MHamdan's picture
Initial commit: SPARKNET framework
d520909
"""
Extraction Critic for Validation
Validates extracted information against source evidence.
Provides confidence scoring and abstention recommendations.
"""
from typing import List, Optional, Dict, Any, Tuple
from enum import Enum
from pydantic import BaseModel, Field
from loguru import logger
try:
import httpx
HTTPX_AVAILABLE = True
except ImportError:
HTTPX_AVAILABLE = False
class ValidationStatus(str, Enum):
"""Validation status codes."""
VALID = "valid"
INVALID = "invalid"
UNCERTAIN = "uncertain"
ABSTAIN = "abstain"
NO_EVIDENCE = "no_evidence"
class CriticConfig(BaseModel):
"""Configuration for extraction critic."""
# LLM settings
llm_provider: str = Field(default="ollama", description="LLM provider")
ollama_base_url: str = Field(default="http://localhost:11434")
ollama_model: str = Field(default="llama3.2:3b")
# Validation thresholds
confidence_threshold: float = Field(
default=0.7,
ge=0.0,
le=1.0,
description="Minimum confidence for valid extraction"
)
evidence_required: bool = Field(
default=True,
description="Require evidence for validation"
)
strict_mode: bool = Field(
default=False,
description="Strict validation mode"
)
# Processing
max_fields_per_request: int = Field(default=10, ge=1)
timeout: float = Field(default=60.0, ge=1.0)
class FieldValidation(BaseModel):
"""Validation result for a single field."""
field_name: str
extracted_value: Any
status: ValidationStatus
confidence: float
reasoning: str
# Evidence
evidence_found: bool = False
evidence_snippet: Optional[str] = None
evidence_page: Optional[int] = None
# Suggestions
suggested_value: Optional[Any] = None
correction_reason: Optional[str] = None
class ValidationResult(BaseModel):
"""Complete validation result."""
overall_status: ValidationStatus
overall_confidence: float
field_validations: List[FieldValidation]
# Statistics
valid_count: int = 0
invalid_count: int = 0
uncertain_count: int = 0
abstain_count: int = 0
# Recommendations
should_accept: bool
abstain_reason: Optional[str] = None
class ExtractionCritic:
"""
Critic for validating extracted information.
Features:
- Validates extracted fields against source evidence
- Provides confidence scores
- Recommends abstention when uncertain
- Suggests corrections when possible
"""
VALIDATION_PROMPT = """You are a critical validator for document extraction.
Your task is to validate extracted information against the source evidence.
For each field, determine:
1. Is the extracted value supported by the evidence? (yes/no/partially)
2. Confidence score (0.0 to 1.0)
3. Brief reasoning
4. If incorrect, suggest the correct value
Be strict and skeptical. Only mark as valid if clearly supported.
Evidence:
{evidence}
Extracted Fields to Validate:
{fields}
Respond in JSON format:
{{
"validations": [
{{
"field": "field_name",
"status": "valid|invalid|uncertain|no_evidence",
"confidence": 0.0-1.0,
"reasoning": "explanation",
"suggested_value": null or corrected value
}}
]
}}"""
def __init__(self, config: Optional[CriticConfig] = None):
"""Initialize extraction critic."""
self.config = config or CriticConfig()
def validate_extraction(
self,
extracted_fields: Dict[str, Any],
evidence: List[Dict[str, Any]],
) -> ValidationResult:
"""
Validate extracted fields against evidence.
Args:
extracted_fields: Dictionary of field_name -> value
evidence: List of evidence chunks with text, page, etc.
Returns:
ValidationResult
"""
if not extracted_fields:
return ValidationResult(
overall_status=ValidationStatus.ABSTAIN,
overall_confidence=0.0,
field_validations=[],
should_accept=False,
abstain_reason="No fields to validate",
)
# Check if evidence is available
if not evidence and self.config.evidence_required:
return self._create_no_evidence_result(extracted_fields)
# Validate using LLM
field_validations = self._validate_with_llm(extracted_fields, evidence)
# Calculate overall statistics
valid_count = sum(1 for v in field_validations if v.status == ValidationStatus.VALID)
invalid_count = sum(1 for v in field_validations if v.status == ValidationStatus.INVALID)
uncertain_count = sum(1 for v in field_validations if v.status == ValidationStatus.UNCERTAIN)
abstain_count = sum(1 for v in field_validations if v.status == ValidationStatus.ABSTAIN)
# Calculate overall confidence
if field_validations:
overall_confidence = sum(v.confidence for v in field_validations) / len(field_validations)
else:
overall_confidence = 0.0
# Determine overall status
if invalid_count > 0:
overall_status = ValidationStatus.INVALID
elif abstain_count > valid_count:
overall_status = ValidationStatus.ABSTAIN
elif uncertain_count > valid_count:
overall_status = ValidationStatus.UNCERTAIN
else:
overall_status = ValidationStatus.VALID
# Determine if should accept
should_accept = (
overall_confidence >= self.config.confidence_threshold
and invalid_count == 0
and overall_status in [ValidationStatus.VALID, ValidationStatus.UNCERTAIN]
)
# Abstain reason
abstain_reason = None
if not should_accept:
if overall_confidence < self.config.confidence_threshold:
abstain_reason = f"Confidence ({overall_confidence:.2f}) below threshold ({self.config.confidence_threshold})"
elif invalid_count > 0:
abstain_reason = f"{invalid_count} field(s) validated as invalid"
elif overall_status == ValidationStatus.ABSTAIN:
abstain_reason = "Insufficient evidence to validate"
return ValidationResult(
overall_status=overall_status,
overall_confidence=overall_confidence,
field_validations=field_validations,
valid_count=valid_count,
invalid_count=invalid_count,
uncertain_count=uncertain_count,
abstain_count=abstain_count,
should_accept=should_accept,
abstain_reason=abstain_reason,
)
def _validate_with_llm(
self,
fields: Dict[str, Any],
evidence: List[Dict[str, Any]],
) -> List[FieldValidation]:
"""Validate fields using LLM."""
# Format evidence
evidence_text = self._format_evidence(evidence)
# Format fields
fields_text = "\n".join(
f"- {name}: {value}"
for name, value in fields.items()
)
# Build prompt
prompt = self.VALIDATION_PROMPT.format(
evidence=evidence_text,
fields=fields_text,
)
# Call LLM
try:
response = self._call_llm(prompt)
validations = self._parse_validation_response(response, fields, evidence)
except Exception as e:
logger.error(f"LLM validation failed: {e}")
# Fall back to heuristic validation
validations = self._heuristic_validation(fields, evidence)
return validations
def _format_evidence(self, evidence: List[Dict[str, Any]]) -> str:
"""Format evidence for prompt."""
parts = []
for i, ev in enumerate(evidence[:10], 1): # Limit to 10 chunks
page = ev.get("page", "?")
text = ev.get("text", ev.get("snippet", ""))[:500]
parts.append(f"[{i}] Page {page}: {text}")
return "\n\n".join(parts)
def _call_llm(self, prompt: str) -> str:
"""Call LLM for validation."""
if not HTTPX_AVAILABLE:
raise ImportError("httpx required for LLM calls")
with httpx.Client(timeout=self.config.timeout) as client:
response = client.post(
f"{self.config.ollama_base_url}/api/generate",
json={
"model": self.config.ollama_model,
"prompt": prompt,
"stream": False,
"options": {"temperature": 0.1},
},
)
response.raise_for_status()
return response.json().get("response", "")
def _parse_validation_response(
self,
response: str,
fields: Dict[str, Any],
evidence: List[Dict[str, Any]],
) -> List[FieldValidation]:
"""Parse LLM validation response."""
import json
import re
validations = []
# Try to extract JSON from response
json_match = re.search(r'\{[\s\S]*\}', response)
if json_match:
try:
data = json.loads(json_match.group())
llm_validations = data.get("validations", [])
for v in llm_validations:
field_name = v.get("field", "")
if field_name not in fields:
continue
status_str = v.get("status", "uncertain").lower()
try:
status = ValidationStatus(status_str)
except ValueError:
status = ValidationStatus.UNCERTAIN
validation = FieldValidation(
field_name=field_name,
extracted_value=fields[field_name],
status=status,
confidence=float(v.get("confidence", 0.5)),
reasoning=v.get("reasoning", ""),
evidence_found=status != ValidationStatus.NO_EVIDENCE,
suggested_value=v.get("suggested_value"),
)
validations.append(validation)
except json.JSONDecodeError:
pass
# Add any missing fields
validated_fields = {v.field_name for v in validations}
for field_name, value in fields.items():
if field_name not in validated_fields:
validations.append(FieldValidation(
field_name=field_name,
extracted_value=value,
status=ValidationStatus.UNCERTAIN,
confidence=0.5,
reasoning="Could not validate",
evidence_found=False,
))
return validations
def _heuristic_validation(
self,
fields: Dict[str, Any],
evidence: List[Dict[str, Any]],
) -> List[FieldValidation]:
"""Heuristic validation when LLM fails."""
validations = []
evidence_text = " ".join(
ev.get("text", ev.get("snippet", "")).lower()
for ev in evidence
)
for field_name, value in fields.items():
# Simple substring matching
value_str = str(value).lower()
found = value_str in evidence_text if value_str else False
if found:
status = ValidationStatus.VALID
confidence = 0.7
reasoning = "Value found in evidence"
elif evidence:
status = ValidationStatus.UNCERTAIN
confidence = 0.4
reasoning = "Value not directly found in evidence"
else:
status = ValidationStatus.NO_EVIDENCE
confidence = 0.2
reasoning = "No evidence available"
validations.append(FieldValidation(
field_name=field_name,
extracted_value=value,
status=status,
confidence=confidence,
reasoning=reasoning,
evidence_found=found,
))
return validations
def _create_no_evidence_result(
self,
fields: Dict[str, Any],
) -> ValidationResult:
"""Create result when no evidence is available."""
validations = [
FieldValidation(
field_name=name,
extracted_value=value,
status=ValidationStatus.NO_EVIDENCE,
confidence=0.0,
reasoning="No evidence provided for validation",
evidence_found=False,
)
for name, value in fields.items()
]
return ValidationResult(
overall_status=ValidationStatus.ABSTAIN,
overall_confidence=0.0,
field_validations=validations,
abstain_count=len(validations),
should_accept=False,
abstain_reason="No evidence available for validation",
)
# Global instance and factory
_extraction_critic: Optional[ExtractionCritic] = None
def get_extraction_critic(
config: Optional[CriticConfig] = None,
) -> ExtractionCritic:
"""Get or create singleton extraction critic."""
global _extraction_critic
if _extraction_critic is None:
_extraction_critic = ExtractionCritic(config)
return _extraction_critic
def reset_extraction_critic():
"""Reset the global critic instance."""
global _extraction_critic
_extraction_critic = None