Compression-Lens / visualization /html_generator.py
Jellyfish042's picture
improvements
48754a8
"""
HTML visualization generator for UncheatableEval.
Generates interactive HTML visualizations comparing byte-level losses between two models.
"""
import bisect
import json
import math
import re
from pathlib import Path
from typing import List, Tuple, Optional, Set
import numpy as np
from core.escaping import escape_json_for_script
from core.render_model import RenderModel, TokenInfo, build_display
from visualization.render import render_page
from core.helpers import TokenizerBytesConverter
ASSETS_DIR = Path(__file__).resolve().parent / "assets"
# Compression rate conversion factor
COMPRESSION_RATE_FACTOR = (1.0 / math.log(2.0)) * 0.125 * 100.0
# Global tokenizers (lazy loaded)
_qwen_tokenizer = None
_rwkv_tokenizer = None
_token_bytes_converter_cache = {}
def get_qwen_tokenizer():
"""Lazy load Qwen tokenizer."""
global _qwen_tokenizer
if _qwen_tokenizer is None:
_qwen_tokenizer = TokenizerBytesConverter("Qwen/Qwen3-0.6B-Base")
return _qwen_tokenizer
def get_rwkv_tokenizer():
"""Lazy load RWKV tokenizer."""
global _rwkv_tokenizer
if _rwkv_tokenizer is None:
from rwkv.rwkv_tokenizer import TRIE_TOKENIZER
import os
script_dir = os.path.dirname(os.path.abspath(__file__))
vocab_path = os.path.join(os.path.dirname(script_dir), "support", "rwkv_vocab_v20230424.txt")
_rwkv_tokenizer = TRIE_TOKENIZER(vocab_path)
return _rwkv_tokenizer
def get_tokenizer_boundaries(text: str, tokenizer, is_rwkv: bool = False) -> Set[int]:
"""Get token boundaries (byte positions) for a given text."""
boundaries = set()
boundaries.add(0)
if is_rwkv:
tokenized = tokenizer.encode(text)
if hasattr(tokenized, "ids"):
token_ids = tokenized.ids
else:
token_ids = tokenized
byte_pos = 0
for token_id in token_ids:
token_bytes = tokenizer.decodeBytes([token_id])
byte_pos += len(token_bytes)
boundaries.add(byte_pos)
else:
token_bytes_list = tokenizer.encode_to_bytes(text)
byte_pos = 0
for token_bytes in token_bytes_list:
byte_pos += len(token_bytes)
boundaries.add(byte_pos)
return boundaries
def get_token_info_for_text(text: str) -> dict:
"""Get detailed token information for each byte position."""
qwen_tokenizer = get_qwen_tokenizer()
rwkv_tokenizer = get_rwkv_tokenizer()
# Get Qwen tokens with positions
qwen_tokens = []
byte_to_qwen = {}
# Keep both token id (vocab id) and decoded bytes so the tooltip can show true token ids.
qwen_id_and_bytes = qwen_tokenizer.encode_to_ids_and_bytes(text)
byte_pos = 0
for idx, (token_id, token_bytes) in enumerate(qwen_id_and_bytes):
start = byte_pos
token_bytes_blob = bytes(token_bytes)
end = byte_pos + len(token_bytes_blob)
qwen_tokens.append((start, end, token_id, token_bytes_blob))
byte_to_qwen[start] = idx
byte_pos = end
# Get RWKV tokens with positions
rwkv_tokens = []
byte_to_rwkv = {}
tokenized = rwkv_tokenizer.encode(text)
if hasattr(tokenized, "ids"):
token_ids = tokenized.ids
else:
token_ids = tokenized
byte_pos = 0
for idx, token_id in enumerate(token_ids):
token_bytes = rwkv_tokenizer.decodeBytes([token_id])
start = byte_pos
end = byte_pos + len(token_bytes)
rwkv_tokens.append((start, end, token_id, token_bytes))
byte_to_rwkv[start] = idx
byte_pos = end
# Get common boundaries, but keep only UTF-8 codepoint boundaries
qwen_boundaries = set([0] + [t[1] for t in qwen_tokens])
rwkv_boundaries = set([0] + [t[1] for t in rwkv_tokens])
utf8_boundaries = set([0])
whitespace_boundaries = set()
linebreak_boundaries = set()
byte_pos = 0
for ch in text:
ch_bytes = ch.encode("utf-8")
byte_pos += len(ch_bytes)
utf8_boundaries.add(byte_pos)
if ch.isspace():
whitespace_boundaries.add(byte_pos)
if ch in ("\n", "\r"):
linebreak_boundaries.add(byte_pos)
common_boundaries = sorted(qwen_boundaries & rwkv_boundaries & utf8_boundaries)
# Ensure we always include the end boundary
text_end = len(text.encode("utf-8"))
if text_end not in common_boundaries:
common_boundaries.append(text_end)
common_boundaries = sorted(common_boundaries)
# Refine overly large segments to avoid giant spans in the UI.
max_segment_bytes = 24
utf8_sorted = sorted(utf8_boundaries)
linebreak_sorted = sorted(linebreak_boundaries)
def split_by_max(start: int, end: int) -> List[int]:
if end - start <= max_segment_bytes:
return [end]
left = bisect.bisect_right(utf8_sorted, start)
right = bisect.bisect_left(utf8_sorted, end)
candidates = utf8_sorted[left:right]
if not candidates:
return [end]
out = []
pos = start
idx = 0
while pos < end:
limit = min(end, pos + max_segment_bytes)
j = bisect.bisect_right(candidates, limit) - 1
if j < idx:
out.append(end)
break
split_at = None
for k in range(j, idx - 1, -1):
if candidates[k] in whitespace_boundaries:
split_at = candidates[k]
j = k
break
if split_at is None:
split_at = candidates[j]
if split_at <= pos:
split_at = candidates[j]
out.append(split_at)
pos = split_at
idx = j + 1
if pos >= end:
break
if idx >= len(candidates):
out.append(end)
break
if not out:
out = [end]
elif out[-1] != end:
out.append(end)
return out
def split_segment(start: int, end: int) -> List[int]:
if start >= end:
return []
lb_left = bisect.bisect_right(linebreak_sorted, start)
lb_right = bisect.bisect_left(linebreak_sorted, end)
linebreaks = linebreak_sorted[lb_left:lb_right]
if not linebreaks:
return split_by_max(start, end)
out = []
seg_start = start
for lb in linebreaks:
out.extend(split_by_max(seg_start, lb))
seg_start = lb
out.extend(split_by_max(seg_start, end))
return out
refined_boundaries = [common_boundaries[0]] if common_boundaries else [0]
for i in range(len(common_boundaries) - 1):
start = common_boundaries[i]
end = common_boundaries[i + 1]
refined_boundaries.extend(split_segment(start, end))
common_boundaries = sorted(set(refined_boundaries))
return {
"common_boundaries": common_boundaries,
"qwen_tokens": qwen_tokens,
"rwkv_tokens": rwkv_tokens,
"byte_to_qwen": byte_to_qwen,
"byte_to_rwkv": byte_to_rwkv,
}
def generate_comparison_html(
text: str,
byte_losses_a: List[float],
byte_losses_b: List[float],
model_a_name: str,
model_b_name: str,
topk_predictions_a: Optional[List] = None,
topk_predictions_b: Optional[List] = None,
tokenizer_a=None,
tokenizer_b=None,
model_type_a: str = "hf",
model_type_b: str = "rwkv7",
token_info_override: Optional[dict] = None,
return_render_model: bool = False,
) -> str:
"""
Generate an interactive HTML visualization comparing two models.
Args:
text: The input text that was evaluated
byte_losses_a: Per-byte losses from model A
byte_losses_b: Per-byte losses from model B
model_a_name: Display name for model A
model_b_name: Display name for model B
topk_predictions_a: Top-k predictions from model A
topk_predictions_b: Top-k predictions from model B
tokenizer_a: Tokenizer for model A
tokenizer_b: Tokenizer for model B
model_type_a: Type of model A ("hf" or "rwkv7")
model_type_b: Type of model B ("hf" or "rwkv7")
token_info_override: Optional precomputed token info (for offline tests).
return_render_model: If True, return (html, render_model_dict)
Returns:
HTML string with interactive visualization, or (html, render_model_dict) if return_render_model=True
"""
def decode_token(token_id: int, tokenizer, model_type: str) -> Tuple[str, bool]:
"""Decode a single token ID to text using the appropriate tokenizer.
Returns (text, is_raw_bytes).
"""
def bytes_to_hex_str(byte_values) -> str:
if isinstance(byte_values, list):
byte_values = bytes(byte_values)
return "".join([f"\\x{b:02x}" for b in byte_values])
def get_bytes_converter(tokenizer):
if tokenizer is None:
return None
key = getattr(tokenizer, "name_or_path", None)
if not key:
key = str(id(tokenizer))
if key not in _token_bytes_converter_cache:
try:
_token_bytes_converter_cache[key] = TokenizerBytesConverter(
model_name_or_path=getattr(tokenizer, "name_or_path", None),
tokenizer=tokenizer,
trust_remote_code=True,
)
except Exception:
_token_bytes_converter_cache[key] = None
return _token_bytes_converter_cache.get(key)
if tokenizer is None:
return f"[{token_id}]", False
try:
if model_type in ["rwkv", "rwkv7"]:
# RWKV tokenizer provides raw bytes
try:
token_bytes = tokenizer.decodeBytes([token_id])
except Exception as e:
if token_id == 0:
return f"[{token_id}]", False
raise e
if token_bytes:
try:
decoded = token_bytes.decode("utf-8")
return (decoded if decoded else f"[{token_id}]"), False
except UnicodeDecodeError:
return bytes_to_hex_str(token_bytes), True
return f"[{token_id}]", False
else:
# HuggingFace tokenizer: prefer raw bytes when possible
converter = get_bytes_converter(tokenizer)
token_bytes = None
if converter is not None:
try:
token_bytes = converter.token_to_bytes(token_id)
except Exception:
token_bytes = None
if token_bytes:
try:
decoded = bytes(token_bytes).decode("utf-8")
return (decoded if decoded else f"[{token_id}]"), False
except UnicodeDecodeError:
return bytes_to_hex_str(token_bytes), True
decoded = tokenizer.decode([token_id])
if decoded and "�" not in decoded:
return decoded, False
return (decoded if decoded else f"[{token_id}]"), False
except Exception as e:
print(f"Warning: Failed to decode token {token_id} ({model_type}): {e}")
return f"[{token_id}]", False
def build_byte_to_token_map(text: str, tokenizer, model_type: str):
"""Build mapping from byte position to token index using the correct tokenizer.
Returns a list of (start, end, token_idx) tuples for range-based lookup."""
if tokenizer is None:
return []
token_ranges = []
try:
if model_type in ["rwkv", "rwkv7"]:
# RWKV tokenizer
tokenized = tokenizer.encode(text)
if hasattr(tokenized, "ids"):
token_ids = tokenized.ids
else:
token_ids = tokenized
byte_pos = 0
for idx, token_id in enumerate(token_ids):
try:
token_bytes = tokenizer.decodeBytes([token_id])
token_ranges.append((byte_pos, byte_pos + len(token_bytes), idx))
byte_pos += len(token_bytes)
except Exception as e:
print(f"Warning: Failed to decode RWKV token {token_id}: {e}")
pass
else:
# HuggingFace tokenizer - use TokenizerBytesConverter
tokenizer_name = getattr(tokenizer, "name_or_path", None)
if tokenizer_name:
converter = TokenizerBytesConverter(tokenizer_name, trust_remote_code=True)
token_bytes_list = converter.encode_to_bytes(text)
byte_pos = 0
for idx, token_bytes in enumerate(token_bytes_list):
token_ranges.append((byte_pos, byte_pos + len(token_bytes), idx))
byte_pos += len(token_bytes)
else:
print(f"Warning: Could not get tokenizer name for HF model")
except Exception as e:
print(f"Warning: Could not build byte-to-token map ({model_type}): {e}")
return []
return token_ranges
def find_token_for_byte(byte_pos: int, token_ranges):
for start, end, idx in token_ranges:
if start <= byte_pos < end:
return idx
return None
# Calculate deltas
deltas = [a - b for a, b in zip(byte_losses_a, byte_losses_b)]
avg_delta = sum(deltas) / len(deltas) if deltas else 0
# Calculate average compression rates
avg_compression_a = sum(byte_losses_a) / len(byte_losses_a) * COMPRESSION_RATE_FACTOR if byte_losses_a else 0
avg_compression_b = sum(byte_losses_b) / len(byte_losses_b) * COMPRESSION_RATE_FACTOR if byte_losses_b else 0
avg_delta_compression = avg_delta * COMPRESSION_RATE_FACTOR
# Get token info
text_bytes = text.encode("utf-8")
token_info = token_info_override if token_info_override is not None else get_token_info_for_text(text)
common_boundaries = token_info["common_boundaries"]
qwen_tokens = token_info["qwen_tokens"]
rwkv_tokens = token_info["rwkv_tokens"]
# Build byte position to token index mapping
model_a_token_ranges = build_byte_to_token_map(text, tokenizer_a, model_type_a)
model_b_token_ranges = build_byte_to_token_map(text, tokenizer_b, model_type_b)
def get_tokens_for_range(byte_start, byte_end, token_list):
result = []
for idx, (t_start, t_end, token_id, t_bytes) in enumerate(token_list):
if t_start < byte_end and t_end > byte_start:
result.append((idx, token_id, t_bytes))
return result
# Build tokens based on common boundaries
tokens = []
for i in range(len(common_boundaries) - 1):
start_byte = common_boundaries[i]
end_byte = common_boundaries[i + 1]
token_bytes = text_bytes[start_byte:end_byte]
decoded_ok = True
try:
token_text = token_bytes.decode("utf-8")
except UnicodeDecodeError:
# Show raw bytes when UTF-8 decoding fails
token_text = "".join([f"\\x{b:02x}" for b in token_bytes])
decoded_ok = False
qwen_toks = get_tokens_for_range(start_byte, end_byte, qwen_tokens)
rwkv_toks = get_tokens_for_range(start_byte, end_byte, rwkv_tokens)
if decoded_ok and re.search(r"\w", token_text, re.UNICODE):
tokens.append(
{
"type": "word",
"text": token_text,
"byte_start": start_byte,
"byte_end": end_byte,
"word_lower": token_text.lower(),
"qwen_tokens": qwen_toks,
"rwkv_tokens": rwkv_toks,
}
)
else:
tokens.append(
{
"type": "non-word",
"text": token_text,
"byte_start": start_byte,
"byte_end": end_byte,
"qwen_tokens": qwen_toks,
"rwkv_tokens": rwkv_toks,
}
)
# Track word occurrences
word_occurrences = {}
word_id_counter = 0
for i, token in enumerate(tokens):
if token["type"] == "word":
word_lower = token["word_lower"]
if word_lower not in word_occurrences:
word_occurrences[word_lower] = []
word_occurrences[word_lower].append(i)
token["word_id"] = word_id_counter
word_id_counter += 1
# Build render model (HTML content built in JS)
render_tokens = []
for token in tokens:
token_text = token["text"]
byte_start = token["byte_start"]
byte_end = token["byte_end"]
# Get actual model token IDs for this byte range
model_a_token_idx = find_token_for_byte(byte_start, model_a_token_ranges)
model_b_token_idx = find_token_for_byte(byte_start, model_b_token_ranges)
# Build token info strings showing all tokens in this byte range
def token_bytes_to_display_text(token_bytes: bytes) -> Tuple[str, bool]:
if token_bytes is None:
return "", False
if isinstance(token_bytes, list):
token_bytes = bytes(token_bytes)
if isinstance(token_bytes, str):
return token_bytes, False
if len(token_bytes) == 0:
return "", False
try:
return token_bytes.decode("utf-8"), False
except UnicodeDecodeError:
return "".join([f"\\x{b:02x}" for b in token_bytes]), True
raw_bytes = list(text_bytes[byte_start:byte_end])
losses_a = byte_losses_a[byte_start:byte_end]
losses_b = byte_losses_b[byte_start:byte_end]
bytes_str = " ".join([f"{b:02x}" for b in raw_bytes])
compression_a_str = " ".join([f"{l * COMPRESSION_RATE_FACTOR:.2f}%" for l in losses_a])
compression_b_str = " ".join([f"{l * COMPRESSION_RATE_FACTOR:.2f}%" for l in losses_b])
# Calculate average compression rate for this token
avg_compression_a_token = sum(losses_a) / len(losses_a) * COMPRESSION_RATE_FACTOR if losses_a else 0
avg_compression_b_token = sum(losses_b) / len(losses_b) * COMPRESSION_RATE_FACTOR if losses_b else 0
topk_a_data = None
topk_b_data = None
if topk_predictions_a is not None and model_a_token_ranges:
model_a_token_idx = find_token_for_byte(byte_start, model_a_token_ranges)
if model_a_token_idx is not None and model_a_token_idx < len(topk_predictions_a):
pred = topk_predictions_a[model_a_token_idx]
try:
if len(pred) >= 4:
actual_id, rank, actual_prob, topk_list = pred[0], pred[1], pred[2], pred[3]
topk_a_data = [
actual_id,
rank,
actual_prob,
[[tid, prob, *decode_token(tid, tokenizer_a, model_type_a)] for tid, prob in topk_list],
]
else:
topk_a_data = [
pred[0],
pred[1],
[[tid, prob, *decode_token(tid, tokenizer_a, model_type_a)] for tid, prob in pred[2]],
]
except Exception as e:
pass
if topk_predictions_b is not None and model_b_token_ranges:
model_b_token_idx = find_token_for_byte(byte_start, model_b_token_ranges)
if model_b_token_idx is not None and model_b_token_idx < len(topk_predictions_b):
pred = topk_predictions_b[model_b_token_idx]
try:
if len(pred) >= 4:
actual_id, rank, actual_prob, topk_list = pred[0], pred[1], pred[2], pred[3]
topk_b_data = [
actual_id,
rank,
actual_prob,
[[tid, prob, *decode_token(tid, tokenizer_b, model_type_b)] for tid, prob in topk_list],
]
else:
topk_b_data = [pred[0], pred[1], [[tid, prob, *decode_token(tid, tokenizer_b, model_type_b)] for tid, prob in pred[2]]]
except Exception as e:
pass
token_deltas = deltas[byte_start:byte_end]
avg_token_delta = sum(token_deltas) / len(token_deltas) if token_deltas else 0
tuned_delta = avg_token_delta - avg_delta
raw_delta = avg_token_delta
# Initial rendering uses white color, JavaScript will apply colors based on slider
r, g, b = 255, 255, 255
raw_display_text = token_text
display_text = token_text.replace("\t", " ")
def classify_kind(text_value: str, is_raw_value: bool) -> str:
return build_display(text_value, is_raw=is_raw_value).kind
def get_actual_prob(topk_predictions, token_idx: Optional[int]):
if not topk_predictions or token_idx is None:
return None
if token_idx < 0 or token_idx >= len(topk_predictions):
return None
pred = topk_predictions[token_idx]
if isinstance(pred, (list, tuple)) and len(pred) >= 3:
return pred[2]
return None
model_tokens_render = {}
if token["rwkv_tokens"]:
rwkv_items = []
for tok_idx, tid, tb in token["rwkv_tokens"]:
txt, is_raw = token_bytes_to_display_text(tb)
rwkv_items.append([tid, txt, classify_kind(txt, is_raw), get_actual_prob(topk_predictions_a, tok_idx)])
model_tokens_render["rwkv"] = rwkv_items
if token["qwen_tokens"]:
qwen_items = []
for tok_idx, tid, tb in token["qwen_tokens"]:
txt, is_raw = token_bytes_to_display_text(tb)
qwen_items.append([tid, txt, classify_kind(txt, is_raw), get_actual_prob(topk_predictions_b, tok_idx)])
model_tokens_render["qwen"] = qwen_items
display_info = build_display(raw_display_text, is_raw=not decoded_ok)
if display_info.kind == "control":
display_text = raw_display_text
display_info.text = display_text
render_tokens.append(
TokenInfo(
byte_start=byte_start,
byte_end=byte_end,
display=display_info,
is_word=token["type"] == "word",
word_id=token.get("word_id"),
word_key=token.get("word_lower"),
bytes_hex=bytes_str,
compression={"rwkv": compression_a_str, "qwen": compression_b_str},
model_tokens=model_tokens_render,
loss={"rwkv": avg_compression_a_token, "qwen": avg_compression_b_token},
topk={
"rwkv": topk_a_data,
"qwen": topk_b_data,
},
raw_delta=raw_delta,
tuned_delta=tuned_delta,
)
)
delta_color = "#64ff64" if avg_delta < 0 else "#ff6464"
render_model = RenderModel(
text=text,
tokens=render_tokens,
meta={
"model_a": model_a_name,
"model_b": model_b_name,
"avg_compression": {
"rwkv": avg_compression_a,
"qwen": avg_compression_b,
},
"avg_delta": avg_delta,
"avg_delta_compression": avg_delta_compression,
},
)
render_model_json = escape_json_for_script(render_model.to_dict())
style_block = (ASSETS_DIR / "main.css").read_text(encoding="utf-8")
header_html = f"""
<div class="header">
<div class="meta">
<div>Model A: {model_a_name}</div>
<div>Model B: {model_b_name}</div>
<div>RWKV Compression: {avg_compression_a:.2f}%</div>
<div>Qwen Compression: {avg_compression_b:.2f}%</div>
<div style="color: {delta_color}">Avg Delta: {avg_delta_compression:+.2f}%</div>
</div>
<div class="legend">
<div class="legend-row">
<div class="legend-item legend-toggle">
<span style="color: #aaa;">Coloring Mode:</span>
<label><input type="radio" name="delta-mode" value="relative" checked> vs Avg Delta</label>
<label><input type="radio" name="delta-mode" value="absolute"> Absolute</label>
</div>
<div class="legend-item">
<span style="color: #aaa;">Color Range:</span>
<input type="range" id="color-range-slider" min="0" max="100" value="10" step="0.1" style="width: 200px; vertical-align: middle;">
<span id="color-range-value" style="color: #fff; min-width: 45px; display: inline-block;">10%</span>
</div>
</div>
<div class="legend-row">
<div class="legend-item">
<div class="legend-box" style="background-color: rgb(77, 255, 77)"></div>
<span id="legend-better">RWKV better than avg delta</span>
</div>
<div class="legend-item">
<div class="legend-box" style="background-color: rgb(255, 255, 255)"></div>
<span id="legend-equal">Equal to avg delta</span>
</div>
<div class="legend-item">
<div class="legend-box" style="background-color: rgb(255, 77, 77)"></div>
<span id="legend-worse">RWKV worse than avg delta</span>
</div>
</div>
</div>
</div>
""".strip("\n")
script_body = (ASSETS_DIR / "main.js").read_text(encoding="utf-8")
html_doc = render_page(
{
"page_title": "Model Comparison",
"style_block": style_block.strip("\n"),
"header_html": header_html,
"content_html": "",
"render_model_json": render_model_json,
"script_body": script_body.strip("\n"),
}
)
if return_render_model:
return html_doc, render_model.to_dict()
return html_doc