File size: 13,689 Bytes
d520909 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
"""
Extraction Critic for Validation
Validates extracted information against source evidence.
Provides confidence scoring and abstention recommendations.
"""
from typing import List, Optional, Dict, Any, Tuple
from enum import Enum
from pydantic import BaseModel, Field
from loguru import logger
try:
import httpx
HTTPX_AVAILABLE = True
except ImportError:
HTTPX_AVAILABLE = False
class ValidationStatus(str, Enum):
"""Validation status codes."""
VALID = "valid"
INVALID = "invalid"
UNCERTAIN = "uncertain"
ABSTAIN = "abstain"
NO_EVIDENCE = "no_evidence"
class CriticConfig(BaseModel):
"""Configuration for extraction critic."""
# LLM settings
llm_provider: str = Field(default="ollama", description="LLM provider")
ollama_base_url: str = Field(default="http://localhost:11434")
ollama_model: str = Field(default="llama3.2:3b")
# Validation thresholds
confidence_threshold: float = Field(
default=0.7,
ge=0.0,
le=1.0,
description="Minimum confidence for valid extraction"
)
evidence_required: bool = Field(
default=True,
description="Require evidence for validation"
)
strict_mode: bool = Field(
default=False,
description="Strict validation mode"
)
# Processing
max_fields_per_request: int = Field(default=10, ge=1)
timeout: float = Field(default=60.0, ge=1.0)
class FieldValidation(BaseModel):
"""Validation result for a single field."""
field_name: str
extracted_value: Any
status: ValidationStatus
confidence: float
reasoning: str
# Evidence
evidence_found: bool = False
evidence_snippet: Optional[str] = None
evidence_page: Optional[int] = None
# Suggestions
suggested_value: Optional[Any] = None
correction_reason: Optional[str] = None
class ValidationResult(BaseModel):
"""Complete validation result."""
overall_status: ValidationStatus
overall_confidence: float
field_validations: List[FieldValidation]
# Statistics
valid_count: int = 0
invalid_count: int = 0
uncertain_count: int = 0
abstain_count: int = 0
# Recommendations
should_accept: bool
abstain_reason: Optional[str] = None
class ExtractionCritic:
"""
Critic for validating extracted information.
Features:
- Validates extracted fields against source evidence
- Provides confidence scores
- Recommends abstention when uncertain
- Suggests corrections when possible
"""
VALIDATION_PROMPT = """You are a critical validator for document extraction.
Your task is to validate extracted information against the source evidence.
For each field, determine:
1. Is the extracted value supported by the evidence? (yes/no/partially)
2. Confidence score (0.0 to 1.0)
3. Brief reasoning
4. If incorrect, suggest the correct value
Be strict and skeptical. Only mark as valid if clearly supported.
Evidence:
{evidence}
Extracted Fields to Validate:
{fields}
Respond in JSON format:
{{
"validations": [
{{
"field": "field_name",
"status": "valid|invalid|uncertain|no_evidence",
"confidence": 0.0-1.0,
"reasoning": "explanation",
"suggested_value": null or corrected value
}}
]
}}"""
def __init__(self, config: Optional[CriticConfig] = None):
"""Initialize extraction critic."""
self.config = config or CriticConfig()
def validate_extraction(
self,
extracted_fields: Dict[str, Any],
evidence: List[Dict[str, Any]],
) -> ValidationResult:
"""
Validate extracted fields against evidence.
Args:
extracted_fields: Dictionary of field_name -> value
evidence: List of evidence chunks with text, page, etc.
Returns:
ValidationResult
"""
if not extracted_fields:
return ValidationResult(
overall_status=ValidationStatus.ABSTAIN,
overall_confidence=0.0,
field_validations=[],
should_accept=False,
abstain_reason="No fields to validate",
)
# Check if evidence is available
if not evidence and self.config.evidence_required:
return self._create_no_evidence_result(extracted_fields)
# Validate using LLM
field_validations = self._validate_with_llm(extracted_fields, evidence)
# Calculate overall statistics
valid_count = sum(1 for v in field_validations if v.status == ValidationStatus.VALID)
invalid_count = sum(1 for v in field_validations if v.status == ValidationStatus.INVALID)
uncertain_count = sum(1 for v in field_validations if v.status == ValidationStatus.UNCERTAIN)
abstain_count = sum(1 for v in field_validations if v.status == ValidationStatus.ABSTAIN)
# Calculate overall confidence
if field_validations:
overall_confidence = sum(v.confidence for v in field_validations) / len(field_validations)
else:
overall_confidence = 0.0
# Determine overall status
if invalid_count > 0:
overall_status = ValidationStatus.INVALID
elif abstain_count > valid_count:
overall_status = ValidationStatus.ABSTAIN
elif uncertain_count > valid_count:
overall_status = ValidationStatus.UNCERTAIN
else:
overall_status = ValidationStatus.VALID
# Determine if should accept
should_accept = (
overall_confidence >= self.config.confidence_threshold
and invalid_count == 0
and overall_status in [ValidationStatus.VALID, ValidationStatus.UNCERTAIN]
)
# Abstain reason
abstain_reason = None
if not should_accept:
if overall_confidence < self.config.confidence_threshold:
abstain_reason = f"Confidence ({overall_confidence:.2f}) below threshold ({self.config.confidence_threshold})"
elif invalid_count > 0:
abstain_reason = f"{invalid_count} field(s) validated as invalid"
elif overall_status == ValidationStatus.ABSTAIN:
abstain_reason = "Insufficient evidence to validate"
return ValidationResult(
overall_status=overall_status,
overall_confidence=overall_confidence,
field_validations=field_validations,
valid_count=valid_count,
invalid_count=invalid_count,
uncertain_count=uncertain_count,
abstain_count=abstain_count,
should_accept=should_accept,
abstain_reason=abstain_reason,
)
def _validate_with_llm(
self,
fields: Dict[str, Any],
evidence: List[Dict[str, Any]],
) -> List[FieldValidation]:
"""Validate fields using LLM."""
# Format evidence
evidence_text = self._format_evidence(evidence)
# Format fields
fields_text = "\n".join(
f"- {name}: {value}"
for name, value in fields.items()
)
# Build prompt
prompt = self.VALIDATION_PROMPT.format(
evidence=evidence_text,
fields=fields_text,
)
# Call LLM
try:
response = self._call_llm(prompt)
validations = self._parse_validation_response(response, fields, evidence)
except Exception as e:
logger.error(f"LLM validation failed: {e}")
# Fall back to heuristic validation
validations = self._heuristic_validation(fields, evidence)
return validations
def _format_evidence(self, evidence: List[Dict[str, Any]]) -> str:
"""Format evidence for prompt."""
parts = []
for i, ev in enumerate(evidence[:10], 1): # Limit to 10 chunks
page = ev.get("page", "?")
text = ev.get("text", ev.get("snippet", ""))[:500]
parts.append(f"[{i}] Page {page}: {text}")
return "\n\n".join(parts)
def _call_llm(self, prompt: str) -> str:
"""Call LLM for validation."""
if not HTTPX_AVAILABLE:
raise ImportError("httpx required for LLM calls")
with httpx.Client(timeout=self.config.timeout) as client:
response = client.post(
f"{self.config.ollama_base_url}/api/generate",
json={
"model": self.config.ollama_model,
"prompt": prompt,
"stream": False,
"options": {"temperature": 0.1},
},
)
response.raise_for_status()
return response.json().get("response", "")
def _parse_validation_response(
self,
response: str,
fields: Dict[str, Any],
evidence: List[Dict[str, Any]],
) -> List[FieldValidation]:
"""Parse LLM validation response."""
import json
import re
validations = []
# Try to extract JSON from response
json_match = re.search(r'\{[\s\S]*\}', response)
if json_match:
try:
data = json.loads(json_match.group())
llm_validations = data.get("validations", [])
for v in llm_validations:
field_name = v.get("field", "")
if field_name not in fields:
continue
status_str = v.get("status", "uncertain").lower()
try:
status = ValidationStatus(status_str)
except ValueError:
status = ValidationStatus.UNCERTAIN
validation = FieldValidation(
field_name=field_name,
extracted_value=fields[field_name],
status=status,
confidence=float(v.get("confidence", 0.5)),
reasoning=v.get("reasoning", ""),
evidence_found=status != ValidationStatus.NO_EVIDENCE,
suggested_value=v.get("suggested_value"),
)
validations.append(validation)
except json.JSONDecodeError:
pass
# Add any missing fields
validated_fields = {v.field_name for v in validations}
for field_name, value in fields.items():
if field_name not in validated_fields:
validations.append(FieldValidation(
field_name=field_name,
extracted_value=value,
status=ValidationStatus.UNCERTAIN,
confidence=0.5,
reasoning="Could not validate",
evidence_found=False,
))
return validations
def _heuristic_validation(
self,
fields: Dict[str, Any],
evidence: List[Dict[str, Any]],
) -> List[FieldValidation]:
"""Heuristic validation when LLM fails."""
validations = []
evidence_text = " ".join(
ev.get("text", ev.get("snippet", "")).lower()
for ev in evidence
)
for field_name, value in fields.items():
# Simple substring matching
value_str = str(value).lower()
found = value_str in evidence_text if value_str else False
if found:
status = ValidationStatus.VALID
confidence = 0.7
reasoning = "Value found in evidence"
elif evidence:
status = ValidationStatus.UNCERTAIN
confidence = 0.4
reasoning = "Value not directly found in evidence"
else:
status = ValidationStatus.NO_EVIDENCE
confidence = 0.2
reasoning = "No evidence available"
validations.append(FieldValidation(
field_name=field_name,
extracted_value=value,
status=status,
confidence=confidence,
reasoning=reasoning,
evidence_found=found,
))
return validations
def _create_no_evidence_result(
self,
fields: Dict[str, Any],
) -> ValidationResult:
"""Create result when no evidence is available."""
validations = [
FieldValidation(
field_name=name,
extracted_value=value,
status=ValidationStatus.NO_EVIDENCE,
confidence=0.0,
reasoning="No evidence provided for validation",
evidence_found=False,
)
for name, value in fields.items()
]
return ValidationResult(
overall_status=ValidationStatus.ABSTAIN,
overall_confidence=0.0,
field_validations=validations,
abstain_count=len(validations),
should_accept=False,
abstain_reason="No evidence available for validation",
)
# Global instance and factory
_extraction_critic: Optional[ExtractionCritic] = None
def get_extraction_critic(
config: Optional[CriticConfig] = None,
) -> ExtractionCritic:
"""Get or create singleton extraction critic."""
global _extraction_critic
if _extraction_critic is None:
_extraction_critic = ExtractionCritic(config)
return _extraction_critic
def reset_extraction_critic():
"""Reset the global critic instance."""
global _extraction_critic
_extraction_critic = None
|