SPARKNET / backend /api.py
MHamdan's picture
the update
4718630
"""
SPARKNET Backend API - GPU-Accelerated Document Processing
This FastAPI service runs on a GPU server (e.g., Lytos) and provides:
- Document processing with PaddleOCR
- Layout detection
- RAG indexing and querying
- Embedding generation
- LLM inference via Ollama
Deploy this on your GPU server and connect Streamlit Cloud to it.
"""
from fastapi import FastAPI, HTTPException, UploadFile, File, Form, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from typing import Optional, List, Dict, Any
import hashlib
import tempfile
import os
import sys
from pathlib import Path
from datetime import datetime
import asyncio
# Add project root to path
PROJECT_ROOT = Path(__file__).parent.parent
sys.path.insert(0, str(PROJECT_ROOT))
app = FastAPI(
title="SPARKNET Backend API",
description="GPU-accelerated document processing for Technology Transfer Office automation",
version="1.0.0",
docs_url="/docs",
redoc_url="/redoc",
)
# CORS - Allow Streamlit Cloud to connect
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Configure specific origins in production
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# ============================================================================
# Pydantic Models
# ============================================================================
class HealthResponse(BaseModel):
status: str
timestamp: str
version: str = "1.0.0"
class SystemStatus(BaseModel):
ollama_available: bool
ollama_models: List[str] = []
gpu_available: bool = False
gpu_name: Optional[str] = None
rag_ready: bool = False
indexed_chunks: int = 0
embedding_model: Optional[str] = None
llm_model: Optional[str] = None
class ProcessRequest(BaseModel):
filename: str
options: Dict[str, Any] = Field(default_factory=dict)
class ProcessResponse(BaseModel):
success: bool
doc_id: str
filename: str
raw_text: str = ""
chunks: List[Dict[str, Any]] = []
page_count: int = 0
ocr_regions: List[Dict[str, Any]] = []
layout_regions: List[Dict[str, Any]] = []
ocr_confidence: float = 0.0
layout_confidence: float = 0.0
processing_time: float = 0.0
error: Optional[str] = None
class IndexRequest(BaseModel):
doc_id: str
text: str
chunks: List[Dict[str, Any]] = []
metadata: Dict[str, Any] = Field(default_factory=dict)
class IndexResponse(BaseModel):
success: bool
doc_id: str
num_chunks: int = 0
error: Optional[str] = None
class QueryRequest(BaseModel):
question: str
filters: Optional[Dict[str, Any]] = None
top_k: int = 5
class QueryResponse(BaseModel):
success: bool
answer: str = ""
sources: List[Dict[str, Any]] = []
confidence: float = 0.0
latency_ms: float = 0.0
validated: bool = False
error: Optional[str] = None
class SearchRequest(BaseModel):
query: str
top_k: int = 5
doc_filter: Optional[str] = None
class DocumentInfo(BaseModel):
doc_id: str
filename: str = ""
chunk_count: int = 0
indexed_at: Optional[str] = None
# ============================================================================
# Global State
# ============================================================================
_rag_system = None
_processing_queue = {}
def get_rag_system():
"""Initialize and return the RAG system."""
global _rag_system
if _rag_system is not None:
return _rag_system
try:
from src.rag.agentic import AgenticRAG, RAGConfig
from src.rag.store import get_vector_store, VectorStoreConfig, reset_vector_store
from src.rag.embeddings import get_embedding_adapter, EmbeddingConfig, reset_embedding_adapter
# Check Ollama
ollama_ok, models = check_ollama_sync()
if not ollama_ok:
return None
# Select models
EMBEDDING_MODELS = ["nomic-embed-text", "mxbai-embed-large:latest", "mxbai-embed-large"]
LLM_MODELS = ["llama3.2:latest", "llama3.1:8b", "mistral:latest", "qwen2.5:14b"]
embed_model = next((m for m in EMBEDDING_MODELS if m in models), EMBEDDING_MODELS[0])
llm_model = next((m for m in LLM_MODELS if m in models), LLM_MODELS[0])
# Reset singletons
reset_vector_store()
reset_embedding_adapter()
# Initialize embedding adapter
embed_config = EmbeddingConfig(
ollama_model=embed_model,
ollama_base_url="http://localhost:11434",
)
embedder = get_embedding_adapter(config=embed_config)
# Initialize vector store
store_config = VectorStoreConfig(
persist_directory="data/sparknet_unified_rag",
collection_name="sparknet_documents",
similarity_threshold=0.0,
)
store = get_vector_store(config=store_config)
# Initialize RAG config
rag_config = RAGConfig(
model=llm_model,
base_url="http://localhost:11434",
max_revision_attempts=1,
enable_query_planning=True,
enable_reranking=True,
enable_validation=True,
retrieval_top_k=10,
final_top_k=5,
min_confidence=0.3,
verbose=False,
)
# Initialize RAG system
rag = AgenticRAG(
config=rag_config,
vector_store=store,
embedding_adapter=embedder,
)
_rag_system = {
"rag": rag,
"store": store,
"embedder": embedder,
"embed_model": embed_model,
"llm_model": llm_model,
}
return _rag_system
except Exception as e:
print(f"RAG init error: {e}")
return None
def check_ollama_sync():
"""Check Ollama availability synchronously."""
try:
import httpx
with httpx.Client(timeout=3.0) as client:
resp = client.get("http://localhost:11434/api/tags")
if resp.status_code == 200:
models = [m["name"] for m in resp.json().get("models", [])]
return True, models
except:
pass
return False, []
def check_gpu():
"""Check GPU availability."""
try:
import torch
if torch.cuda.is_available():
return True, torch.cuda.get_device_name(0)
except:
pass
return False, None
# ============================================================================
# API Endpoints
# ============================================================================
@app.get("/", response_model=HealthResponse)
async def root():
"""Health check endpoint."""
return HealthResponse(
status="healthy",
timestamp=datetime.now().isoformat(),
)
@app.get("/api/health", response_model=HealthResponse)
async def health():
"""Health check endpoint."""
return HealthResponse(
status="healthy",
timestamp=datetime.now().isoformat(),
)
@app.get("/api/status", response_model=SystemStatus)
async def get_status():
"""Get system status including Ollama, GPU, and RAG availability."""
ollama_ok, models = check_ollama_sync()
gpu_ok, gpu_name = check_gpu()
rag = get_rag_system()
rag_ready = rag is not None
indexed_chunks = 0
embed_model = None
llm_model = None
if rag:
try:
indexed_chunks = rag["store"].count()
embed_model = rag.get("embed_model")
llm_model = rag.get("llm_model")
except:
pass
return SystemStatus(
ollama_available=ollama_ok,
ollama_models=models,
gpu_available=gpu_ok,
gpu_name=gpu_name,
rag_ready=rag_ready,
indexed_chunks=indexed_chunks,
embedding_model=embed_model,
llm_model=llm_model,
)
@app.post("/api/process", response_model=ProcessResponse)
async def process_document(
file: UploadFile = File(...),
ocr_engine: str = Form(default="paddleocr"),
max_pages: int = Form(default=10),
enable_layout: bool = Form(default=True),
preserve_tables: bool = Form(default=True),
):
"""
Process a document with OCR and layout detection.
This endpoint uses GPU-accelerated PaddleOCR for text extraction.
"""
import time
start_time = time.time()
# Read file
file_bytes = await file.read()
filename = file.filename
# Generate doc ID
content_hash = hashlib.md5(file_bytes[:1000]).hexdigest()[:8]
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
doc_id = hashlib.md5(f"{filename}_{timestamp}_{content_hash}".encode()).hexdigest()[:12]
# Save to temp file
suffix = Path(filename).suffix
with tempfile.NamedTemporaryFile(suffix=suffix, delete=False) as tmp:
tmp.write(file_bytes)
tmp_path = tmp.name
try:
# Try full document processing pipeline
try:
from src.document.pipeline.processor import DocumentProcessor, PipelineConfig
from src.document.ocr import OCRConfig
from src.document.layout import LayoutConfig
from src.document.chunking.chunker import ChunkerConfig
chunker_config = ChunkerConfig(
preserve_table_structure=preserve_tables,
detect_table_headers=True,
chunk_tables=True,
chunk_figures=True,
include_captions=True,
)
layout_config = LayoutConfig(
method="rule_based",
detect_tables=True,
detect_figures=True,
detect_headers=True,
detect_titles=True,
detect_lists=True,
min_confidence=0.3,
heading_font_ratio=1.1,
)
config = PipelineConfig(
ocr=OCRConfig(engine=ocr_engine),
layout=layout_config,
chunking=chunker_config,
max_pages=max_pages,
include_ocr_regions=True,
include_layout_regions=enable_layout,
generate_full_text=True,
)
processor = DocumentProcessor(config)
processor.initialize()
result = processor.process(tmp_path)
# Convert to response format
chunks_list = []
for chunk in result.chunks:
chunks_list.append({
"chunk_id": chunk.chunk_id,
"text": chunk.text,
"page": chunk.page,
"chunk_type": chunk.chunk_type.value,
"confidence": chunk.confidence,
"bbox": chunk.bbox.to_xyxy() if chunk.bbox else None,
})
ocr_regions = []
for region in result.ocr_regions:
ocr_regions.append({
"text": region.text,
"confidence": region.confidence,
"page": region.page,
"bbox": region.bbox.to_xyxy() if region.bbox else None,
})
layout_regions = []
for region in result.layout_regions:
layout_regions.append({
"id": region.id,
"type": region.type.value,
"confidence": region.confidence,
"page": region.page,
"bbox": region.bbox.to_xyxy() if region.bbox else None,
})
processing_time = time.time() - start_time
return ProcessResponse(
success=True,
doc_id=doc_id,
filename=filename,
raw_text=result.full_text,
chunks=chunks_list,
page_count=result.metadata.num_pages,
ocr_regions=ocr_regions,
layout_regions=layout_regions,
ocr_confidence=result.metadata.ocr_confidence_avg or 0.0,
layout_confidence=result.metadata.layout_confidence_avg or 0.0,
processing_time=processing_time,
)
except Exception as e:
# Fallback to simple extraction
return await process_document_fallback(file_bytes, filename, doc_id, max_pages, str(e), start_time)
finally:
# Cleanup
if os.path.exists(tmp_path):
os.unlink(tmp_path)
async def process_document_fallback(
file_bytes: bytes,
filename: str,
doc_id: str,
max_pages: int,
reason: str,
start_time: float
) -> ProcessResponse:
"""Fallback document processing using PyMuPDF."""
import time
text = ""
page_count = 1
suffix = Path(filename).suffix.lower()
if suffix == ".pdf":
try:
import fitz
import io
pdf_stream = io.BytesIO(file_bytes)
doc = fitz.open(stream=pdf_stream, filetype="pdf")
page_count = len(doc)
max_p = min(max_pages, page_count)
text_parts = []
for page_num in range(max_p):
page = doc[page_num]
text_parts.append(f"--- Page {page_num + 1} ---\n{page.get_text()}")
text = "\n\n".join(text_parts)
doc.close()
except Exception as e:
text = f"PDF extraction failed: {e}"
elif suffix in [".txt", ".md"]:
try:
text = file_bytes.decode("utf-8")
except:
text = file_bytes.decode("latin-1", errors="ignore")
else:
text = f"Unsupported file type: {suffix}"
# Simple chunking
chunk_size = 500
overlap = 50
chunks = []
for i in range(0, len(text), chunk_size - overlap):
chunk_text = text[i:i + chunk_size]
if len(chunk_text.strip()) > 20:
chunks.append({
"chunk_id": f"{doc_id}_chunk_{len(chunks)}",
"text": chunk_text,
"page": 0,
"chunk_type": "text",
"confidence": 0.9,
"bbox": None,
})
processing_time = time.time() - start_time
return ProcessResponse(
success=True,
doc_id=doc_id,
filename=filename,
raw_text=text,
chunks=chunks,
page_count=page_count,
ocr_regions=[],
layout_regions=[],
ocr_confidence=0.9,
layout_confidence=0.0,
processing_time=processing_time,
error=f"Fallback mode: {reason}",
)
@app.post("/api/index", response_model=IndexResponse)
async def index_document(request: IndexRequest):
"""Index a document into the RAG vector store."""
rag = get_rag_system()
if not rag:
return IndexResponse(
success=False,
doc_id=request.doc_id,
error="RAG system not available. Check Ollama status.",
)
try:
store = rag["store"]
embedder = rag["embedder"]
chunk_dicts = []
embeddings = []
for i, chunk in enumerate(request.chunks):
chunk_text = chunk.get("text", "") if isinstance(chunk, dict) else str(chunk)
if len(chunk_text.strip()) < 20:
continue
chunk_id = chunk.get("chunk_id", f"{request.doc_id}_chunk_{i}")
chunk_dict = {
"chunk_id": chunk_id,
"document_id": request.doc_id,
"text": chunk_text,
"page": chunk.get("page", 0) if isinstance(chunk, dict) else 0,
"chunk_type": "text",
"source_path": request.metadata.get("filename", ""),
"sequence_index": i,
}
chunk_dicts.append(chunk_dict)
embedding = embedder.embed_text(chunk_text)
embeddings.append(embedding)
if not chunk_dicts:
return IndexResponse(
success=False,
doc_id=request.doc_id,
error="No valid chunks to index",
)
store.add_chunks(chunk_dicts, embeddings)
return IndexResponse(
success=True,
doc_id=request.doc_id,
num_chunks=len(chunk_dicts),
)
except Exception as e:
return IndexResponse(
success=False,
doc_id=request.doc_id,
error=str(e),
)
@app.post("/api/query", response_model=QueryResponse)
async def query_rag(request: QueryRequest):
"""Query the RAG system."""
import time
start_time = time.time()
rag = get_rag_system()
if not rag:
return QueryResponse(
success=False,
error="RAG system not available. Check Ollama status.",
)
try:
response = rag["rag"].query(request.question, filters=request.filters)
latency_ms = (time.time() - start_time) * 1000
sources = []
if hasattr(response, 'citations') and response.citations:
for cite in response.citations:
sources.append({
"index": cite.index if hasattr(cite, 'index') else 0,
"text_snippet": cite.text_snippet if hasattr(cite, 'text_snippet') else str(cite),
"relevance_score": cite.relevance_score if hasattr(cite, 'relevance_score') else 0.0,
"document_id": cite.document_id if hasattr(cite, 'document_id') else "",
"page": cite.page if hasattr(cite, 'page') else 0,
})
return QueryResponse(
success=True,
answer=response.answer,
sources=sources,
confidence=response.confidence,
latency_ms=latency_ms,
validated=response.validated,
)
except Exception as e:
return QueryResponse(
success=False,
error=str(e),
)
@app.post("/api/search")
async def search_similar(request: SearchRequest):
"""Search for similar chunks."""
rag = get_rag_system()
if not rag:
return {"success": False, "error": "RAG system not available", "results": []}
try:
embedder = rag["embedder"]
store = rag["store"]
query_embedding = embedder.embed_text(request.query)
filters = None
if request.doc_filter:
filters = {"document_id": request.doc_filter}
results = store.search(
query_embedding=query_embedding,
top_k=request.top_k,
filters=filters,
)
return {
"success": True,
"results": [
{
"chunk_id": r.chunk_id,
"document_id": r.document_id,
"text": r.text,
"similarity": r.similarity,
"page": r.page,
"metadata": r.metadata,
}
for r in results
]
}
except Exception as e:
return {"success": False, "error": str(e), "results": []}
@app.get("/api/documents", response_model=List[DocumentInfo])
async def list_documents():
"""List all indexed documents."""
rag = get_rag_system()
if not rag:
return []
try:
store = rag["store"]
collection = store._collection
results = collection.get(include=["metadatas"])
if not results or not results.get("metadatas"):
return []
doc_info = {}
for meta in results["metadatas"]:
doc_id = meta.get("document_id", "unknown")
if doc_id not in doc_info:
doc_info[doc_id] = {
"doc_id": doc_id,
"filename": meta.get("source_path", ""),
"chunk_count": 0,
}
doc_info[doc_id]["chunk_count"] += 1
return [DocumentInfo(**info) for info in doc_info.values()]
except Exception as e:
return []
@app.delete("/api/documents/{doc_id}")
async def delete_document(doc_id: str):
"""Delete a document from the index."""
rag = get_rag_system()
if not rag:
return {"success": False, "error": "RAG system not available"}
try:
store = rag["store"]
collection = store._collection
# Get chunk IDs for this document
results = collection.get(
where={"document_id": doc_id},
include=[]
)
if results and results.get("ids"):
collection.delete(ids=results["ids"])
return {"success": True, "deleted_chunks": len(results["ids"])}
return {"success": False, "error": "Document not found"}
except Exception as e:
return {"success": False, "error": str(e)}
# ============================================================================
# Run Server
# ============================================================================
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)