Spaces:
Running
Running
File size: 27,051 Bytes
9afeeeb 350392a 9afeeeb 350392a 9afeeeb 350392a 9afeeeb 350392a 9afeeeb 44c2c6d 9afeeeb 452ae9b 9afeeeb 01ede16 9afeeeb 01ede16 9afeeeb 44c2c6d 9afeeeb 44c2c6d 9afeeeb 44c2c6d 9afeeeb 44c2c6d 350392a 44c2c6d 350392a 44c2c6d 350392a 44c2c6d 9afeeeb 350392a 9afeeeb 350392a 9afeeeb 350392a 9afeeeb 350392a 9afeeeb 8f8c689 44c2c6d 8f8c689 44c2c6d 9afeeeb 8f8c689 9afeeeb 44c2c6d 350392a 44c2c6d 8f8c689 44c2c6d 8f8c689 9afeeeb 44c2c6d 8f8c689 44c2c6d 8f8c689 44c2c6d 52ba00f 44c2c6d 8f8c689 52ba00f 8f8c689 9afeeeb 52ba00f 9afeeeb 52ba00f 9afeeeb 52ba00f 9afeeeb 52ba00f 9afeeeb 52ba00f 9afeeeb 350392a 9afeeeb 350392a 9afeeeb 350392a 9afeeeb 44c2c6d 9afeeeb 44c2c6d 9afeeeb 44c2c6d 452ae9b 9afeeeb 452ae9b 9afeeeb 350392a 9afeeeb 8629056 6fcf271 8f8c689 44c2c6d 8f8c689 44c2c6d 8f8c689 44c2c6d 8f8c689 44c2c6d 8f8c689 44c2c6d 8f8c689 44c2c6d 9afeeeb fa470f3 350392a 9afeeeb 951e8dd 44c2c6d 350392a 44c2c6d 8f8c689 44c2c6d 350392a 44c2c6d 8f8c689 44c2c6d 951e8dd fa6172d 9afeeeb 951e8dd 44c2c6d 350392a 44c2c6d 8f8c689 44c2c6d 350392a 951e8dd fa6172d 24f1b39 9afeeeb fa470f3 48754a8 9afeeeb fa470f3 9afeeeb 350392a 9afeeeb 350392a 48754a8 350392a 9afeeeb 350392a 9afeeeb 350392a 48754a8 350392a 48754a8 350392a 9afeeeb 350392a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 |
"""
HTML visualization generator for UncheatableEval.
Generates interactive HTML visualizations comparing byte-level losses between two models.
"""
import bisect
import json
import math
import re
from pathlib import Path
from typing import List, Tuple, Optional, Set
import numpy as np
from core.escaping import escape_json_for_script
from core.render_model import RenderModel, TokenInfo, build_display
from visualization.render import render_page
from core.helpers import TokenizerBytesConverter
ASSETS_DIR = Path(__file__).resolve().parent / "assets"
# Compression rate conversion factor
COMPRESSION_RATE_FACTOR = (1.0 / math.log(2.0)) * 0.125 * 100.0
# Global tokenizers (lazy loaded)
_qwen_tokenizer = None
_rwkv_tokenizer = None
_token_bytes_converter_cache = {}
def get_qwen_tokenizer():
"""Lazy load Qwen tokenizer."""
global _qwen_tokenizer
if _qwen_tokenizer is None:
_qwen_tokenizer = TokenizerBytesConverter("Qwen/Qwen3-0.6B-Base")
return _qwen_tokenizer
def get_rwkv_tokenizer():
"""Lazy load RWKV tokenizer."""
global _rwkv_tokenizer
if _rwkv_tokenizer is None:
from rwkv.rwkv_tokenizer import TRIE_TOKENIZER
import os
script_dir = os.path.dirname(os.path.abspath(__file__))
vocab_path = os.path.join(os.path.dirname(script_dir), "support", "rwkv_vocab_v20230424.txt")
_rwkv_tokenizer = TRIE_TOKENIZER(vocab_path)
return _rwkv_tokenizer
def get_tokenizer_boundaries(text: str, tokenizer, is_rwkv: bool = False) -> Set[int]:
"""Get token boundaries (byte positions) for a given text."""
boundaries = set()
boundaries.add(0)
if is_rwkv:
tokenized = tokenizer.encode(text)
if hasattr(tokenized, "ids"):
token_ids = tokenized.ids
else:
token_ids = tokenized
byte_pos = 0
for token_id in token_ids:
token_bytes = tokenizer.decodeBytes([token_id])
byte_pos += len(token_bytes)
boundaries.add(byte_pos)
else:
token_bytes_list = tokenizer.encode_to_bytes(text)
byte_pos = 0
for token_bytes in token_bytes_list:
byte_pos += len(token_bytes)
boundaries.add(byte_pos)
return boundaries
def get_token_info_for_text(text: str) -> dict:
"""Get detailed token information for each byte position."""
qwen_tokenizer = get_qwen_tokenizer()
rwkv_tokenizer = get_rwkv_tokenizer()
# Get Qwen tokens with positions
qwen_tokens = []
byte_to_qwen = {}
# Keep both token id (vocab id) and decoded bytes so the tooltip can show true token ids.
qwen_id_and_bytes = qwen_tokenizer.encode_to_ids_and_bytes(text)
byte_pos = 0
for idx, (token_id, token_bytes) in enumerate(qwen_id_and_bytes):
start = byte_pos
token_bytes_blob = bytes(token_bytes)
end = byte_pos + len(token_bytes_blob)
qwen_tokens.append((start, end, token_id, token_bytes_blob))
byte_to_qwen[start] = idx
byte_pos = end
# Get RWKV tokens with positions
rwkv_tokens = []
byte_to_rwkv = {}
tokenized = rwkv_tokenizer.encode(text)
if hasattr(tokenized, "ids"):
token_ids = tokenized.ids
else:
token_ids = tokenized
byte_pos = 0
for idx, token_id in enumerate(token_ids):
token_bytes = rwkv_tokenizer.decodeBytes([token_id])
start = byte_pos
end = byte_pos + len(token_bytes)
rwkv_tokens.append((start, end, token_id, token_bytes))
byte_to_rwkv[start] = idx
byte_pos = end
# Get common boundaries, but keep only UTF-8 codepoint boundaries
qwen_boundaries = set([0] + [t[1] for t in qwen_tokens])
rwkv_boundaries = set([0] + [t[1] for t in rwkv_tokens])
utf8_boundaries = set([0])
whitespace_boundaries = set()
linebreak_boundaries = set()
byte_pos = 0
for ch in text:
ch_bytes = ch.encode("utf-8")
byte_pos += len(ch_bytes)
utf8_boundaries.add(byte_pos)
if ch.isspace():
whitespace_boundaries.add(byte_pos)
if ch in ("\n", "\r"):
linebreak_boundaries.add(byte_pos)
common_boundaries = sorted(qwen_boundaries & rwkv_boundaries & utf8_boundaries)
# Ensure we always include the end boundary
text_end = len(text.encode("utf-8"))
if text_end not in common_boundaries:
common_boundaries.append(text_end)
common_boundaries = sorted(common_boundaries)
# Refine overly large segments to avoid giant spans in the UI.
max_segment_bytes = 24
utf8_sorted = sorted(utf8_boundaries)
linebreak_sorted = sorted(linebreak_boundaries)
def split_by_max(start: int, end: int) -> List[int]:
if end - start <= max_segment_bytes:
return [end]
left = bisect.bisect_right(utf8_sorted, start)
right = bisect.bisect_left(utf8_sorted, end)
candidates = utf8_sorted[left:right]
if not candidates:
return [end]
out = []
pos = start
idx = 0
while pos < end:
limit = min(end, pos + max_segment_bytes)
j = bisect.bisect_right(candidates, limit) - 1
if j < idx:
out.append(end)
break
split_at = None
for k in range(j, idx - 1, -1):
if candidates[k] in whitespace_boundaries:
split_at = candidates[k]
j = k
break
if split_at is None:
split_at = candidates[j]
if split_at <= pos:
split_at = candidates[j]
out.append(split_at)
pos = split_at
idx = j + 1
if pos >= end:
break
if idx >= len(candidates):
out.append(end)
break
if not out:
out = [end]
elif out[-1] != end:
out.append(end)
return out
def split_segment(start: int, end: int) -> List[int]:
if start >= end:
return []
lb_left = bisect.bisect_right(linebreak_sorted, start)
lb_right = bisect.bisect_left(linebreak_sorted, end)
linebreaks = linebreak_sorted[lb_left:lb_right]
if not linebreaks:
return split_by_max(start, end)
out = []
seg_start = start
for lb in linebreaks:
out.extend(split_by_max(seg_start, lb))
seg_start = lb
out.extend(split_by_max(seg_start, end))
return out
refined_boundaries = [common_boundaries[0]] if common_boundaries else [0]
for i in range(len(common_boundaries) - 1):
start = common_boundaries[i]
end = common_boundaries[i + 1]
refined_boundaries.extend(split_segment(start, end))
common_boundaries = sorted(set(refined_boundaries))
return {
"common_boundaries": common_boundaries,
"qwen_tokens": qwen_tokens,
"rwkv_tokens": rwkv_tokens,
"byte_to_qwen": byte_to_qwen,
"byte_to_rwkv": byte_to_rwkv,
}
def generate_comparison_html(
text: str,
byte_losses_a: List[float],
byte_losses_b: List[float],
model_a_name: str,
model_b_name: str,
topk_predictions_a: Optional[List] = None,
topk_predictions_b: Optional[List] = None,
tokenizer_a=None,
tokenizer_b=None,
model_type_a: str = "hf",
model_type_b: str = "rwkv7",
token_info_override: Optional[dict] = None,
return_render_model: bool = False,
) -> str:
"""
Generate an interactive HTML visualization comparing two models.
Args:
text: The input text that was evaluated
byte_losses_a: Per-byte losses from model A
byte_losses_b: Per-byte losses from model B
model_a_name: Display name for model A
model_b_name: Display name for model B
topk_predictions_a: Top-k predictions from model A
topk_predictions_b: Top-k predictions from model B
tokenizer_a: Tokenizer for model A
tokenizer_b: Tokenizer for model B
model_type_a: Type of model A ("hf" or "rwkv7")
model_type_b: Type of model B ("hf" or "rwkv7")
token_info_override: Optional precomputed token info (for offline tests).
return_render_model: If True, return (html, render_model_dict)
Returns:
HTML string with interactive visualization, or (html, render_model_dict) if return_render_model=True
"""
def decode_token(token_id: int, tokenizer, model_type: str) -> Tuple[str, bool]:
"""Decode a single token ID to text using the appropriate tokenizer.
Returns (text, is_raw_bytes).
"""
def bytes_to_hex_str(byte_values) -> str:
if isinstance(byte_values, list):
byte_values = bytes(byte_values)
return "".join([f"\\x{b:02x}" for b in byte_values])
def get_bytes_converter(tokenizer):
if tokenizer is None:
return None
key = getattr(tokenizer, "name_or_path", None)
if not key:
key = str(id(tokenizer))
if key not in _token_bytes_converter_cache:
try:
_token_bytes_converter_cache[key] = TokenizerBytesConverter(
model_name_or_path=getattr(tokenizer, "name_or_path", None),
tokenizer=tokenizer,
trust_remote_code=True,
)
except Exception:
_token_bytes_converter_cache[key] = None
return _token_bytes_converter_cache.get(key)
if tokenizer is None:
return f"[{token_id}]", False
try:
if model_type in ["rwkv", "rwkv7"]:
# RWKV tokenizer provides raw bytes
try:
token_bytes = tokenizer.decodeBytes([token_id])
except Exception as e:
if token_id == 0:
return f"[{token_id}]", False
raise e
if token_bytes:
try:
decoded = token_bytes.decode("utf-8")
return (decoded if decoded else f"[{token_id}]"), False
except UnicodeDecodeError:
return bytes_to_hex_str(token_bytes), True
return f"[{token_id}]", False
else:
# HuggingFace tokenizer: prefer raw bytes when possible
converter = get_bytes_converter(tokenizer)
token_bytes = None
if converter is not None:
try:
token_bytes = converter.token_to_bytes(token_id)
except Exception:
token_bytes = None
if token_bytes:
try:
decoded = bytes(token_bytes).decode("utf-8")
return (decoded if decoded else f"[{token_id}]"), False
except UnicodeDecodeError:
return bytes_to_hex_str(token_bytes), True
decoded = tokenizer.decode([token_id])
if decoded and "�" not in decoded:
return decoded, False
return (decoded if decoded else f"[{token_id}]"), False
except Exception as e:
print(f"Warning: Failed to decode token {token_id} ({model_type}): {e}")
return f"[{token_id}]", False
def build_byte_to_token_map(text: str, tokenizer, model_type: str):
"""Build mapping from byte position to token index using the correct tokenizer.
Returns a list of (start, end, token_idx) tuples for range-based lookup."""
if tokenizer is None:
return []
token_ranges = []
try:
if model_type in ["rwkv", "rwkv7"]:
# RWKV tokenizer
tokenized = tokenizer.encode(text)
if hasattr(tokenized, "ids"):
token_ids = tokenized.ids
else:
token_ids = tokenized
byte_pos = 0
for idx, token_id in enumerate(token_ids):
try:
token_bytes = tokenizer.decodeBytes([token_id])
token_ranges.append((byte_pos, byte_pos + len(token_bytes), idx))
byte_pos += len(token_bytes)
except Exception as e:
print(f"Warning: Failed to decode RWKV token {token_id}: {e}")
pass
else:
# HuggingFace tokenizer - use TokenizerBytesConverter
tokenizer_name = getattr(tokenizer, "name_or_path", None)
if tokenizer_name:
converter = TokenizerBytesConverter(tokenizer_name, trust_remote_code=True)
token_bytes_list = converter.encode_to_bytes(text)
byte_pos = 0
for idx, token_bytes in enumerate(token_bytes_list):
token_ranges.append((byte_pos, byte_pos + len(token_bytes), idx))
byte_pos += len(token_bytes)
else:
print(f"Warning: Could not get tokenizer name for HF model")
except Exception as e:
print(f"Warning: Could not build byte-to-token map ({model_type}): {e}")
return []
return token_ranges
def find_token_for_byte(byte_pos: int, token_ranges):
for start, end, idx in token_ranges:
if start <= byte_pos < end:
return idx
return None
# Calculate deltas
deltas = [a - b for a, b in zip(byte_losses_a, byte_losses_b)]
avg_delta = sum(deltas) / len(deltas) if deltas else 0
# Calculate average compression rates
avg_compression_a = sum(byte_losses_a) / len(byte_losses_a) * COMPRESSION_RATE_FACTOR if byte_losses_a else 0
avg_compression_b = sum(byte_losses_b) / len(byte_losses_b) * COMPRESSION_RATE_FACTOR if byte_losses_b else 0
avg_delta_compression = avg_delta * COMPRESSION_RATE_FACTOR
# Get token info
text_bytes = text.encode("utf-8")
token_info = token_info_override if token_info_override is not None else get_token_info_for_text(text)
common_boundaries = token_info["common_boundaries"]
qwen_tokens = token_info["qwen_tokens"]
rwkv_tokens = token_info["rwkv_tokens"]
# Build byte position to token index mapping
model_a_token_ranges = build_byte_to_token_map(text, tokenizer_a, model_type_a)
model_b_token_ranges = build_byte_to_token_map(text, tokenizer_b, model_type_b)
def get_tokens_for_range(byte_start, byte_end, token_list):
result = []
for idx, (t_start, t_end, token_id, t_bytes) in enumerate(token_list):
if t_start < byte_end and t_end > byte_start:
result.append((idx, token_id, t_bytes))
return result
# Build tokens based on common boundaries
tokens = []
for i in range(len(common_boundaries) - 1):
start_byte = common_boundaries[i]
end_byte = common_boundaries[i + 1]
token_bytes = text_bytes[start_byte:end_byte]
decoded_ok = True
try:
token_text = token_bytes.decode("utf-8")
except UnicodeDecodeError:
# Show raw bytes when UTF-8 decoding fails
token_text = "".join([f"\\x{b:02x}" for b in token_bytes])
decoded_ok = False
qwen_toks = get_tokens_for_range(start_byte, end_byte, qwen_tokens)
rwkv_toks = get_tokens_for_range(start_byte, end_byte, rwkv_tokens)
if decoded_ok and re.search(r"\w", token_text, re.UNICODE):
tokens.append(
{
"type": "word",
"text": token_text,
"byte_start": start_byte,
"byte_end": end_byte,
"word_lower": token_text.lower(),
"qwen_tokens": qwen_toks,
"rwkv_tokens": rwkv_toks,
}
)
else:
tokens.append(
{
"type": "non-word",
"text": token_text,
"byte_start": start_byte,
"byte_end": end_byte,
"qwen_tokens": qwen_toks,
"rwkv_tokens": rwkv_toks,
}
)
# Track word occurrences
word_occurrences = {}
word_id_counter = 0
for i, token in enumerate(tokens):
if token["type"] == "word":
word_lower = token["word_lower"]
if word_lower not in word_occurrences:
word_occurrences[word_lower] = []
word_occurrences[word_lower].append(i)
token["word_id"] = word_id_counter
word_id_counter += 1
# Build render model (HTML content built in JS)
render_tokens = []
for token in tokens:
token_text = token["text"]
byte_start = token["byte_start"]
byte_end = token["byte_end"]
# Get actual model token IDs for this byte range
model_a_token_idx = find_token_for_byte(byte_start, model_a_token_ranges)
model_b_token_idx = find_token_for_byte(byte_start, model_b_token_ranges)
# Build token info strings showing all tokens in this byte range
def token_bytes_to_display_text(token_bytes: bytes) -> Tuple[str, bool]:
if token_bytes is None:
return "", False
if isinstance(token_bytes, list):
token_bytes = bytes(token_bytes)
if isinstance(token_bytes, str):
return token_bytes, False
if len(token_bytes) == 0:
return "", False
try:
return token_bytes.decode("utf-8"), False
except UnicodeDecodeError:
return "".join([f"\\x{b:02x}" for b in token_bytes]), True
raw_bytes = list(text_bytes[byte_start:byte_end])
losses_a = byte_losses_a[byte_start:byte_end]
losses_b = byte_losses_b[byte_start:byte_end]
bytes_str = " ".join([f"{b:02x}" for b in raw_bytes])
compression_a_str = " ".join([f"{l * COMPRESSION_RATE_FACTOR:.2f}%" for l in losses_a])
compression_b_str = " ".join([f"{l * COMPRESSION_RATE_FACTOR:.2f}%" for l in losses_b])
# Calculate average compression rate for this token
avg_compression_a_token = sum(losses_a) / len(losses_a) * COMPRESSION_RATE_FACTOR if losses_a else 0
avg_compression_b_token = sum(losses_b) / len(losses_b) * COMPRESSION_RATE_FACTOR if losses_b else 0
topk_a_data = None
topk_b_data = None
if topk_predictions_a is not None and model_a_token_ranges:
model_a_token_idx = find_token_for_byte(byte_start, model_a_token_ranges)
if model_a_token_idx is not None and model_a_token_idx < len(topk_predictions_a):
pred = topk_predictions_a[model_a_token_idx]
try:
if len(pred) >= 4:
actual_id, rank, actual_prob, topk_list = pred[0], pred[1], pred[2], pred[3]
topk_a_data = [
actual_id,
rank,
actual_prob,
[[tid, prob, *decode_token(tid, tokenizer_a, model_type_a)] for tid, prob in topk_list],
]
else:
topk_a_data = [
pred[0],
pred[1],
[[tid, prob, *decode_token(tid, tokenizer_a, model_type_a)] for tid, prob in pred[2]],
]
except Exception as e:
pass
if topk_predictions_b is not None and model_b_token_ranges:
model_b_token_idx = find_token_for_byte(byte_start, model_b_token_ranges)
if model_b_token_idx is not None and model_b_token_idx < len(topk_predictions_b):
pred = topk_predictions_b[model_b_token_idx]
try:
if len(pred) >= 4:
actual_id, rank, actual_prob, topk_list = pred[0], pred[1], pred[2], pred[3]
topk_b_data = [
actual_id,
rank,
actual_prob,
[[tid, prob, *decode_token(tid, tokenizer_b, model_type_b)] for tid, prob in topk_list],
]
else:
topk_b_data = [pred[0], pred[1], [[tid, prob, *decode_token(tid, tokenizer_b, model_type_b)] for tid, prob in pred[2]]]
except Exception as e:
pass
token_deltas = deltas[byte_start:byte_end]
avg_token_delta = sum(token_deltas) / len(token_deltas) if token_deltas else 0
tuned_delta = avg_token_delta - avg_delta
raw_delta = avg_token_delta
# Initial rendering uses white color, JavaScript will apply colors based on slider
r, g, b = 255, 255, 255
raw_display_text = token_text
display_text = token_text.replace("\t", " ")
def classify_kind(text_value: str, is_raw_value: bool) -> str:
return build_display(text_value, is_raw=is_raw_value).kind
def get_actual_prob(topk_predictions, token_idx: Optional[int]):
if not topk_predictions or token_idx is None:
return None
if token_idx < 0 or token_idx >= len(topk_predictions):
return None
pred = topk_predictions[token_idx]
if isinstance(pred, (list, tuple)) and len(pred) >= 3:
return pred[2]
return None
model_tokens_render = {}
if token["rwkv_tokens"]:
rwkv_items = []
for tok_idx, tid, tb in token["rwkv_tokens"]:
txt, is_raw = token_bytes_to_display_text(tb)
rwkv_items.append([tid, txt, classify_kind(txt, is_raw), get_actual_prob(topk_predictions_a, tok_idx)])
model_tokens_render["rwkv"] = rwkv_items
if token["qwen_tokens"]:
qwen_items = []
for tok_idx, tid, tb in token["qwen_tokens"]:
txt, is_raw = token_bytes_to_display_text(tb)
qwen_items.append([tid, txt, classify_kind(txt, is_raw), get_actual_prob(topk_predictions_b, tok_idx)])
model_tokens_render["qwen"] = qwen_items
display_info = build_display(raw_display_text, is_raw=not decoded_ok)
if display_info.kind == "control":
display_text = raw_display_text
display_info.text = display_text
render_tokens.append(
TokenInfo(
byte_start=byte_start,
byte_end=byte_end,
display=display_info,
is_word=token["type"] == "word",
word_id=token.get("word_id"),
word_key=token.get("word_lower"),
bytes_hex=bytes_str,
compression={"rwkv": compression_a_str, "qwen": compression_b_str},
model_tokens=model_tokens_render,
loss={"rwkv": avg_compression_a_token, "qwen": avg_compression_b_token},
topk={
"rwkv": topk_a_data,
"qwen": topk_b_data,
},
raw_delta=raw_delta,
tuned_delta=tuned_delta,
)
)
delta_color = "#64ff64" if avg_delta < 0 else "#ff6464"
render_model = RenderModel(
text=text,
tokens=render_tokens,
meta={
"model_a": model_a_name,
"model_b": model_b_name,
"avg_compression": {
"rwkv": avg_compression_a,
"qwen": avg_compression_b,
},
"avg_delta": avg_delta,
"avg_delta_compression": avg_delta_compression,
},
)
render_model_json = escape_json_for_script(render_model.to_dict())
style_block = (ASSETS_DIR / "main.css").read_text(encoding="utf-8")
header_html = f"""
<div class="header">
<div class="meta">
<div>Model A: {model_a_name}</div>
<div>Model B: {model_b_name}</div>
<div>RWKV Compression: {avg_compression_a:.2f}%</div>
<div>Qwen Compression: {avg_compression_b:.2f}%</div>
<div style="color: {delta_color}">Avg Delta: {avg_delta_compression:+.2f}%</div>
</div>
<div class="legend">
<div class="legend-row">
<div class="legend-item legend-toggle">
<span style="color: #aaa;">Coloring Mode:</span>
<label><input type="radio" name="delta-mode" value="relative" checked> vs Avg Delta</label>
<label><input type="radio" name="delta-mode" value="absolute"> Absolute</label>
</div>
<div class="legend-item">
<span style="color: #aaa;">Color Range:</span>
<input type="range" id="color-range-slider" min="0" max="100" value="10" step="0.1" style="width: 200px; vertical-align: middle;">
<span id="color-range-value" style="color: #fff; min-width: 45px; display: inline-block;">10%</span>
</div>
</div>
<div class="legend-row">
<div class="legend-item">
<div class="legend-box" style="background-color: rgb(77, 255, 77)"></div>
<span id="legend-better">RWKV better than avg delta</span>
</div>
<div class="legend-item">
<div class="legend-box" style="background-color: rgb(255, 255, 255)"></div>
<span id="legend-equal">Equal to avg delta</span>
</div>
<div class="legend-item">
<div class="legend-box" style="background-color: rgb(255, 77, 77)"></div>
<span id="legend-worse">RWKV worse than avg delta</span>
</div>
</div>
</div>
</div>
""".strip("\n")
script_body = (ASSETS_DIR / "main.js").read_text(encoding="utf-8")
html_doc = render_page(
{
"page_title": "Model Comparison",
"style_block": style_block.strip("\n"),
"header_html": header_html,
"content_html": "",
"render_model_json": render_model_json,
"script_body": script_body.strip("\n"),
}
)
if return_render_model:
return html_doc, render_model.to_dict()
return html_doc
|