidence
if field_extraction:
if field_extraction.confidence < self.min_confidence:
issues.append(ValidationIssue(
field_name=field_spec.name,
issue_type="low_confidence",
message=f"Field '{field_spec.name}' has low confidence: {field_extraction.confidence:.2f}",
severity="warning",
suggested_action="Manual verification recommended",
))
score *= field_extraction.confidence
else:
score *= field_extraction.confidence
# Check type
type_issues = self._validate_type(field_spec, value)
issues.extend(type_issues)
if type_issues:
score *= 0.7
# Check constraints
constraint_issues = self._validate_constraints(field_spec, value)
issues.extend(constraint_issues)
if constraint_issues:
score *= 0.8
return issues, max(0.0, min(1.0, score))
def _validate_type(
self,
field_spec: FieldSpec,
value: Any,
) -> List[ValidationIssue]:
"""Validate field type."""
issues = []
expected_type = self._get_expected_python_type(field_spec.field_type)
if expected_type and not isinstance(value, expected_type):
# Try conversion
try:
expected_type(value)
except (ValueError, TypeError):
issues.append(ValidationIssue(
field_name=field_spec.name,
issue_type="type_mismatch",
message=f"Field '{field_spec.name}' expected {field_spec.field_type.value}, got {type(value).__name__}",
severity="warning" if not self.strict_mode else "error",
))
return issues
def _validate_constraints(
self,
field_spec: FieldSpec,
value: Any,
) -> List[ValidationIssue]:
"""Validate field constraints."""
issues = []
# Pattern
if field_spec.pattern:
import re
if not re.match(field_spec.pattern, str(value)):
issues.append(ValidationIssue(
field_name=field_spec.name,
issue_type="pattern_mismatch",
message=f"Field '{field_spec.name}' does not match pattern: {field_spec.pattern}",
severity="warning",
))
# Range
try:
num_value = float(value)
if field_spec.min_value is not None and num_value < field_spec.min_value:
issues.append(ValidationIssue(
field_name=field_spec.name,
issue_type="below_minimum",
message=f"Field '{field_spec.name}' value {num_value} is below minimum {field_spec.min_value}",
severity="warning",
))
if field_spec.max_value is not None and num_value > field_spec.max_value:
issues.append(ValidationIssue(
field_name=field_spec.name,
issue_type="above_maximum",
message=f"Field '{field_spec.name}' value {num_value} is above maximum {field_spec.max_value}",
severity="warning",
))
except (ValueError, TypeError):
pass
# Length
str_value = str(value)
if field_spec.min_length is not None and len(str_value) < field_spec.min_length:
issues.append(ValidationIssue(
field_name=field_spec.name,
issue_type="too_short",
message=f"Field '{field_spec.name}' is too short: {len(str_value)} < {field_spec.min_length}",
severity="warning",
))
if field_spec.max_length is not None and len(str_value) > field_spec.max_length:
issues.append(ValidationIssue(
field_name=field_spec.name,
issue_type="too_long",
message=f"Field '{field_spec.name}' is too long: {len(str_value)} > {field_spec.max_length}",
severity="warning",
))
# Allowed values
if field_spec.allowed_values and value not in field_spec.allowed_values:
issues.append(ValidationIssue(
field_name=field_spec.name,
issue_type="not_in_allowed",
message=f"Field '{field_spec.name}' value '{value}' not in allowed values",
severity="warning",
))
return issues
def _get_field_extraction(
self,
field_name: str,
extraction: ExtractionResult,
) -> Optional[FieldExtraction]:
"""Get field extraction by name."""
for fe in extraction.fields:
if fe.field_name == field_name:
return fe
return None
def _get_expected_python_type(self, field_type: FieldType) -> Optional[type]:
"""Get expected Python type for field type."""
type_map = {
FieldType.INTEGER: int,
FieldType.FLOAT: float,
FieldType.BOOLEAN: bool,
FieldType.LIST: list,
FieldType.OBJECT: dict,
}
return type_map.get(field_type)
def _generate_recommendations(
self,
issues: List[ValidationIssue],
extraction: ExtractionResult,
) -> List[str]:
"""Generate recommendations based on issues."""
recommendations = []
# Count issue types
missing_count = sum(1 for i in issues if i.issue_type == "missing")
low_conf_count = sum(1 for i in issues if i.issue_type == "low_confidence")
type_count = sum(1 for i in issues if i.issue_type == "type_mismatch")
if missing_count > 0:
recommendations.append(
f"Review document for {missing_count} missing required field(s)"
)
if low_conf_count > 0:
recommendations.append(
f"Manual verification recommended for {low_conf_count} low-confidence field(s)"
)
if type_count > 0:
recommendations.append(
f"Check data types for {type_count} field(s) with type mismatches"
)
if extraction.overall_confidence < 0.5:
recommendations.append(
"Overall extraction confidence is low - consider manual review"
)
if len(extraction.abstained_fields) > 0:
recommendations.append(
f"System abstained on {len(extraction.abstained_fields)} field(s) due to uncertainty"
)
return recommendations
class CrossFieldValidator:
"""
Validates relationships between fields.
Checks for:
- Consistency (e.g., subtotal + tax = total)
- Logical relationships
- Date ordering
"""
def validate_consistency(
self,
extraction: ExtractionResult,
rules: List[Dict[str, Any]],
) -> List[ValidationIssue]:
"""
Validate cross-field consistency rules.
Rules format:
{
"type": "sum",
"fields": ["subtotal", "tax"],
"equals": "total",
"tolerance": 0.01
}
"""
issues = []
for rule in rules:
rule_type = rule.get("type")
if rule_type == "sum":
issue = self._validate_sum_rule(extraction, rule)
if issue:
issues.append(issue)
elif rule_type == "date_order":
issue = self._validate_date_order(extraction, rule)
if issue:
issues.append(issue)
elif rule_type == "required_if":
issue = self._validate_required_if(extraction, rule)
if issue:
issues.append(issue)
return issues
def _validate_sum_rule(
self,
extraction: ExtractionResult,
rule: Dict[str, Any],
) -> Optional[ValidationIssue]:
"""Validate that sum of fields equals another field."""
fields = rule.get("fields", [])
equals_field = rule.get("equals")
tolerance = rule.get("tolerance", 0.01)
try:
sum_value = sum(
float(extraction.data.get(f, 0) or 0)
for f in fields
)
expected = float(extraction.data.get(equals_field, 0) or 0)
if abs(sum_value - expected) > tolerance:
return ValidationIssue(
field_name=equals_field,
issue_type="sum_mismatch",
message=f"Sum of {fields} ({sum_value}) does not equal {equals_field} ({expected})",
severity="warning",
)
except (ValueError, TypeError):
pass
return None
def _validate_date_order(
self,
extraction: ExtractionResult,
rule: Dict[str, Any],
) -> Optional[ValidationIssue]:
"""Validate that dates are in correct order."""
from datetime import datetime
before_field = rule.get("before")
after_field = rule.get("after")
before_val = extraction.data.get(before_field)
after_val = extraction.data.get(after_field)
if not before_val or not after_val:
return None
try:
# Try common date formats
formats = ["%Y-%m-%d", "%m/%d/%Y", "%d/%m/%Y", "%B %d, %Y"]
before_date = None
after_date = None
for fmt in formats:
try:
before_date = datetime.strptime(str(before_val), fmt)
break
except ValueError:
continue
for fmt in formats:
try:
after_date = datetime.strptime(str(after_val), fmt)
break
except ValueError:
continue
if before_date and after_date and before_date > after_date:
return ValidationIssue(
field_name=after_field,
issue_type="date_order",
message=f"Date {before_field} ({before_val}) should be before {after_field} ({after_val})",
severity="warning",
)
except Exception:
pass
return None
def _validate_required_if(
self,
extraction: ExtractionResult,
rule: Dict[str, Any],
) -> Optional[ValidationIssue]:
"""Validate conditional required fields."""
field = rule.get("field")
required_if = rule.get("required_if") # Field that must exist
condition_value = rule.get("value") # Optional specific value
condition_field_value = extraction.data.get(required_if)
# Check if condition is met
condition_met = False
if condition_value is not None:
condition_met = condition_field_value == condition_value
else:
condition_met = condition_field_value is not None
if condition_met:
field_value = extraction.data.get(field)
if field_value is None:
return ValidationIssue(
field_name=field,
issue_type="conditional_required",
message=f"Field '{field}' is required when '{required_if}' is present",
severity="warning",
)
return None