LordXido's picture
Update app.py
c2ab996 verified
import gradio as gr
import hashlib
import json
import time
import io
import zipfile
from dataclasses import dataclass, asdict
from typing import List, Dict, Any, Tuple
# ============================================================
# CodexByte ΩΞ Runtime — Single-File, HF-Safe, Proof-First
# ============================================================
# ----------------------------
# ISA (stable core)
# ----------------------------
OPCODES = {
"HALT": 0x00,
"LOAD_IMM": 0x01, # r, v
"LOAD_MEM": 0x02, # r, a
"STORE": 0x03, # r, a
"ADD": 0x04, # r1, r2
"SUB": 0x05, # r1, r2
"MUL": 0x06, # r1, r2
"DIV": 0x07, # r1, r2
"CMP": 0x08, # r1, r2 -> sets Z
"JMP": 0x09, # a
"JZ": 0x0A, # a
"JNZ": 0x0B, # a
"HASH": 0x0C, # r -> r becomes 64-bit int derived from sha256
"TIME": 0x10, # r -> monotonic ms (deterministic-ish per run; used for trace only)
"COMMIT": 0x0F, # -> append chained hash to Ω-ledger
"EMIT": 0x11, # r -> LAST_EMIT in mem
}
OPNAMES = {v: k for k, v in OPCODES.items()}
# ----------------------------
# Utilities
# ----------------------------
def sha256_hex(b: bytes) -> str:
return hashlib.sha256(b).hexdigest()
def stable_json(obj: Any) -> bytes:
return json.dumps(obj, sort_keys=True, separators=(",", ":"), ensure_ascii=False).encode("utf-8")
def clamp_int64(x: int) -> int:
# Keep values bounded (prevents unbounded growth)
return int(max(min(x, (1 << 63) - 1), -(1 << 63)))
def parse_int(token: str) -> int:
# Accept decimal or 0x.. forms
return int(token, 0)
# ----------------------------
# Compiler: Text -> Bytecode
# ----------------------------
def compile_codexbyte(source: str) -> List[int]:
"""
Assembles a simple assembly-like form into a flat integer bytecode list.
Each instruction is encoded as: [opcode, operand1, operand2, ...] with fixed arity per op.
"""
lines = source.splitlines()
bytecode: List[int] = []
for raw in lines:
line = raw.strip()
if not line or line.startswith(";") or line.startswith("#"):
continue
# strip inline comments
if ";" in line:
line = line.split(";", 1)[0].strip()
if "#" in line:
line = line.split("#", 1)[0].strip()
if not line:
continue
parts = line.split()
op = parts[0].upper()
if op not in OPCODES:
raise ValueError(f"Unknown opcode: {op}")
bytecode.append(OPCODES[op])
# encode operands
for tok in parts[1:]:
bytecode.append(parse_int(tok))
return bytecode
# ----------------------------
# Trace record
# ----------------------------
@dataclass
class TraceStep:
step: int
pc_before: int
op: str
operands: List[int]
reg_before: List[int]
reg_after: List[int]
flags_before: Dict[str, bool]
flags_after: Dict[str, bool]
mem_writes: List[Tuple[str, int]] # (addr, value)
ledger_added: str | None
# ----------------------------
# VM: Bytecode -> State/Proof
# ----------------------------
class CodexByteVM:
def __init__(self):
self.reset()
def reset(self):
self.reg = [0] * 8
self.mem: Dict[Any, int] = {}
self.flags = {"Z": False}
self.pc = 0
self.omega_ledger: List[str] = []
self._ledger_head = "0" * 64 # chained hash head
self.last_trace: List[TraceStep] = []
def _state_digest(self) -> str:
# Deterministic digest of current state (regs + mem + flags + pc)
obj = {
"pc": self.pc,
"reg": self.reg,
"mem": self.mem,
"flags": self.flags,
"ledger_head": self._ledger_head,
}
return sha256_hex(stable_json(obj))
def _commit(self) -> str:
# Chain: head <- sha256(head || state_digest)
sd = self._state_digest()
new_head = sha256_hex((self._ledger_head + sd).encode("utf-8"))
self._ledger_head = new_head
self.omega_ledger.append(new_head)
return new_head
def run(self, prog: List[int], step_limit: int = 20000, trace: bool = True) -> Dict[str, Any]:
self.last_trace = []
steps = 0
while True:
if steps >= step_limit:
raise RuntimeError(f"Step limit exceeded ({step_limit}). Possible infinite loop.")
if self.pc < 0 or self.pc >= len(prog):
raise RuntimeError(f"PC out of bounds: pc={self.pc}, program_len={len(prog)}")
pc_before = self.pc
op = prog[self.pc]
self.pc += 1
opname = OPNAMES.get(op, f"OP_{op:02X}")
reg_before = self.reg.copy()
flags_before = dict(self.flags)
mem_writes: List[Tuple[str, int]] = []
ledger_added = None
def need(n: int):
if self.pc + n > len(prog):
raise RuntimeError(f"Truncated operands for {opname} at pc={pc_before}")
def read1() -> int:
nonlocal prog
v = prog[self.pc]
self.pc += 1
return v
def read2() -> Tuple[int, int]:
need(2)
a = read1()
b = read1()
return a, b
# ---- Execute ----
if op == 0x00: # HALT
pass
elif op == 0x01: # LOAD_IMM r v
r, v = read2()
self._check_reg(r)
self.reg[r] = clamp_int64(v)
elif op == 0x02: # LOAD_MEM r a
r, a = read2()
self._check_reg(r)
self.reg[r] = clamp_int64(self.mem.get(self._addr(a), 0))
elif op == 0x03: # STORE r a
r, a = read2()
self._check_reg(r)
addr = self._addr(a)
self.mem[addr] = clamp_int64(self.reg[r])
mem_writes.append((str(addr), self.mem[addr]))
elif op == 0x04: # ADD r1 r2
r1, r2 = read2()
self._check_reg(r1); self._check_reg(r2)
self.reg[r1] = clamp_int64(self.reg[r1] + self.reg[r2])
elif op == 0x05: # SUB r1 r2
r1, r2 = read2()
self._check_reg(r1); self._check_reg(r2)
self.reg[r1] = clamp_int64(self.reg[r1] - self.reg[r2])
elif op == 0x06: # MUL r1 r2
r1, r2 = read2()
self._check_reg(r1); self._check_reg(r2)
self.reg[r1] = clamp_int64(self.reg[r1] * self.reg[r2])
elif op == 0x07: # DIV r1 r2
r1, r2 = read2()
self._check_reg(r1); self._check_reg(r2)
if self.reg[r2] == 0:
raise ZeroDivisionError("DIV by zero")
self.reg[r1] = clamp_int64(int(self.reg[r1] / self.reg[r2]))
elif op == 0x08: # CMP r1 r2
r1, r2 = read2()
self._check_reg(r1); self._check_reg(r2)
self.flags["Z"] = (self.reg[r1] == self.reg[r2])
elif op == 0x09: # JMP a
a = read1()
self.pc = self._pc(a, len(prog))
elif op == 0x0A: # JZ a
a = read1()
if self.flags["Z"]:
self.pc = self._pc(a, len(prog))
elif op == 0x0B: # JNZ a
a = read1()
if not self.flags["Z"]:
self.pc = self._pc(a, len(prog))
elif op == 0x0C: # HASH r (store as 64-bit int)
r = read1()
self._check_reg(r)
h = sha256_hex(str(self.reg[r]).encode("utf-8"))
self.reg[r] = int(h[:16], 16) # 64-bit-ish
elif op == 0x10: # TIME r
r = read1()
self._check_reg(r)
# Note: time is not strictly deterministic across runs; use only for observability.
self.reg[r] = int(time.time() * 1000)
elif op == 0x0F: # COMMIT
ledger_added = self._commit()
elif op == 0x11: # EMIT r
r = read1()
self._check_reg(r)
self.mem["LAST_EMIT"] = clamp_int64(self.reg[r])
mem_writes.append(("LAST_EMIT", self.mem["LAST_EMIT"]))
else:
raise RuntimeError(f"Unsupported opcode: 0x{op:02X} at pc={pc_before}")
reg_after = self.reg.copy()
flags_after = dict(self.flags)
# Trace
if trace:
# operands captured approximately: from prog slice
# best-effort decode: since pc moved, reconstruct from pc_before+1 to current pc
op_slice = prog[pc_before+1:self.pc]
self.last_trace.append(TraceStep(
step=steps,
pc_before=pc_before,
op=opname,
operands=op_slice,
reg_before=reg_before,
reg_after=reg_after,
flags_before=flags_before,
flags_after=flags_after,
mem_writes=mem_writes,
ledger_added=ledger_added
))
steps += 1
if op == 0x00: # HALT
break
return self.snapshot()
def snapshot(self) -> Dict[str, Any]:
return {
"registers": self.reg,
"memory": self.mem,
"flags": self.flags,
"omega_ledger": self.omega_ledger,
"ledger_head": self._ledger_head,
"state_digest": self._state_digest(),
}
def _check_reg(self, r: int):
if not (0 <= r < 8):
raise ValueError(f"Invalid register index r={r}, expected 0..7")
def _addr(self, a: int) -> str:
# normalize address into stable string
return hex(a) if isinstance(a, int) else str(a)
def _pc(self, a: int, n: int) -> int:
if not (0 <= a < n):
raise ValueError(f"Invalid jump target {a}, program_len={n}")
return a
# ----------------------------
# Proof bundle (ZIP export)
# ----------------------------
def build_proof_bundle(
source: str,
bytecode: List[int],
result: Dict[str, Any],
trace_steps: List[TraceStep],
) -> bytes:
trace_json = [asdict(s) for s in trace_steps]
bundle = {
"meta": {
"system": "CodexByte_Runtime",
"proof_format": "OmegaTraceBundle.v1",
},
"source": source,
"bytecode": bytecode,
"result": result,
"trace": trace_json,
}
verifier_py = r'''
import json, hashlib
def sha256_hex(b: bytes) -> str:
return hashlib.sha256(b).hexdigest()
def stable_json(obj):
return json.dumps(obj, sort_keys=True, separators=(",", ":"), ensure_ascii=False).encode("utf-8")
def replay(bundle_path: str):
with open(bundle_path, "rb") as f:
z = f.read()
# This verifier expects you to open the ZIP and inspect bundle.json.
print("Open the ZIP, extract bundle.json, and use your runtime to replay bytecode.")
print("Bundle bytes sha256:", sha256_hex(z))
if __name__ == "__main__":
replay("CodexByte_ProofBundle.zip")
'''.lstrip()
mem = io.BytesIO()
with zipfile.ZipFile(mem, "w", compression=zipfile.ZIP_DEFLATED) as z:
z.writestr("bundle.json", json.dumps(bundle, indent=2, ensure_ascii=False))
z.writestr("verifier.py", verifier_py)
z.writestr("README.txt",
"CodexByte Proof Bundle\n"
"- bundle.json contains source, bytecode, trace, result\n"
"- verifier.py provides a minimal integrity hook\n"
"Replay verification: run the same bytecode in the runtime; compare ledger_head/state_digest.\n")
return mem.getvalue()
# ----------------------------
# Samples
# ----------------------------
SAMPLES: Dict[str, str] = {
"Contract: obligation satisfied (commit+emit)": """\
; If mem[0x20] == 1000 -> satisfied (emit 0), else breach (emit 1)
LOAD_IMM 0 1000
LOAD_MEM 1 0x20
CMP 1 0
JZ 18
; breach
LOAD_IMM 2 1
STORE 2 0x30
COMMIT
EMIT 2
HALT
; satisfied
LOAD_IMM 2 0
STORE 2 0x30
COMMIT
EMIT 2
HALT
""",
"Ledger integrity demo (multi-commit)": """\
LOAD_IMM 0 7
COMMIT
ADD 0 0
COMMIT
HASH 0
COMMIT
EMIT 0
HALT
""",
"Loop demo (safe with step limit)": """\
LOAD_IMM 0 0
LOAD_IMM 1 1
ADD 0 1
JMP 4
HALT
""",
}
# ============================================================
# Gradio App
# ============================================================
vm = CodexByteVM()
def load_sample(name: str) -> str:
return SAMPLES.get(name, "")
def run_program(source: str, step_limit: int, enable_trace: bool, preload_mem_0x20: int):
vm.reset()
# preload for common contract patterns
vm.mem[hex(0x20)] = int(preload_mem_0x20)
bytecode = compile_codexbyte(source)
result = vm.run(bytecode, step_limit=step_limit, trace=enable_trace)
trace = [asdict(s) for s in vm.last_trace] if enable_trace else []
proof_zip = build_proof_bundle(source, bytecode, result, vm.last_trace if enable_trace else [])
# gr.File expects a path OR a tuple (name, bytes) in newer versions.
# Use (filename, bytes) which HF Gradio accepts.
return (
{
"status": "OK",
"result": result,
"bytecode_len": len(bytecode),
"preloaded_memory": {"0x20": preload_mem_0x20},
},
trace,
("CodexByte_ProofBundle.zip", proof_zip),
)
def replay_verify(source: str, step_limit: int, preload_mem_0x20: int):
"""
Replay check: run twice, compare final ledger_head & state_digest.
"""
# run 1
vm1 = CodexByteVM()
vm1.mem[hex(0x20)] = int(preload_mem_0x20)
bc = compile_codexbyte(source)
r1 = vm1.run(bc, step_limit=step_limit, trace=False)
# run 2
vm2 = CodexByteVM()
vm2.mem[hex(0x20)] = int(preload_mem_0x20)
r2 = vm2.run(bc, step_limit=step_limit, trace=False)
ok = (r1["ledger_head"] == r2["ledger_head"]) and (r1["state_digest"] == r2["state_digest"])
return {
"replay_ok": ok,
"run1": {"ledger_head": r1["ledger_head"], "state_digest": r1["state_digest"]},
"run2": {"ledger_head": r2["ledger_head"], "state_digest": r2["state_digest"]},
"note": "TIME opcode makes replay non-deterministic. Avoid TIME in proofs."
}
with gr.Blocks(title="CodexByte ΩΞ Runtime") as demo:
gr.Markdown(
"# CodexByte ΩΞ Runtime\n"
"**Programs = contracts • Execution = enforcement • Trace = Ω-proof**\n\n"
"This runtime executes CodexByte deterministically and emits an intrinsic proof bundle."
)
with gr.Row():
sample = gr.Dropdown(list(SAMPLES.keys()), value="Contract: obligation satisfied (commit+emit)", label="Sample Programs")
load_btn = gr.Button("Load Sample")
program = gr.Textbox(lines=18, label="CodexByte Program")
load_btn.click(load_sample, inputs=sample, outputs=program)
with gr.Row():
preload = gr.Number(value=1000, label="Preload mem[0x20] value (common contract input)")
step_limit = gr.Slider(100, 50000, value=20000, step=100, label="Step limit (safety)")
trace_on = gr.Checkbox(value=True, label="Enable trace (Ω-step log)")
run_btn = gr.Button("Execute")
with gr.Tabs():
with gr.Tab("Ω-State Result"):
result_out = gr.JSON()
proof_file = gr.File(label="Download Proof Bundle (ZIP)")
with gr.Tab("Execution Trace"):
trace_out = gr.JSON()
with gr.Tab("Replay Verification"):
verify_btn = gr.Button("Replay verify (run twice)")
verify_out = gr.JSON()
run_btn.click(
fn=run_program,
inputs=[program, step_limit, trace_on, preload],
outputs=[result_out, trace_out, proof_file],
)
verify_btn.click(
fn=replay_verify,
inputs=[program, step_limit, preload],
outputs=verify_out
)
if __name__ == "__main__":
demo.launch()