File size: 28,196 Bytes
d520909 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 |
"""
Core Data Models for Document Intelligence
Comprehensive Pydantic models for:
- Bounding boxes and spatial data
- Document chunks (text, table, chart, form fields)
- Evidence references for grounding
- Parse results and document metadata
Design principles:
- Vision-first: treat documents as visual objects
- Grounding: every extraction has evidence pointers
- Stable IDs: reproducible, hash-based chunk identifiers
- Schema-compatible: JSON export/import, Pydantic validation
"""
from __future__ import annotations
import hashlib
import json
from datetime import datetime
from enum import Enum
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union
from pydantic import BaseModel, Field, field_validator, model_validator
# =============================================================================
# Bounding Box Models
# =============================================================================
class BoundingBox(BaseModel):
"""
Bounding box in XYXY format (x_min, y_min, x_max, y_max).
Supports both pixel coordinates and normalized (0-1) coordinates.
All spatial grounding uses this as the standard format.
"""
x_min: float = Field(..., description="Left edge (x1)")
y_min: float = Field(..., description="Top edge (y1)")
x_max: float = Field(..., description="Right edge (x2)")
y_max: float = Field(..., description="Bottom edge (y2)")
# Coordinate system metadata
normalized: bool = Field(default=False, description="True if 0-1 normalized")
page_width: Optional[int] = Field(default=None, description="Page width in pixels")
page_height: Optional[int] = Field(default=None, description="Page height in pixels")
@field_validator('x_max')
@classmethod
def validate_x_max(cls, v, info):
if 'x_min' in info.data and v < info.data['x_min']:
raise ValueError('x_max must be >= x_min')
return v
@field_validator('y_max')
@classmethod
def validate_y_max(cls, v, info):
if 'y_min' in info.data and v < info.data['y_min']:
raise ValueError('y_max must be >= y_min')
return v
@property
def width(self) -> float:
return self.x_max - self.x_min
@property
def height(self) -> float:
return self.y_max - self.y_min
@property
def area(self) -> float:
return self.width * self.height
@property
def center(self) -> Tuple[float, float]:
return ((self.x_min + self.x_max) / 2, (self.y_min + self.y_max) / 2)
@property
def xyxy(self) -> Tuple[float, float, float, float]:
"""Return as (x_min, y_min, x_max, y_max)."""
return (self.x_min, self.y_min, self.x_max, self.y_max)
@property
def xywh(self) -> Tuple[float, float, float, float]:
"""Return as (x, y, width, height)."""
return (self.x_min, self.y_min, self.width, self.height)
def to_pixel(self, width: int, height: int) -> BoundingBox:
"""Convert to pixel coordinates."""
if not self.normalized:
return self
return BoundingBox(
x_min=int(self.x_min * width),
y_min=int(self.y_min * height),
x_max=int(self.x_max * width),
y_max=int(self.y_max * height),
normalized=False,
page_width=width,
page_height=height,
)
def to_normalized(self, width: int, height: int) -> BoundingBox:
"""Convert to normalized (0-1) coordinates."""
if self.normalized:
return self
return BoundingBox(
x_min=self.x_min / width,
y_min=self.y_min / height,
x_max=self.x_max / width,
y_max=self.y_max / height,
normalized=True,
page_width=width,
page_height=height,
)
def iou(self, other: BoundingBox) -> float:
"""Calculate Intersection over Union."""
x1 = max(self.x_min, other.x_min)
y1 = max(self.y_min, other.y_min)
x2 = min(self.x_max, other.x_max)
y2 = min(self.y_max, other.y_max)
if x2 < x1 or y2 < y1:
return 0.0
intersection = (x2 - x1) * (y2 - y1)
union = self.area + other.area - intersection
return intersection / union if union > 0 else 0.0
def contains(self, other: BoundingBox) -> bool:
"""Check if this bbox fully contains another."""
return (
self.x_min <= other.x_min and
self.y_min <= other.y_min and
self.x_max >= other.x_max and
self.y_max >= other.y_max
)
def expand(self, margin: float) -> BoundingBox:
"""Expand bbox by margin pixels."""
return BoundingBox(
x_min=max(0, self.x_min - margin),
y_min=max(0, self.y_min - margin),
x_max=self.x_max + margin,
y_max=self.y_max + margin,
normalized=self.normalized,
page_width=self.page_width,
page_height=self.page_height,
)
def clip(self, max_width: float, max_height: float) -> BoundingBox:
"""Clip bbox to image boundaries."""
return BoundingBox(
x_min=max(0, self.x_min),
y_min=max(0, self.y_min),
x_max=min(max_width, self.x_max),
y_max=min(max_height, self.y_max),
normalized=self.normalized,
page_width=self.page_width,
page_height=self.page_height,
)
@classmethod
def from_xyxy(cls, xyxy: Tuple[float, float, float, float], **kwargs) -> BoundingBox:
"""Create from (x_min, y_min, x_max, y_max) tuple."""
return cls(x_min=xyxy[0], y_min=xyxy[1], x_max=xyxy[2], y_max=xyxy[3], **kwargs)
@classmethod
def from_xywh(cls, xywh: Tuple[float, float, float, float], **kwargs) -> BoundingBox:
"""Create from (x, y, width, height) tuple."""
x, y, w, h = xywh
return cls(x_min=x, y_min=y, x_max=x + w, y_max=y + h, **kwargs)
def __hash__(self):
return hash((self.x_min, self.y_min, self.x_max, self.y_max))
# =============================================================================
# Chunk Type Enumerations
# =============================================================================
class ChunkType(str, Enum):
"""
Semantic chunk types for document segmentation.
Covers text, tables, figures, charts, forms, and structural elements.
Used for routing chunks to specialized extraction logic.
"""
# Text types
TEXT = "text"
TITLE = "title"
HEADING = "heading"
PARAGRAPH = "paragraph"
LIST = "list"
LIST_ITEM = "list_item"
# Structured types
TABLE = "table"
TABLE_CELL = "table_cell"
FIGURE = "figure"
CHART = "chart"
FORMULA = "formula"
CODE = "code"
# Form types
FORM_FIELD = "form_field"
CHECKBOX = "checkbox"
SIGNATURE = "signature"
STAMP = "stamp"
HANDWRITING = "handwriting"
# Document structure
HEADER = "header"
FOOTER = "footer"
PAGE_NUMBER = "page_number"
CAPTION = "caption"
FOOTNOTE = "footnote"
WATERMARK = "watermark"
LOGO = "logo"
# Metadata
METADATA = "metadata"
UNKNOWN = "unknown"
class ConfidenceLevel(str, Enum):
"""Confidence level classification."""
HIGH = "high" # >= 0.9
MEDIUM = "medium" # >= 0.7
LOW = "low" # >= 0.5
VERY_LOW = "very_low" # < 0.5
@classmethod
def from_score(cls, score: float) -> ConfidenceLevel:
if score >= 0.9:
return cls.HIGH
elif score >= 0.7:
return cls.MEDIUM
elif score >= 0.5:
return cls.LOW
else:
return cls.VERY_LOW
# =============================================================================
# Core Document Chunk
# =============================================================================
class DocumentChunk(BaseModel):
"""
Base document chunk with text and grounding evidence.
This is the fundamental unit for retrieval and extraction.
Every chunk has:
- Stable, reproducible chunk_id (hash-based)
- Precise spatial grounding (page, bbox)
- Confidence score for quality assessment
"""
# Identity
chunk_id: str = Field(..., description="Unique, stable chunk identifier")
doc_id: str = Field(..., description="Parent document identifier")
# Content
chunk_type: ChunkType = Field(..., description="Semantic type")
text: str = Field(..., description="Text content")
# Spatial grounding
page: int = Field(..., ge=0, description="Zero-indexed page number")
bbox: BoundingBox = Field(..., description="Bounding box on page")
# Quality metrics
confidence: float = Field(default=1.0, ge=0.0, le=1.0, description="Extraction confidence")
# Reading order
sequence_index: int = Field(default=0, ge=0, description="Position in reading order")
# Source tracking
source_path: Optional[str] = Field(default=None, description="Original file path")
# Relationships
parent_id: Optional[str] = Field(default=None, description="Parent chunk ID")
children_ids: List[str] = Field(default_factory=list, description="Child chunk IDs")
# Associated content
caption: Optional[str] = Field(default=None, description="Caption if applicable")
# Warnings and quality issues
warnings: List[str] = Field(default_factory=list, description="Quality warnings")
# Additional metadata
extra: Dict[str, Any] = Field(default_factory=dict, description="Type-specific metadata")
# Optional embedding (populated during indexing)
embedding: Optional[List[float]] = Field(default=None, exclude=True)
@property
def confidence_level(self) -> ConfidenceLevel:
return ConfidenceLevel.from_score(self.confidence)
@property
def needs_review(self) -> bool:
"""Check if chunk needs human review."""
return self.confidence < 0.7 or len(self.warnings) > 0
def content_hash(self) -> str:
"""Generate hash of chunk content for deduplication."""
content = f"{self.doc_id}:{self.page}:{self.chunk_type.value}:{self.text[:200]}"
return hashlib.sha256(content.encode()).hexdigest()[:16]
@staticmethod
def generate_chunk_id(
doc_id: str,
page: int,
bbox: BoundingBox,
chunk_type: ChunkType,
) -> str:
"""
Generate a stable, reproducible chunk ID.
Uses hash of (doc_id, page, bbox, type) for reproducibility.
"""
bbox_str = f"{bbox.x_min:.2f},{bbox.y_min:.2f},{bbox.x_max:.2f},{bbox.y_max:.2f}"
content = f"{doc_id}:p{page}:{bbox_str}:{chunk_type.value}"
return hashlib.sha256(content.encode()).hexdigest()[:16]
def to_retrieval_metadata(self) -> Dict[str, Any]:
"""Convert to metadata dict for vector store."""
return {
"chunk_id": self.chunk_id,
"doc_id": self.doc_id,
"chunk_type": self.chunk_type.value,
"page": self.page,
"bbox_xyxy": list(self.bbox.xyxy),
"confidence": self.confidence,
"sequence_index": self.sequence_index,
"source_path": self.source_path,
}
def __hash__(self):
return hash(self.chunk_id)
# =============================================================================
# Specialized Chunk Types
# =============================================================================
class TableCell(BaseModel):
"""A single cell in a table."""
cell_id: str = Field(..., description="Unique cell identifier")
row: int = Field(..., ge=0, description="Row index (0-based)")
col: int = Field(..., ge=0, description="Column index (0-based)")
text: str = Field(default="", description="Cell text content")
bbox: Optional[BoundingBox] = Field(default=None, description="Cell bounding box")
# Spanning
rowspan: int = Field(default=1, ge=1, description="Number of rows spanned")
colspan: int = Field(default=1, ge=1, description="Number of columns spanned")
# Cell type
is_header: bool = Field(default=False, description="Is header cell")
confidence: float = Field(default=1.0, ge=0.0, le=1.0)
class TableChunk(DocumentChunk):
"""
Specialized chunk for tables with structured cell data.
Preserves row/column structure and supports merged cells.
"""
chunk_type: ChunkType = Field(default=ChunkType.TABLE)
# Table structure
cells: List[TableCell] = Field(default_factory=list, description="All table cells")
num_rows: int = Field(default=0, ge=0, description="Number of rows")
num_cols: int = Field(default=0, ge=0, description="Number of columns")
# Headers
header_rows: List[int] = Field(default_factory=list, description="Header row indices")
header_cols: List[int] = Field(default_factory=list, description="Header column indices")
# Table metadata
has_merged_cells: bool = Field(default=False)
table_title: Optional[str] = Field(default=None)
def get_cell(self, row: int, col: int) -> Optional[TableCell]:
"""Get cell at specific position."""
for cell in self.cells:
if cell.row == row and cell.col == col:
return cell
# Check merged cells
if (cell.row <= row < cell.row + cell.rowspan and
cell.col <= col < cell.col + cell.colspan):
return cell
return None
def get_row(self, row: int) -> List[TableCell]:
"""Get all cells in a row."""
return [c for c in self.cells if c.row == row]
def get_column(self, col: int) -> List[TableCell]:
"""Get all cells in a column."""
return [c for c in self.cells if c.col == col]
def to_csv(self) -> str:
"""Export table to CSV format."""
import io
import csv
output = io.StringIO()
writer = csv.writer(output)
for row_idx in range(self.num_rows):
row_data = []
for col_idx in range(self.num_cols):
cell = self.get_cell(row_idx, col_idx)
row_data.append(cell.text if cell else "")
writer.writerow(row_data)
return output.getvalue()
def to_markdown(self) -> str:
"""Export table to Markdown format."""
lines = []
for row_idx in range(self.num_rows):
row_cells = []
for col_idx in range(self.num_cols):
cell = self.get_cell(row_idx, col_idx)
row_cells.append(cell.text if cell else "")
lines.append("| " + " | ".join(row_cells) + " |")
# Add separator after header
if row_idx == 0 or row_idx in self.header_rows:
lines.append("| " + " | ".join(["---"] * self.num_cols) + " |")
return "\n".join(lines)
def to_structured_json(self) -> Dict[str, Any]:
"""Export table to structured JSON with headers."""
# Determine headers
headers = []
if self.header_rows:
for col_idx in range(self.num_cols):
cell = self.get_cell(self.header_rows[0], col_idx)
headers.append(cell.text if cell else f"col_{col_idx}")
else:
headers = [f"col_{i}" for i in range(self.num_cols)]
# Extract data rows
data_start = max(self.header_rows) + 1 if self.header_rows else 0
rows = []
for row_idx in range(data_start, self.num_rows):
row_dict = {}
for col_idx, header in enumerate(headers):
cell = self.get_cell(row_idx, col_idx)
row_dict[header] = cell.text if cell else ""
rows.append(row_dict)
return {
"headers": headers,
"rows": rows,
"num_rows": self.num_rows - len(self.header_rows),
"num_cols": self.num_cols,
}
class ChartDataPoint(BaseModel):
"""A data point in a chart."""
label: Optional[str] = None
value: Optional[float] = None
category: Optional[str] = None
series: Optional[str] = None
confidence: float = Field(default=1.0, ge=0.0, le=1.0)
class ChartChunk(DocumentChunk):
"""
Specialized chunk for charts/graphs with structured interpretation.
Extracts title, axes, series, and key values from visualizations.
"""
chunk_type: ChunkType = Field(default=ChunkType.CHART)
# Chart metadata
chart_type: Optional[str] = Field(default=None, description="bar, line, pie, scatter, etc.")
title: Optional[str] = Field(default=None)
# Axes
x_axis_label: Optional[str] = Field(default=None)
y_axis_label: Optional[str] = Field(default=None)
x_axis_unit: Optional[str] = Field(default=None)
y_axis_unit: Optional[str] = Field(default=None)
# Data
series_names: List[str] = Field(default_factory=list)
data_points: List[ChartDataPoint] = Field(default_factory=list)
# Interpretation
key_values: Dict[str, Any] = Field(default_factory=dict, description="Key numeric values")
trends: List[str] = Field(default_factory=list, description="Identified trends")
summary: Optional[str] = Field(default=None, description="Natural language summary")
def to_structured_json(self) -> Dict[str, Any]:
"""Export chart data as structured JSON."""
return {
"chart_type": self.chart_type,
"title": self.title,
"axes": {
"x": {"label": self.x_axis_label, "unit": self.x_axis_unit},
"y": {"label": self.y_axis_label, "unit": self.y_axis_unit},
},
"series": self.series_names,
"data_points": [dp.model_dump() for dp in self.data_points],
"key_values": self.key_values,
"trends": self.trends,
"summary": self.summary,
}
class FormFieldChunk(DocumentChunk):
"""
Specialized chunk for form fields.
Handles text fields, checkboxes, radio buttons, signatures.
"""
chunk_type: ChunkType = Field(default=ChunkType.FORM_FIELD)
# Field metadata
field_name: Optional[str] = Field(default=None, description="Field label/name")
field_value: Optional[str] = Field(default=None, description="Extracted value")
field_type: str = Field(default="text", description="text, checkbox, signature, date, etc.")
# For checkboxes/radio
is_checked: Optional[bool] = Field(default=None)
options: List[str] = Field(default_factory=list)
# Validation
is_required: bool = Field(default=False)
is_filled: bool = Field(default=False)
# =============================================================================
# Evidence References
# =============================================================================
class EvidenceRef(BaseModel):
"""
Evidence reference for grounding extractions.
Links every extracted value back to its source in the document.
Required for auditability and trust.
"""
# Source identification
chunk_id: str = Field(..., description="Source chunk ID")
doc_id: str = Field(..., description="Document ID")
page: int = Field(..., ge=0, description="Page number (0-indexed)")
bbox: BoundingBox = Field(..., description="Bounding box of evidence")
# Evidence content
source_type: str = Field(..., description="text, table, chart, form_field, etc.")
snippet: str = Field(..., max_length=1000, description="Text snippet as evidence")
# Quality
confidence: float = Field(..., ge=0.0, le=1.0, description="Evidence confidence")
# Optional cell reference for tables
cell_id: Optional[str] = Field(default=None, description="Table cell ID if applicable")
# Optional visual evidence
crop_path: Optional[str] = Field(default=None, description="Path to cropped image")
image_base64: Optional[str] = Field(default=None, description="Base64 encoded crop")
# Warnings
warnings: List[str] = Field(default_factory=list)
@property
def needs_review(self) -> bool:
return self.confidence < 0.7 or len(self.warnings) > 0
def to_citation(self, include_bbox: bool = False) -> str:
"""Format as human-readable citation."""
citation = f"[Page {self.page + 1}, {self.source_type}]"
if include_bbox:
citation += f" @ ({self.bbox.x_min:.0f}, {self.bbox.y_min:.0f})"
citation += f': "{self.snippet[:100]}..."' if len(self.snippet) > 100 else f': "{self.snippet}"'
return citation
# =============================================================================
# Parse Results
# =============================================================================
class PageResult(BaseModel):
"""Result of parsing a single page."""
page_num: int = Field(..., ge=0, description="Page number (0-indexed)")
width: int = Field(..., gt=0, description="Page width in pixels")
height: int = Field(..., gt=0, description="Page height in pixels")
# Page content
chunks: List[DocumentChunk] = Field(default_factory=list)
markdown: str = Field(default="", description="Page content as Markdown")
# Quality metrics
ocr_confidence: Optional[float] = Field(default=None)
layout_confidence: Optional[float] = Field(default=None)
# Image path
image_path: Optional[str] = Field(default=None, description="Path to rendered page image")
class ParseResult(BaseModel):
"""
Complete result of document parsing.
Contains all parsed content with metadata for downstream processing.
"""
# Document identification
doc_id: str = Field(..., description="Unique document identifier")
source_path: str = Field(..., description="Original file path")
filename: str = Field(..., description="Original filename")
# File metadata
file_type: str = Field(..., description="pdf, png, jpg, tiff, etc.")
file_size_bytes: int = Field(default=0, ge=0)
file_hash: Optional[str] = Field(default=None, description="SHA256 of file content")
# Page data
num_pages: int = Field(..., ge=1)
pages: List[PageResult] = Field(default_factory=list)
# Aggregated chunks (all pages)
chunks: List[DocumentChunk] = Field(default_factory=list)
# Full document markdown
markdown_full: str = Field(default="", description="Full document as Markdown")
markdown_by_page: Dict[int, str] = Field(default_factory=dict)
# Processing metadata
parsed_at: datetime = Field(default_factory=datetime.utcnow)
processing_time_ms: float = Field(default=0.0)
# Quality metrics
avg_ocr_confidence: Optional[float] = Field(default=None)
avg_layout_confidence: Optional[float] = Field(default=None)
# Language detection
detected_language: Optional[str] = Field(default=None)
# Processing info
models_used: Dict[str, str] = Field(default_factory=dict, description="Model name -> version")
# Warnings and errors
warnings: List[str] = Field(default_factory=list)
errors: List[str] = Field(default_factory=list)
# Additional metadata
metadata: Dict[str, Any] = Field(default_factory=dict)
@property
def is_successful(self) -> bool:
return len(self.errors) == 0 and len(self.chunks) > 0
@property
def has_tables(self) -> bool:
return any(c.chunk_type == ChunkType.TABLE for c in self.chunks)
@property
def has_charts(self) -> bool:
return any(c.chunk_type == ChunkType.CHART for c in self.chunks)
def get_chunks_by_type(self, chunk_type: ChunkType) -> List[DocumentChunk]:
return [c for c in self.chunks if c.chunk_type == chunk_type]
def get_chunks_by_page(self, page: int) -> List[DocumentChunk]:
return [c for c in self.chunks if c.page == page]
def get_tables(self) -> List[TableChunk]:
return [c for c in self.chunks if isinstance(c, TableChunk)]
def get_charts(self) -> List[ChartChunk]:
return [c for c in self.chunks if isinstance(c, ChartChunk)]
def to_json(self, indent: int = 2) -> str:
"""Serialize to JSON."""
return self.model_dump_json(indent=indent)
@classmethod
def from_json(cls, json_str: str) -> ParseResult:
"""Deserialize from JSON."""
return cls.model_validate_json(json_str)
def save(self, path: Union[str, Path]):
"""Save to JSON file."""
Path(path).write_text(self.to_json(), encoding="utf-8")
@classmethod
def load(cls, path: Union[str, Path]) -> ParseResult:
"""Load from JSON file."""
return cls.from_json(Path(path).read_text(encoding="utf-8"))
# =============================================================================
# Extraction Results
# =============================================================================
class FieldExtraction(BaseModel):
"""
Single extracted field with evidence.
"""
field_name: str = Field(..., description="Schema field name")
value: Any = Field(..., description="Extracted value")
value_type: str = Field(..., description="string, number, boolean, array, object")
# Grounding
evidence: List[EvidenceRef] = Field(default_factory=list)
confidence: float = Field(default=1.0, ge=0.0, le=1.0)
# Validation
is_valid: bool = Field(default=True)
validation_errors: List[str] = Field(default_factory=list)
# Abstention
abstained: bool = Field(default=False)
abstain_reason: Optional[str] = Field(default=None)
class ExtractionResult(BaseModel):
"""
Complete extraction result with data, evidence, and validation.
"""
# Extracted data
data: Dict[str, Any] = Field(default_factory=dict)
fields: List[FieldExtraction] = Field(default_factory=list)
# Grounding
evidence: List[EvidenceRef] = Field(default_factory=list)
# Quality
overall_confidence: float = Field(default=1.0, ge=0.0, le=1.0)
# Validation
validation_passed: bool = Field(default=True)
validation_errors: List[str] = Field(default_factory=list)
validation_warnings: List[str] = Field(default_factory=list)
# Abstention
abstained_fields: List[str] = Field(default_factory=list)
# Processing
processing_time_ms: float = Field(default=0.0)
model_used: Optional[str] = Field(default=None)
@property
def is_grounded(self) -> bool:
"""Check if all fields have evidence."""
return all(f.evidence for f in self.fields if not f.abstained)
@property
def needs_review(self) -> bool:
"""Check if result needs human review."""
return (
self.overall_confidence < 0.7 or
len(self.abstained_fields) > 0 or
not self.validation_passed
)
# =============================================================================
# Document Classification
# =============================================================================
class DocumentType(str, Enum):
"""Document type classifications."""
INVOICE = "invoice"
CONTRACT = "contract"
AGREEMENT = "agreement"
PATENT = "patent"
RESEARCH_PAPER = "research_paper"
REPORT = "report"
LETTER = "letter"
FORM = "form"
RECEIPT = "receipt"
BANK_STATEMENT = "bank_statement"
TAX_DOCUMENT = "tax_document"
ID_DOCUMENT = "id_document"
MEDICAL_RECORD = "medical_record"
LEGAL_DOCUMENT = "legal_document"
TECHNICAL_SPEC = "technical_spec"
PRESENTATION = "presentation"
SPREADSHEET = "spreadsheet"
EMAIL = "email"
OTHER = "other"
UNKNOWN = "unknown"
class ClassificationResult(BaseModel):
"""Document classification result."""
doc_id: str
doc_type: DocumentType
confidence: float = Field(ge=0.0, le=1.0)
# Alternative classifications
alternatives: List[Tuple[DocumentType, float]] = Field(default_factory=list)
# Evidence
evidence: List[EvidenceRef] = Field(default_factory=list)
reasoning: Optional[str] = Field(default=None)
# Confidence threshold check
is_confident: bool = Field(default=True)
|