File size: 16,917 Bytes
d520909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
"""
Extraction Validation

Validates extracted data and provides confidence scoring.
"""

import logging
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Tuple

from ..chunks.models import (
    ExtractionResult,
    FieldExtraction,
    ConfidenceLevel,
)
from .schema import ExtractionSchema, FieldSpec, FieldType

logger = logging.getLogger(__name__)


@dataclass
class ValidationIssue:
    """A validation issue found during extraction validation."""

    field_name: str
    issue_type: str  # "missing", "invalid", "low_confidence", "type_mismatch"
    message: str
    severity: str = "warning"  # "error", "warning", "info"
    suggested_action: Optional[str] = None


@dataclass
class ValidationResult:
    """Result of extraction validation."""

    is_valid: bool
    issues: List[ValidationIssue] = field(default_factory=list)
    confidence_score: float = 0.0
    field_scores: Dict[str, float] = field(default_factory=dict)
    recommendations: List[str] = field(default_factory=list)

    @property
    def error_count(self) -> int:
        return sum(1 for i in self.issues if i.severity == "error")

    @property
    def warning_count(self) -> int:
        return sum(1 for i in self.issues if i.severity == "warning")

    def get_issues_for_field(self, field_name: str) -> List[ValidationIssue]:
        """Get all issues for a specific field."""
        return [i for i in self.issues if i.field_name == field_name]


class ExtractionValidator:
    """
    Validates extraction results against schemas.

    Checks for:
    - Required field presence
    - Type correctness
    - Value constraints
    - Confidence thresholds
    """

    def __init__(
        self,
        min_confidence: float = 0.5,
        strict_mode: bool = False,
    ):
        self.min_confidence = min_confidence
        self.strict_mode = strict_mode

    def validate(
        self,
        extraction: ExtractionResult,
        schema: ExtractionSchema,
    ) -> ValidationResult:
        """
        Validate extraction result against schema.

        Args:
            extraction: Extraction result to validate
            schema: Schema defining expected fields

        Returns:
            ValidationResult with issues and scores
        """
        issues: List[ValidationIssue] = []
        field_scores: Dict[str, float] = {}

        # Check each field
        for field_spec in schema.fields:
            field_issues, score = self._validate_field(
                field_spec=field_spec,
                extraction=extraction,
            )
            issues.extend(field_issues)
            field_scores[field_spec.name] = score

        # Check for unexpected fields
        expected_fields = {f.name for f in schema.fields}
        for field_name in extraction.data.keys():
            if field_name not in expected_fields:
                issues.append(ValidationIssue(
                    field_name=field_name,
                    issue_type="unexpected",
                    message=f"Unexpected field: {field_name}",
                    severity="info",
                ))

        # Calculate overall score
        if field_scores:
            confidence_score = sum(field_scores.values()) / len(field_scores)
        else:
            confidence_score = 0.0

        # Determine validity
        is_valid = (
            all(i.severity != "error" for i in issues) and
            confidence_score >= schema.min_overall_confidence
        )

        # Generate recommendations
        recommendations = self._generate_recommendations(issues, extraction)

        return ValidationResult(
            is_valid=is_valid,
            issues=issues,
            confidence_score=confidence_score,
            field_scores=field_scores,
            recommendations=recommendations,
        )

    def _validate_field(
        self,
        field_spec: FieldSpec,
        extraction: ExtractionResult,
    ) -> Tuple[List[ValidationIssue], float]:
        """Validate a single field."""
        issues: List[ValidationIssue] = []
        score = 1.0

        value = extraction.data.get(field_spec.name)
        field_extraction = self._get_field_extraction(field_spec.name, extraction)

        # Check presence
        if value is None:
            if field_spec.required:
                issues.append(ValidationIssue(
                    field_name=field_spec.name,
                    issue_type="missing",
                    message=f"Required field '{field_spec.name}' is missing",
                    severity="error",
                    suggested_action="Manual review required",
                ))
                return issues, 0.0
            else:
                return issues, 1.0  # Optional field, OK to be missing

        # Check abstention
        if field_spec.name in extraction.abstained_fields:
            issues.append(ValidationIssue(
                field_name=field_spec.name,
                issue_type="abstained",
                message=f"Field '{field_spec.name}' was abstained due to low confidence",
                severity="warning",
                suggested_action="Manual verification recommended",
            ))
            score *= 0.5

        # Check confidence
        if field_extraction:
            if field_extraction.confidence < self.min_confidence:
                issues.append(ValidationIssue(
                    field_name=field_spec.name,
                    issue_type="low_confidence",
                    message=f"Field '{field_spec.name}' has low confidence: {field_extraction.confidence:.2f}",
                    severity="warning",
                    suggested_action="Manual verification recommended",
                ))
                score *= field_extraction.confidence
            else:
                score *= field_extraction.confidence

        # Check type
        type_issues = self._validate_type(field_spec, value)
        issues.extend(type_issues)
        if type_issues:
            score *= 0.7

        # Check constraints
        constraint_issues = self._validate_constraints(field_spec, value)
        issues.extend(constraint_issues)
        if constraint_issues:
            score *= 0.8

        return issues, max(0.0, min(1.0, score))

    def _validate_type(
        self,
        field_spec: FieldSpec,
        value: Any,
    ) -> List[ValidationIssue]:
        """Validate field type."""
        issues = []

        expected_type = self._get_expected_python_type(field_spec.field_type)

        if expected_type and not isinstance(value, expected_type):
            # Try conversion
            try:
                expected_type(value)
            except (ValueError, TypeError):
                issues.append(ValidationIssue(
                    field_name=field_spec.name,
                    issue_type="type_mismatch",
                    message=f"Field '{field_spec.name}' expected {field_spec.field_type.value}, got {type(value).__name__}",
                    severity="warning" if not self.strict_mode else "error",
                ))

        return issues

    def _validate_constraints(
        self,
        field_spec: FieldSpec,
        value: Any,
    ) -> List[ValidationIssue]:
        """Validate field constraints."""
        issues = []

        # Pattern
        if field_spec.pattern:
            import re
            if not re.match(field_spec.pattern, str(value)):
                issues.append(ValidationIssue(
                    field_name=field_spec.name,
                    issue_type="pattern_mismatch",
                    message=f"Field '{field_spec.name}' does not match pattern: {field_spec.pattern}",
                    severity="warning",
                ))

        # Range
        try:
            num_value = float(value)
            if field_spec.min_value is not None and num_value < field_spec.min_value:
                issues.append(ValidationIssue(
                    field_name=field_spec.name,
                    issue_type="below_minimum",
                    message=f"Field '{field_spec.name}' value {num_value} is below minimum {field_spec.min_value}",
                    severity="warning",
                ))
            if field_spec.max_value is not None and num_value > field_spec.max_value:
                issues.append(ValidationIssue(
                    field_name=field_spec.name,
                    issue_type="above_maximum",
                    message=f"Field '{field_spec.name}' value {num_value} is above maximum {field_spec.max_value}",
                    severity="warning",
                ))
        except (ValueError, TypeError):
            pass

        # Length
        str_value = str(value)
        if field_spec.min_length is not None and len(str_value) < field_spec.min_length:
            issues.append(ValidationIssue(
                field_name=field_spec.name,
                issue_type="too_short",
                message=f"Field '{field_spec.name}' is too short: {len(str_value)} < {field_spec.min_length}",
                severity="warning",
            ))
        if field_spec.max_length is not None and len(str_value) > field_spec.max_length:
            issues.append(ValidationIssue(
                field_name=field_spec.name,
                issue_type="too_long",
                message=f"Field '{field_spec.name}' is too long: {len(str_value)} > {field_spec.max_length}",
                severity="warning",
            ))

        # Allowed values
        if field_spec.allowed_values and value not in field_spec.allowed_values:
            issues.append(ValidationIssue(
                field_name=field_spec.name,
                issue_type="not_in_allowed",
                message=f"Field '{field_spec.name}' value '{value}' not in allowed values",
                severity="warning",
            ))

        return issues

    def _get_field_extraction(
        self,
        field_name: str,
        extraction: ExtractionResult,
    ) -> Optional[FieldExtraction]:
        """Get field extraction by name."""
        for fe in extraction.fields:
            if fe.field_name == field_name:
                return fe
        return None

    def _get_expected_python_type(self, field_type: FieldType) -> Optional[type]:
        """Get expected Python type for field type."""
        type_map = {
            FieldType.INTEGER: int,
            FieldType.FLOAT: float,
            FieldType.BOOLEAN: bool,
            FieldType.LIST: list,
            FieldType.OBJECT: dict,
        }
        return type_map.get(field_type)

    def _generate_recommendations(
        self,
        issues: List[ValidationIssue],
        extraction: ExtractionResult,
    ) -> List[str]:
        """Generate recommendations based on issues."""
        recommendations = []

        # Count issue types
        missing_count = sum(1 for i in issues if i.issue_type == "missing")
        low_conf_count = sum(1 for i in issues if i.issue_type == "low_confidence")
        type_count = sum(1 for i in issues if i.issue_type == "type_mismatch")

        if missing_count > 0:
            recommendations.append(
                f"Review document for {missing_count} missing required field(s)"
            )

        if low_conf_count > 0:
            recommendations.append(
                f"Manual verification recommended for {low_conf_count} low-confidence field(s)"
            )

        if type_count > 0:
            recommendations.append(
                f"Check data types for {type_count} field(s) with type mismatches"
            )

        if extraction.overall_confidence < 0.5:
            recommendations.append(
                "Overall extraction confidence is low - consider manual review"
            )

        if len(extraction.abstained_fields) > 0:
            recommendations.append(
                f"System abstained on {len(extraction.abstained_fields)} field(s) due to uncertainty"
            )

        return recommendations


class CrossFieldValidator:
    """
    Validates relationships between fields.

    Checks for:
    - Consistency (e.g., subtotal + tax = total)
    - Logical relationships
    - Date ordering
    """

    def validate_consistency(
        self,
        extraction: ExtractionResult,
        rules: List[Dict[str, Any]],
    ) -> List[ValidationIssue]:
        """
        Validate cross-field consistency rules.

        Rules format:
        {
            "type": "sum",
            "fields": ["subtotal", "tax"],
            "equals": "total",
            "tolerance": 0.01
        }
        """
        issues = []

        for rule in rules:
            rule_type = rule.get("type")

            if rule_type == "sum":
                issue = self._validate_sum_rule(extraction, rule)
                if issue:
                    issues.append(issue)

            elif rule_type == "date_order":
                issue = self._validate_date_order(extraction, rule)
                if issue:
                    issues.append(issue)

            elif rule_type == "required_if":
                issue = self._validate_required_if(extraction, rule)
                if issue:
                    issues.append(issue)

        return issues

    def _validate_sum_rule(
        self,
        extraction: ExtractionResult,
        rule: Dict[str, Any],
    ) -> Optional[ValidationIssue]:
        """Validate that sum of fields equals another field."""
        fields = rule.get("fields", [])
        equals_field = rule.get("equals")
        tolerance = rule.get("tolerance", 0.01)

        try:
            sum_value = sum(
                float(extraction.data.get(f, 0) or 0)
                for f in fields
            )
            expected = float(extraction.data.get(equals_field, 0) or 0)

            if abs(sum_value - expected) > tolerance:
                return ValidationIssue(
                    field_name=equals_field,
                    issue_type="sum_mismatch",
                    message=f"Sum of {fields} ({sum_value}) does not equal {equals_field} ({expected})",
                    severity="warning",
                )
        except (ValueError, TypeError):
            pass

        return None

    def _validate_date_order(
        self,
        extraction: ExtractionResult,
        rule: Dict[str, Any],
    ) -> Optional[ValidationIssue]:
        """Validate that dates are in correct order."""
        from datetime import datetime

        before_field = rule.get("before")
        after_field = rule.get("after")

        before_val = extraction.data.get(before_field)
        after_val = extraction.data.get(after_field)

        if not before_val or not after_val:
            return None

        try:
            # Try common date formats
            formats = ["%Y-%m-%d", "%m/%d/%Y", "%d/%m/%Y", "%B %d, %Y"]

            before_date = None
            after_date = None

            for fmt in formats:
                try:
                    before_date = datetime.strptime(str(before_val), fmt)
                    break
                except ValueError:
                    continue

            for fmt in formats:
                try:
                    after_date = datetime.strptime(str(after_val), fmt)
                    break
                except ValueError:
                    continue

            if before_date and after_date and before_date > after_date:
                return ValidationIssue(
                    field_name=after_field,
                    issue_type="date_order",
                    message=f"Date {before_field} ({before_val}) should be before {after_field} ({after_val})",
                    severity="warning",
                )
        except Exception:
            pass

        return None

    def _validate_required_if(
        self,
        extraction: ExtractionResult,
        rule: Dict[str, Any],
    ) -> Optional[ValidationIssue]:
        """Validate conditional required fields."""
        field = rule.get("field")
        required_if = rule.get("required_if")  # Field that must exist
        condition_value = rule.get("value")  # Optional specific value

        condition_field_value = extraction.data.get(required_if)

        # Check if condition is met
        condition_met = False
        if condition_value is not None:
            condition_met = condition_field_value == condition_value
        else:
            condition_met = condition_field_value is not None

        if condition_met:
            field_value = extraction.data.get(field)
            if field_value is None:
                return ValidationIssue(
                    field_name=field,
                    issue_type="conditional_required",
                    message=f"Field '{field}' is required when '{required_if}' is present",
                    severity="warning",
                )

        return None