SPARKNET / docs /SPARKNET_TECHNICAL_REPORT.md
MHamdan's picture
Initial commit: SPARKNET framework
a9dc537

A newer version of the Streamlit SDK is available: 1.54.0

Upgrade

SPARKNET: Technical Report

AI-Powered Multi-Agent System for Research Valorization


Table of Contents

  1. Executive Summary
  2. Introduction
  3. System Architecture
  4. Theoretical Foundations
  5. Core Components
  6. Workflow Engine
  7. Implementation Details
  8. Use Case: Patent Wake-Up
  9. Performance Considerations
  10. Conclusion

1. Executive Summary

SPARKNET is an autonomous multi-agent AI system designed for research valorization and technology transfer. Built on modern agentic AI principles, it leverages LangGraph for workflow orchestration, LangChain for LLM integration, and ChromaDB for vector-based memory. The system transforms dormant intellectual property into commercialization opportunities throughs a coordinated pipeline of specialized agents.

Key Capabilities:

  • Multi-agent orchestration with cyclic refinement
  • Local LLM deployment via Ollama (privacy-preserving)
  • Vector-based episodic and semantic memory
  • Automated patent analysis and Technology Readiness Level (TRL) assessment
  • Market opportunity identification and stakeholder matching
  • Professional valorization brief generation

2. Introduction

2.1 Problem Statement

University technology transfer offices face significant challenges:

  • Volume: Thousands of patents remain dormant in institutional portfolios
  • Complexity: Manual analysis requires deep domain expertise
  • Time: Traditional evaluation takes days to weeks per patent
  • Resources: Limited staff cannot process the backlog efficiently

2.2 Solution Approach

SPARKNET addresses these challenges through an agentic AI architecture that:

  1. Automates document analysis and information extraction
  2. Applies domain expertise through specialized agents
  3. Provides structured, actionable outputs
  4. Learns from past experiences to improve future performance

2.3 Design Principles

Principle Implementation
Autonomy Agents operate independently with defined goals
Specialization Each agent focuses on specific tasks
Collaboration Agents share information through structured state
Iteration Quality-driven refinement cycles
Memory Vector stores for contextual learning
Privacy Local LLM deployment via Ollama

3. System Architecture

3.1 High-Level Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                        SPARKNET SYSTEM                                β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                                       β”‚
β”‚   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚   β”‚   Frontend  β”‚    β”‚   Backend   β”‚    β”‚      LLM Layer          β”‚ β”‚
β”‚   β”‚   Next.js   │◄──►│   FastAPI   │◄──►│   Ollama (4 Models)     β”‚ β”‚
β”‚   β”‚  Port 3000  β”‚    β”‚  Port 8000  β”‚    β”‚   - llama3.1:8b         β”‚ β”‚
β”‚   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜    β”‚   - mistral:latest      β”‚ β”‚
β”‚                             β”‚           β”‚   - qwen2.5:14b         β”‚ β”‚
β”‚                             β–Ό           β”‚   - gemma2:2b           β”‚ β”‚
β”‚                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”‚                    β”‚   LangGraph    β”‚                                β”‚
β”‚                    β”‚   Workflow     │◄──► ChromaDB (Vector Store)   β”‚
β”‚                    β”‚   (StateGraph) β”‚                                β”‚
β”‚                    β””β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜                                β”‚
β”‚                            β”‚                                         β”‚
β”‚         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                     β”‚
β”‚         β–Ό                  β–Ό                  β–Ό                      β”‚
β”‚   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                β”‚
β”‚   β”‚  Planner  β”‚    β”‚  Executor   β”‚    β”‚  Critic   β”‚                β”‚
β”‚   β”‚   Agent   β”‚    β”‚   Agents    β”‚    β”‚   Agent   β”‚                β”‚
β”‚   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                β”‚
β”‚                                                                       β”‚
β”‚   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                β”‚
β”‚   β”‚  Memory   β”‚    β”‚  VisionOCR  β”‚    β”‚   Tools   β”‚                β”‚
β”‚   β”‚   Agent   β”‚    β”‚    Agent    β”‚    β”‚  Registry β”‚                β”‚
β”‚   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                β”‚
β”‚                                                                       β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

3.2 Layer Description

Layer Technology Purpose
Presentation Next.js, React, TypeScript User interface, file upload, results display
API FastAPI, Python 3.10+ RESTful endpoints, async processing
Orchestration LangGraph (StateGraph) Workflow execution, conditional routing
Agent LangChain, Custom Agents Task-specific processing
LLM Ollama (Local) Natural language understanding and generation
Memory ChromaDB Vector storage, semantic search

4. Theoretical Foundations

4.1 Agentic AI Paradigm

SPARKNET implements the modern agentic AI paradigm characterized by:

4.1.1 Agent Definition

An agent in SPARKNET is defined as a tuple:

Agent = (S, A, T, R, Ο€)

Where:

  • S = State space (AgentState in LangGraph)
  • A = Action space (tool calls, LLM invocations)
  • T = Transition function (workflow edges)
  • R = Reward signal (validation score)
  • Ο€ = Policy (LLM-based decision making)

4.1.2 Multi-Agent Coordination

The system employs hierarchical coordination:

                    Coordinator (Workflow)
                          β”‚
        β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
        β–Ό                 β–Ό                 β–Ό
    Planner         Executors           Critic
    (Strategic)     (Tactical)      (Evaluative)
        β”‚                β”‚                 β”‚
        β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                         β–Ό
                 Shared State (AgentState)

4.2 State Machine Formalism

The LangGraph workflow is formally a Finite State Machine with Memory:

FSM-M = (Q, Ξ£, Ξ΄, qβ‚€, F, M)

Where:

  • Q = {PLANNER, ROUTER, EXECUTOR, CRITIC, REFINE, FINISH}
  • Ξ£ = Input alphabet (task descriptions, documents)
  • Ξ΄ = Transition function (conditional edges)
  • qβ‚€ = PLANNER (initial state)
  • F = {FINISH} (accepting states)
  • M = AgentState (memory/context)

4.3 Quality-Driven Refinement

The system implements a feedback control loop:

                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                    β”‚                             β”‚
                    β–Ό                             β”‚
    Input β†’ PLAN β†’ EXECUTE β†’ VALIDATE ──YES──→ OUTPUT
                                β”‚
                               NO (score < threshold)
                                β”‚
                                β–Ό
                             REFINE
                                β”‚
                                └─────────────────→ (back to PLAN)

Convergence Condition:

terminate iff (validation_score β‰₯ quality_threshold) OR (iterations β‰₯ max_iterations)

4.4 Vector Memory Architecture

The memory system uses dense vector embeddings for semantic retrieval:

Memory Types:
β”œβ”€β”€ Episodic Memory    β†’ Past workflow executions, outcomes
β”œβ”€β”€ Semantic Memory    β†’ Domain knowledge, legal frameworks
└── Stakeholder Memory β†’ Partner profiles, capabilities

Retrieval Function:

retrieve(query, top_k) = argmax_k(cosine_similarity(embed(query), embed(documents)))

5. Core Components

5.1 BaseAgent Abstract Class

All agents inherit from BaseAgent, providing:

class BaseAgent(ABC):
    """Core agent interface"""

    # Attributes
    name: str                    # Agent identifier
    description: str             # Agent purpose
    llm_client: OllamaClient     # LLM interface
    model: str                   # Model to use
    system_prompt: str           # Agent persona
    tools: Dict[str, BaseTool]   # Available tools
    messages: List[Message]      # Conversation history

    # Core Methods
    async def call_llm(prompt, messages, temperature) -> str
    async def execute_tool(tool_name, **kwargs) -> ToolResult
    async def process_task(task: Task) -> Task  # Abstract
    async def send_message(recipient: Agent, content: str) -> str

5.2 Specialized Agents

Agent Purpose Model Complexity
PlannerAgent Task decomposition, dependency analysis qwen2.5:14b Complex
CriticAgent Output validation, quality scoring mistral:latest Analysis
MemoryAgent Context retrieval, episode storage nomic-embed-text Embeddings
VisionOCRAgent Image/PDF text extraction llava:7b Vision
DocumentAnalysisAgent Patent structure extraction llama3.1:8b Standard
MarketAnalysisAgent Market opportunity identification mistral:latest Analysis
MatchmakingAgent Stakeholder matching qwen2.5:14b Complex
OutreachAgent Brief generation llama3.1:8b Standard

5.3 Tool System

Tools extend agent capabilities:

class BaseTool(ABC):
    name: str
    description: str
    parameters: Dict[str, ToolParameter]

    async def execute(**kwargs) -> ToolResult
    async def safe_execute(**kwargs) -> ToolResult  # With error handling

Built-in Tools:

  • file_reader, file_writer, file_search, directory_list
  • python_executor, bash_executor
  • gpu_monitor, gpu_select
  • document_generator_tool (PDF creation)

6. Workflow Engine

6.1 LangGraph StateGraph

The workflow is defined as a directed graph:

class SparknetWorkflow:
    def _build_graph(self) -> StateGraph:
        workflow = StateGraph(AgentState)

        # Define nodes (processing functions)
        workflow.add_node("planner", self._planner_node)
        workflow.add_node("router", self._router_node)
        workflow.add_node("executor", self._executor_node)
        workflow.add_node("critic", self._critic_node)
        workflow.add_node("refine", self._refine_node)
        workflow.add_node("finish", self._finish_node)

        # Define edges (transitions)
        workflow.set_entry_point("planner")
        workflow.add_edge("planner", "router")
        workflow.add_edge("router", "executor")
        workflow.add_edge("executor", "critic")

        # Conditional routing based on validation
        workflow.add_conditional_edges(
            "critic",
            self._should_refine,
            {"refine": "refine", "finish": "finish"}
        )

        workflow.add_edge("refine", "planner")  # Cyclic refinement
        workflow.add_edge("finish", END)

        return workflow

6.2 AgentState Schema

The shared state passed between nodes:

class AgentState(TypedDict):
    # Message History (auto-managed by LangGraph)
    messages: Annotated[Sequence[BaseMessage], add_messages]

    # Task Information
    task_id: str
    task_description: str
    scenario: ScenarioType  # PATENT_WAKEUP, AGREEMENT_SAFETY, etc.
    status: TaskStatus      # PENDING β†’ PLANNING β†’ EXECUTING β†’ VALIDATING β†’ COMPLETED

    # Workflow Execution
    current_agent: Optional[str]
    iteration_count: int
    max_iterations: int

    # Planning Outputs
    subtasks: Optional[List[Dict]]
    execution_order: Optional[List[List[str]]]

    # Execution Outputs
    agent_outputs: Dict[str, Any]
    intermediate_results: List[Dict]

    # Validation
    validation_score: Optional[float]
    validation_feedback: Optional[str]
    validation_issues: List[str]
    validation_suggestions: List[str]

    # Memory Context
    retrieved_context: List[Dict]
    document_metadata: Dict[str, Any]
    input_data: Dict[str, Any]

    # Final Output
    final_output: Optional[Any]
    success: bool
    error: Optional[str]

    # Timing
    start_time: datetime
    end_time: Optional[datetime]
    execution_time_seconds: Optional[float]

6.3 Workflow Execution Flow

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                      WORKFLOW EXECUTION FLOW                         β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                                      β”‚
β”‚  1. PLANNER NODE                                                    β”‚
β”‚     β”œβ”€ Retrieve context from MemoryAgent                            β”‚
β”‚     β”œβ”€ Decompose task into subtasks                                 β”‚
β”‚     β”œβ”€ Determine execution order (dependency resolution)            β”‚
β”‚     └─ Output: subtasks[], execution_order[]                        β”‚
β”‚                          β”‚                                           β”‚
β”‚                          β–Ό                                           β”‚
β”‚  2. ROUTER NODE                                                     β”‚
β”‚     β”œβ”€ Identify scenario type (PATENT_WAKEUP, etc.)                 β”‚
β”‚     β”œβ”€ Select appropriate executor agents                           β”‚
β”‚     └─ Output: agents_to_use[]                                      β”‚
β”‚                          β”‚                                           β”‚
β”‚                          β–Ό                                           β”‚
β”‚  3. EXECUTOR NODE                                                   β”‚
β”‚     β”œβ”€ Route to scenario-specific pipeline                          β”‚
β”‚     β”‚   └─ Patent Wake-Up: Doc β†’ Market β†’ Match β†’ Outreach          β”‚
β”‚     β”œβ”€ Execute each specialized agent sequentially                  β”‚
β”‚     └─ Output: agent_outputs{}, final_output                        β”‚
β”‚                          β”‚                                           β”‚
β”‚                          β–Ό                                           β”‚
β”‚  4. CRITIC NODE                                                     β”‚
β”‚     β”œβ”€ Validate output quality (0.0-1.0 score)                      β”‚
β”‚     β”œβ”€ Identify issues and suggestions                              β”‚
β”‚     └─ Output: validation_score, validation_feedback                β”‚
β”‚                          β”‚                                           β”‚
β”‚                          β–Ό                                           β”‚
β”‚  5. CONDITIONAL ROUTING                                             β”‚
β”‚     β”œβ”€ IF score β‰₯ threshold (0.85) β†’ FINISH                         β”‚
β”‚     β”œβ”€ IF iterations β‰₯ max β†’ FINISH (with warning)                  β”‚
β”‚     └─ ELSE β†’ REFINE β†’ back to PLANNER                              β”‚
β”‚                          β”‚                                           β”‚
β”‚                          β–Ό                                           β”‚
β”‚  6. FINISH NODE                                                     β”‚
β”‚     β”œβ”€ Store episode in MemoryAgent (if quality β‰₯ 0.75)             β”‚
β”‚     β”œβ”€ Calculate execution statistics                               β”‚
β”‚     └─ Return WorkflowOutput                                        β”‚
β”‚                                                                      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

7. Implementation Details

7.1 LLM Integration (Ollama)

SPARKNET uses Ollama for local LLM deployment:

class LangChainOllamaClient:
    """LangChain-compatible Ollama client with model routing"""

    COMPLEXITY_MODELS = {
        "simple": "gemma2:2b",      # Classification, routing
        "standard": "llama3.1:8b",  # General tasks
        "analysis": "mistral:latest", # Analysis, reasoning
        "complex": "qwen2.5:14b",   # Complex multi-step
    }

    def get_llm(self, complexity: str) -> ChatOllama:
        """Get LLM instance for specified complexity level"""
        model = self.COMPLEXITY_MODELS.get(complexity, "llama3.1:8b")
        return ChatOllama(model=model, base_url=self.base_url)

    def get_embeddings(self) -> OllamaEmbeddings:
        """Get embeddings model for vector operations"""
        return OllamaEmbeddings(model="nomic-embed-text:latest")

7.2 Memory System (ChromaDB)

Three specialized collections:

class MemoryAgent:
    def _initialize_collections(self):
        # Episodic: Past workflow executions
        self.episodic_memory = Chroma(
            collection_name="episodic_memory",
            embedding_function=self.embeddings,
            persist_directory="data/vector_store/episodic"
        )

        # Semantic: Domain knowledge
        self.semantic_memory = Chroma(
            collection_name="semantic_memory",
            embedding_function=self.embeddings,
            persist_directory="data/vector_store/semantic"
        )

        # Stakeholders: Partner profiles
        self.stakeholder_profiles = Chroma(
            collection_name="stakeholder_profiles",
            embedding_function=self.embeddings,
            persist_directory="data/vector_store/stakeholders"
        )

7.3 Pydantic Data Models

Structured outputs ensure type safety:

class PatentAnalysis(BaseModel):
    patent_id: str
    title: str
    abstract: str
    independent_claims: List[Claim]
    dependent_claims: List[Claim]
    ipc_classification: List[str]
    technical_domains: List[str]
    key_innovations: List[str]
    trl_level: int = Field(ge=1, le=9)
    trl_justification: str
    commercialization_potential: str  # High/Medium/Low
    potential_applications: List[str]
    confidence_score: float = Field(ge=0.0, le=1.0)

class MarketOpportunity(BaseModel):
    sector: str
    market_size_usd: Optional[float]
    growth_rate_percent: Optional[float]
    technology_fit: str  # Excellent/Good/Fair
    priority_score: float = Field(ge=0.0, le=1.0)

class StakeholderMatch(BaseModel):
    stakeholder_name: str
    stakeholder_type: str  # Investor/Company/University
    overall_fit_score: float
    technical_fit: float
    market_fit: float
    geographic_fit: float
    match_rationale: str
    recommended_approach: str

8. Use Case: Patent Wake-Up

8.1 Scenario Overview

The Patent Wake-Up workflow transforms dormant patents into commercialization opportunities:

Patent Document β†’ Analysis β†’ Market Opportunities β†’ Partner Matching β†’ Valorization Brief

8.2 Pipeline Execution

async def _execute_patent_wakeup(self, state: AgentState) -> AgentState:
    """Four-stage Patent Wake-Up pipeline"""

    # Stage 1: Document Analysis
    doc_agent = DocumentAnalysisAgent(llm_client, memory_agent, vision_ocr_agent)
    patent_analysis = await doc_agent.analyze_patent(patent_path)
    # Output: PatentAnalysis (title, claims, TRL, innovations)

    # Stage 2: Market Analysis
    market_agent = MarketAnalysisAgent(llm_client, memory_agent)
    market_analysis = await market_agent.analyze_market(patent_analysis)
    # Output: MarketAnalysis (opportunities, sectors, strategy)

    # Stage 3: Stakeholder Matching
    matching_agent = MatchmakingAgent(llm_client, memory_agent)
    matches = await matching_agent.find_matches(patent_analysis, market_analysis)
    # Output: List[StakeholderMatch] (scored partners)

    # Stage 4: Brief Generation
    outreach_agent = OutreachAgent(llm_client, memory_agent)
    brief = await outreach_agent.create_valorization_brief(
        patent_analysis, market_analysis, matches
    )
    # Output: ValorizationBrief (markdown + PDF)

    return state

8.3 Example Output

Patent: AI-Powered Drug Discovery Platform
─────────────────────────────────────────────

Technology Assessment:
  TRL Level: 7/9 (System Demonstration)
  Key Innovations:
    β€’ Novel neural network for molecular interaction prediction
    β€’ Transfer learning from existing drug databases
    β€’ Automated screening pipeline (60% time reduction)

Market Opportunities (Top 3):
  1. Pharmaceutical R&D Automation ($150B market, 12% CAGR)
  2. Biotechnology Platform Services ($45B market, 15% CAGR)
  3. Clinical Trial Optimization ($8B market, 18% CAGR)

Top Partner Matches:
  1. PharmaTech Solutions Inc. (Basel) - 92% fit score
  2. BioVentures Capital (Toronto) - 88% fit score
  3. European Patent Office Services (Munich) - 85% fit score

Output: outputs/valorization_brief_patent_20251204.pdf

9. Performance Considerations

9.1 Model Selection Strategy

Task Complexity Model VRAM Latency
Simple (routing, classification) gemma2:2b 1.6 GB ~1s
Standard (extraction, generation) llama3.1:8b 4.9 GB ~3s
Analysis (reasoning, evaluation) mistral:latest 4.4 GB ~4s
Complex (planning, multi-step) qwen2.5:14b 9.0 GB ~8s

9.2 GPU Resource Management

class GPUManager:
    """Multi-GPU resource allocation"""

    def select_best_gpu(self, min_memory_gb: float = 4.0) -> int:
        """Select GPU with most available memory"""
        gpus = self.get_gpu_status()
        available = [g for g in gpus if g.free_memory_gb >= min_memory_gb]
        return max(available, key=lambda g: g.free_memory_gb).id

    @contextmanager
    def gpu_context(self, min_memory_gb: float):
        """Context manager for GPU allocation"""
        gpu_id = self.select_best_gpu(min_memory_gb)
        os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
        yield gpu_id

9.3 Workflow Timing

Stage Typical Duration Notes
Planning 5-10s Depends on task complexity
Document Analysis 15-30s OCR adds ~10s for scanned PDFs
Market Analysis 10-20s Context retrieval included
Stakeholder Matching 20-40s Semantic search + scoring
Brief Generation 15-25s Includes PDF rendering
Validation 5-10s Per iteration
Total 2-5 minutes Single patent, no refinement

9.4 Scalability

  • Batch Processing: Process multiple patents in parallel
  • ChromaDB Capacity: Supports 10,000+ stakeholder profiles
  • Checkpointing: Resume failed workflows from last checkpoint
  • Memory Persistence: Vector stores persist across sessions

10. Conclusion

10.1 Summary

SPARKNET demonstrates a practical implementation of agentic AI for research valorization:

  1. Multi-Agent Architecture: Specialized agents collaborate through shared state
  2. LangGraph Orchestration: Cyclic workflows with quality-driven refinement
  3. Local LLM Deployment: Privacy-preserving inference via Ollama
  4. Vector Memory: Contextual learning from past experiences
  5. Structured Outputs: Pydantic models ensure data integrity

10.2 Key Contributions

Aspect Innovation
Architecture Hierarchical multi-agent system with conditional routing
Workflow State machine with memory and iterative refinement
Memory Tri-partite vector store (episodic, semantic, stakeholder)
Privacy Full local deployment without cloud dependencies
Output Professional PDF briefs with actionable recommendations

10.3 Future Directions

  1. LangSmith Integration: Observability and debugging
  2. Real Stakeholder Database: CRM integration for live partner data
  3. Scenario Expansion: Agreement Safety, Partner Matching workflows
  4. Multi-Language Support: International patent processing
  5. Advanced Learning: Reinforcement learning from user feedback

Appendix A: Technology Stack

Component Technology Version
Runtime Python 3.10+
Orchestration LangGraph 0.2+
LLM Framework LangChain 1.0+
Local LLM Ollama Latest
Vector Store ChromaDB 1.3+
API FastAPI 0.100+
Frontend Next.js 16+
Validation Pydantic 2.0+

Appendix B: Model Requirements

# Required models (download via Ollama)
ollama pull llama3.1:8b           # Standard tasks (4.9 GB)
ollama pull mistral:latest        # Analysis tasks (4.4 GB)
ollama pull qwen2.5:14b           # Complex reasoning (9.0 GB)
ollama pull gemma2:2b             # Simple routing (1.6 GB)
ollama pull nomic-embed-text      # Embeddings (274 MB)
ollama pull llava:7b              # Vision/OCR (optional, 4.7 GB)

Appendix C: Running SPARKNET

# 1. Start Ollama server
ollama serve

# 2. Activate environment
conda activate sparknet

# 3. Start backend
cd /home/mhamdan/SPARKNET
python -m uvicorn api.main:app --reload --port 8000

# 4. Start frontend (separate terminal)
cd frontend && npm run dev

# 5. Access application
# Frontend: http://localhost:3000
# API Docs: http://localhost:8000/api/docs

Document Generated: December 2025 SPARKNET Version: 1.0 (Production Ready)