File size: 27,051 Bytes
9afeeeb
 
 
 
 
 
350392a
9afeeeb
 
 
350392a
9afeeeb
 
 
 
350392a
 
 
9afeeeb
 
350392a
 
9afeeeb
 
 
 
 
 
 
44c2c6d
9afeeeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
452ae9b
9afeeeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01ede16
 
9afeeeb
01ede16
9afeeeb
44c2c6d
 
 
9afeeeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44c2c6d
9afeeeb
 
 
44c2c6d
9afeeeb
 
44c2c6d
350392a
 
44c2c6d
 
350392a
 
44c2c6d
350392a
 
 
 
44c2c6d
 
 
 
 
 
9afeeeb
350392a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9afeeeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350392a
 
9afeeeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350392a
 
9afeeeb
 
350392a
9afeeeb
 
8f8c689
 
 
 
44c2c6d
8f8c689
 
44c2c6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9afeeeb
8f8c689
9afeeeb
 
44c2c6d
350392a
 
 
 
 
 
44c2c6d
 
 
8f8c689
44c2c6d
8f8c689
 
9afeeeb
44c2c6d
 
 
 
 
 
 
 
 
 
 
8f8c689
44c2c6d
8f8c689
44c2c6d
52ba00f
44c2c6d
8f8c689
 
52ba00f
 
8f8c689
9afeeeb
 
52ba00f
 
9afeeeb
 
 
 
 
 
 
52ba00f
9afeeeb
 
 
 
 
 
 
 
 
 
 
 
52ba00f
 
9afeeeb
 
52ba00f
9afeeeb
 
 
 
 
 
 
 
52ba00f
 
9afeeeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350392a
9afeeeb
 
 
 
 
 
 
 
 
 
350392a
9afeeeb
350392a
9afeeeb
 
 
 
 
 
 
 
44c2c6d
9afeeeb
 
 
44c2c6d
 
 
9afeeeb
 
 
 
44c2c6d
452ae9b
 
 
 
 
 
 
 
 
 
 
9afeeeb
452ae9b
 
 
 
 
 
 
 
 
 
9afeeeb
 
 
 
 
 
 
 
 
 
 
 
 
 
350392a
 
9afeeeb
 
 
 
 
 
8629056
 
 
 
6fcf271
8f8c689
44c2c6d
8f8c689
44c2c6d
 
 
8f8c689
44c2c6d
8f8c689
44c2c6d
8f8c689
44c2c6d
8f8c689
44c2c6d
9afeeeb
 
 
 
 
 
 
 
fa470f3
 
 
 
350392a
 
9afeeeb
 
 
 
951e8dd
44c2c6d
 
350392a
44c2c6d
 
 
8f8c689
44c2c6d
 
350392a
44c2c6d
 
8f8c689
44c2c6d
951e8dd
fa6172d
9afeeeb
 
 
 
951e8dd
44c2c6d
 
350392a
44c2c6d
 
 
8f8c689
44c2c6d
 
350392a
951e8dd
fa6172d
24f1b39
9afeeeb
 
fa470f3
48754a8
9afeeeb
fa470f3
 
9afeeeb
350392a
 
9afeeeb
350392a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48754a8
350392a
 
 
9afeeeb
 
 
350392a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9afeeeb
350392a
48754a8
 
 
 
 
 
 
 
 
 
 
350392a
48754a8
 
 
 
 
 
 
 
 
 
 
 
 
350392a
9afeeeb
 
350392a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
"""
HTML visualization generator for UncheatableEval.

Generates interactive HTML visualizations comparing byte-level losses between two models.
"""

import bisect
import json
import math
import re
from pathlib import Path
from typing import List, Tuple, Optional, Set

import numpy as np

from core.escaping import escape_json_for_script
from core.render_model import RenderModel, TokenInfo, build_display
from visualization.render import render_page
from core.helpers import TokenizerBytesConverter

ASSETS_DIR = Path(__file__).resolve().parent / "assets"


# Compression rate conversion factor
COMPRESSION_RATE_FACTOR = (1.0 / math.log(2.0)) * 0.125 * 100.0

# Global tokenizers (lazy loaded)
_qwen_tokenizer = None
_rwkv_tokenizer = None
_token_bytes_converter_cache = {}


def get_qwen_tokenizer():
    """Lazy load Qwen tokenizer."""
    global _qwen_tokenizer
    if _qwen_tokenizer is None:
        _qwen_tokenizer = TokenizerBytesConverter("Qwen/Qwen3-0.6B-Base")
    return _qwen_tokenizer


def get_rwkv_tokenizer():
    """Lazy load RWKV tokenizer."""
    global _rwkv_tokenizer
    if _rwkv_tokenizer is None:
        from rwkv.rwkv_tokenizer import TRIE_TOKENIZER
        import os

        script_dir = os.path.dirname(os.path.abspath(__file__))
        vocab_path = os.path.join(os.path.dirname(script_dir), "support", "rwkv_vocab_v20230424.txt")
        _rwkv_tokenizer = TRIE_TOKENIZER(vocab_path)
    return _rwkv_tokenizer


def get_tokenizer_boundaries(text: str, tokenizer, is_rwkv: bool = False) -> Set[int]:
    """Get token boundaries (byte positions) for a given text."""
    boundaries = set()
    boundaries.add(0)

    if is_rwkv:
        tokenized = tokenizer.encode(text)
        if hasattr(tokenized, "ids"):
            token_ids = tokenized.ids
        else:
            token_ids = tokenized

        byte_pos = 0
        for token_id in token_ids:
            token_bytes = tokenizer.decodeBytes([token_id])
            byte_pos += len(token_bytes)
            boundaries.add(byte_pos)
    else:
        token_bytes_list = tokenizer.encode_to_bytes(text)
        byte_pos = 0
        for token_bytes in token_bytes_list:
            byte_pos += len(token_bytes)
            boundaries.add(byte_pos)

    return boundaries


def get_token_info_for_text(text: str) -> dict:
    """Get detailed token information for each byte position."""
    qwen_tokenizer = get_qwen_tokenizer()
    rwkv_tokenizer = get_rwkv_tokenizer()

    # Get Qwen tokens with positions
    qwen_tokens = []
    byte_to_qwen = {}
    # Keep both token id (vocab id) and decoded bytes so the tooltip can show true token ids.
    qwen_id_and_bytes = qwen_tokenizer.encode_to_ids_and_bytes(text)
    byte_pos = 0
    for idx, (token_id, token_bytes) in enumerate(qwen_id_and_bytes):
        start = byte_pos
        token_bytes_blob = bytes(token_bytes)
        end = byte_pos + len(token_bytes_blob)
        qwen_tokens.append((start, end, token_id, token_bytes_blob))
        byte_to_qwen[start] = idx
        byte_pos = end

    # Get RWKV tokens with positions
    rwkv_tokens = []
    byte_to_rwkv = {}
    tokenized = rwkv_tokenizer.encode(text)
    if hasattr(tokenized, "ids"):
        token_ids = tokenized.ids
    else:
        token_ids = tokenized

    byte_pos = 0
    for idx, token_id in enumerate(token_ids):
        token_bytes = rwkv_tokenizer.decodeBytes([token_id])
        start = byte_pos
        end = byte_pos + len(token_bytes)
        rwkv_tokens.append((start, end, token_id, token_bytes))
        byte_to_rwkv[start] = idx
        byte_pos = end

    # Get common boundaries, but keep only UTF-8 codepoint boundaries
    qwen_boundaries = set([0] + [t[1] for t in qwen_tokens])
    rwkv_boundaries = set([0] + [t[1] for t in rwkv_tokens])
    utf8_boundaries = set([0])
    whitespace_boundaries = set()
    linebreak_boundaries = set()
    byte_pos = 0
    for ch in text:
        ch_bytes = ch.encode("utf-8")
        byte_pos += len(ch_bytes)
        utf8_boundaries.add(byte_pos)
        if ch.isspace():
            whitespace_boundaries.add(byte_pos)
        if ch in ("\n", "\r"):
            linebreak_boundaries.add(byte_pos)
    common_boundaries = sorted(qwen_boundaries & rwkv_boundaries & utf8_boundaries)
    # Ensure we always include the end boundary
    text_end = len(text.encode("utf-8"))
    if text_end not in common_boundaries:
        common_boundaries.append(text_end)
        common_boundaries = sorted(common_boundaries)

    # Refine overly large segments to avoid giant spans in the UI.
    max_segment_bytes = 24
    utf8_sorted = sorted(utf8_boundaries)
    linebreak_sorted = sorted(linebreak_boundaries)

    def split_by_max(start: int, end: int) -> List[int]:
        if end - start <= max_segment_bytes:
            return [end]
        left = bisect.bisect_right(utf8_sorted, start)
        right = bisect.bisect_left(utf8_sorted, end)
        candidates = utf8_sorted[left:right]
        if not candidates:
            return [end]
        out = []
        pos = start
        idx = 0
        while pos < end:
            limit = min(end, pos + max_segment_bytes)
            j = bisect.bisect_right(candidates, limit) - 1
            if j < idx:
                out.append(end)
                break
            split_at = None
            for k in range(j, idx - 1, -1):
                if candidates[k] in whitespace_boundaries:
                    split_at = candidates[k]
                    j = k
                    break
            if split_at is None:
                split_at = candidates[j]
            if split_at <= pos:
                split_at = candidates[j]
            out.append(split_at)
            pos = split_at
            idx = j + 1
            if pos >= end:
                break
            if idx >= len(candidates):
                out.append(end)
                break
        if not out:
            out = [end]
        elif out[-1] != end:
            out.append(end)
        return out

    def split_segment(start: int, end: int) -> List[int]:
        if start >= end:
            return []
        lb_left = bisect.bisect_right(linebreak_sorted, start)
        lb_right = bisect.bisect_left(linebreak_sorted, end)
        linebreaks = linebreak_sorted[lb_left:lb_right]
        if not linebreaks:
            return split_by_max(start, end)
        out = []
        seg_start = start
        for lb in linebreaks:
            out.extend(split_by_max(seg_start, lb))
            seg_start = lb
        out.extend(split_by_max(seg_start, end))
        return out

    refined_boundaries = [common_boundaries[0]] if common_boundaries else [0]
    for i in range(len(common_boundaries) - 1):
        start = common_boundaries[i]
        end = common_boundaries[i + 1]
        refined_boundaries.extend(split_segment(start, end))
    common_boundaries = sorted(set(refined_boundaries))

    return {
        "common_boundaries": common_boundaries,
        "qwen_tokens": qwen_tokens,
        "rwkv_tokens": rwkv_tokens,
        "byte_to_qwen": byte_to_qwen,
        "byte_to_rwkv": byte_to_rwkv,
    }


def generate_comparison_html(
    text: str,
    byte_losses_a: List[float],
    byte_losses_b: List[float],
    model_a_name: str,
    model_b_name: str,
    topk_predictions_a: Optional[List] = None,
    topk_predictions_b: Optional[List] = None,
    tokenizer_a=None,
    tokenizer_b=None,
    model_type_a: str = "hf",
    model_type_b: str = "rwkv7",
    token_info_override: Optional[dict] = None,
    return_render_model: bool = False,
) -> str:
    """
    Generate an interactive HTML visualization comparing two models.

    Args:
        text: The input text that was evaluated
        byte_losses_a: Per-byte losses from model A
        byte_losses_b: Per-byte losses from model B
        model_a_name: Display name for model A
        model_b_name: Display name for model B
        topk_predictions_a: Top-k predictions from model A
        topk_predictions_b: Top-k predictions from model B
        tokenizer_a: Tokenizer for model A
        tokenizer_b: Tokenizer for model B
        model_type_a: Type of model A ("hf" or "rwkv7")
        model_type_b: Type of model B ("hf" or "rwkv7")
        token_info_override: Optional precomputed token info (for offline tests).
        return_render_model: If True, return (html, render_model_dict)

    Returns:
        HTML string with interactive visualization, or (html, render_model_dict) if return_render_model=True
    """

    def decode_token(token_id: int, tokenizer, model_type: str) -> Tuple[str, bool]:
        """Decode a single token ID to text using the appropriate tokenizer.
        Returns (text, is_raw_bytes).
        """
        def bytes_to_hex_str(byte_values) -> str:
            if isinstance(byte_values, list):
                byte_values = bytes(byte_values)
            return "".join([f"\\x{b:02x}" for b in byte_values])

        def get_bytes_converter(tokenizer):
            if tokenizer is None:
                return None
            key = getattr(tokenizer, "name_or_path", None)
            if not key:
                key = str(id(tokenizer))
            if key not in _token_bytes_converter_cache:
                try:
                    _token_bytes_converter_cache[key] = TokenizerBytesConverter(
                        model_name_or_path=getattr(tokenizer, "name_or_path", None),
                        tokenizer=tokenizer,
                        trust_remote_code=True,
                    )
                except Exception:
                    _token_bytes_converter_cache[key] = None
            return _token_bytes_converter_cache.get(key)

        if tokenizer is None:
            return f"[{token_id}]", False
        try:
            if model_type in ["rwkv", "rwkv7"]:
                # RWKV tokenizer provides raw bytes
                try:
                    token_bytes = tokenizer.decodeBytes([token_id])
                except Exception as e:
                    if token_id == 0:
                        return f"[{token_id}]", False
                    raise e
                if token_bytes:
                    try:
                        decoded = token_bytes.decode("utf-8")
                        return (decoded if decoded else f"[{token_id}]"), False
                    except UnicodeDecodeError:
                        return bytes_to_hex_str(token_bytes), True
                return f"[{token_id}]", False
            else:
                # HuggingFace tokenizer: prefer raw bytes when possible
                converter = get_bytes_converter(tokenizer)
                token_bytes = None
                if converter is not None:
                    try:
                        token_bytes = converter.token_to_bytes(token_id)
                    except Exception:
                        token_bytes = None
                if token_bytes:
                    try:
                        decoded = bytes(token_bytes).decode("utf-8")
                        return (decoded if decoded else f"[{token_id}]"), False
                    except UnicodeDecodeError:
                        return bytes_to_hex_str(token_bytes), True

                decoded = tokenizer.decode([token_id])
                if decoded and "�" not in decoded:
                    return decoded, False
                return (decoded if decoded else f"[{token_id}]"), False
        except Exception as e:
            print(f"Warning: Failed to decode token {token_id} ({model_type}): {e}")
            return f"[{token_id}]", False

    def build_byte_to_token_map(text: str, tokenizer, model_type: str):
        """Build mapping from byte position to token index using the correct tokenizer.
        Returns a list of (start, end, token_idx) tuples for range-based lookup."""
        if tokenizer is None:
            return []

        token_ranges = []

        try:
            if model_type in ["rwkv", "rwkv7"]:
                # RWKV tokenizer
                tokenized = tokenizer.encode(text)
                if hasattr(tokenized, "ids"):
                    token_ids = tokenized.ids
                else:
                    token_ids = tokenized

                byte_pos = 0
                for idx, token_id in enumerate(token_ids):
                    try:
                        token_bytes = tokenizer.decodeBytes([token_id])
                        token_ranges.append((byte_pos, byte_pos + len(token_bytes), idx))
                        byte_pos += len(token_bytes)
                    except Exception as e:
                        print(f"Warning: Failed to decode RWKV token {token_id}: {e}")
                        pass
            else:
                # HuggingFace tokenizer - use TokenizerBytesConverter
                tokenizer_name = getattr(tokenizer, "name_or_path", None)
                if tokenizer_name:
                    converter = TokenizerBytesConverter(tokenizer_name, trust_remote_code=True)
                    token_bytes_list = converter.encode_to_bytes(text)
                    byte_pos = 0
                    for idx, token_bytes in enumerate(token_bytes_list):
                        token_ranges.append((byte_pos, byte_pos + len(token_bytes), idx))
                        byte_pos += len(token_bytes)
                else:
                    print(f"Warning: Could not get tokenizer name for HF model")
        except Exception as e:
            print(f"Warning: Could not build byte-to-token map ({model_type}): {e}")
            return []

        return token_ranges

    def find_token_for_byte(byte_pos: int, token_ranges):
        for start, end, idx in token_ranges:
            if start <= byte_pos < end:
                return idx
        return None

    # Calculate deltas
    deltas = [a - b for a, b in zip(byte_losses_a, byte_losses_b)]
    avg_delta = sum(deltas) / len(deltas) if deltas else 0

    # Calculate average compression rates
    avg_compression_a = sum(byte_losses_a) / len(byte_losses_a) * COMPRESSION_RATE_FACTOR if byte_losses_a else 0
    avg_compression_b = sum(byte_losses_b) / len(byte_losses_b) * COMPRESSION_RATE_FACTOR if byte_losses_b else 0
    avg_delta_compression = avg_delta * COMPRESSION_RATE_FACTOR

    # Get token info
    text_bytes = text.encode("utf-8")
    token_info = token_info_override if token_info_override is not None else get_token_info_for_text(text)
    common_boundaries = token_info["common_boundaries"]
    qwen_tokens = token_info["qwen_tokens"]
    rwkv_tokens = token_info["rwkv_tokens"]

    # Build byte position to token index mapping
    model_a_token_ranges = build_byte_to_token_map(text, tokenizer_a, model_type_a)
    model_b_token_ranges = build_byte_to_token_map(text, tokenizer_b, model_type_b)

    def get_tokens_for_range(byte_start, byte_end, token_list):
        result = []
        for idx, (t_start, t_end, token_id, t_bytes) in enumerate(token_list):
            if t_start < byte_end and t_end > byte_start:
                result.append((idx, token_id, t_bytes))
        return result

    # Build tokens based on common boundaries
    tokens = []
    for i in range(len(common_boundaries) - 1):
        start_byte = common_boundaries[i]
        end_byte = common_boundaries[i + 1]
        token_bytes = text_bytes[start_byte:end_byte]
        decoded_ok = True
        try:
            token_text = token_bytes.decode("utf-8")
        except UnicodeDecodeError:
            # Show raw bytes when UTF-8 decoding fails
            token_text = "".join([f"\\x{b:02x}" for b in token_bytes])
            decoded_ok = False

        qwen_toks = get_tokens_for_range(start_byte, end_byte, qwen_tokens)
        rwkv_toks = get_tokens_for_range(start_byte, end_byte, rwkv_tokens)

        if decoded_ok and re.search(r"\w", token_text, re.UNICODE):
            tokens.append(
                {
                    "type": "word",
                    "text": token_text,
                    "byte_start": start_byte,
                    "byte_end": end_byte,
                    "word_lower": token_text.lower(),
                    "qwen_tokens": qwen_toks,
                    "rwkv_tokens": rwkv_toks,
                }
            )
        else:
            tokens.append(
                {
                    "type": "non-word",
                    "text": token_text,
                    "byte_start": start_byte,
                    "byte_end": end_byte,
                    "qwen_tokens": qwen_toks,
                    "rwkv_tokens": rwkv_toks,
                }
            )

    # Track word occurrences
    word_occurrences = {}
    word_id_counter = 0

    for i, token in enumerate(tokens):
        if token["type"] == "word":
            word_lower = token["word_lower"]
            if word_lower not in word_occurrences:
                word_occurrences[word_lower] = []
            word_occurrences[word_lower].append(i)
            token["word_id"] = word_id_counter
            word_id_counter += 1

    # Build render model (HTML content built in JS)
    render_tokens = []

    for token in tokens:
        token_text = token["text"]
        byte_start = token["byte_start"]
        byte_end = token["byte_end"]

        # Get actual model token IDs for this byte range
        model_a_token_idx = find_token_for_byte(byte_start, model_a_token_ranges)
        model_b_token_idx = find_token_for_byte(byte_start, model_b_token_ranges)

        # Build token info strings showing all tokens in this byte range
        def token_bytes_to_display_text(token_bytes: bytes) -> Tuple[str, bool]:
            if token_bytes is None:
                return "", False
            if isinstance(token_bytes, list):
                token_bytes = bytes(token_bytes)
            if isinstance(token_bytes, str):
                return token_bytes, False
            if len(token_bytes) == 0:
                return "", False
            try:
                return token_bytes.decode("utf-8"), False
            except UnicodeDecodeError:
                return "".join([f"\\x{b:02x}" for b in token_bytes]), True

        raw_bytes = list(text_bytes[byte_start:byte_end])
        losses_a = byte_losses_a[byte_start:byte_end]
        losses_b = byte_losses_b[byte_start:byte_end]

        bytes_str = " ".join([f"{b:02x}" for b in raw_bytes])
        compression_a_str = " ".join([f"{l * COMPRESSION_RATE_FACTOR:.2f}%" for l in losses_a])
        compression_b_str = " ".join([f"{l * COMPRESSION_RATE_FACTOR:.2f}%" for l in losses_b])

        # Calculate average compression rate for this token
        avg_compression_a_token = sum(losses_a) / len(losses_a) * COMPRESSION_RATE_FACTOR if losses_a else 0
        avg_compression_b_token = sum(losses_b) / len(losses_b) * COMPRESSION_RATE_FACTOR if losses_b else 0

        topk_a_data = None
        topk_b_data = None
        if topk_predictions_a is not None and model_a_token_ranges:
            model_a_token_idx = find_token_for_byte(byte_start, model_a_token_ranges)
            if model_a_token_idx is not None and model_a_token_idx < len(topk_predictions_a):
                pred = topk_predictions_a[model_a_token_idx]
                try:
                    if len(pred) >= 4:
                        actual_id, rank, actual_prob, topk_list = pred[0], pred[1], pred[2], pred[3]
                        topk_a_data = [
                            actual_id,
                            rank,
                            actual_prob,
                            [[tid, prob, *decode_token(tid, tokenizer_a, model_type_a)] for tid, prob in topk_list],
                        ]
                    else:
                        topk_a_data = [
                            pred[0],
                            pred[1],
                            [[tid, prob, *decode_token(tid, tokenizer_a, model_type_a)] for tid, prob in pred[2]],
                        ]
                except Exception as e:
                    pass
        if topk_predictions_b is not None and model_b_token_ranges:
            model_b_token_idx = find_token_for_byte(byte_start, model_b_token_ranges)
            if model_b_token_idx is not None and model_b_token_idx < len(topk_predictions_b):
                pred = topk_predictions_b[model_b_token_idx]
                try:
                    if len(pred) >= 4:
                        actual_id, rank, actual_prob, topk_list = pred[0], pred[1], pred[2], pred[3]
                        topk_b_data = [
                            actual_id,
                            rank,
                            actual_prob,
                            [[tid, prob, *decode_token(tid, tokenizer_b, model_type_b)] for tid, prob in topk_list],
                        ]
                    else:
                        topk_b_data = [pred[0], pred[1], [[tid, prob, *decode_token(tid, tokenizer_b, model_type_b)] for tid, prob in pred[2]]]
                except Exception as e:
                    pass

        token_deltas = deltas[byte_start:byte_end]
        avg_token_delta = sum(token_deltas) / len(token_deltas) if token_deltas else 0
        tuned_delta = avg_token_delta - avg_delta
        raw_delta = avg_token_delta

        # Initial rendering uses white color, JavaScript will apply colors based on slider
        r, g, b = 255, 255, 255

        raw_display_text = token_text
        display_text = token_text.replace("\t", "    ")

        def classify_kind(text_value: str, is_raw_value: bool) -> str:
            return build_display(text_value, is_raw=is_raw_value).kind

        def get_actual_prob(topk_predictions, token_idx: Optional[int]):
            if not topk_predictions or token_idx is None:
                return None
            if token_idx < 0 or token_idx >= len(topk_predictions):
                return None
            pred = topk_predictions[token_idx]
            if isinstance(pred, (list, tuple)) and len(pred) >= 3:
                return pred[2]
            return None

        model_tokens_render = {}
        if token["rwkv_tokens"]:
            rwkv_items = []
            for tok_idx, tid, tb in token["rwkv_tokens"]:
                txt, is_raw = token_bytes_to_display_text(tb)
                rwkv_items.append([tid, txt, classify_kind(txt, is_raw), get_actual_prob(topk_predictions_a, tok_idx)])
            model_tokens_render["rwkv"] = rwkv_items
        if token["qwen_tokens"]:
            qwen_items = []
            for tok_idx, tid, tb in token["qwen_tokens"]:
                txt, is_raw = token_bytes_to_display_text(tb)
                qwen_items.append([tid, txt, classify_kind(txt, is_raw), get_actual_prob(topk_predictions_b, tok_idx)])
            model_tokens_render["qwen"] = qwen_items

        display_info = build_display(raw_display_text, is_raw=not decoded_ok)
        if display_info.kind == "control":
            display_text = raw_display_text
        display_info.text = display_text
        render_tokens.append(
            TokenInfo(
                byte_start=byte_start,
                byte_end=byte_end,
                display=display_info,
                is_word=token["type"] == "word",
                word_id=token.get("word_id"),
                word_key=token.get("word_lower"),
                bytes_hex=bytes_str,
                compression={"rwkv": compression_a_str, "qwen": compression_b_str},
                model_tokens=model_tokens_render,
                loss={"rwkv": avg_compression_a_token, "qwen": avg_compression_b_token},
                topk={
                    "rwkv": topk_a_data,
                    "qwen": topk_b_data,
                },
                raw_delta=raw_delta,
                tuned_delta=tuned_delta,
            )
        )

    delta_color = "#64ff64" if avg_delta < 0 else "#ff6464"

    render_model = RenderModel(
        text=text,
        tokens=render_tokens,
        meta={
            "model_a": model_a_name,
            "model_b": model_b_name,
            "avg_compression": {
                "rwkv": avg_compression_a,
                "qwen": avg_compression_b,
            },
            "avg_delta": avg_delta,
            "avg_delta_compression": avg_delta_compression,
        },
    )
    render_model_json = escape_json_for_script(render_model.to_dict())

    style_block = (ASSETS_DIR / "main.css").read_text(encoding="utf-8")

    header_html = f"""
        <div class="header">
            <div class="meta">
                <div>Model A: {model_a_name}</div>
                <div>Model B: {model_b_name}</div>
                <div>RWKV Compression: {avg_compression_a:.2f}%</div>
                <div>Qwen Compression: {avg_compression_b:.2f}%</div>
                <div style="color: {delta_color}">Avg Delta: {avg_delta_compression:+.2f}%</div>
            </div>
            <div class="legend">
                <div class="legend-row">
                    <div class="legend-item legend-toggle">
                        <span style="color: #aaa;">Coloring Mode:</span>
                        <label><input type="radio" name="delta-mode" value="relative" checked> vs Avg Delta</label>
                        <label><input type="radio" name="delta-mode" value="absolute"> Absolute</label>
                    </div>
                    <div class="legend-item">
                        <span style="color: #aaa;">Color Range:</span>
                        <input type="range" id="color-range-slider" min="0" max="100" value="10" step="0.1" style="width: 200px; vertical-align: middle;">
                        <span id="color-range-value" style="color: #fff; min-width: 45px; display: inline-block;">10%</span>
                    </div>
                </div>
                <div class="legend-row">
                    <div class="legend-item">
                        <div class="legend-box" style="background-color: rgb(77, 255, 77)"></div>
                        <span id="legend-better">RWKV better than avg delta</span>
                    </div>
                    <div class="legend-item">
                        <div class="legend-box" style="background-color: rgb(255, 255, 255)"></div>
                        <span id="legend-equal">Equal to avg delta</span>
                    </div>
                    <div class="legend-item">
                        <div class="legend-box" style="background-color: rgb(255, 77, 77)"></div>
                        <span id="legend-worse">RWKV worse than avg delta</span>
                    </div>
                </div>
            </div>
        </div>
    """.strip("\n")

    script_body = (ASSETS_DIR / "main.js").read_text(encoding="utf-8")

    html_doc = render_page(
        {
            "page_title": "Model Comparison",
            "style_block": style_block.strip("\n"),
            "header_html": header_html,
            "content_html": "",
            "render_model_json": render_model_json,
            "script_body": script_body.strip("\n"),
        }
    )

    if return_render_model:
        return html_doc, render_model.to_dict()
    return html_doc