File size: 21,111 Bytes
4718630
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
"""
SPARKNET Backend API - GPU-Accelerated Document Processing

This FastAPI service runs on a GPU server (e.g., Lytos) and provides:
- Document processing with PaddleOCR
- Layout detection
- RAG indexing and querying
- Embedding generation
- LLM inference via Ollama

Deploy this on your GPU server and connect Streamlit Cloud to it.
"""

from fastapi import FastAPI, HTTPException, UploadFile, File, Form, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from typing import Optional, List, Dict, Any
import hashlib
import tempfile
import os
import sys
from pathlib import Path
from datetime import datetime
import asyncio

# Add project root to path
PROJECT_ROOT = Path(__file__).parent.parent
sys.path.insert(0, str(PROJECT_ROOT))

app = FastAPI(
    title="SPARKNET Backend API",
    description="GPU-accelerated document processing for Technology Transfer Office automation",
    version="1.0.0",
    docs_url="/docs",
    redoc_url="/redoc",
)

# CORS - Allow Streamlit Cloud to connect
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # Configure specific origins in production
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# ============================================================================
# Pydantic Models
# ============================================================================

class HealthResponse(BaseModel):
    status: str
    timestamp: str
    version: str = "1.0.0"


class SystemStatus(BaseModel):
    ollama_available: bool
    ollama_models: List[str] = []
    gpu_available: bool = False
    gpu_name: Optional[str] = None
    rag_ready: bool = False
    indexed_chunks: int = 0
    embedding_model: Optional[str] = None
    llm_model: Optional[str] = None


class ProcessRequest(BaseModel):
    filename: str
    options: Dict[str, Any] = Field(default_factory=dict)


class ProcessResponse(BaseModel):
    success: bool
    doc_id: str
    filename: str
    raw_text: str = ""
    chunks: List[Dict[str, Any]] = []
    page_count: int = 0
    ocr_regions: List[Dict[str, Any]] = []
    layout_regions: List[Dict[str, Any]] = []
    ocr_confidence: float = 0.0
    layout_confidence: float = 0.0
    processing_time: float = 0.0
    error: Optional[str] = None


class IndexRequest(BaseModel):
    doc_id: str
    text: str
    chunks: List[Dict[str, Any]] = []
    metadata: Dict[str, Any] = Field(default_factory=dict)


class IndexResponse(BaseModel):
    success: bool
    doc_id: str
    num_chunks: int = 0
    error: Optional[str] = None


class QueryRequest(BaseModel):
    question: str
    filters: Optional[Dict[str, Any]] = None
    top_k: int = 5


class QueryResponse(BaseModel):
    success: bool
    answer: str = ""
    sources: List[Dict[str, Any]] = []
    confidence: float = 0.0
    latency_ms: float = 0.0
    validated: bool = False
    error: Optional[str] = None


class SearchRequest(BaseModel):
    query: str
    top_k: int = 5
    doc_filter: Optional[str] = None


class DocumentInfo(BaseModel):
    doc_id: str
    filename: str = ""
    chunk_count: int = 0
    indexed_at: Optional[str] = None


# ============================================================================
# Global State
# ============================================================================

_rag_system = None
_processing_queue = {}


def get_rag_system():
    """Initialize and return the RAG system."""
    global _rag_system

    if _rag_system is not None:
        return _rag_system

    try:
        from src.rag.agentic import AgenticRAG, RAGConfig
        from src.rag.store import get_vector_store, VectorStoreConfig, reset_vector_store
        from src.rag.embeddings import get_embedding_adapter, EmbeddingConfig, reset_embedding_adapter

        # Check Ollama
        ollama_ok, models = check_ollama_sync()
        if not ollama_ok:
            return None

        # Select models
        EMBEDDING_MODELS = ["nomic-embed-text", "mxbai-embed-large:latest", "mxbai-embed-large"]
        LLM_MODELS = ["llama3.2:latest", "llama3.1:8b", "mistral:latest", "qwen2.5:14b"]

        embed_model = next((m for m in EMBEDDING_MODELS if m in models), EMBEDDING_MODELS[0])
        llm_model = next((m for m in LLM_MODELS if m in models), LLM_MODELS[0])

        # Reset singletons
        reset_vector_store()
        reset_embedding_adapter()

        # Initialize embedding adapter
        embed_config = EmbeddingConfig(
            ollama_model=embed_model,
            ollama_base_url="http://localhost:11434",
        )
        embedder = get_embedding_adapter(config=embed_config)

        # Initialize vector store
        store_config = VectorStoreConfig(
            persist_directory="data/sparknet_unified_rag",
            collection_name="sparknet_documents",
            similarity_threshold=0.0,
        )
        store = get_vector_store(config=store_config)

        # Initialize RAG config
        rag_config = RAGConfig(
            model=llm_model,
            base_url="http://localhost:11434",
            max_revision_attempts=1,
            enable_query_planning=True,
            enable_reranking=True,
            enable_validation=True,
            retrieval_top_k=10,
            final_top_k=5,
            min_confidence=0.3,
            verbose=False,
        )

        # Initialize RAG system
        rag = AgenticRAG(
            config=rag_config,
            vector_store=store,
            embedding_adapter=embedder,
        )

        _rag_system = {
            "rag": rag,
            "store": store,
            "embedder": embedder,
            "embed_model": embed_model,
            "llm_model": llm_model,
        }

        return _rag_system

    except Exception as e:
        print(f"RAG init error: {e}")
        return None


def check_ollama_sync():
    """Check Ollama availability synchronously."""
    try:
        import httpx
        with httpx.Client(timeout=3.0) as client:
            resp = client.get("http://localhost:11434/api/tags")
            if resp.status_code == 200:
                models = [m["name"] for m in resp.json().get("models", [])]
                return True, models
    except:
        pass
    return False, []


def check_gpu():
    """Check GPU availability."""
    try:
        import torch
        if torch.cuda.is_available():
            return True, torch.cuda.get_device_name(0)
    except:
        pass
    return False, None


# ============================================================================
# API Endpoints
# ============================================================================

@app.get("/", response_model=HealthResponse)
async def root():
    """Health check endpoint."""
    return HealthResponse(
        status="healthy",
        timestamp=datetime.now().isoformat(),
    )


@app.get("/api/health", response_model=HealthResponse)
async def health():
    """Health check endpoint."""
    return HealthResponse(
        status="healthy",
        timestamp=datetime.now().isoformat(),
    )


@app.get("/api/status", response_model=SystemStatus)
async def get_status():
    """Get system status including Ollama, GPU, and RAG availability."""
    ollama_ok, models = check_ollama_sync()
    gpu_ok, gpu_name = check_gpu()

    rag = get_rag_system()
    rag_ready = rag is not None

    indexed_chunks = 0
    embed_model = None
    llm_model = None

    if rag:
        try:
            indexed_chunks = rag["store"].count()
            embed_model = rag.get("embed_model")
            llm_model = rag.get("llm_model")
        except:
            pass

    return SystemStatus(
        ollama_available=ollama_ok,
        ollama_models=models,
        gpu_available=gpu_ok,
        gpu_name=gpu_name,
        rag_ready=rag_ready,
        indexed_chunks=indexed_chunks,
        embedding_model=embed_model,
        llm_model=llm_model,
    )


@app.post("/api/process", response_model=ProcessResponse)
async def process_document(
    file: UploadFile = File(...),
    ocr_engine: str = Form(default="paddleocr"),
    max_pages: int = Form(default=10),
    enable_layout: bool = Form(default=True),
    preserve_tables: bool = Form(default=True),
):
    """
    Process a document with OCR and layout detection.

    This endpoint uses GPU-accelerated PaddleOCR for text extraction.
    """
    import time
    start_time = time.time()

    # Read file
    file_bytes = await file.read()
    filename = file.filename

    # Generate doc ID
    content_hash = hashlib.md5(file_bytes[:1000]).hexdigest()[:8]
    timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
    doc_id = hashlib.md5(f"{filename}_{timestamp}_{content_hash}".encode()).hexdigest()[:12]

    # Save to temp file
    suffix = Path(filename).suffix
    with tempfile.NamedTemporaryFile(suffix=suffix, delete=False) as tmp:
        tmp.write(file_bytes)
        tmp_path = tmp.name

    try:
        # Try full document processing pipeline
        try:
            from src.document.pipeline.processor import DocumentProcessor, PipelineConfig
            from src.document.ocr import OCRConfig
            from src.document.layout import LayoutConfig
            from src.document.chunking.chunker import ChunkerConfig

            chunker_config = ChunkerConfig(
                preserve_table_structure=preserve_tables,
                detect_table_headers=True,
                chunk_tables=True,
                chunk_figures=True,
                include_captions=True,
            )

            layout_config = LayoutConfig(
                method="rule_based",
                detect_tables=True,
                detect_figures=True,
                detect_headers=True,
                detect_titles=True,
                detect_lists=True,
                min_confidence=0.3,
                heading_font_ratio=1.1,
            )

            config = PipelineConfig(
                ocr=OCRConfig(engine=ocr_engine),
                layout=layout_config,
                chunking=chunker_config,
                max_pages=max_pages,
                include_ocr_regions=True,
                include_layout_regions=enable_layout,
                generate_full_text=True,
            )

            processor = DocumentProcessor(config)
            processor.initialize()
            result = processor.process(tmp_path)

            # Convert to response format
            chunks_list = []
            for chunk in result.chunks:
                chunks_list.append({
                    "chunk_id": chunk.chunk_id,
                    "text": chunk.text,
                    "page": chunk.page,
                    "chunk_type": chunk.chunk_type.value,
                    "confidence": chunk.confidence,
                    "bbox": chunk.bbox.to_xyxy() if chunk.bbox else None,
                })

            ocr_regions = []
            for region in result.ocr_regions:
                ocr_regions.append({
                    "text": region.text,
                    "confidence": region.confidence,
                    "page": region.page,
                    "bbox": region.bbox.to_xyxy() if region.bbox else None,
                })

            layout_regions = []
            for region in result.layout_regions:
                layout_regions.append({
                    "id": region.id,
                    "type": region.type.value,
                    "confidence": region.confidence,
                    "page": region.page,
                    "bbox": region.bbox.to_xyxy() if region.bbox else None,
                })

            processing_time = time.time() - start_time

            return ProcessResponse(
                success=True,
                doc_id=doc_id,
                filename=filename,
                raw_text=result.full_text,
                chunks=chunks_list,
                page_count=result.metadata.num_pages,
                ocr_regions=ocr_regions,
                layout_regions=layout_regions,
                ocr_confidence=result.metadata.ocr_confidence_avg or 0.0,
                layout_confidence=result.metadata.layout_confidence_avg or 0.0,
                processing_time=processing_time,
            )

        except Exception as e:
            # Fallback to simple extraction
            return await process_document_fallback(file_bytes, filename, doc_id, max_pages, str(e), start_time)

    finally:
        # Cleanup
        if os.path.exists(tmp_path):
            os.unlink(tmp_path)


async def process_document_fallback(
    file_bytes: bytes,
    filename: str,
    doc_id: str,
    max_pages: int,
    reason: str,
    start_time: float
) -> ProcessResponse:
    """Fallback document processing using PyMuPDF."""
    import time

    text = ""
    page_count = 1
    suffix = Path(filename).suffix.lower()

    if suffix == ".pdf":
        try:
            import fitz
            import io
            pdf_stream = io.BytesIO(file_bytes)
            doc = fitz.open(stream=pdf_stream, filetype="pdf")
            page_count = len(doc)
            max_p = min(max_pages, page_count)

            text_parts = []
            for page_num in range(max_p):
                page = doc[page_num]
                text_parts.append(f"--- Page {page_num + 1} ---\n{page.get_text()}")
            text = "\n\n".join(text_parts)
            doc.close()
        except Exception as e:
            text = f"PDF extraction failed: {e}"
    elif suffix in [".txt", ".md"]:
        try:
            text = file_bytes.decode("utf-8")
        except:
            text = file_bytes.decode("latin-1", errors="ignore")
    else:
        text = f"Unsupported file type: {suffix}"

    # Simple chunking
    chunk_size = 500
    overlap = 50
    chunks = []

    for i in range(0, len(text), chunk_size - overlap):
        chunk_text = text[i:i + chunk_size]
        if len(chunk_text.strip()) > 20:
            chunks.append({
                "chunk_id": f"{doc_id}_chunk_{len(chunks)}",
                "text": chunk_text,
                "page": 0,
                "chunk_type": "text",
                "confidence": 0.9,
                "bbox": None,
            })

    processing_time = time.time() - start_time

    return ProcessResponse(
        success=True,
        doc_id=doc_id,
        filename=filename,
        raw_text=text,
        chunks=chunks,
        page_count=page_count,
        ocr_regions=[],
        layout_regions=[],
        ocr_confidence=0.9,
        layout_confidence=0.0,
        processing_time=processing_time,
        error=f"Fallback mode: {reason}",
    )


@app.post("/api/index", response_model=IndexResponse)
async def index_document(request: IndexRequest):
    """Index a document into the RAG vector store."""
    rag = get_rag_system()

    if not rag:
        return IndexResponse(
            success=False,
            doc_id=request.doc_id,
            error="RAG system not available. Check Ollama status.",
        )

    try:
        store = rag["store"]
        embedder = rag["embedder"]

        chunk_dicts = []
        embeddings = []

        for i, chunk in enumerate(request.chunks):
            chunk_text = chunk.get("text", "") if isinstance(chunk, dict) else str(chunk)

            if len(chunk_text.strip()) < 20:
                continue

            chunk_id = chunk.get("chunk_id", f"{request.doc_id}_chunk_{i}")
            chunk_dict = {
                "chunk_id": chunk_id,
                "document_id": request.doc_id,
                "text": chunk_text,
                "page": chunk.get("page", 0) if isinstance(chunk, dict) else 0,
                "chunk_type": "text",
                "source_path": request.metadata.get("filename", ""),
                "sequence_index": i,
            }
            chunk_dicts.append(chunk_dict)

            embedding = embedder.embed_text(chunk_text)
            embeddings.append(embedding)

        if not chunk_dicts:
            return IndexResponse(
                success=False,
                doc_id=request.doc_id,
                error="No valid chunks to index",
            )

        store.add_chunks(chunk_dicts, embeddings)

        return IndexResponse(
            success=True,
            doc_id=request.doc_id,
            num_chunks=len(chunk_dicts),
        )

    except Exception as e:
        return IndexResponse(
            success=False,
            doc_id=request.doc_id,
            error=str(e),
        )


@app.post("/api/query", response_model=QueryResponse)
async def query_rag(request: QueryRequest):
    """Query the RAG system."""
    import time
    start_time = time.time()

    rag = get_rag_system()

    if not rag:
        return QueryResponse(
            success=False,
            error="RAG system not available. Check Ollama status.",
        )

    try:
        response = rag["rag"].query(request.question, filters=request.filters)
        latency_ms = (time.time() - start_time) * 1000

        sources = []
        if hasattr(response, 'citations') and response.citations:
            for cite in response.citations:
                sources.append({
                    "index": cite.index if hasattr(cite, 'index') else 0,
                    "text_snippet": cite.text_snippet if hasattr(cite, 'text_snippet') else str(cite),
                    "relevance_score": cite.relevance_score if hasattr(cite, 'relevance_score') else 0.0,
                    "document_id": cite.document_id if hasattr(cite, 'document_id') else "",
                    "page": cite.page if hasattr(cite, 'page') else 0,
                })

        return QueryResponse(
            success=True,
            answer=response.answer,
            sources=sources,
            confidence=response.confidence,
            latency_ms=latency_ms,
            validated=response.validated,
        )

    except Exception as e:
        return QueryResponse(
            success=False,
            error=str(e),
        )


@app.post("/api/search")
async def search_similar(request: SearchRequest):
    """Search for similar chunks."""
    rag = get_rag_system()

    if not rag:
        return {"success": False, "error": "RAG system not available", "results": []}

    try:
        embedder = rag["embedder"]
        store = rag["store"]

        query_embedding = embedder.embed_text(request.query)

        filters = None
        if request.doc_filter:
            filters = {"document_id": request.doc_filter}

        results = store.search(
            query_embedding=query_embedding,
            top_k=request.top_k,
            filters=filters,
        )

        return {
            "success": True,
            "results": [
                {
                    "chunk_id": r.chunk_id,
                    "document_id": r.document_id,
                    "text": r.text,
                    "similarity": r.similarity,
                    "page": r.page,
                    "metadata": r.metadata,
                }
                for r in results
            ]
        }

    except Exception as e:
        return {"success": False, "error": str(e), "results": []}


@app.get("/api/documents", response_model=List[DocumentInfo])
async def list_documents():
    """List all indexed documents."""
    rag = get_rag_system()

    if not rag:
        return []

    try:
        store = rag["store"]
        collection = store._collection

        results = collection.get(include=["metadatas"])
        if not results or not results.get("metadatas"):
            return []

        doc_info = {}
        for meta in results["metadatas"]:
            doc_id = meta.get("document_id", "unknown")
            if doc_id not in doc_info:
                doc_info[doc_id] = {
                    "doc_id": doc_id,
                    "filename": meta.get("source_path", ""),
                    "chunk_count": 0,
                }
            doc_info[doc_id]["chunk_count"] += 1

        return [DocumentInfo(**info) for info in doc_info.values()]

    except Exception as e:
        return []


@app.delete("/api/documents/{doc_id}")
async def delete_document(doc_id: str):
    """Delete a document from the index."""
    rag = get_rag_system()

    if not rag:
        return {"success": False, "error": "RAG system not available"}

    try:
        store = rag["store"]
        collection = store._collection

        # Get chunk IDs for this document
        results = collection.get(
            where={"document_id": doc_id},
            include=[]
        )

        if results and results.get("ids"):
            collection.delete(ids=results["ids"])
            return {"success": True, "deleted_chunks": len(results["ids"])}

        return {"success": False, "error": "Document not found"}

    except Exception as e:
        return {"success": False, "error": str(e)}


# ============================================================================
# Run Server
# ============================================================================

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)