Spaces:
Sleeping
Sleeping
File size: 16,317 Bytes
f991306 c2ab996 f991306 c2ab996 f991306 c2ab996 9eaaa89 c2ab996 9eaaa89 c2ab996 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
import gradio as gr
import hashlib
import json
import time
import io
import zipfile
from dataclasses import dataclass, asdict
from typing import List, Dict, Any, Tuple
# ============================================================
# CodexByte ΩΞ Runtime — Single-File, HF-Safe, Proof-First
# ============================================================
# ----------------------------
# ISA (stable core)
# ----------------------------
OPCODES = {
"HALT": 0x00,
"LOAD_IMM": 0x01, # r, v
"LOAD_MEM": 0x02, # r, a
"STORE": 0x03, # r, a
"ADD": 0x04, # r1, r2
"SUB": 0x05, # r1, r2
"MUL": 0x06, # r1, r2
"DIV": 0x07, # r1, r2
"CMP": 0x08, # r1, r2 -> sets Z
"JMP": 0x09, # a
"JZ": 0x0A, # a
"JNZ": 0x0B, # a
"HASH": 0x0C, # r -> r becomes 64-bit int derived from sha256
"TIME": 0x10, # r -> monotonic ms (deterministic-ish per run; used for trace only)
"COMMIT": 0x0F, # -> append chained hash to Ω-ledger
"EMIT": 0x11, # r -> LAST_EMIT in mem
}
OPNAMES = {v: k for k, v in OPCODES.items()}
# ----------------------------
# Utilities
# ----------------------------
def sha256_hex(b: bytes) -> str:
return hashlib.sha256(b).hexdigest()
def stable_json(obj: Any) -> bytes:
return json.dumps(obj, sort_keys=True, separators=(",", ":"), ensure_ascii=False).encode("utf-8")
def clamp_int64(x: int) -> int:
# Keep values bounded (prevents unbounded growth)
return int(max(min(x, (1 << 63) - 1), -(1 << 63)))
def parse_int(token: str) -> int:
# Accept decimal or 0x.. forms
return int(token, 0)
# ----------------------------
# Compiler: Text -> Bytecode
# ----------------------------
def compile_codexbyte(source: str) -> List[int]:
"""
Assembles a simple assembly-like form into a flat integer bytecode list.
Each instruction is encoded as: [opcode, operand1, operand2, ...] with fixed arity per op.
"""
lines = source.splitlines()
bytecode: List[int] = []
for raw in lines:
line = raw.strip()
if not line or line.startswith(";") or line.startswith("#"):
continue
# strip inline comments
if ";" in line:
line = line.split(";", 1)[0].strip()
if "#" in line:
line = line.split("#", 1)[0].strip()
if not line:
continue
parts = line.split()
op = parts[0].upper()
if op not in OPCODES:
raise ValueError(f"Unknown opcode: {op}")
bytecode.append(OPCODES[op])
# encode operands
for tok in parts[1:]:
bytecode.append(parse_int(tok))
return bytecode
# ----------------------------
# Trace record
# ----------------------------
@dataclass
class TraceStep:
step: int
pc_before: int
op: str
operands: List[int]
reg_before: List[int]
reg_after: List[int]
flags_before: Dict[str, bool]
flags_after: Dict[str, bool]
mem_writes: List[Tuple[str, int]] # (addr, value)
ledger_added: str | None
# ----------------------------
# VM: Bytecode -> State/Proof
# ----------------------------
class CodexByteVM:
def __init__(self):
self.reset()
def reset(self):
self.reg = [0] * 8
self.mem: Dict[Any, int] = {}
self.flags = {"Z": False}
self.pc = 0
self.omega_ledger: List[str] = []
self._ledger_head = "0" * 64 # chained hash head
self.last_trace: List[TraceStep] = []
def _state_digest(self) -> str:
# Deterministic digest of current state (regs + mem + flags + pc)
obj = {
"pc": self.pc,
"reg": self.reg,
"mem": self.mem,
"flags": self.flags,
"ledger_head": self._ledger_head,
}
return sha256_hex(stable_json(obj))
def _commit(self) -> str:
# Chain: head <- sha256(head || state_digest)
sd = self._state_digest()
new_head = sha256_hex((self._ledger_head + sd).encode("utf-8"))
self._ledger_head = new_head
self.omega_ledger.append(new_head)
return new_head
def run(self, prog: List[int], step_limit: int = 20000, trace: bool = True) -> Dict[str, Any]:
self.last_trace = []
steps = 0
while True:
if steps >= step_limit:
raise RuntimeError(f"Step limit exceeded ({step_limit}). Possible infinite loop.")
if self.pc < 0 or self.pc >= len(prog):
raise RuntimeError(f"PC out of bounds: pc={self.pc}, program_len={len(prog)}")
pc_before = self.pc
op = prog[self.pc]
self.pc += 1
opname = OPNAMES.get(op, f"OP_{op:02X}")
reg_before = self.reg.copy()
flags_before = dict(self.flags)
mem_writes: List[Tuple[str, int]] = []
ledger_added = None
def need(n: int):
if self.pc + n > len(prog):
raise RuntimeError(f"Truncated operands for {opname} at pc={pc_before}")
def read1() -> int:
nonlocal prog
v = prog[self.pc]
self.pc += 1
return v
def read2() -> Tuple[int, int]:
need(2)
a = read1()
b = read1()
return a, b
# ---- Execute ----
if op == 0x00: # HALT
pass
elif op == 0x01: # LOAD_IMM r v
r, v = read2()
self._check_reg(r)
self.reg[r] = clamp_int64(v)
elif op == 0x02: # LOAD_MEM r a
r, a = read2()
self._check_reg(r)
self.reg[r] = clamp_int64(self.mem.get(self._addr(a), 0))
elif op == 0x03: # STORE r a
r, a = read2()
self._check_reg(r)
addr = self._addr(a)
self.mem[addr] = clamp_int64(self.reg[r])
mem_writes.append((str(addr), self.mem[addr]))
elif op == 0x04: # ADD r1 r2
r1, r2 = read2()
self._check_reg(r1); self._check_reg(r2)
self.reg[r1] = clamp_int64(self.reg[r1] + self.reg[r2])
elif op == 0x05: # SUB r1 r2
r1, r2 = read2()
self._check_reg(r1); self._check_reg(r2)
self.reg[r1] = clamp_int64(self.reg[r1] - self.reg[r2])
elif op == 0x06: # MUL r1 r2
r1, r2 = read2()
self._check_reg(r1); self._check_reg(r2)
self.reg[r1] = clamp_int64(self.reg[r1] * self.reg[r2])
elif op == 0x07: # DIV r1 r2
r1, r2 = read2()
self._check_reg(r1); self._check_reg(r2)
if self.reg[r2] == 0:
raise ZeroDivisionError("DIV by zero")
self.reg[r1] = clamp_int64(int(self.reg[r1] / self.reg[r2]))
elif op == 0x08: # CMP r1 r2
r1, r2 = read2()
self._check_reg(r1); self._check_reg(r2)
self.flags["Z"] = (self.reg[r1] == self.reg[r2])
elif op == 0x09: # JMP a
a = read1()
self.pc = self._pc(a, len(prog))
elif op == 0x0A: # JZ a
a = read1()
if self.flags["Z"]:
self.pc = self._pc(a, len(prog))
elif op == 0x0B: # JNZ a
a = read1()
if not self.flags["Z"]:
self.pc = self._pc(a, len(prog))
elif op == 0x0C: # HASH r (store as 64-bit int)
r = read1()
self._check_reg(r)
h = sha256_hex(str(self.reg[r]).encode("utf-8"))
self.reg[r] = int(h[:16], 16) # 64-bit-ish
elif op == 0x10: # TIME r
r = read1()
self._check_reg(r)
# Note: time is not strictly deterministic across runs; use only for observability.
self.reg[r] = int(time.time() * 1000)
elif op == 0x0F: # COMMIT
ledger_added = self._commit()
elif op == 0x11: # EMIT r
r = read1()
self._check_reg(r)
self.mem["LAST_EMIT"] = clamp_int64(self.reg[r])
mem_writes.append(("LAST_EMIT", self.mem["LAST_EMIT"]))
else:
raise RuntimeError(f"Unsupported opcode: 0x{op:02X} at pc={pc_before}")
reg_after = self.reg.copy()
flags_after = dict(self.flags)
# Trace
if trace:
# operands captured approximately: from prog slice
# best-effort decode: since pc moved, reconstruct from pc_before+1 to current pc
op_slice = prog[pc_before+1:self.pc]
self.last_trace.append(TraceStep(
step=steps,
pc_before=pc_before,
op=opname,
operands=op_slice,
reg_before=reg_before,
reg_after=reg_after,
flags_before=flags_before,
flags_after=flags_after,
mem_writes=mem_writes,
ledger_added=ledger_added
))
steps += 1
if op == 0x00: # HALT
break
return self.snapshot()
def snapshot(self) -> Dict[str, Any]:
return {
"registers": self.reg,
"memory": self.mem,
"flags": self.flags,
"omega_ledger": self.omega_ledger,
"ledger_head": self._ledger_head,
"state_digest": self._state_digest(),
}
def _check_reg(self, r: int):
if not (0 <= r < 8):
raise ValueError(f"Invalid register index r={r}, expected 0..7")
def _addr(self, a: int) -> str:
# normalize address into stable string
return hex(a) if isinstance(a, int) else str(a)
def _pc(self, a: int, n: int) -> int:
if not (0 <= a < n):
raise ValueError(f"Invalid jump target {a}, program_len={n}")
return a
# ----------------------------
# Proof bundle (ZIP export)
# ----------------------------
def build_proof_bundle(
source: str,
bytecode: List[int],
result: Dict[str, Any],
trace_steps: List[TraceStep],
) -> bytes:
trace_json = [asdict(s) for s in trace_steps]
bundle = {
"meta": {
"system": "CodexByte_Runtime",
"proof_format": "OmegaTraceBundle.v1",
},
"source": source,
"bytecode": bytecode,
"result": result,
"trace": trace_json,
}
verifier_py = r'''
import json, hashlib
def sha256_hex(b: bytes) -> str:
return hashlib.sha256(b).hexdigest()
def stable_json(obj):
return json.dumps(obj, sort_keys=True, separators=(",", ":"), ensure_ascii=False).encode("utf-8")
def replay(bundle_path: str):
with open(bundle_path, "rb") as f:
z = f.read()
# This verifier expects you to open the ZIP and inspect bundle.json.
print("Open the ZIP, extract bundle.json, and use your runtime to replay bytecode.")
print("Bundle bytes sha256:", sha256_hex(z))
if __name__ == "__main__":
replay("CodexByte_ProofBundle.zip")
'''.lstrip()
mem = io.BytesIO()
with zipfile.ZipFile(mem, "w", compression=zipfile.ZIP_DEFLATED) as z:
z.writestr("bundle.json", json.dumps(bundle, indent=2, ensure_ascii=False))
z.writestr("verifier.py", verifier_py)
z.writestr("README.txt",
"CodexByte Proof Bundle\n"
"- bundle.json contains source, bytecode, trace, result\n"
"- verifier.py provides a minimal integrity hook\n"
"Replay verification: run the same bytecode in the runtime; compare ledger_head/state_digest.\n")
return mem.getvalue()
# ----------------------------
# Samples
# ----------------------------
SAMPLES: Dict[str, str] = {
"Contract: obligation satisfied (commit+emit)": """\
; If mem[0x20] == 1000 -> satisfied (emit 0), else breach (emit 1)
LOAD_IMM 0 1000
LOAD_MEM 1 0x20
CMP 1 0
JZ 18
; breach
LOAD_IMM 2 1
STORE 2 0x30
COMMIT
EMIT 2
HALT
; satisfied
LOAD_IMM 2 0
STORE 2 0x30
COMMIT
EMIT 2
HALT
""",
"Ledger integrity demo (multi-commit)": """\
LOAD_IMM 0 7
COMMIT
ADD 0 0
COMMIT
HASH 0
COMMIT
EMIT 0
HALT
""",
"Loop demo (safe with step limit)": """\
LOAD_IMM 0 0
LOAD_IMM 1 1
ADD 0 1
JMP 4
HALT
""",
}
# ============================================================
# Gradio App
# ============================================================
vm = CodexByteVM()
def load_sample(name: str) -> str:
return SAMPLES.get(name, "")
def run_program(source: str, step_limit: int, enable_trace: bool, preload_mem_0x20: int):
vm.reset()
# preload for common contract patterns
vm.mem[hex(0x20)] = int(preload_mem_0x20)
bytecode = compile_codexbyte(source)
result = vm.run(bytecode, step_limit=step_limit, trace=enable_trace)
trace = [asdict(s) for s in vm.last_trace] if enable_trace else []
proof_zip = build_proof_bundle(source, bytecode, result, vm.last_trace if enable_trace else [])
# gr.File expects a path OR a tuple (name, bytes) in newer versions.
# Use (filename, bytes) which HF Gradio accepts.
return (
{
"status": "OK",
"result": result,
"bytecode_len": len(bytecode),
"preloaded_memory": {"0x20": preload_mem_0x20},
},
trace,
("CodexByte_ProofBundle.zip", proof_zip),
)
def replay_verify(source: str, step_limit: int, preload_mem_0x20: int):
"""
Replay check: run twice, compare final ledger_head & state_digest.
"""
# run 1
vm1 = CodexByteVM()
vm1.mem[hex(0x20)] = int(preload_mem_0x20)
bc = compile_codexbyte(source)
r1 = vm1.run(bc, step_limit=step_limit, trace=False)
# run 2
vm2 = CodexByteVM()
vm2.mem[hex(0x20)] = int(preload_mem_0x20)
r2 = vm2.run(bc, step_limit=step_limit, trace=False)
ok = (r1["ledger_head"] == r2["ledger_head"]) and (r1["state_digest"] == r2["state_digest"])
return {
"replay_ok": ok,
"run1": {"ledger_head": r1["ledger_head"], "state_digest": r1["state_digest"]},
"run2": {"ledger_head": r2["ledger_head"], "state_digest": r2["state_digest"]},
"note": "TIME opcode makes replay non-deterministic. Avoid TIME in proofs."
}
with gr.Blocks(title="CodexByte ΩΞ Runtime") as demo:
gr.Markdown(
"# CodexByte ΩΞ Runtime\n"
"**Programs = contracts • Execution = enforcement • Trace = Ω-proof**\n\n"
"This runtime executes CodexByte deterministically and emits an intrinsic proof bundle."
)
with gr.Row():
sample = gr.Dropdown(list(SAMPLES.keys()), value="Contract: obligation satisfied (commit+emit)", label="Sample Programs")
load_btn = gr.Button("Load Sample")
program = gr.Textbox(lines=18, label="CodexByte Program")
load_btn.click(load_sample, inputs=sample, outputs=program)
with gr.Row():
preload = gr.Number(value=1000, label="Preload mem[0x20] value (common contract input)")
step_limit = gr.Slider(100, 50000, value=20000, step=100, label="Step limit (safety)")
trace_on = gr.Checkbox(value=True, label="Enable trace (Ω-step log)")
run_btn = gr.Button("Execute")
with gr.Tabs():
with gr.Tab("Ω-State Result"):
result_out = gr.JSON()
proof_file = gr.File(label="Download Proof Bundle (ZIP)")
with gr.Tab("Execution Trace"):
trace_out = gr.JSON()
with gr.Tab("Replay Verification"):
verify_btn = gr.Button("Replay verify (run twice)")
verify_out = gr.JSON()
run_btn.click(
fn=run_program,
inputs=[program, step_limit, trace_on, preload],
outputs=[result_out, trace_out, proof_file],
)
verify_btn.click(
fn=replay_verify,
inputs=[program, step_limit, preload],
outputs=verify_out
)
if __name__ == "__main__":
demo.launch() |