File size: 31,778 Bytes
d520909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
"""
Document Chunker Implementation

Creates semantic chunks from document content with bounding box tracking.
Includes TableAwareChunker for preserving table structure in markdown format.
"""

import uuid
import time
import re
from typing import List, Optional, Dict, Any, Tuple
from dataclasses import dataclass
from pydantic import BaseModel, Field
from loguru import logger
from collections import defaultdict

from ..schemas.core import (
    BoundingBox,
    DocumentChunk,
    ChunkType,
    LayoutRegion,
    LayoutType,
    OCRRegion,
)


class ChunkerConfig(BaseModel):
    """Configuration for document chunking."""
    # Chunk size limits
    max_chunk_chars: int = Field(
        default=1000,
        ge=100,
        description="Maximum characters per chunk"
    )
    min_chunk_chars: int = Field(
        default=50,
        ge=10,
        description="Minimum characters per chunk"
    )
    overlap_chars: int = Field(
        default=100,
        ge=0,
        description="Character overlap between chunks"
    )

    # Chunking strategy
    strategy: str = Field(
        default="semantic",
        description="Chunking strategy: semantic, fixed, or layout"
    )
    respect_layout: bool = Field(
        default=True,
        description="Respect layout region boundaries"
    )
    merge_small_regions: bool = Field(
        default=True,
        description="Merge small adjacent regions"
    )

    # Special element handling
    chunk_tables: bool = Field(
        default=True,
        description="Create separate chunks for tables"
    )
    chunk_figures: bool = Field(
        default=True,
        description="Create separate chunks for figures"
    )
    include_captions: bool = Field(
        default=True,
        description="Include captions with figures/tables"
    )

    # Sentence handling
    split_on_sentences: bool = Field(
        default=True,
        description="Split on sentence boundaries when possible"
    )

    # Table-aware chunking (FG-002)
    preserve_table_structure: bool = Field(
        default=True,
        description="Preserve table structure as markdown with structured data"
    )
    table_row_threshold: float = Field(
        default=10.0,
        description="Y-coordinate threshold for grouping cells into rows"
    )
    table_col_threshold: float = Field(
        default=20.0,
        description="X-coordinate threshold for grouping cells into columns"
    )
    detect_table_headers: bool = Field(
        default=True,
        description="Attempt to detect and mark header rows"
    )


# Map layout types to chunk types
LAYOUT_TO_CHUNK_TYPE = {
    LayoutType.TEXT: ChunkType.TEXT,
    LayoutType.TITLE: ChunkType.TITLE,
    LayoutType.HEADING: ChunkType.HEADING,
    LayoutType.PARAGRAPH: ChunkType.PARAGRAPH,
    LayoutType.LIST: ChunkType.LIST_ITEM,
    LayoutType.TABLE: ChunkType.TABLE,
    LayoutType.FIGURE: ChunkType.FIGURE,
    LayoutType.CHART: ChunkType.CHART,
    LayoutType.FORMULA: ChunkType.FORMULA,
    LayoutType.CAPTION: ChunkType.CAPTION,
    LayoutType.FOOTNOTE: ChunkType.FOOTNOTE,
    LayoutType.HEADER: ChunkType.HEADER,
    LayoutType.FOOTER: ChunkType.FOOTER,
}


class DocumentChunker:
    """Base class for document chunkers."""

    def __init__(self, config: Optional[ChunkerConfig] = None):
        self.config = config or ChunkerConfig()

    def create_chunks(
        self,
        ocr_regions: List[OCRRegion],
        layout_regions: Optional[List[LayoutRegion]] = None,
        document_id: str = "",
        source_path: Optional[str] = None,
    ) -> List[DocumentChunk]:
        """
        Create chunks from OCR and layout regions.

        Args:
            ocr_regions: OCR text regions
            layout_regions: Optional layout regions
            document_id: Parent document ID
            source_path: Source file path

        Returns:
            List of DocumentChunk
        """
        raise NotImplementedError


class SemanticChunker(DocumentChunker):
    """
    Semantic chunker that respects document structure.

    Creates chunks based on:
    - Layout region boundaries
    - Semantic coherence (paragraphs, sections)
    - Size constraints with overlap
    """

    def create_chunks(
        self,
        ocr_regions: List[OCRRegion],
        layout_regions: Optional[List[LayoutRegion]] = None,
        document_id: str = "",
        source_path: Optional[str] = None,
    ) -> List[DocumentChunk]:
        """Create semantic chunks from document content."""
        if not ocr_regions:
            return []

        start_time = time.time()
        chunks = []
        chunk_index = 0

        if layout_regions and self.config.respect_layout:
            # Use layout regions to guide chunking
            chunks = self._chunk_by_layout(
                ocr_regions, layout_regions, document_id, source_path
            )
        else:
            # Fall back to text-based chunking
            chunks = self._chunk_by_text(
                ocr_regions, document_id, source_path
            )

        # Assign sequence indices
        for i, chunk in enumerate(chunks):
            chunk.sequence_index = i

        logger.debug(
            f"Created {len(chunks)} chunks in "
            f"{(time.time() - start_time) * 1000:.1f}ms"
        )

        return chunks

    def _chunk_by_layout(
        self,
        ocr_regions: List[OCRRegion],
        layout_regions: List[LayoutRegion],
        document_id: str,
        source_path: Optional[str],
    ) -> List[DocumentChunk]:
        """Create chunks based on layout regions."""
        chunks = []

        # Sort layout regions by reading order
        sorted_layouts = sorted(
            layout_regions,
            key=lambda r: (r.reading_order or 0, r.bbox.y_min, r.bbox.x_min)
        )

        for layout in sorted_layouts:
            # Get OCR regions within this layout region
            contained_ocr = self._get_contained_ocr(ocr_regions, layout)

            if not contained_ocr:
                continue

            # Determine chunk type
            chunk_type = LAYOUT_TO_CHUNK_TYPE.get(layout.type, ChunkType.TEXT)

            # Handle special types differently
            if layout.type == LayoutType.TABLE and self.config.chunk_tables:
                chunk = self._create_table_chunk(
                    contained_ocr, layout, document_id, source_path
                )
                chunks.append(chunk)

            elif layout.type in (LayoutType.FIGURE, LayoutType.CHART) and self.config.chunk_figures:
                chunk = self._create_figure_chunk(
                    contained_ocr, layout, document_id, source_path
                )
                chunks.append(chunk)

            else:
                # Regular text chunk - may need splitting
                text_chunks = self._create_text_chunks(
                    contained_ocr, layout, chunk_type, document_id, source_path
                )
                chunks.extend(text_chunks)

        return chunks

    def _chunk_by_text(
        self,
        ocr_regions: List[OCRRegion],
        document_id: str,
        source_path: Optional[str],
    ) -> List[DocumentChunk]:
        """Create chunks from text without layout guidance."""
        chunks = []

        # Sort by reading order (y then x)
        sorted_regions = sorted(
            ocr_regions,
            key=lambda r: (r.page, r.bbox.y_min, r.bbox.x_min)
        )

        # Group by page
        pages: Dict[int, List[OCRRegion]] = {}
        for r in sorted_regions:
            if r.page not in pages:
                pages[r.page] = []
            pages[r.page].append(r)

        # Process each page
        for page_num in sorted(pages.keys()):
            page_regions = pages[page_num]
            page_chunks = self._split_text_regions(
                page_regions, document_id, source_path, page_num
            )
            chunks.extend(page_chunks)

        return chunks

    def _get_contained_ocr(
        self,
        ocr_regions: List[OCRRegion],
        layout: LayoutRegion,
    ) -> List[OCRRegion]:
        """Get OCR regions contained within a layout region."""
        contained = []
        for ocr in ocr_regions:
            if ocr.page == layout.page:
                # Check if OCR region overlaps significantly with layout
                iou = layout.bbox.iou(ocr.bbox)
                if iou > 0.3 or layout.bbox.contains(ocr.bbox):
                    contained.append(ocr)
        return contained

    def _create_text_chunks(
        self,
        ocr_regions: List[OCRRegion],
        layout: LayoutRegion,
        chunk_type: ChunkType,
        document_id: str,
        source_path: Optional[str],
    ) -> List[DocumentChunk]:
        """Create text chunks from OCR regions, splitting if needed."""
        chunks = []

        # Combine text
        text = " ".join(r.text for r in ocr_regions)

        # Calculate average confidence
        avg_conf = sum(r.confidence for r in ocr_regions) / len(ocr_regions)

        # Check if splitting is needed
        if len(text) <= self.config.max_chunk_chars:
            # Single chunk
            chunk = DocumentChunk(
                chunk_id=f"{document_id}_{uuid.uuid4().hex[:8]}",
                chunk_type=chunk_type,
                text=text,
                bbox=layout.bbox,
                page=layout.page,
                document_id=document_id,
                source_path=source_path,
                sequence_index=0,
                confidence=avg_conf,
            )
            chunks.append(chunk)
        else:
            # Split into multiple chunks
            split_chunks = self._split_text(
                text, layout.bbox, layout.page, chunk_type,
                document_id, source_path, avg_conf
            )
            chunks.extend(split_chunks)

        return chunks

    def _split_text(
        self,
        text: str,
        bbox: BoundingBox,
        page: int,
        chunk_type: ChunkType,
        document_id: str,
        source_path: Optional[str],
        confidence: float,
    ) -> List[DocumentChunk]:
        """Split long text into multiple chunks with overlap."""
        chunks = []
        max_chars = self.config.max_chunk_chars
        overlap = self.config.overlap_chars

        # Split on sentences if enabled
        if self.config.split_on_sentences:
            sentences = self._split_sentences(text)
        else:
            sentences = [text]

        current_text = ""
        for sentence in sentences:
            if len(current_text) + len(sentence) > max_chars and current_text:
                # Create chunk
                chunk = DocumentChunk(
                    chunk_id=f"{document_id}_{uuid.uuid4().hex[:8]}",
                    chunk_type=chunk_type,
                    text=current_text.strip(),
                    bbox=bbox,
                    page=page,
                    document_id=document_id,
                    source_path=source_path,
                    sequence_index=len(chunks),
                    confidence=confidence,
                )
                chunks.append(chunk)

                # Start new chunk with overlap
                if overlap > 0:
                    overlap_text = current_text[-overlap:] if len(current_text) > overlap else current_text
                    current_text = overlap_text + " " + sentence
                else:
                    current_text = sentence
            else:
                current_text += " " + sentence if current_text else sentence

        # Don't forget the last chunk
        if current_text.strip():
            chunk = DocumentChunk(
                chunk_id=f"{document_id}_{uuid.uuid4().hex[:8]}",
                chunk_type=chunk_type,
                text=current_text.strip(),
                bbox=bbox,
                page=page,
                document_id=document_id,
                source_path=source_path,
                sequence_index=len(chunks),
                confidence=confidence,
            )
            chunks.append(chunk)

        return chunks

    def _split_sentences(self, text: str) -> List[str]:
        """Split text into sentences."""
        # Simple sentence splitting
        import re
        sentences = re.split(r'(?<=[.!?])\s+', text)
        return [s.strip() for s in sentences if s.strip()]

    def _create_table_chunk(
        self,
        ocr_regions: List[OCRRegion],
        layout: LayoutRegion,
        document_id: str,
        source_path: Optional[str],
    ) -> DocumentChunk:
        """
        Create a chunk for table content with structure preservation.

        Enhanced table handling (FG-002):
        - Reconstructs table structure from OCR regions
        - Generates markdown table representation
        - Stores structured data for SQL-like queries
        - Detects and marks header rows
        """
        if not ocr_regions:
            return DocumentChunk(
                chunk_id=f"{document_id}_table_{uuid.uuid4().hex[:8]}",
                chunk_type=ChunkType.TABLE,
                text="[Empty Table]",
                bbox=layout.bbox,
                page=layout.page,
                document_id=document_id,
                source_path=source_path,
                sequence_index=0,
                confidence=0.0,
                extra=layout.extra or {},
            )

        avg_conf = sum(r.confidence for r in ocr_regions) / len(ocr_regions)

        # Check if we should preserve table structure
        if not self.config.preserve_table_structure:
            # Fall back to simple pipe-separated format
            text = " | ".join(r.text for r in ocr_regions)
            return DocumentChunk(
                chunk_id=f"{document_id}_table_{uuid.uuid4().hex[:8]}",
                chunk_type=ChunkType.TABLE,
                text=text,
                bbox=layout.bbox,
                page=layout.page,
                document_id=document_id,
                source_path=source_path,
                sequence_index=0,
                confidence=avg_conf,
                extra=layout.extra or {},
            )

        # Reconstruct table structure from spatial positions
        table_data = self._reconstruct_table_structure(ocr_regions)

        # Generate markdown representation
        markdown_table = self._table_to_markdown(
            table_data["rows"],
            table_data["headers"],
            table_data["has_header"]
        )

        # Create rich metadata for structured queries
        table_extra = {
            **(layout.extra or {}),
            "table_structure": {
                "row_count": table_data["row_count"],
                "col_count": table_data["col_count"],
                "has_header": table_data["has_header"],
                "headers": table_data["headers"],
                "cells": table_data["cells"],  # 2D list of cell values
                "cell_positions": table_data["cell_positions"],  # For highlighting
            },
            "format": "markdown",
            "searchable_text": table_data["searchable_text"],
        }

        return DocumentChunk(
            chunk_id=f"{document_id}_table_{uuid.uuid4().hex[:8]}",
            chunk_type=ChunkType.TABLE,
            text=markdown_table,
            bbox=layout.bbox,
            page=layout.page,
            document_id=document_id,
            source_path=source_path,
            sequence_index=0,
            confidence=avg_conf,
            extra=table_extra,
        )

    def _reconstruct_table_structure(
        self,
        ocr_regions: List[OCRRegion],
    ) -> Dict[str, Any]:
        """
        Reconstruct table structure from OCR regions based on spatial positions.

        Groups OCR regions into rows and columns by analyzing their bounding boxes.
        Returns structured table data for markdown generation and queries.
        """
        if not ocr_regions:
            return {
                "rows": [],
                "headers": [],
                "has_header": False,
                "row_count": 0,
                "col_count": 0,
                "cells": [],
                "cell_positions": [],
                "searchable_text": "",
            }

        # Sort regions by vertical position (y_min) then horizontal (x_min)
        sorted_regions = sorted(
            ocr_regions,
            key=lambda r: (r.bbox.y_min, r.bbox.x_min)
        )

        # Group into rows based on y-coordinate proximity
        row_threshold = self.config.table_row_threshold
        rows: List[List[OCRRegion]] = []
        current_row: List[OCRRegion] = []
        current_y = None

        for region in sorted_regions:
            if current_y is None:
                current_y = region.bbox.y_min
                current_row.append(region)
            elif abs(region.bbox.y_min - current_y) <= row_threshold:
                current_row.append(region)
            else:
                if current_row:
                    # Sort row by x position
                    current_row.sort(key=lambda r: r.bbox.x_min)
                    rows.append(current_row)
                current_row = [region]
                current_y = region.bbox.y_min

        # Don't forget the last row
        if current_row:
            current_row.sort(key=lambda r: r.bbox.x_min)
            rows.append(current_row)

        # Determine column structure
        # Find consistent column boundaries across all rows
        col_positions = self._detect_column_positions(rows)
        num_cols = len(col_positions) if col_positions else max(len(row) for row in rows)

        # Build structured cell data
        cells: List[List[str]] = []
        cell_positions: List[List[Dict[str, Any]]] = []

        for row in rows:
            row_cells = self._assign_cells_to_columns(row, col_positions, num_cols)
            cells.append([cell["text"] for cell in row_cells])
            cell_positions.append([{
                "text": cell["text"],
                "bbox": cell["bbox"],
                "confidence": cell["confidence"]
            } for cell in row_cells])

        # Detect header row
        has_header = False
        headers: List[str] = []

        if self.config.detect_table_headers and len(cells) > 0:
            has_header, headers = self._detect_header_row(cells, rows)

        # Build searchable text (for vector embedding)
        searchable_parts = []
        for i, row in enumerate(cells):
            if has_header and i == 0:
                searchable_parts.append("Headers: " + ", ".join(row))
            else:
                if has_header and headers:
                    # Include header context for each value
                    for j, cell in enumerate(row):
                        if j < len(headers) and headers[j]:
                            searchable_parts.append(f"{headers[j]}: {cell}")
                        else:
                            searchable_parts.append(cell)
                else:
                    searchable_parts.extend(row)

        return {
            "rows": cells,
            "headers": headers,
            "has_header": has_header,
            "row_count": len(cells),
            "col_count": num_cols,
            "cells": cells,
            "cell_positions": cell_positions,
            "searchable_text": " | ".join(searchable_parts),
        }

    def _detect_column_positions(
        self,
        rows: List[List[OCRRegion]],
    ) -> List[Tuple[float, float]]:
        """
        Detect consistent column boundaries from table rows.

        Returns list of (x_start, x_end) tuples for each column.
        """
        if not rows:
            return []

        col_threshold = self.config.table_col_threshold

        # Collect all x positions
        all_x_starts = []
        for row in rows:
            for region in row:
                all_x_starts.append(region.bbox.x_min)

        if not all_x_starts:
            return []

        # Cluster x positions into columns
        all_x_starts.sort()
        columns = []
        current_col_start = all_x_starts[0]
        current_col_regions = [all_x_starts[0]]

        for x in all_x_starts[1:]:
            if x - current_col_regions[-1] <= col_threshold:
                current_col_regions.append(x)
            else:
                # Calculate column boundary
                col_center = sum(current_col_regions) / len(current_col_regions)
                columns.append(col_center)
                current_col_regions = [x]

        # Last column
        if current_col_regions:
            col_center = sum(current_col_regions) / len(current_col_regions)
            columns.append(col_center)

        # Convert to column ranges
        col_ranges = []
        for i, col_x in enumerate(columns):
            x_start = col_x - col_threshold
            if i < len(columns) - 1:
                x_end = (col_x + columns[i + 1]) / 2
            else:
                x_end = col_x + col_threshold * 3  # Extend last column
            col_ranges.append((x_start, x_end))

        return col_ranges

    def _assign_cells_to_columns(
        self,
        row_regions: List[OCRRegion],
        col_positions: List[Tuple[float, float]],
        num_cols: int,
    ) -> List[Dict[str, Any]]:
        """
        Assign OCR regions in a row to their respective columns.
        Handles merged cells and missing cells.
        """
        # Initialize empty cells for each column
        row_cells = [
            {"text": "", "bbox": None, "confidence": 0.0}
            for _ in range(num_cols)
        ]

        if not col_positions:
            # No column positions detected, just use order
            for i, region in enumerate(row_regions):
                if i < num_cols:
                    row_cells[i] = {
                        "text": region.text.strip(),
                        "bbox": region.bbox.to_xyxy(),
                        "confidence": region.confidence,
                    }
            return row_cells

        # Assign regions to columns based on x position
        for region in row_regions:
            region_x = region.bbox.x_min
            assigned = False

            for col_idx, (x_start, x_end) in enumerate(col_positions):
                if x_start <= region_x <= x_end:
                    # Append to existing cell (handle multi-line cells)
                    if row_cells[col_idx]["text"]:
                        row_cells[col_idx]["text"] += " " + region.text.strip()
                    else:
                        row_cells[col_idx]["text"] = region.text.strip()
                    row_cells[col_idx]["bbox"] = region.bbox.to_xyxy()
                    row_cells[col_idx]["confidence"] = max(
                        row_cells[col_idx]["confidence"],
                        region.confidence
                    )
                    assigned = True
                    break

            # If not assigned, put in nearest column
            if not assigned:
                min_dist = float("inf")
                nearest_col = 0
                for col_idx, (x_start, x_end) in enumerate(col_positions):
                    col_center = (x_start + x_end) / 2
                    dist = abs(region_x - col_center)
                    if dist < min_dist:
                        min_dist = dist
                        nearest_col = col_idx

                if row_cells[nearest_col]["text"]:
                    row_cells[nearest_col]["text"] += " " + region.text.strip()
                else:
                    row_cells[nearest_col]["text"] = region.text.strip()
                row_cells[nearest_col]["bbox"] = region.bbox.to_xyxy()
                row_cells[nearest_col]["confidence"] = region.confidence

        return row_cells

    def _detect_header_row(
        self,
        cells: List[List[str]],
        rows: List[List[OCRRegion]],
    ) -> Tuple[bool, List[str]]:
        """
        Detect if the first row is a header row.

        Heuristics used:
        - First row contains non-numeric text
        - First row text is shorter (labels vs data)
        - First row has distinct formatting (if available)
        """
        if not cells or len(cells) < 2:
            return False, []

        first_row = cells[0]
        other_rows = cells[1:]

        # Check if first row is mostly non-numeric
        first_row_numeric_count = sum(
            1 for cell in first_row
            if cell and self._is_numeric(cell)
        )
        first_row_text_ratio = (len(first_row) - first_row_numeric_count) / max(len(first_row), 1)

        # Check if other rows are more numeric
        other_numeric_ratios = []
        for row in other_rows:
            if row:
                numeric_count = sum(1 for cell in row if cell and self._is_numeric(cell))
                other_numeric_ratios.append(numeric_count / max(len(row), 1))

        avg_other_numeric = sum(other_numeric_ratios) / max(len(other_numeric_ratios), 1)

        # Header detection: first row is text-heavy, others are more numeric
        is_header = (
            first_row_text_ratio > 0.5 and
            (avg_other_numeric > first_row_text_ratio * 0.5 or first_row_text_ratio > 0.8)
        )

        # Also consider: shorter cell lengths in first row (labels are usually shorter)
        first_row_avg_len = sum(len(cell) for cell in first_row) / max(len(first_row), 1)
        other_avg_lens = [
            sum(len(cell) for cell in row) / max(len(row), 1)
            for row in other_rows
        ]
        avg_other_len = sum(other_avg_lens) / max(len(other_avg_lens), 1)

        if first_row_avg_len < avg_other_len * 0.8:
            is_header = True

        return is_header, first_row if is_header else []

    def _is_numeric(self, text: str) -> bool:
        """Check if text is primarily numeric (including currency, percentages)."""
        cleaned = re.sub(r'[$€£¥%,.\s\-+()]', '', text)
        return cleaned.isdigit() if cleaned else False

    def _table_to_markdown(
        self,
        rows: List[List[str]],
        headers: List[str],
        has_header: bool,
    ) -> str:
        """
        Convert table data to markdown format.

        Creates a properly formatted markdown table with:
        - Header row (if detected)
        - Separator row
        - Data rows
        """
        if not rows:
            return "[Empty Table]"

        # Determine column count
        num_cols = max(len(row) for row in rows) if rows else 0
        if num_cols == 0:
            return "[Empty Table]"

        # Normalize all rows to same column count
        normalized_rows = []
        for row in rows:
            normalized = row + [""] * (num_cols - len(row))
            normalized_rows.append(normalized)

        # Build markdown lines
        md_lines = []

        if has_header and headers:
            # Use detected headers
            header_line = "| " + " | ".join(headers + [""] * (num_cols - len(headers))) + " |"
            separator = "| " + " | ".join(["---"] * num_cols) + " |"
            md_lines.append(header_line)
            md_lines.append(separator)
            data_rows = normalized_rows[1:]
        else:
            # No header - create generic headers
            generic_headers = [f"Col{i+1}" for i in range(num_cols)]
            header_line = "| " + " | ".join(generic_headers) + " |"
            separator = "| " + " | ".join(["---"] * num_cols) + " |"
            md_lines.append(header_line)
            md_lines.append(separator)
            data_rows = normalized_rows

        # Add data rows
        for row in data_rows:
            # Escape pipe characters in cell content
            escaped_row = [cell.replace("|", "\\|") for cell in row]
            row_line = "| " + " | ".join(escaped_row) + " |"
            md_lines.append(row_line)

        return "\n".join(md_lines)

    def _create_figure_chunk(
        self,
        ocr_regions: List[OCRRegion],
        layout: LayoutRegion,
        document_id: str,
        source_path: Optional[str],
    ) -> DocumentChunk:
        """Create a chunk for figure/chart content."""
        # For figures, text is usually caption
        text = " ".join(r.text for r in ocr_regions) if ocr_regions else "[Figure]"
        avg_conf = sum(r.confidence for r in ocr_regions) / len(ocr_regions) if ocr_regions else 0.5

        chunk_type = ChunkType.CHART if layout.type == LayoutType.CHART else ChunkType.FIGURE

        return DocumentChunk(
            chunk_id=f"{document_id}_{chunk_type.value}_{uuid.uuid4().hex[:8]}",
            chunk_type=chunk_type,
            text=text,
            bbox=layout.bbox,
            page=layout.page,
            document_id=document_id,
            source_path=source_path,
            sequence_index=0,
            confidence=avg_conf,
            caption=text if ocr_regions else None,
        )

    def _split_text_regions(
        self,
        ocr_regions: List[OCRRegion],
        document_id: str,
        source_path: Optional[str],
        page_num: int,
    ) -> List[DocumentChunk]:
        """Split OCR regions into chunks without layout guidance."""
        if not ocr_regions:
            return []

        chunks = []
        current_text = ""
        current_regions = []

        for region in ocr_regions:
            if len(current_text) + len(region.text) > self.config.max_chunk_chars:
                if current_regions:
                    # Create chunk from accumulated regions
                    chunk = self._create_chunk_from_regions(
                        current_regions, document_id, source_path, page_num, len(chunks)
                    )
                    chunks.append(chunk)

                current_text = region.text
                current_regions = [region]
            else:
                current_text += " " + region.text
                current_regions.append(region)

        # Final chunk
        if current_regions:
            chunk = self._create_chunk_from_regions(
                current_regions, document_id, source_path, page_num, len(chunks)
            )
            chunks.append(chunk)

        return chunks

    def _create_chunk_from_regions(
        self,
        regions: List[OCRRegion],
        document_id: str,
        source_path: Optional[str],
        page_num: int,
        sequence_index: int,
    ) -> DocumentChunk:
        """Create a chunk from a list of OCR regions."""
        text = " ".join(r.text for r in regions)
        avg_conf = sum(r.confidence for r in regions) / len(regions)

        # Compute bounding box
        x_min = min(r.bbox.x_min for r in regions)
        y_min = min(r.bbox.y_min for r in regions)
        x_max = max(r.bbox.x_max for r in regions)
        y_max = max(r.bbox.y_max for r in regions)

        bbox = BoundingBox(
            x_min=x_min, y_min=y_min,
            x_max=x_max, y_max=y_max,
            normalized=False,
        )

        return DocumentChunk(
            chunk_id=f"{document_id}_{uuid.uuid4().hex[:8]}",
            chunk_type=ChunkType.TEXT,
            text=text,
            bbox=bbox,
            page=page_num,
            document_id=document_id,
            source_path=source_path,
            sequence_index=sequence_index,
            confidence=avg_conf,
        )


# Factory
_document_chunker: Optional[DocumentChunker] = None


def get_document_chunker(
    config: Optional[ChunkerConfig] = None,
) -> DocumentChunker:
    """Get or create singleton document chunker."""
    global _document_chunker
    if _document_chunker is None:
        config = config or ChunkerConfig()
        _document_chunker = SemanticChunker(config)
    return _document_chunker