MHamdan's picture
Initial commit: SPARKNET framework
d520909
"""
Document Chunker Implementation
Creates semantic chunks from document content with bounding box tracking.
Includes TableAwareChunker for preserving table structure in markdown format.
"""
import uuid
import time
import re
from typing import List, Optional, Dict, Any, Tuple
from dataclasses import dataclass
from pydantic import BaseModel, Field
from loguru import logger
from collections import defaultdict
from ..schemas.core import (
BoundingBox,
DocumentChunk,
ChunkType,
LayoutRegion,
LayoutType,
OCRRegion,
)
class ChunkerConfig(BaseModel):
"""Configuration for document chunking."""
# Chunk size limits
max_chunk_chars: int = Field(
default=1000,
ge=100,
description="Maximum characters per chunk"
)
min_chunk_chars: int = Field(
default=50,
ge=10,
description="Minimum characters per chunk"
)
overlap_chars: int = Field(
default=100,
ge=0,
description="Character overlap between chunks"
)
# Chunking strategy
strategy: str = Field(
default="semantic",
description="Chunking strategy: semantic, fixed, or layout"
)
respect_layout: bool = Field(
default=True,
description="Respect layout region boundaries"
)
merge_small_regions: bool = Field(
default=True,
description="Merge small adjacent regions"
)
# Special element handling
chunk_tables: bool = Field(
default=True,
description="Create separate chunks for tables"
)
chunk_figures: bool = Field(
default=True,
description="Create separate chunks for figures"
)
include_captions: bool = Field(
default=True,
description="Include captions with figures/tables"
)
# Sentence handling
split_on_sentences: bool = Field(
default=True,
description="Split on sentence boundaries when possible"
)
# Table-aware chunking (FG-002)
preserve_table_structure: bool = Field(
default=True,
description="Preserve table structure as markdown with structured data"
)
table_row_threshold: float = Field(
default=10.0,
description="Y-coordinate threshold for grouping cells into rows"
)
table_col_threshold: float = Field(
default=20.0,
description="X-coordinate threshold for grouping cells into columns"
)
detect_table_headers: bool = Field(
default=True,
description="Attempt to detect and mark header rows"
)
# Map layout types to chunk types
LAYOUT_TO_CHUNK_TYPE = {
LayoutType.TEXT: ChunkType.TEXT,
LayoutType.TITLE: ChunkType.TITLE,
LayoutType.HEADING: ChunkType.HEADING,
LayoutType.PARAGRAPH: ChunkType.PARAGRAPH,
LayoutType.LIST: ChunkType.LIST_ITEM,
LayoutType.TABLE: ChunkType.TABLE,
LayoutType.FIGURE: ChunkType.FIGURE,
LayoutType.CHART: ChunkType.CHART,
LayoutType.FORMULA: ChunkType.FORMULA,
LayoutType.CAPTION: ChunkType.CAPTION,
LayoutType.FOOTNOTE: ChunkType.FOOTNOTE,
LayoutType.HEADER: ChunkType.HEADER,
LayoutType.FOOTER: ChunkType.FOOTER,
}
class DocumentChunker:
"""Base class for document chunkers."""
def __init__(self, config: Optional[ChunkerConfig] = None):
self.config = config or ChunkerConfig()
def create_chunks(
self,
ocr_regions: List[OCRRegion],
layout_regions: Optional[List[LayoutRegion]] = None,
document_id: str = "",
source_path: Optional[str] = None,
) -> List[DocumentChunk]:
"""
Create chunks from OCR and layout regions.
Args:
ocr_regions: OCR text regions
layout_regions: Optional layout regions
document_id: Parent document ID
source_path: Source file path
Returns:
List of DocumentChunk
"""
raise NotImplementedError
class SemanticChunker(DocumentChunker):
"""
Semantic chunker that respects document structure.
Creates chunks based on:
- Layout region boundaries
- Semantic coherence (paragraphs, sections)
- Size constraints with overlap
"""
def create_chunks(
self,
ocr_regions: List[OCRRegion],
layout_regions: Optional[List[LayoutRegion]] = None,
document_id: str = "",
source_path: Optional[str] = None,
) -> List[DocumentChunk]:
"""Create semantic chunks from document content."""
if not ocr_regions:
return []
start_time = time.time()
chunks = []
chunk_index = 0
if layout_regions and self.config.respect_layout:
# Use layout regions to guide chunking
chunks = self._chunk_by_layout(
ocr_regions, layout_regions, document_id, source_path
)
else:
# Fall back to text-based chunking
chunks = self._chunk_by_text(
ocr_regions, document_id, source_path
)
# Assign sequence indices
for i, chunk in enumerate(chunks):
chunk.sequence_index = i
logger.debug(
f"Created {len(chunks)} chunks in "
f"{(time.time() - start_time) * 1000:.1f}ms"
)
return chunks
def _chunk_by_layout(
self,
ocr_regions: List[OCRRegion],
layout_regions: List[LayoutRegion],
document_id: str,
source_path: Optional[str],
) -> List[DocumentChunk]:
"""Create chunks based on layout regions."""
chunks = []
# Sort layout regions by reading order
sorted_layouts = sorted(
layout_regions,
key=lambda r: (r.reading_order or 0, r.bbox.y_min, r.bbox.x_min)
)
for layout in sorted_layouts:
# Get OCR regions within this layout region
contained_ocr = self._get_contained_ocr(ocr_regions, layout)
if not contained_ocr:
continue
# Determine chunk type
chunk_type = LAYOUT_TO_CHUNK_TYPE.get(layout.type, ChunkType.TEXT)
# Handle special types differently
if layout.type == LayoutType.TABLE and self.config.chunk_tables:
chunk = self._create_table_chunk(
contained_ocr, layout, document_id, source_path
)
chunks.append(chunk)
elif layout.type in (LayoutType.FIGURE, LayoutType.CHART) and self.config.chunk_figures:
chunk = self._create_figure_chunk(
contained_ocr, layout, document_id, source_path
)
chunks.append(chunk)
else:
# Regular text chunk - may need splitting
text_chunks = self._create_text_chunks(
contained_ocr, layout, chunk_type, document_id, source_path
)
chunks.extend(text_chunks)
return chunks
def _chunk_by_text(
self,
ocr_regions: List[OCRRegion],
document_id: str,
source_path: Optional[str],
) -> List[DocumentChunk]:
"""Create chunks from text without layout guidance."""
chunks = []
# Sort by reading order (y then x)
sorted_regions = sorted(
ocr_regions,
key=lambda r: (r.page, r.bbox.y_min, r.bbox.x_min)
)
# Group by page
pages: Dict[int, List[OCRRegion]] = {}
for r in sorted_regions:
if r.page not in pages:
pages[r.page] = []
pages[r.page].append(r)
# Process each page
for page_num in sorted(pages.keys()):
page_regions = pages[page_num]
page_chunks = self._split_text_regions(
page_regions, document_id, source_path, page_num
)
chunks.extend(page_chunks)
return chunks
def _get_contained_ocr(
self,
ocr_regions: List[OCRRegion],
layout: LayoutRegion,
) -> List[OCRRegion]:
"""Get OCR regions contained within a layout region."""
contained = []
for ocr in ocr_regions:
if ocr.page == layout.page:
# Check if OCR region overlaps significantly with layout
iou = layout.bbox.iou(ocr.bbox)
if iou > 0.3 or layout.bbox.contains(ocr.bbox):
contained.append(ocr)
return contained
def _create_text_chunks(
self,
ocr_regions: List[OCRRegion],
layout: LayoutRegion,
chunk_type: ChunkType,
document_id: str,
source_path: Optional[str],
) -> List[DocumentChunk]:
"""Create text chunks from OCR regions, splitting if needed."""
chunks = []
# Combine text
text = " ".join(r.text for r in ocr_regions)
# Calculate average confidence
avg_conf = sum(r.confidence for r in ocr_regions) / len(ocr_regions)
# Check if splitting is needed
if len(text) <= self.config.max_chunk_chars:
# Single chunk
chunk = DocumentChunk(
chunk_id=f"{document_id}_{uuid.uuid4().hex[:8]}",
chunk_type=chunk_type,
text=text,
bbox=layout.bbox,
page=layout.page,
document_id=document_id,
source_path=source_path,
sequence_index=0,
confidence=avg_conf,
)
chunks.append(chunk)
else:
# Split into multiple chunks
split_chunks = self._split_text(
text, layout.bbox, layout.page, chunk_type,
document_id, source_path, avg_conf
)
chunks.extend(split_chunks)
return chunks
def _split_text(
self,
text: str,
bbox: BoundingBox,
page: int,
chunk_type: ChunkType,
document_id: str,
source_path: Optional[str],
confidence: float,
) -> List[DocumentChunk]:
"""Split long text into multiple chunks with overlap."""
chunks = []
max_chars = self.config.max_chunk_chars
overlap = self.config.overlap_chars
# Split on sentences if enabled
if self.config.split_on_sentences:
sentences = self._split_sentences(text)
else:
sentences = [text]
current_text = ""
for sentence in sentences:
if len(current_text) + len(sentence) > max_chars and current_text:
# Create chunk
chunk = DocumentChunk(
chunk_id=f"{document_id}_{uuid.uuid4().hex[:8]}",
chunk_type=chunk_type,
text=current_text.strip(),
bbox=bbox,
page=page,
document_id=document_id,
source_path=source_path,
sequence_index=len(chunks),
confidence=confidence,
)
chunks.append(chunk)
# Start new chunk with overlap
if overlap > 0:
overlap_text = current_text[-overlap:] if len(current_text) > overlap else current_text
current_text = overlap_text + " " + sentence
else:
current_text = sentence
else:
current_text += " " + sentence if current_text else sentence
# Don't forget the last chunk
if current_text.strip():
chunk = DocumentChunk(
chunk_id=f"{document_id}_{uuid.uuid4().hex[:8]}",
chunk_type=chunk_type,
text=current_text.strip(),
bbox=bbox,
page=page,
document_id=document_id,
source_path=source_path,
sequence_index=len(chunks),
confidence=confidence,
)
chunks.append(chunk)
return chunks
def _split_sentences(self, text: str) -> List[str]:
"""Split text into sentences."""
# Simple sentence splitting
import re
sentences = re.split(r'(?<=[.!?])\s+', text)
return [s.strip() for s in sentences if s.strip()]
def _create_table_chunk(
self,
ocr_regions: List[OCRRegion],
layout: LayoutRegion,
document_id: str,
source_path: Optional[str],
) -> DocumentChunk:
"""
Create a chunk for table content with structure preservation.
Enhanced table handling (FG-002):
- Reconstructs table structure from OCR regions
- Generates markdown table representation
- Stores structured data for SQL-like queries
- Detects and marks header rows
"""
if not ocr_regions:
return DocumentChunk(
chunk_id=f"{document_id}_table_{uuid.uuid4().hex[:8]}",
chunk_type=ChunkType.TABLE,
text="[Empty Table]",
bbox=layout.bbox,
page=layout.page,
document_id=document_id,
source_path=source_path,
sequence_index=0,
confidence=0.0,
extra=layout.extra or {},
)
avg_conf = sum(r.confidence for r in ocr_regions) / len(ocr_regions)
# Check if we should preserve table structure
if not self.config.preserve_table_structure:
# Fall back to simple pipe-separated format
text = " | ".join(r.text for r in ocr_regions)
return DocumentChunk(
chunk_id=f"{document_id}_table_{uuid.uuid4().hex[:8]}",
chunk_type=ChunkType.TABLE,
text=text,
bbox=layout.bbox,
page=layout.page,
document_id=document_id,
source_path=source_path,
sequence_index=0,
confidence=avg_conf,
extra=layout.extra or {},
)
# Reconstruct table structure from spatial positions
table_data = self._reconstruct_table_structure(ocr_regions)
# Generate markdown representation
markdown_table = self._table_to_markdown(
table_data["rows"],
table_data["headers"],
table_data["has_header"]
)
# Create rich metadata for structured queries
table_extra = {
**(layout.extra or {}),
"table_structure": {
"row_count": table_data["row_count"],
"col_count": table_data["col_count"],
"has_header": table_data["has_header"],
"headers": table_data["headers"],
"cells": table_data["cells"], # 2D list of cell values
"cell_positions": table_data["cell_positions"], # For highlighting
},
"format": "markdown",
"searchable_text": table_data["searchable_text"],
}
return DocumentChunk(
chunk_id=f"{document_id}_table_{uuid.uuid4().hex[:8]}",
chunk_type=ChunkType.TABLE,
text=markdown_table,
bbox=layout.bbox,
page=layout.page,
document_id=document_id,
source_path=source_path,
sequence_index=0,
confidence=avg_conf,
extra=table_extra,
)
def _reconstruct_table_structure(
self,
ocr_regions: List[OCRRegion],
) -> Dict[str, Any]:
"""
Reconstruct table structure from OCR regions based on spatial positions.
Groups OCR regions into rows and columns by analyzing their bounding boxes.
Returns structured table data for markdown generation and queries.
"""
if not ocr_regions:
return {
"rows": [],
"headers": [],
"has_header": False,
"row_count": 0,
"col_count": 0,
"cells": [],
"cell_positions": [],
"searchable_text": "",
}
# Sort regions by vertical position (y_min) then horizontal (x_min)
sorted_regions = sorted(
ocr_regions,
key=lambda r: (r.bbox.y_min, r.bbox.x_min)
)
# Group into rows based on y-coordinate proximity
row_threshold = self.config.table_row_threshold
rows: List[List[OCRRegion]] = []
current_row: List[OCRRegion] = []
current_y = None
for region in sorted_regions:
if current_y is None:
current_y = region.bbox.y_min
current_row.append(region)
elif abs(region.bbox.y_min - current_y) <= row_threshold:
current_row.append(region)
else:
if current_row:
# Sort row by x position
current_row.sort(key=lambda r: r.bbox.x_min)
rows.append(current_row)
current_row = [region]
current_y = region.bbox.y_min
# Don't forget the last row
if current_row:
current_row.sort(key=lambda r: r.bbox.x_min)
rows.append(current_row)
# Determine column structure
# Find consistent column boundaries across all rows
col_positions = self._detect_column_positions(rows)
num_cols = len(col_positions) if col_positions else max(len(row) for row in rows)
# Build structured cell data
cells: List[List[str]] = []
cell_positions: List[List[Dict[str, Any]]] = []
for row in rows:
row_cells = self._assign_cells_to_columns(row, col_positions, num_cols)
cells.append([cell["text"] for cell in row_cells])
cell_positions.append([{
"text": cell["text"],
"bbox": cell["bbox"],
"confidence": cell["confidence"]
} for cell in row_cells])
# Detect header row
has_header = False
headers: List[str] = []
if self.config.detect_table_headers and len(cells) > 0:
has_header, headers = self._detect_header_row(cells, rows)
# Build searchable text (for vector embedding)
searchable_parts = []
for i, row in enumerate(cells):
if has_header and i == 0:
searchable_parts.append("Headers: " + ", ".join(row))
else:
if has_header and headers:
# Include header context for each value
for j, cell in enumerate(row):
if j < len(headers) and headers[j]:
searchable_parts.append(f"{headers[j]}: {cell}")
else:
searchable_parts.append(cell)
else:
searchable_parts.extend(row)
return {
"rows": cells,
"headers": headers,
"has_header": has_header,
"row_count": len(cells),
"col_count": num_cols,
"cells": cells,
"cell_positions": cell_positions,
"searchable_text": " | ".join(searchable_parts),
}
def _detect_column_positions(
self,
rows: List[List[OCRRegion]],
) -> List[Tuple[float, float]]:
"""
Detect consistent column boundaries from table rows.
Returns list of (x_start, x_end) tuples for each column.
"""
if not rows:
return []
col_threshold = self.config.table_col_threshold
# Collect all x positions
all_x_starts = []
for row in rows:
for region in row:
all_x_starts.append(region.bbox.x_min)
if not all_x_starts:
return []
# Cluster x positions into columns
all_x_starts.sort()
columns = []
current_col_start = all_x_starts[0]
current_col_regions = [all_x_starts[0]]
for x in all_x_starts[1:]:
if x - current_col_regions[-1] <= col_threshold:
current_col_regions.append(x)
else:
# Calculate column boundary
col_center = sum(current_col_regions) / len(current_col_regions)
columns.append(col_center)
current_col_regions = [x]
# Last column
if current_col_regions:
col_center = sum(current_col_regions) / len(current_col_regions)
columns.append(col_center)
# Convert to column ranges
col_ranges = []
for i, col_x in enumerate(columns):
x_start = col_x - col_threshold
if i < len(columns) - 1:
x_end = (col_x + columns[i + 1]) / 2
else:
x_end = col_x + col_threshold * 3 # Extend last column
col_ranges.append((x_start, x_end))
return col_ranges
def _assign_cells_to_columns(
self,
row_regions: List[OCRRegion],
col_positions: List[Tuple[float, float]],
num_cols: int,
) -> List[Dict[str, Any]]:
"""
Assign OCR regions in a row to their respective columns.
Handles merged cells and missing cells.
"""
# Initialize empty cells for each column
row_cells = [
{"text": "", "bbox": None, "confidence": 0.0}
for _ in range(num_cols)
]
if not col_positions:
# No column positions detected, just use order
for i, region in enumerate(row_regions):
if i < num_cols:
row_cells[i] = {
"text": region.text.strip(),
"bbox": region.bbox.to_xyxy(),
"confidence": region.confidence,
}
return row_cells
# Assign regions to columns based on x position
for region in row_regions:
region_x = region.bbox.x_min
assigned = False
for col_idx, (x_start, x_end) in enumerate(col_positions):
if x_start <= region_x <= x_end:
# Append to existing cell (handle multi-line cells)
if row_cells[col_idx]["text"]:
row_cells[col_idx]["text"] += " " + region.text.strip()
else:
row_cells[col_idx]["text"] = region.text.strip()
row_cells[col_idx]["bbox"] = region.bbox.to_xyxy()
row_cells[col_idx]["confidence"] = max(
row_cells[col_idx]["confidence"],
region.confidence
)
assigned = True
break
# If not assigned, put in nearest column
if not assigned:
min_dist = float("inf")
nearest_col = 0
for col_idx, (x_start, x_end) in enumerate(col_positions):
col_center = (x_start + x_end) / 2
dist = abs(region_x - col_center)
if dist < min_dist:
min_dist = dist
nearest_col = col_idx
if row_cells[nearest_col]["text"]:
row_cells[nearest_col]["text"] += " " + region.text.strip()
else:
row_cells[nearest_col]["text"] = region.text.strip()
row_cells[nearest_col]["bbox"] = region.bbox.to_xyxy()
row_cells[nearest_col]["confidence"] = region.confidence
return row_cells
def _detect_header_row(
self,
cells: List[List[str]],
rows: List[List[OCRRegion]],
) -> Tuple[bool, List[str]]:
"""
Detect if the first row is a header row.
Heuristics used:
- First row contains non-numeric text
- First row text is shorter (labels vs data)
- First row has distinct formatting (if available)
"""
if not cells or len(cells) < 2:
return False, []
first_row = cells[0]
other_rows = cells[1:]
# Check if first row is mostly non-numeric
first_row_numeric_count = sum(
1 for cell in first_row
if cell and self._is_numeric(cell)
)
first_row_text_ratio = (len(first_row) - first_row_numeric_count) / max(len(first_row), 1)
# Check if other rows are more numeric
other_numeric_ratios = []
for row in other_rows:
if row:
numeric_count = sum(1 for cell in row if cell and self._is_numeric(cell))
other_numeric_ratios.append(numeric_count / max(len(row), 1))
avg_other_numeric = sum(other_numeric_ratios) / max(len(other_numeric_ratios), 1)
# Header detection: first row is text-heavy, others are more numeric
is_header = (
first_row_text_ratio > 0.5 and
(avg_other_numeric > first_row_text_ratio * 0.5 or first_row_text_ratio > 0.8)
)
# Also consider: shorter cell lengths in first row (labels are usually shorter)
first_row_avg_len = sum(len(cell) for cell in first_row) / max(len(first_row), 1)
other_avg_lens = [
sum(len(cell) for cell in row) / max(len(row), 1)
for row in other_rows
]
avg_other_len = sum(other_avg_lens) / max(len(other_avg_lens), 1)
if first_row_avg_len < avg_other_len * 0.8:
is_header = True
return is_header, first_row if is_header else []
def _is_numeric(self, text: str) -> bool:
"""Check if text is primarily numeric (including currency, percentages)."""
cleaned = re.sub(r'[$€£¥%,.\s\-+()]', '', text)
return cleaned.isdigit() if cleaned else False
def _table_to_markdown(
self,
rows: List[List[str]],
headers: List[str],
has_header: bool,
) -> str:
"""
Convert table data to markdown format.
Creates a properly formatted markdown table with:
- Header row (if detected)
- Separator row
- Data rows
"""
if not rows:
return "[Empty Table]"
# Determine column count
num_cols = max(len(row) for row in rows) if rows else 0
if num_cols == 0:
return "[Empty Table]"
# Normalize all rows to same column count
normalized_rows = []
for row in rows:
normalized = row + [""] * (num_cols - len(row))
normalized_rows.append(normalized)
# Build markdown lines
md_lines = []
if has_header and headers:
# Use detected headers
header_line = "| " + " | ".join(headers + [""] * (num_cols - len(headers))) + " |"
separator = "| " + " | ".join(["---"] * num_cols) + " |"
md_lines.append(header_line)
md_lines.append(separator)
data_rows = normalized_rows[1:]
else:
# No header - create generic headers
generic_headers = [f"Col{i+1}" for i in range(num_cols)]
header_line = "| " + " | ".join(generic_headers) + " |"
separator = "| " + " | ".join(["---"] * num_cols) + " |"
md_lines.append(header_line)
md_lines.append(separator)
data_rows = normalized_rows
# Add data rows
for row in data_rows:
# Escape pipe characters in cell content
escaped_row = [cell.replace("|", "\\|") for cell in row]
row_line = "| " + " | ".join(escaped_row) + " |"
md_lines.append(row_line)
return "\n".join(md_lines)
def _create_figure_chunk(
self,
ocr_regions: List[OCRRegion],
layout: LayoutRegion,
document_id: str,
source_path: Optional[str],
) -> DocumentChunk:
"""Create a chunk for figure/chart content."""
# For figures, text is usually caption
text = " ".join(r.text for r in ocr_regions) if ocr_regions else "[Figure]"
avg_conf = sum(r.confidence for r in ocr_regions) / len(ocr_regions) if ocr_regions else 0.5
chunk_type = ChunkType.CHART if layout.type == LayoutType.CHART else ChunkType.FIGURE
return DocumentChunk(
chunk_id=f"{document_id}_{chunk_type.value}_{uuid.uuid4().hex[:8]}",
chunk_type=chunk_type,
text=text,
bbox=layout.bbox,
page=layout.page,
document_id=document_id,
source_path=source_path,
sequence_index=0,
confidence=avg_conf,
caption=text if ocr_regions else None,
)
def _split_text_regions(
self,
ocr_regions: List[OCRRegion],
document_id: str,
source_path: Optional[str],
page_num: int,
) -> List[DocumentChunk]:
"""Split OCR regions into chunks without layout guidance."""
if not ocr_regions:
return []
chunks = []
current_text = ""
current_regions = []
for region in ocr_regions:
if len(current_text) + len(region.text) > self.config.max_chunk_chars:
if current_regions:
# Create chunk from accumulated regions
chunk = self._create_chunk_from_regions(
current_regions, document_id, source_path, page_num, len(chunks)
)
chunks.append(chunk)
current_text = region.text
current_regions = [region]
else:
current_text += " " + region.text
current_regions.append(region)
# Final chunk
if current_regions:
chunk = self._create_chunk_from_regions(
current_regions, document_id, source_path, page_num, len(chunks)
)
chunks.append(chunk)
return chunks
def _create_chunk_from_regions(
self,
regions: List[OCRRegion],
document_id: str,
source_path: Optional[str],
page_num: int,
sequence_index: int,
) -> DocumentChunk:
"""Create a chunk from a list of OCR regions."""
text = " ".join(r.text for r in regions)
avg_conf = sum(r.confidence for r in regions) / len(regions)
# Compute bounding box
x_min = min(r.bbox.x_min for r in regions)
y_min = min(r.bbox.y_min for r in regions)
x_max = max(r.bbox.x_max for r in regions)
y_max = max(r.bbox.y_max for r in regions)
bbox = BoundingBox(
x_min=x_min, y_min=y_min,
x_max=x_max, y_max=y_max,
normalized=False,
)
return DocumentChunk(
chunk_id=f"{document_id}_{uuid.uuid4().hex[:8]}",
chunk_type=ChunkType.TEXT,
text=text,
bbox=bbox,
page=page_num,
document_id=document_id,
source_path=source_path,
sequence_index=sequence_index,
confidence=avg_conf,
)
# Factory
_document_chunker: Optional[DocumentChunker] = None
def get_document_chunker(
config: Optional[ChunkerConfig] = None,
) -> DocumentChunker:
"""Get or create singleton document chunker."""
global _document_chunker
if _document_chunker is None:
config = config or ChunkerConfig()
_document_chunker = SemanticChunker(config)
return _document_chunker