MHamdan's picture
Initial commit: SPARKNET framework
d520909
"""
Core Data Models for Document Intelligence
Comprehensive Pydantic models for:
- Bounding boxes and spatial data
- Document chunks (text, table, chart, form fields)
- Evidence references for grounding
- Parse results and document metadata
Design principles:
- Vision-first: treat documents as visual objects
- Grounding: every extraction has evidence pointers
- Stable IDs: reproducible, hash-based chunk identifiers
- Schema-compatible: JSON export/import, Pydantic validation
"""
from __future__ import annotations
import hashlib
import json
from datetime import datetime
from enum import Enum
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union
from pydantic import BaseModel, Field, field_validator, model_validator
# =============================================================================
# Bounding Box Models
# =============================================================================
class BoundingBox(BaseModel):
"""
Bounding box in XYXY format (x_min, y_min, x_max, y_max).
Supports both pixel coordinates and normalized (0-1) coordinates.
All spatial grounding uses this as the standard format.
"""
x_min: float = Field(..., description="Left edge (x1)")
y_min: float = Field(..., description="Top edge (y1)")
x_max: float = Field(..., description="Right edge (x2)")
y_max: float = Field(..., description="Bottom edge (y2)")
# Coordinate system metadata
normalized: bool = Field(default=False, description="True if 0-1 normalized")
page_width: Optional[int] = Field(default=None, description="Page width in pixels")
page_height: Optional[int] = Field(default=None, description="Page height in pixels")
@field_validator('x_max')
@classmethod
def validate_x_max(cls, v, info):
if 'x_min' in info.data and v < info.data['x_min']:
raise ValueError('x_max must be >= x_min')
return v
@field_validator('y_max')
@classmethod
def validate_y_max(cls, v, info):
if 'y_min' in info.data and v < info.data['y_min']:
raise ValueError('y_max must be >= y_min')
return v
@property
def width(self) -> float:
return self.x_max - self.x_min
@property
def height(self) -> float:
return self.y_max - self.y_min
@property
def area(self) -> float:
return self.width * self.height
@property
def center(self) -> Tuple[float, float]:
return ((self.x_min + self.x_max) / 2, (self.y_min + self.y_max) / 2)
@property
def xyxy(self) -> Tuple[float, float, float, float]:
"""Return as (x_min, y_min, x_max, y_max)."""
return (self.x_min, self.y_min, self.x_max, self.y_max)
@property
def xywh(self) -> Tuple[float, float, float, float]:
"""Return as (x, y, width, height)."""
return (self.x_min, self.y_min, self.width, self.height)
def to_pixel(self, width: int, height: int) -> BoundingBox:
"""Convert to pixel coordinates."""
if not self.normalized:
return self
return BoundingBox(
x_min=int(self.x_min * width),
y_min=int(self.y_min * height),
x_max=int(self.x_max * width),
y_max=int(self.y_max * height),
normalized=False,
page_width=width,
page_height=height,
)
def to_normalized(self, width: int, height: int) -> BoundingBox:
"""Convert to normalized (0-1) coordinates."""
if self.normalized:
return self
return BoundingBox(
x_min=self.x_min / width,
y_min=self.y_min / height,
x_max=self.x_max / width,
y_max=self.y_max / height,
normalized=True,
page_width=width,
page_height=height,
)
def iou(self, other: BoundingBox) -> float:
"""Calculate Intersection over Union."""
x1 = max(self.x_min, other.x_min)
y1 = max(self.y_min, other.y_min)
x2 = min(self.x_max, other.x_max)
y2 = min(self.y_max, other.y_max)
if x2 < x1 or y2 < y1:
return 0.0
intersection = (x2 - x1) * (y2 - y1)
union = self.area + other.area - intersection
return intersection / union if union > 0 else 0.0
def contains(self, other: BoundingBox) -> bool:
"""Check if this bbox fully contains another."""
return (
self.x_min <= other.x_min and
self.y_min <= other.y_min and
self.x_max >= other.x_max and
self.y_max >= other.y_max
)
def expand(self, margin: float) -> BoundingBox:
"""Expand bbox by margin pixels."""
return BoundingBox(
x_min=max(0, self.x_min - margin),
y_min=max(0, self.y_min - margin),
x_max=self.x_max + margin,
y_max=self.y_max + margin,
normalized=self.normalized,
page_width=self.page_width,
page_height=self.page_height,
)
def clip(self, max_width: float, max_height: float) -> BoundingBox:
"""Clip bbox to image boundaries."""
return BoundingBox(
x_min=max(0, self.x_min),
y_min=max(0, self.y_min),
x_max=min(max_width, self.x_max),
y_max=min(max_height, self.y_max),
normalized=self.normalized,
page_width=self.page_width,
page_height=self.page_height,
)
@classmethod
def from_xyxy(cls, xyxy: Tuple[float, float, float, float], **kwargs) -> BoundingBox:
"""Create from (x_min, y_min, x_max, y_max) tuple."""
return cls(x_min=xyxy[0], y_min=xyxy[1], x_max=xyxy[2], y_max=xyxy[3], **kwargs)
@classmethod
def from_xywh(cls, xywh: Tuple[float, float, float, float], **kwargs) -> BoundingBox:
"""Create from (x, y, width, height) tuple."""
x, y, w, h = xywh
return cls(x_min=x, y_min=y, x_max=x + w, y_max=y + h, **kwargs)
def __hash__(self):
return hash((self.x_min, self.y_min, self.x_max, self.y_max))
# =============================================================================
# Chunk Type Enumerations
# =============================================================================
class ChunkType(str, Enum):
"""
Semantic chunk types for document segmentation.
Covers text, tables, figures, charts, forms, and structural elements.
Used for routing chunks to specialized extraction logic.
"""
# Text types
TEXT = "text"
TITLE = "title"
HEADING = "heading"
PARAGRAPH = "paragraph"
LIST = "list"
LIST_ITEM = "list_item"
# Structured types
TABLE = "table"
TABLE_CELL = "table_cell"
FIGURE = "figure"
CHART = "chart"
FORMULA = "formula"
CODE = "code"
# Form types
FORM_FIELD = "form_field"
CHECKBOX = "checkbox"
SIGNATURE = "signature"
STAMP = "stamp"
HANDWRITING = "handwriting"
# Document structure
HEADER = "header"
FOOTER = "footer"
PAGE_NUMBER = "page_number"
CAPTION = "caption"
FOOTNOTE = "footnote"
WATERMARK = "watermark"
LOGO = "logo"
# Metadata
METADATA = "metadata"
UNKNOWN = "unknown"
class ConfidenceLevel(str, Enum):
"""Confidence level classification."""
HIGH = "high" # >= 0.9
MEDIUM = "medium" # >= 0.7
LOW = "low" # >= 0.5
VERY_LOW = "very_low" # < 0.5
@classmethod
def from_score(cls, score: float) -> ConfidenceLevel:
if score >= 0.9:
return cls.HIGH
elif score >= 0.7:
return cls.MEDIUM
elif score >= 0.5:
return cls.LOW
else:
return cls.VERY_LOW
# =============================================================================
# Core Document Chunk
# =============================================================================
class DocumentChunk(BaseModel):
"""
Base document chunk with text and grounding evidence.
This is the fundamental unit for retrieval and extraction.
Every chunk has:
- Stable, reproducible chunk_id (hash-based)
- Precise spatial grounding (page, bbox)
- Confidence score for quality assessment
"""
# Identity
chunk_id: str = Field(..., description="Unique, stable chunk identifier")
doc_id: str = Field(..., description="Parent document identifier")
# Content
chunk_type: ChunkType = Field(..., description="Semantic type")
text: str = Field(..., description="Text content")
# Spatial grounding
page: int = Field(..., ge=0, description="Zero-indexed page number")
bbox: BoundingBox = Field(..., description="Bounding box on page")
# Quality metrics
confidence: float = Field(default=1.0, ge=0.0, le=1.0, description="Extraction confidence")
# Reading order
sequence_index: int = Field(default=0, ge=0, description="Position in reading order")
# Source tracking
source_path: Optional[str] = Field(default=None, description="Original file path")
# Relationships
parent_id: Optional[str] = Field(default=None, description="Parent chunk ID")
children_ids: List[str] = Field(default_factory=list, description="Child chunk IDs")
# Associated content
caption: Optional[str] = Field(default=None, description="Caption if applicable")
# Warnings and quality issues
warnings: List[str] = Field(default_factory=list, description="Quality warnings")
# Additional metadata
extra: Dict[str, Any] = Field(default_factory=dict, description="Type-specific metadata")
# Optional embedding (populated during indexing)
embedding: Optional[List[float]] = Field(default=None, exclude=True)
@property
def confidence_level(self) -> ConfidenceLevel:
return ConfidenceLevel.from_score(self.confidence)
@property
def needs_review(self) -> bool:
"""Check if chunk needs human review."""
return self.confidence < 0.7 or len(self.warnings) > 0
def content_hash(self) -> str:
"""Generate hash of chunk content for deduplication."""
content = f"{self.doc_id}:{self.page}:{self.chunk_type.value}:{self.text[:200]}"
return hashlib.sha256(content.encode()).hexdigest()[:16]
@staticmethod
def generate_chunk_id(
doc_id: str,
page: int,
bbox: BoundingBox,
chunk_type: ChunkType,
) -> str:
"""
Generate a stable, reproducible chunk ID.
Uses hash of (doc_id, page, bbox, type) for reproducibility.
"""
bbox_str = f"{bbox.x_min:.2f},{bbox.y_min:.2f},{bbox.x_max:.2f},{bbox.y_max:.2f}"
content = f"{doc_id}:p{page}:{bbox_str}:{chunk_type.value}"
return hashlib.sha256(content.encode()).hexdigest()[:16]
def to_retrieval_metadata(self) -> Dict[str, Any]:
"""Convert to metadata dict for vector store."""
return {
"chunk_id": self.chunk_id,
"doc_id": self.doc_id,
"chunk_type": self.chunk_type.value,
"page": self.page,
"bbox_xyxy": list(self.bbox.xyxy),
"confidence": self.confidence,
"sequence_index": self.sequence_index,
"source_path": self.source_path,
}
def __hash__(self):
return hash(self.chunk_id)
# =============================================================================
# Specialized Chunk Types
# =============================================================================
class TableCell(BaseModel):
"""A single cell in a table."""
cell_id: str = Field(..., description="Unique cell identifier")
row: int = Field(..., ge=0, description="Row index (0-based)")
col: int = Field(..., ge=0, description="Column index (0-based)")
text: str = Field(default="", description="Cell text content")
bbox: Optional[BoundingBox] = Field(default=None, description="Cell bounding box")
# Spanning
rowspan: int = Field(default=1, ge=1, description="Number of rows spanned")
colspan: int = Field(default=1, ge=1, description="Number of columns spanned")
# Cell type
is_header: bool = Field(default=False, description="Is header cell")
confidence: float = Field(default=1.0, ge=0.0, le=1.0)
class TableChunk(DocumentChunk):
"""
Specialized chunk for tables with structured cell data.
Preserves row/column structure and supports merged cells.
"""
chunk_type: ChunkType = Field(default=ChunkType.TABLE)
# Table structure
cells: List[TableCell] = Field(default_factory=list, description="All table cells")
num_rows: int = Field(default=0, ge=0, description="Number of rows")
num_cols: int = Field(default=0, ge=0, description="Number of columns")
# Headers
header_rows: List[int] = Field(default_factory=list, description="Header row indices")
header_cols: List[int] = Field(default_factory=list, description="Header column indices")
# Table metadata
has_merged_cells: bool = Field(default=False)
table_title: Optional[str] = Field(default=None)
def get_cell(self, row: int, col: int) -> Optional[TableCell]:
"""Get cell at specific position."""
for cell in self.cells:
if cell.row == row and cell.col == col:
return cell
# Check merged cells
if (cell.row <= row < cell.row + cell.rowspan and
cell.col <= col < cell.col + cell.colspan):
return cell
return None
def get_row(self, row: int) -> List[TableCell]:
"""Get all cells in a row."""
return [c for c in self.cells if c.row == row]
def get_column(self, col: int) -> List[TableCell]:
"""Get all cells in a column."""
return [c for c in self.cells if c.col == col]
def to_csv(self) -> str:
"""Export table to CSV format."""
import io
import csv
output = io.StringIO()
writer = csv.writer(output)
for row_idx in range(self.num_rows):
row_data = []
for col_idx in range(self.num_cols):
cell = self.get_cell(row_idx, col_idx)
row_data.append(cell.text if cell else "")
writer.writerow(row_data)
return output.getvalue()
def to_markdown(self) -> str:
"""Export table to Markdown format."""
lines = []
for row_idx in range(self.num_rows):
row_cells = []
for col_idx in range(self.num_cols):
cell = self.get_cell(row_idx, col_idx)
row_cells.append(cell.text if cell else "")
lines.append("| " + " | ".join(row_cells) + " |")
# Add separator after header
if row_idx == 0 or row_idx in self.header_rows:
lines.append("| " + " | ".join(["---"] * self.num_cols) + " |")
return "\n".join(lines)
def to_structured_json(self) -> Dict[str, Any]:
"""Export table to structured JSON with headers."""
# Determine headers
headers = []
if self.header_rows:
for col_idx in range(self.num_cols):
cell = self.get_cell(self.header_rows[0], col_idx)
headers.append(cell.text if cell else f"col_{col_idx}")
else:
headers = [f"col_{i}" for i in range(self.num_cols)]
# Extract data rows
data_start = max(self.header_rows) + 1 if self.header_rows else 0
rows = []
for row_idx in range(data_start, self.num_rows):
row_dict = {}
for col_idx, header in enumerate(headers):
cell = self.get_cell(row_idx, col_idx)
row_dict[header] = cell.text if cell else ""
rows.append(row_dict)
return {
"headers": headers,
"rows": rows,
"num_rows": self.num_rows - len(self.header_rows),
"num_cols": self.num_cols,
}
class ChartDataPoint(BaseModel):
"""A data point in a chart."""
label: Optional[str] = None
value: Optional[float] = None
category: Optional[str] = None
series: Optional[str] = None
confidence: float = Field(default=1.0, ge=0.0, le=1.0)
class ChartChunk(DocumentChunk):
"""
Specialized chunk for charts/graphs with structured interpretation.
Extracts title, axes, series, and key values from visualizations.
"""
chunk_type: ChunkType = Field(default=ChunkType.CHART)
# Chart metadata
chart_type: Optional[str] = Field(default=None, description="bar, line, pie, scatter, etc.")
title: Optional[str] = Field(default=None)
# Axes
x_axis_label: Optional[str] = Field(default=None)
y_axis_label: Optional[str] = Field(default=None)
x_axis_unit: Optional[str] = Field(default=None)
y_axis_unit: Optional[str] = Field(default=None)
# Data
series_names: List[str] = Field(default_factory=list)
data_points: List[ChartDataPoint] = Field(default_factory=list)
# Interpretation
key_values: Dict[str, Any] = Field(default_factory=dict, description="Key numeric values")
trends: List[str] = Field(default_factory=list, description="Identified trends")
summary: Optional[str] = Field(default=None, description="Natural language summary")
def to_structured_json(self) -> Dict[str, Any]:
"""Export chart data as structured JSON."""
return {
"chart_type": self.chart_type,
"title": self.title,
"axes": {
"x": {"label": self.x_axis_label, "unit": self.x_axis_unit},
"y": {"label": self.y_axis_label, "unit": self.y_axis_unit},
},
"series": self.series_names,
"data_points": [dp.model_dump() for dp in self.data_points],
"key_values": self.key_values,
"trends": self.trends,
"summary": self.summary,
}
class FormFieldChunk(DocumentChunk):
"""
Specialized chunk for form fields.
Handles text fields, checkboxes, radio buttons, signatures.
"""
chunk_type: ChunkType = Field(default=ChunkType.FORM_FIELD)
# Field metadata
field_name: Optional[str] = Field(default=None, description="Field label/name")
field_value: Optional[str] = Field(default=None, description="Extracted value")
field_type: str = Field(default="text", description="text, checkbox, signature, date, etc.")
# For checkboxes/radio
is_checked: Optional[bool] = Field(default=None)
options: List[str] = Field(default_factory=list)
# Validation
is_required: bool = Field(default=False)
is_filled: bool = Field(default=False)
# =============================================================================
# Evidence References
# =============================================================================
class EvidenceRef(BaseModel):
"""
Evidence reference for grounding extractions.
Links every extracted value back to its source in the document.
Required for auditability and trust.
"""
# Source identification
chunk_id: str = Field(..., description="Source chunk ID")
doc_id: str = Field(..., description="Document ID")
page: int = Field(..., ge=0, description="Page number (0-indexed)")
bbox: BoundingBox = Field(..., description="Bounding box of evidence")
# Evidence content
source_type: str = Field(..., description="text, table, chart, form_field, etc.")
snippet: str = Field(..., max_length=1000, description="Text snippet as evidence")
# Quality
confidence: float = Field(..., ge=0.0, le=1.0, description="Evidence confidence")
# Optional cell reference for tables
cell_id: Optional[str] = Field(default=None, description="Table cell ID if applicable")
# Optional visual evidence
crop_path: Optional[str] = Field(default=None, description="Path to cropped image")
image_base64: Optional[str] = Field(default=None, description="Base64 encoded crop")
# Warnings
warnings: List[str] = Field(default_factory=list)
@property
def needs_review(self) -> bool:
return self.confidence < 0.7 or len(self.warnings) > 0
def to_citation(self, include_bbox: bool = False) -> str:
"""Format as human-readable citation."""
citation = f"[Page {self.page + 1}, {self.source_type}]"
if include_bbox:
citation += f" @ ({self.bbox.x_min:.0f}, {self.bbox.y_min:.0f})"
citation += f': "{self.snippet[:100]}..."' if len(self.snippet) > 100 else f': "{self.snippet}"'
return citation
# =============================================================================
# Parse Results
# =============================================================================
class PageResult(BaseModel):
"""Result of parsing a single page."""
page_num: int = Field(..., ge=0, description="Page number (0-indexed)")
width: int = Field(..., gt=0, description="Page width in pixels")
height: int = Field(..., gt=0, description="Page height in pixels")
# Page content
chunks: List[DocumentChunk] = Field(default_factory=list)
markdown: str = Field(default="", description="Page content as Markdown")
# Quality metrics
ocr_confidence: Optional[float] = Field(default=None)
layout_confidence: Optional[float] = Field(default=None)
# Image path
image_path: Optional[str] = Field(default=None, description="Path to rendered page image")
class ParseResult(BaseModel):
"""
Complete result of document parsing.
Contains all parsed content with metadata for downstream processing.
"""
# Document identification
doc_id: str = Field(..., description="Unique document identifier")
source_path: str = Field(..., description="Original file path")
filename: str = Field(..., description="Original filename")
# File metadata
file_type: str = Field(..., description="pdf, png, jpg, tiff, etc.")
file_size_bytes: int = Field(default=0, ge=0)
file_hash: Optional[str] = Field(default=None, description="SHA256 of file content")
# Page data
num_pages: int = Field(..., ge=1)
pages: List[PageResult] = Field(default_factory=list)
# Aggregated chunks (all pages)
chunks: List[DocumentChunk] = Field(default_factory=list)
# Full document markdown
markdown_full: str = Field(default="", description="Full document as Markdown")
markdown_by_page: Dict[int, str] = Field(default_factory=dict)
# Processing metadata
parsed_at: datetime = Field(default_factory=datetime.utcnow)
processing_time_ms: float = Field(default=0.0)
# Quality metrics
avg_ocr_confidence: Optional[float] = Field(default=None)
avg_layout_confidence: Optional[float] = Field(default=None)
# Language detection
detected_language: Optional[str] = Field(default=None)
# Processing info
models_used: Dict[str, str] = Field(default_factory=dict, description="Model name -> version")
# Warnings and errors
warnings: List[str] = Field(default_factory=list)
errors: List[str] = Field(default_factory=list)
# Additional metadata
metadata: Dict[str, Any] = Field(default_factory=dict)
@property
def is_successful(self) -> bool:
return len(self.errors) == 0 and len(self.chunks) > 0
@property
def has_tables(self) -> bool:
return any(c.chunk_type == ChunkType.TABLE for c in self.chunks)
@property
def has_charts(self) -> bool:
return any(c.chunk_type == ChunkType.CHART for c in self.chunks)
def get_chunks_by_type(self, chunk_type: ChunkType) -> List[DocumentChunk]:
return [c for c in self.chunks if c.chunk_type == chunk_type]
def get_chunks_by_page(self, page: int) -> List[DocumentChunk]:
return [c for c in self.chunks if c.page == page]
def get_tables(self) -> List[TableChunk]:
return [c for c in self.chunks if isinstance(c, TableChunk)]
def get_charts(self) -> List[ChartChunk]:
return [c for c in self.chunks if isinstance(c, ChartChunk)]
def to_json(self, indent: int = 2) -> str:
"""Serialize to JSON."""
return self.model_dump_json(indent=indent)
@classmethod
def from_json(cls, json_str: str) -> ParseResult:
"""Deserialize from JSON."""
return cls.model_validate_json(json_str)
def save(self, path: Union[str, Path]):
"""Save to JSON file."""
Path(path).write_text(self.to_json(), encoding="utf-8")
@classmethod
def load(cls, path: Union[str, Path]) -> ParseResult:
"""Load from JSON file."""
return cls.from_json(Path(path).read_text(encoding="utf-8"))
# =============================================================================
# Extraction Results
# =============================================================================
class FieldExtraction(BaseModel):
"""
Single extracted field with evidence.
"""
field_name: str = Field(..., description="Schema field name")
value: Any = Field(..., description="Extracted value")
value_type: str = Field(..., description="string, number, boolean, array, object")
# Grounding
evidence: List[EvidenceRef] = Field(default_factory=list)
confidence: float = Field(default=1.0, ge=0.0, le=1.0)
# Validation
is_valid: bool = Field(default=True)
validation_errors: List[str] = Field(default_factory=list)
# Abstention
abstained: bool = Field(default=False)
abstain_reason: Optional[str] = Field(default=None)
class ExtractionResult(BaseModel):
"""
Complete extraction result with data, evidence, and validation.
"""
# Extracted data
data: Dict[str, Any] = Field(default_factory=dict)
fields: List[FieldExtraction] = Field(default_factory=list)
# Grounding
evidence: List[EvidenceRef] = Field(default_factory=list)
# Quality
overall_confidence: float = Field(default=1.0, ge=0.0, le=1.0)
# Validation
validation_passed: bool = Field(default=True)
validation_errors: List[str] = Field(default_factory=list)
validation_warnings: List[str] = Field(default_factory=list)
# Abstention
abstained_fields: List[str] = Field(default_factory=list)
# Processing
processing_time_ms: float = Field(default=0.0)
model_used: Optional[str] = Field(default=None)
@property
def is_grounded(self) -> bool:
"""Check if all fields have evidence."""
return all(f.evidence for f in self.fields if not f.abstained)
@property
def needs_review(self) -> bool:
"""Check if result needs human review."""
return (
self.overall_confidence < 0.7 or
len(self.abstained_fields) > 0 or
not self.validation_passed
)
# =============================================================================
# Document Classification
# =============================================================================
class DocumentType(str, Enum):
"""Document type classifications."""
INVOICE = "invoice"
CONTRACT = "contract"
AGREEMENT = "agreement"
PATENT = "patent"
RESEARCH_PAPER = "research_paper"
REPORT = "report"
LETTER = "letter"
FORM = "form"
RECEIPT = "receipt"
BANK_STATEMENT = "bank_statement"
TAX_DOCUMENT = "tax_document"
ID_DOCUMENT = "id_document"
MEDICAL_RECORD = "medical_record"
LEGAL_DOCUMENT = "legal_document"
TECHNICAL_SPEC = "technical_spec"
PRESENTATION = "presentation"
SPREADSHEET = "spreadsheet"
EMAIL = "email"
OTHER = "other"
UNKNOWN = "unknown"
class ClassificationResult(BaseModel):
"""Document classification result."""
doc_id: str
doc_type: DocumentType
confidence: float = Field(ge=0.0, le=1.0)
# Alternative classifications
alternatives: List[Tuple[DocumentType, float]] = Field(default_factory=list)
# Evidence
evidence: List[EvidenceRef] = Field(default_factory=list)
reasoning: Optional[str] = Field(default=None)
# Confidence threshold check
is_confident: bool = Field(default=True)